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Experiences with Amoeba

Sape J. Mullender

University of Twente, Netherlands
mullender@cs.utwente.nl

Abstract

The Amoeba distributed operating system has been in use now for a
few years. It has been used in experiments with parallel algorithms, as
a distributed UNIX-like system, in real-time applications, and in event-
processing for proton-scattering high-energy physics experiments.

We have discovered many of the strong and the weak points of
Amoeba. On the positive side, we are very pleased with our RPC-based
communication, with capability-based protection, with a free-standing
naming service, the bootstrap service and with the process-
management facilities.

On the negative side, we are not happy with our incomplete, non-
binary-compatible UNIX functionality, with the flat port name space
which limits the ability to scale, with an immutable-file service, and
with a kernel implementation of user threads.

In this paper, I will present a brief overview of Amoeba, discuss our
experiences with Amoeba, and present some of my current work on the
design of a new distributed system.

1. Introduction

The Amoeba Distributed Operating System Project started in 1980 at
the Vrije Universiteit in Amsterdam. Its goal was the design and
implementation of a true distributed operating system, a system with no
single points of failure, a system that would scale to arbitrary size, and
a system that would provide at least the functionality and performance
of current UNIX systems on a similar equipment basis.

The provision of a UNIX interface was an explicit non-goal, even
though we do now run many UNIX applications on Amoeba. In the
design of Amoeba, we wanted to be unhampered by existing operating
system interfaces in order to address the more fundamental question of
what functionality is appropriate to provide and how can one provide it
efficiently.

The project began very small: two people worked on it part time for
several years. It was only around 1983 that more people started work-
ing on Amoeba. In 1984, CWI joined in on the Amoeba project, mak-
ing it a distributed distributed systems project. In 1990, a full dozen or
so people were working full time in the project.

EurOpen 91 — Tromsp, 20-24 May




Experiences with Amoeba

Amoeba will soon be available as a distributed systems research plat-
form for universities and research laboratories. Inquiries should be
directed to Prof. Andrew S. Tanenbaum at the Vrije Universiteit
(ast@cs.vu.nl).

The remainder of the paper is structured as follows. Section 2 gives a
short description of the Amoeba distributed system which makes the
rest of this paper readable by itself. Sections 3 and 4 then discuss our
positive and negative experience with the system in view of the original
goals. Finally, Section 5 draws conclusions and describes the current
systems research plans in Twente.

2. The Amoeba Distributed System

Amoeba [Mul90a, Tan90a] is an object-based system. Client processes
use remote procedure calls to send requests for carrying out operations
to objects. Each object is both identified and protected by a capability.
Capabilities have the set of operations that the holder may carry out on
the object coded into them and they contain enough redundancy and
cryptographic protection to make it infeasible to guess an object’s
capability. Thus, keeping capabilities secret is the key to protection in
Amoeba.

Objects are implemented in terms of server processes that manage
them. Capabilities have the identity of the object’s server encoded into
them so that, given its capability, the system can easily find a server
process for an object. The RPC system guarantees that requests and
replies are delivered at most once and only to authorized processes.

Amoeba’s communication model is that of a client thread making
remote procedure calls [Bir84a] on objects to manipulate them. The
model is implemented in terms of the client sending a request message
to the service that manages the object. A server thread will carry out
the request and return a reply message back to the client.

Conceptually, clients communicate with active objects. An active
object is implemented as a set of (multithreaded) server processes that
manage the (passive) representation of the object — as well as the
representations of many other objects, usually. A set of server
processes that jointly manages a collection of objects of the same type
is referred to as a service.

The interface for manipulating a type of object is called the object
type’s class. Classes can be composed hierarchically; that is, a class
may contain the operations from one or several more primitive classes.
This multiple inheritance mechanism allows many services to inherit
the same interfaces for simple object manipulations, such as for chang-
ing the protection properties on an object, or deleting an object. It also
allows all servers manipulating objects with file-like properties to
inherit the same interface for low-level file I/O: read, write, append.
The mechanism resembles the file-like properties of UNIX pipe and
device 1/0: the UNIX read and write system calls can be used on files,
terminals, pipes, tapes and other I/O devices. But for more detailed
manipulation, specialized calls are available (ioctl, popen, etc.). Inter-
faces for object manipulation are specified in a notation, called the
Amoeba Interface Language (AIL) [Ros89a], which resembles the nota-
tion for procedure headers in C with some extra syntax added. This
allows automatic generation of client and server stubs.

AIL generates the code for marshalling and unmarshalling the parame-
ters of remote procedure calls into and out of message buffers and then
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calls on Amoeba’s transport mechanism for the delivery of request and
reply messages. Messages consist of two parts, a header and a buffer.
The header has a fixed format and contains addressing information
(among which, the capability of the object that the RPC refers to), an
operation code which selects the function to be called on the object,
and some space for additional parameters. The size of the buffer may
range from 0 and 32K bytes and is mostly used to hold the variable-
length arguments of RPCs. A file read or write call, for instance, uses
the message header for the operation code plus the length and offset
parameters, and the buffer for the file data. With this set-up, marshal-
ling the file data takes zero time, because the data can be transmitted
directly from and to the arguments specified by the program.

The transport mechanism itself consists of the server calls get_request
and put_reply, usually arranged in a loop of a server thread as follows:

/* allocate a request buffer */
do {
get request (port, regheader, regbuffer, regbuflen);
/* Unmarshal the request parameters */
/* Call the implementation routine */
/* Marshal the reply parameters */
put reply(repheader, repbuffer, repbuflen);
} while (1)

Get _request blocks until a request comes in. Pus_reply blocks until the
header and buffer parameters can be reused. A client sends a request
and waits for a reply by calling

do_operation(regheader, regbuffer, regbuflen,
repheader, repbuffer, repbuflen);

These three calls are implemented as system calls of the Amoeba ker-
nel. The protocol for the transport of messages is network dependent.
Over wide-area networks, standard protocols, such as IP or X.25 are
used. Over local networks, specialized protocols, designed for fast
response and high throughput are used.

Before a request for an operation on an object can be delivered to a
server thread that manages the object, the location of such a thread
must be found. Capabilities consist of 3 parts, a port, which identifies
the service that manages the object that the capability refers to, a loca-
tion hint which can be used to provide a clue for the location of the
object, and an object part that identifies the object further within the
service. The structure of a capability is shown in Figure 1.

When a server thread makes a get request call, it provides its service
port to the system. When a client thread calls do_transaction, it is the
system’s job to find a server thread with an outstanding get_request
that matches the port in the capability provided by the client.

We call the process of finding the address of such a server thread locat-
ing. If objects and processes did not move, locating servers would be
easy, but they do so it isn’t. The current technique for locating servers
for a service is to broadcast for them: When the location of a service is
not know, the client’s kernel broadcasts a ‘“‘where-are-you™ packet. To
this, the servers for the service react and the first reaction is selected.
Kemnels cache location information to avoid broadcasting as much as
possible.

When Amoeba is run over wide-area networks, which do not support
broadcast, port publishing is used: Wide-area services announce their
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Figure 1: Structure of a Capability

Above: Structure of a capability as defined by Amoeba.

Below: Detailed structure of a capability as defined by many services. The service port identifies the ser-
vice that manages the object. The object part identifies the object within the service. Object number is
usually an index into a table of objects within the sérvice; rights define what operations the client holding
the capability is allowed to invoke and check is a cryptographic checksum that prevents forgery.

presence by sending a message to the wide-area network gateway pro-
cess, which broadcasts the message to all other gateways. The gate-
ways then answer where-are-you broadcasts from clients on the local
network.

When a client process sends requests to the file server, one wants to
make quite certain that they go to the file server and not to an intruder
process. When the reply comes back, one also wants to be absolutely
sure that the reply was sent by the file server and no other process.
Authentication mechanisms are needed that prevent one process from
impersonating another and prevent unauthorized processes from look-
ing at other processes’ messages.

The way it was described earlier, the interface for message exchange is
insecure. A malicious client in possession of the capability of a file
knows the port of the file service and it can therefore do get_requests
on the file server’s port in order to intercept read and write requests
from unsuspecting clients of the file server. Fortunately, the interface
does not work exactly as described before.

In order to receive requests, a server has to know the get port of the
service it implements. In order to send requests to a service, the client
has to know (as part of a capability) the put port of that service. To
make it feasible for the system to deliver requests addressed with a put
port to a process asking for requests on a get port, it has to know the
relationship between get ports and put ports.

This relationship is provided by a one-way function F. One-way func-
tions are functions that take an argument from a very large domain and
compute a value in a range of approximately (or exactly) the same size.
The special property of these functions is that, although it is reasonably
simple to compute the function, finding an inverse for a arbitrary value
of the function is computationally infeasible [Eva74a]. F is a publicly
known one-way function that defines the relationship between a get
port G and a put port P as follows:

P = F(G)

Thus, when one knows the get port, the associated put port can be
straightforwardly computed, but knowledge of a put port alone cannot
be used to find the associated get port.

A server does get_requests with the get port as one of the arguments
and the client does do_operations with the service’s put port in the
capability argument. In order to get replies back equally securely,
clients also use a pair of ports. Internal to the implementation of
do_operation the client asks for replies addressed to the client’s get
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port and the server addresses the reply with the client’s put port. The
client’s get port may be viewed as the client process’ UID — it is kept in
the process’ environment and normally inherited on process creation.

As long as one assumes that Amoeba processes use the ger_request,
put_reply and do_operation interfaces exclusively, this mechanism is
secure. Unfortunately, it is very difficult to enforce the use of this
interface and prevent use of another. If just one machine on an Ether-
net cheats, the security of the whole system is compromised.

The friendly-environment implementation of the Amoeba protection
mechanism assumes that the exclusive use of the Amoeba communica-
tion interface can indeed be enforced. The implementation is in the
Amoeba kernel and also in the Amoeba-communication package of our
UNIX kemnels (in a UNIX device driver). Under the assumption that the
Amoeba kernel is tamper proof, that the super-users on UNIX can be
trusted, and that there are no other untrustworthy machines on the net-
work, the friendly-environment implementation is secure. In the
Amoeba systems in use at CWI and VU, friendly-environment protec-
tion is deemed sufficient — we keep few secrets anyway.

A secure version of this protection mechanism using cryptographic
techniques has been designed but not yet implemented.

Although, at the system level, objects are identified by their capabili-
ties, at the level where most people program and do their work, objects
are named using a human-sensible hierarchical naming scheme. The
mapping is carried out by the directory server. It maintains a mapping
of ASCII path names onto capabilities. For replicated objects it can
map the name onto a set of capabilities, one for each replica. The
directory server has mechanisms for doing atomic operations on arbi-
trary collections of name-to-capability mappings. Thus, as long as the
objects themselves are used as immutable objects, the directory server
can be used as a simple transaction-management system.

Hierarchical directory structures are ideal for implementing partially
shared name spaces. Objects that are shared between the members of a
project team can be stored in a directory that only team members have
access to. By implementing directories as ordinary objects with a capa-
bility that is needed to use them. members of a group can be given
access by giving them the capability of the directory, while others can
be withheld access by not giving them the capability. A capability of a
directory is thus a capability for lots of other capabilities.

It does not make sense in this naming hierarchy of capabilities to have
a common root: Through the root, every user would be able to access
exactly the same set of capabilities and this is obviously not desirable.
Instead, every principal — that is, every entity that can maintain a set of
private objects, a human user, a service, or something else — has a
home directory which serves as the root of that principal’s naming
universe. When an individual logs in, a login server, which is assumed
to be secure and trusted, starts a command interpreter and provides it
with the capability of his home directory. From the home directory, all
the capabilities that a user needs must be reachable.

Amoeba processes can have multiple threads of control. A process,
essentially, consists of a segmented virtual address space and one or
more threads. Processes can be remotely created, destroyed, check-
pointed, migrated and debugged.

On a uniprocessor, threads run in quasi-parallel; on a shared-memory
multiprocessor, as many threads can run simultaneously as there are
processors. Processes can not be split up over more than one machine.
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Process Capability Host Descriptor

Process Capability

Handler Capability

Segment
Descriptor

Number of Threads

Thread
Descriptor

Figure 2: Layout of a process descriptor

Processes have explicit control over their address space. They can add
new segments to their address space by mapping them in and remove
segments by mapping them out. Besides virtual address and length, a
capability can be specified in a map operation. This capability must
belong to a file-like object which is read by the kemel to initialize the
new segment. This allows processes to do mapped-file I/0.

A process is created by sending a process descriptor in an execute pro-
cess request to a kernel. A process descriptor consists of four parts as
shown in Figure 2. The host descriptor describes on what machine the
process may run, e.g., its instruction set, extended instruction sets
(when required), memory needs, etc., but also it can specify a class of
machines, a group of machines or a particular machine. A kernel that
does not match the host descriptor will refuse to execute the process.

Then come the capabilities, one is the capability of the process which
every client that manipulates the process needs. The other is the capa-
bility of a handler, a service that deals with process exit, exceptions,
signals and other anomalies of the process

The memory map has an entry for each segment in the address space of
the process to be. An entry gives virtual address, segment length, how
the segment should be mapped (read only, read/write, execute only,
etc.), and the capability of a file or segment from which the new seg-
ment should be initialized.

The thread map describes the initial state of each of the threads in the
new process, processor status word, program counter, stack pointer,
stack base, register values, and system call state. This rather elaborate
notion of thread state allows the use of process descriptors not only for
the representation of executable files, but also for processes being
migrated, being debugged or being checkpointed.
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In most operating systems, system call state is a very large and compli-
cated to represent outside an operating system kemnel. In Amoeba, for-
tunately, there are very few system calls that can block in the kernel.
The most complicated ones are those for communication: do_operation
and get_request.

Processes can be in two states, running, or stunned. In the stunned
state, a process exists, but does not execute instructions. A process
being debugged is in the stunned state, for example. The low-level
communication protocols in the operating system kernel respond with
“this-process-is-stunned” messages to attempts to communicate with
the process. The sending kernel will keep trying to communicate until
the process becomes running again or until it is killed. Thus, communi-
cation with a process being interactively debugged continues to work.

A running process can be stunned by a stun request directed to it from
the outside world (this requires the stunner to have the capability of the
process which is taken as evidence it is the owner), or by an uncaught
exception. When the process becomes stunned, the kernel sends its
state in a process descriptor to a handler whose identity is a capability
which is part of the process’ state. After examining the process
descriptor, and possibly modifying it or the stunned process’ memory,
the handler can either reply with a resume or kill command.

Debugging processes is done with this mechanism. The debugger takes
the role of the handler. Migration is also done through stunning. First,
the candidate process is stunned; then, the handler gives the process
descriptor to the new host. The new host fetches memory contents
from the old host in a series of file read requests, starts the process and
returns the capability of the new process to the handler. Finally, the
handler returns a kill reply to the old host. Processes communicating
with a process being migrated will receive “process-is-stunned” replies
to their attempts until the process on the old host is killed. Then they
will get a “process-not-here” reaction. After locating the process
again, communication will resume with the process on the new host.

The mechanism allows command interpreters to cache process descrip-
tors of the programs they start and it allows kernels to cache code seg-
ments of the processes they run. Combined, these caching techniques
make process start-up times very short.

Amoeba is a new operating system with a system interface that is quite
different to that of the popular operating systems of today. Amoeba
was developed by a group of people who all used UNIX as their operat-
ing system vehicle, so it will come as no surprise that the absence of
UNIX tools on Amoeba would be a major obstacle to using Amoeba for
daily work.

The Amoeba support for UNIX is called Ajax, not after the ancient
Greek hero of that name, but because the name starts with an “A” and
ends with an “X” and because the training grounds of the Ajax soccer
club are visible from the CWI windows. It was designed and imple-
mented by Guido van Rossum who used the approach that 90% of the
effort goes into getting the last 10% of the UNIX utilities running on
Amoeba and nobody needs those UNIX utilities anyway.

A library was developed that implemented the most common UNIX
system calls using data structures in the library and calls on the Bullet
file server, the Soap directory server and the Amoeba process manage-
ment facilities. The system calls implemented initially were those for
file 1/O (open, close, dup, read, write, Iseek) and a few of the ioct!
calls for ttys. These were very easy to implement under Amoeba
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(about two week’s work) and were enough to get a surprising number
of UNIX utilities to run.

Currently, about 100 utilities have been made to run on Amoeba
without any changes to the source code. The X-window system has
been ported to Amoeba and supports the use of both TCP/IP and
Amoeba RPC there so that an X client on Amoeba can still converse
with an X server on Amoeba and vice versa.

We have found that the availability of the UNIX utilities have made the
transition to Amoeba much easier. Slowly, however, many of the
UNIX utilities will be replaced by utilities that are better adapted to the
Amoeba distributed environment.

3. Things we like

Amoeba was designed with a very different philosophy from UNIX.
Amoeba does not, at the operating system level, have files, pipes, fork
or exec. Instead, Amoeba has three fundamental notions: address
spaces, threads, and communication between threads. These have
proven to be extremely powerful abstractions for building distributed
systems and, as we shall see later, they did not get in the way of provid-
ing “conventional” operating system functionality.

Capabilities provide a uniform way of addressing objects (and,
indirectly, services) and have given us a system-wide protection
mechanism which has proven to be very effective. Capability-based
protection is quite different from the conventional access-control-list
protection that we are so familiar with in, for instance, UNIX. It takes
some time to get used to capabilities, but now they are as natural a way
to architect system security as any.

Capability-based addressing and our interface-definition language AIL
make object interaction very uniform and very natural. The directory
service, in addition, provides a mapping of hierarchical ASCII names to
objects’ capabilities so that every object, independent of its type, can
be named in the same name space. UNIX names files in one name
space (hierarchical ASCII strings), processes in another (PIDs) and
users in a third (UIDs) and fourth (mullender@cs.urwente.nl), while
some objects (e.g., pipes) are not named at all. In Amoeba, all of these
are named using capabilities at one level and directory paths in another.

AIL’s multiple-inheritance mechanism allows the sharing of interfaces
across a range of object types. For example, files, terminal 1/0, and our
equivalence of pipes all share an interface for reading and writing so
that to applications that write sometimes to a file and sometimes to a
terminal, you only need to pass the output object’s capability and not
its type.

The RPC transport mechanism has proven to be among the best per-
forming in any system. RPC mechanisms on UNIX certainly perform
nowhere as well. Obviously, we are pretty happy with this. The suc-
cess of our high-speed RPC can be attributed to a number of factors.
First, we have made sure that most large RPCs can go directly out of
existing in-memory buffers to the correct target in-memory location.
This is illustrated nicely by the file server: It caches files in memory
and can satisfy read requests by sending replies directly out of the file
cache, saving copying. The file server also does not have to reserve
space for message headers, since header and buffer can be sent
separately.
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RPC transport is made fast also by the use of a specialized light-weight
transport protocol, tailored for use over local networks where packet
losses are rare. A typical wide-area network RPC consists of three
RPCs: a local one between client and gateway, one between gateways
over the WAN and another local one between gateway and server. The
two gateways can then use a different wide-area network transport pro-
tocol (such as an X.25 or TCP/IP-based protocol).

But the most important cause of high-speed is the way in which the
transport protocols have been integrated with the operating system ker-
nel. This needs to be done very carefully. A redesign of the UNIX ker-
nel can give similar speedups as suggested by the Sprite kernel
[Ous88al.

Amoeba’s directory server is a mapping service of ASCII path names to
capabilities. Mutable objects can be constructed out of immutable ones
by changing the directory mapping from one immutable object into the
next. This is done, for instance, to reflect change in the file system
which, itself, provides immutable-file service. The directory server has
mechanisms to replace sets of mappings atomically and it has support
for managing replicated objects. Using the directory service, it is very
simple to carry out transaction and create some fault tolerance, even
though the underlying services have by themselves no support for this.
So far, however, these mechanisms have not been used much.

The Amoeba process management mechanisms have proven to be very
valuable. The process descriptor was originally invented so that pro-
cess migration might be possible. As it turns out now, process migra-
tion is hardly used, but the mechanisms themselves are still extremely
useful.

A process descriptor is a portable description of a multithreaded pro-
cess in an arbitrary state. It is thus used in debugging, checkpointing,
and forking. Our current debugger, derived from the GNU debugger,
uses process descriptors to communicate between the debugger and the
debugged process. The Ajax server implements the fork system call by
checkpointing the UNIX process at the fork call and creating a copy on
another host. Fork under Ajax is thus by default remote.

4. Things we do not like

Even though we have had a free hand in designing Amoeba to be any-
thing we wanted, some design decisions have turned out to be not to
our liking. There are some things that we know now how to do better,
and others where we know what’s wrong, but we don’t really know
what to do about it.

The capabilities that were praised so highly in the previous section are
also the source of some fundamental problems. First, a capability,
through the port contained in it, tells us the name of the service manag-
ing it. If the service is replicated, any server must be able to give
access to the object. This is not realistic in very large systems, where a
service can have hundreds of servers, but each object is only held by a
few of them. In a capability, the information of what servers exactly
store a particular object cannot be represented, especially, because,
although the service itself remains, its servers go through generations
of incarnations and this cannot be communicated to the capabilities
which are stored by the individual users.

As usual, this problem could be solved by the proverbial “extra level of
indirection” as provided, for instance, by the DEC Global Name Server
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[Lam86a] which is now part of OSF’s Distributed Computing Environ-
ment. Here, a directory entry can be made to store not only a capability
for the object, but also the names of the servers storing the object. By
looking up the names of one or more of these servers, one would find a
directory entry with location information, authentication information,
etc. Since the server directory entry is maintained by the service, it can
be kept up to date.

Amoeba also provides a directory service, but does not provide it as a
fundamental system service — in other words, Amoeba must be usable
without one. I am inclined to believe now that this may have been an
error and in my next system I intend to introduce this extra level of
indirection.

The problem just sketched is an example of a “problem of scale”, a
problem that appears when the system grows beyond a certain size.
Avoiding problems of scale is one of the hardest problems in distri-
buted systems research. It will thus come as no surprise that Amoeba
has more of them, also related to capabilities.

Capabilities contain ports for addressing services. These ports are flat
48-bit names and do not reveal where a server for that port might be
located. To find this out, Amoeba uses broadcast. The result of a
broadcast query for a server on a particular port is cached so that it
does not have to be done very often. It is clear that this technique of
locating servers does not scale very well. In wide-area networks, there-
fore, Amoeba uses a different strategy. Services available over wide-
area networks publish their port: They give their port to their local
gateway server which writes it to stable storage and broadcasts it to all
other gateway servers in the network. Since this happens only when a
new service for the wide-area network community is created, these
broadcasts are infrequent. Also, the number of local networks and thus
the number of gateways is one or two orders of magnitude smaller than
the number of potential clients or the total number of services. Still,
this algorithm does not scale very well to systems of world-wide scale.
It also presents a security problem that is currently unsolved.

This problem of scale forms another reason to choose a hierarchical
directory service as a better-scaling alternative.

A problem of a different kind is presented by the way in which
processes are allocated to processors. Since all process creation is
essentially remote, Amoeba can take relatively little advantage of local-
ity of reference. It is, for example, rather useless to cache files on
client machines, because they are seldom used on the same machine
again: An edit-compile-link-run sequence leads to editing the source
file in one location, compiling it in another, linking the resulting object
files in yet another location, and running the executable in a different
on again. Caching is useless here, especially, because at the next itera-
tion the compiler, linker and executable will run on different machines
again.

The current Bullet file server in Amoeba does no client caching for this
reason and it should come as no surprise that the Sprite file system,
which does, outperforms the Bullet file system in all but contrived
cases. This is a problem that can, in principle, be solved. One can
implement client caching relatively straightforwardly, and one can
make the process allocation algorithms clever enough to use
knowledge of what is cached where when allocating processes to pro-
CEessors.
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5. Conclusions

We have learned very much from the design and subsequent use of
Amoeba and we believe that others have too. Amoeba has been one of
the pioneering distributed systems and, as such, has been very success-
ful. As it gets exercised by day-to-day use, Amoeba will continue to
improve and overcome some of the problems discussed above.

Amoeba is now, or will soon be available as a distributed systems plat-
form for research and education in distributed systems. Compared to
today’s UNIX it may still appear to be rather unfunctional, but, unlike
UNIX, it is a true transparently distributed system and, unlike UNIX, it
has not yet had a history of nearly twenty years of improvement
(although, of course, not all changes to UNIX have been improve-
ments).

The Amoeba project will continue at the Vrije Universiteit, albeit
without the author.
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Abstract

An important trend in operating system development is the restructur-
ing of the traditional monolithic operating system kernel into indepen-
dent servers running on top of a minimal nucleus or “microkernel”.
This approach arises out of the need for modularity and flexibility in
managing the ever-growing complexity caused by the introduction of
new functions and new architectures. In particular, it provides a solid
architectural basis for distribution, fault tolerance, and security.
Microkernel-based operating systems have been a focus of research for
a number of years, and are now beginning to play a role in commercial
UNIX systems.

The ultimate feasibility of this attractive approach is not yet widely
recognised, however. A primary concern is efficiency: can a
microkernel-based modular operating system provide performance
comparable to that of a monolithic kernel when running on comparable
architectures? The elegance and flexibility of the client-server model
may exact a cost in message-handling and context-switching overhead.
If this penalty is too great, commercial acceptance will be limited.
Another pragmatic concern is compatibility: in an industry relying
increasingly on portability and standardisation, compatible interfaces
are needed not only at the level of application programs, but also for
device drivers, streams modules. and other components. In many
cases, binary as well as source compatibility is required. These con-
cerns affect the structure and organisation of the operating system.

The Chorus team has spent the past six years studying and experiment-
ing with UNIX “kernelisation™ as an aspect of its work in modular dis-
tributed and real-time systems. In this paper we examine aspects of the
current CHORUS system in terms of its evolution from the previous ver-
sion. Our focus is on pragmatic issues such as performance and com-
patibility, as well as considerations of modularity and software
engineering.

This paper is a revision of an article that appeared in the Proceedings of the Winter 1991 Usenix Conference. Dallas, TX.
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1. Microkernel Architectures

A recent trend in operating system development consists of structuring
the operating system as a modular set of system servers which sit on
top of a minimal microkemel, rather than using the traditional monol-
ithic structure. This new approach promises to help meet system and
platform builders’ needs for a sophisticated operating system develop-
ment environment that can cope with growing complexity, new archi-
tectures, and changing market conditions. In this operating system
architecture, the microkernel provides system servers with generic ser-
vices, such as processor scheduling and memory management,
independent of a specific operating system. The microkernel also pro-
vides a simple Inter-Process Communication (IPC) facility that allows
system servers to call each other and exchange data independent of
where they are executed, in a multiprocessor, multicomputer, or net-
work configuration.

This combination of primitive services forms a standard base which in
turn supports the implementation of functions that are specific to a par-
ticular operating system or environment. These system-specific func-
tions can then be configured, as appropriate, into system servers
managing the other physical and logical resources of a computer sys-
tem, such as files, devices and high-level communication services. We
refer to such a set of system servers as a subsystem. Real-time systems
tend to be built along similar lines, with a very simple generic execu-
tive supporting application-specific real-time tasks.

1.1. UNIX and Microkernels

UNIX introduced the concept of a standard, hardware-independent
operating system, whose portability allowed platform builders to
reduce their time to market by obviating the need to develop
proprietary operating systems for each new platform.

However, as more function and flexibility is continually demanded, it is
unavoidable that today’s versions become increasingly more complex.
For example, UNIX is being extended with facilities for real-time appli-
cations and on-line transaction processing. Even more fundamental is
the move toward distributed systems. It is desirable in today’s comput-
ing environments that new hardware and software resources, such as
specialised servers and applications, be integrated into a single system,
distributed over a network. The range of communication media com-
monly encountered includes shared memory, buses, high-speed net-
works, local-area networks, and wide-area networks. This trend to
integrate new hardware and software components will become funda-
mental as collective computing environments emerge.

To support the addition of function to UNIX and its migration to distri-
buted environments, it is desirable to map UNIX onto a microkernel
architecture, where machine dependencies may be isolated from unre-
lated abstractions and facilities for distribution may be incorporated at
a very low level.

The attempt to reorganise UNIX to work within a microkernel frame-
work poses problems, however, if the resultant system is to behave
exactly as a traditional UNIX implementation. A primary concern is
efficiency: a microkernel-based modular operating system must pro-
vide performance comparable to that of a monolithic kernel. The
elegance and flexibility of the client-server model may exact a cost in
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message-handling and context-switching overhead. If this penalty is
too great, commercial acceptance will be limited. Another pragmatic
concern is compatibility: in an industry relying increasingly upon por-
tability and standardisation, compatible interfaces are needed not only
at the level of application programs, but also for device drivers, streams
modules, and other components. In many cases binary as well as
source compatibility is required. These concerns affect the structure
and organisation of the operating system.

There is work in progress on a number of fronts to emulate UNIX on
top of a microkernel architecture, including the Mach [Gol90a], V
[Che90a], and Amoeba [Tan90a] projects. Plan9 from Bell Labs
[Pik91a] is a distributed UNIX-like system based on the “minimalist”
approach. CHORUS versions V2 and V3 represent the work we have
done to solve the problems of compatibility and efficiency.

1.2. The CHORUS Microkernel Technology

The Chorus team has spent the past six years studying and experiment-
ing with UNIX “kernelisation™ as an aspect of its work in modular, dis-
tributed and real-time systems. The first implementation of a UNIX-
compatible microkernel-based system was developed during 1984
through 1986 as a research project at INRIA. Among the goals of this
project were to explore the feasibility of shifting as much function as
possible out of the kernel and to demonstrate that UNIX could be imple-
mented as a set of modules that did not share memory. In late 1986, an
effort to create a new version, based on an entirely rewritten CHORUS
nucleus, was launched at Chorus systémes. The current version main-
tains many of the goals of its predecessor and adds some new ones,
including real-time support and — not incidentally — commercial viabil-
ity. A UNIX subsystem compatible with System V Release 3.2 is
currently available, with System V Release 4.0 and 4.4BSD systems
under development. The System V Release 3.2 implementation per-
forms comparably with well-established monolithic-kernel systems on
the same hardware, and better in some respects. As a testament to its
commercial viability, the system has been adopted for use in commer-
cial products ranging from X terminals and telecommunication systems
to mainframe UNIX machines.

In this paper we examine aspects of the current CHORUS system in
terms of its evolution from the previous version. Our focus is on prag-
matic issues such as performance and compatibility, as well as con-
siderations of modularity and software engineering.

In section 2, we review the previous CHORUS version. Section 3 evalu-
ates the previous version and discusses how the lessons learned from its
implementation led to the main design decisions for the current version.
The subsequent sections focus on specific aspects of the current design.

2. CHORUS V2 Overview

The CHORUS project, while at INRIA, began researching distributed
operating systems with CHORUS VO and V1. These versions proved the
viability of a modular, message-based distributed operating system,
examined its potential performance, and explored its impact on distri-
buted applications programming.

Based on this experience, CHORUS V2 [Arm86a,Roz87a] was
developed. It represented the first intrusion of UNIX into the peaceful
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2.1. UNIX

CHORUS landscape. The goals of this third implementation of CHORUS
were:

. To add UNIX emulation to the distributed system technology of
CHORUS VI;

o To explore the outer limits of “kernelisation”; demonstrate the
feasibility of a UNIX implementation with a minimal kernel and
SEmi-autonomous servers;

° To explore the distribution of UNIX services;

) And to integrate support for a distributed environment into the
UNIX interface.

Since its birth, the CHORUS architecture has always consisted of a
modular set of servers running on top of a microkernel (the nucleus)
which included all of the necessary support for distribution.

The basic execution entities supported by the V2 nucleus were mono-
threaded actors running in user mode and isolated in protected address
spaces. Execution of actors consisted of a sequence of “processing-
steps” which simulated atomic transactions: ports represented opera-
tions to be performed; messages would trigger their invocation and pro-
vide arguments. The execution of remote operations were synchron-
ised at explicit “commit” points. An ever-present concern in the design
of CHORUS was that fault-tolerance and distribution are tightly coupled;
hardware redundancy both increases the probability of faults and gives
a better chance to recover from these faults.

Communication in CHORUS V2 was, as in many current systems, based
upon the exchange of messages through ports. Ports were attached to
actors, and had the ability to migrate from one actor to another. Furth-
ermore, ports could be gathered into port groups, which allowed mes-
sage broadcasting as well as functional addressing. For example, a
message could be directed to all members of a port group or to a single
member port which resided on a specified site. The port group
mechanism provided a flexible set of client-server mapping semantics
including dynamic reconfiguration of servers.

Ports, port groups, and actors were given global unique names, con-
structed in a distributed fashion by each nucleus for use only by the
nucleus and system servers. Private, context-dependent names were
exported to user actors. These port descriptors were inherited in the
same fashion as UNIX file descriptors.

On top of this architecture, a full UNIX System V was built.

In V2, the whole of UNIX was split into three servers: a Process
Manager, dedicated to process management, a File Manager for block
device and file system management, and a Device Manager for charac-
ter device management. In addition, the nucleus was complemented
with two servers, one which managed ports and port groups, and
another which managed remote communications (see Figure 1). UNIX
network facilities (sockets) were not implemented at this time.

A UNIX process was implemented as a CHORUS actor. All interactions
of the process with its environment, i.e. all system calls, were per-
formed as exchanges of messages between the process and system
servers. Signals were also implemented as messages.

16
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CHORUS Nucleus

Figure 1: CHORUS-V2 Architecture

This “modularisation” impacted UNIX in the following ways:

. UNIX data structures were split between the nucleus and several
servers. Splitting the data structures, rather than replicating
them, was done to avoid consistency problems. Messages
between these servers contained the information managed by one
server and required by another in order to provide its service.
Careful thought was given to how UNIX data structures were
split between servers to minimise communication costs.

Most UNIX objects, files in particular, were designated by
network-wide capabilities which could be exchanged freely
between subsystem servers and sites. The context of a process
contained a set of capabilities representing the objects accessed
by the process.

As many of the UNIX system calls as possible were implemented by a
process-level library. The process context was stored in process-
specific library data at a fixed, read-only location within the process
address space. The library invoked the servers, when necessary, using
an RPC facility. For example, the Process Manager was invoked to
handle a fork(2) system call and the File Manager for a read(2) system
call on a file.

This library offered only source-level compatibility with UNIX, but was
acceptable because binary compatibility was not a project goal. The
library resided at a predefined user virtual address in a write-protected
area. Library data holding the process context information was not
completely secure from malicious or unintentional modification by the
user. Thus, errant programs could experience new, unexpected error
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behaviour. In addition, programs that depended upon the standard
UNIX address space layout could cease to function because of the addi-
tional address space contents,

2.2. Extended UNIX Services

CHORUS V2 extended UNIX services in two ways:

° By allowing their distribution while retaining their original inter-
face (e.g. remote process creation and remote file access).

° By providing access to new services without breaking existing
UNIX semantics (e.g. CHORUS IPC).

2.2.1. Distribution of UNIX Services

Access to files and processes extended naturally to the remote case due
to the modularity of CHORUS’s UNIX and its inherent protocols. Files
and processes, whether local or remote, were manipulated using
CHORUS IPC through the use of location-transparent capabilities.

In addition, CHORUS V2 extended UNIX file semantics with port nodes.
A port node was an entry in the file system which had a CHORUS port
associated with it. When a port node was encountered during path-
name analysis, a message containing the remainder of the path to be
analysed was sent to the associated port. Port nodes were used to
automatically interconnect file trees.

For processes, new protocols between Process Managers were
developed in order to distribute fork and exec operations. Remote fork
and exec were facilitated because:

) The management of a process context was not distributed; each
process context was managed entirely by only one system server
(the Process Manager),

. A process context contained only global references to resources
(capabilities).

Therefore, creating a remote process could be done almost entirely by
transferring the process context from one Process Manager to another.

Since signals were implemented as messages, their distribution was
trivial due to the location transparency of CHORUS IPC.

2.2.2. Introduction of New Services

CHORUS IPC was introduced at user-level. Its UNIX interface was
designed in the standard UNIX style:

. Ports and port groups were known, from within processes, by
local identifiers. Access to a port was controlled in a fashion
analogous to the access to a file.

o Ports and port groups were protected in a similar fashion to files
(with uids and gids).

. Port and port group access rights were inherited on fork and exec
exactly as are file descriptors.

3. Analysis of CHORUS V2

Experience developing and using CHORUS V2 gave us valuable insight
into the basic operating system services that a microkernel must pro-
vide to implement a rich operating system environment such as UNIX.
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3.1. CHORUS V3 Goals

CHORUS V2 was our third reimplementation of the CHORUS nucleus,
but represented our first attempt at integrating an existing, complex
operating system interface with microkernel technology. This research
exercise was not without faults. However, it demonstrated that we did
a number of things correctly. The CHORUS V2 basic IPC abstractions —
location transparency, untyped messages, asynchronous and RPC proto-
cols, ports, and port groups — have proven to be very well suited to the
implementation of distributed operating systems and applications.
These abstractions have been entirely retained for CHORUS V3; only
their interface has been enriched to make their use more efficient.

The basic modular architecture of the UNIX subsystem has also been
retained in the implementation of CHORUS V3 UNIX subsystems. Some
new servers, such as a BSD Socket Manager, have been added to pro-
vide new function that was not included in CHORUS V2.

Version 3 of the CHORUS nucleus has been completely redesigned and
reimplemented around a new set of project goals. These goals were put
in place as a direct result of our experience implementing our first dis-
tributed UNIX system.

In the following subsections we briefly state our new goals and then
explain how these new goals affected the design of CHORUS V3.

The design of CHORUS V3 system [Arm89a, Arm90a, Her88a, Roz88a]
has been strongly influenced by a new major goal: to design a microk-
ernel technology suitable for the implementation of commercial operat-
ing systems. CHORUS V2 was a UNIX-compatible distributed operating
system. The CHORUS V3 microkernel is able to support operating sys-
tem standards while meeting the new needs of commercial systems
builders.

These new goals determined new guidelines for the design of the
CHORUS V3 technology:

. Portability: the CHORUS V3 microkernel must be highly port-
able to many machine architectures. In particular, this guideline
motivated the design of an architecture-independent memory
management system [Abr89a], taking the place of the hardware-
specific CHORUS V2 memory management.

. Generality: the CHORUS V3 microkernel must provide a set of
functions that are sufficiently generic to allow the implementa-
tion of many different sets of operating system semantics; some
UNIX-related features had to be removed from the CHORUS V2
nucleus. The nucleus must maintain its simplicity and efficiency
for users or subsystems which do not require high level services.

° Compatibility: UNIX source compatibility in CHORUS V2 had to
be extended to binary compatibility in V3, both for user applica-
tions and device drivers. In particular, the CHORUS V3 nucleus
had to provide tools to allow subsystems to build binary compati-
ble interfaces.

[ Real-time: process control and telecommunication systems
comprise important targets for distributed systems. In this area,
the responsiveness of the system is of prime importance. The
CHORUS V3 nucleus is, first and foremost, a distributed real-time
executive. The real-time features may be used by any subsys-
tem, allowing for example, a UNIX subsystem to be naturally
extended to be suitable for real-time applications needs.
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Figure 2: CHORUS V3 Nucleus Abstractions

Performance: for commercial viability, good performance is
essential in an operating system. While offering the base for
building modular, well-structured operating systems, the nucleus
interface must allow these operating systems to reach at least the
same performance as conventional, monolithic, implementations.

These new goals forced us to reconsider CHORUS V2 design choices.
In most cases, the architectural elements were retained in CHORUS V3;
only their interface evolved. Whenever possible, the V3 interface
reflects our desire to leave it to the subsystem designer to negotiate the
tradeoffs between simplicity and efficiency, on the one hand, and more
sophisticated function, on the other.

3.2. CHORUS Processing Model

Problems arose with the CHORUS V2 processing model when UNIX sig-
nals were first implemented. To treat asynchronous signals in V2
mono-threaded actors, it was necessary to introduce the concept of
priorities within messages to expedite the invocation of a signaling
operation. Even so, the priorities went into effect only at fixed syn-
chronisation points, making it impossible to perfectly emulate UNIX
signal behaviour. Further work has shown that signals are one of the
major stumbling blocks for building fault tolerant UNIX systems.

Lesson: We found the processing-step model of computa-
tion to be a poor fit with the asynchronous signal model of
exception handling. In order to provide full UNIX emula-
tion, a more general computational model was necessary
for CHORUS V3.

The solution to this problem gave rise to the V3 multi-threaded pro-
cessing model. A CHORUS V3 actor is merely a resource container,
offering, in particular, an address space in which multiple threads may
execute. Threads are scheduled as independent entities, allowing real
parallelism on a multiprocessor architecture. In addition, multiple
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threads allow the simplification of the control structure of server-based
applications. New nucleus services, such as thread execution control
and synchronisation have been introduced.

3.3. CHORUS Inter-Process Communication

3.4. CHORUS Ports

As a consequence of the change to the basic processing model, the
inter-process communication model also evolved. In the V2
processing-step model, IPC and execution were tightly bound, yielding
a mechanism that resembled atomic transactions.

This tight binding of communication to execution did not necessarily
make sense in a multi-threaded CHORUS V3 system. Thus, the atomic
transactions of V2 have been replaced, in V3, by the remote procedure
call (RPC) paradigm and has since evolved into a very efficient light-
weight RPC protocol.

One aspect of the IPC mechanism that has not changed in CHORUS V3
is that messages remain untyped. The CHORUS IPC mechanism is sim-
ple and efficient when communicating among homogeneous sites.
When communicating between heterogeneous sites, higher-level proto-
cols are used, as needed. A guideline in the design of CHORUS V2,
retained in V3, was to allow the construction of simple and efficient
applications without forcing them to pay a penalty for sophisticated
mechanisms which were required only by specific classes of programs.

A number of enhancements concerning CHORUS ports have been made
to provide more generality and efficiency in the most common cases.

3.4.1. Port Naming

Recall that in V2 context-dependent port names were exported to the
user-level while global port names were used by the nucleus and sys-
tem servers. The user-level context-dependent port names of V2 were
intended to provide security and ease of use. It was difficult, however,
for applications to exchange port names, since it required intervention
by the nucleus and posed bootstrapping problems. As a result,
context-dependent names were inconvenient for distributed applica-
tions, such as name servers. In addition, many applications had no
need of the added security the context-dependent names provided.

Lesson: CHORUS V3 makes global names of ports and port
groups (Unique ldentifiers) visible to the user, discarding
the UNIX-like CHORUS V2 contextual naming scheme.
Contextual identifiers turned out not to be an effective
paradigm.

The first consequence of using Unique Identifiers is simplicity: port and
port group names may be freely exchanged by nucleus users, avoiding
the need for the nucleus to maintain complex actor context. The
second consequence is a lower level of protection: the CHORUS V3 phi-
losophy is to provide subsystems with the means for implementing
their own level and style of protection rather than enforcing protection
directly in the microkernel. For example, if the security of V2
context-dependent names is desired, a subsystem can easily and
efficiently export a protected name-space server. V3 Unique Identifiers
have proven to be key to providing distributed UNIX services in an
efficient manner.
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3.4.2. Port Implementation

A goal of the V2 project was to determine what were the minimal set of
functions that a microkernel should have in order to support a robust
base of computing. To that end, the management of ports and port
groups was put into a server external to the nucleus. Providing the
ability to replace a portion of the IPC did not prove to be useful, how-
ever, since IPC was a fundamental and critical element of all nucleus
operations. Maintaining it in a separate server rendered it more expen-
sive to use.

Lesson: We found that actors, ports, and port groups are
basic nucleus abstractions. Splitting their management did
not provide significant benefit, but did impact system per-
formance. Actor, port, and port group management has
been moved back into the nucleus for V3.

3.4.3. UNIX Port Extensions

When extending the UNIX interface to give access to CHORUS IPC, we
maintained normal UNIX-style semantics. Employing the same form as
the UNIX file descriptor for port descriptors was intended to provide
uniformity of model. The semantics of ports were sufficiently different
from the semantics of files to negate this advantage. In operations such
as fork, for example, it did not make sense to share port descriptors in
the same fashion as file descriptors. Attempting to force ports into the
UNIX model resulted in confusion,

Lesson: A user-level IPC interface was important, but giv-
ing it UNIX semantics was cumbersome and unnecessary.
This lesson is an example of a larger principle; the nucleus
abstractions should be primitive and generally applicable
— they should not be coerced into the framework of a
specific operating system.

V3 avoids this issue by, as previously mentioned, exporting global
names. Since the V3 nucleus no longer manages the sharing of global
port and port group names, it is up to the individual subsystem servers
to do so. In particular, if counting the number of references to a given
port is important to a subsystem, it is the subsystem itself that must
maintain the reference count. On the other hand, a subsystem that has
no need for reference counting is not penalised by the nucleus.

Using V2 port nodes to interconnect file systems was a simple, but
extremely powerful, extension to UNIX. Since all access to files was
via CHORUS messages, port nodes provided network transparent access
to regular files as well as to device nodes. They also, however, intro-
duced a new file type into the file system. This caused many system
utilities, such as /s and find, to not function properly. Thus, all such
utilities had to be modified to take the new file type into account.

Port nodes have been maintained in CHORUS V3 (however, they are
now called “symbolic ports” ). In future CHORUS UNIX systems, the file
type “symbolic port” may be eliminated by inserting the port into the
file system hierarchy using the mount system call. These “port mount
points” would carry the same semantics as a normal mounted file sys-
tem.
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3.5. Virtual Memory

3.6. Actor Context

The virtual memory subsystem has undergone significant change. The
machine dependent virtual memory system of CHORUS V2 has been
replaced, in V3, by highly portable VM system. The VM abstractions
presented by the V3 nucleus include “segments™ and ‘“regions.” Seg-
ments encapsulate data within a CHORUS system and typically represent
some form of backing store, such as a swap area on a disk. A region is
a contiguous range of virtual addresses within an actor that map a por-
tion of a segment into its address space. Requests to read or to modify
data within a region are converted by the virtual memory system into
read or modify requests within the segment. “External Mappers”
interact with the virtual memory system using a nucleus-to-Mapper
protocol to manage data represented by segments. Mappers also pro-
vide the needed synchronisation to implement distributed shared
memory. For more details on the CHORUS V3 virtual memory system,
see [Abr89a].

3.7. UNIX Subsystem

CHORUS V2 was built around a “pure” message-passing model, in
which strict protection was incorporated at the lowest level; all servers
were implemented in protected user address spaces. This distinct
separation enforced a clean, modular design of a subsystem. However,
it also led to several problems:

° A UNIX subsystem based on CHORUS V2 required the use of
user-level system call stubs and altered the memory layout of a
process and, therefore, could never provide 100% binary compa-
tibility;

° All device drivers were required to reside within the nucleus;

. Context switching expense was prohibitively high.

The most fundamental enhancement made between CHORUS V2 and
V3 was the introduction of the Supervisor Actor. Supervisor actors
share the supervisor address space and whose threads execute in a
privileged machine state. Although they reside within the supervisor
address space, supervisor actors are truly separate entities; they are
compiled, link edited, and loaded independently of the nucleus and of
each other.

The introduction of supervisor actors creates several opportunities for
system enhancement in the areas of compatibility and performance.
Section 4 discusses the ramifications of supervisor actors in-depth.

As a consequence of these nucleus evolutions, the UNIX subsystem
implementation has also evolved. In particular, full UNIX binary com-
patibility has been achieved. Internally, the UNIX subsystem makes
use of new nucleus services, such as multi-threading and supervisor
actors. The CHORUS V2 user-level UNIX system-call library has been
moved inside the Process Manager and is now invoked directly by
system-call traps.

Experience with the decomposition of UNIX System V for V2 showed,
not surprisingly, that performing this modularisation is difficult. Care
must be taken to decompose the data structures and function along
meaningful boundaries. Performing this decomposition is an iterative
process. The system is first decomposed along broad functional lines.
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Figure 3: CHORUS/IMIX-V3 Architecture

The data structures are then split accordingly, possibly impacting the
functional decomposition.

4. Evolution in Nucleus Support for Subsystems:
Supervisor Actors

Supervisor actors, as mentioned above, share the supervisor address
space and whose threads execute in a privileged machine state, usually
implying, among other things, the ability to execute privileged instruc-
tions. Otherwise, supervisor actors are fundamentally very similar to
regular user actors. They may create multiple ports and threads, and
their threads access the same nucleus interface. Any user program can
be run as a supervisor actor, and any supervisor actor which does not
make use of privileged instructions or connected handlers (see below)
can be run as a user actor. In both cases a recompilation of the pro-
gram is not needed (a relink is required, however). Although they
share the supervisor address space, supervisor actors are paged just as
user actors and may be dynamically loaded and deleted.

Supervisor actors alone are granted direct access to the hardware event
facilities. Using a standard nucleus interface, any supervisor actor may
dynamically establish a handler for any particular hardware interrupt,
system call trap, or program exception. A connected handler executes
as an ordinary subroutine, called directly from the corresponding low-
level handler in the nucleus. Several arguments are passed, including
the interrupt/trap/exception number and the processor context of the
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Figure 4: Supervisor Actors

executing thread. The handler routine may take various actions, such
as processing an event and/or awakening a regular thread in the actor.
The handler routine then returns to the nucleus.

4.1. External Device Drivers

It is important to note that no subsystem in CHORUS V3 is ever
required to use connected handlers or supervisor actors. For example,
a subsystem designer may choose to export a programming interface
based entirely upon messages rather than upon traps. The CHORUS
nucleus can handle program exceptions either by sending an RPC mes-
sage to a designated exception port or by calling a connected exception
handler. Only actors that process device interrupts are required to be
implemented as supervisor actors. Even so, device drivers may be split
into two parts, if desired; a “stub” supervisor actor to translate inter-
rupts into messages and a user-mode actor that processes these inter-
rupt messages. Connected handlers, however, provide significant
advantages in both performance and binary compatibility:

) The nucleus need not be modified each time that a new device
type is to be supported on a given machine;

) Interrupt processing time is greatly reduced, allowing real-time
applications to be implemented outside of the nucleus.

Connected interrupt handlers allow device drivers to exist entirely out-
side of the nucleus, and to be dynamically loaded and deleted, with no
loss in interrupt response or overall performance. For example, to
demonstrate the power and flexibility of the CHORUS V3 nucleus, we
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Figure 5: CHORUS/MiX File Manager as a Unix Process in User Space

have constructed a user-mode File Manager that communicates using
CHORUS IPC with a supervisor actor which manages a physical disk.
Both the supervisor actor and the user-mode File Manager can be
dynamically loaded from a remote site. Additionally, the user-mode
File Manager can be debugged using standard debuggers.

Interrupt handlers may be stacked, since multiple device types often
share a single interrupt level. In this case the sequence of handlers is
executed in priority order until one of them returns a code indicating
that no further handlers should be called. Connected interrupt handlers
have been designed to allow subsystems to incorporate proprietary,
object-only device drivers that conform to one of the relevant binary
standards that are emerging in this area. Without this mechanism,
object compatibility would require incorporating entire device drivers
within the nucleus.

4.2. Compatibility

System call trap handlers are essential for both performance and, as it
has been pointed out in [Tan90a], binary compatibility. Any subsystem
may dynamically connect either a general trap-handling routine or a
table of specific system call handlers, the latter providing an optimised
path for UNIX-style interfaces. An alternative mechanism, the system-
wide user-level shared library used in CHORUS V2, would seem to pro-
vide equivalent system call performance. However, we found that it is
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4.3. Performance Benefits

difficult to protect subsystem data that share the address space of the
user program, especially if processes are multi-threaded. As we have
seen, malicious or innocent but erroneous programs can change the
behaviour of system calls. If functions must be moved from the shared
library into separate servers for protection, increased IPC traffic results.
Finally, the presence of the library code and data in the user context
can interfere with binary programs that use a large portion of the
address space or manage the address space in some particular fashion.
Traps to supervisor actors, by contrast, provide a low-overhead, self-
authenticating transfer to a protected server, while maintaining full
transparency for the user program.

Lesson: Use of shared libraries produces compatibility

and error-detection problems. For 100% UNIX binary

compatibility, it is necessary to maintain the standard

UNIX trap interface and address space layout.

Performance benefits of supervisor actors come in several areas.
Memory and processor context switches are minimised through use of
connected handlers rather than messages, and in general through
address-space sharing of actors of a common subsystem which happen
to be running on a single site. Trap expense can be avoided for nucleus
system calls executed by supervisor actors. Finally, supervisor actors
allow a new level of RPC efficiency. The “lightweight RPC” mechan-
ism of [Ber90a] optimises pure RPC for the case where client and
server reside on the same site. We further optimise for the case where
no protection barrier need be crossed between client and server. This
“featherweight” RPC is substantially lower in overhead, while still
mediated by the nucleus and still using an interface similar to that of
pure RPC.

Lesson: Implementing part of an operating system in
user-level servers, while elegant, imposes prohibitive mes-
sage passing and context switching overheads not present
in a monolithic implementation of the system. To allow
microkernel technology to compete in the marketplace, it
was necessary to provide a solution to these problems.
Supervisor actors provide the advantages of a modular
system while minimally sacrificing performance.

4.4. Construction of Subsystems

4.5. Protection Issues

Subsystems may be constructed using combinations of supervisor or
user actors. Any server may itself belong to a subsystem, such as
UNIX, as long as it does not produce any infinite recursions, and may
be either local or remote. Servers that need to issue privileged instruc-
tions or that are responsible for handling traps or interrupts must be
supervisor actors.

Computer systems often give rise to tradeoffs between security and
performance, and we must consider the nature of the sacrifice being
made when multiple servers and the microkemel share the supervisor
address space. Protection barriers are weakened, but only among
mutually-trusted system servers. The ramifications of the weakening of
protection barriers can be minimised by systematically adhering to the
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following design rule: individual servers must never pass data through
shared memory.

Allowing a server to explicitly access other servers’ data would com-
pletely break system modularity. This rule being enforced. the only
genuine sacrifice for using supervisor actors is a degree of bug isolation
among the components of a running system. This is somewhat miti-
gated by the fact that subsystem servers may be debugged in user
mode. In fact, this forms our day-to-day development activity: servers
are developed and debugged in user mode. When validated, they are
loaded as supervisor actors for better performance, if desired. How-
ever, the overall CHORUS philosophy is to allow the subsystem designer
or even a system manager to choose between protection and perfor-
mance on a case-by-case basis, and to alter those choices easily.

5. Evolution in CHORUS IPC

5.1. Naming

CHORUS V3 IPC is based on the accumulated experience gained since
CHORUS V0. Here again, the main characteristics of the IPC facilities
are their simplicity and performance.

The first aspect which has evolved since V2 is naming: for many rea-
sons, distributed applications need to transfer names among their indi-
vidual components. This is most efficiently achieved with a single
space of global names that are usable in any context, from nucleus to
application level. The main difficulty with this style of naming is pro-
tection.

In CHORUS V3, ports and port groups are named using Unique
Identifiers which are visible at every level. Basic protection for these
names is threefold:

. All messages are stamped by the nucleus with the sending port’s
Unique Identifier as well as its Protection ldentifier. Protection
Identifiers allow the source of a message to be reliably identified
as they may be modified only by trusted actors. Using these
facilities provided by the nucleus, subsystems have the choice to
implement their own more stringent user authentication mechan-
isms if needed.

) Global names are randomly generated in a large, sparse name
space; knowing a valid global name does not help much in
finding other valid names.

1 Objects within CHORUS may be named using capabilities which
consist of a <name, key> tuple. Capabilities are constructed
using whatever techniques are deemed appropriate by the server
that provides them, and may incorporate protection schemes.

Port groups, as implemented by the nucleus, have keys related to the
group name by means of a non-invertible function. Knowledge of the
group name conveys the right to send messages to the group, but
knowledge of the key is required to insert or delete members from the
group.

Higher degrees of port and/or message security can be implemented by
individual subsystems, as required. Subsystems may act as intermedi-
aries in message communications to provide protection, or may choose

28
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5.2. Message Structure

to completely exclude CHORUS IPC from the set of abstractions they
export to user tasks.

A second area of evolution in the CHORUS V3 IPC is message structure.

The memory management units of most modern machines allow mov-
ing data from the address space of one actor to the address space of
another actor by remapping. This facility is exploited in CHORUS V3
IPC, which allows transmission of message bodies between actors
within a single site by means of address remapping. In situations
where data is to be copied and not moved between address spaces,
CHORUS V3 has copy-on-write facilities that allow the data to be
efficiently transferred only as needed. The typical communication that
makes use of this facility involves the exchange of a large amount of
data (e.g. 1/O operations).

It is often the case that messages contain a large data area, accom-
panied by some auxiliary information such as a header or some param-
eters, such as a path-name, a size, or the result of an I/O operation. Fre-
quently, the auxiliary information is physically disjoint from the pri-
mary data. In CHORUS V2, assembling these two discontiguous frag-
ments into a single message required that extra copying be done by the
user.

CHORUS V3 splits message data into two parts:

) A message body, which has a variable size and may be copied or
moved; it typically contains the raw data;

. The message annex, which has a fixed size and is always copied;
it typically contains the associated parameters or headers. This
division also allows one software layer to provide data, while
another provides header or parameter information. For example,
the V3 implementation of the write system call receives the
address of a data buffer from the caller and appends a header
describing the data area and sends both to the device responsible
for performing the operation.

5.3. Processing vs. Communication

A third issue is the relationship between the processing model and
communication model. The CHORUS V2 execution model was event or
communication-driven. In CHORUS V3, the processing model has been
inverted — actors are multi-threaded and the basic mechanism for
inter-process synchronisation is RPC. Thus, the CHORUS V3 model is
much closer to the traditional procedural model of computation.
Multi-threading allows the multiplexing of servers, simplifying their
control structure while potentially increasing concurrency and parallel-
ism. RPC is well understood and straightforward to program.

In addition, for applications that require basic, low-level communica-
tion, asynchronous IPC is provided. This IPC has very simple semantics
— it provides unidirectional communication incorporating location tran-
sparency, with no error detection or flow control. Higher-level proto-
col layers provided by the user or subsystem can be built on top of this
minimal nucleus function.
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6. Conclusion

With CHORUS V2, we experimented with a first-generation
microkernel-based UNIX system. UNIX emulation was built as an
application of a pure message-based microkernel. Our microkernel
approach proved its applicability to building UNIX operating systems
for distributed architecture in a research environment.

The challenge in designing CHORUS V3 was to make this technology
suitable for commercial systems requirements; to provide performance
comparable to similar monolithic systems and to provide full compati-
bility with these systems. Our second-generation microkernel design
was driven by these requirements and we were forced to reconsider the
role of the microkernel. Instead of strictly enforcing a single, rigid,
system architecture, the microkernel is now comprised of a set of basic,
flexible, and versatile tools. Our experience with CHORUS V2 taught us
that some functions, such as IPC management, belong within the
microkernel. Device drivers and support for heterogeneity, on the
other hand, are best handled by separate servers and protocols. Super-
visor actors are crucial to both performance and binary compatibility
with existing systems. A global name space is necessary to simplify
the interactions between system servers and the nucleus. Using
CHORUS V3, subsystem designers have the freedom to define their
operating system architecture and to select the most appropriate tools.
Decisions, such as the choice between high security and high perfor-
mance, are not be enforced a priori by the microkernel.

The CHORUS V3 microkernel has met its requirements: the
CHORUS/MiX microkemel-based UNIX system provides the level of
performance of real-time executives, is compatible with UNIX at the
binary level, and is truly modular and fully distributed. It has been
adopted by a number of manufacturers for real-time and distributed
commercial UNIX systems.

Further work will concentrate on exploiting this technology to provide
advanced operating system features, such as a distributed UNIX with a
single system image and fault tolerance.
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The OSF/1 Operating System

Open Software Foundation

Abstract

The OSF/1 operating system fulfills the requirements of open systems
for both compatibility and innovation. It is compatible with the most
widely used systems and supports all relevant industry standards. A
wide array of innovative features, such as fully kernel supported sym-
metric multiprocessing, enhanced security, and dynamic system
configuration, complete the picture.

The design of OSF/1 represents a return to the roots of the UNIX operat-
ing system. This system is based on Mach technology and in order to
increase maintainability, extensibility and flexibility, is evolving into a
micro-kernel architecture, where services are moved into user space.
This modular approach provides a open strategy for future develop-
ments in operating system technology, particularly well adapted to dis-
tributed systems.

1. Introduction

Operating systems for open computing environments require a balance
between innovative features and compatibility with current operating
system implementations and standards.

The UNIX operating system, as it was originally developed in the late
1960s and early 1970s, provided a simple set of basic operating system
abstractions which could be implemented on a wide range of hardware
architectures. However, over the last 20 years, changing needs and
technologies have fueled a dramatic expansion of UNIX based operat-
ing systems. They have become progressively larger, more complex,
more difficult to understand, and more difficult to extend.

The design of OSF/I represents a return to the roots of the UNIX operat-
ing system. Its architecture is based on a modular kernel, and its stra-
tegy is to move many kernel services into user space to increase system
maintainability, extensibility, and flexibility. This strategy provides
users of the OSF/1 operating system with a clear growth path toward
future developments in operating system technology, particularly distri-
buted systems.

On the other hand, it provides significant innovations to support
advanced applications as well as the compatibility features required to
run existing applications. Full compliance with standards and industry
specifications, including POSIX and XPG3, and compatibility with UNIX
System V and Berkeley programming interfaces, ensures application
portability.

Copyright © 1990 Open Software Foundation, 11 Cambridge Center, Cambridge, MA 02142, USA.
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OSF/1 integrates in-house developments with proven technologies from
a number of sources to meet the needs of commercial, scientific, and
government users worldwide. These sources include Carnegie Mellon
University, Encore Computer Corporation, IBM, Mentat, SecureWare,
and the University of California.

The result is a complete, innovative open systems platform featuring:

. A redesigned operating system core that reduces the costs associ-
ated with system maintenance and modification and provides a
robust basis for functional evolution

Symmetric multiprocessing capability, for achieving maximum
performance from multiprocessor hardware

Commercial processing capability such as logical volume
management, disk mirroring, and dynamic system configuration
for increased system availability and flexibility

Enhanced security functionality to protect sensitive data and ins-
tallations

Compatibility features and adherence to industry standards and
specifications to protect investments in software.

The OSF/1 system presents a clear choice to applications developers.
They can invest in current operating systems technology, that will need
a redesign to meet future computing requirements, or invest in new
OSF/1 systems, which will meet those requirements by design.

OSF/1 makes this choice easy. Through compatibility with existing
operating system implementations, OSF/l brings the best of the past
forward. Its innovations provide clear advantages for today, and its
design embodies emerging computing concepts for protection of
investments well into the future.

2. The OSF/1 Kernel

An advanced kernel architecture based on Mach technology forms the
foundation for OSF/I. Mach was developed at Carnegie Mellon
University and refined over the past six years by commercial suppliers,
universities and industrial research centers. Today, thousands of
Mach-based systems have been shipped by several commercial sup-
pliers.

The OSF/1 kernel architecture provides:

) A highly efficient kernel built upon five fundamental program-
ming abstractions (task, thread, port, message, and memory
object) providing a simpler, more manageable, portable system

Fine grained kernel parallelism to support parallelized file sys-
tems and networking, while retaining the ability to use non-
parallelized subsystems

POSIX compliant threads, allowing multiple instruction streams
to run concurrently in a single address space

A highly portable and efficient virtual memory system, providing
optimized performance for today’s large applications and easier
porting to different platforms.
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Features and Benefits

Reduced complexity — The Mach component of the OSF/I kernel is
compact and modular. Mach provides the OSF/1 system with the basic
kernel services of scheduling, memory management, and interprocess
communication. Subsystems are layered on top of it in a modular way
to provide other system services, such as managing the file system.
The result is an easier to understand, flexible, more manageable, and
more portable system.

Inherent support for multiprocessing — Multiprocessor computer
systems enable users to match computing power to application needs
by adding processors to their system, rather than purchasing additional
systems. Because applications spend a significant portion of their time
using kernel services, a kernel specifically designed for multiprocess-
ing is important for overall system throughput. The Mach kernel at the
core of OSF/1 was designed from the outset for multiprocessing. Non-
multiprocessing applications can run unmodified on OSF/1, giving end
users great flexibility in their choice of hardware.

Support for external memory managers — The OSF/I virtual memory
system enables developers to create external memory managers. An
external memory manager is a user level task which cooperates with
the kernel to manage the way data is moved between main memory and
external storage. This is especially useful for applications that must
maintain fine control of memory management, such as transaction pro-
cessing systems.

User space “kernel” services — Over time, traditional UNIX systems
have suffered from the accretion of new features into the operating sys-
tem kernel. What -started as a relatively small and compact operating
system has grown progressively larger. Today’s UNIX systems are
large, complex, and difficult to maintain and extend. The OSF/1 sys-
tem, and its Mach foundation, represents a return to the original con-
cept of a small and compact operating system. The movement of
relevant kernel services into user address space is part of OSF’s long
range architectural strategy for OSF/1. This will make the system easier
to maintain and extend and give software developers more control over
the use of its facilities.

OSF/1 subsystem parallelization

OSF/1 File Systems

Key layered subsystems have been fully parallelized for concurrent
operation on multiprocessor hardware. Subsystem parallelization
further increases the performance on multiprocessor hardware of appli-
cations using these subsystems. System performance, and overall job
throughput, will be higher with the parallelized OSF/1 operating system
than with other, unparallelized multiprocessing implementations.

The OSF/1 file system provides a path to several file system types
through its Virtual File System (VFS) interface. OSF’s implementation
of the VFS interface is derived from the 4.4BSD (Berkeley Software
Distribution) operating system. The VFS interface enables multiple
types of file systems to be used transparently.

For compatibility, OSF/1 applications can reach through the VFS inter-
face to the UNIX file system (UFS), which is compatible with the
4.3BSD Tahoe release; a System V file system; and an NFS compatible
distributed file system.
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The VFS, UFS, 4.3BSD, and NFS-compatible file systems have been
fully parallelized for maximum performance on multiprocessor
hardware.

3. Program Development Features

OSF/1 Program Loader

The OSF/1 system features significant innovations to support advanced
applications as well as the compatibility features required to run exist-
ing applications, Compliance with standards and industry
specifications, inciuding POSIX and XPG3, and compatibility with UNIX
System V and Berkeley programming interfaces ensure application
portability.

In addition to the standard UNIX development tools and interfaces,
OSF/1 includes other, powerful programming features. These features
include an extensible program loader; shared libraries; support for relo-
catable code; dynamic loading of relocatable program modules;
dynamic system configuration; external pagers for memory manage-
ment; memory mapped files; and fully kernel supported threads.

These features enable software developers to take advantage of the
latest developments in hardware, especially multiprocessor systems,
and to provide solutions to user problems in new ways. Other features
enable developers to create internationalized applications, and to incor-
porate OSF/1 security functionality to create trusted applications.

The OSF/1 program loader resides in user space, maintaining the sim-
plicity of the operating system’s modular kernel while supporting
enhanced program loading functions. A major advantage of its design
over traditional systems is the ability for user level applications to use
loader services without modification of the kernel.

Features and Benefits

Efficient use of memory resources — The OSF/1 program loader sup-
ports position independent shared libraries for most efficient use of sys-
tem memory. With position independent shared libraries, each applica-
tion no longer needs to contain its own, private copy of the called rou-
tines in the library. The loader can dynamically place the shared
library at a location in virtual memory where it can be used by any
application requiring its routines.

Flexibility in the design and modification of applications — Because
applications do not require relinking after modification to a shared
library, all applications automatically benefit from any enhancements to
the code of the shared library. In addition, user level programs can use
the OSF/1 loader to call in program modules and unload them as
needed. This facility is particularly useful for larger applications fac-
ing memory constraints.

Extensibility — The OSF/1 program loader was designed to handle mul-
tiple object module formats. Its clean separation of format independent
and format dependent parts, as well as the separation of machine
independent and machine dependent code, makes extending the loader
for new formats a straightforward process.
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Threads

Memory Mapping

Threads allow developers to write applications which have essentially
cooperating routines, or cooperating threads, all sharing access to the
same data in memory. The implementation of threads in OSF/1 also
makes it easy for applications to take advantage of the power of mul-
tiprocessor hardware as well as uniprocessor machines. The threads
programming interface in OSF/1 complies with the POSIX 1003.4a draft
standard.

Features and Benefits

Enhanced programming model — The use of threads, instead of tradi-
tional UNIX facilities, enables easier and more natural solutions for
many types of problems — especially problems requiring the manage-
ment of asynchronous events. Developers can write applications so
that each thread has a small, self-contained job. An example is an
appointment manager in which all threads share the same in-memory
database. Each thread, operating independently of other threads, could
process one request for service, and respond at a higher rate than a
traditional UNIX application using multiple processes.

Increased application performance — Multiple threads in an applica-
tion automatically take advantage of additional processors in a mul-
tiprocessor system. Even on a single- processor system, threads can
increase performance by providing an easy way to overlap computation
and input/output.

Ease of development — Developers can write and run multiprocessor
applications on a uniprocessor machine. The same application can be
recompiled and run on a multiprocessor machine and automatically
take advantage of the increased power.

Memory mapping gives developers a simple, efficient method for
obtaining data from secondary storage. No library code or system calls
are involved in file access, and the system retrieves only the particular
page of data that was called for by an application, avoiding unneces-
sary input/output operations. The result is simplified coding of applica-
tions and increased throughput.

4. Internationalization

The internationalization and localization capabilities of the OSF/l sys-
tem enable developers to meet the linguistic and cultural needs of many
countries without altering applications for each country. These capa-
bilities will enable most users to process data and interact with the
computer in their own language.

Features and Benefits

Eight-bit clean commands — Enables the system to process data in
European and other alphabetic languages.

Collating sequences for European alphabets — Enables the correct
sorting of data in non-English languages.

Character classification functions — Provides a means to classify (for
example, upper or lower case) non-English characters.
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Message catalogs — Enables the display of error messages in various
languages.

International date, time, and monetary formatting, and numeric
conventions — Enables the further tailoring of applications to match
international and local requirements.

OSF/1 internationalization features conform with the XPG3 and POSIX
specifications.

5. Networking

OSF/1 networking facilities provide compatibility with current applica-
tions and the ability to take advantage of the power of multiprocessor
systems.

Features and Benefits

Compatibility — Current applications using the System V Interface
Definition (SVID) Issue 2-based STREAMS, or 4.3 or 4.4BSD Sockets,
and adhering to the POSIX and XPG3 specifications, will run on OSF/1
without change. The OSF/1 system also is backward compatible with
applications written using the System V Transport Layer Interface
(TLI).

Performance — Network related components within OSF/1 have been
fully parallelized for maximum performance on multiprocessor
hardware. New and existing network applications running on OSF/1
can take advantage of the system’s inherent support for multiprocess-
ing and the parallelization of the STREAMS and Sockets frameworks to
achieve high performance levels.

Network independence — OSF/1 provides the X/Open Transport Inter-
face (XTI). XTI is an emerging industry wide application programming
interface for network applications. Using XTI, developers can write
network applications that are independent of the underlying transport
mechanism. The XTI implementation in OSF/1 provides a path to either
the Berkeley or STREAMS frameworks for compatibility with protocol
families using either framework.

6. System Administration

OSF/1 provides 4.3BSD system administration and System V account-
ing, providing familiarity for users of many currently available sys-
tems. To these features OSF has added others that enable the addition
or removal of subsystems to the running kernel, and that provide the
logical volume management and disk mirroring required in many com-
mercial processing environments.

Dynamic System Configuration

The dynamic configurability of the OSF/1 system enables system
administrators to add or remove subsystems, such as physical and
pseudo device drivers, network protocols, file systems, and STREAMS
modules and drivers, to or from the running kernel. Benefits of
dynamic system configurability include

38
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Logical Volume Manager

Simplified management of system configuration.

Increased system availability. Dynamic system configuration
means a greatly reduced need to shut down the system and
rebuild and reboot it to change the subsystem configuration.

Increased flexibility. Changes to the running kernel do not affect
the OSF/1 modularized subsystems, and changes to subsystems (a
device driver, for example) do not require rebuilding the kernel.

Minimum memory usage by an OSF/l system because
unconfigured subsystem modules need not remain in physical
memory.

A simple and consistent manner to install and configure kernel
subsystems.

The OSF/1 logical volume manager solves a problem posed by tradi-
tional UNIX implementations — limitation of file size to the capacity of
a single external storage device. The logical volume manager within
OSF/1 overcomes this limitation and provides features to safeguard data
integrity.

Features and Benefits

Files can span multiple storage devices — The logical volume
manager enables the creation of file systems and files that span multiple
external storage devices. This is essential for applications, such as
database management systems, that create large files which can exceed
the capacity of a single external storage device.

Disk mirroring — Disk mirroring increases system reliability and avai-
lability by transparently creating mirror images of files on different
physical devices. Reliability is increased because the OSF/1 system, in
the event of damage to files on a particular volume, can switch to the
mirror image files on another volume. The system can be configured to
create up to three mirror images. Performance of read operations may
be increased because the system dynamically tracks and obtains images
from the location that can be reached within the minimum access time.

No changes to current applications are required to use the logical
volume manager facilities.

7. Security

OSF/1 security provides the means to control access to the system and
files, and to track and report security related events throughout the sys-
tem. With OSF/I, vendors can deliver systems that can be rated at
either the C2 or B1 level (as defined by the U.S. National Computer
Security Center Trusted Computer Security Evaluation Criteria). The
OSF/1 system also includes several higher level B2 and B3 features.

The OSF/1 security features include discretionary access control, man-
datory access control, least privilege, auditing, password management,
and labeling. Application developers can use these operating system
security features to create trusted applications. Trusted applications are
explicitly designed to uphold the security policies of the system.
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8. Future Directions

Users of the OSF/1 operating system can be assured that the system will
keep pace with near term technological developments, as well as pro-
vide a growth path toward future developments. The long range OSF/1
architectural strategy is to move many kernel services out of the kernel
and into user space to increase system maintainability, extensibility,
and flexibility. This microkernel architecture will provide a foundation
for the development of distributed computing systems.

The content and direction of OSF/I revisions are influenced by input
from OSF members who represent a broad cross section of the world-
wide information processing industry. Additional input comes from the
OSF Research Institute and the worldwide research community. This
process assures users of the OSF/1 system that they will be able to
incorporate the latest advances in technology whenever such technol-
ogy can best serve their businesses.

9. Compatibility

While the innovative features of the OSF/I operating system are often
the most talked about, its compatibility features are of equal importance
to its users.

Hardware vendors require compatibility with their previous operating
system implementation to protect their customers’ installed base of
applications.

Independent software vendors require compatibility with current
operating system implementations and standards to provide a smooth
migration path for the applications they market.

End users require compatibility with current operating system imple-
mentations to protect their investments in software.

OSF/1 provides compatibility features to satisfy all of these constituen-
cies.

For hardware vendors, the OSF/l system provides an extensible user
space program loader. The loader can be modified easily to support the
object file formats of applications running on the vendor’s current
operating system. This feature allows system vendors to provide back-
ward binary compatibility for existing applications.

For independent software vendors and end users, OSF/I can execute

o System V applications written to the System V Interface
Definition Issue 2 (base and kernel extensions) that do not
conflict with XPG3 and POSIX specifications

. 4.3BSD applications

. Applications written solely to the POSIX 1003.1 and XPG3
specifications.

10. The OSF Open Systems Software Environment

The OSF/1 operating system is the foundation for a collection of open
systems technologies that enables users to mix and match software and
hardware from several suppliers in a virtually seamless environment.
By breaking down the barriers between diverse systems, this software
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portfolio gives users the freedom to choose the systems and technolo-
gies that best meet their business needs.

OSF’s vendor neutral software environment consists of several offer-
ings, all based on relevant industry standards.

Layered on top of the OSF/1 foundation are

° The OSF Distributed Computing Environment (DCE), an
integrated set of technologies that lets users access diverse net-
work resources from the desktop

The Motif graphical user interface, an offering that gives appli-
cations a common appearance and behavior on all classes of sys-
tems, from desktop devices to mainframes.

DCE and Motif are operating system independent and can be layered on
other operating systems as well as OSF/1.

The OSF open computing environment is a rich one that will continue
to evolve to meet industry needs. Working with its membership, OSF
will consider both proven and emerging technologies for inclusion in
the environment.

Through the Request for Technology process (RFT), for example, OSF
is evaluating technologies for a distributed management environment
(DME) and an architecture neutral distribution format (ANDF) for
software. The DME will make open systems management more
efficient and cost effective. The ANDF technology will enable software
suppliers to distribute applications in a single format for use on a wide
range of diverse hardware platforms.

11. Conclusion

The OSF/1 operating system melds the well accepted, time proven
features of UNIX System V and Berkeley systems with advanced Mach
kernel technology. It provides a portable, extensible, commercial qual-
ity operating system base for computing today, and a clear migration
path to future distributed operating environments.

Hardware vendors can bring innovative and compatible open systems
to market faster using OSF/1 as an operating system base. Independent
software vendors will have a broad market for their applications. Com-
mercial users will benefit from access to the large number of applica-
tions written for open, standards based systems, the innovative solu-
tions made possible by the advanced features of the OSF/1 system, and
from the availability of OSF/1-based hardware from many vendors.
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Abstract

Plan9 is a computing environment physically distributed across many
machines. The distribution itself is transparent to most programs giv-
ing both users and administrators wide latitude in configuring the topol-
ogy of the environment. Two properties make this possible: a per pro-
cess group name space and uniform access to all resources by
representing them as files.

1. Introduction

Plan9 is a general-purpose, multi-user, portable distributed system
implemented on a variety of computers and networks. Because com-
mands, libraries, and system calls are similar to those of the UNIX
operating system, it is possible to port many UNIX programs to Plan 9
with little or no changes. A casual user would find little difference
between the two systems.

What distinguishes Plan 9 is its organization. The goals of this organi-
zation were to reduce administration and to promote resource sharing.
Our programming style was minimalism. We believe that a small
number of well-chosen abstractions can, with much less code, provide
most of the function of a larger system. This is the approach that made
the UNIX operating system so much smaller than its contemporaries
such as Multics. In building Plan 9, we generalized proven ideas from
the UNIX operating system rather than add new untried concepts.

Plan9 is divided along lines of service function. Diskless CPU servers
concentrate computing power into large multiprocessors; file servers
provide repositories for storage; and terminals give each user of the
system a dedicated computer with bitmap screen and mouse on which
to run a window system. The sharing of computing and file storage
services provides a sense of community for a group of programmers,
amortizes costs, and centralizes and hence simplifies management and
administration.

Since both CPU servers and terminals use the same kernel, users may
choose whether to run programs locally on their terminals or remotely
on CPU servers. Plan9 provides this flexibility without constraining the
choice. Therefore, both users and administrators can configure their
environment to be as distributed or centralized as they wish. At work,
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Figure 1: Plan 9 Topology

users tend to use their terminals more like workstations running all
interactive programs locally and reserving the CPU servers for data or
compute intensive jobs such as compiling and computing chess end
games. At home, connected via a dedicated 9600 baud line to work,
users choose what they run locally and remotely to reduce communica-
tion cost. Some applications, such as the editor [Pik87a], are split into
multiple programs to make this choice even more flexible.

Figure 1 in any Plan9 paper shows how we have configured our
environment. Multiprocessor CPU and file servers are clustered in a
few computer rooms and connected via 7 megabyte/sec point-to-point
links [Pre88a]. This permits the CPU servers to be used as high perfor-
mance compute engines without becoming starved for data. Terminals
are connected to the servers via lower speed, lower cost distribution
networks such as the 10 megabit Ethernet [Met80a] and 2 megabit
Incon [Kala, Resa). By emphasizing the shared service clusters we can
quickly and cheaply incorporate new technologies as they arise. At the
same time, users wishing more autonomy can incorporate as much
computing power as they wish in their own offices without losing the
advantage of transparently sharing other resources.

The rest of this paper describes the features of Plan9 that make possi-
ble such a flexible topology. For more information on hardware and
use of the system, see our previous paper [Pik90a]. For details of the
file server, see [Quia].
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2. Minimalism

All resources that a process can access, aside from program memory,
reside in one name space and are accessed uniformly. Simply stated,
all resources are implemented to look like file systems and, henceforth,
we shall call them file systems. A file system is a strict tree with no
links. File systems can be the traditional type representing persistent
storage on a disk as implemented by the shared file servers. They can
also represent physical devices such as terminals or complex abstrac-
tions such as processes. The file systems can be implemented by kernel
resident drivers, by user level processes, or by remote servers.

A file system representing a physical device normally contains one or
two files. For example, an RS232 line is represented as a directory con-
taining a data and a ct1l file. The data file is the stream of bytes
transmitted/received on the line. The ct1 file is a control channel used
to change device parameters such as baud rate.”

Some file systems represent software concepts. Environment variables
(as in UNIX) are implemented as files in a kernel resident file system.
Even processes themselves are represented as directories with separate
files representing different aspects of the process such as memory, text
file, and control. Many things that require a system call in other operat-
ing systems are represented by 1/O operations on files in Plan 9; reading
the id of a process, the user id associated with a process, the time, etc.

A kernel data structure, called a channel, is used as a pointer to a file.
A user level file descriptor is just a handle for a kernel channel. All [/O
system calls eventually translate into nine primitive operations on chan-
nels. They are:

attach— point a channel to the root of a file system. The file system is
told which user is attaching.

clone — make a copy of a channel. The new channel points to the same
file as the old one.

walk — do a one level directory lookup on the channel and point it to
the new file (or directory).

stat — get the attributes of the file pointed to.

wstat — change the attributes of the file pointed to.
open — check permissions prior to 1/O on the channel.
read - read from the opened file.

write — write to the opened file.

close — close the opened file.

Each kernel resident file system is implemented by a device driver con-
taining a procedure for each primitive operation. The device drivers
are accessed indirectly via a kernel array, devtab, which contains
9 pointers per driver, one to each primitive procedure. Each channel
contains an offset into devtab indicating the driver to be used in
accessing the file it points to.

Accessing file systems not resident in the kernel is via a special device
driver, the mount driver. All channels pointing to this driver contain a
pointer to a communication channel. The mount driver turns opera-
tions on such channels into request messages written to the communi-
cation channel. The mount driver is written as a multiplexor allowing
multiple outstanding messages. Because the messages on the commun-

+ We neither need nor have an ioct1 system call.
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ication channel are transmitted using read’s and write’s, any type
of channel can be used: a pipe to a process, a network connection, even
an RS232 line. The mount system call, described below, is used to
create a new mount device channel and supply a communication chan-
nel for it.

All Plan9 components are connected using this file system protocol.
The code used to encapsulate the primitives into request and reply mes-
sages is 580 lines long. The mount driver is 899 lines long. Compared
to the equivalent NFS code implementing vnodes and XDR this is tiny.

Of the 18000 lines of code that make up Plan9, about 5000 lines per-
form memory management, process management, hardware interface,
and system calls. The rest are for the 17 different file systems imple-
menting devices, networks, process control, etc. Since most of the file
systems are completely self contained, the complexity of the kernel
code is even lower than its 18000 lines would imply. A working, albeit
not very useful, kernel can be configured containing only the file sys-
tems implementing pipes, a local root, and a console. This totals 5899
lines of commented C code (counted using wc *. [ch]). As a com-
parison, Mach’s micro-kernel without device drivers has 25530 lines of
C code (calculated, we’re told, by counting semi-colons). By the same
metric our minimal kernel is only 4622 lines long, less than 1/5 the
size. In fact, our kernel with every file system included is still less than
half the size of their micro-kernel.

One might note the similarities between devtab and parts of the UNIX
operating system; the block device switch, character device switch, file
system switch and vnodes. One advantage of Plan9 is that we have
recognized that these are all essentially the same mechanism and have
implemented them as such.

3. Virtual Name Space

When a user boots a terminal or connects to a cpu server, a new pro-
cess group is created for her processes. This process group starts with
an initial name space that provides at minimum a root (/), some
binaries for the processor the process is running on (/bin/*), and
some local devices (/dev/*). The processes in the group can then
either add to or rearrange their name space using two systems calls,
mount and bind. The mount call is used to attach a new (not kernel
resident) file system to a point in the name space. Its syntax is

mount (int fd, char *old, int flags, ...)

where fd is a file descriptor for a communication stream such as a pipe
or a network connection and old is the name of an existing file in the
current name space where the file system will be attached. The attach-
ment creates a new mount device channel whose communication chan-
nel is that referred to by fd. Subsequent accesses to old and any files
below it in the hierarchy become request messages written to the com-
munication stream.

The bind call is used to attach a kernel resident file system to the name
space and also to rearrange pieces of the name space. Its syntax is

bind(char *new, char *old, int flags)

where new is a name in the current name space’ and old is the same as
in mount.

How the attachment works depends on the flags specified in the call.
One possibility is that the old file is replaced by the new one. How-
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3.1. The Cpu Command

ever, when both files are directories, Plan9 allows another possibility.
The result can be the union of the two directories. The effect is that of
putting one directory behind the other. In the case of name conflicts for
files contained in the directories, the one in front wins. Flags specifies
whether the new directory replaces, goes in front of, or goes behind the
old one. This concept is essentially the same as the search paths used
in the UNIX libraries and the various shells. In fact, Plan9 has no
search paths and uses these union directories in their place. When a
command is executed, Plan9 uses the directory /bin the same way
UNIX uses an execution path.

The ability to specify the complete name space for a process that con-
tains all resources the process can access forms the basis for a true vir-
tual machine. Any aspect of a process’ world can be rearranged.
Remote objects can be substituted for local ones. Processes can imple-
ment part or all of the name space of other processes. This capability is
the basis for a number of important services, three of which we present
here.

We consider the shared CPU servers as accelerators for our terminals,
someplace where commands can run while maintaining the same
environment. It is important that as little as possible change when run-
ning on the CPU server. The virtual name space provides us with a
means to make the CPU servers actually feel this way to our users. A
command, cpu, calls a CPU server across a network. A daemon pro-
cess on the server answers the call, creates a new process group for the
caller, sets up a name space, and starts a shell process in the new pro-
cess group. The name space set up is an analogue of the name space of
the calling process on the terminal. In particular, local resources on the
terminal, such as the screen and the mouse, become visible to the
server processes at the same place in the name space as on the terminal.
The standard input, standard output, standard error, and current direc-
tory of the cpu command become those of the remote shell. The direc-
tories mounted on /bin are changed to be those that contain execut-
ables for the CPU server's processor type (the terminal may be a 68020
while a CPU server could be a MIPS). In general, a user typing the cpu
command just notices that things such as compilations speed up while
graphics operations slow down.

After the initial handshake to pass information describing the caller’s
environment, the cpu command becomes a file server answering file
system requests from the network connection. The server daemon
mounts the network connection to the terminal in a standard place,
/mnt /term, and then binds the resources it decides to keep into the
same places in the new name space. For example, it binds

/mnt/term/dev/mouse onto /dev/mouse,

/mnt/term/dev/bitblt onto /dev/bitblt, etc.
Subsequent accesses to those files are converted by the mount driver in
the CPU server into file system messages sent to the terminal.

+ Local kernel resources are referred to by a syntactic escape (hack) in the name space. Any name starting with a “#" refers to a local
resource. The first character following the “#” specifies the type of resource and the remaining characters are a parameter specifying
the instance of the resource. Thus, to bind the local console to a standard place in the name space, one would use bind ("#c",
"/dev", FRONT).
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3.2. The Window System

3.3. Network Gateways

The user interface is made up of three files:
/dev/bitblt — writes represent bitblt operations to the screen

/dev/mouse - reads return mouse events, i.e., button clicks and
movement

/dev/cons - reads return keyboard input, writes put characters to the
screen.

Between them, these devices represent all I/O to the user. The window
system, 8.5 [Pik91a], offers processes a multiplexed view to these dev-
ices. When a window is opened, the window system starts a new pro-
cess group for a command (usually a shell) that will run in that win-
dow. In that process group’s name space, the window system mounts a
pipe to itself in front of /dev. Subsequent references by the new pro-
cess group to any of these devices are sent as file system messages to
the window server. 8.5 interprets those requests as accesses of the win-
dow instead of the whole screen. Similarly, 8.5 multiplexes the mouse
and the keyboard so that mouse and keyboard input is available to
processes only when their window is selected.

The result is that any program written to use the kernel resident user
interface will also work inside a window. Because this is also true of
the window system itself, new versions of the window system can be
run and debugged in windows of the current window system.

One, sometimes insurmountable, problem is accessing a network to
which a system is not physically attached. For example, a system may
be connected to our Datakit [Fra80a] network but not to the DoD Inter-
net. Many gateways exist that try to solve this problem by performing
protocol to protocol translation. Unfortunately, few transport protocols
have completely equivalent concepts. In order to perform the best
translation, it is be necessary to know the semantics requested by the
program. For example, TP4 has message delimiters but TCP does not.
A protocol translator going from TCP to TP4 would not know which
bytes correspond to a single write by the sender.

In Plan9, every network interface is a file system. A gateway is a file
server that serves its own network interfaces to other machines. A pro-
cess that wants to get at a remote network connects to the gateway and
mounts the gateway’s interface to the remote network into its name
space. Whenever the process accesses the interface, the mount driver
will send the request to the gateway. Thus, the gateway sees exactly
what the process does.

4. File Caching

In building our environment, we’ve been reluctant to add local disk file
systems to any of our terminals or CPU servers. There are essentially
two reasons for this choice. The first is administration. Anyone with a
local disk must administer it. Any disk that has unique long term state
requires both knowledge and time to administer. In fact, the Bell Labs
computer center at Murray Hill is doing a lucrative business maintain-
ing other peoples’ disked Sun workstations because the owners have
neither the time nor the experience necessary to do it themselves.
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The second reason is sharing. Although most workstations can export
access to their local file systems, when left up to individual users, this
rarely happens. Terminals become personified and users become tied
to a particular room to do their work.

Plan9 survives without local disk file systems thanks partially to
hardware and partially to caching. The CPU servers do so because their
links to the file servers transfer at a substantial percentage of memory
speed. The file servers maintain large main memory caches for their
disk file systems. These servers are configured with 128 megabytes or
more of main memory to ensure that there is plenty of room for cache.
Getting a file from a file server is generally faster than it would be to
get it from a local disk.

Office terminals are connected to the file servers by shared 1 or
10 megabit/sec links. Home terminals use 9600 or 19200 baud links.
In both cases, the link is much slower than access to a local disk would
be. To avoid the obvious performance hit, we use caching. To keep
the caches coherent, we use file identifiers supplied by the file server.
The identifiers are unique 64 bit quantities. 32 bits identify the file, the
other 32 bits identify the version of the file. The version number is
incremented each time the file is modified. Each time a file is opened
the file server returns the identifier with the reply. Therefore, it is pos-
sible to guarantee coherency at each opening of a file.

Office terminals only cache pages of executable files. Whenever a pro-
gram terminates, its unmodified text and data pages are not immedi-
ately freed. Instead they are retained until the space is required by
other programs. When a program is rerun its executable file is reo-
pened and the current version number returned. If the version number
has not changed and pages remain from the last run, they are reused. If
the version number has changed, any remaining pages of the stale ver-
sion are discarded. Since most data intensive work is done on the CPU
servers, this simple cache saves most of the traffic between office ter-
minals and the file servers. Other caching could be helpful but would
require much more complexity.

This cache might also have sufficed for home terminals if it were per-
sistent, but it is not. Therefore, we have added disks to our home ter-
minals to be used as write through caches of the file server files. As a
write through cache, it contains no state that isn’t duplicated on the file
servers. Therefore, it needs little maintenance compared to a local file
system. If the code discovers a disk problem, it reformats the disk dis-
carding the current contents. If the user should suspect that the cache is
contaminated, she can request that it be reformatted at the next boot.
The system slows down until subsequent use refills the cache but no
information is lost. The user need not consciously update the disk
because the cache uses file identifiers to maintain coherency with the
file servers. Each time a file is opened, the cache discards any stale
data it might have for that file. The user doesn’t have to copy what she
needs to the disk because it is done as a consequence of her using the
data.

The disk based cache is implemented by a process that resides between
the kernel and the file server connection. For every read request, the
process satisfies as much as it can with data cached on the disk. It gets
the rest from the file server. Any new data that passes through it is
saved on the disk. When the cache fills up the least recently used file is
discarded. The amount of data cached for any one file is limited to
1.75 megabytes to prevent one file from displacing all others.
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Because the disk based cache only checks for coherency when a file is
opened, it provides slightly different semantics than that seen on office
terminals which do not cache data files. This looser coherency con-
straint forces programs that communicate via files to ensure an open
between each transaction. Thus far we have not had to change any pro-
grams because of it.

5. Conclusion

We have presented a distributed system that is simple in structure and
flexible in its use. Both the flexibility and simplicity are the result of
two properties, a per process group name space and a single resource
interface. Coupled with some minimal caching we provide a simple
system that is as usable at home as at work.
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Abstract

With UNIX System V Release 4 now firmly established in the market-
place, UNIX International recently announced its new extended charter
which expands UI’s focus to encompass functionality beyond that of
the base operating system. With this expanded focus UNIX Interna-
tional will address the requirements of the industry in three environ-
ments critical to the success of open systems in the coming decades:
Distributed Computing, Corporate Hub Computing, and Desktop Com-
puting. These areas are tied together in the Enterprise Computing
Architecture (ECA).

In this talk I wili present the architectural framework of the distributing
computing components of the ECA. These components are the Basic
Services (the core operating system) at the lowest level, moving up
through the Network Communication Services (e.g. STREAMS), the
System Services (e.g. object management services), the Application
Services (e.g. transaction services), and at the highest level the Appli-
cation Tools. Spanning these hierarchical services are the Security and
Interoperability Services. In discussing Interoperability Services I will
cover interoperability with IBM SAA, PCs, and existing distributed
computing tools.
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Abstract

This report presents an evaluation method for distributed operating sys-
tems, which is based on necessary operating system functionality for
specific application areas. Application areas in this context are distri-
buted, real time, multiprocessor, security and UNIX applications. For
this purpose it is necessary to investigate the functionality offered by a
given system to support features like Object Orientation, Concurrency,
Multiprocessor or Real Time capabilities. The evaluation method is
applied to Mach and Chorus and gives hints to estimate the suitability
of these systems for different application areas.

1. Introduction

Distributed systems are regarded as the computing base of the nineties.
They offer significant advantages like transparent view of the systemn,
high availability, fault tolerance and concurrency. Future operating
systems should cope with aspects of distribution as well as real time
capabilities and compatibility with standards (preservation of existing
SW). In addition they should provide support for heterogeneity and
structured system design. Kemelized systems like Mach and Chorus
are possible candidates for the implementation of a system fulfilling
these requirements.

A sound basis for estimating the suitability of an operating system for
building an application environment with the requested characteristics
is therefore necessary. The methodology for evaluating given operat-
ing systems with respect to specific requirements we developed is such
a basis.

We structured the evaluation of operating systems into three phases. In
the first phase, we identify the architecture, components and mechan-
isms offered by the system and it’s terminology. The second phase
(structural evaluation) is the focus of this paper. Here we investigate
the given system with respect to the functionality necessary for specific
application areas (distributed environments, real time or UNIX applica-
tions, multiprocessor architectures and applications with special secu-
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rity requirements). The mechanisms offered for these different pur-
poses can be quite different in their implementation and efficiency.
Given the limited space of this paper, it is focusing on issues like object
orientation, support of transparency aspects, support of concurrency
and consistency, multiprocessor and real time support. In the final sec-
tion of the paper the viability of this part of our methodology is shown
by applying it to the Mach and Chorus systems. The third phase,
measuring the performance of a system with respect to specific applica-
tion areas, will be investigated in the future.

The paper is generally structured with respect to these topics. Beside
the operating systems themselves we also take into account develop-
ments in the environment of a given system which provide support for
some required functionality. This should provide a better judgement of
the future perspectives of a given distributed operating system.

2. Object Orientation

Object Orientation is a method of structuring large systems. Objects in
the programming language sense have the following features:

. Objects are capsules which include data structures and operations
similar to an abstract data type (information hiding).

) Operations are invoked by messages.

. Each Object is member of a certain class (called it’s type).

° Classes are hierarchically ordered and can therefore share data

and operations (inheritance).

In the context of operating systems we usually only regard the first two
features. Future operating systems should provide this object oriented
view in their internal construction as well as in their provision of
mechanisms to support object oriented applications.

Distributed systems make it possible to implement replicated objects,
which can be executed on physical distinct machines. They are the
conceptual basis for implementing migration, load balancing and fault
tolerant services. From an application point of view the implementa-
tion details of these features are transparent. Conceptually they are
implemented by object groups (functional object groups, object groups
with a coordinator, object groups with a voter) [Esp89a].

Within functional object groups, different objects are tied together into
a group. Each object implements an access point to the service offered
by the group. These access points can be invoked in parallel.

In object groups with coordinator one of the replicated objects takes the
role of a coordinator which carries out the requested operations. The
other replicas are getting informed about the status of the coordinator at
fixed time intervals [Bir89a].

In object groups with a voting mechanism all objects are carrying out
the same request. To achieve fault tolerance a voter is deciding on the
result of the operation after it has examined every result of the repli-
cated objects. In a simple case the decision can be based on a majority
vote.

Beside the support of the application’s object oriented view the internal
structure of the system with respect to object orientation should be
examined.

Figure 1 summarizes the different object structures in the object
oriented approach.
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Figure 1: Different kinds of object

3. Transparency

One of the major requirements of office and business applications is the
transparent view onto the architecture of the underlying system. The
advanced features distributed systems can offer (fault tolerance, con-
currency, etc.) can be stressed in terms of the functionality hidden from
the user. This is described by the different kinds of transparency listed
below. Transparency in this case is a synonym for the implementation
of system functionality while abstracting from the implementation
details. The following kinds of transparency can be identified
[Esp89a, Her90a]:

o access transparency — hiding the explicit addressing of objects in
the system

location transparency — hiding the topology of the system

scaling transparency — system mechanisms are stable due to
growth of the system

replication transparency — hiding multiple instances of objects
(states)

failure transparency — hiding the occurrence of failures in the
system

Other transparency aspects like performance, scaling or migration tran-
sparency can also be identified but are of minor importance here.

Distributed operating systems offer various mechanisms to hide an
underlying distributed system from an object (application) running on
top of it. The question however is, whether there are kernel mechan-
isms which directly implement the given transparency or whether there
are mechanisms which can be used by some software layer to imple-
ment the transparency under consideration. Additional investigations
should be made whether transparency aspects can not be supported at
all or only with major performance drawbacks?
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4. Concurrency and Consistency

Activities in a computer system are normally denoted by “process”™ or
“task”. A process is the smallest entity of an activity from an operating
system point of view. The term “task” is normally used instead of
“process” in real time systems. In the field of database systems
“threads” have been introduced as the smallest unit of activity in a sys-
tem. Communication protocols divide between “lightweight” and
“heavyweight” processes.

The trend in operating system technology towards the division of the
former process concept into the environment of an activity and the
activity itself (Task/Thread, heavyweight/lightweight process)
corresponds to that. This is visible from the system’s and user’s point
of view. There is a heavy demand that multiple activities should be
able to run in parallel in the context of the same environment. The
environment denotes all resources associated with the activities, the
activity denotes a virtual processor (registers, etc.).

The capability of having parallel activities running in an operating sys-
tem brings forth the problem of data consistency. Atomic transactions,
known from the database world, have been proved as a helpful model
in the field of distributed systems. Nested Transactions are helpful for
structuring activities in a system in a modular way and to support the
parallel execution of multiple activities while preserving consistency.
Faults can be handled in any hierarchy level which is especially useful
for developing distributed applications [Wei89a].

In the field of programming languages efforts have been undertaken in
developing language constructs to specify concurrent actions and their
synchronization in terms of the consistency of accessed data.

From this point of view an operating system should be capable to
efficiently manage parallel activities and provide mechanisms for their
specification, synchronization and obedience of consistency con-
straints.

5. Multiprocessor Support

Because of the increased need for processing power computations are
getting more and more decoupled and run on parallel hardware. Mul-
tiprocessor architectures and special programming language features
have been developed for this purpose. An operating system has to sup-
port this functionality in two ways:

. Applications are normally written in a language like C or PAS-
CAL, which do not inherently support parallel programming.
Creation and management of parallel activities have to be done
by a runtime system (library) which is based on certain operating
system functionality (Synchronization, etc.).

Multiprocessor hardware has special requirements with respect
to scheduling and dispatching of activities. Efficient use of the
high performance and parallel resources is a major requirement.

To offer fine grain parallelism of operations, there must be a simple
smallest entity of activity managed by an operating system. Thus con-
text switches can be performed with minor performance penalties.
These leads to the concept of lightweight processes (section 4). To
offer a generic approach for different kinds of architectures, operating
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system have to deal with different kinds of processor structures (topol-
ogy, connection) and different kinds of memory architectures (uniform,
non-uniform, remote). The latter is especially important to give paral-
lel applications ta transparent view of the multiprocessor architecture
of the underlying hardware. Uniprocessor machines must be supported
without performance penalties New developments in the operating
system’s domain try to fulfill these requirements by providing the
task/thread concept (section 4), implementing an architecture indepen-
dent memory management and offering extended functionality for the
support of parallel applications.

6. Realtime Capabilities

A computing system operating in real time mode serves requests due to
external events in step with the occurrence of these requests. This
means, that the result of any computation has to be available at some
fixed point in (real-)time, and that there must be a capability to manage
multiple tasks in the system. Because these single tasks can’t be com-
puted independent of each other some kind of cooperation between the
tasks is necessary (communication, synchronization). Fulfilling these
requirements, an operating system must provide some minimal func-
tionality, which include the following features [IEE89a]:

. Because of the nature of real time applications the system must
be able to manage multiple processes (tasks) each running multi-
ple parallel threads in it’s context. With respect to timing con-
straints, efficient means for communication (IPC, shared
memory) and synchronization(semaphores) must be available.

The system must respond to external events in a predictable time
span. This put’s constraints on the time for a context switch and
the reaction to an external event. Mechanisms to support these
aspects are fixed priorities for processes and interrupts and a
preemptive scheduling algorithm. Timers must be available to
take action in case a timing constraint has not been satisfied.

To speed up context switches the memory management should
be capable of locking whole memory areas to save them from
being swapped/paged out.

To cope with the real time requirements a system must provide
sophisticated mechanisms to serve asynchronous events. The
mechanisms which are offered by general purpose operating sys-
tems have several unacceptable disadvantages (signals can be
lost, no data can be transmitted with signals, random sequence of
signal handling).

The 1/O Subsystem must offer asynchronous (to enhance
throughput) and synchronous (to ensure integrity) 1/O.

7. Structural Evaluation of Mach

7.1. Mach and Object Orientation

The Mach port concept implies an object oriented view of the system.
A port is a guarded simplex communication channel between tasks, for
which the end points (tasks) can have send, receive or ownership right
or a combination of these [Bar90a].
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From a user’s point of view a port represents an object. Data of this
object is encapsulated in a task with receive right on this port. Nor-
mally another task can only access data of this object by sending a
message to it’s associated port. This concept fulfills the principles of
data encapsulation and information hiding. Mach however offers the
possibility to share memory regions between tasks, which is restricted
under certain rules. This means a violation of the object oriented
approach.

The invocation of operations in an object has it’s counterpart in the
mechanism for inter task communication. A task (object) invokes an
operation in another task (object) by sending a message to the appropri-
ate port. The message causes the invocation of the operation within the
task.

From this point of view the Mach system itself and the services running
on top of it are structured in an object oriented way. Services are
requested by sending a message to the port representing the server,
which causes the invocation of an operation in the server. This concept
directly reflects the object oriented approach.

Dynamic Binding can be also achieved in the Mach system. The
Environment Server does the mapping between portnames and port-
numbers. The portnumber represents the task (i.e. object) which actu-
ally invokes the operation. The portname represents the object, to
which the message is sent from the users point of view. This dynami-
cally configurable mapping directly reflects the concept of dynamic
binding in the object oriented approach.

However major object oriented features are missing in Mach:

. classes
There is no analogy to the class concept, i.e. there is no notion of
the type of a task (object) or its’s instantiation from a type
description.

. inheritance
Mach completely lacks the principle of inheritance respectively
delegation of operations or data between objects, which is
characteristic for the object oriented approach. Although Mach
tasks can inherit memory regions to their children, this does not
correspond to inheritance in the object oriented sense.

The Mach system offers two ways to support the user in writing object
oriented applications, MACHOBJECTS and MATCHMAKER/MIG.

MACHOBJECTS

This is a set of C macros which offer syntactic constructs to define
classes, objects and methods (like in CH). MACHOBJECTS offers dif-
ferent strategies of inheritance (single inheritance, delegation).
Interesting in this context ist the construct remote objects. Thi s allows
delegation to objects in other address spaces. It’s implementation is
based upon the mechanisms of inter task communication, where a local
operation invokes an operation on an objeét in a different address space
by communicating with it’s associated port (sending a request).
Detailed information on MACHOBIJECTS can be found in [Jul90a].

MATCHMAKER /MIG

MATCHMAKER is a language to specify interfaces between objects
(tasks in Mach terminology). MIG is a subset of MATCHMAKER. The
user can write a specification in C like syntax in which he describes the
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operations of the interface and their invocation conventions. MATCH-
MAKER generates a client side module, a server side module and an
include file with global parameters and definitions from this descrip-
tion. This allows a user to abstract from the level of explicit communi-
cation between two objects and to view the request of a service like the
invocation of an operation in the object oriented view. Detailed Infor-
mation on MATCHMAKER can be found in [Jon86a].

7.2. Support of Transparency Aspects in Mach

Access and Location Transparency

An object in Mach can only be accessed by sending a message to it's
associated port. The user knows this port by it’s name (string), which
is mapped to a portnumber by the Environment Server. This port-
number is used to locate the port. Ports which are located on a remote
site are handled by the Network Server. He transparently maps the
portnumber onto an access to the remote site (via the underlying net-
work). From the users point of view the access to an object in the sys-
tem is independent from the location of the object and it's features.
This can be used e.g. for the implementation of a file system, where a
file server hides the physical distribution of the data in the system. The
Mach notion of memory mapped Files in [Tev87a] has to be mentioned
in this context. The memory management implemented in the Mach
kernel allows the mapping of memory objects into the virtual address
space of a task. So file data can be accessed in the same way as
memory data. Paging is done by a pager (user task) associated with
each memory object. Data can therefore be transparently accessed by a
virtual address, independent of it’s location (memory, local storage,
remote storage). This gives a completely transparent access to all
memory and storage resources in the system.

Scaling Transparency

A Mach system, which is enlarged due to additional services, resources
or growth of applications must not been altered structurally nor has the
construction of applications to be changed. All mechanisms and com-
ponents are stable due to any incremental growth of the system. Addi-
tional services can be added simply by registering their names and port
numbers in the Environment Server and Network Server respectively.
Additional devices can be added by connecting them physically and
starting the respective server (see above), making the new services
available to the user community. Additional nodes can be integrated in
an existing system by connecting them and registering all services run-
ning on that node in the Environment/Network Servers (simplified).
An interesting case of scaling is the enhancement of processor capa-
city. There are no changes necessary on the application’s side to use
this capacity. The assignment of processor’s to a task in Mach is done
at the user level. Mach offers certain kemnel services to implement this
in a controlled and consistent manner, where the actual number of pro-
cessors at a node can be used. The major functionality available is the
creation and mangement of processor sets which can be assigned to
tasks. Threads in this task are then scheduled on the processors of the
processor set [Bla89a]. Due to the virtual memory management imple-
mented in Mach, the address space of an application can be enlarged
independent of it’s size. The virtual address space of a task is a set of
memory regions which are represented by address map entries. These
specify access rights, the virtual address range and inheritance/sharing
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Figure 2: Virtual Memory Management in Mach

information. A pointer to a memory object gives the reference to the
storage area which is mapped into the region and which contains a user
level pager and caching information on currently mapped pages. This
scheme is illustrated in Figure 2. There are kemnel services to allocate a
memory region (create a new entry in the linked list) and to establish a
reference to a memory object independent of the application’s size.

Replication Transparency

There is no direct support of this feature in Mach, but there are
mechanisms which an implementation can be based upon. Object
groups can be built by registering the names of multiple servers (each
providing the same service) in the under different names. Their associ-
ated ports can be grouped together by the Mach port group concept,
which allows a client to send a request to a port, not knowing which of
the task in the portgroup is carrying out his request (replication is tran-
sparent to the client).

Failure Transparency

Similar to Replication Transparency Mach only offers mechanisms to
base an implementation of failure transparency on, but no direct sup-
port. The concept of the for example offers the capability to assign a
backup port to a primary port which means that in case the primary has
been crashed, the task with receive right on the backup port automati-
cally receives this right for the crashed primary. So a backup task can
transparently take over the job of the primary task. Subsystems which
support the development of fault tolerant (transparent) applications
have been developed or ported on Mach basis, like the transaction sys-
tem CAMELOT [Wei89a] or the ISIS Toolkit [Bir89a). There are how-
ever deficiencies, especially in the Mach communication mechanisms,
which make it quite difficult to implement a generic fault tolerant sys-
tem on top of it [Bab89a].
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7.3. Support for Concurrency and Consistency in Mach

Task/Thread

A “task” in Mach denotes the environment multiple activities are exe-
cuted in. A task has associated with it all the resources it’s activities
can access (memory space, ports, processors, etc.). The resources of
the task are protected against access from other tasks, memory regions
can be inherited by ancestor tasks ore shared between tasks (see Fig-
ure 2). A “thread” is the smallest entity of activity in a system and
denotes a virtual processor (registers, stack, etc.). Multiple threads can
run in parallel in the context of a task and access the task’s resources.
This can be used to write where a server is not blocked by a request but
creates a parallel thread for each request. In UNIX terminology a Mach
task with threads is equivalent to a process. Synchronization can be
achieved by using the event mechanisms of the Mach kernel, commun-
ication can be done by the Mach IPC or by using shared memory
regions.

C Threads

The C Threads package is a runtime library which supports the
development of parallel applications in C. The application itself is run-
ning as a task, the parallel activities are mapped onto threads in the sys-
tem. The following mechanisms are available [Coo87a]:

. Fork/Join of parallel threads

° Synchronization with events by means of condition variables and
operations on them

° Mutex variables and operations for mutual exclusion in critical
regions

) Scheduling of threads using the processor allocation interface

(section 7.2)

Camelot

From a user’s point of view CAMELOT is a language extension through
libraries. The application programmer thus has access to the concept of
nested transactions in his native language environment. Statements
(assignments, procedure calls, RPC, etc.) can be put into transaction
declarations, which can be nested and are executed in parallel.
CAMELOT allows locking of certain program regions (mutual exclu-
sion). Locks are inherited given the usual semantics of nested transac-
tions. Data areas can be specified as recoverable which means that
CAMELOT insures the consistency of this data area with respect to
aborted transactions.

7.4. Multiprocessor Support in Mach

One of the main objectives in developing Mach was the efficient sup-
port of multiprocessor architectures. Dividing the process abstraction
into execution environment (task) and activity (thread) (section 7.3)
allows rapid context switches between threads, because the context is
task specific. This leads to efficient exploitation of multiprocessor
architectures and special purpose processors. Memory management is
one of the main problems in exploiting a multiprocessor architecture.
The virtual memory management implementation in Mach is strictly
divided in hardware dependent and independent part. Where the first
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part maps a virtual address in to a tuple (logical page#, offset), the
latter maps this tuple onto the physical address. This mapping can deal
with non-uniform memory accesses (NUMA) but only on the local node
(no NORMA layer). The processor resources of a node, given the
necessary privileges, can be managed at user level by invoking the pro-
cessor allocation interface. Thus characteristics of the application with
respect to parallelism can be exploited by assigning processors to tasks
(section 9).

7.5. Real Time Capabilities of Mach

The Mach kernel originally has not been build with real time capabili-
ties in mind. Nevertheless some of the features stated in section 6. are
supported. There is currently a lot of work going on at CMU to develop
a real time Mach kernel [Tok90a]. Mach fulfills the multitasking
requirement. The thread concept caters for the possibility of parallel
activities within processes and minimal performance penalty in switch-
ing between activities. Copy-on-write in the memory management
scheme is one of the means to speed up context switches between
tasks. The demand for deterministic and efficient IPC and shared
memory for very fast communication is satisfied as well. Binary sema-
phores are supported by the C Thread mutex variables. The Mach ker-
nel can not react to external events with a fixed guaranteed response
time due to it's scheduling policy and lack of priority concept.
Memory locking as well is not yet possible. /O in Mach is done by
servers which act as device drivers. They are invoked by sending
(receiving from) them data via the Mach IPC. The characteristics of the
Mach IPC fulfill the requirements for I/O in real time systems stated in
section 6. The currently missing features concerning real time capabil-
ities, mainly faster context switch between tasks, fast communication, a
preemptive kernel and hard real time threads/tasks with priorities will
be integrated into the Mach kernel in the future.

8. Structural Evaluation of Chorus

If not stated otherwise all statements made in the following paragraphs
concern the Chorus kernel, not the UNIX subsystem on top of it.

8.1. Chorus and Object Orientation

Chorus offers actors, activities, memory regions, memory segments,
ports, portgroups and semaphores as basic system abstractions.
According to the given definition they do not represent objects in the
strict object oriented sense, because either they do not implement data
encapsulation (e.g. data in the kernel is not only accessible via the
given operations) or operations can not only be invoked by messages.
The presence of classes or the possibility of inheritance between
objects isn’t implemented at all in the Chorys system.

Nevertheless the offered mechanisms can support an object oriented
users point of view. Data can be encapsulated in actors and be made
accessible only through the invocation of operations in this actor. This
“object” can then be used from another actor by sending a message to
the port associated with the “object” actor. The principle of dynamic
binding, where operation invocations are dynamically bound to the
operation code, is achieved by the possibility of port migration. Port
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migration is a concept, in which ports can be associated with different
actors during runtime.

The Chorus kernel is implemented in the object oriented language C.
All in all it can be stated, that the implementation of the Chorus system
itself was done by object oriented means. However the offered system
abstractions hardly fit into the object oriented paradigm. Besides the
lack of classes and inheritance, one of the main reasons for that is the
possibility to reference data and operations not only by sending a mes-
sage to a port but also by their internal addresses.

To fully support the object oriented paradigm Chorus offers the Chorus
Object Oriented Layer COOL [Cho90a], which is currently under
development. It extends the set of Chorus system abstractions and pro-
vides additional mechanisms for a generic support of object oriented
systems. These abstractions allow the creation, deletion, migration of
objects as well as the remote access to objects and the storing and
retrieval of them. Specific type models, complex object semantics or
high level transaction mechanisms are not offered at this layer but they
can be implemented on COOL basis. COOL is implemented as a layer
on top of the kernel to provide an interface for a wide range of object
oriented languages (e.g. Eiffel), applications (e.g. Emerald) and sys-
tems (e.g. Comandos) [Esp87a].

The additional abstractions provided by COOL are contexts, objects,
threads, inter-object communication and persistency.

. context represents the execution environment of objects. A con-
text is defined as a virtual address space into which one or more
objects are mapped and corresponds to a Chorus actor.

object represents the usual object abstraction consisting of a code
and data segment, which are mapped into a context. COOL
manages objects but defines no fixed semantics on them.

threads are the smallest unit of activity in the sense of “light-
weight processes”. COOL threads are mapped onto Chorus
threads. Multiple threads can run in parallel in a context.

inter-objectcommunication is based upon the Chorus IPC.
Objects have ports associated with them on which threads can
send and receive messages. Special messages for copying or
migrating objects are available.

persistency is a feature, where the lifetime of objects is indepen-
dent of the applications which reference them. Persistency is
available for objects and whole contexts. Objects are being
stored on a stable storage medium where contexts are saved by
checkpointing and can be later restored from them.

A further feature of COOL is the capability to tie objects together into
groups. This allows communication with groups of objects instead of
single objects. It’s implementation is based upon the
broadcast/multicast mechanism in the Chorus IPC.

8.2. Support of Transparency Aspects in Chorus

Access and Location Transparency

The access to services in the Chorus system is done by sending a mes-
sage to the associated port/portgroup of the actor (section 8.1) which
implements the service. The clients need not be aware of the server
specific invocation requirements, it just supplies the parameters for the
invocation in the message. Access to memory is handled like in cus-
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tomary virtual memory management schemes. The mapping between
virtual address and physical address is carried out transparently with
the help of dedicated servers, which do the paging. The association of
a memory region with a storage area to transparently access data in
memory and storage (section 7.2} is not implemented in Chorus. Like
stated above, services are accessed via their associated ports. A port is
identified by a system unique number with some access information
(capability). These unique identifiers (UI) are used for all system
abstractions. The location of the object associated with an Ul is figured
out by the “Unique Identifier Location Service” (UILS). For a local
object, the UILS can resolve the Ul by searching it’s local tables, other-
wise this is done by the It first searches the local cache of ports and
portgroups. In case of failure it requests the information from the loca-
tion, where the port was created (coded in the UI). If this fails too, a
message is broadcasted to find the actual location of the object.

Scaling Transparency

Adding a service in the Chorus system can be done by starting the
respective actor and making available an interface to this service. This
is usually done by making available the UI of a port, associated with
the actor, which can be used for sending requests. This scheme does
neither require a change of the application nor does it require to rebuild
the system or change certain mechanisms. Adding new devices
requires some administration effort and a new configuration of the ker-
nel. New nodes in the system can be made available by adding entries
in the respective tables and booting the system.

Replication Transparency

Chorus does not support replication transparency directly by any sys-
tem abstraction, but given the Chorus IPC an implementation of tran-
sparently replicated objects is possible. Ports can be grouped together
to port groups and messages can be send to these port groups using dif-
ferent modes:

) Broadcast — message is sent to all ports of the group
. Functional — message is sent to one port of the group
. Associative — message is sent to one port of the group, which

complies to specific attributes

The different communication modes and their use are illustrated in Fig-
ure 3. Replicated object groups can be implemented quite straightfor-
ward and the communication mechanisms make it possible for the
application to send requests and receive results without having to know
the structure of the object group.

Failure Transparency

Failure transparency can be implemented building an object group with
coordinator/voter for providing a service instead of one single object.
Any application can use this service without having to know the inter-
nal construction of the group (see replication transparency). For the
IPC, Chorus uses standard protocols (TCP/IP, ISO OSI) and thus pro-
vides their specific fault transparency features. The implementation of
the RPC allows to detect communication failures like crashed sites and
lost requests. This can be used to capture these problems transparently
to the application using a service. Interrupts, exceptions and traps can
be dynamically associated with handler routines in the private task
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Figure 3: Communication modes in Chorus

address space. This mechanisms supports the capturing of external
events and failures transparently to the application.

8.3. Support for Concurrency and Consistency in Chorus

Actor/Activity

The actor/activity concept implemented in Chorus directly corresponds
to the task/thread concept in Mach. The statements made for Mach in
this context can be applied to Chorus respectively [Arm90a] (sec-
tion 7.3). In the Chorus system there is a distinction between supervi-
sor actors, system actors and user actors to specify different privileges.
The address space represented by an actor is also divided into system
and user space for this purpose. Scheduling of the activities is preemp-
tive, which means that the activity with the highest priority is actually
running on a processor, where the priority is computed on the basis of
the actors and the activities assigned priorities. Scheduling is done by
the kernel.

Synchronization and Communication

To insure consistency in case of parallel activities Chorus offers sema-
phores and mutex objects (binary semaphores), which are based upon
the shared memory concept. Actors can communicate via the Chorus
IPC or shared memory. Activities, which share the same address space
can implement their own communication.

Language Support

The COOL layer on top of Chorus offers mechanisms to specify paral-
lelism and synchronize parallel activities. Efforts are currently under-
taken to implement the object oriented distributed system COMANDOS
(on top of the COOL interface. Beside the management of distributed
object oriented applications the COMANDOS language offers constructs
to specify, synchronize and communicate between parallel activities
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8.4. Multiprocessor Support in Chorus

Like stated in section 8.3 the process concept known from customary
operating systems is split up in Chorus into actor and activity. The
minimal context associated with an activity allows switching between
activities with minimal overhead which means efficient exploitation of
parallel hardware. To support different memory architectures, Chorus
divides it’s memory management into hardware dependent and
hardware independent part. However there is currently only support
for uniform memory architectures.

8.5. Real Time Capabilities of Chorus

From the beginning Chorus was developed with real time requirements
in mind. Actors provide the multitasking capability of a Chorus based
real time system, activities offer the required parallelism within tasks.
To guarantee response times to external events, Chorus employs dif-
ferent mechanisms. Preemptive scheduling and the priority scheme in
connection with rapid context switches, fast communication, copy-on-
write and memory locking are proper means for that. Actors are
divided into real time actors and time sliced actors. The former group
has fixed priorities which are higher than the variable (UNIX like)
priorities of the latter ones. In addition Chorus offers timers to control
the obedience of response time constraints. To synchronize tasks
Chorus offers efficient mechanisms at the system level (semaphores,
signals, etc.). Communication can be done via the Chorus IPC or by
employing shared memory in case of special performance require-
ments. The specification of timeouts for invoking system calls helps
avoiding deadlocks. The handling of asynchronous events (interrupts)
by offering the opportunity to associate any interrupt with a handler
routine in user space and it’s implementation fulfill the requirements
for real time support. 1/O in the Chorus system is done by external
servers which are invoked by sending a request to their associated port.
The option to choose synchronous or asynchronous communication
corresponds to the demands of a real time system (see section 6)

9. Conclusion

In this paper we have presented an evaluation method for distributed
operating system. Focusing on the structural evaluation we took into
account the importance of various application areas which have to be
supported by the underlying system in the future. We have given a
brief introduction into the most significant application areas investigat-
ing the basic necessary functionality of the underlying system to sup-
port the latter. The first phase, identifying the architectural concepts
and the last phase, measuring the performance are not presented in this
context but have been already finished.

The application of this methodology onto the systems Mach and
Chorus show the suitability of these systems as a basis for the respec-
tive application areas. It’s not enough to compare architectures or
mechanisms of different systems, this comparison has to be put into the
context of the required functionality. This is what the presented metho-
dology does. More work has to be spend on performance measure-
ments, because the same is true for this evaluation phase: it’s no use
comparing mechanisms in isolation, it’s necessary to evaluate them in

EurOpen 91 — Tromsg, 20-24 May




Distributed Operating Systems in Open Networks

the scope of their application. We will do that in the scope of a succes-
sor project.

In our opinion, applying these three phases to the evaluation of operat-
ing systems in general should provide a sufficient base to estimate the
suitability of a system for the specific application areas which will be
coming into focus in the next years.
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Abstract

This paper articulates an architectural framework, and the fundamental
mechanisms that are required to support that framework, for a distri-
buted computing environment. The emphasis of this framework is on
open distributed systems. That is, it serves as a model that supports
many of the requirements of a distributed system: such as the need for
interoperability, the need to support the client/server distributed appli-
cation model, and the need to account for the characteristics and chal-
lenges that are unique to a distributed environment.

This paper will describe a number of commonalities and differences
between the stand-alone environment and the distributed environment.
In doing so, it will raise a number of distributed system issues that must
be resolved in order to satisfy the needs of an open distributed system.

Finally, this paper will also articulate the need and process for building
an open distributed system so that it behaves like a system rather than a
set of disparate components.

1. Introduction

The most significant characteristic of computing in the 90’s will be the
evolution of distributed computing environments. This sentiment is
echoed by people involved in development, research [Mul89a] and
management. This gradual change is predicated on the ability of the
industry (that is, both research and development organizations) to
develop at least one architecture that can satisfy several key needs:
increasing demand for interoperability among systems, support for the
client/server distributed application development model, and the ability
to account for the characteristics and challenges that are inherent in a
distributed computing environment.

Such an architecture would be considered appropriate if it were appli-
cable to a wide variety of physical topologies (that is, a variety of
hardware platforms), to a wide variety of management topologies (such
as centralized or decentralized), and to a wide variety of software topo-
logies (such as operating systems and development languages). The
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1.1. Interoperability

architecture would be considered appropriate if it were able to adapt to
changing requirements, such as the ones just mentioned, over time.
And finally, the architecture would be considered appropriate if its
components behaved predictably and coherently, that is, if they
behaved like a system rather than a set of disparate pieces. Now let us
take a closer look at some of the needs that must be accounted for in
this architecture.

1.2. Client/Server Model

Interoperability, is usually a concern only in an environment that con-
tains dissimilar fundamental hardware or software services (that is, a
heterogeneous environment). This, in a nutshell, is the difference
between a distributed operating (homogeneous) system and a distri-
buted networking (heterogeneous) system. A distributed operating sys-
tem is not preoccupied with interoperability because homogeneity is a
fundamental characteristic of its environment. Each system that is
cooperating in the distributed operating environment runs the same set
of fundamental services. Although there is occasionally a need for
homogeneity in some environments, this is not typical.

The need for a distributed networking system, on the other hand, is typ-
ically based on the need for some degree of generalization. For exam-
ple, in many organizations computing resources are acquired by satis-
tying the needs of the local department. This typically is done with lit-
tle or no attention to the prospect of integrating these resources with
other departments. This results in a diverse set of hardware and
software services. And even in the case where this integration is antici-
pated, it is reasonable to assume that the specific requirements of each
department will lead to the accumulation of dissimilar hardware and
software services. However, specialization too can drive the need for
interoperability. That is, the demand for a special device or service
(for example, a high-capacity disk drive, a high-performance graphics
workstation, or a multiprocessor operating system) is what drives a
variety of organizations to solve that need. For example, the demand
for a low-priced multiuser workstation has led to many different imple-
mentations. Inherently, these implementations are not interoperable
unless additional services are introduced.

Put another way, the need for interoperability is great because there are
only a few situations that demand a homogeneous rather than a hetero-
geneous environment. A distributed computing environment architec-
ture needs to support the requirement of interoperability because it is
assumed that most environments have varying degrees of dissimilar
fundamental hardware or software services.

One of the most widely used models in the development of distributed
applications is the client/server model (see Figure 1). This model is
based on the premise an application, referred to as the client, makes a
request of a particular service, referred to as the server. Although this
is the canonical definition of the client/server model, it needs to be
extended.

The new definition is based on the premise that the client receives the
benefit of the service. Therefore, the model is defined by the applica-
tion that receives a service rather than the application that initiated it.
Each service has a consumer and a supplier as well as an invoker and a
responder. The current definition can be thought of as a pull-down
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Figure 1: Extended Client/Server Model

approach to services. The invoker is associated with the consumer (the
client) and the responder is associated with the supplier (the server).
This would typically be the case for a distributed file server, a remote
procedure call, or a distributed name service request. However, for
other applications that fit into the client/server model, the invoker is
associated with the supplier and the responder is associated with the
consumer. This is the case for many distributed system management
applications [Joh89a]. For example, imagine an application which per-
forms backups of systems on the network. This task, in many cases,
would be initiated centrally by a system administrator and be executed
remotely on all of the managed systems. In this case, the client is the
consumer of the service, although the request was initiated at the sup-
plier.

1.3. Defining a Distributed Environment

Logically, people understand that the difference between a distributed
computing environment and an environment which is not distributed
(either a stand-alone system or a collection of stand-alone systems) is
that related code can be executing on more than one system in the net-
work. If the code is not related, then two systems executing completely
unrelated code on two different systems would not constitute a distri-
buted environment. Additionally, it is not a requirement that related
code execute on more than one system, but it needs to be possible.
That is, an extensible architecture is defined by assuming that the com-
ponents of a distributed environment will be distributed. The degen-
erate case occurs when all of the components are on the same system.
The reverse is true of services developed for a stand-alone system,
which assumes that all of the components are local.

Ideally, this functionality should have a desired amount of tran-
sparency. This is somewhat different from the need for total tran-
sparency in that the users of the system should have the ability to
require (manage) non-transparency if it is appropriate. For example, in
a distributed environment which supports load balancing (the ability to
maximize the usage of idle CPUs, or conversely, the ability to avoid
overwhelming any particular CPU), it is desirable to have the ability to
specify which systems are and which are not participating in the load-
balancing algorithm. Without this capability, the load-balancing
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software would transparently (indiscriminately) choose from any of the
systems on the network.

Architecturally, the approach to defining a distributed computing
environment is to consider the characteristics which distinguish a distri-
buted environment from a stand-alone environment and then engineer a
solution which is responsive to those characteristics. This solution
must take into account any challenges that are associated with a distri-
buted environment.

1.3.1. Characteristics

Following is a list which articulates some of the characteristics which
help distinguish a distributed environment from a stand-alone environ-
ment.

e Physical separation
Through the use of both local area network (LAN) and wide area
network (WAN) hardware capabilities, the computing environ-
ment can be physically dispersed and potentially extended over a
large geographical area.

o Scalability
The number of software components such as a file server, a name
server, or a time server and the number of hardware processing
entities such as a multiuser time sharing system, a printer, or a
disk server can range from small to quite large. Realistically, a
large distributed environment might have tens of thousands of
components and processing entities.

o Administrative autonomy

Especially as the distributed environment grows, as defined by
both physical separation and scale, there is likely to be an
increasing need to support a variety of administrative policies.
Each administrative domain needs to be able to dictate adminis-
trative policies (for example, based on national language, organi-
zational requirements, or geographical restrictions) independent
of other domains.

o Heterogeneity

Again, especially as the distributed environment grows, there is
likely to be an increasing variety of both hardware and software
capabilities. This variety can be realized in two ways: one, the
preservation of the current installation base, and two, the antici-
pation of solutions which are delivered by different organiza-
tions. The need to support or coexist with the current installation
base (for example, hardware and operating systems) is not just a
marketing requirement but an acknowledgement of how new
technologies are typically integrated: by evolution. In addition, it
is only reasonable to expect that there will be more than one sup-
plier of either hardware or software for any particular service.
All of these issues help to drive the distributed environment to be
increasingly heterogeneous.

1.3.2. Challenges

Following is a list which articulates some of the challenges which help
distinguish a distributed environment from a stand-alone environment.

e Naming
As in a stand-alone system, the ability to retrieve information
associated with a name (object) is a primary function of the dis-
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tributed system. The name could be associated with, for exam-
ple, a file, a device, or an application. In a distributed environ-
ment, however, this information needs to be available from any-
place in the network. Additionally, a name should reveal the
same information regardless of where the name is referenced.

e Security

Again, similar to a stand-alone environment, the need to control
access to resources is a primary function of the system. How-
ever, a distributed environment introduces new vulnerabilities in
managing access to a resource. For example, information typi-
cally flows across a physical medium (like an Ethernet) which
cannot be assumed to be trustworthy. That is, a user can mali-
ciously or unintentionaily read or change data as it propagates
around the network. Additionally, in many cases a resource
(such as a file, a printer, or a disk) is not physically close to the
people who would like to manage it; therefore, security can not
be assumed because of physical proximity.

e Manageability

As related to the characteristic of administrative autonomy, por-
tions, or domains, of the network will be managed in different
ways. The distributed computing environment architecture needs
to support a variety of management policies without imposing
undue restrictions or constraints on these management imple-
mentations. Additionally, in order to work effectively in a distri-
buted environment, the management functions must have the
same qualities as the fundamental distributed system technolo-
gies. For example, they must execute in a heterogeneous
environment and scale to large networks.

e Indeterminacy

Although the ability to have true parallelism is a trademark of an
effective distributed environment, it is also the root of one of the
most significant challenges, that of indeterminacy. Indeter-
minacy can be manifested by inconsistency of multiple copies of
data, by asynchrony (for example, related functions running in
parallel on separate systems), by latency (that is, functions that
may succeed, temporarily fail, or completely fail at varying and
unpredictable rates), and by event-ordering (that is, the ability to
accurately determine the order of events as they occur on
separate systems).

2. Motivation for Distributed Computing

One explanation for the necessity of distributed computing can be
expressed by answering two questions. Why do we need to think in
terms of being distributed? And what are the benefits of being distri-
buted?

2.1. Why do we need to think in terms of being distributed?

The main reason we need to think in terms of being distributed is
because we exist in a distributed world that is becoming increasingly
distributed [Lam81a]. That is, by definition a network is a collection of
connected systems (such as, multiuser workstations, personal comput-
ers, and mainframes). Except for the case in which there is one and
only one storage mechanism, data is stored on many different systems
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in many different ways, and the users of the systems either want to or
are required to share this information.

Two factors increase the likelihood of distribution.

. The user community prefers to support open systems (that is,
standard interfaces and protocols) as a means of increasing the
opportunity to share information and services.

The overall decrease in costs of hardware components and the
increase in price-performance ratios allows more people to
become investors in low-cost personal computers and mid-range
C0mputin‘g systems.

It should be noted that people have been thinking in terms of being dis-
tributed for quite some time. Until recently, however, the state of tech-
nology, or lack thereof, prevented distributed environments from
becoming more prevalent.

2.2. What are the benefits of being distributed?

In the previous section a distributed computing environment was
defined in terms of a set of characteristics and challenges. If these
characteristics and challenges can be addressed in a distributed systems
architecture, potential advantages can be realized in the resulting distri-
buted computing environment. They include

e Resource sharing
Resource providers reach a wider consumer audience in a distri-
buted computing environment than in a stand-alone environment,
and conversely, resource consumers can choose from a wider
selection of providers.

e Performance
Similar to a multiprocessor system, a distributed environment
can execute a number of operations simuitaneously. The key
benefit to performing tasks in parallel is increased throughput —
through the advantage of decreased latency in processing separ-
able functions.

o Availability

By taking advantage of the parallel nature of a distributed
environment, the availability of services can be increased
because there is potentially no single-point of failure. That is,
one instance of a service can continue to run in the event that
another instance of the same service cannot due to, for example,
heavy loading, temporary network failure, or complete failure of
the system it is running on.

3. Developing the Distributed Computing Architectural
Framework

The question of how to define such an architectural framework
remains. One way is to resolve two general issues, first, to define the
paradigms that are essential to support the development environment,
and second, to define a process which will produce instantiations of
these paradigms. Let us take a look at each of these issues.
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3.1. Necessary Distributed Computing Paradigms

Although many differences have been articulated between the stand-
alone and distributed environment, there is some set of issues common
to both. That is, in all programming environments, some set of para-
digms must exist to support the development of applications. Histori-
cally, this has been done in the stand-alone environment by many dif-
ferent organizations in many different ways. However, at the root of
these development environments is the support for a set of fundamental
programming paradigms. Following is a description of how these para-
digms have been actualized in stand-alone systems and an indication of
how they would be applied to a distributed system.

e Execution space
On almost all operating systems, the execution space is defined
as the process. For multiprocess operating systems, the local
execution space is a process and the global space is the collection
of all processes. The focal point of administration for the system
is determined by the current state of a process or set of processes.

In the distributed environment, the local execution space can be
thought of as a host (system) and the global space as the collec-
tion of all systems. Components of a distributed application usu-
ally are instantiated as a process, or set of processes, on some
particular system. Therefore, the focal point of administration in
the distributed environment is determined by the current state of
a system or set of systems.

e Physical data exchange and interexecution space communication

In the stand-alone environment, the standard means for execution
spaces to exchange data is through main memory. This can be
achieved in many ways. For example, a single process might use
a local procedure call which would take advantage of a common
address space, and multiple processes might use an interprocess
communication (IPC) mechanism which would take advantage of
some memory-management technique such as shared memory.

In the distributed environment, the standard data-exchange
mechanism is the network (for example, the Ethernet). Given
that the execution is defined across multiple systems, the data-
exchange mechanism needs to support inter-procedure communi-
cation paths that will probably occur over the network. There-
fore, it logically should behave similarly to the local procedure
call except that the sending and receiving functions may be on
different systems.

o Primary stable data storage

A key mechanism for any type of non-transient system is the
ability to store information that persists longer than the duration
of a process. This is commonly referred to as stable storage.
The type of device used to satisfy this need (whether it be a
floppy, a tape, a hard disk, or a write once optical disk) is unim-
portant. In the stand-alone environment, the stable storage
mechanism is typically a local file system.

In the distributed environment, a similar type of technology is
needed for the same reasons. In this case, a file system which
allows a consistent view of files from anywhere on the network is
needed. For the distributed environment, the concepts of the
local file system need to be extended to support the same opera-
tions, and provide similar benefits and guarantees, across many
systems in the network.
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e Concurrent programming

The idea of a component in the computing system working on
more than one thing at a time is very appealing. The hope is that
such a scheme would allow more tasks to be completed. This
idea is referred to as concurrent programming and it has been
accomplished in a number of ways. Multitasking uniprocessor
systems achieve concurrency by swapping out processes that are
waiting for another event to complete (or because the process has
used up some (pre)determined time-slice) and swapping in
another process that can execute. Multiprocessor systems
achieve cpncurrent programming by actually running code on
more than one processor at the same time. Another alternative is
time-slicing activities within a given process. By allowing a sin-
gle process to have multiple execution code segments, the seg-
ment ready to execute can continue. Therefore, other segments
which are potentially waiting for the completion of some event
(such as input or output) can be suspended.

A network is inherently a concurrent programming environment
because autonomous computing systems can be independently
running a process on their own dedicated processor(s). Although
this concept is applicable to a stand-alone environment, con-
current programming becomes a necessary component in the dis-
tributed system. Typically, the server is required to service more
than one client request at a time. Without this mechanism, all
requests to the server would be handled sequentially and would
not satisfy certain requirements of the distributed environment —
such as the need to scale to support large numbers of systems.

e Event ordering

In the stand-alone environment there are at least two types of
event ordering. One type occurs when a process is pending on a
system or library call to complete. For example, a process has
made some synchronous request and waits in a pending state
until that request has been satisfied; the process could be waiting
for some 1/O to complete, for a semaphore to clear, or for some
other locked resource to become available. Another type occurs
when a process needs to make an ordering decision based on the
time-stamp of some well known event. It typically does so by
checking a time-stamp associated with a file or an object in a file
(such as a database). In the stand-alone environment, a decision
based on a time-stamp is trustworthy because there is only one
provider of the time within the environment — the local operating
system.

In a distributed environment each system has its own representa-
tion of time; therefore any decision based on the time-stamp
associated with events (such as file modification) from different
systems is suspect. Hence, a mechanism is needed to ensure that
applications can continue to make decisions based on the order
of events within the distributed environment.

o Stable data storage for execution space
A process normally makes reference to data in two storage areas,
temporary and permanent. Temporary data can be thought of as
anything stored in memory (physical, virtual, or shared) and per-
manent data as anything stored in stable storage. In any event,
things stored in stable storage are data constructs that need to

1 This does not rule out the possibility of storing temporary data in stable storage.
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persist longer than the duration of the process:' such as, adminis-
trative, transaction, configuration, or log information.

In a distributed environment. there is also a need to access data
that persists longer than the duration of any particular process or
system. Such data also needs to be consistently available to any
process on any system in the network.

e Secure access to objects
In the stand-alone execution space, there are usually two types of
objects that need an access control (security) mechanism: process
objects and file objects. The local operating system is usually
responsible for process objects (such as shared memory or IPC
channels) and the local file system is responsible for file objects.?
The goal is to control access to a particular resource.

In the distributed environment, there is a similar need to control
access to objects. However, in this environment the objects may
be dispersed or even migrate among many systems. Addition-
ally, there are new security issues that do not exist in the local
environment. For example, the location of a resource may not be
known until it is referenced or a resource will be accessible by
users who are not defined in the local system.

These paradigms are available for most application development
environments. Their implementation can take many forms, but their
existence is a necessity. The distributed computing environment is just
another example of an application development environment which
needs to provide solutions for these paradigms. However, there are
characteristics and challenges specitic to the distributed environment.

3.2. A Process For Defining a Distributed Computing Environment

Most people would agree that the prospect of developing a distributed
computing environment architecture is a formidable task. The effort
required to meet such a diverse set of needs, requirements, and chal-
lenges makes it difficult to understand the entire problem. However,
the issue of diversity also leads to an appropriate method for addressing
these issues. That is, given that the problem area is diverse, it makes
sense to formulate a potential solution by reviewing and incorporating
a diverse set of perspectives.

This is exactly what the Open Software Foundation (OSF) did: it used
an open process to design the architectural framework as part of its dis-
tributed computing environment request for technology effort. The
evaluation team reviewed many distributed system architectures® and
solicited the opinions of leading developers, researchers,* and users in
an effort to push forward the state of open distributed systems. The
key aspect of this process was to use these opinions in influencing the

2 It should be noted that in some operating systems, another object that requires access control, and is not explicitly either a process
or a file object, is a device — such as a disk drive. a floppy drive. or a network controller. In this case. the device is usually accessed
through a special file but is handled by the operating system.

3 For example, A Distributed Systems Architecture for the 1990°s [Lam89a]. Network Computing Architecture [Apo&9a]. Advanced
Networked Systems Architecture [APM§9a], Open Distributed Processing [I1SO90a] and The Digital Distributed System Security Archi-
tecture [Gas89a].

4 Dr. Andrew Birrell at the Digital Equipment Corporation Systems Research Center, Professor David Cheriton at the Stanford
University Computer Science Department, Dr. Paul Mockapetris at the University of Southern California Information Sciences Insti-
tute, Dr. Sape Mullender at the Centrum voor Wiskunde en Informatica, Dr. Roger Needham at the University of Cambridge Computer
Laboratory, Dr. Michael D. Schroeder at the Digital Equipment Corporation Systems Research Center. and Dr. Peter J. Weinberger at
AT&T Bell Laboratories.
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design. In this respect, the design is in fact a conglomeration of a
diverse set of viewpoints and requirements.

4. Putting It All Together

There are three requirements for an appropriate distributed computing
environment architecture. First, there must be mechanisms to support
the needs of the fundamental application development paradigms.
Second, these fundamental technologies must account for the charac-
teristics and challenges which are unique to a distributed environment.
And third, these technologies must be incorporated in such a way that
they have the qualities of a well formed system.

4.1. Fundamental Technologies

As stated above, a set of fundamental programming paradigms must
exist to support the development of applications, in this case distributed
applications. Following are the necessary technologies which can sup-
port these paradigms in the distributed environment and a brief descrip-
tion of their capabilities.

o Physical data exchange and interexecution space communication
Remote Procedure Call

The remote procedure call (RPC) provides programmers a fami-
liar programming model by extending the local procedure call to
a distributed environment. RPC maintains the useful aspects of
the local programming model while handling purely distributed
issues such as operation semantics (for example, at-most-once),
server selection (binding), and communication or server failures.
RPC also provides a convenient and consistent mechanism for
specifying the interactions between components of a distributed
system.’

In addition to basic RPC features, such as supporting a variety of
data types and transport independence, the remote procedure call
needs to support extended features such as

* Context handles, allowing a server to reclaim resources
when either the communications or client fails

. Mutable pointers, allowing pointer-handling capabilities
that mimic local pointer semantics

. Multiple language bindings, allowing applications to be
implemented in different programming languages

. Orderly quit, allowing the application to cancel outstand-
ing requests

* National language support, allowing data types from multi-
byte character sets to be supported

e Primary stable data storage
Distributed File System

Distributed file system technology provides the ability to access
and store data at remote locations. It extends the local file sys-
tem model to a distributed environment,

To do this, it needs to

5 It should be noted that there is some debate about the difference between procedure- and message-oriented systems. I believe, as
Lauer and Needham [Lau78a] stated, that these categories are duals of each other. My extension to their theory is that it applies not
just to local operating systems but to distributed systems as well.
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Provide transparent access to both local and remote files

Support local functionality, such as file locking and shar-
ing, when accessing remote files

Allow users to address files with the same pathname from
anywhere in the system, regardless of the computer that is
being used

Provide high availability to all accessible data resources

Serve a very large number of concurrent requests with
good performance

Work in a wide area network configuration

Provide secure access to local and remote files and direc-
tories

Ensure that the logical view of a file is independent of its
physical location.

e Concurrent programming
Threads

Threads provide a useful model for structuring applications to
allow them to exploit parallelism. To a large degree, this is
accomplished by taking advantage of multiple processors in a
multiprocessor system. In a single processor system this is
accomplished by allowing the application to overlap operations.
That is, when one thread is blocked (for example, because it is
waiting for an [/O call to complete) another thread in the same
process can be executed.

This technique is useful in client applications and is most impor-
tant in servers, which must handle requests from multiple clients
concurrently. For example, in a typical client/server scenario, a
server program can be processing the data from a read request
while it is waiting (that is, blocking on the next read request) for
another chunk of data to be received. Threads use re-entrant pro-
gramming techniques that allow simpler designs than other paral-
lelism alternatives such as multiprocess implementations using
shared memory, or explicit asynchronous operations.

To do this, threads must support features such as:

) Mutexes: a way to synchronize threads access to shared
data

Condition variables: used to develop race-free mul-
tithreaded applications (that is. coordinate threads within
an application)

Alerts: used to provide graceful and reliable thread termi-
nation

e Event ordering

Distributed Time Service

The purpose of a time service is to synchronize the clock of a
local computer with Universal Coordinated Time (UTC), as well
as clocks of other computers on the network. Distributed ser-
vices that compare dates generated at different computers require
some mechanism for determining the appropriate order of events
as they occur across different systems within the network. Dis-
tributed file systems and authentication are two examples of such
services.

The network consists of local system clocks that are divided into
clients and servers. Clients take the time from servers, whereas
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servers synchronize with each other. Because any single server
can fail or be inaccurate, a requestor, either client or server,
needs to ask the time from a number of servers. Additionally,
the time service needs to handle error situations like faulty
servers and a temporary breakdown of the network as well as
avoiding instabilities that arise from loops (that is, the same two
servers asking time from each other) and topology changes (for
example, the addition of new servers).

o Stable data storage for execution space

Directory or Name Service

The purpbse of a naming or directory service in a distributed
computing environment is to map user-oriented names to
computer-oriented entries in a special-purpose distributed data-
base that describes the objects of interest. Objects contain infor-
mation for such things as organizations, persons, groups, organi-
zational roles, computers, printers, files, processes, and applica-
tion services and their interfaces. The clients of the directory
service span a wide range from other services comprising the dis-
tributed environment, such as remote procedure call and manage-
ment programs, to applications, such as print spoolers and mail
services. The basic added-value of a directory service is its abil-
ity to provide location- and routing-independence. It allows
objects to be addressed by human readable names, regardless of
the locations of the directory client and of the named object, or
of the communications path between the two.

The directory service needs to support features such as:

. White pages: the ability to perform straightforward name-
to-entry lookups

Yellow pages: the ability to perform lookups based on
object attributes

Link or alias service: the ability to perform name-to-
different-name mappings

Group service: the ability to map a single name into a set
of names

e Secure access to objects

Security Services

Security consists of authentication of entities (or principals) in an
open system, authorization of principals for using resources, and
guarantees of integrity and privacy of messages sent over the net-
work. Authentication in an open network context is the
verification of a given principal’s identity (such as a user or ser-
vice). In a network system, authenticated communication is
necessary because messages are subject to forgery and therefore
cannot necessarily be trusted. Authorization is concerned with
granting privileges with respect to resources, such as access to
files.

Because messages on an open network can be read and forged, a
way of determining whether a message from a given principal
arrived intact and unaltered is needed. This assurance provides
message integrity based on the identity of the invoking principal.
While guarantees of message integrity are an absolute minimum
requirement, some applications require that the confidentiality of
the data be guaranteed as well. This is done by encrypting the
message contents, which provides message privacy. It should be
noted that although authentication and authorization are essential
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in a distributed computing environment, the use of security
mechanisms is expensive (in terms of overhead applied to each
request); therefore different levels of security may be appropriate
for different applications.

4.2. Fundamental Technology Design Mechanisms

As pointed out earlier, one of the keys to understanding the makeup of
open distributed systems is to understand the characteristics, chal-
lenges, and benefits that distinguish a distributed environment from a
stand-alone environment. In addition a number of fundamental para-
digms are necessary to support the development of applications in both
a stand-alone and a distributed environment. The task, then, is to
design services that support these paradigms in a way that accounts for
the issues that are unique to the distributed environment.

Following is a list of design goals that should be considered in the
development of the fundamental technologies. and for that matter, in
the development of distributed applications in general. Listed with
each goal are some of the common mechanisms that should be used to
achieve that goal.

e Autonomy

The principle behind autonomy within a distributed environment
is that each site has its own set of execution and management
policies. Therefore, it is difficult, if not impossible. to predict
which policies will be acceptable for a given site. In fact, each
site may have a number of administrative domains that have
varying degrees of policy conformity. Moreover, those policies
typically change over time.

Therefore, with respect to autonomy. the technology developer
must strive to meet the following design objectives:

* Minimize the number of predetermined execution and
management parameters

. Maximize the number of system parameters that can be
reconfigured

e Availability
A resource accessible via only one mechanism would become
unavailable if the mechanism failed. Therefore, the key to
increasing the availability of any resource in a system is to
increase the probability that no single point of failure would
prohibit access to that resource.

Hence, with respect to availability, the technology developer
must consider the following design objective: there must be alter-
nate mechanisms to access valuable resources. This typically is
done by using either replication or duplication techniques. The
key distinction between these mechanisms is that replication
algorithms attempt to coordinate copies of the information
automatically, and duplication algorithms do not. For example, a
directory service attempts to ensure that all references to any par-
ticular piece of data reveal the same result independent of where
that data is referenced.

e Hardware and operating system independence
Hardware and operating system independence is important in the
distributed system because applications need to be ported to, exe-
cute in, and interoperate in a heterogeneous environment. The
key to providing both hardware and operating system indepen-
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dence is to not rely on any features, side effects, or traits that are
specific to any particular system.

This would include

* Services that only exist in certain environments. For
example, the availability of a broadcast mechanism is
endemic to a local area network. Therefore, reliance on its
availability might prohibit a service from working in a
wide area network.

. Local services that parallel distributed fundamental ser-
vices. Often, services within the local operating system
parallel services in the distributed system. An example is
the use of an interprocess communication mechanism
versus a remote procedure call. In general, a service
should be developed by assuming that all resources are
remote. Otherwise, reliance on a local mechanism might
impede the ability for this service to execute remotely or
execute on a dissimilar system.

e Indeterminacy

A distributed environment includes a certain set of execution
characteristics that are not typically provided in the stand-alone
environment. For example, if there are problems accessing main
memory in the stand-alone environment, the system probably
needs to be rebooted to correct the problem. In the distributed
environment, however, there are a variety of problems that could
temporarily affect access to the network.

Therefore, with respect to indeterminacy, it is necessary for the tech-
nology developer to make the following assumptions:

* All access to the network may result in failure and a subse-
quent access may succeed; this is typically handled by
using retry mechanisms.

* Any access to the network may not relinquish control to
the calling program; this is typically handled by using
threads, polling, or time-out mechanisms.

e Scalability

One of the most important objectives of a distributed service is to
ensure acceptable operation as the number of users increase.
This growth typically occurs because more systems are added to
the current environment. In general, the issues associated with
scalability tend to dictate what mechanisms are appropriate for a
distributed application. That is, if the target audience for a given
application is known to be small, there are a variety of
approaches that can be used to solve a particular problem. When
the target audience is known to be large, usually only a few
methodologies will be appropriate. This is analogous to deter-
mining an appropriate search algorithm. When the sample is
small, there is practically no difference in using a binary or a
linear search. However, as the sample size increases, the
appropriateness of a linear search decreases. Therefore, it is
encumbent upon the technology developer to assume that the
demand on the application will always be large. In general,
mechanisms that work when the sample size is large will work
when it is small. The reverse, however, usually is not true.
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Figure 2: OSF Distributed Computing Environment Architectural Framework

4.3. Requirements of the Distributed System

Now the issue is how to put all of this information together in a way
that will lead us to the appropriate architectural framework and the
appropriate set of mechanisms to support this framework. There are
two key goals in making this happen: define a minimal set of mechan-
isms and integrate them into a system.

The core of the distributed system needs to be defined as a minimal set
of fundamental mechanisms. A mechanism is fundamental if it is
required for the development of other distributed applications (such as
distributed system management or distributed development tools). The
core is expected to be that set of mechanisms which support the previ-
ously described application development paradigms. Figure 2 depicts
the framework which defines this minimal set of fundamental mechan-
isms [OSF90a].

Several issues should be considered when reviewing the information in
Figure 2.

° It is not an interface definition. For example, it is explicitly
expected that, for example, distributed applications will make
direct calls to the remote procedure call or threads interface(s).

Threads is shown close to the operating system because it is an
essential distributed system service but may be implemented in
the local operating system

The Other Core Services area is intended to be a repository only
for other fundamental technologies, that is, those necessary for
the development of other applications. An example is event
notification.
The fundamental services such as file, time, directory, remote pro-
cedure call, management, and threads provide a layer between the
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application and the operating system and network. These services are
necessary for the development of applications in the distributed
environment. The security, remote procedure call, and management
services form the architectural infrastructure. The remote procedure
call is the application development communication mechanism, and the
security and management services are a part of all of the fundamental
services. The directory service is central to the whole architecture
because it provides the mechanism in which all objects are referenced
and located.

The need to put this distributed environment together to create a distri-
buted system, rather than a disparate set of technologies was articulated
by Lampson, Schroeder, and Birrell. Basically, there needs to be one
set of interfaces to the fundamental technologies. For example, there is
only one set of exposed interfaces to the remote procedure call, to
threads, or to the naming/directory service. Additionally, the funda-
mental technologies themselves need to use these same interfaces. For
example, all of the fundamental technologies should use the threads
technology to achieve concurrent programming benefits. Furthermore,
all of the fundamental technologies should use the remote procedure
call technology to achieve interprocess communication across systems.
The information in Figure 3 indicates the level of integration that needs
to exist in the fundamental technologies to support the distributed com-
puting environment architecture.

Threads | Time | Security | RPC | Directory
Threads — n.a. n.a. n.a. n.a.
Time X - X X X
Security X X - X X
RPC X X X - X
Directory X X X X -
File X X X X X

Figure 3: Fundamental Technology Integration Matrix

Legend:

X denotes an explicit integration point; for example, the Security,
RPC, Directory, and the File services are integrated with the
Threads service.

n.a. denotes a non-applicable integration point; the threads technol-
ogy does not integrate with the other services because it executes
only within a process on the local operating system (and there-
fore does not require the functionality provided by the other dis-
tributed services).

- denotes an intersection of a technology with itself.

4.4. The Makings of a System

Without this level of integration, the distributed environment becomes
less predictable and more complex. This is true from both a statistical
and an intuitive sense. Statistically the complexity of the environment
increases with the number of interfaces because there are more poten-
tial outcomes during the execution of a process. For example, if each
fundamental service had its own interface(s) (represented by n) to sup-
port threads, time, security, remote procedure call, and directory ser-
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vices, the total number of interface invocations would (more likely) be
on the order of n*n rather than just n. Intuitively, the environment
would be more complex because there are more potential failure points,
debugging paths, and administrative issues. Additionally, it would be
more likely that this collection of components would grow apart in time
because each would be following its own evolutionary path rather than
evolving as a system.

With this level of integration, the fundamental technologies have the
qualitative characteristics and benefits of a system. This is analogous
to the local operating system. That is, the local operating environment
is viewed as a system which provides a common set of fundamental
services, such as memory management, interprocess communication,
and interprocess synchronization. Without these common services, the
application developer is burdened with the task of providing some level
of support for these mechanisms. Therefore, by designing an
integrated system, the application developer is relieved of many pro-
gramming complexities. For example. the RPC service will automati-
cally use the security service to ensure both message integrity and
privacy. It also will automatically use threads to ensure maximum
throughput for multiple requests from a single process. Without an
integrated system, the application developer needs to explicitly call all
of these services to obtain the benefits that they provide. This addi-
tional programming makes it difficult to write distributed applications.

It should be noted that the comprehensive integration of the distributed
technologies, and the adherence to a standard set of interfaces to them,
is what distinguishes this type of system (that is. this architecture and
the technologies that support it) from other distributed networking sys-
tems.® These are the attributes that make the system coherent and allow
the system to account for the characteristics and challenges that distin-
guish a distributed environment.

5. Conclusion

We are compelled to think about and solve problems associated with
distributed computing because we live in a distributed world and a dis-
tributed computing environment offers many potential benefits. In
order to effectively deal with the complexity of a distributed environ-
ment, we need to define an architecture which accounts for a certain set
of distributed environment issues. For example, it needs to support
useful distributed application development models (such as the
client/server model) and account for interoperability issues (such as
heterogeneous software and hardware platforms). The architecture
needs to be designed by considering and solving for key characteristics
and challenges that are endemic to a distributed computing environ-
ment. Additionally, there is historical evidence which suggests that
there are a certain set of necessary application development paradigms
that apply to both the stand-alone environment as well as the distri-
buted environment.

While it is certainly true that no one architecture will satisty all of the
needs of all of the people, the architecture developed by the Open
Software Foundation is an example that satisfies the needs of many
diverse organizations and many of the architectural demands of a distri-
buted environment. To realize the potential of a distributed computing

6 Distributed operating systems have this level of integration among the fundamental services: however, this type of system is usual-
ly only applicable to a homogeneous distributed environment.
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environment will require supporting such an architecture as well as
providing implementations which satisfy two key requirements. One,
the mechanisms that support the fundamental application development
paradigms must account for the characteristics and challenges that are
unique to a distributed environment. And two, these mechanisms need
to be integrated with each other so that they behave like a system rather
than a collection of disparate technologies.
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Abstract

This work presents the communication architecture of the configurable
Software Engineering Environment (SEE) AxIS. The architecture goal
is to allow the integration and the support of user-defined production
tools in a distributed environment.

1. Introduction

The experience has pointed out that the software life-cycle model, the
analysis and design methodology and the tools used to develop
software products may differ according to the project needs and the
organizational context.

The main goal of Software Engineering Environments (SEEs) is to
supply a synergic combination of methods, techniques and tools for
supporting the software production [Jef88al.

AXIS is a research project for the construction of a configurable SEE
[Pen88a].

This paper introduces the architectural and technological solutions to
the problems of integration and communication among components in
an AXIS instance. The first paragraph summarizes the architecture of
the AxIS environment. The following paragraphs describe the com-
munication system architecture and the integration policy.

2. AXIS Overview

AXIS is a configurable environment (i.e. meta-environment) that can be
instantiated to build an environment for supporting specific software
projects. The AxIS architecture can be seen as a virtual machine of
five software layers (Figure 1).

The two lower layers are the AxIS host environment representing the
basic software platform. This consists of the UNIX Operating System
(System V or BSD 4.3), Object-Oriented DBMS (ONTOS by Ontologic),
NFS (Sun Microsystems) and the X-Windows system.
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TOOLS

— _ INFRASTRUCTURE
Project PSYCOM AxIS
DataBase u.l.
Manager (SMS) Manager
ONTOS NFS
X-WINDOW
DBMS (RPC)
"HOST
ENVIRONMENT"

Figure 1: Ax/S Virtual Machine Architecture

The middle layers are named the infrastructure. This part is the core of
AxIS and can be configured to instantiate a specific environment
through specialized tools called configuration tools. To build an
instance. in this context, means to support a specific life cycle model
and design methodology [Cor90a].

The top-most layer is a set of different tools for supporting a specific
software project. We call these tools production tools.

Some of these tools are predefined, while the others depend on the
activities stated in the chosen instance. The tools not predefined can be
built through the AxIS provided toolkit [Cec89a, Ava89a, Nac89a,
Roc89a] or imported by integration mechanisms.

The predefined tools directly communicate with the infrastructure com-
ponents and provide a fixed set of operations, whose behavior depends
on the instantiated environment. This kind of tool [Weg90a] can be
called polvmorphic. Some example of them are a Project DataBase
Browser and a Cooperative Support Tool [Flo86a, Mal88a].

AxIS has a distributed architecture in that the tools and the infrastruc-
ture are organized as a set of interacting processes located on the dif-
ferent networked machines. The execution of an activity is carried out
following a service request according to the client-server paradigm.
Further, AxIS supplies a supervision system, named PSYCOM (Pro-
cess and SYstem COntrol and Management), for controlling and sup-
porting all the phases of the chosen life cycle model.

Finally, AxIS provides a project Object-Oriented DBMS for managing
all the Project Data Bases of the generated instances.

3. Communication System Architecture and Integration Policy

PSYCOM is composed of two parts:

) The first one is devoted to software process management
[Arm8&9a];
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The second one, called Service Management System (SMS), is
in charge of the communications between the production tools
and the infrastructure.

This paper details Service Management System components and the
integration mechanisms.

SMS allows the transparent access to the services of the environment.

These services depend on the defined instance. For example, suppose
that the entity-relationship diagramming is foreseen in a particular pro-
ject. In order to draw E-R diagram a tool is necessary and the service
“diagram! ER” will be made available in the AxIS instance.

Our aim is to ensure the independence between the infrastructure and
the particular set of tools which provides the services.

The Service Management System architecture has two main features:
. A user defined allocation of the tools in the environment.
° The centralized access control to the services.

The latter lets have the automatic monitoring of the system workload.
This means that there is a master component that receives all service
requests and schedules them according to the system state. The system
state is determinated by:

) The tools distribution through the workstations

. The number of times that every tool can be started on each
workstation

. The degree of service usage at the request time.

The first two parameters are defined at configuration time and are
stored in a system map, Services Map (SM). When the system is run-
ning, Services Map contains all the information about the system state.

The components of Service Management System architecture are illus-
trated in Figure 2.

3.1. Service Management System components

We have pointed out three classes of problems, concerning communi-
cation in AxIS environment:

. To hide the communication mechanism;

° To provide both the scheduling of service requests and the start-
ing of the processes that control each service, exploiting the dis-
tributed host environment features;

To keep a system log and to assure some degree of fault toler-
ance for the system.

In order to answer the previous problems we designed SMS architecture
which include the following components.

3.1.1. System Services Interface (SSI)

System Services Interface is the component that allows the interaction
between the User I[nterface and Services Map Administrator (SMA:
see below). System Services Interface receives the user’s service
requests and transmits them to the Services Map Administrator. In
case of failure, SSI signals to Services Map Administrator Tutor (ST:
see below) the failure occurred.

System Services Interface is replicated on each workstation and serves
many User Interfaces.
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User Interface

System Service Interface - |Service Map Administratot

SSl Informer

— Local Services Dispatchef
SMA Dynamic Writer

Tool Interface Process

Figure 2: SMS Architecture

3.1.2. System Services Interface Informer (SI)

System Services Interface Informer is the process that transmits to Sys-
tem Services Interface the Service Map Administrator address and Ser-
vice Map Administrator Tutor address. These informations are sent by
Service Map Administrator Tutor.

System Service Interface Informer is replicated on every workstation.

3.1.3. Services Map Administrator (SMA)

Services Map Administrator is the master component of Service
Management System. It administrates the Services Map, supplying to
System Service Interface the list of available services and recording the
services’s usage. When a request of service arrtves to Services Map
Administrator, this one verifies the service’s availability and deter-
mines the set of Local Service Dispatcher (LSD: see below) located on
the workstations in which the required service resides. Then Services
Map Administrator turns the request to the first Local Services
Dispatcher of the set. In case of failure, Services Map Administrator
tries with the others Local Service Dispatcher of the same set and if
none of them responds, Services Map Administrator transmits a failure
signal to the SSI that made the request.

Services Map Administrator is centralized and resides on a different
machine from that on which Services Map Administrator Tutor runs.

3.1.4. Service Map Dynamic Writer (SDW)

Service Map Dynamic Writer is a process that stores the system state
on a shared storage device every time Services Map is updated.

It is a centralized component that runs on the same workstation on
which Services Map Administrator resides.
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3.1.5. Local Services Dispatcher (LSD)

Local Services Dispatcher dispatches the services located on the
machine which it controls.

It is replicated on every workstation.

3.1.6. Services Map Administrator Tutor (ST)

Services Map Administrator Tutor starts Service Map Administrator
and restarts it in case of system crash. It has two main functionalities.

The first one is to run Services Map Administrator and Services Map
Dynamic Writer at Service Management System start up time.

The second one is to broadcast the actual address of Service Map
Administrator and its own address to all System Service Interface
Informer, every time SMA is activated (at start up or after a crash).

It is a centralized component, which resides on a different machine
from that on which Service Map Administrator is located.

Because of Services Map Administrator is the most critical component
in our system, we have managed SMA crashes. Every time Services
Map Administrator crashes, one of the System Service Interface
processes or one of the Tool Interface Process (TIP: see below) signals
the failure to Service Map Administrator Tutor, that restarts Service
Map Administrator and Service Map DynamicWriter on another
machine.

If only Services Map Administrator Tutor crashes, this does not prevent
the system continuing, but recovery is no longer possible.

We have not decided yet if an automatic management of this problem
should be carried out, although techniques for this are known. An
example is the solution adopted in the NIS system [Sun90a].

The Service Management System components are present in both the
RPC upper level [Wei89a] and TCP transport protocol.

3.2. Integration Mechanisms

To support the life cycle model and design methodology for a AxIS
instance it necessary to provide a set of specific tools. These tools have
to be integrated so to make their services available to the environment.
Data and functional integration are necessary to achieve this goal.

Data integration is necessary to convert the tool’s data format into the
project database format, that can be viewed and accessed from other
tools.

Functional integration is required to have a transparent access to the
tool’s services from the AxIS environment.

3.2.1. Tool Interface Process (TIP)

Data and functional integration of a tool is subordinated to the con-
struction of a Tool Interface Process [Dem88a]. These processes are
specific for each tool to be integrated into the environment. To built a
TIP for a tool means to allow communication between the infrastruc-
ture, i.e. PDBMS, UIMS, SMS. The coding of a TIP imply the
specification the services the tool supply and the way to convert data
from the tool internal format to the PDB format and from the PDB for-
mat to the internal format. This policy ensures uniform criteria for
tools integration. Local Service Dispatcher, after a request of service,
starts a Tool Interface Process, which advises Service Map Administra-
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System Services
Interface

Services Map
Administrator

ool interfaces
Process

Figure 3: Service request

tor when the service is completed. In the case of failure, TIP communi-
cates the occurred failure to Service Map Administrator Tutor.

Tool Interface Process must reside on the same workstation on which
the tool is located.

3.3. Integration Mechanisms

User is in charge of the development of Tool Interface Process, in that
the tool data format and the services supplied by the tool are known
only when a specific instance is generated.

We are actually working on to the designing and implementation of a
special purpose language, called Tool Interface Language (TIL), that
will make Tool Interface Process coding easier. Our goal is to realize a
unique language to hide the different languages for accessing the
infrastructural basic systems (OODBMS SERVER, SMS).

Another functional integration facility is given by the Service Mappe R
(SMR), whose aim is to generate Services Map.

3.4. SMS Dynamic Example

In this section we summarize the sequence of transactions activated by
a service request (Figure 3) and the recovery procedure in case of SMA
failure (Figure 4).

A service request is done to the local System Services Interface by a
User Interface (Figure 3: arrow1). System Services Interface transmits
it to the Services Map Administrator (Figure 3: 2).

Once SMA has received the request, it looks for the service availability
and determines the set of Local Services Dispatcher of the machines on
which the required service resides. Then, SMA turns the request to the
first LSD of the set (Figure 3: 3).
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Figure 4: SMS crash

LSD activates the Tool Interface Process (Figure 3: 4).

TIP executes all the necessary operations related to the requested ser-
vice and activates the Tool (Figure 3: 5), that serves the request. When
the service is completed, TIP send a completion message to SMA (Fig-
ure 3: 6).

As said, SMS is implemented using RPC. This protocol allows to deter-
mine, on a remote request, if server process is alive. For this reason we
have managed the possible failure of SMA, exploiting the processes that
communicate with that component (SSI and TIP).

In the following we give an example of recovery procedure.

A service request is done to the local System Services Interface by a
User Interface (Figure 4: 1).

SSI transmits it to the Services Map Administrator (Figure 4: 2).

Because of SMA doesn’t reply, SSI sends User Interface a warning mes-
sage, temporarily inhibiting the services menu (Figure 4: 3).

Then, SSI signals the SMA failure to Services Map Administrator Tutor
(Figure 4: 4).

ST signals to all System Services Interface Informer the SMA failure
(Figure 4: 5), so to inhibit the service request on every machine, then
ST requires the activation, via Local Service Dispatcher (Figure 4: 6),
of the new SMA (Figure 4: 7).

LSD signals SMA is on again to ST (Figure 4: 8). ST broadcasts the
actual address of Service Map Administrator and its own address to all
System Service Interface Informer (Figure 4: 9), that restores the ser-
vices menu.
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4. Conclusions

In this paper we presented the Service Management System architec-
ture of the configurable SEE AxIS. The architecture goal is to allow the
integration of user-defined production tools in a distributed environ-
ment and the transparent access to the tools’ services.

Our future work will concern the design and the development of the
special purpose language for building Tool Interface Process and the
improvement of the fault tolerance of the system.
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Abstract

In the near future, system software must adapt t
tems and also to the desire to incorporate multi
paper describes an approach to reconciling thg
demands of heterogeneity and multimedia. Ou

b the needs of open sys-
hedia capabilities. This
apparently conflicting
I solution is based on a

configurable add-in module with multimedia peiripherals together with

the necessary processing power and network i
and host workstation access to this module is
base services interface. Higher level software
will complement the base services to provide
form for open multimedia applications.

terfacing. Application
via an ODP compatible
s also described which
a comprehensive plat-

1. Introduction

Operating systems have had a long history of development. with early

batch systems giving way to large time sharing
being replaced by more lightweight kernels s
recent times, the field has reacted to falling har
lution of networking technology by developi
systems (e.g. [Tan86a, Che84a]) running over |
current state of the art is that areas such as co

systems and eventually
ch as UNIX. In more
are costs and the evo-
distributed operating
cal area networks. The
munications networks,

protocols, network management and distributed operating systems are

relatively well understood. Products such as E

hernet, X-25 and Mach

[Ras86a] are available in the market place and standards to provide

open communications are generally agreed.

However, the operating systems field is far from static. In particular,
recent years have seen two important developnjents both of which are
stimulating new research in the operating systgms community. These

developments are:

e Multimedia
The emergence of multimedia distribu

ed systems has been

driven by both user requirements and technology developments.
From the user perspective, there is a realigation that collaborative

facilities such as electronic mail and rem
services are not enough and that collab
considerably enhanced by the integration

te access to computing
rative working can be
bt a range of communi-
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cations media such as voice, image and video, in addition to text.
A variety of application areas such as office information systems,
scientific collaboration, conferencing systems and distance learn-
ing have been identified.

From the technological perspective, recently available local area
network technologies such as FDDI, the fast Cambridge Ring and
wide area Integrated Service Digital Networks (ISDN), have the
potential to support the demands of multimedia communications
{Heh90a]. In addition, there are a number of research projects
looking at the production of multimedia workstations, e.g. Mul-
tiworks.

e Open Systems

Heterogeneity has long been an issue in systems design. The
designers of many distributed operating systems have avoided
the problem by developing kernels which run on homogeneous
processors over local networks. However, this approach is
rapidly becoming infeasible and there is an ever increasing need
to provide consistent platforms over multivendor processors and
wide area networks. These needs are being addressed by several
standards bodies, for example OSI (through their Open Distri-
buted Processing initiative) and the European Computer
Manufacturers Association (ECMA).

The introduction of multimedia computing exacerbates this prob-
lem in two main ways. Firstly, although standardisation in com-
munications protocols has been making progress, multimedia has
additional communications requirements (especially real time
requirements) which may not be satisfied by current standards
[Cou90a]. Also, the desire to distribute multimedia applications
over wide area networks requires such protocols to be available
in an internet environment. Secondly, the stringent performance
requirements of multimedia dictate that solutions to the hetero-
geneity problem must not be too computationally expensive.

The above considerations have led the distributed multimedia research
group at Lancaster University to address the problem of integrating
media such as video and audio into operating systems structures while
being aware of the importance of the open systems requirements. This
paper reports on the initial results of this research. Sections 2 and 3 set
out in more detail the objectives of the research and outline our general
approach. This is followed in section 4 with details of our implementa-
tion work. The hardware infrastructure of our experimental setup is
described in section 4.1 and the basic software infrastructure in sec-
tion 4.2. The software description is broken down into sections on dis-
tributed systems support, the basic multimedia objects, structured
objects, support for co-operative working and finally tools and applica-
tions. Section 5 then reports on the current implementation status of
the work and section 6 offers some concluding remarks.

2. Objectives of the Research

The main aim of the research at Lancaster is to develop techniques to
support interactive multimedia applications in a distributed environ-
ment. Furthermore, these techniques are being developed in the con-
text of emerging work on Open Systems. As outlined above, the prob-
lem of integrating multimedia services into an open environment is
currently not well understood and our research is addressing this
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deficiency in the state of the art. In particular, the research has the fol-
lowing goals:

i) To develop a range of multimedia serviceq (including the storage
of multimedia objects) in a distributed envjronment,

iiy  To provide access to the range of services through an Open Sys-
tems interface,

iii) To provide real time performance in botl} access to stored mul-
timedia objects and the transmission of myltimedia objects,

iv) To ensure that the solution is suitable] for a heterogeneous
environment consisting of a range of diffgrent workstations with
different capabilities, and

v)  To allow existing workstations to be integrated into the environ-
ment, i.e. specialised multimedia workstations will not be
required.

3. General Approach

The work at Lancaster is ambitious in that it fis tackling two of the
recognised difficult problems of distributed sysfems, namely real time
performance and heterogeneity. Researchers haye been aware of these
problems for a number of years but satisfactory] solutions have proved
to be elusive. However, with the emergence of [multimedia computing
and the need for Open Systems, solutions to botl} questions are urgently
required.

Multimedia computing demands real time perfofmance to provide sup-
port for the range of interactive applications sufh as distance learning
and conferencing. Moreover, this level of pdrformance is required
throughout the system, i.e. in communication subsystems, storage facil-
ities, window management and so on, to ensure| proper support for the
full range of interactive tasks.

Similarly, Open Systems make considerable demands of computing
technology. The ultimate aim of an Open Systgm is to interconnect a
range of different computer systems each with their own operating sys-
tem, hardware configuration and application software into a complete
and coherent environment. The normal solution|to accommodating this
heterogeneity is to layer a platform on top of| the host environment
which provides a unified abstraction of the undeglying system and hides
aspects of distribution. This approach must however be at the expense
of performance.

It would seem therefore that there is an apparen{ contradiction between
the requirements of multimedia computing and those of Open Systems.
On one hand, multimedia computing has ptringent performance
requirements whereas on the other hand Open Systems would appear to
impose an extra computational overhead. This if precisely the problem
to be tackled in the research at Lancaster. Thel work aims to develop
engineering techniques to support real time ultimedia computing
while remaining in the context of an Open System. We believe that a
solution to this problem can only be found by providing external sup-
port (in terms of hardware and software) for both multimedia comput-
ing and Open Systems. To test this hypothesi§, we are developing a
multimedia enhancement unit to provide suppgrt for a range of mul-
timedia services and to provide a basic Open|System infrastructure.
The enhancement unit is independent of the| host workstation and
operating system and hence provides a solutigpn to handling hetero-
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Figure 1: Multimedia Enhancement Unit

geneity. In addition, many of the computationally intensive tasks can
be carried out on the enhancement unit and hence real-time perfor-
mance becomes a more realistic goal.

The multimedia enhancement unit interfaces directly to a high speed
network emulator being developed in the MNI project at Lancaster
[Bal90a]. This facility provides a real time emulation of a high speed
multimedia network thus allowing realistic experiments to be carried
out. In addition, the network interface also directly implements a stack
of protocols providing services such as remote control protocols, group
execution protocols, voice and video channels (of varying characteris-
tics) and synchronization across channels.

The overall approach is depicted in Figure 1.

4. Implementation Details

4.1. Hardware Infrastructure

A transputer based approach has been adopted in the development of
the enhancement unit. There are two main reasons for taking this
approach. Firstly, transputers allow processing power to be provided
where necessary to ensure the necessary real time behaviour of a sys-
tem. Secondly, the approach is extensible in that new devices and
increased processing power can readily be introduced.

The enhancement unit consists of a small number of transputers
together with a number of transputer based device interfaces. The pre-
cise configuration is shown in Figure 2.

The existing experimental environment consists of a number of IBM-
compatible personal computers (currently two) running MS-DOS, a SUN
workstation running UNIX and a multimedia storage node. All are con-
nected to the network emulator via instances of the multimedia
enhancement unit. Each workstation also has a number of multimedia
peripherals including microphones, speakers and cameras. They also
have specialised displays in order to support video windowing capabili-
ties. The current configuration is summarised in Figure 3.
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Figure 3: Existing Hardware Configuration

4.2. Software Infrastructure

The computational model for the multimedia

environment is based

directly on work from the Open Systems commpnity and in particular

from the ANSA project. All services are treated
i.e. encapsulations of state and operations defined
are made available for access by exporting an

uniformly as objects,
on that state. Objects
object interface to a

trader. The trader therefore acts as a database {f services available in
the network. Each entry in this “database” degcribes an interface in

terms of an abstract data type name for the objec

and a set of attributes

associated with the object. A process wishing td access an object must

then import an object interface by specifying a

set of requirements in

terms of a type name and attribute values. This will be matched against

the available services in the trader and a suita
Note that an exact match is not required; ANS
policy whereby an interface providing at least
can be substituted. Finally, once an interface

le candidate selected.
specifies a subtyping
e required behaviour
has been selected, the
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Figure 5: Software Infrastructure

system can arrange a binding to the appropriate implementation of that
object and thus allow operations to be invoked. This binding is typi-
cally provided by the ANSA remote procedure call protocol, REX. This
process of trading and binding is depicted in Figure 4.

The ANSA architecture provides a basic infrastructure for the mul-
timedia development. However, this general model must be refined
and, in some cases, modified to incorporate the particular characteris-
tics of multimedia objects. Figure 5 illustrates the particular infrastruc-
ture adopted in the research at Lancaster.

This diagram shows a layering of objects within the overall environ-
ment, from base objects such as storage mechanisms through to mul-
timedia applications. The diagram also shows the distributed systems
support which provides the basic ANSA infrastructure.

In terms of implementation, the distributed system support is replicated
on both the enhancement unit and the host workstation. This provides
a common platform for all objects in the system whether they reside on
the enhancement unit or the host workstation. Critical services are typ-
ically provided directly on the enhancement unit with less time-critical
objects residing on the host environment. In practice, the approach we
have taken is to implement the base objects directly on the enhance-
ment unit thus guaranteeing high performance implementations of mul-
timedia protocols, multimedia storage, etc..

The various elements in Figure 5 are discussed in more detail below.

4.2.1. Distributed System Support

As mentioned above, the distributed system support is based closely on
the ANSA architecture. More specifically, the implementation relies
heavily on the facilities offered by the ANSA testbench [ANS88a]. The
ANSA testbench is a suite of software which provides a partial imple-
mentation of the ANSA architecture. In particular, the testbench imple-
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ments the concepts of trading, binding and ren
discussed above. It also provides facilities such
and basic synchronisation primitives (eventcount

The ANSA testbench runs on a number of e
UNIX, VMS and MS-DOS, and thus provides thd
construct distributed applications in a heterogen
the purposes of our experimentation, the testbe
the transputer environment in order to have a cq
the entire configuration described in section 4.2.
to access objects in the distributed environment
the host workstation, on the multimedia enhanceg
the other nodes in the distributed environment.

ote procedure calls as
as lightweight threads
s and sequencers).

hvironments including
necessary platform to
tous environment. For
hch was also ported to
mmon platform across
It is therefore possible
whether they reside on
ment unit or on any of

The testbench provides the necessary infrastructure for the multimedia

developments. However, it was necessary t
modifications and extensions to the basic testben
lar requirements of multimedia. The additional
below.

o Generalised Invocation
The first, and perhaps most important, alte
tion of a generalised invocation service

b make a number of
ch to meet the particu-
features are described

Fation is the incorpora-
within the ANSA test-

bench. In distributed object-oriented envigonments, invocation is

traditionally seen as mapping directly on
call protocol. However, in our architecty
sidered to be a conceptual idea which doe
ular implementation strategy. Invocation

to a remote procedure
re, invocation is con-
5 not imply any partic-
may be implemented

by remote procedure calls; however, a nufnber of other mechan-
isms can also be used (e.g. distributed virfual memory [Tav87a]
or proxies [Sha89a]). This flexibility is ifnportant in distributed
multimedia systems where appropriate [mechanisms must be
selected to provide the required level of jperformance (or more
generally, quality of service).

A complete description of the invocation gpproach is beyond the
scope of this paper. Briefly, however, ifvocation involves the
following steps. Firstly, it is necessary to Jocate the object in the
distributed system. A decision must then be made as to where
the object should reside and how it should be accessed. Follow-
ing this, the object may have to be migraged to the chosen loca-
tion. It is also necessary to ensure that fhe object is currently

active (i.e. ready to respond to invocatio
must activate the object by creating a pro
state of the object from persistent storage.

In summary, invocation deals with a numb
buted system including the location and ad
tion of objects and persistence. Further de
invocation can be found in [Bla90a].

e Flexible Trading
Another area of ANSA which is affected

$). If not, the system
bess and retrieving the

er of issues in a distri-

cess of objects, migra-
ails of the approach to

by the nature of mul-

timedia systems is trading. The nature df multimedia services

means that many similar services with sli

bhtly differing charac-

teristics will be present. There may be sgrvices that provide ar
least the functionality required by a client] (plus some additional

functionality not required for the current
tion, there may exist
specifications to those required which oth

services with

interaction). In addi-
slightly  different
Erwise are not observ-

ably different from the service required. Hor example, slow scan

video (10 frames/sec say) and full speed

video (25 frames/sec)

EurOpen 91 — Tromse, 20-24 May




Incorporating Multimedia into Distributed Open Systems E

can still have the same operations invoked on them (play, stop
etc.); it is just that the frames/sec parameter differs slightly.

In the first case where services with at least the functionality
required exist, the use of a subtyping policy [Bla90b] at the
abstract data type level can be used to cope with this prolifera-
tion of services (at present, ANSA has a rather crude approach to
subtyping [Mac89a]). In the latter case where specifications
differ slightly, the use of facilities such as compression algo-
rithms can be used to transparently fit potential services to the
particular requirements of the client. These mechanisms are the
basis of what we call flexible trading. Further details of the
approach to flexible trading can be found in [Mac90a].

o Flexible Transactions

Transaction mechanisms have traditionally been concerned with
the maintenance of the consistency of a group of objects in spite
of concurrent access and the possibility of partial failure of parts
of the system. The emphasis has been on providing preventive
mechanisms to ensure that inconsistencies do not occur. A wide
portfolio of techniques (two phased locking, timestamps, logs,
etc.) have been developed to assist in this task. More recently
however there has been greater interest in less rigid techniques
which are more geared towards the semantics of the application
domain and hence tailored towards the cooperative nature of the
task. This is having a major impact on the design of transaction
mechanisms with techniques such as non-serialisable transac-
tions starting to appear. The emergence of multimedia systems
will promote this activity and inevitably other alternative designs
for transaction services will appear.

The biggest impact of multimedia is that transaction mechanisms
will have to be more flexible. More specifically, it will be neces-
sary to tailor particular transaction mechanisms for the require-
ments of given classes of application. This introduces the notion
of application dependent transactions, where the actions of the
transaction management are dependent on the precise context of
execution. The issue of flexibility in transactions is currently
being examined at Lancaster in the context of the multimedia
developments [Bla90c].

e Communications Abstraction

At present, most distributed object-oriented systems hide com-
munications behind the notion of invocation, i.e. objects invoke
other objects with the underlying passing of messages being hid-
den. However, with the introduction of multimedia objects, it is
not possible to hide communications completely. Invocation
alone is not sufficient to express the full generalities of a mul-
timedia system. Invocation is sufficient to express the calling of
operations on objects but cannot naturally describe operations
which result in a continuous flow of information, e.g. a plav
operation on a camera. In general, this situation occurs with all
the continuous media types (video, animation, audio, etc.). It was
therefore necessary to add extra features to the testbench imple-
mentation to handle continuous media types. Further details of
the extensions can be found in section4.2.2 below and in
[Cou90a].

Our implementation of ANSA also includes facilities to create objects in
the distributed environment. Object creation is carried out by factories
which generate new instances of objects according to a particular set of
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Figure 6: Software Architecture

requirements (the requirements are given as parameters to the factory).
In a given configuration, a number of factories ill exist, correspond-
ing to the various object types described in the rejt of section 4.2.

The factory concept is actually part of the ANSA[architecture but is not
implemented in current releases of the testbench] It has therefore been
necessary to extend the testbench with the factory concept and to
develop a number of specialised factories for multimedia objects.

4.2.2. Base Objects

The base objects can be subdivided into three geseral categories as fol-
lows: storage services, multimedia devices and network services as
shown in Figure 6.

The various components highlighted in Figure 6 [are described in more
detail below.

e Network Services
The main task of the network services layer is to provide a range
of protocols (of varying qualities of sefvice) to handle mul-
timedia communications. This required the provision of stream
services through the ANSA architecture (tHis is in addition to the
standard RPC protocols already supported by ANSA, as discussed
in section 4.2.1). Streams represent high speed, one way connec-
tions between an information source and pink. They are there-
fore abstractions over transport protocols gnd map on to various
protocols provided by a protocol stack. is protocol stack is
implemented on one of the transputers in the multimedia network
interface. Further details of the protocol [stack and multimedia
network interface can be found in a companion paper [Sco91a].
The network services layer also provides § number of compres-
sion services which can be used to reduce fhe bandwidth require-
ments of multimedia data.

e Multimedia Devices ,i
Each device provides an interface consisting of two parts: a dev-

ice dependent part and a device indepen
dependent part offers a number of operatio
ice. For example, the camera device has 0|
etc.. The device independent part has a ny
create communication endpoints (which
objects) and to send and receive informatig
number of devices have been incorpor:

fent part. The device
s specific to that dev-
perations to focus, tilt,
mber of operations to

are also invokable
n. At present, a small
ted into the system,
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including a camera service and an interactive videodisk player
(as a source of still and moving image). A windowing system
supporting video window capabilities is also provided at this
level. To achieve this, the X-server component of X-Windows
was ported on to the transputer environment and then modified to
support video windows.

e Storage Services

The approach taken at Lancaster is to provide a number of speci-
alised storage services for each media type. This allows each
storage service to be tailored to the characteristics of a particular
media type, which may involve specialised hardware support or a
particular approach to storing and retrieving information. Work
on storage services is at an early stage although some work has
been done on the conceptual model provided by the storage ser-
vices. It is proposed that each storage service manages a number
of separate units of information (c.f. files). Each of the units of
information will be an object in its own right and will provide the
abstraction of a chain. Chains are a generalisation of the “voice
ropes” adopted in the Etherphone project for storing audio infor-
mation [Ter88a]. A chain consists of a number of individual
links, e.g. single picture frames, connected together into a
sequence. It is perfectly valid to have a degenerate chain con-
sisting of one link.

4.2.3. Structured Objects

One of the main features of multimedia computing is that objects tend
to be complex, structured entities consisting of a number of component
parts. For example, multimedia documents typically contain a number
of text paragraphs, some bitmap diagrams, some vector drawings and
possibly sound or animation. Furthermore, the various component
parts are linked together in an intricate manner. Similarly, applications
such as Hypermedia [Mey86a] require rich structuring of objects. The
provision of structured objects is therefore an important part of the
research. This work has taken input from such standards activities as
ODA and SDML [Bro89a] but has developed structuring techniques
more suited to multimedia objects.

Most of the work on structured objects has been carried out under the
auspices of the Zenith project (in collaboration with the University of
Kent). The aim of this project is to develop a generalised object
management system to support design environments (especially those
involving multimedia information). The work on this project has
resulted in the specification of an object model which implicitly
assumes that objects are structured. This model has been adopted for
the general multimedia work at Lancaster.

An individual Zenith object consists of a number of visible components
which can be of a variety of media types. Components can then be
linked together by a number of relationships to form a generalised lat-
tice structure. Two fundamentally different types of relationship exist
within the system, namely logical relationships and conceptual relation-
ships. Logical relationships define the structure of objects in terms of
their composition. They therefore map closely on to “component of”
relationships as found in many data models. In contrast, the conceptual
relationships are user-defined higher level relationships which are used
to enrich the semantics of a particular structured object. For example, a
multimedia document could have a conceptual relationship defining the
authors of the document. Note that it is often possible to use either log-
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ical or conceptual relationships to define stru
between the two is that conceptual relationships
semantics.

Constraints are placed on the structure of an o
important to preserve the consistency of a struc
cal relationships, this is implemented by a regul

rture. The difference
can have user-defined

bject. This is seen as
red object. For logi-
grammar which lim-

its the components that can exist in a particular spructured object. Con-
ceptual relationships however require a more [complex constraining
mechanism to capture the semantic constraints qn an object. For con-
ceptual relationships, constraints are realised by a predicate calculus
which provides a set of rules which must be maintained by that object.

Creation of structured objects is managed by
object factories. These factories take as para
the set of predicates and generate a structured

e or more structured
ter the grammar and
ject which maintains

these constraints. In this way, it is possible to]define specific object
structures tailored towards particular applicationg.

4.2.4. Co-operative Working Environment

It is expected that the integration of multimefia into a distributed
environment will have a radical impact on the fufure use of information
technology. The addition of audio and video conmunication to distri-
buted systems will provide the support necessjry to allow remotely
situated users to work together within an envirgnment which has the
required audio/visual functionality for successfyl computer supported
group working (or CSCW). Due to the close relationship between mul-
timedia and cooperative working, it is important|that a distributed sys-
tem supporting multimedia should also provide system support for
group working. It is not until such combined injrastructures are avail-

able that distributed systems can achieve their
integrated information systems.

The Lancaster architecture is aiming to provide

11 potential as totally

hn environment which

understands the nature and requirements of rpultimedia and group

working and, therefore, support these aspects

at the system level.

Building on top of the group execution protocolq provided by the com-

munication system, the higher levels provide gre
port the construction of group working environ
maintain information on the current status of a
mation on group members, applications being u

p objects which sup-
ments. Group objects
broup including infor-
bed by the group, etc..

The mechanisms for creating and using these gfoup environments are
provided by an extended desktop user interface which in a similar way

to a normal desktop allows objects to be creat
troyed, but also allows these operations to be per
text of user groups. For example, the execution

bd, invoked, and des-
ormed within the con-
bf a multimedia editor

within a group environment would result inf all available group

members receiving an interface to the editor.

4.2.5. Tools and Applications

One of the important considerations of the appro|
is that the development of the distributed mult

pch taken at Lancaster
media support system

must take on board end user requirements. The assessment of these
requirements, however, is difficult when end usqrs have no experience

of the technology and its potential. To help in
and applications are being developed which ran
authoring utilities to video conferencing. Throu
applications, it is intended to both gain exper

this task several tools
pe from browsing and
bh experience of these
ence of what can be
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achieved with the available technology and provide realistic testing of
the underlying communications and storage systems. The multimedia
applications will be used extensively by the research staff and also by a
small group selected from one of our industrial partners.

5. Implementation Status

The research described in this paper is now entering its second year,
and significant progress has been made in implementing the ideas set
out above. In hardware terms, both the multimedia network interface
and the network emulator are complete and the experimental set-up
illustrated in Figure 3 is in place. The ANSA testbench has also been
ported onto the transputers of the network interface.

The base services are largely in place. The X-Windows service, ena-
bling video windows to co-exist with ordinary text and graphics win-
dows, is complete and the cameras and interactive video disc are acces-
sible as ANSA services. The stream communications abstraction is in
place, and provides access to a basic set of communications protocols.
The current emphasis of the low level work is on the implementation of
a fully comprehensive multimedia protocol stack. Work will also start
shortly on the implementation of prototype storage services including a
high quality audio store.

A number of sample applications have been developed to exercise and
validate the underlying system. For example, disc jockey and produc-
tion room consoles have been written which allow the compilation,
maintenance and playback of stored music and video tracks in a distri-
buted environment. In addition, we have a network telephone applica-
tion embedded in the co-operative working environment which allows
both point to point and conference calls. These applications make full
use of the user interface desktop, communications abstractions and
ANSA based multimedia services.

Other work in the higher layers of the architecture is progressing. For
example, a generic factory service is under development, from which
arbitrary structured objects can be generated. Also, extensions to the
trading and object location functions are underway. These include an
implementation of the flexible trading ideas and, in connection with the
Zenith project, services to provide generalised queries in a large data-
base of structured multimedia objects.

6. Conclusion

This paper has described an approach to the problems of heterogeneity
and real-time performance in distributed, multimedia systems. This
approach is based, at a low level, on a transputer based multimedia
enhancement unit which manages multimedia services in a distributed
environment. To cater for heterogeneity, this multimedia network pro-
vides a standard ADT interface based on ANSA. Higher level distri-
buted systems support is tailored for maximum flexibility, which is an
essential requirement in our target environment.
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Abstract

Until very recently, big mainframes were considered essential for the
provision of large-scale scientific batch computing services, requiring
intensive tape and file space management, high throughput and max-
imum reliability.

However, RISC-based workstations have outstripped mainframes in
CPU price/performance by an order of magnitude for some years, and
workstation-class disk systems have finally become cost-competitive
with mainframe disk storage. The last missing elements preventing
mainframe replacement by cheaper distributed systems have been the
software to enhance their (UNIX-based) operating systems, and a
powerful enough networking technology.

Over the last year at CERN, two services have been established to prove
the feasibility of physics batch processing using off-the-shelf high-end
workstations. The initial service. called “HOPE”, uses a single 4-CPU
HP-Apollo DN10000 workstation, and achieves well over 80% utiliza-
tion for periods of many months. The second service addresses the
scalability issue, using a modest number of heterogeneous workstations
on a high-speed network, connected and managed by a portable distri-
buted set of user-level software. The CPU, disk, and tape services are
functionally separated. and individually subject to price-performance
optimization. This system is already comparable in CPU capacity to the
full CERN computer center (including a Cray X-MP/48 and an
IBM 3090-600E), and is scalable to several times that size.

The system is called the “Scalable Heterogeneous Integrated FaciliTy™
or “SHIFT™.

1. Introduction

Until quite recently, say five years ago, UNIX was considered to be lim-
ited in scope to “small” computer systems, whereas “big mainframes™
running serious amounts of scientific/engineering problems would run
only proprietary operating systems. There were good reasons for this
state of affairs, primarily the lack of important system features in the
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UNIXes of that period. To cite the most crucial: lack of acceptable
FORTRAN; lack of a batch scheduler subsystem; lack of magnetic tape
handling and scheduling features for a multiple job stream; lack of
management and backup features for very large disk file systems; lack
of serious user accounting features.

The first computer manufacturers to remedy some or all of these
shortcomings were Amdahl (UTS) and Cray (UNICOS). The presence
of a Cray X-MP/48 system running UNICOS at CERN since early 1988,
and the joint development work that CERN carried out with Cray on the
enhancement of UNICOS around that time, proved to us that the addi-
tion of “big mainframe features” to UNIX was not only possible but
actually straightforward.

Over the same five-year period we have witnessed an extraordinary
surge in the CPU power and price-performance of workstation-class
systems, and over the last year or two a less spectacular but just as
significant advance in the price-performance of workstation-class disk
systems. Thus it has recently become possible to think of providing
“mainframe computer power” at workstation cost; the major question
to be answered was “how?”".

Certain groups in the High Energy Physics (HEP) community have pur-
sued the idea of “computer farms”, taking advantage of one basic
characteristic of their computing load: it is presented in units of work
called “events” that are largely independent of each other and can be
processed by a set of uncoupled or loosely-coupled parallel processors.
In the early days, such processors were often special-purpose, but
recently UNIX workstations with RISC CPU’s have been used in farms.
Some farms also explored the use of heterogeneous elements, including
mixtures of UNIX and VMS systems.

However, computer farms were usually just simple task-dispatching
systems, lacking the full robustness, flexibility and operability of a
mature batch system. As relatively special-purpose systems they could
generate impressive performance over limited periods but required
considerable attention and support from their users in order to be prop-
erly exploited. In particular, they usually needed to be “fed” their data
in a non-automatic fashion from a mainframe or other separate data
storage facility.

2. What is “Mainframe Power”’?

2.1. What is “CERN”?

CERN is the European Laboratory for Particle Physics, a collaboration
between 15 European member states to carry out fundamental research
in the physics of very high energy particle interactions. This research
uses very large accelerators, in conjunction with extremely complex
detectors and chains of data reduction hardware and software. CERN’s
facilities are not restricted to member-state physicists but are also open
to the world-wide physics community. CERN’s users normally operate
in “collaborations”, each of which will carry out a given set of experi-
ments and typically consist of 50-200 physicists from 5-20 universities
in 2-10 countries. Around the latest (and largest) CERN accelerator,
known as LEP, there are four such large collaborations with the names
ALEPH, OPAL, L3 and DELPHI: much of the work described in this
paper was carried out in conjunction with OPAL.
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2.2. CERN’s Mainframes

Currently CERN’s central computing service consists of four major ele-
ments (see Table 1).

Mainframe CPU(CERN Units) | Disk(GBytes)

Cray X/MP-48 32 50
IBM 3090-600E 39 250
Siemens 7890 13 5
Vax 9000-410 9 50

Total 93 355

Table 1: CERN — Central Mainframes

Note that a “CERN CPU Unit” is equivalent to an IBM370/168, a
Vax 8600, or about 4 Vax 11/780’s. Note also that only scalar CPU
power is compared in this paper, as HEP problems are not very suscep-
tible to vectorization.

2.3. LEP’s Computing Requirements

Each LEP collaboration records its physics measurements on magnetic
tape, and requires that this data be processed (sometimes repeatedly) in
various “offline” modes to extract the physics results that are published.
Each collaboration also generates large quantities of simulated physics
data, plus reconstructed data from partial analysis steps. The total
quantity of such recorded data for 1991 will be 20 Terabytes, mostly
held on about 100,000 IBM 3480 cartridges. Occasional access to the
whole of this vast data store, together with frequent access to a few
hundred Gigabytes of it, must be provided by any computer system
proposed for its reduction or analysis.

The requirements estimated for LEP data reduction (in 1991) amount to
100 CERN Units and 200 Gigabytes of online disk storage, whereas
only 40 CERN Units and 50 Gigabytes of central mainframe capacity
have been made available to LEP experiments. The LEP collaborations
have therefore equipped themselves with additional private computing
facilities to the extent they could. However, the quantity of data that
will arrive from LEP in future years will completely swamp the com-
puting resources now available, and exceed any extensions that are
affordable at current mainframe prices.

3. The “HOPE” Project

In mid-1989, CERN’s Computing & Networking Division and the
OPAL physics collaboration made a proposal to HP/Apollo for a joint
project to develop a reliable batch service for physics production com-
puting on an HP/Apollo DN10000 system with four tightly-coupled
Prism RISC processors and 4 Gigabytes of disk space. CERN bench-
mark codes show that each such CPU is equivalent to between 4 and
5 CERN Units; in what follows we rate a 4-CPU system conservatively
at 16 Units. The resulting project was named the “H-P Opal Physics
Environment” (or “HOPE”).
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3.1. Goals

3.2. Timetable

The “HOPE” project’s goals were as follows:

. Achieve “mainframe-class” service quality overall

) Port and run realistic physics production codes

. Port and develop the public domain batch system NQS
Provide IBM 3480 and Exabyte magnetic tape support
Establish high-speed access to a central data robot

Integrate HOPE operation and accounting into CERN central ser-
vices

Later expand service to manage multiple clones

3.3. Results

The DN10000 machine for the “HOPE” project was delivered to CERN
in January 1990. The first steps taken were to set up the environment
for CERN HEP physics computing, including installation of the CERN
Program Library and other local utilities. Physics users from the large
LEP collaborations OPAL and L3 were then allowed to get familiar with
the system and port their applications. The public domain version of
NQS, a batch system for the UNIX environment, was ported to the
DN10000 in early May, 1990. Accounting procedures were established
by mid-May at which time the batch facility was officially opened to
the public. In June, an FDDI connection was installed, enabling faster
access to data on Cray disks via NFS and ftp. Over the summer
months, the accounting scripts were improved and work began on pro-
viding local tape support software.

In September, the HOPE! service was integrated into the main Com-
puter Center operation. 24-hour operator surveillance together with a
file backup program were initiated. System and user accounting were
also merged with those of the Cray, IBM and DEC central computers.

In early October, an 8mm Exabyte unit was installed on the HOPE1
workstation. Production analysis of data stored on 8mm tapes began
shortly thereafter. In mid-November, dual IBM 3480 compatible tape
drives (STK 4280) were installed on HOPEL. Work is now in progress
to provide a complete set of software library routines for support of
locally attached tape units. Also in November, NQS job submission
scripts for VMS and VM/CMS platforms were written, and a distributed
version of NQS which provides for intelligent load-sharing across a net-
work of NQS machines was developed.

Over the last seven months of 1990, the HOPE1 workstation delivered
an average of 69% of its available CPU cycles. Over the last three and
a half months of 1990 this availability figure was 84%, with only 12%
of available CPU time going idle; the mean time between failure was
8 days, the mean time between interruptions 4.5 days and the mean
time to repair 30 minutes. These figures fully attain the project’s goals,
in fact exceeding typical experience with the central mainframe batch
systems at CERN. The total CPU delivered from September 1990 to
mid-January 1991 was 39700 CERN Unit-hours, equal to 29% of the
CERN IBM 3090-600E and Cray X-MP/48 combined.

The batch work on HOPE1 has been primarily submitted by physics
users running simulation, reconstruction and analysis jobs. HOPEI has
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also served the CERN Program Library with approximately 400 CERN
Unit hours for interactive code development and debugging. The
“HOPE” project has attracted a wide interest at the CERN Computer
Center, within the broad community of CERN physicists, and at other
HEP institutes around the world.

4. The “SHIFT” Project

4.1. Goals

While the early results of HOPE1 were extremely encouraging, amply
confirming the feasibility of running a high-quality batch service on a
workstation, the service still provided less than 20 CERN CPU Units,
and well under 10 GigaBytes of disk space. Simply cloning HOPEI
would not provide an integrated solution offering hundreds rather than
tens of CERN CPU Units and disk Gigabytes. A much more ambitious
set of goals was drawn up for a new project, named the “Scalable
Heterogeneous Integrated FaciliTy”, or “SHIFT”.

4.2. Architecture

° Provide an integrated system of CPU, disk and tape servers capa-
ble of supporting a large-scale physics batch service

. The system must be constructed from heterogeneous but open
system components, to retain flexibility towards new technology
and products

. The system must be scalable, both to small sizes for individual
collaborations/small institutes, or upwards to at least twice the
current size of the CERN computer center

. The architecture should also be capable of supporting interactive
physics applications

) The batch service quality should be at least as good as main-
frame batch quality

° The batch system must operate in a distributed environment,
using a single set of queues for each class of CPU servers, and a
unified priority scheduling scheme

° Automated disk file space control to be provided, including a
tape staging service

. Support for 3480-compatible cartridge tapes as well as Exabyte
tapes must be provided, including access to the CERN automatic
cartridge-mounting robot

) SHIFT operation and accounting to be integrated into the CERN
central computer services

The SHIFT system consists of sets of CPU servers, disk servers and
tape staging servers, with distributed software which is responsible for
managing the disk space, moving data between tape and disk, locating
staged files, batch scheduling and accounting. The main motivations in
choosing this design, which stresses separation of function, are simpli-
city, flexibility, and the ability to optimize the various components for
their specific functions.

The servers are interconnected by two networks: the backplane, a very
fast network used for optimized special purpose data transfer, and the
secondary network, used for control, operations and general purpose
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file access. The backplane is connected to the site’s general purpose
network infrastructure by means of an /P router, thus providing file and
batch services to workstations distributed throughout CERN with the
same functionality (though with lower performance) as the services
available to systems connected directly to the backplane.

4.3. Strategy and Feasibility

4.4. The Backplane

The strategy adopted with the above architecture involves staging the
very large offline physics data sets upon demand between their mag-
netic tape “homes” and the fast SHIFT online disks, permitting them to
be accessed via the backplane by any of the SHIFT CPU’s. The staging
process is performed automatically, efficiently, and in as transparent a
manner as possible for a physics user.

However, the multiple transits of these large data sets across the SHIFT
backplane produce a potential system bottleneck. Calculations, sup-
ported by a detailed simulation of the SHIFT design, showed that back-
planes built using conventional LAN’s would not be adequate: for a
moderate size system of 100 CERN CPU Units, consuming 20 KBytes/s
of physics data per CPU Unit per second, we computed peak backplane
rates approaching 18 MBytes/s. Additionally, to keep the number of
SHIFT components for this system to a manageable number (e.g. 3 tape
servers, 3 CPU servers and 6 disk servers) we required peak per-server
backplane rates of around 3 MBytes/s. Even if these estimates are for
I/0 intensive jobs, they are very revealing: 3 MBytes/s. interface rates
are far beyond Ethernet and currently just attainable on FDDI at the
price of a full RISC CPU for protocol processing. This led us to another
unexpected conclusion: with conventional LAN’s, the associated
amount of protocol processing was shown to absorb an unacceptable

fraction of SHIFT’s CPU resources.

To permit SHIFT to handle a balanced load, including /O intensive
work, the solution found for the backplane is a proprietary hub-based
network called “UltraNet”. This provides a switched total sustained
bandwidth of over 100 MBytes/s, per-interface sustained rates of
between 3 and 12 MBytes/s, and built-in protocol processing with par-
ticular efficiency for stream-type applications. The associated CPU
load of an Ultra-connected node is under 10% of that used by current
FDDI implementations, while the application interface is completely
standard (TCP/IP stream sockets). UltraNet hardware interfaces exist
for most of the currently desirable SHIFT components. Finally, an IP
gateway exists to connect an UltraNet backbone to external conven-
tional LAN’s.

4.4.1. Fast Remote File Access

SHIFT supports two modes of file access between its CPU and disk
servers:

° Transparent access using NFS; this also applies to files external to
SHIFT.

Very high performance access using Remote File Access routines
operating across the backplane (preferentially), or other available
socket-based transport services. A Remote File Access Library,
must be used explicitly by applications wishing to benefit from
this high performance, low overhead facility. Both C and FOR-
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TRAN library calls are supported. A Remote File Access server
process runs on every SHIFT disk server.

4.5. File Base and File Pools

The SHIFT file space is organized as a series of logical pools. A SHIFT
disk pool is a set of UNIX file systems on one or more disk servers.
Each of these file systems is mounted by NFS on every CPU server,
using a convention for the names of the mount points which ensures
that files may be referred to by the same UNIX pathname on all CPU,
disk and tape server nodes in a SHIFT configuration.

As mentioned above, the SHIFT file space is intended principally for
physics data files. The pools of data files are managed by special
SHIFT software utilities, under user and system control. A distinction
is made between such data files and user files (programs, scripts, source
code, etc.).

4.5.1. User Files

User files normally reside on remote file systems, but if they are of gen-
eral interest (e.g. library files) they could reside on SHIFT servers.
(CPU servers automatically mount both the SHIFT and any remote file
systems constituting the user file base). Apart from optional file quo-
tas, implemented using standard UNIX facilities, no special SHIFT
management is done for user files.

4.5.2. Physics Data Files

SHIFT utilities manage the SHIFT data file pools, allocating files within
pools, locating previously staged files on behalf of users, moving data
between magnetic tape and disk, and performing garbage collection
within each pool. Each staged disk file consists of a copy of all or part
of an existing tape, or of data which will eventually be written to a
pre-defined file on a specific tape.

Pools may be public or private for accounting purposes; permanent and
temporary pools are also distinguished. Temporary files are eventually
deleted by a garbage collector using a “least-recently-used” algorithm
to maintain adequate free space within the system, but a user may
specify that the file should be deleted at the end of a job if it is known
that it will not be re-used. Files in permanent pools are not subject to
automatic garbage collection.

4.6. SHIFT System Components

The SHIFT system software has been implemented as a set of separate
components in the UNIX spirit. These are the Disk Pool Manager, the
Tape Copy Scheduler and the Batch Scheduler, which in turn rely on
the Tape Allocator and Remote Tape Copy utilities, together with the
Remote File Access routines. The user interface is via a small set of
SHIFT Commands.

4.6.1. Disk Pool Manager

The Disk Pool Manager (DPM) allocates files to pools, creates files and
associated directories, locates existing files, deletes files on request and
performs garbage collection on temporary pools. The DPM user inter-
face is through the sfget, sfrm, sfsh commands, which are described
below.
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An important component of the Disk Pool Manager is the Table
Manager, which maintains static and dynamic configuration informa-
tion. It is responsible for locating SHIFT files, making disk pool selec-
tion decisions and serializing access to the data when necessary. In the
initial implementation the Table Manager is centralized, but the design
permits functions to be distributed in later versions, if necessary for
performance or reliability reasons. In general the data used by the
Table Manager can be recreated in the event of a serious failure of the
node on which it executes.

4.6.2. Tape Copy Scheduler

The Tape Copy Scheduler organizes the copying of data between disk
files and magnetic tapes. On request from a user through a tpread or
tpwrite command, it selects an appropriate tape server depending on
the device type required, location of the tape and current tape activity.
It then initiates a tape copy using the SHIFT c¢pipdsk or ¢pdsktp program
on the tape server node. The Tape Copy Scheduler informs the user
when the operation is complete, queues concurrent requests for the
same tape, and deals with error recovery. The tpread and tpwrite com-
mands are described below.

4.6.3. Remote Tape Copy

The cptpdsk and cpdsktp commands copy data from tape to disk or disk
to tape, respectively. They execute on the computer to which the tape
unit is attached, but can access a local or remote disk file, normally
using the Remote File Access system. These commands are described
below.

4.6.4. Tape Allocation and Control

The remote tape copy programs use the facilities available on the local
machine to allocate a tape unit, mount the tape, and handle labels.
These facilities are generally provided in the form of a tape daemon in
conjunction with a tape driver, and a user interface. For example under
UNICOS (which is used as a SHIFT tape server at CERN) the user inter-
face is called tpmnt. SHIFT user commands permit the passing of cer-
tain arguments directly to the tpmnt interface.

4.6.5. Batch Scheduler and Accounting

The batch scheduler used by SHIFT is the Network Queueing System
(NQS), originally developed for NASA and which is now in the public
domain. Although NQS is an important facility used by SHIFT, it 1s
entirely independent of it. CERN has extended NQS to cater for central-
ized batch queues which feed clusters of CPU servers.

A number of utilities are also available to provide resource consump-
tion reports and controls.

4.6.6. SHIFT User Interface

4.6.6.1. Disk Pools and Files

The pathname used to access files uniformly over a SHIFT
configuration is referred to as the nfs_pathname, and has the form:

/shift/shift_nodelfile_system_name/group/user/usppn
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e.g.
/shift/shiftl/datal/c3/les/tape23

Here usppn is a “user_supplied_partial_pathname”: this may be a sin-
gle term (e.g. tape23), or it may include directories e.g.

period2l/run7/file26

Except for usppn, all other components of the nfs pathname are
managed for the user by SHIFT via the following user commands.

The sfget command is used to allocate a file. This is a call to the Disk
Pool Manager (DPM), which selects a suitable file system within the
pool specified by the user, creates any necessary directory structure
within the file system, creates an empty file, and echoes its full
nfs_pathname. Thus the nfs pathname returned by:

sfget -p opalpool period2l/run7/file26

might have the form:

/shift/shd01/data3/c3/les/period2l/run’/file26

This name may be used by the user in subsequent commands, such as
tpread or a call to a FORTRAN program. The user does not need to
remember the full pathname between sessions, as a subsequent sfget
call using the same usppn will locate the file and return the full path-
name again. The sfget command sets the UNIX command status to
indicate if the file was created (status value 1) or simply located
(value 0). This may be useful in shell scripts. If the user only wishes
to locate the file if it is present, but not to create it, he may use the -k
option of sfget:

sfget -p opalpool -k period2l/run8/filedl

This example will return a status of 0, and echo the nfs_pathname if the
file exists in the specified pool, but merely return a status of 1 if it does
not exist.

A user may list (“show”) all of his files in a particular pool by means of
the sfsh command e.g.

sfsh -p opalpool ls period2l/run7

This sfsh command performs a c¢d to the user’s directory in each of the
file systems in the pool in turn, issuing the /s command in each of these
directories. (The sfsh command is actually much more general, and
can issue any shell command specified by the user in each of the file
systems in the pool).

Files are removed from SHIFT pools by means of the sfrm command
e.g.

sfrm -p opalpool period2l/run7/file26

In addition to the -p option, specifying the disk pool to be used, all of
the DPM commands support -g and -u options, which allow the caller to

specify the group and user associated with the file. By default these are
the group and user names of the user who issues the command.

4.6.6.2. File Access

Once a file has been created or located by the the Disk Pool Manager,
and the user knows the full afs_pathname, it may be used exactly like
any other file. For example, suppose that we have a program called
gendata which writes to FORTRAN Unit 10. We can allocate a file and
connect it to the program as follows:
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In -s ‘sfget sample45' fort.10
gendata

The first line uses sfger to generate the full pathname for the file, and
creates a logical link to it called fort./0 in the current directory. (FOR-
TRAN automatically connects Logical Unit 10 to any file named
Jort.10). Normally, however, the SHIFT Remote File Access System
(RFAS) will be used to access these files, in order to obtain the best
possible performance. The RFAS routines are callable by the user, and
have also been incorporated into certain popular CERN Program
Library packages. In order to connect a file to RFAS, the assign com-
mand would be used. In fact, assign sets up a connection for both
RFAS and for FORTRAN. The above example becomes:

assign ‘sfget sampled45' 10
gendata

4.6.6.3. File Staging and Tape-Disk Copying

As mentioned above, users often need to stage their data files to and
from tape; on a typical mainframe job control commands are provided
for this. SHIFT provides stagein and stageout commands in the form
of a shell scripts that simply issues calls to the SHIFT commands sfget,
assign, tpread and tpwrite. This approach is again in the UNIX spirit:
taking these scripts as examples, individual users can develop their own
scripts to customize their particular staging requirements or develop
their own file and tape handling techniques.

4.7. SHIFT Project Status

The configuration of the pilot SHIFT system in the CERN computer
center is show in Table 2,

Node Type CPU(CERN Units) | Disk(GBytes)

Apollo DN10K 16
Apollo DN10K 16
Apollo DNI10KTX 32
SGI 3408 24
SGI 3208 12
DEC5000/200 4
DEC5000/200 4

Total 108

Table 2: CERN — Pilot SHIFT System

The addition of further system types to this pilot configuration is under
review, including IBM RISC System/6000 and Sun machines. No
difficulties are foreseen in incorporating these or other UNIX based sys-
tems to SHIFT.

The system is running a wide variety of physics production jobs, and
has confirmed our belief that such an approach is entirely practical and
economic for many physics computing applications. We intend to
develop the SHIFT approach to handle interactive as well as batch
applications, and work has already begun in this direction.
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Abstract

Many load balancing strategies have been proposed and simulated, but
a significant amount of design issues have only been dealt with in an
intuitive way. We have created a distributed load balancing system on
top of UNIX. Our system is currently used as a base for evaluating
design issues in load balancing strategies.

This paper describes the design and implementation of the load balanc-
ing environment. It is a prototype to experiment with, in order to pro-
duce a flexible and adaptive system, with user transparency.

1. Introduction

Many load balancing strategies have been proposed. However, a lot of
design issues have been dealt with only in an intuitive way. It is our
goal to experiment with a variety of strategies to assess the relative
merits of a range of design issues. Therefore we have implemented a
realistic testbed on top of BSD UNIX.

Our first experiments as well as other research on load balancing stra-
tegies have shown that no single load sharing policy is ideal in all cir-
cumstances. An adaptive load balancing mechanism is therefore
needed.

In this paper we describe the design and implementation of a load
balancing software layer in a distributed system. The environment we
have implemented is both a realistic testbed and a firm base for an
adaptive load balancing server.

Section two gives a general introduction to the subject. In section
three, we describe the design of our load balancing environment. We
justify the decision to build the testbed as a load balancing server (load
manager). We analyse the functionality of the load balancing software,
describe a general framework for our software and illustrate its value
by showing how two rather different load balancing strategies can be
implemented.

Section four discusses the software infrastructure we need, justifies our
decision to implement our load manager in a UNIX environment and
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describes the packages we have used to create the appropriate software
basis. Section four also discusses the first and the actual implementa-
tion and gives a typical configuration in which our prototype is used.
First experiences are summarised. We conclude by summarising the
work we will do in the near future.

2. Load Balancing in Distributed Systems

2.1. Distributed Systems

2.2. Load Balancing

We define a distributed system as a collection of computers
(processor-memory pairs), interconnected by a network, and equipped
with software that manages this hardware substrate. One can distin-
guish between this general definition of distributed systems and distri-
buted operating systems (DOS) specifically. The latter refers to the
management of all system resources in order to offer a convenient
working environment for the user. We will call a system a true DOS
only if the software offers the whole system as a virtual uniprocessor to
the user community. As another extreme, a network operating system
is implemented by a software layer on top of independent systems that
run on each of the computers. In this case the physical nature of the
underlying hardware model is not hidden for the users.

Between these two hypothetical models, a variety of hybrid operating
systems implemente some degree of transparency.

Distributed systems are attractive for economic reasons: the (theoreti-
cal) price/performance ratio is much better for a set of interconnected
processor-memory pairs (nodes) than it is for a large mainframe with
the same processing power.

These economical advantages are enforced only if we are able to make
maximal use of the available processing power in a distributed system.
This leads to the idea of load balancing: when we have several proces-
sors, we want to continuously use all the processing power that is avail-
able. We certainly do not want one processor to be idle while others
are heavily loaded.

Note that we use the word processor or node where we mean
processor-memory pair. The load on a processor-memory pair,
represented by a load index, reflects the use of CPU and memory on
that node.

The word load balancing sounds ambitious. We do not want to reach a
perfect balance for several reasons:

. The cost for obtaining this optimum could become very high.
Intuitively, one might expect a large incremental cost for evolv-
ing from an almost balanced situation to a perfectly balanced
situation.

) Reaching a perfect balance is one thing, keeping the situation
that way is another. Fluctuations in the environment make it
rather difficult to keep the system load completely balanced. The
perfect balance is inherently an unstable situation.

We want to reduce (and not necessarily minimise) the average job tur-
naround time in a system. The realisation of load sharing is a part of
the general distributed scheduling problem.
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2.3. Load Sharing Strategies

A number of design issues of load sharing strategies have been dis-
cussed in [Joo88a]. We use the word design choices to indicate those
issues for which the strategy designer has to choose between a limited
set of options (often only two), for instance: centralisation or not,
cooperation or not, sender- or receiver-initiated strategy, deterministic
or probabilistic decision rules, dynamic reallocation of jobs or not, and
SO on.

Although it is our intention to evaluate the merits of design issues in
load balancing strategies by experimenting with them, we have already
evaluated some design choices from a more theoretical point of view:

° First, the load sharing strategy cannot be implemented by a cen-
tral decision maker. Such a process would introduce a serious
bottle-neck in a system. Another problem would arise if such a
central component fails (e.g. if the subsystem on which it resides
crashes): system availability would be harmed. These observa-
tions justify the decentralised approach.

. Second, a study of existing process migration facilities [Joo88b]
made us decide to base load balancing algorithms on a unique
assignment of a process on a processor, primarily because pro-
cess migration (dynamic reassignment) without residual depen-
dency is an expensive operation.

The examples of strategies we use in this paper are all based on a distri-
buted approach without reallocation of jobs. However, it remains our
intention to confirm the conclusions above by experimentation. The
design of the load balancing software must result in a framework in
which any load balancing strategy can be implemented.

3. Design

The load balancing environment has been designed to simulate load
balancing strategies in the first place. One might expect such a testbed
to be based on a simulation programme in a traditional simulation
language as for instance in [Sta85a]. Two major reasons justify the
development of a distributed system to perform our simulations:

o Applying a load balancing strategy, the transfer of load from one
processor to another involves two types of costs: a communica-
tion and a computation cost. One could estimate these costs and
try to simulate the distributed system by inserting the values into
some simulation programme. This is less accurate than building
a distributed testbed to do the simulations, because afl costs will
effectively be incorporated during the experiments. No estima-
tions have to be made at all, no cost factors are neglected.

. We want to integrate the load balancing subsystem into our
“daily use™ programming environment. The testbed that is used
for the comparison of load balancing strategies is the prototype
of a user friendly, transparent layer in our environment.

The following section explains why the distributed testbed is developed
according to the client/server model.
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3.1. Servers in Distributed Systems

In this section we briefly summarise the server concept. This work has
been discussed extensively in [Ber87a].

Extensibility, resource sharing and reconfiguration possibilities are
requirements of distributed systems that have consequences for the
system’s structure. In classical operating systems and in some DOS, for
example Locus [Pop85a], all (or most) operating system facilities are
provided in a kernel. Such a kernel is one big complicated programme
from which modules cannot easily be isolated. In distributed operating
systems it should be easy to add and to remove modules while a host is
running. It should also be easily possible to configure the system
software for a specific host from all the modules needed in this host.
The model where all the system software is put together in a complex
kernel is therefore not the appropriate one. The modular organisation
of the system software is the main difference between these classical
systems and server oriented systems. System resources are managed
by different servers, which cooperate to provide all the operating sys-
tem facilities. A straightforward way to implement servers is as a pro-
cess running on top of a kernel.

Servers offer services to their clients. One can distinguish classes of
servers according to the type of request they handle: Independent
servers: The most simple server is one that can directly answer a
request without any help of other servers (we call it therefore an
independent server), and for which every request is independent of
previous requests of the same client (we call such requests independent
requests).

Sometimes a server needs to keep information between different
requests of the same client. An example of such a server is one that
manages objects for its clients: for every client the server must keep the
current state of the object they access. We will call requests that are
dependent on previous requests dependent requests. Such requests are
not considered for the load balancing server because maintaining state
information in the load manager would cause too much overhead.

Dependent servers: Another case arises when servers are clients of
other servers. We call such servers dependent servers. The
corresponding services are dependent services.

If dependent servers are constructed like independent ones and handle
one request at a time, they will be idle or blocked while they wait for
the answer to a request that they send to another server. If this other
server runs on another host, the delay can be significant. Servers per-
form important tasks in the system and may become bottlenecks.
Therefore these idle times must be eliminated and it must be possible to
run several requests in parallel. A server that forwards a message
instead of replying to the client acts as an independent server.

3.2. Functionality of the Load Balancing Server

The word load manager will be used to refer to one component (on a
single node) of the distributed load balancing server.

The load manager handles an incoming job in two steps. (1) When a
job has to be executed by a distributed system. it must be allocated to a
specific processor. As the job is always generated at a particular pro-
cessor, the first subproblem is: “Should the job be transferred to
another processor in order to improve the load distribution?”. This
question will be referred to as the initiation problem. The answer is
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generated, using of some initiation policy. (2) If the initiation policy
determines that job transfer is desirable, then a location policy will
determine to which processor the job has to be moved. This second
subproblem will be referred to as the location problem.

Once the location problem has been solved, the job has to be
transferred. This third element, the job transfer, is not really part of the
load sharing strategy. The available software infrastructure must pro-
vide mechanisms to transfer jobs. It is however the task of the load
manager to accept jobs that have been forwarded from another node,
and cause the start of such job on the local node.

Two additional tasks of the load balancing server support the execution
of a load balancing strategy. (1) On each node, the load index must be
distributed to other nodes and (2) load indices from other nodes must
be collected and interpreted. These task are not necessarily executed
upon request from a client: they may be internal to the distributed load

manager.

To summarise, at each node the load manager has to deal with four

activities:

. handling user requests to start a job,

. handling requests from other load managers to start a forwarded
job,

° distributing information about the local load,

. managing load information from other processors.

3.3. Framework of the Load Balancing Server

Let us apply the classification of section 3.1 to the load balancing
server.

. The command interpreter of a user acts as the client of the load
manager and sends a request. We can consider two cases:

1. The load manager executes the initiation policy and con-
cludes that the job should be executed on the local
machine. This means that the location strategy will not be
executed by the load manager; the request is forwarded to
the process manager to start the job. From this point of
view, the service as implemented by the load manager is
an independent service, if the initiation policy is performed
without any call on an underlying server.

2. The initiation policy decides to offload the job to another
machine in the system. The location policy will handle
this request. This always implies interaction with a load
manager on a remote host, a dependent service.

) The request to accept a forwarded job is an independent request.

The normal service call on a load manager behaves as an
independent service when the job is executed on the local
machine. When the job is offloaded, the load manager acts as a
dependent server. Consequently, several user requests must be
handled in parallel. The load managers are dependent on each
other, we call them cooperatives (see [Joo88c]).

Several techniques can be used to implement this parallelism
[Ber87a]. We prefer a lightweight process infrastructure where
several threads coexist within a process. They share data and
can perform communication operations independently from each
other.
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3.4. Some Strategies

The thread concept is therefore used to describe the framework.
Several types of logical threads coexist in the load manager.

A first thread will treat incoming requests from local users to
start jobs. This thread will be called the “SENDER”. Several
threads of this kind may coexist, since it is possible that a depen-
dent service call is executed while the next one will be indepen-
dent (local execution). We should take care not to do too much
redundant work. This can happen when the location strategy is
executed simultaneously by two threads. The SENDER will also
transfer jobs when required.

Two threagds deal with information management. Load indices
must be exchanged. For example, in a receiver-initiated strategy,
load indices of remote hosts can arrive at any time. The load
manager must also be wary of the configuration of distributed
systems: nodes may be added or removed.

The global information manager catches this type of information
and stores it.

A local load manager receives information from the local load
monitor, which is not part of the load manager. The local load
monitor should report any relevant fluctuation in the local load
index. Possibly, a tolerance on this value could be tunable. The
existence of the local information manager is essential because a
service call by the SENDER on the local load monitor would
probably turn any call on the load manager into a dependent ser-
vice call. The load monitor calls the load information manager:
otherwise many of the service calls on the load monitor would be
redundant.

Finally, one thread, the “RECEIVER” is responsible for the agree-
ment with a sender thread to start a job. The request will be for-
warded from a SENDER to a RECEIVER that finally forwards the
request to the local process manager. In a sender-initiated
approach, the RECEIVER may also handle incoming requests for
load indices. One could also implement this activity within an
information manager.

Conclusion: we need four types of threads, of which the SENDER could
be instantiated more than once. This is illustrated in Figure 1.

The value of our framework is illustrated by describing its use in the
realisation of two quite different load sharing strategies.

3.4.1. Example 1: A Sender-Initiated Approach

In a sender-initiated approach, a sender thread is started for every
incoming request to start a user job. The initiation policy determines
whether the job is to be executed on the local node. In that case, the
job is forwarded to the process manager.

Otherwise, the location policy is executed. Hereby, the sender thread
requests the load indices from several remote sites and selects an
interesting destination for the job. In the receiver thread the remote
sites will receive this “request for bids” and answer the request (and
possibly reserves some resources). Hereby the receiver uses the local
load index that is received by the local information manager from the
load monitor. When the sender has chosen a destination, the job is for-
warded to the receiver thread on that site.
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Figure 1: Basic software architecture

The global information manager is not handling load indices but keeps
track of the system’s configuration (e.g. in a distributed system, pro-
cessors may be added to or removed from the system).

This scheme is represented in Figure 2.

3.4.2. Example 2: A Receiver-Initiated Approach

In a receiver-initiated approach, the sender thread executes the initia-
tion policy as described in the former section, but it does not perform a
request for bids.

It is the local information manager that distributes the local load index
when it changes significantly (e.g. towards a less-loaded state). The
global information manager receives such information and keeps in this
way an up to date view on the system wide load distribution. The
sender can use this view to select a target and only interacts with the
receiver for the final agreement.

This approach is represented in Figure 3.

4. Implementation

4.1. Software Infrastructure

In this chapter, we briefly discuss some elements of the software infras-
tructure that is needed to implement the load balancing server. In this
section, we only address the issues that are the result of the study of the
framework. Other relevant elements in the software infrastructure are
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Figure 2: Load manager: sender-initiated

process management (a process migration facility can be considered as
a part of the process manager) and a monitor for the local load (see sec-
tion 4.3).

1. The load managers must be able to handle several requests in
parallel. A lightweight process infrastructure is preferred:
several threads coexist within a process; they share data and can
perform communication operations independently from each
other.

]

The load manager must be able to do set communication. Set
communication is treated in more detail in [Joo88¢].

A global state must be known by all processes that are part of the
distributed server: this global state is characterised by measures
of the load on the different machines in the system, and possibly
some knowledge of the expected fluctuation of this load in the
near future. This state information should be as up to date as
possible on the one hand, and the distribution of the state infor-
mation should be as cheap as possible on the other hand.

It is our belief that available communication primitives should
keep as much parallelism as possible in the sending of local load
information to other nodes so that updates of (or requests for)
load indices happen as simultaneously as possible in the different
nodes.

For instance, when the load manager is looking for another, less
loaded machine than the one it is running on (in order to start a
Job there). it can request bids from other machines; these are
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Figure 3: Load manager: receiver-initiated

measures of their actual load. The more parallelism in the distri-
bution of this request, the better the arrival order of the responses
becomes an indication of the system’s state. This property might
allow us to use rather simple load indices for the bids.

Finally, synchronisation between the different threads is required
when accessing the global data in the server. A synchronisation
facility makes the essential infrastructure complete.

The V-kemel is one of the few experimental distributed operating sys-
tems that gives support for both lightweight processes and set commun-
ication [Che84a, Che85a].

However, for executing numerous load balancing experiments, we
prefer a system we are more familiar with in daily use. This will sim-
plify the retrieval of appropriate load indices from the kernel.

Therefore we attempted to work on top of UNIX. Additional software
libraries were made available by M. Satyanarayanan from Carnegie
Mellon University. The packages we describe next have been used
there for the implementation of the Andrew distributed file system
[Mor86a, How88a]. Some aspects of this software have been discussed
in [Sat90a].

4.1.1. Packages

4.1.1.1. The Lightweight Process (LWP) Package

This package consists of modules at two levels.
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4.2. The Prototype

. At the lowest level is the basic lightweight process package.

The LWP package implements primitive functions that provide
basic facilities to enable procedures written in C to proceed in an
unsynchronised fashion. These separate threads of control may
effectively progress in parallel and more or less independently of
each other. This facility is meant to be general purpose with
emphasis on simplicity. Interprocess communication facilities
can be built on top of this basic mechanism.

The process model supported by the basic operations is based on
a non-preemptive priority dispatching scheme. Once a given
lightweight process is selected and dispatched, it remains in con-
trol until it voluntarily relinquishes its claim on the CPU. Relin-
quishment may be either explicit or implicit through the use of
some of the basic operations. The process executing such opera-
tion will be descheduled when a process with a higher priority is
ready: the priority dispatching mechanism takes over and
dispatches the highest priority process automatically.

) Above this basic layer are a set of routines that only work in the
context of the lightweight process package: an /O manager pack-
age, a preemption package, a timer package and a fast-time of
day package. The combination of all of these packages gives a
very powerful lightweight process facility.

4.1.1.2. Set Communication

The communication facilities are RPC based. The package offers prim-
itives that enable the user to implement remote procedure call. Set
communication is possible through the multisend primitive. Hereby the
user specifies a list of destinations and a routine (handler) that has to be
called when a reply arrives. The use of multisend does not influence
the LWP semantics. Servers do not know whether clients call an RPC
or a multisend.

4.1.1.3. Locking

The lock package contains a number of routines and macros that allow
C programmes using the LWP abstraction to place read and write locks
on data structures shared by several lightweight processes. Like the
LWP package, the lock package was written with simplicity in mind;
there is no protection inherent in the model.

4.2.1. The Load Manager

The prototype implementation was implemented on a Sun workstation
(running SunOS 3.4) and written in C. Our current organisation (see
Figure 4) differs from the model in section 3 in three aspects:

1. There is no receiver thread in the load manager. Remote jobs are
forwarded to the remote execution daemon rexd. This actually
has an impact when implementing a sender-initiated strategy:
handling a “request for bids” is currently implemented in the glo-
bal information manager.

2. Instead of forwarding the client’s request, the sender thread
replies to the command interpreter specifying the node where the
job is to be executed. In the case of remote execution, the com-
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Figure 4: Implementation

mand interpreter uses the command on (see SunOS reference
manual).

It is clear that this construction introduces more overhead than
we would like, but it allows rapid prototyping since the remote
execution daemon is present in the standard system. On the
other hand, the measurement of the response time of a particular
job becomes easy.

3. The local load index is requested explicitly from the local system
kernel. We use the smoothed average queue length (over one
minute) of the processor’s ready queue. We have not yet experi-
mented with an alternative load index but the one we use now
has been recommended in [Fer88a].

Asking the local load index regularly — instead of receiving it
when it has changed significantly — is of course a disadvantage in
comparison with our original proposal. It raises for instance the
number of system calls the load manager makes. Implementing
this in another way turns out to be a difficult problem [Kup85a].

4.2.2. A Typical Test Configuration

Figure 5 shows the test environment that has typically been used:
5 diskless workstations (the processor pool), do each run the load
manager and a command interpreter. This one reads commands from a
script and sends the response time measurement of a job to the coordi-
nator machine of the experiment. The coordinator machine is a com-
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Figure 5: Test configuration

puter that is not in the pool and that contains all the files that are needed
in the experiment. File transfer is an identical cost for all the nodes.

For each workstation, a process is running on the coordinator machine
to keep track of the observed response times. All communication
between the coordination machine and the processor pool is done
through TCP/IP connections.

The coordinator is a process that sets up these connections and pro-
vides a synchronised start of the experiments.

4.2.3. First Experience

Several load sharing strategies have been implemented in the testbed,
mainly to observe the behaviour of the environment itself.

We started by observing strategies that had been studied in earlier
research [Eag86a, Hsu86al. In a first phase, 6 strategies have been
used.

Experiments have been done with two objectives in mind.

. Comparison with other results: are our observations acceptable in
relationship with other results? Differences must be explained.

Optimisation of individual strategies: each strategy is written in
terms of a number of variables, e.g the period of information
exchange, the number of nodes to cooperate with, threshold
values on which the initiation policy relies etc. Such parameters
must be tuned to obtain optimal results with a given strategy.

The detailed interpretation of our measurements is not the subject of
this paper. We only indicate some general conclusions:

] First experiences approve the generality of the testbed.
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A lot of experiments are required to optimise a single load shar-
ing strategy. This indicates that a careful selection must be made
to limit the experiments to the “useful’ ones.

Design choices will be treated first in order to reduce the set of
strategies we want to work with in the long run. For example,
experiments with alternative load indices will be done with a
selected set of high quality strategies.

Overhead and delays are often underestimated in traditional
simulations. The benefits we obtain with the given strategies are
smaller as predicted in the papers mentioned above.

These comments are not totally precise. We have to continue with our
experiments and will soon report detailed information.

4.3. The Experimental Environment

4.4. Future Work

4.3.1. Porting the Prototype

We have ported the testbed to the AIX environment. First we ported
the lightweight process package, together with the locking package and
the RPC code. Afterwards, the transfer of the load manager was
straightforward.

The port has two major consequences.

. First, the organisation of the testbed is different. We run AIX on
5 1BM PS/2 stations. Each of them has a hard disk. Therefore,
the testbed writes the response time of a job on the disk local to
the node on which the job has been generated. This reduces net-
work traffic substantially since the prototype implementation ran
on a collection of diskless workstations.

Second, the possibilities of the testbed are enlarged by installing
TCF [Wal89a] (Transparent Computing Facility) on our
machines. TCF is a Locus based [Pop85a] extension of AIX in
which process migration is supported. This facility allows the
investigation of load balancing strategies that are based on the
dynamic reallocation of jobs.

4.3.2. Improvements

The efficiency of the load manager is being improved by working on
two aspects. (a) The retrieval of a load index is done efficiently, actu-
ally by making a device driver, the load monitor, that looks in the
kernel’s statistics. The number of system calls that is needed to obtain
the load index is reduced to one instead of two. (b) The receiver code
is being integrated in the load manager. This will allow the effective
forwarding of jobs from one load manager to another.

The current implementation as described is sufficient as it is our objec-
tive to compare the relative merits of certain design issues in a load
sharing policy. Improvements as explained in this section are only
important in the long run.

4.4.1. Adaptive Load Sharing

One of the main objectives of our research is to know the relative mer-
its of a number of design issues. Experiments have to tell us which
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strategy is appropriate in given circumstances. This knowledge is the
base for adaptive load sharing software: strategies may vary as the sys-
temn state evolves.

This means that there is another level of control inside the load sharing
software: a thread that is authorised to change the policies. It is called
the adaptor. The adaptor can for instance select another routine that
implements the location strategy (e.g. from a deterministic into a pro-
babilistic one).

In this concept, the adaptor will initialise the load balancing server and
subsequently observe the system’s behaviour in order to adapt to the
evolution.

Some changes only affect the local load manager and can therefore be
make at any time, but more global adaptations may require a consensus
between adaptors. Such changes are not intended to occur frequently
since they will involve quite some overhead.

Figure 6 shows the extended model.

This topic is still under development and partially dependent on the
results of the experiments. In the actual implementation, the adapter
only initialises the load manager by providing functions (code) for each
of the threads.

4.4.2. Extended Command Interpreter

Our distributed system consists of the physical layer, equipped with the
basic software infrastructure (AIX/TCF extended with the libraries from
CMU). The load sharing software is situated on top of this native sys-
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tem. The user’s command interpreter acts as a client of the load
manager. The latter only acts as a dependent server when interaction
with remote components of the cooperative is required.

In order to exploit the full power of the load balancing server, the com-
mand interpreter should be able to recognise large grain parallelism in
a job. For example, many shell scripts contain a list of command lines
that are executed sequentially, even though many of these commands
could be executed simultaneously. Currently, parallelism can only be
caused by starting background jobs; but this method excludes the possi-
bility to synchronise.

The command interface is responsible for passing such parallel sub-
tasks separately to the load manager. It is however, up to the writer of
the script to express the potential parallelism in the job.

This leads to an extension of the syntax of the shell. We intend to
adapt the Korn shell for this purpose. Some ideas are found in the CDL
(component description language) of Helios [Per89a].

5. Conclusion

Our design describes the load balancing software as a subsystem with a
limited interface to the other system components. It is suited for a very
general system model. The actual implementation enables us to
integrate relevant load balancing strategies into the framework. The
steps towards an adaptive subsystem that will be integrated in our
“daily use” distributed environment are undertaken. Other aspects still
have to be worked out: how can we cope with large scale systems, and
with a de facto heterogeneous environment?

A series of experiments will assess the merits of a number of design
choices in load balancing strategies. This work will deliver a guideline
in the development of an adaptive distributed server, in which the adap-
tor selects policies out of a set of well experimented strategies.
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Abstract

This paper presents the design and evaluation of a decentralized load
sharing algorithm for networks of workstations, RADIO. With respect
to general distributed computing environments, networks of worksta-
tions have some peculiarities. First, the global computing power is
most of the time much underutilized. Second, users of workstations
occasionally need a peak of computing power. Third, workstations are
often diskless, so that running a process on one workstation or another
does not add file migration overhead. Fourth, network interfaces often
provide a broadcast capability, which may be used to reach several des-
tinations in a single message. Last, workstations are often dedicated to
an “owner”, so that a workstation may only be used for running foreign
processes only when the workstation’s owner does not use it (or at least
when running foreign processes would not increase the owner’s pro-
grams response time by a significant amount). The first three points
make load sharing very attractive for a network of workstations. The
fourth point may be used for simplifying the design of load sharing
algorithms, but broadcasting is expensive. The goal of RADIO is to
provide the benefits of a decentralized load sharing algorithm while
preserving the personal character of workstations and providing good
performance results, in particular with respect to exfensibility.

The key feature of the RADIO load sharing algorithm is that it is decen-
tralized but involves expensive broadcast messages only occasionally.
The design choices for information policy, location policy and transfer
policy are described and motivated. RADIO has been implemented on a
network of Sun workstations, and runs entirely outside of the kernel.
Experimental results show that the extensibility of RADIO is better than
that of previous decentralized algorithms, based on broadcast mes-
sages.
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1. Introduction

There are basically three ways of improving performance in loosely
coupled distributed computing systems. The first one consists in imple-
menting a file location/migration policy. The second one consists in
taking benefit of the parallelism inherent to some applications by run-
ning in parallel, on different processors, the different tasks that consti-
tute the application program. The third one, usually referred to as
“load sharing”, consists in taking benefit of the fact that, in the net-
work, some machinds are less loaded than others (or even totally inac-
tive), by running some processes on a less loaded machine. This paper
focuses on a load sharing policy.

Among loosely coupled distributed computing environments, a network
of workstations has some peculiarities. First, global computing power
is underutilized most of the time [Mut87a, Stu88a, The89a]. Second,
the owner of a workstation needs occasionally a peak of computing
power, high enough to lead to slow response times if the processes are
run simultaneously on his/her workstation. Third, workstations are
often diskless, so that running a process on one workstation or another
does not add file migration overhead. Fourth, network interfaces often
provide a broadcast capability, which may be used to reach several des-
tinations in a single message. Last, workstations are often dedicated to
an “owner”, so that a workstation may only be used for running foreign
processes when its owner does not use it (or at least when running
foreign processes would not increase the response time of the owner’s
programs by a significant amount). This paper focuses on a load shar-
ing policy in a network of personal workstations. The goal is to pro-
vide the benefits of load sharing (that may be large for underutilized
systems) while preserving the personal character of workstations and
providing good performance results, in particular with respect to exten-
sibility (defined as the maximum number of workstations that may be
part of the system without consuming too much CPU or network
bandwidth).

The problem of performance and extensibility of load sharing algo-
rithms has been addressed in several papers [Zho88a, The89a]. The
main conclusions are: (i) broadcasts on a local area network are expen-
sive; (ii) centralized algorithms are, surprisingly, the most extensible;
(i) failure detection and recovery are expensive for centralized algo-
rithms.

The goal of this paper is to describe and evaluate a decentralized algo-
rithm that involves broadcast messages very occasionally, and thus pro-
vides large extensibility and good performance results.

2. The RADIO Algorithm

A load sharing algorithm is composed of three parts [Zho88a]. The
information policy specifies which information is used in deciding a
process migration, and the way this information are distributed in the
system. The location policy decides on which machine an eligible pro-
cess should be migrated. The transfer policy determines the eligibility
of a process for migration. We now describe these three parts for the
RADIO algorithm and then the broadcast cases.
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2.1. Information Policy

In RADIO, information and decision are both decentralized and central-
ized. A workstation is available when it can run remote processes. At
any time, RADIO handles the following data structures:

1.

Every workstation W, keeps in memory the identity of the last
workstation L; that accepted a process from W,, i.e. that was
available at that time.

The available workstations are linked in a distributed ordered
list, the “available list” (each available machine A; knows only
the identity of its predecessor A;_, and successor A;,, in the
list).

A machine called the “manager” plays a special role. It knows
the identity of the first workstation A of the available list. The
identity of the manager is known by all the workstations of the
network. Workstation A, knows it is the first workstation of the
available list as its predecessor is the manager itself.

When workstation W, wishes to run a process P on a remote machine:

1.

It first polls its (supposed) available partner L;. This is based on
the assumption that an L, that was available before is still avail-
able now. If L, is really available, it accepts process P (see Fig-
ure 1).

Of course, this assumption does not always hold. If L; is not
available, it forwards the request to the manager (see Figure 2).
If the available list is not empty, the manager indicates the iden-
tity of the first workstation of the available list, A, to the
requesting workstation W;. If the available list is empty, the
manager notifies W, that no workstation is currently available so
that W, executes process P locally.

When a workstation A; switches from available state to non-available
state, it notifies its predecessor A;_, in the available list that the succes-

(1) req

(2) ack

Figure 1: Finding an available workstation in two messages

Figure 2: Finding an available workstation in three messages
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Switching from available to non-available state

2.2. Location Policy

sorof A; | isnow A,, . Afterwards A;_, notifies A, that it is now
its predecessor (see Figure 3).

When a workstation N; switches from non-available state to available
state, it notifies the manager, which sends back the identity of the first
available workstation A |. Then, N, notifies A; that it is now its prede-
cessor. Thus, N, is inserted at the head of the available list, in location
A (see Figure 4).

The goal of a load sharing policy may be to attempt to balance machine
loads (“load balancing™) at any time over the network, or simply to
ensure that no machine is idle when others are overloaded (“load shar-
ing” strictly speaking) [Kru87a]. For networks of personal worksta-
tions, load balancing is not only useless, but undesirable, for two rea-
sons. First, since most of the time the workstations are underloaded,
load balancing would most of the time migrate a process from a works-
tation less loaded to another even less loaded, so that migration over-
head would dominate the gain in execution time [The8%a]. Second,
since workstations are personal, the owner would not tolerate a
significant degradation of his/her response times because another user
started many cpu intensive computations.

Several ways for taking into account the personal nature of a worksta-
tion have been proposed. In Butler [Nic90a], a workstation is unavail-
able for foreign processes as soon as the number of logged in users is
greater than some threshold. This criteria is very restrictive, because if
users neglect to log out when they do not use the workstation, it will
appear busy whereas it is in fact available. In Condor [Lit88a], a
workstation is declared available when there have been no keyboard or
mouse activity for some duration, and the average CPU utilization has
been less than some value for a certain amount of time. This criteria is
very restrictive too, because if the workstation is used only to run an
editor, it will appear as busy. while running a foreign process would
not slower the editing process.

In RADIO, as in [Alo88a], a workstation is declared available when its
current load is less than a threshold T,,,. The load index used is the
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Figure 4: Switching from non-available to available state

UNIX 4.3BSD index, namely a mix of averaged CPU and 10 queue
lengths. The value of 7, need not be the same on every workstation,
and it may be changed dynamically by the system administrator if
needed. Empirically, the value of 0.8 appeared to be suitable. In our
experiments, users did not notice that their workstation was executing
foreign processes with this value.

2.3. Transfer Policy

As stated before, the transfer policy determines the eligibility of a pro-
cess for migration. In RADIO, a process may be migrated to an avail-
able workstation (if such a workstation exists) only when the worksta-
tion becomes overloaded, namely when its current load is above a
second threshold, T . In order to prevent boomerang effects, the
value of T;,, must be at least T, + 1. The value of 1.8 appeared to be
suitable. However, as for T, Ty, need not be the same on every
workstation. To summarize the influence of T,,, and T, a worksta-
tion may be in one of three states, according to the value of its current
load: 1

1. load <T,,,: the workstation is “available”. It may receive
foreign processes.

2. T ow < load <T ;4 the workstation is in “normal state”. It will
not accept new foreign processes.

3. T hign < load: the workstation is “overloaded”. It will try to send
one or more process to an available machine.
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This double threshold scheme is very flexible. For instance, if T, is
set t0 0 on a workstation, this machine will never accept remote
processes.

Furthermore, in RADIO the processes are not all eligible for migration.
Cabrera has observed that a large majority of UNIX processes consume
less than 15 CPU [Cab86a]. Hence, a filtering policy must be enforced.
This filtering may be done on the process type, such as in [Sve90al.
However, while a compilation lasts longer than 1s CPU in average,
some compilations are very short, in particular because of errors. In
RADIO, we chose manual filtering. By default, processes are not candi-
dates for migration. If a user wishes that some process be a candidate
(because a long execution time is expected), he/she starts the process
by a special command at shell level.

2.4. Broadcast occurrences

In RADIO, broadcasts are occasional. Under normal system behaviour
(no failures), broadcasts occur in the following cases:

1. When a workstation joins the process migration facility (at boot
time, for instance). This workstation broadcasts a message
requesting the identity of the manager. If no answer is received,
this workstation becomes the manager.

When the manager becomes overloaded. In this case, the works-
tation acting as the manager experiences larger response times
not only for the processes started by his/her owner, but for the
load sharing algorithm too. For these two reasons, the manager
has to be replaced. The overloaded manager sends a message to
the workstation at the head of the available list (A|). A, then
becomes the manager, and broadcasts this fact on the network.

In a few cases of workstation failure, RADIO requires broadcasts too, as
will be described in Section 3.1.4.

3. Evaluation of RADIO

3.1. Properties

In this section we evaluate RADIO algorithm, first by looking at its pro-
perties, and then by reporting experience with running RADIO.

3.1.1. Quality

If there are available workstations in the network, RADIO is able to find
one, either because the workstation presumably available is really
available, or when the manager is involved, because the manager points
at the head of the available list. Notice that in the latter case the avail-
able workstation selected is the “best” choice, since the head of the list
is the machine having switched to available state the most recently,
thus its probability of switching back to unavailable state in the
meanwhile is low.

3.1.2. Efficiency

The location policy involves two messages (request and ack) when the
workstation supposed to be available is really available, and three mes-
sages when it is not (request, forward to manager, identity of A;). The
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underlying assumption for our design is that the workstation supposed
to be available is often really available (this assumption is validated by
our observations as will be seen in Section 3.2). Thus, the average
number of messages for selecting an available workstation is less than
three. Furthermore, the overhead imposed on the manager by the algo-
rithm is lower.

3.1.3. Extensibility

Extensibility (defined as the maximum number of machines that the
algorithm can reasonably take into account) is studied with the parame-
ter values set by Theimer and Lantz in [The89a]. In order to be
efficient, a load sharing algorithm should select a receiving machine for
a process in less than 100ms, consume less than 1% of CPU cycles on
any machine, and consume less than | % of netwark bandwidth. Furth-
ermore, Theimer and Lantz assume that program generation leads to
running the process assignment algorithm once per minute in average
on every machine, and that, for algorithms involving periodic informa-
tion emission, the interval between two emissions is 10s.

With these parameters, Theimer and Lantz compare two algorithms:
CENTRAL and DISTRIBUTED (also described in [Zho88a]). CENTRAL
is a centralized algorithm: when an overloaded workstation wishes to
transfer a process, it asks a server for an available workstation. if there
is one. The server is informed of the availability of any workstation in
the system by means of messages sent to it by every workstation in the
system, either periodically [Hag86a, Bon89al, or when its load has
changed by a significant amount [The89a]. DISTRIBUTED is a fully
decentralized algorithm: when an overloaded workstation wishes to
transfer a process, it polls all the workstations in the system by a broad-
cast message. The workstations reply by sending their current load.
thus the requesting workstation may find a suitable receiver, if any. In
order to avoid buffer overflow that may result from the reception of
many simultaneous answers, Theimer and Lantz propose the following
mechanism: only the workstations with reasonable load reply to polling
messages, and the reply is delayed by a small time increasing with the
local load, so that the first replies received are probably the most
interesting.

With a simple model, Theimer and Lantz show that the maximum
number of workstations that CENTRAL and DISTRIBUTED can handle
are 700 and 85, respectively.

Under the same assumptions, we found the maximum number of
workstations RADIO can handle is 282. This result is quite sufficient
for most workstation networks. The reason why extensibility of RADIO
is better than extensibility of DISTRIBUTED is that broadcasts are occa-
sional.

3.1.4. Robustness

All workstation failures are detected by a timeout mechanism.

° If the failure occurs on a non-available workstation, this failure
has no consequence on the load sharing facility.

If the failure occurs on an available workstation member of the
available list, this failure is detected by its predecessor A; | or
its successor A;,, when one of those two workstations wants to
notify it has switched from available to non-available state. In
the case of A, detecting the failure, this workstation broadcasts

EurOpen 91 — Tromse, 20-24 May

145




Load Sharing in Networks of Workstations

3.2. Experience

a message requesting predecessor of A; to become the predeces-
sorof A, .

. In case of manager failure, the workstation that detects the
failure broadcasts a message requesting the manager replace-
ment. Then, workstation A in the available list (this workstation
knows that it is at the head of the list as its predecessor is the
“~defunct-""manager) becomes the new manager and broadcasts
this fact on the network.

As in CENTRAL, this case of failure is the worst one. But, in CEN-
TRAL, recovery after a manager failure is complex, since the (central-
ized) information about system state is lost. In RADIO, recovery is
much simpler, since the (distributed) available list need not to be recon-
structed. The simple election algorithm described above sets up again
the migration facility in two broadcast messages. Notice that the
migration facility is not interrupted at all for a significant number of
workstations, since the manager is not always involved in the location
mechanism.

RADIO has been implemented and monitored on a network of 8 works-
tations Sun-3 running SunOS 3.5.

First, an artificial load was generated in order to observe the behaviour
of RADIO under severe conditions:

. On three of the workstations, we simulated heavy users running
compilations (taking 50s on an empty workstation) every 3min
and trying their CPU-intensive program consisting in a set of
sinus computations (requiring 60s on an empty workstation)
every 2min. The editing sessions were simulated by sleep
mechanisms.

. On another workstation, we simulated a user making data
analysis by first entering data with an editor (simulated by sleep-
ing), making some computation (requiring 60s on an empty
workstation) every 6min and running his/her analysis (made of 2
simultaneous CPU-intensive processes requiring 5min on an
empty workstation, each), every 70min.

) The four remaining workstations were unused and thus available.
The results are the following:

° About 60% ot locations were resolved in two messages. This
validates the “caching”™ mechanism: most of the time. the last
workstation that accepted to receive a process is available again.

° The average rate of broadcasts is one per 266s. Under the same
conditions, DISTRIBUTED would lead to a rate of one per 51+
(every request for remote execution requires a broadcast).

o The overhead of running RADIO is negligible: less than 10ms
CPU per hour (0.0002% of CPU cycles), and one 10-bytes mes-
sage every 4s in average (0.0002% of network bandwidth).

. The measured recovery procedure duration is about 500ms, to be
compared to 18s with CENTRAL algorithm [The&9a.

. The average time for locating an available workstation is 30ms,
and the average time for knowing that no workstation is available
is 500ms. The latter result is large, because when no workstation
is available, all the requests are forwarded to the manager, thus
its load is high and its response time is large.
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) When a process is to be executed remotely, the initialization time

(transferring process information and setting up the communica-
tion channels for interactivity) is about 500ms. This shows that
load sharing is efficient as soon as process execution time is
larger than a few seconds.

However, the results above were obtained under high artificial load. In
normal use, one can expect a larger efficiency of the “caching”
mechanism, and thus better results.

For instance, compiling the 7 modules of the RADIO source files in
parallel on several workstations requires 595, to be compared to 104s
locally. Four CPU intensive processes (a set of sinus computations) are
placed by RADIO on four workstations and executed in 263s, whereas
the elapsed time is 10355 locally. This result shows that load sharing
with RADIO can lead to a speedup close from the optimum for long,
CPU-intensive, applications.

4. Implementation details

RADIO runs entirely outside the kernel. The RADIO daemon (running
on every workstation) is written in C by the means of an automaton.

Interactivity is preserved by a mechanism analogous to UNIX remote
shell: when a process runs remotely, keyboard input (including signals)
and screen output are done locally, in a way transparent for the user.

Basically, the load index used for deciding whether a workstation is in
“available”, “normal” or “overloaded” state is the UNIX 4.3BSD load
index (average of the number of processes ready to run or waiting for
disk I/O to complete, as sampled over the previous 1-minute interval).
However, using this index directly cannot take into account in a correct
way several requests for process execution on the same workstation in
a short time interval, because the load index of the available worksta-
tion does not react quickly enough: the last requests will consider the
workstation as still available whereas it has just accepted to run several
remote processes. Thus, in our implementation the load is computed
on every workstation by a dedicated process, which computes the aver-
age load exactly as in UNIX 4.3BSD, except that when a remote process
is accepted the current load is incremented immediately by one unit.

5. Conclusion

The design and implementation of RADIO has shown that it is possible
to build a load sharing policy that is decentralized (thus robust with
respect to failures) while avoiding expensive broadcast messages.
Extensibility of RADIO is better than extensibility of previous decen-
tralized algorithms, based on broadcasts. Thus, RADIO is a good candi-
date for medium/large configurations when robustness is an important
factor.

The double threshold scheme used for location and transfer policies is
very flexible and is well adapted to networks of workstations, because
it can conciliate load sharing and personal use of workstations. In
RADIO, the threshold values are set empirically. It would probably be
possible to tune these values dynamically, according to system state.

RADIO is currently being evaluated on a larger number of workstations
(about twenty) with trace-driven process patterns. We are also thinking
about how to take machine heterogeneity into account, not only in
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terms of CPU speed, but also available memory size and local disks
usage.
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Abstract

In a system where many hosts are connected by communication net-
works, the choice of programs placement allows to benefit from the
processing power of all hosts (idle or unused) and thus to reduce the
program response time. In this paper we present a solution to execute
and to control distributed applications in heterogeneous environment.
We consider an application as a set of programs linked by a precedence
graph. Each program may be allocated on different heterogeneous
hosts and may specify different allocation criteria.

We have implemented the GATOS system to automatically distribute
parallel applications among heterogeneous hosts and to provide a
software layer in order to easily write new distributed applications in a
heterogeneous environment. GATOS has been developed to be portable
and to work in a network containing a large number of hosts.

Introduction

Modern computer systems are often built with many workstations con-
nected by communication networks. In such workstation networks,
many hosts are unused or idle at a given time. Some may be free, oth-
ers may be unused during thinking time of their users. However in
most present systems, users who need a large amount of processing
power cannot automatically benefit from the idle workstation power
[Mut88a, Lan88a, Sut89a). Moreover, computers are usually not homo-
geneous: there are various architectures running different operating
systems. In such a situation, when a specific distributed application is
to be written, several problems arise:

. Communications between distributed programs,
° Access to remote files,
° Management and monitoring of the distributed executions.

A distributed application/system GATOS has been developed to solve
the above problems. Its two main goals are:

° To automatically distribute parallel applications among hetero-
geneous hosts and to manage their executions,

To provide a software layer in order to easily write new distri-
buted applications in a heterogeneous environment.
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First, we present the application model and the environment model.
Then, we show how a multi-criteria load balancing can be used to
choose appropriate hosts. Finally we give a survey of the GATOS
server and the way users can manage distributed applications.

1. Applications

An application is a set of UNIX programs connected by a precedence
graph. This graph defines a strict order for the executions of the pro-
grams, and givEs qualitative information about the needed resources.
Those resources are the files used and produced, and also the communi-
cations with other programs. This description is done both by a static
graph: a file containing the graph description using the GATOS parallel
application grammar, and by dviamic operations that allow to modify
the execution graph while running.

1.1. Application and Environment

Beside the application model, GATOS manages the environment model
that specifies the environment for the application executions. In
heterogeneous systems, the surroundings are very important for alloca-
tions, in order to classify the different physical entities.

1.1.1. Execution Graph

The execution graph contains all the information to execute a parallel
application. The strict order between programs is given by two rela-
tions. Let us consider two programs A and B:

. Serialism: B must wait for the end of A to be executed.
° Parallelism: A and B are executed in parallel.
The qualitative information also gives a strict order between programs:
° Communication: all communicating programs must be parallel,
) Produced resources: if not shared, all programs producing a

resource must be serialised,
) Used resources: a resource cannot be used before being pro-

duced (resource synchronization).
In the example (Figure 1). the graph is made up of five programs con-
nected by precedence arcs (bold lines). A and B are first parallelized,
then C is executed after the end of A, D after both the end of A and B
and finally E after the end of C. The qualitative information is: A uses
t1 and produces f2 (grey lines), B produces f3, C uses {2, D uses {2 and
3 and produces f4, D and E communicate together (doted line).
The syntax used to specify an application is given in Program Listing 1.
As an example the description of program D may be:
PROGRAM D

AFTER A B USE f2 f3 PRODUCE f4
COMMUNICATE E

ENDPROG

1.1.2. Environment

The graph execution involves one or more processor allocations.
These allocations can only be made on the existing networks of hosts.
To take into account heterogeneous system, all specifications about
hosts and networks must be known. The main problems are:
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Figure 1: Example of execution graph

What are the sets of compatible hosts?
What is the network topology?

What are the different speeds, the memory capacities?

Application:
[name]
[ProgDef]+

# By default the file name containing the graph
ProgDef ¥ Definition of a program
[PROGRAM
ChampsLoc
[OPTIONS [i|I] [t|T] [s!18]
interactive, trace, statistic
use statistic

[SYMBOLIC symbolicName]
{ARGUMENTS ArgList]
[ALLOCATION Allocations]
[AFTER ProgramList]
{COMMUNICATE ProgramList]
[USE Resourcelist]
[PRODUCE Resourcelist]
ENDPROG] *

ProgramList
[programName [EXCLUSIVE]

Resourcelist
[ [ChampsLoc]+ [EXCLUSIVE]

ChampsLoc

For user purpose

Program arguments
Allocation algorithm
Precedences

Qualitatives informations

[Relativeloc] ]+

[Relativeloc] ]+

OnelLoc | LOCALIZATION [OneLoc]+ ENDLOC

OneLoc
[NET netName]

RelativeLoc
[SAME_HOST] |
[DIFF_HOST] |

[SAME TYPE] |
[DIFF_TYPE] |

Allocations:
TIME &| LOAD &| MEMORY &| FILE &|

[SAME_CLASS] |
[DIFF_CLASS] |

[CLASS | TYPE | HOST name] resourceName

[SAME NET]
[DIFF NET]

COMMUNICATION

Program 1: Graph Syntax

EurOpen 91 — Tromse, 20-24 May




iﬁ;
Distributed Applicetions in Heterogeneous Environments :

The answers to questions one and two give the set of hosts that may
participate in the load distribution. The answer to question three gives
the necessary information for the program allocations.

1.1.2.1. Environment Description

The environment is made of three sets: a set of hosts, a set of bidirec-
tional links connecting hosts and constituting a local area network
(LAN) and a set of gateways connecting LANSs.

A host is defined by:

b .
) The name, unique in a LAN,

. The processor tvpe. program executions can be made indif-
ferently on any processor of the same type,

. The class: regrouping a set of compatible types,

The processor speed: this is a subjective factor, but it permits to
compare speeds of different hosts,

° Physical information: memory, disks, speed to access to
resources.

A set of links constituting a LAN is defined by:

o A type: Ethernet, Token ring,

. A speed: according to the bandwidth of the link,
° A name.

A gateway is defined by:

. The names of the connected LANs.

The data needed by GATOS are quite bigger than what we can usually
find in a distributed environment. For this reason, a special database
containing one entry for each host must be created by the operators. Of
course the configuration is static and must only be updated when there
is any physical change in the system. This is the GATOS responsibility
to manage automatically the dynamic part of the system configuration.
This is done by an automatic recognition of start and stop (or crash) of
hosts.

We may consider that a distributed application only works on a LAN.
But sometimes it happens that vital computers involved in an applica-
tion can be in other networks. To give to GATOS users a uniform
access to all the available resources, we allow to use net names in their
description.” Of course we do not consider this mechanism as “‘usual
case” because its overhead is very important. Further discussion will
consider an application as being executed in a local area network.

1.1.2.2. Application Impact

All components of a graph intrinsically have localization notions. Pro-
grams are located on the hosts where they are running, files are located
on some disks in some hosts and communications between programs
must be available anywhere on the networks (or at least in any LAN),
Moreover programs can not be executed indifferently on any host due
to the problem of heterogeneity. This problem may be solved by two
different ways:

1. The system is able to build a program that can be executed on
any host. This implies to give the sources, and for each different

+ This mechanism is currently in development.
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heterogeneous host to give (in a formal language) the necessary
commands used to build the program [Bad88a].

The user builds himself the various version of the programs
according to the various heterogeneous hosts and to his needs.

The second solution keeps us in the general way of distributed applica-
tions: if user wants a program to be executed indifferently on n kinds of
incompatible computer, he has to build n different versions of his pro-
gram. So, each entity of a program may have the followings localiza-
tion criteria:

Host name, type name, class name, net name.

This allows programs and resources to be located in different hosts
with different names, and enables GATOS to choose the correct pro-
gram name or file name according to the allocated host characteristics.
For example, the localization criterion for a program that needs to run
on both SUN or VAX (belonging to the LAN) may be:

Proqgram
/users/example/code.vax on Class VAX or
/users/erample/code.sun on Class SUN

In the above example the different versions of a same program are sup-
posed to be local. In fact the user can prefix the localization constraint
with the name of the host containing the program, and if the program is
not found on the allocated host, it is first migrated. In the same way,
resources of a program (both files and communication programs) may
contain one of the following relative localization:

Same host, same type, same class, same net,
Different host, different type, different class, different net.

This permits to specify constraints of resource localizations according
to the program placement. For example, a file which must always be
located on the program host, may be described by:

Program
X
File foo.file on Same_Host

GATOS may work with all the existing shared file systems. In practice,
the user has some way to share files among hosts and has the same
view of his files in any hosts where he can work (by example by using
an NFS™ partition mounted on all hosts). In such a case, all the existing
programs may run transparently with GATOS.

All the information described above allows the users to benefit from
any heterogeneous system. Practically, users can make as many ver-
sions of their programs as there are different host types. Of course, this
is not necessary. If no localization criterion is given for a program, we
assumes that it has to be executed only on the set of hosts of its original
class (compatible hosts).

Relative Localization Compatibility

t Network File System [Lyo86a].

The relative localizations described above cannot be used without con-
straints. For a file, it makes no sense to specify a “different” localiza-
tion as the local one (or the initial localization). For that case, we do
not consider the “different” localization criteria for files. For the other
resources the compatibility is shown in Figure 2.
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DIFF
SAME

NOTHING

HOST

CLASS NETWORK

TYPE

NOTHING

HOST

E forbidden

TYPE

I:I coherent

CLASS

NETWORK|

Figure 2: Localization constraints

Coherence control results in one of the following situations:

a)  The set of authorized hosts is empty: application execution is
stopped and the user is informed.

b)  The set of authorized hosts contains a single element: program
placement is immediate (allocation totally constrained).

c) Several hosts are authorized to run the program: the placement
algorithm finds out the best choice according to the specified cri-
teria.

1.2. Distributed Operations

The graph description presented above allows to build static distributed
applications. The precedence orders are strict, and there is no explicit
conditional execution. Furthermore. we have not yet explained how a
program may access transparently a remote file, and how two programs
may communicate together with no localization dependency.

To solve the above problems, we supply to the programmers a library
of operations:

) Graph operations: dynamic creation of new tasks, suppression
of running or waiting tasks, stop/abort of the running application,

) Resources operations: file accesses, communication between
programs,

. Special operations: files migration, remote processes manage-

ment, launch of new applications.

1.3. Multi-Criteria Allocation

An application may be fully constrained, which means that a user may
specify a unique host for each program. Most of the time, the host
loads are quite different: some may be overloaded while some others
are unused. To take benefit of the idle hosts of the system, GATOS has
an allocator that can choose an optimal placement from a list of avail-
able hosts [Abr82a, Shi85a, Zah86a]. The set of informations specified
in the models (localization and execution graph) is taken into account
by the program allocator [Bou90a]. Application programs need
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resources (CPU, memory, file, communication) which vary from a pro-
gram to another. In the application description, the user can specify
appropriate policies for each program. The specific allocation criteria
are one or several of the following:

. Response time: optimize the response time,

. Memory used: optimize both response time and host memory
available,

) File access: optimize the program placement according to the

file localizations; file migration is possible,’

. Communications: optimize-the communication cost between pro-
grams.

Such criteria already give a good information about the optimal place-
ment to be done according to the use of programs. The user may
specify either one allocation criterion or a list of criteria sorted by
significance order.

A important problem for those algorithms is the amount of information
about the various programs in order to make the “best” placement:

. For response time and memory placement: the processor time
and the memory needed,

° For file access: for each file, the number of accesses,

o For communications: for each communicating program, the
number of packets.

Two solutions may be used to get this information:
1. To let users provide themselves all the figures.
2. To keep tracks of the precedent executions.

The last solution is generally used by GATOS. When a new program is
run for the first time, the placement is not optimal (as constants are
used instead of real data) but the placement becomes better in accor-
dance of the updated figures. When the user has a very good
knowledge of his programs, he can use the first solution and enter him-
self the data that will be used by the allocator.

2. GATOS

GATOS has been built above the UNIX operating system, and works in
a set of SUN 3x, SUN 4x and SPARC workstations connected by a LAN.
It consists in servers and a set of commands and functions to communi-
cate with servers. The whole constitutes the GATOS system. A GATOS
server is running on every host of the system that may participate in the
load distribution. They cooperate together by message exchanges, to
execute user defined applications. Each server keeps a list of all the
other active servers. This ensures the system dynamic configuration
(stop/restart or crash of hosts).

2.1. Exchange of Informations

A critical problem for the load distribution is the amount of data
exchanged between the hosts belonging to a LAN in order to allocate
the programs [Lan88a, Mut88a].

+ If a file is migrated for the needs of the allocation, it is then migrated again to its original place.
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Two main methods are used:

] Asking: a server who needs to allocate some programs asks for
information to all the other servers.

° Periodically: all servers periodically exchange their information.

The second method is used in GATOS to update the informations
between servers. The informations needed by GATOS are: the host
load, the available memory and the number of active processes. We
consider the load as the average number of both active processes and
processes waiting less than a limit.

When a server needs to allocate some programs. it has already an
approximation of the load and of the available memory of all the hosts.
A good approximation is given by the time between two load sending:
the shorter it is, the better the approximation but the more overcrowded
by messages the network is. In order to optimize the load exchange
between servers, a second mechanism is integrated: the pigey-backing.
When a server communicates with an other server, the load is automati-
cally incorporated to the message. The overhead of this mechanism is
quite null, and thus it allows to decrease the time delay between load
update.

A threshold mechanism is also incorporated to limit the exchange of
messages. When one host is overloaded it is no use to continue to
broadcast the load: this host will never be chosen as an allocated pro-
cessor. So, when a host load is above threshold. it just informs others
servers that it is overloaded and stop transmitting its load until load
decreases. In fact there are two thresholds: the overloaded threshold
and the limit threshold. The first one indicates when a host cannot be
used. It will become usable again when the load decreases under the
limit threshold. The difference between the two thresholds gives some
tolerance for the fast load variation.

2.2. Execution of a Distributed Application

For a single program there are two ways to manage its distribution:
1. Totally transparent: users are not concerned with the distribution.

2. On user request: users specify when they want their programs to
be distributed.

As GATOS offers much more than single program distribution, users
must be involved by the specification of a distributed application. This
does not exclude the first solution. A software layer (such as a com-
mand interpreter) may be added to transparently distribute the more
common “big” programs. This is not as simple as it seems: which pro-
grams are benefic to distribute? what about the crash of a remote host
executing a program for an unconcerned user?

All the operating of an application can be defined by users. The static
part of an application is given in a file containing the execution graph.
The user initializes the application by means of the gato command.
This command invokes a GATOS server (usually the local one). This
server becomes the master server for that application. It is the only
server that decides for the application programs allocation. This
mechanism appears as a gateway between the user and GATOS
[Sha86a]. The command creates a special task that will be the link
between the user console and the executions of the different programs
(Figure 3). So the user can be informed of the evolution of its applica-
tion and the various hosts chosen by the allocator, get back the output
made from its programs (normal or error messages) and can interac-
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"Master" host

Host II

Link with
distributed
program
d

User program

Figure 3: Execution mechanisms

tivly write to remote programs (for instance, it is possible to launch a
text editor like emacs).

The main options available for this command are:

g <file> . file containing the static graph

il :  interactive application

t|T . trace of application

s|S :  update the statistic

u|lU 1 use of the statistic by the program
allocator

r <allocation> :  allocation names

m <host> :  master host

d|D : dynamic choice of the master host

In Figure 3, the master server sends a request to an other server (PROG
EXEC!). This one executes the program (possibly after migration if a
compatible code version is not available locally). When the execution
is finished it informs the master (PROG END!). The control process for
a given user is directly in connection (if the interactive option is
specified) with the user window. There is absolutely no difference
between a local and a remote execution.

2.3. Managing the Executions

Once the application has been launched, each program of the applica-
tion may use special GATOS functions as described in 1.2.

Users manage the execution of distributed applicjtions by using a set of

special commands. We have already described the main command:

gato. Other are available:
. List of running applications/programs,
Destruction of owning application/programs,

Information on the various hosts of the system.

EurOpen 91 — Tromsg, 20-24 May




Distributed Applications in Heterogeneous Environments

Conclusion

The GATOS distributed task manager improves the utilization of the

various network hosts of a heterogeneous system. This project has

been developed under the UNIX BSD 4.1 operating system. It runs on a

LAN composed of SUN3x, SUN4x and SPARC workstations.

All existing programs can be transparently executed on the less loaded

hosts. Moreover, GATOS provides to programmers powerful functions

in order to easily build complex distributed applications in heterogene-
ous environment.

GATOS collects a lot of informations about the system state and the

execution needs of the applications, thus making them available to the

allocation algorithms. Furthermore, GATOS allows to manage distri-

buted applications in heterogeneous environment (transparent program

execution, access libraries, etc.). All applications can benefit from the

multi-criteria dynamic placement, according to the wishes of the users.:
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Abstract

.

The problem of enabling a “sleeping”™ process on a shared-memory
multiprocessor is a difficult one, especially if the process is to be awak-
ened by an interrupt-time event. We present here the code for sleep
and wakeup primitives that we use in our multiprocessor system. The
code has been exercised by months of active use and by a verification
system.

The Problem

Our problem is to synchronise processes on a symmetric shared-
memory multiprocessor. Processes suspend execution, or sleep, while
awaiting an enabling event such as an I/O interrupt. When the event
occurs, the process is issued a wakeup to resume its execution. During
these events, other processes may be running and other interrupts
occurring on other processors.

More specifically, we wish to implement subroutines called sleep,
callable by a process to relinquish control of its current processor, and
wakeup, callable by another process or an interrupt to resume the exe-
cution of a suspended process. The calling conventions of these sub-
routines will remain unspecified for the moment.

We assume the processors have an atomic test-and-set or equivalent
operation but no other synchronisation method. Also, we assume inter-
rupts can occur on any processor at any time, except on a processor
that has locally inhibited them.

The problem is the generalisation to a multiprocessor of a familiar and
well-understood uniprocessor problem. It may be reduced to a unipro-
cessor problem by using a global test-and-set to serialise the sleeps and
wakeups, which is equivalent to synchronising through a monitor. For
performance and cleanliness, however, we prefer to allow the interrupt
handling and process control to be multiprocessed.

Our attempts to solve the sleep/wakeup problem in Plan9 [Pik90a])
prompted this paper. We implemented solutions several times over
several months and each time convinced ourselves — wrongly — they
were correct. Multiprocessor algorithms can be difficult to prove
correct by inspection and formal reasoning about them is impractical.
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We finally developed an algorithm we trust by verifying our code using
an empirical testing tool. We present that code here, along with some
comments about the process by which it was designed.

History

Since processes in Plan9 and the UNIX system have similar structure
and properties, one might ask it UNIX sleep and wakeup [Bac86a]
could not easily be adapted from their standard uniprocessor imple-
mentation to our multiprocessor needs. The short answer is, no.

The UNIX routines take as argument a single global address that serves
as a unique identifier to connect the wakeup with ihe appropriate pro-
cess or processes. This has several inherent disadvantages. From the
point of view of sleep and wakeup, it is difficult to associate a data
structure with an arbitrary address; the routines are unable to maintain
a state variable recording the status of the event and processes. (The
reverse is of course easy — we could require the address to point to a
special data structure — but we are investigating UNIX sleep and
wakeup, not the code that calls them.) Also, multiple processes sleep
“on” a given address, so wakeup must enable them all, and let process
scheduling determine which process actually benefits from the event.
This is inefficient; a queueing mechanism would be preferable but,
again, it is difficult to associate a queue with a general address. More-
over, the lack of state means that sleep and wakeup cannot know
what the corresponding process (or interrupt) is doing; sleep and
wakeup must be executed atomically. On a uniprocessor it suffices to
disable interrupts during their execution. On a multiprocessor, how-
ever, most processors can inhibit interrupts only on the current proces-
sor, so while a process is executing sleep the desired interrupt can
come and go on another processor. If the wakeup is to be issued by
another process, the problem is even harder. Some inter-process
mutual exclusion mechanism must be used, which, yet again, is
difficult to do without a way to communicate state.

In summary, to be useful on a multiprocessor, UNIX sleep and
wakeup must either be made to run atomically on a single processor
(such as by using a monitor) or they need a richer model for their com-
munication.

The Design

Consider the case of an interrupt waking up a sleeping process. (The
other case, a process awakening a second process, is easier because
atomicity can be achieved using an interlock.) The sleeping process is
waiting for some event to occur, which may be modeled by a condition
coming true. The condition could be just that the event has happened,
or something more subtle such as a queue draining below some low-
water mark. We represent the condition by a function of one argument
of type void=*: the code supporting the device generating the inter-
rupts provides such a function to be used by sleep and wakeup to
synchronise. The function returns false if the event has not
occurred, and true some time after the event has occurred. The
sleep and wakeup routines must, of course, work correctly if the
event occurs while the process is executing sleep.

We assume that a particular call to s1eep corresponds to a particular
call to wakeup, that is, at most one process is asleep waiting for a par-
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ticular event. This can be guaranteed in the code that calls s1leep and
wakeup by appropriate interlocks. We also assume for the moment
that there will be only one interrupt and that it may occur at any time,
even before sleep has been called.

For performance, we desire that multiple instances of sleep and
wakeup may be running simultaneously on our multiprocessor. For
example, a process calling sleep to await a character from an input
channel need not wait for another process to finish executing sleep to
await a disk block. At a finer level, we would like a process reading
from one input channel to be able to execute sleep in parallel with a
process reading from another input channel. A standard approach to
synchronisation is to interlock the channel “driver” so that only one
process may be executing in the channel code at once. This method is
clearly inadequate for our purposes; we need fine-grained synchronisa-
tion, and in particular to apply interlocks at the level of individual
channels rather than at the level of the channel driver.

Our approach is to use an object called a rendezvous, which is a data
structure through which sleep and wakeup synchronise. (The simi-
larly named construct in Ada is a control structure; ours is an unrelated
data structure.) A rendezvous is allocated for each active source of
events: one for each 1/O channel, one for each end of a pipe, and so on.
The rendezvous serves as an interlockable structure in which to record
the state of the sleeping process, so that sleep and wakeup can com-

municate if the event happens before or while sleep is executing.
Our design for sleepis therefore a function

void sleep(Rendezvous *r, int (*condition) (void*), void *arg)

called by the sleeping process. The argument r connects the call to
sleep with the call to wakeup. and is part of the data structure for
the (say) device. The function condition is described above; called
with argument arg, it is used by sleep to decide whether the event
has occurred. Wakeup has a simpler specification:

void wakeup (Rendezvous *r)

Wakeup must be called after the condition has become true.

An Implementation

The Rendezvous data type is defined as

typedef structf{

Lock 1;
Proc *pi
} Rendezvous;

Our Locks are test-and-set  spin locks. The routine
lock (Lock *1) returns when the current process holds that lock;
unlock (Lock *1) releases the lock.

Figure 1 is our implementation of sleep. Its details are discussed
below. Thisp is a pointer to the current process on the current proces-
sor. (Its value differs on each processor.) Figure 2 is wakeup.
Sleep and wakeup both begin by disabling interrupts and then lock-
ing the rendezvous structure. Because wakeup may be called in an
interrupt routine, the lock must be set only with interrupts disabled on
the current processor, so that if the interrupt comes during sleep it
will occur only on a different processor; if it occurred on the processor
executing sleep, the spin lock in wakeup would hang forever. At
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void
sleep (Rendezvous *r, int (*condition)(void*), void *arg)
{

int s = inhibit (); /* interrupts */

lock (&r->1);

/*
* if condition happened, never mind
*/
if((*condition)(arg))(
unlock (&r->1);
allow(s); /* interrupts */
return;

/*
* now we are committed to
* change state and call scheduler
*/
if (r->p)
error ("double sleep 3d sd", r->p->pid, thisp->pid);
thisp->state = Wakeme;
r->p = thisp;
unlock (&r->1) ;
allow(s); /* interrupts */
sched() ; /* relinquish CPU */

Figure 1: sieep

void
wakeup (Rendezvous *r)

{

Proc *p;
int s;
s = inhibit(); /* interrupts; return old state *x/
lock (&r->1);
P = r->p;
if(p){
r->p = 0;
if (p->state != Wakeme)
panic ("wakeup: not Wakeme") ;
ready (p) ;

}
unlock (&r->1);
if(s)

allow();

Figure 2: wakeup

the end of each routine, the lock is released and processor priority
returned to its previous value. (Wakeup needs to inhibit interrupts in
case it is being called by a process; it is a no-op if called by an inter-
rupt.)

Sleep checks to see if the condition has become true, and returns if
so. Otherwise the process posts its name in the rendezvous structure
where wakeup may find it, marks its state as waiting to be awakened
(this is for error checking only) and goes to sleep by calling sched ().
The manipulation of the rendezvous structure is all done under the
lock, and wakeup only examines it under lock, so atomicity and
mutual exclusion are guaranteed.
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Wakeup has a simpler job. When it is called, the condition has impli-
citly become true, so it locks the rendezvous, sees if a process is wait-
ing, and readies it to run.

Discussion

The synchronisation technique used here is similar to known methods,
even as far back as Saltzer’s thesis [Sal66a]. The code looks trivially
correct in retrospect: all access to data structures is done under lock,
and there is no place that things may get out of order. Nonetheless, it
took us several iterations to arrive at the above implementation,
because the things that can go wrong are often hard to see. We had
four earlier implementations that were examined at great length and
only found faulty when a new, different style of device or activity was
added to the system.

Here, for example, is an incorrect implementation of wakeup, closely
related to one of our versions.

void
wakeup (Rendezvous *r)

{

Proc *p;
int s;
p = r=>p;
1f(p){
s = inhibit ();
lock (&r->1);
r->p = 0;
if(p->state != Wakene)
panic ("wakeup: not Wakeme");
ready (p) s

unlock (§r->1);
1f(s)
allow();

The mistake is that the reading of r->p may occur just as the other
process calls sleep, so when the interrupt examines the structure it
sees no one to wake up, and the sleeping process misses its wakeup.
We wrote the code this way because we reasoned that the fetch p =
r->p was inherently atomic and need not be interlocked. The bug was
found by examination when a new, very fast device was added to the
system and sleeps and interrupts were closely overlapped. However, it
was in the system for a couple of months without causing an error.

How many errors lurk in our supposedly correct implementation
above? We would like a way to guarantee correctness; formal proofs
are beyond our abilities when the subtleties of intgrrupts and multipro-
cessors are involved. With that in mind, thd first three authors
approached the last to see if his automated tool for checking protocols
[Hol91a] could be used to verify our new sleep and wakeup for
correctness. The code was translated into the language for that system
(with, unfortunately, no way of proving that the translation is itself
correct) and validated by exhaustive simulation.

The validator found a bug. Under our assumption that there is only one
interrupt, the bug cannot occur, but in the more general case of multiple
interrupts synchronising through the same condition function and ren-
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dezvous, the process and interrupt can enter a peculiar state. A process
may return from sleep with the condition function false if there is a
delay between the condition coming true and wakeup being called,
with the delay occurring just as the receiving process calls sleep.
The condition is now true, so that process returns immediately, does
whatever is appropriate, and then (say) decides to call sleep again.
This time the condition is false, so it goes to sleep. The wakeup pro-
cess then finds a sleeping process, and wakes it up, but the condition is
now false.

There is an easy (and verified) solution: at the end of sleep or after
sleep returns, if the condition is false, execute sleep again. This
re-execution cannot repeat; the second synchronisation is guaranteed to
function under the external conditions we are supposing.

Even though the original code is completely protected by interlocks
and had been examined carefully by all of us and believed correct, it
still had problems. It seems to us that some exhaustive automated
analysis is required of multiprocessor algorithms to guarantee their
safety. Our experience has confirmed that it is almost impossible to
guarantee by inspection or simple testing the correctness of a multipro-
cessor algorithm. Testing can demonstrate the presence of bugs but not
their absence [Dij72a].

We close by claiming that the code above with the suggested
modification passes all tests we have for correctness under the assump-
tions used in the validation. We would not, however, go so far as to
claim that it is universally correct.
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Abstract

The ability to manage distributed computing systems depend on
knowledge of its behaviour. Monitoring can be used to obtain informa-
tion about whole systems or parts of systems. Such pieces of informa-
tion relate to different abstraction levels of the system. A piece of
information about a part of a system we term a behaviour indicator.
This report describes behaviour indicators in relation to the monitoring
model developed in the MANDIS' project. In a worked example the
mapping from high level behaviour indicators through object set states
to hasic states and events is shown. The mapping is illustrated by
examples of a language, SESL. for specification of events and state
changes.

1. Introduction

Monitoring is an important activity in distributed systems, and may be
used to get knowledge about the behaviour of a system at various lev-
els; either whole systems, parts of systems, or patterns of interconnec-
tion between the parts. Monitoring may be used for management pur-
poses, fault detection and diagnosis, performance measurement, sup-
port in experimental distributed systems, long- and short-term planning,
etc.

The following aspects of distributed computing systems are
emphasised as they form the basic reasoning behind some of the argu-

+ This work has been carried out under the COST 11 ter MANDIS project and the TRACE project.

EurOpen 91 — Tromse, 20-24 May




Capturing the Behaviour of Distributed Systems

ments in this paper. We regard distributed computing systems to con-
sist of asynchronous parallel processes communicating over non-zero
delay links. There is no central point of control, accurate global state
or global time. The active entities in a distributed system (e.g.
“processes” or “objects”) may change their communication patterns
according to system changes. These points illustrate the fact that distri-
buted systems are hard to monitor.

In the design of a monitoring system certain goals should be met.
Firstly, the monitoring system must fulfill its primary role of getting the
information requested by the user from the monitored system to the
user. The monitoring information should be presented at the correct
abstraction level, that is, a level suited to the actual user or application.
The monitoring system should be flexible (or adaptable) and provide
the user with the ability to view the monitored system from the pre-
ferred point of view. This should give the user the potential to change
dynamically the point(s) of interest in the monitored system. The user
should be allowed to choose between several temporal aspects of moni-
toring, that is, whether monitoring information should be presented in
real-time or stored for a subsequent (post-mortem) analysis. The moni-
toring system should not disturb and thereby change the timing aspects
of the monitored system in such a way that the monitoring information
is only valid when monitoring is done. The monitoring system should
preserve the sequence of detected events in the monitored system, and
in certain cases also with respect to a hypothetical global real-time
clock, specified within some finite delay. Due to the potentially large
amounts of data that may be detected, the monitoring system should
filter and structure the information flow such that the user only gets the
requested information. Finally, good design rules concerning the
visualisation of the monitoring information should be used.

The goals listed above place great demands on monitoring systems, and
they may be in conflict with one another. In order to try to meet the
demands, this paper presents a general approach to monitoring, which
may ease the design of monitoring systems for many different pur-
poses.

In the following chapters we will outline our approach to modelling
and designing monitoring systems. We will describe a language
(SESL) for analysis of monitoring information through the specification
of events and state changes. We will use the approach and the
language to illustrate a worked example of capturing the behaviour of a
distributed service under different load sharing algorithms.

Much work has been done on the subject of monitoring in the past
years, especially in the context of debugging distributed systems
[Bat83a, Hab90a, Gar84a], but also “pure” monitoring works
[Das86a, Ogl88a,Joy87a] have been and are still being carried out.
Many of the projects have also succeeded in implementing monitoring
systems suited for their applications.

2. Approach

In order to support the somewhat different objectives of the COST 11
ter MANDIS project [Lan88a] and the design of a test bed for distri-
buted operating systems [Ans88a,Fal88a], our work on monitoring
aimed to use an approach in which monitoring could initially be
described in terms independent of any particular design of monitoring
service or system architecture, see also [Hol88a].
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2.1. General Framework

Bearing in mind the points listed above on the many goals for the
design of monitoring systems as well, there was a need to give general
descriptions of the structure of the monitoring information handled by
monitoring systems regardless of any actual systems. In order to do
this, we chose a top-down approach where we used the concept of the
behaviour of distributed systems.

Monitoring may be described by two aspects: the structure of the moni-
toring information, and the monitoring system which handles it. Our
approach attempts to keep these two aspects separated.

The approach consists of the identification and outline of four steps.
The first step, the general framework, outlines an abstract three level
model for monitoring information. The model is general, and makes
very few assumptions about the monitored system, or how the monitor-
ing information is obtained. The second step defines a specific frame-
work, which describes the structure of monitoring information tailored
to a monitored system with a specific system architecture. The third
step, the functional model. is the design of the monitoring system
itself. The final step is to describe and build an implementation of the
design.

Our motivation for using this top-down approach has been to let the
users of the monitoring system and the monitoring information have as
much flexibility as possible. The users should have the facility to
describe, related to their particular needs, what information is currently
of interest. The monitoring system should not merely provide certain
fixed standard options; it should provide only the requested monitoring
information and be adaptable to changing user needs and system archi-
tectures.

Consequently there is a need for filtering “garbage” from a stream of
monitoring information, giving the user only the items of information
specified, thus ensuring they are “of interest”.

The general framework outlines a model for monitoring independent of
any particular monitoring system or monitored system. The only
assumption about the monitored system is that it is composed of
“objects” (in some sense). The general framework regards objects as
an elementary and independent unit of structuring. They are indepen-
dent in the sense that they may be characterised without reference to
the context within which they have been placed. Furthermore, objects
are the lowest level of granularity, in terms of identifiable (nameable)
entities active within the system. Objects have a state, and this state
can be observed or communicated in some way (actively (by the
object) or passively). Objects are defined recursively, so an object may
be composed of other objects, leading to composite objects.

We have divided the general framework into three levels of abstraction.
It describes the relations between monitoring ‘inﬁ)rmari()n on these
three levels. The general framework does not describe any monitoring
systems, but simply assumes that they support the basic functions of
extracting and processing monitoring information.

The highest abstraction level of monitoring information is the
behaviour indicator (B/) [Ans88b]. Behaviour Indicators are specified
by the user in the user’s context, and collectively give the user’s per-
ception of that part of the system in which the user is currently
interested. The values of Bls are derived from the underlying monitor-
ing system, and present the observed behaviour of (a part of) the moni-
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tored system. The values of the BIs are presented in a manner specified
by the user of the monitoring system.

The second level of abstraction defines object states (OS) and object
set states (0SS). OSs denote the state of a single object, while the OSSs
denote the combined state of an arbitrary (possibly user-defined) col-
lection of objects. The specifications of the BlIs should naturally
decompose into lower level specifications involving specific single
objects or sets of objects. The value of the OS and the 0SS will together
give the value of the B/s (from which they were determined).

The values of the object (set) states are determined from basic moni-
toring data (BMD), which constitute the lowest level of monitoring
information. BMD are detected directly in the monitored objects. It is
only at the lowest level, where the basic monitoring data is captured,
that the monitoring system is explicitly intrusive and is in direct contact
with the monitored system. As a model, the general framework does
not specify how BMD are derived.

2.2. The Specific Framework

The specific framework is a development of the general framework and
describes the structure of monitoring information tailored to monitored
systems with a specific system architecture. The monitored system,
and in particular the aspects that have an impact on the monitoring
information, is described. In the specific framework concepts such as
processes, objects (with certain specific capabilities), clients, servers,
interaction paradigm, protection, etc. will be defined, and should be
used in the descriptions.

The three levels of abstraction from the general framework are used,
and the levels may correspond to particular features of the architecture
of the monitored system.

In the example in chapter 4, which will be on the specific framework
level, the mapping of BIs to OSs and OSSs are shown.

2.3. The Functional Model

The functional model is a specification of the structure of a particular
monitoring system. It is based on the description of the structure of
monitoring information in the specific framework, and describes how a
monitoring system can be divided into a set of functions which accom-
plish the tasks required to gather the necessary monitoring information.
We propose a generic structure of these specifications using three
layers as shown in Figure 1.

2.3.1. Analysis Layer

The analysis layer decomposes specifications of B/s into specifications
of object (set) states, and tells the underlying combination layer what
object (set) states are of current interest. When relevant monitoring
information is received from the combination layer, the analysis layer
derives the values of the Bls. The computations will range from simple
statistics gathering (and calculation of more complex statistical indica-
tors), to the complex task of fault diagnosis.

2.3.2. Combination Layer

The combination layer receives specifications from the analysis layer
of which object (set) states (OSs and 0SSs) are of interest, and instructs
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Analysis layer
(Behaviour Indicators)

Combination layer

(Object states and
object set states)

é a) Detection and
S Retrieval layer

(Basic monitoring data)

Figure 1: Functional Model

2.4. The Implementation

the underlying detection and retrieval layer about BMD of interest, It
sets up the monitoring activity accordingly. The combination layer col-
lects and collates the information generated by the detection and
retrieval layer; it performs grouping of events and states guided by the
specifications from the analysis layer. Thereby it derives the values of
the OSs and OSSs from BMDs, and passes the relevant values up to the
analysis layer.

2.3.3. Detection and Retrieval Layer

The detection and retrieval layer receives specifications from the com-
bination layer of what BMD (basic events and states), should be
detected from the monitored system. In this layer the actual production
of monitoring information is done. This can be performed in many
ways, for example, by dedicated hardware that captures data on inter-
nal busses; or pieces of code inserted into the applications or the ker-
nel, which monitor the activity from the inside; or by any other means
that can be devised. The information gathered by this layer consists of
event reports, indicating the occurrence of some identifiable event, and
state information for various specified states within the monitored sys-
tem. BMD will be passed to the combination layer for further process-

ing.

Implementations have been carried out from designs based on the func-
tional model e.g. [Dre88a] and [Sae91a]. The implementation built at
Harwell [Hol91a] was designed around a central (but possibly distri-
buted) Data Combiner. The Combiner gathers data from the processes
being monitored, analyses the data, and send the results to the manage-
ment applications which requested them (see Figure 1). Data can be
exchanged between separate combiner processes to enable the analysis
to be decomposed into smaller units. This reduces the volume of data
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transmitted on a network, and allows different management domains to
restrict access to low-level data. The Combiner forms the combination
layer of the functional model, and can also perform the functions of the
analysis layer (the management application may or may not perform
further analysis).

Monitoring access to monitored processes is provided through the
Manager and Detector processes (the detection and retrieval layer).
These are created by the monitored process and handle the control of
the monitoring activity, implementation of management commands,
extraction of data and external communication with the combiner or
management applications. The monitored process generates events and
reads and writes 'monitored and managed states through calls to rou-
tines in the Monitoring Library. Event indications and state values are
held in memory shared by the monitored process and the manager and
detector processes, providing a highly efficient form of local communi-
cations. The manager process waits for requests from the combiner
process or management applications which cause it to report state
values, issue user-defined management commands, change state values,
enable event reporting, or terminate the monitoring activity. The detec-
tor process waits for event indications to be stored by the monitored
process and sends notifications to the combiner.

Management applications initiate the monitoring activity, send the
analysis rules to the combiner (or perform it themselves), and request
state reports or wait for event reports.

Communications between the modules is through efficient LAN and
WAN protocols (Amoeba) [Ren87a). Addressing is handled using glo-
bal location-independent names stored in the Amoeba Directory Ser-
vice. A

The implementation is described in more detail in [Hol91a].

3. State and Event Specification Language (SESL)

3.1. Rule-Based Data Combination and Analysis

The State and Event Specification Language (SESL) was devised in
order to provide a simple mechanism for specifying the operations to
be performed in order to analyse the events and states existing in a dis-
tributed system. It has been designed to perform most or all of the
computations needed in the Combination and Analysis layers. A
language provides a simple, stable interface with well-defined syntax
suitable for the occasional user, but also customisable for the regular
user. SESL allows the declaration and definition of states and events in
terms of previously defined events and states in an extensible manner,
providing a multi-level specification scheme which thus implements the
abstraction level technique for decomposing distributed systems
described above.

SESL is described in more detail in [Hol91b].
SESL’s extensibility derives from its basic statements:

HighLevelEvent when EventString [provided State]
HighLevelState := StateString

An EventString is a specification of a pattern of events, either high-
level events (referenced by name), or low-level events (referenced by
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EVENT("LowLevelEvent™)). These patterns are specified using event
operators:

A — B matches when event B occurs (any time) after event A;
A = B matches when B immediately follows A;
A | B matches when either A or B occur;

A — 'B — C matches when C occurs after A without B occur-
ring in between.

A HighLevelEvent is defined to occur whenever the pattern defined by
EventString is matched. If a provided clause is specified, the event
only occurs when the EventString is matched and the state is true
(non-zero).

A StateString is an arithmetic expression which is used to calculate a
state, defined in terms of other states and state operators. The follow-
ing states and operators may be used:

$State —a high-level state;
state ("LowLevelState") —a low-level state;

#Event - the number of times a particular (high-level) event
has occurred;

@Event — the time at which a particular event occurred,;

+ - * / % == l= < > <= >= and or — normal arith-
metic operators.

A change of state is also an event; e.g. Event WHEN $State ==
4 occurs at the instant St at e becomes equal to 4.

Events and states may be defined in a global context, or a local context
relating only to the object being monitored. This allows identical local
specifications to be used when monitoring several identical objects
without the names of events and states interfering with their counter-
parts in different local contexts. In order for events and states in the
global context to use local events and states, the combination operators
are used. For events:

GlobalEventl WHEN ANY LocalEventl triggers the
global event when any local event with the specified name
occurs.

For states:
(+) SLocalState is the sum of all local states of that name;

(*)$LocalState is the product of all local states of that
name;

(#)SLocalState is the number of local states with that
name;

(<) $LocalState is the smallest local state with that name;
(>) $LocalState is the largest local state with that name.

Events can be used to trigger activities in the monitoring system.
Using the “AWAIT event” command, the occurrence of an event will
cause a notification to be sent to the user’s terminal or application.
Alternatively the more powerful “ON event procedure” command can
be used to define a procedure to be executed when the event occurs.
This may be a series of statements analysing states using the

set S$stateName StateString

and

if StateString procedure
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statements, or it may enable or disable event reporting, or simulate the
triggering of other events. Procedural statements may be grouped
using the do ... end construct. For this experiment two new
features have been added to the language: state arrays (declared using
declare $SarrayName[size]); and while loops (while
StateString procedure).

Other actions, such as controlling a piece of hardware or software as
part of a distributed systems management activity lie outside the scope
of pure monitoring. Such actions are performed by user software, trig-
gered by specific events generated by the analysis layer.

4. Example: Quality of Load Sharing

The problem of load sharing in distributed systems is of concern in
several areas, for instance in a global scheduling strategy. A strategy
for load sharing should make multiple processing units in a system
cooperate to share the system workload. The strategy should share jobs
fairly among servers regardless of origin. It should enable concurrency
between jobs, avoid bottlenecks in the system, and maintain the robust-
ness and performance in the presence of partial failures in the system.

In this example the system is considered to be a set of nodes connected
by a communication channel. All nodes can communicate directly with
all the others, and the communication delay is the same between all
nodes. Jobs may enter the system through any node, but they will leave
the system through the same node. They arrive at the source node from
outside the system and depart from the system after processing. Jobs
are defined as entities that can be processed. When a job enters the
system it will be queued somewhere until it is scheduled for processing
at some node (server) according to some global scheduling algorithm,
called algorithm A throughout the example. Once the job is scheduled,
it will be processed at the same node until it exits and departs the sys-
tem.

In this paper we present a derivation of a measure called the quality of
load sharing, or Q-factor [Wan85a]. This high level indicator of sys-
tem behaviour is defined below as a comparison between the perfor-
mance of algorithm A in servicing jobs, measured by the mean
response time for those jobs, and the performance of a standard queue-
ing algorithm, global first-come first-served (FCFS). We show how
this behaviour indicator may be decomposed into object (set) states and
then into computations involving only basic monitoring data. The goal
is to demonstrate the feasibility of our model for monitoring.

4.1. Behaviour Indicator

The definition of the Q-factor for the load sharing algorithm A, is
defined in [Wan85a] as:

mean response time over all jobs under FCFS
sup max {mean response time at i-th source under algorithm A }

Qalp)= (1)

where

N = number of sources,
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4.2. Decomposition

number of servers,
mean service time,
arrival rate at i-th source,
= aggregated utilization of system.

The response time for a job is defined to be the length of time from
when the job arrives at the system until it departs from the system. The
performance of algorithm A is measured by the response time it pro-
duces, and it will depend on the arrival rates to the system. The value
of Q4 (p) is derived when the arrival rates are varied such that algo-
rithm A gets its worst performance, i.e. its mean response time is max-
imised.

The purpose of this definition of the Q-factor is to expose fundamental
differences between the various algorithms. In [Wan85a] the perfor-
mance of different algorithms are analysed under varying conditions,
and readers interested in the analytical results are referred to that work.
The quality of the actual load sharing in a particular system is a high
level metric that can be computed by observing (monitoring) the sys-
tem in question. We should thus be able to observe which algorithm A
is the best for our system under varying conditions, as for instance
arrival rate of jobs, client-server ratios, various mixes of server perfor-
mances, etc.

In order to compute the Bl from the observed data, equation (1) is
rewritten as:

E[T rcrs)
B max E{T, ;]
!

(2)

The components of the expression are explained below.

In order to compute equation (2) we need the mean response time for
jobs from each source under algorithm A and for all jobs under FCFS.
Since they will be derived from the response time for each job, jobs are
the objects of interest, and the decomposition focuses on the informa-
tion monitoring can give us relating to each job. The Q-factor
behaviour indicator is derived from the object states which give the
amount of time jobs spend in various parts of the system, which are in
turn derived from the basic monitoring data which record the times
when a job moves from one place or state to another. Throughout the
example values in capital letters denote object states and object set
states while values in small letters denote events and constitute the
basic monitoring data.

4.2.1. Response Time Under Algorithm A

The mean response time at source / under algorithm A for all jobs &,
1 €k £ n,, is an Object State, and is given by the expression:

1 n,
ElTy;) = —XTari(k)
i g=)
where T 4 ; (k) is the response time for job k from source /.

The response time of each job from any source is the sum of the time
spent servicing the job, the time spent in queues due to algorithm A,
and the overhead from communication, which may be dependent on
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tiarr (k) time when job & enters the system at source i

L aiqueue (K) time when job & is queued under algorithm A

14.i dqueue (k) | time when job k leaves the queue under algorithm A

ta i schea(k) time when job £ is scheduled for processing the first time
under algorithm A

taiexic (K) time when job k exits processing under algorithm A

1A, dep (K) time when job & leaves the system via source i

Table 1: Basic events

job job

Sources Queues Servers

Larr Iqueue ! dqueue I sched

tdep Lexit

Figure 2: Generation of basic events

algorithm A. Thus, the response time for job k from source i under
algorithm A (an object state) is given by:

Taik)y = S;(k) + Qai(k) + Oy 3)
where

Si(k)

Q4.:(k)

service time for job k originating at source !

total time in queue(s) due to algorithm A

]

for job k from source i
0O, = communications overhead due to algorithm A.

These object states can now be decomposed to enable their calculation
in terms of the basic monitoring data which are available from this sys-
tem:

The service time for job k from source i, §;(k), is an object state
defined as the time between the process performing the job first being
scheduled for execution and the time when it exits. It is composed of
two basic events, given by:

Sl(k) = tA,i,e.u'r(k) - tA,i,sc'hed(k)

The time spent by job & in a queue under algorithm A, Q4 ;(k), is an
object state given by:

QA,:(k) = tA,i,dqueue(k) - tA,i,queue(k)

The communications overhead due to algorithm A for job k£ comes from
three sources: the time spent by the source searching for a queue and
sending it there; the time spent by the server searching for a queue and
getting the job from it; and the time spent returning the job to its
source. Hence:

OA = tA,i,queue(k) - ti,arr(k) + tA,i,s('hed(k)
- [A,i.dqueue(k) + tA,i,dep(k) - tA,i'exil(k)

Not surprisingly, if these decomposed states are put back in equation
(3), most of the terms cancel, leaving:
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Tai(k) = tadep(k) = 1;ap(k) 4)

However, the point of introducing the object states was to derive the
service time §,(k), which is independent of the queueing algorithm,
and is needed to calculate the response time under emulated FCFS.

As we can get the mean response time for all jobs at each source, the
maximum value of all the values for E[T 4 ;] over all sources / can now
be selected among these values.

4.2.2. Response Times Under Simulated FCFS

The mean response time for al/ sources i, 1 < i < s, under FCFS is an
Object Set State, and is given by the expression:

] 5
E[Tgeps) = TZ (T pcrs.il

where

n,

1
E[Trcrsi] = > Trcrs.i(k)
ni {2

As with algorithm A, the response time for job k& from source i under
FCFS is given by:

Trcrsi(k) = Si(k) + Qpcrs.i(k) + Orcrs “
Again these break down as follows:
Si(k) = trcrs.iet (k) = TrFs.i.sched(K)
Qrcrs.i (k) = trcrs. dguene (k) = trcrs.i guene (k)
O rcrs = trcrs.quoe(K) = iar (K) + trcES i senea (k)
— trcEs i dguene (k) F TECES i dep (K) = TECFS i evit (K)

The asterisks denote events which do not occur in the real system,
since FCFS will not be running and therefore cannot be observed.
These events can only be found by simulating the events that would
have been observed if the same jobs were created at the same times in
an identical system running an FCFS algorithm. The first thing to note
is that the service time S; (&) is independent of the global load sharing
algorithm, i.e.:

* *
trers.ieit (K) = trcrs.isohed (K) = ta et Ck) = Laisened (K)

Secondly we make the approximation that the overhead is small
enough to be ignored. Although two of the three time intervals in the
overhead are independent of the algorithm, the time interval during
which a queue is selected (either by the source for queueing a job or
the server for scheduling a job) does depend upon which algorithm is
used. Some algorithms need information about the queues before
selecting one, some (FCFS, shortest job first) need information about
the jobs on the queues. The time taken to get this information for simu-
lated FCFS cannot (easily) be obtained by monitoring a system running
a different algorithm. We therefore make the approximation that this
time is independent of the algorithm, and that in fact all overheads are
small enough to be ignored. This greatly simplifies the monitoring
activity.

Thirdly, we must calculate Q cps; (k). Having made the approxima-
tion that O gcrs = 0, equation (5) can be rewritten:

Qrcrs.i (k) = ticrs.isonea(k) = 1iar (k)
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However FCFS may be implemented, it can be modelled as a single
central queue where jobs are entered in order of creation, and are
removed each time a server becomes available for scheduling. Pro-
vided that we begin monitoring when the servers are first started we
can continuously calculate the times when servers become available for
scheduling and what jobs are on the queue, since we know when the
jobs are created (¢; ,,, (k)), how long they take to be processed (S;(k)),
and how long previous jobs spent on the queue.

The above analyses result in the following decompositions of the object
states needed to calculate the Quality of Load Sharing behaviour indi-
cator:

Tpitk) = 8;(k) + Qai(k) + Ox = taigep(k) = tign (k)
Trers.i(k) = S;(k) + Qrcrs.i(k) + Opcrs
= et (K) = A schea(K)
+ trcrs.isched (K) = i arr (K)

where f;c‘[:s‘,"s(-h(,d(k) is calculated from ¢, ., (k) and §; (k) by simula-
tion.

4.3. Implementing a Quality of Load Sharing Calculation

The monitoring activity begins with the programmer of the distributed
service and client stub routines. For the purposes of these experiments
a client-server program pair was written to simulate a service where 2
clients create jobs (of specific durations) and send them to 3 servers to
perform them. Monitoring code was inserted into the client to generate
“job created” events and to record the number of the job (job numbers
are unique, one client using the even numbers starting at 0, the other
the odd numbers starting at 1). Job durations are random with an
exponential distribution; the time between creation of jobs is random
with a poisson distribution. Between a job being created and being
scheduled it is placed on a queue according to a queueing algorithm.
The following algorithms were implemented: random splitting (client-
initiated (c-i)), random server (server-initiated (s-i)), cyclic splitting
(c-i), cyclic server (s-i), join shortest queue (¢-i), service longest queue
(s-i), shortest job first (s-i), first come first served (s-i). With client-
initiated algorithms (where the client chooses which queue to put the
job on) queues are maintained by the servers; with server-initiated

%% ** Global context **
declare $gueue[64]

set S$queueHead 0

set $queueTail O

declare $jobArrived{64]
declare $jobScheduled[64]
declare $FCFSScheduled[64]
declare $serviceTime[64]
declare $jobSource[64]

set $jobNumber 0
declare SnextFree(3)

declare $A1gATime[2]
declare $A1gANum[2]
set SFCFSTime 0
set $FCFSNum 0

Program 1: Global variables
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%1 ** Client 1 local context **

jobArrival when event ("job created")

on jobArrival do
set S$jobNumber state("job number")
set S$jobArrived[$jobNumber%64] @jobArrival
set $jobSource[$jobNumber%64] 0

end

enable jobArrival

%2 ** Client 2 local context **

jobArrival when event ("job created")

on jobArrival do
set $jobNumber state("job number")
set $jobArrived([$jobNumber?64] @jobArrival
set $jobSource[$jobNumberi64] 1

end

enable jobArrival

Program 2: Client local context

algorithms, they are maintained by the clients. Either way, the servers
know when a job is removed from a queue and scheduled for execu-
tion. Therefore the servers have monitoring code inserted to generate
the events “job started” and “job finished” and to record the job
number.

The SESL specification to drive the analysis of the incoming monitoring
data is now described. It starts with the declaration of global variables
(Program 1). The first group controls the queue of jobs for emulating
FCFS. The head and tail pointers to the queue cycle around the
Squeue array; it is assumed that the queue never exceeds 64 jobs.
The second group of arrays maintain information about outstanding
jobs, including their arrival (creation) time, the time they are actually
scheduled for execution, the time they would have been scheduled
under FCFS, the length of time the job was being serviced, and the
source of the job. $jobNumber stores the number of the job referred
to by the most recent event notification. $nextFree is an array
which records the time at which each server will next be available for
scheduling under emulated FCFS. The remaining variables keep a run-
ning total of the response times and job counts for the actual algorithm
(A) for each source, and for emulate FCFS (averaged over all servers).

The next two sections are specifications in the local context of the two
clients (sources) (Program 2).

Internal events jobArrival are defined using specifications of the
external low-level event “job created” (¢, ., (k))), which occurs in both

:3-5 ** Server local contexts **
jobSchedule when event ("job started")
jobDeparture when event ("job finished")

on JjobSchedule do
set $jobNumber state (" job number")
set $jobScheduled[$jobNumber%64] @jobSchedule
end
on jobDeparture do
set $jobNumber state (" job number")
set S$serviceTime[$jobNumber%64] @jobDeparture
- $jobScheduled[$jobNumber :64]
end

enable jobSchedule, jobDeparture

Program 3: Server local contexts
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clients. An action is defined for this event which sets the global
$jobNumber variable and fills in the tables for that job. Because of
the local context, the state @ jobArrival (time at which the event
occurred) refers only to the event defined in the same local context.
Note that the only difference between these specifications is the
number stored in the $ jobSource table.

The next section is for the local context of the server, and is repeated
three times, once for each server (Program 3). As with the client
specifications, the low-level events are defined (“job started”
(24.i.schea(k)) and “job finished” (¢4 ; 4p (k))), and job tables filled in
with the actual times of the events under algorithm A.

Returning to the gfobal context, an action is defined for any jobAr-
rival, which is executed in addition to (and after) the action specified
in the local context:

%% ** Global context **

on any jobArrival do
set $queue[$queueTail] $JjobNumber
set $queueTail $queueTail+l

end

The action puts the newly created job on the FCFS emulation queue.
Here it will stay until the actual job has finished in order to calculate its
service time (S;(k)). Emulation of the FCFS queue is performed by
actions occurring on the receipt of a jobDeparture event.

A state calculation is defined for convenience, which acts like a macro
in a conventional programming language:

SnextServer := (SnextFree[2]<S$nextFree(l] and
SnextFree[2]<$nextFree[3]) +
2 * (SnextFree[3]<$nextFree(l] and
SnextFree[3]<S$nextFree(2])

$SnextServer returns the number of the server (0 to 2) which will
next be available (in FCFS emulation) to service a job.

The next action is the meat of the specification, calculating the ordering
of jobs under emulated FCFS (Program 4). Firstly the cumulative
response time for algorithm A from the respective source is calculated
from the times of the actual events. Then in a loop while the FCFS
emulation queue is not empty and the service time for the job is known,
the jobs on the queue are removed in order of arrival to be assigned to
the next server that becomes available. If the job arrived before the
server was (conceptually) available then it is scheduled at the time the
server is next free; otherwise the job is scheduled at the same time as it
was created. The time at which the server becomes free after this job is
calculated (from the job’s scheduling time and its service time) and
stored in the SnextFree array. Note that the times the servers are
conceptually active may be far in advance or behind the real time; the
calculations can be performed any time after the service time of the job
is known. Finally, the cumulative response time (X7 4(k)) and job
count for FCFS emulation are calculated and the program returns to the
top of the loop for the next job.

The last part of the specification defines the high-level states which
measure the maximum response time for a server in algorithm A
(max E(T4;]), the mean response time under (emulated) FCFS

(E[T gcrs D), and the Q-factor behaviour indicator (Q 4):
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$S1Resp := SAlgATime[0]/$AlgANum[(Q]

$S2Resp := $AlgATime[l)/S$SAlgANum[1]

SAlgAResponse := S$S1Resp*($S1Resp>=$52Resp) +
$S2Resp* ($S1Resp<$S2Resp)

SFCFSResponse := $FCFSTime/S$FCFSNum

$QFactor := S$FCFSResponse/$AlgAResponse

5. Conclusions

While the SESL implementation has been a useful demonstrator of
monitoring techniques [Hol89a, Hol90a, Hol91b] the language itself
has been found to be restrictive. For all its power in matching patterns
of events, this ability has seldom been used; whether this is because of
the nature of most monitoring activities, or just the scenarios chosen, or
perhaps the style of the programmer, is not clear. Of much greater use
were the procedural aspects of SESL when used to perform analysis of
monitored data. The ability to run a procedure in response to a system
event, using values measured in the system at that time, has been valu-
able. The fact that SESL has only a very small range of procedural con-
structs is a major limitation, and is explained by the fact that when
SESL was originally conceived it had no procedures, as it was intended
to be only a language for event and state combination. When the
advantages were seen in extending it to perform analysis, the pro-
cedural constructs were added as they were needed. As a result, SESL
has become a rather complex mix of declarative, imperative and pro-
cedural commands, difficult to learn both in terms of the range of com-
mands, their syntax and effects (some are rather subtle), and how to put
them together to form programs. If SESL was to be designed again
from scratch it would surely be not only a useful, but a usable tool for
monitoring distributed systems.

In this paper many problems regarding monitoring of distributed sys-
tems have not been discussed. These problems include the difficulties

on any JjobDeparture do

set $source $jobSource[$iobnumber=64]

set $AlgATime[S$source] SALgATime[Ssource] +
SserviceTime [$JjobNumber-64] +
$jobScheduled[$jobNumber:64] -
$jobArrived[$ jobNumber:64]

set $AlgANum($source] $AlgANum[$sourcel+1

while SqueueHead!=SqueueTail and
SserviceTime [$queue[$queueHeadt64]%64] do
set $nextJob Squeue|SqueueHead: 64]
set $queueHead SqueueHead+1
set S$server $nextServer
ie $nextFree[S$server] > $jobArrived[S$nextJobi64]
set $SFCFSSheduled([S$nextJob-64) SnextFree[$server]
else
set $FCFSSheduled[$nextJob:64] $jobArrived({$nextJob%64]
set SnextFree[S$server] SFCFSSheduled[S$SnextJob%64] +
SserviceTime [$nextJobz64]

set SFCFSTime S$FCEFSTime + $serviceTime[$nextJob%64] +
SFCFSScheduled[$nextJob%64] -
$JjobArrived[$nextJob%64]

set SFCFSNum S$FCFSNum+1

end
end

Program 4: Job ordering
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concerning establishing a meaningful time, sharing of basic monitoring
data and behavioral indicators, and the validity and usefulness of dif-
ferent viewpoints and abstraction levels of the *“same” subsystem.
Other problems not discussed are to what extent and in which way our
approach to monitoring will influence the systems being monitored.
This includes the potential problems that can occur when scaling the
monitoring, for instance by having complex behavior indicators for a
large subsystem.

Our experience to date suggests that the approach and techniques
described in this paper seems to be useful for establishing higher-level
insights in the function of certain aspects of distributed systems. We
feel that our apptoach supports reasoning about monitoring of distri-
buted systems, and supports a controlled envirnoment for development
of tools for monitoring.
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Abstract

The Meta system is a UNIX-based toolkit that assists in the construction
of reliable reactive systems, such as distributed monitoring and debug-
ging systems, tool integration systems and reliable distributed applica-
tions. Meta provides mechanisms for instrumenting a distributed appli-
cation and the environment in which it executes, and Meta supplies a
service that can be used to monitor and control such an instrumented
application. The Meta toolkit is built on top of the ISIS toolkit; they
can be used together in order to build fault-tolerant and adaptive distri-
buted applications.

1. Constructing Reactive Systems

In a reactive system architecture, the system is partitioned into two
pieces: an environment that follows a basic course of action, and a con-
trol program that monitors the state of the environment in order to
influence the environment’s progress. This architecture is very general.
For example, process control systems, system monitors and debuggers,
and tool integration services all have a reactive system structure.

Another application of the reactive system architecture is the structur-
ing of distributed applications. For example, many distributed applica-
tions are constructed by taking off-the-shelf programs and connecting
them with some communication subsystem. Such an application can be
thought of as an “environment” with a state including the properties of
machines running the application, current performance of the com-
ponent programs, and the state of the communication subsystem. The
job of the control program is to monitor the state of the application in
order to guarantee that the system operates efficiently in spite of chang-
ing load and failures. The control program can also be used to inter-
connect the application’s components in a more loosely bound manner
than conventional RPC mechanisms.
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The Meta system, described in this paper, is a UNIX-based toolkit that
provides the basic primitives needed to build a non-real-time reactive
system. Using the toolkit, a distributed program can be instrumented
with sensors and actuators in order to expose its state for purposes of
control. Meta provides mechanisms that allow a control program to
query the state of the instrumented application and to respond by
invoking actuators when some condition of interest occurs. The toolkit
includes facilities for structuring individual components into collec-
tions of components for fault-tolerance. In addition, Meta guarantees
that the monitoring and reaction is done atomically.

Meta itself is built on top of another toolkit, the ISIS system. The appli-
cation designer can use ISIS for fault-tolerant communication and Meta
for distributed control. In fact, the Meta project was started when four
of us in the ISIS project worked on integrating a distributed application
constructed from off-the-shelf components [Mar90a]. The facility we
found lacking in ISIS was support for distributed control.

The next section introduces the architecture of an application managed
by Meta. Section 3 presents how applications are instrumented, and
Section 4 discusses how the resulting application is controlled. Finally,
Section 5 presents the current status of Meta and discusses our future
plans.

2. The Meta Architecture

The architecture of Meta can be illustrated through an example of
managing a distributed application. Consider an application that
includes services and clients making use of the services. A given ser-
vice consists of a set of identical servers replicated both for fault-
tolerance and for coarse-grained parallelism. Meta will be used to
manage the services; in particular, if the load on a service is too large
or the number of servers becomes too small due to crashes, then a new
server is to be started and added to the service. Additionally, if a
server’s queue becomes too long, then waiting requests are to be
migrated to less-loaded servers in the service. There are other condi-
tions that would probably need to be maintained as well, such as reduc-
ing the number of servers when appropriate, but for sake of brevity we
will keep our example limited.

Meta structures a distributed application using a data model based on
the entity-relation data model [Che76a], with each instrumented com-
ponent (i.e., a program equipped with sensors and actuators) being
viewed as an entity and its sensors and actuators being the attributes of
that entity. For example, a server in the above example could be
instrumented with sensors that give the server’s load and the queue of
waiting requests. Entities of the same type, that is, having the same set
of sensor and actuator attributes, form an entity set.

Subsets of an entity set may be grouped together to form aggregates.
Aggregate structures provide control programs with a way of grouping
related entities together and limiting actions to members of that group.
For example, the servers comprising a service can be grouped into an
aggregate representing the service. Aggregates are themselves entities,
and the system architect can define sensors and actuators on aggre-
gates. An aggregate sensor is a function over the state of all the
members of the aggregate. For example, a service aggregate could
have a sensor that gives the median queue length of the servers in the
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“machine” || “‘server”
stub stub

machine
process

server
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Figure 1: An Instrumented Component

service. An aggregate actuator causes an action to be performed on
some subset (from one to all) of the current members.

A distributed application is managed through the use of guarded com-
mands; that is, through a set of (condition, action) pairs that reference
the sensors and actuators of the instrumented application. These com-
mands are executed by interpreters that reside in stubs (somewhat like
RPC stubs) coresident with the instrumented programs, thus allowing
for fast notification and reaction. Each condition is a proposition on the
state of system; references to both local sensorswithin the entity to
which the stub is attachedand nonlocal sensors are allowed. The action
portion is a sequence of actuator invocations that are executed atomi-
cally. Actions may enable guarded commands on another Meta stub;
this facility allows one to write control programs that span multiple
components.

Since guarded commands are evaluated in the same address space as an
instrumented program, their impact on the performance of the applica-
tion is a concern. The syntax of the guarded command language (a
postfix language called NPL) is tailored for fast and efficient evaluation,
and so we do not expect programs to be written directly in this
language. We are designing an object-oriented control language called
Lomita [Mar90a] that can be used to describe the structure of the appli-
cation and to specify its control behavior. A Lomita program contains
a schema specifying the entity and aggregate structure along with their
sensors and actuators. The control behavior of the application is
specified in Lomita through the use of rules, where the conditions for
the rule may include real-time interval logic expressions [Sch83a].
Such temporal expressions are compiled into finite state automata,
where the state transitions are implemented using Meta guarded com-
mands.

Figure 1 illustrates the use of stubs. The machine M1 is running a
server that has been instrumented, so there is a stub running in the same
address space as this server that can directly access the sensors and
actuators of the server. The machine is also running a separate Meta-
supplied program accessing the various properties of the machine and
its operating system, such as the amount of available memory and the
processor load. This program is instrumented, and so has a stub that
supports a set of sensors and actuators over the machine and operating
system state.

3. Application Instrumentation

An application first must be instrumented before it can be controlled.
This is accomplished by inserting into the application a small amount
of code, and then linking the application with a Meta library. This sec-
tion describes the instrumentation process in more detail.
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3.1. Access to Base Values

A sensor provides access to the value of some underlying system vari-
able. An application defines a sensor with a Meta library routine:

meta new sensor (svr_g length, "load",
TYPE INTEGER, min_period);

This routine creates an integer-valued sensor named “load”. When this
sensor is referenced, the function svr_g_length in the instrumented
program is called, which presumably returns the number of entries on
the server’s work queue.

In a reactive system, the fact that a sensor’s value has changed is as
important to know as the current value of the sensor. There are two
methods by which an application can alert its stub that a sensor’s value
has changed. In some cases, a sensor’s value changes either slowly or
regularly, in which case a lower bound on the time between changes in
its value can be determined. The application tells the stub this lower
bound as the fourth parameter of the meta new sensor call. This
value states how long that sensor’s value can be cached before repol-
ling is needed. In other cases, it would be very hard to determine such
a lower bound. In this case, the fourth parameter of the
meta new sensor call is zero, and the stub will obtain a fresh
value only when the application makes an upcall to the stub. Such
upcalls never block and can be made even when a nonzero polling
period has been specified.

Actuators provide the means through which Meta acts upon the system.
Like sensors, actuators are implemented by function calls in the appli-
cation program. - Actuators can be parameterized and can return either
success or failure.

3.2. Functional Composition

3.3. Aggregates

A control program may wish to monitor a sensor whose value is a func-
tion of an existing sensor or sensors. For example, the control program
may wish to monitor the maximum load of a server or the difference
between two queue lengths supported by a server. Such sensors can be
easily defined using Meta. A stub can construct functions of the sen-
sors it supports and can define additional sensors in terms of these
functions. The stub ensures that the sensors comprising such a sensor
are sampled atomically. A extensive collection of pre-defined func-
tions are available, and this collection can be augmented with user-
defined functions.

An aggregate has, as predefined sensors, set-valued versions of the sen-
sors on the components comprising the aggregate. For example, if a
component has an integer sensor named load, then an aggregate of
this component has a group sensor named load whose type is “set of
integers” and whose value is the set of loads of the components. Other
aggregate sensors can then be defined as functions of group sensors.

Just as an aggregate inherits the sensors of its components, an aggre-
gate also inherits the actuators of its components. For example, if a
component has an actuator named run, then an aggregate of this com-
ponent has a group actuator named run. An invocation of the group
actuator run invokes all of the component run actuators.
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3.4. Fault-Tolerance

When necessary, sensor fault-tolerance is achieved through replication.
The process containing the sensor to be made fault-tolerant is repli-
cated, and the replicas are grouped into an aggregate; the value of the
fault-tolerant, aggregate sensor is then a function of the members’ sen-
sor values [Sch90a].

The severity of sensor failures that can be tolerated depends on the
choice of aggregate function. For example, to provide tolerance to
crash failures, the aggregate function need only pick one of the
member’s values to return as the sensor value. In this case, the availa-
bility of the sensor is the same as the availability of any member of the
aggregate. In process control systems, however, a real-world sensor
such as the temperature of a reaction vessel can be represented as an
interval bounding the actual value of the quantity being measured. In
this case, a fault-tolerant intersection function can be used to mask
arbitrary failures of sensors [Mar90b, Mar90c].

Group actuators are useful for achieving fault-tolerance in that they can
be used to implement a coordinator-cohort style of actuation [ISI90a].
When invoking a group actuator, the command can include two addi-
tional parameters: an integer specifying the number of individual actua-
tions to perform, and a preference list of aggregate members which
indicates which aggregate members to try first. If the chosen actuator
fails, then another member will be picked according to the preference
list until the number of requested actuations is achieved or can not be
achieved, in which case the group actuation fails.

4. Control

Once an application is instrumented, a control program can be written.
The basis for controlling applications in Meta is a language of guarded
commands that reference the state of the instrumented application.

4.1. Interpreting Guarded Commands

Each Meta stub implements a guarded command interpreter that has
direct access to the sensors and actuators of the component to which
the stub is attached. A stub can reference sensors and actuators not
local to the component by communicating with the interpreter that does
have direct access. The name of a sensor or actuator is sufficient for
the Meta system to resolve which interpreter has direct access. So, a
guarded command can be executed by any stub, although some stubs
would provide better performance than others.

Since aggregates are not represented by a single component in the
application, some stub must be selected to maintain the definitions of a
given aggregate’s sensors (and actuators). Exactly which stub com-
putes the aggregate values is up to the application designer; either an
existing stub or a “Meta server” (a stub instrumenting a dummy pro-
cess) can be designated to do so, and other stubs can be designated as
cohorts' that will take over in case the stub instrumenting the aggregate
fails. This approach centralizes the computation of aggregate values,
which in turn facilitates providing consistent views of the aggregate’s
state.

+ These cohorts should not be confused with the cohorts in the ISIS coordinator-cohort facility, although the concept is the same. We
are currently investigating how to best implement this structure.
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The interpreters for Meta guarded commands may also be made fault-
tolerant through replication. In this case, one interpreter is responsible
for executing a given guarded command while the others remain as
standbys. Sufficient state is exchanged among the replicas so that one
of the standbys can take over in case the primary interpreter fails.

In our client-server example, the servers of a service are grouped into
an aggregate. Each member of the aggregate (a server) has been
instrumented, as described previously in Section 3, with a sensor that
gives the load of the server. An aggregate sensor can then be defined
that provides some measure of the service load, such as the median
load of all the servers. If each server is equipped with an actuator that
accepts a request for migration, then reliable migration can be imple-
mented by invoking the set-valued aggregate actuator with the number
of actuations specified as one and the preference list selected, for
example, from the servers’ loads. The stub that implements the aggre-
gate sensors and actuators could be one of the servers in the service
(presumably in the server stub) or a separate Meta server.

4.2. Atomic Guarded Commands

4.3. Example

Recall that a guarded command consists of a set of (condition, action)
pairs. A condition is a propositional expression over the sensor values,
and an action is a sequence of parameterized actuator invocations.
Ideally, Meta would ensure that the action is executed as an atomic
command, that is, atomically and consistently with respect to its
triggering condition [Lam84a].

When a predicate becomes true, the action should be executed in the
same state in which it was triggered, but due to the asynchrony in the
environment this can not be done without introducing blocking.
Instead, Meta guarantees that any reference to sensor values during the
action sequence obtains the same value as when the condition was trig-
gered. Another property of atomic actions is that either all of the action
is executed or none of it is executed. Providing this property requires a
transactional facility with the ability either to undo the effects of partial
actions or to invoke a forward recovery mechanism. Additionally, to
provide consistent execution, the intermediate states of the action
should not be visible to other guarded commands.

Meta currently provides only a limited amount of atomicity. For exam-
ple, if a guarded command references only the sensors and actuators of
a single component (either simple or aggregate), then its execution will
be atomic. This amount of consistency is all that is needed for our
client-server problem. For example, Meta will guarantee that if a
machine is selected and removed from a free-machine aggregate when
starting a new server, then the selection and removal will be done
atomically. Other applications will require stronger guarantees of
atomicity, however, so we are currently examining mechanisms that
will enforce stronger guarantees of atomicity when necessary.

Figure 2 shows part of a Lomita description of our client-server appli-
cation. The description first defines the schema for server entities. In
this simplified presentation, a server contains separate actuators for
starting and stopping a job, with jobs being named by a string. For the
sake of discussion, we assume that a job may be started and stopped
repeatedly. The service aggregate has the sensor sload which is
defined to be the median load of the individual sensors. The run
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server: entityset
attributes
key name : string;
sensor load: integer;
sepsor jobs: {string};
actuator stop (string);
actuator start (string);
end
end

service: server aggregate
attributes
key port : string = "JobService";
sensor sload : integer = median(load);
actuator run(job : string) = start(job) [load,l,
actuator create = ...;

end
end

when server (Name) .load > 5 do
job = First (server (Name) . jobs);
server (Name) .suspend (job) ;
service ("JobService") .run(job);
end

when SIZE (service ("JobService")) < 3 or
during service ("JobService").sload > 5 for 60
always service ("JobService") .sload) > 5
do
create(...);
end

Figure 2: Job Service

actuator starts a job on some member of the aggregate, and the prefer-
ence list specifies that the member should be selected on the basis of its
load.

The two rules shown in this figure are compiled into NPL programs.
The first rule states that a job should be migrated from a server whose
load is too high. This rule can be translated into a single guarded com-
mand that can run in the server’s stub. The following C call distributes
the NPL command to all server entities:

meta npl ("server",
"load 5 > GUARD jobs First ‘job’ BIND job suspend
job service(‘'JobService’).run");

This guarded command contains the conditional predicate load > 5 and
then the action sequence of binding the variable fjob to the first job on
the job list, suspending that job, and then resubmitting it for execution
by invoking the service aggregate operator run.

The second rule is more complex; it states that if the size of a service is
too small or the load remains high for too long, then a new server
should be started. The Lomita compiler would translate this rule into a
finite state automaton, which in turn would be implemented by a set of
Meta guarded commands.
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5. Discussion

5.1. Related Work

The Meta project has explored the feasibility of toolkit-based architec-
ture for building reactive systems and has applied this approach to dis-
tributed application management. Meta provides a uniform way of
interconnecting disparate components, facilitating both the design of
new systems and the construction of systems glued together from exist-
ing applications. Our approach has the benefit of separating manage-
ment policies from their implementationthat is, how those policies are
carried out.

5.2. The ISIS System

Although much work has been done on system monitoring, our work
differs in that it combines control with monitoring to provide the gen-
eral architectural support needed to construct a class of reactive sys-
tems. A prominent example of a system designed strictly for monitor-
ing is the work of Snodgrass [Sno88a]; in his work, the system state is
cast as a temporal database. Systems for debugging (especially those
for debugging distributed systems), are a specialization of general mon-
itoring systems. These systems provide a way to access the system
state and to watch for certain predicates to be satisfied through the use
of breakpoints [Bat88a, McD89a]. Of particular interest is the system
IDD [Har85a] that permits interval logic expressions in specifying
breakpoints.

Lomita is a rule-based language built on a real-time extension of inter-
val logic. The -rule-based language we have found most similar to
Lomita is L.0 [Cam90a]. However, this executable language does not
deal with the problem of instrumenting existing applications nor does it
use a sensor-actuator data model. Configuration systems such as Conic
[Kra89a] overlap with the use of Meta for distributed application
management in that they facilitate interconnecting components, but
they lack the means for specifying reactive behavior.

Much of Meta depends upon facilities provided by the ISIS toolkit.
One such facility is the notion of a group. An ISIS group is a named
dynamic set of processes. Each member of the group has the same
view of which processes are currently in the group despite other
processes asynchronously joining the group, leaving the group and
crashing. Among other uses, Meta uses ISIS process groups to imple-
ment atomicity of aggregate invocation and to organize the members of
an aggregate.

Providing consistent behavior in Meta relies heavily upon the notion of
virtual synchrony provided by the ISIS system [Bir87a]. The ISIS sys-
tem make asynchronous events such as message receipts and group
membership changes appear to happen synchronously. This property
greatly facilitates reasoning about system behavior and constructing a
system that behaves in a consistent manner. Fundamental to this pro-
perty is the notion of an ordered broadcast. ISIS provides two impor-
tant broadcast primitives [Jos89a]; abcast, which totally orders the
broadcasts to a group, and chcast which partially orders the broadcasts
to a group dependent on the causal order of the broadcasts. For exam-
ple, if two apparently concurrent events occur in the instrumented
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application, Meta can impose a global total order on these events by
using abcast.

5.3. Status

Several iterations of prototypes have been built with the latest being
available from Cornell as part of the ISIS toolkit. Work is currently
underway on a major release supporting the complete functionality
described here. Preliminary performance figures from this work show
the system to impose a low amount of overhead. The following bench-
marks were obtained by running Meta on Sun4/60’s with interprocess
communication handled by ISIS over a 10 Mbps Ethernet.

The time to execute a simple guarded command of the form A GUARD
B with trivial local sensor A and trivial local actuator B is 84.1
microseconds, with uncertainty less than .1 microsecond. This implies
approximately 12,000 guarded commands can be executed a second.

The bulk of the time for remote actions is of course in the message
delivery. The ISIS causal broadcast (cbcast) takes 14.4 milliseconds;’
the ISIS atomic broadcast abcast takes up to twice as long. Running the
previous simple guarded command at a remote interpreter takes 32.6
milliseconds. This figure includes one cbcast to the interpreter to
report the value and an abcast from the interpreter to effect the actua-
tion.

The act of referencing a remote sensor has some initial start-up cost,
which we call the subscription cost. Upon receiving a subscription
request from some remote interpreter, a Meta stub will report all
changes in the sensor’s value to the subscriber. To get a feel for the
subscription cost, we measured the time need to do the following: send
to the local interpreter a guard that immediately triggers and causes the
interpreter to subscribe to a remote sensor, get the first value, and can-
cel the subscription. This time was measured to be 66.2 milliseconds.
This figure includes the time to parse the guard, but the cost of this
should be negligible, less than one percent. Note that the guard is sent
locally via cbcast rather than via a (faster) direct procedure call
because we wish to support replication of interpreters. The cbcast
therefore results in communication with the ISIS protocol server for that
machine.

Note that all communication in Meta goes through the ISIS protocol
server, a separate process running on each machine. Newer versions of
ISIS now under development allow for restricted types of broadcasts to
be sent directly to the intended recipients, bypassing the ISIS protocol
servers. This results in considerable savings; a cbeast of this form only
costs 5.6 milliseconds. The bypass mode of communication requires
the sender and receiver to be in the same group, which is not typically
the case in Meta. However, the current implementation of Meta does
put aggregates in the same group, opening the way to use the bypass
mode of communication, and we are currently exploring ways of
exploiting it even further.

Previous versions of Meta have been released, but these did not support
the complete NPL language but instead had the notion of a watch, in
which a Meta stub could be instructed to wait for the value of some
sensor to satisfy some relation. This earlier work has emphasized the

+ Performance figures of the order of milliseconds are accurate to within 0.2 milliseconds with a confidence of 95%, except for the
time to subscribe, which is accurate to within 1.1 milliseconds.
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5.4. Directions

benefit of detecting conditions as close as possible to the site at which
they become satisfied.

We are currently building a network manager as a test application for
Meta, and are designing a debugging and monitoring tool and a system
configuration system.

5.5. Acknowledgements

The current Meta toolkit is adequate for use in systems in which timing
is not crucial. Although guarded commands can make temporal asser-
tions, given the potentially unbounded latencies in the underlying UNIX
and ISIS platforms, such assertions can only be viewed as approximate
upper bounds. However, the structure that Meta provides is general
enough that we should be able to extend it to real-time reactive systems
as well.

There are two main obstacles we see to extending Meta to real-time
systems. The first has to do with the underlying ISIS toolkit; to guaran-
tee bounded reaction time, the underlying causal broadcast and group
membership protocols must provide some real-time guarantees. A
companion project in the ISIS group is currently looking into structur-
ing ISIS under Mach to provide these two protocols. The second obsta-
cle has to do with the semantics of guarded commands. Guarded com-
mands currently have the semantics of atomic actions; if a guarded
command is continuously enabled, then it will eventually execute. We
need to add an upper bound on how long the command can be enabled
without executing, and then build a scheduler that either guarantees the
command will be executed within its deadline or aborts the command if
it cannot be executed within its deadline.

Several people have contributed to the Meta project. Nancy Thoman
designed and wrote the first version of the guarded command language,
and Wanda Chiu designed a reactive relational database that provided a
testbed for earlier versions of Meta. Kenneth Birman and Robert
Cooper have contributed much to the design of the overall system. We
would also like to thank Robert Cooper and Laura Sabel for their help-
ful comments on earlier drafts of this paper.

References

[Bat88a]  Peter Bates, “Debugging Heterogeneous Distributed Sys-
tems Using Event-Based Models of Behavior,” in
SIGPLAN/SIGOPS Workshop on Parallel and Distributed
Debugging (1988).

[Bir87a]  Ken Birman and Thomas Joseph, “Exploiting Virtual Syn-
chrony in Distributed Systems,” pp. 123-138 in Proceed-
ings of the Eleventh Symposium on Operating System Prin-
ciples, ACM SIGOPS (1987).

[Cam90a] E. J. Cameron, D. M. Cohen, L. A. Ness, and H. N.
Srinidhi, “L.0: A Language for Modeling and Prototyping
Communications Software,” ARH--015547, Bellcore
(April 1990).

194

EurOpen 91 — Tromse, 20-24 May




Tools for Monitoring and Controlling Distributed Applications

[Che76a]

[Har85al

[1S190a]

[Jos89a]

[Kra&9a]

[Lam84a]

[Mar90a]

[Mar90b]

{Mar90c|

[McD89a]

[Sch90a]

[Sch83a]

[Sno88a]

P. P.-S. Chen, “The Entity-Relationship Model — Toward a
Unified View of Data,” Transactions on Database Systems
1(1), pp. 9-36 (March 1976).

Paul K. Harter, Dennis M. Heimbigner, and Roger King,
“IDD: An Interactive Distributed Debugger,” pp. 498-506
in Proceedings of the Fifth International Conference on
Distributed Computing Systems (1985).

ISIS, ISIS — A Distributed Programming Environment —
User's Guide and Reference Manual, Cornell University,
Department of Computer Science, Upson Hall, Ithaca,
New York 14853 (March 1990).

Thomas Joseph and Kenneth Birman, “‘Reliable Broadcast
Protocols,” pp. 294-318 in Distributed Systems, ACM
Press, New York (1989).

Jeff Kramer, Jeff Magee, and Morris Sloman, “Construct-
ing Distributed Systems in Conic,” Transactions on
Software Engineering SE-15(6), pp. 663-675 (June 1989).

Leslie Lamport and Fred B. Schneider, “The *“Hoare
Logic” of CSP, and All That,” ACM Transactions on Pro-

gramming Languages and Systems 6(2), pp.281-296
(April 1984).

Keith Marzullo, Robert Cooper, Mark Wood, and Ken Bir-
man, Tools for Distributed Application Management, Cor-
nell University (June 1990). Submitted for publication.

Keith Marzullo and Mark Wood, “Making Real-Time
Reactive Systems Reliable,” pp. 1-6 in Proceedings of the
Fourth ACM SIGOPS European Workshop, ACM
SIGPLAN/SIGOPS (September 1990).

Keith Marzullo, “Tolerating Failures of Continuous-
Valued Sensors,” TR 90-1156, Comell University (Sep-
tember 1990).

Charles E. McDowell and David P. Helmbold, “Debug-
ging Concurrent Programs,” ACM Computing Surveys 21
(December 1989).

Fred B. Schneider, “The State Machine Approach: A
Tutorial,” Computing Surveys 22(3) (September 1990).

R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt, “An
Interval Logic for Higher-Level Temporal Reasoning,”
Proceedings of the Second Symposium on Principles of
Distributed Computing, pp. 173-186, ACM
SIGPLAN/SIGOPS (1983).

Richard Snodgrass, “A Relational Approach to Monitoring

Complex Systems,” Transactions on Computer Systems
6(2), pp- 157-196 (1988).

EurOpen 91 — Tromse, 20-24 May




EurOpen 91 — Tromsg, 20-24 May




Distributing Objects

Andrew Herbert

Architecture Projects Mangement Limited
Cambridge, England
ajh@ansa.co.uk

Abstract

Similar concepts, called “objects” have appeared in several areas of
computing, from object-oriented databases, object-oriented program-
ming languages, application environments and graphical user inter-
faces. These concepts have been reviewed by Alan Snyder of HP in a
technical report called “The Essence of Objects”. This paper builds
upon Snyder’s analysis and presents the requirements for adding distri-
bution to the object concept. It is written for an audience who under-
stand object orientation, accept Snyder’s principles, and want to know
how distribution might modify them.

What are “Objects”?

Similar concepts, called “objects” have appeared in several areas of
computing, from object-oriented databases (such as Iris [Fis87a],
object-oriented programming languages (such as C++ [Str86a], and
Smalltalk [Roba], application environments (such as MacApp
[Sch86a], ET+ [Wei88a], HP New Wave Environment [Hew89a] and
graphical user interfaces (such as the HP New Wave Desktop).

These concepts have been reviewed by Alan Synder of HP in a techni-
cal report called “The Essence of Objects” [Sny89a] (a revision of
which is scheduled for publication by IEEE Software during 1991).
This paper builds upon Synder’s analysis and presents the requirements
for adding distribution to the object concept. It is written for an audi-
ence who understand object orientation, accept Synder’s principles and
want to know how distribution might modify them.

Definitions and commentary taken from Snyder]s report are shown in
italics.

The Essentials of Objects |

Snyder characterizes the essential principles of objects as follows:

1. An object is not just bits
la. An object embodies an abstraction

1b.  An object provides services
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2. Clients request services from objects

2a.  Objects are encapsulated

2b.  Clients issue requests

2c.  Requests are named

2d. Requests identify objects

2e. Requests may take arguments and produce results

2f.  Services can be described

3. Requests can be generic

4. Objects may be organized hierarchically in terms of the services
they provide

5. Objects may be organized hierarchically in terms of the degree
to which they share a common implementation

Sa. Objects may share a common implementation (multiple
instances)

5b.  Objects may partially share a common implementation
(implementation inheritance).

The following sections explore the effect of distribution upon these
principles.

1. An Object is not just Bits

An object is not just a data structure. It embodies an abstraction that is
meaningful to its clients (users or programs). The purpose of the data
is to represent abstract information. An object is more than just infor-
mation: it provides a set of services to its clients. These services
correspond to the embodied abstraction — they do more than just read
and write data. The services are carried out by executing code that
access or manipulates the actual data. The set of services provided by
an object is called the behaviour of the object.

This principle shows the benefit of object-orientation in heterogeneous
systems since it separates the service provided by an object from the
implementation of that service.

Benefit: Objects provide application independence — different
implementations of a service can be provided for different
environments based on different programming languages, operat-
ing systems or hardware, provided that a uniform way of inter-
working with services is provided.

Benefir: Objects enable controlled, incremental evolution of a
system — the implementation of a service can be changed tran-
sparently to all the clients of that service.

2. Clients Request Services from Objects

Clients respect the intent to use data to represent abstractions. Instead
of directly accessing the data, clients issue requests for service that are
carried out by objects.
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2.a. Objects are Encapsulated

This principle is the basis for using objects in distributed systems: since
objects are encapsulated they need not be in the same place as their
clients provided that some means is provided for clients to identify and
remotely access an object’s services. Approaching the principle from
the opposite direction, distribution — in the sense of separate location —
enforces the encapsulation of objects and prevents direct access to data.

In non-distributed systems, the benefit of encapsulation is to guarantee
that an object satisfies application-defined integrity constraints since
there is no direct client contact with the data. The encapsulation pro-
perty of objects equates two notions — objects as:

1. A unit of service, or unit of representation. This is an object in
the sense of a design, or a representation of a part of a system.
Within the object the design or representation can change
without affecting the rest of the system.

Benefit: Objects provide strong modularity in design and permit
incremental development and evolution of designs.

A unit of programming: an object in an object oriented program-
ming language, for instance. A unit of service would be made up
of a one, or more, units of programming.

Benefit: Objects in programs can be subject to scope-checking to
ensure a program maintains the modularity of the design it
implements and separately compiled and linked into multiple
programs.

In distributed systems there are further integrity constraints which have
to be met by encapsulation: the different types of encapsulation needed
are:

3. A unit of distribution— encapsulation for objects that may
migrate around a distributed system independently from other
objects, but must remain integral within themselves.

Benefit: Objects can migrate from one computer to offload func-
tionality from a processor being taken out of service, to balance
load between processors, to bring data to the processor where it
is being used to reduce latency, to move data out to storage ser-
vices when it is not in current use without involving the object’s
clients

A unit of failure— encapsulation for objects such that all of an
object fails, or none of it does. This is usually achieved by keep-
ing the whole object on the same processor.

Benefits: Replication techniques can be used to make fault
tolerant implementations of critical objects; distributed applica-
tions can be written to provide “graceful degradation™ in the
presence of object failures

A unit of security— encapsulation such that all of the components
of an object are subject to the same access control rules. This
usually means the components belong to the same principal and
that interaction within the components of the object is not subject
to access control

Benefits: Hardware protection mechanisms can be used to physi-
cally enforce object encapsulation; encipherment can be used to
physically protect request and responses between objects.

In a distributed system, the boundaries of these units are not identical;
but in modelling and discussing object oriented distributed systems
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each of these different units is collectively known as an “object”. All
of these units exist in an object oriented programming system, but they
are implicit and implicitly bound to the program unit. Consequently,
the object oriented programming concept of an object can be seen as a
simplification of the more general concept of object which arises in
object oriented distributed systems.

The challenge in a distributed system is to manage the different units
(objects) at run-time with a mixture of programming language and
configuration tools; but without the simplifications of a single program-
ming environment and recompilation assumed by object oriented pro-
gramming systems.

2.b. Clients Issue Requests

2.c. Requests are Named

Clients issue requests for services that are carried out by objects. A
request causes code to be executed to perform the requested service.
The details of where and how this code runs is intentionally not of con-
cern to the client.

In a distributed system there may be many clients on separate proces-
sors simultaneously requesting the same service and therefore a server
object must be able to exercise concurrency control over requests.
Concurrency control takes two forms:

1. Ordering and synchronization: the server may require that
requests be processed one at a time, or that only certain
sequences’ of overlapped execution are possible (for example,
producers and consumers can both access a finite buffer while
there are free slots in it), or that only a certain number of requests
be executed at once to limit the consumption of resources.

Separation: the server may require that sequences of requests
from separate clients be scheduled in an order that avoids
conflicting updates to the data contained in the object (for exam-
ple conflicts between reads and write to the records of a data
base object). A client may wish to abandon a sequence of
requests if an intermediate request produces a particular result
(e.g. a debit on an empty account), or if an object to be invoked
as part of the sequence fails. This requires that the execution
model support the notion of commiting and aborting sequences
of requests and the correct interplay of commit and abort with
the scheduling mechanisms for separation (i.e. transaction pro-
cessing capabilities).

In a distributed system objects may be remote from their clients, intro-
ducing a latency due to the overheads of communication. A client may
be able to reduce latency by making concurrent requests to different
objects (or even the same object if its concurrency controls permit). It
must be possible to indicate that a concurrent request is either part of a
transaction or starting a new independent transaction.

Requests are typically named. To make a request, the client identifies
the request by name.
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2.d. Requests Identify Objects

To make a request a client must identify one or more objects to perform
the requested service. An object can identified directly or reliably.
Object reference is direct in the sense that one is naming the object not
describing it. Object reference is reliable in that, within certain limits
of time and space, repeating reference to an object will reliably access
the same object.

Requests are directed towards objects which are units of service; it may
be that an object which is a unit of distribution encapsulates several
units of service. The latter can be conveniently termed the interfaces
of the distributed object (and thus objects in object oriented program-
ming languages can be equated with distributed objects containing just
one interface). For example, there may be some data which is encapsu-
lated in a single object for reasons of security, but for which there is the
notion of both “user” services and “manager” services. The two forms
of service can be readily distinguished by putting each in a separate
interface. In a distributed system requests identify interfaces.

In many distributed systems there is no notion of “system restart” and
so an object (i.e. interface) reference has to retain its meaning for all
time. Nor can it be assumed that separate distributed systems will
never become joined (for example when the organizations merge or do
business with one another) and so an interface reference has to retain
its meaning throughout space.

It may not be possible in a distributed system to distinguish between an
object which cannot be accessed because of disruption of communica-
tions and an object which has become lost from the system because it
did not take steps to ensure its reliability. Clients must be prepared to
cope with the failure of communication, and objects which use replica-
tion to increase their stability must take steps to ensure the replicas
present a consistent service to their clients even if replicas are unable to
communicate with one another.

Since objects may migrate in a distributed system. interface references
must be location independent names. A distributed system must
include a location service for discovering the current location — i.e.
address — of objects which have migrated so that requests can be
delivered to the correct place. (For objects which will never migrate
the interface reference can include an address for the interface to save
on the time overheads of name to address resolution and the potentially
vast overhead of storing name to address translations for all interfaces).

Client to server binding can be early or late. In early binding client
and server are made together and an interface reference for the servers
embedded in the client. Late binding is a dynamic process, called
trading. A server object providing a service registers (or has
registered on its behalf) a description of the service provided and its
interface identifier with a trading service. A client object wanting to
use a service queries the trading service, and if a matching service offer
is found its interface reference is returned. The client can then use the
interface reference to make requests.

Both location and trading services may be built upon name services
which provide name-to-name translations.

Service descriptions given by servers and clients must necessarily
describe the range of services available at the interface so that the
client gets access to an object providing at least the service required.
There may be many objects providing a suitable service and therefore
service descriptions may involve names and attributes to permit disam-
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biguation between service offers. For example a service may be
further qualified by its location, who owns it, how secure it is, how fast
it is, how robust it is against failures, and so on.

If a client makes purely functional use of a service (i.e. does not require
that the service keep state on its behalf), the client may elect to rebind
on every request rather than retain the interface reference found on the
first attempt at trading. Alternatively, a functional client may only
rebind if the service it is using becomes inaccessible because of failure
or communications problems.

Benefit:  Providing a trading service makes a system
configuration open-ended — new objects can be added to the sys-
tem and made accessible to existing clients without requiring that
the clients be rebuilt in any way. Interface references (i.e
addresses) need not be built into programs,

2.e. Requests may take Arguments and Produce Results

Particularly in a computational context (as opposed to a user inter-
face), it is commonly the case that a request may have associated argu-
ment values (which may be object references) and the service may
return one or more results (which may also be object references) when
it completes.

In a distributed system all arguments and results have to be either inter-
face references or immutable data types (i.e. integers, booleans, charac-
ters etc). It is not meaningful to pass pointers since client and server
may not be on the same computer. (Some systems give the illusion of
passing pointers by wrapping them up as an interface reference to a
service for accessing memory locations, or by copying the data refer-
enced by the pointer).

Passing an interface reference gives the recipient the right to share in
the use of a service (hence the need for the concurrency controls men-
tioned in Section 2b). Passing an immutable data type requires that a
copy of the data type be made at the recipient. In a computational
model in which all data types are objects, both these schemes can be
viewed as providing sharing semantics, as can other schemes such as
migrating the object to the recipient, or replicating the object so that
both sender and recipient have local copies kept in step by some sort of
consistency protocol.

Benefit: Treating all arguments and results as interface references
(i.e. a pure object model of data) provides a clean computational
abstraction of a wide range of argument and result passing
schemes. Alternative schemes can be substituted without requir-
ing changes to the programs involved.

Many programming languages only permit a request to return a single
data type as result. Often what is returned is a memory address for a
data structure made by the called service. Since memory addresses
cannot be permitted as results in distributed systems, an interface refer-
ence to a result object constructed by the service would have to be used
instead. But this then imposes a significant latency overhead when the
recipient of the reference tries to access the object. Therefore in a dis-
tributed system it should always be possible to pass multiple arguments
and obtain multiple results.

In a distributed system a request may fail because of some communica-
tions problem or resource limitation. This fact has to be conveyed back
to the caller as an abnormal outcome of the request. It may also be that
the service has several possible outcomes. These could be encoded as
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a datatype — a discriminated union for example; alternatively a general
mechanism permitting a request to generate different outcomes could
be provided, with facilities for the requestor to take different actions
depending upon the particular outcome obtained for any given request.

The synchronous request-response style of interaction is well suited to
distributed computing. It matches well with the concept of remote
procedure call found in many distributed systems architectures. It also
fits well with the concept of anested transactionsas guarantees given
in Section 2b. Note that a request which returns no results is strictly a
request that returns an “empty” response — the response contains no
results, but there is an explicit indication of termination. Request —
response interactions create chains of dependent nested calls. In 2b it
was noted that there is a need to establish new independent activities:
this can be modelled by a service which can be requested but which
produces no response at all —a “fire and forget™ style of interaction.

It is useful to compare conventional object-orientation and remote pro-
cedure call in terms of the object with the “multiple interfaces, each
interface supporting several services” model outlined above. Conven-
tional object-oriented systems merge the concepts of object and inter-
face into the single concept “object” and thereby lose the ability to
determine which services are available to which clients and the ability
to distinguish clients by giving each one a separate interface and asso-
ciating client state with the interface used. Remote procedure systems
merge the concept of interface and request together into the concept
“procedure” and thereby lose the benefits of encapsulation and abstrac-
tion that come from grouping services together. Some remote pro-
cedure call systems do provide the notion of interface so that services
can be grouped to form an abstraction, but they do not provide means
to pass such interfaces as arguments and results, and therefore lack the
flexibility of object-oriented systems. The general object / interfaces /
services model supports both conventional object-orientation and
remote procedure call as a special case.

2.f. Services can be Described

The set of services provided by an object to its clients is often made
explicit to clients in the form of an interface description that identifies
a set of requests that can be made to an object. This interface descrip-
tion is sometimes called a protocol. Often this specification will
include information about the expected arguments and results associ-
ated with each request. Such a specification is sometimes called a sig-
nature.

(In distributed systems the term protocol usuaily refers to the means
provided by networks to copy data from one computer to another.)

Services must be described by signatures in distributed systems, since
clients and servers are often written by different| programmers in dif-
ferent locations and at different times. The signature provides a con-
tract between the two programmers, telling them!what service is to be
provided at an interface to an object. It may be that the two program-
mers use different languages to write their programs and the programs
run on computers with different data representations. The signature
provides the information need to automatically generate the data type
conversions needed to permit interworking between client and server.

Benefit: Signatures permit decoupling of client and server pro-
grams and the use of multiple implementation languages.
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As discussed in Section 2d, there may be many objects providing the
same service — i.e. with the same signature. Therefore in a trading sys-
tem additional attributes beyond signatures must be used to distinguish
between different offers of the same service.

3. Requests can be Generic

A client can issue the same request to different kinds of object that pro-
vide “similar” (at least homonymous) services. Depending upon which
objects are identified by the client, different code may be run to per-
form the requested service. The selection of code to execute is based
on the object identified by the clients in the request. In the general
case, the identification of objects is not determined until the request is
actually issued, so the selection of code would happen at that time. (In
some cases information exists at compile time or link time to statically
bind a request to the code that will implement it). Also in the general
case there is no limit on the number of different kinds of object that
may support a given request.

The benefit of generic request in distributed systems is that services can
be more general, which implies more re-usable, and that users benefit
by being able to apply a standard model in many cases. For example
all objects can be made to support a common management model by
requiring they support a common management interface.

An open system is one in which new objects can be introduced dynami-
cally, such that the new objects can be operated upon by existing
clients, without changing the existing clients. The existing clients are
able to use the new objects because the new objects support the
requests for generic services made by the existing clients.

Benefit: Openness is mandatory requirement for practical distri-
buted systems.

4. Objects may be Organized Hierarchically in Terms of the
Services they Provide

Objects can be classified in terms of the services they provide to clients
or equivalently, in terms of the requests that can be made of them.
Objects that provide the same set of services would be classified
together. This classification may be based on explicit descriptions of
services (or requests) called interfaces.

(Note: since the term “interface” has a particular meaning in distributed
systems — see 2d above — classifications of services will be called types
in the following discussion.)

An object could provide a subset of the services provided by another
object, leading to a hierarchical classification. This interface hierar-
chy can be used as a rype hierarchy in describing permissible values
for arguments to procedures in a program etc.

Benefit: A classification of objects based on their services is a
way of organizing objects to make their behaviours easier to
understand. A classification of object services can also be used
to describe the services expected of an object by a client.

The need for type descriptions — signatures — in distributed systems was
discussed in Section 2f. Organizing types hierarchically eases the bur-
den of writing such descriptions since a complex service can be defined
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as being an extension of a set of simpler services. This is particularly
useful when there are large numbers of generic requests that can be
made of an object.

The existence of a type hierarchy means that the model of type-
checking in a distributed system should be one of type conformance
rather than type equality: a client request is acceptable to an object if
the object is capable of responding to the request, if the client offers
arguments which conform to those expected by the server and if the
server returns results which conform to those expected by the client.
The use of type conformance increases the genericity of objects and
hence the openness to service evolution in a system since it permits an
object to incrementally “widen” the type of an interface without dis-
rupting the client.

5. Objects may be Organized Hierarchically in Terms of the
Degree by which they Share a Common Implementation

Mechanisms are generally provided (in object systems) to allow dif-

ferent objects to share the same implementation. Mechanisms are often

provided by which the implementation of one object can not only share
the implementation of another object, but also extend or refine it.

5.a. Objects may Share a Common Implementation (Instances)

The implementation of an object generally specifies both the format of
the data used to represent the information associated with an object
and the code used to implement the services it provides. Mechanisms
are generally provided to allow different objects to share the same
implementation. Objects that share a common implementation have
identical data formats and share executable code; however each object
has its own copy of the actual data. Objects that share the same imple-
mentation would be classified together. Each object can be thought of
as an instance of the common implementation.

It is the sharing of implementations that is of primary interest, not the
classification resulting from it. In general clients should be concerned
with the services provided by an object, not how the services are imple-
mented, and thus should not be interested in an implementation-
oriented classification.

Benefir: Sharing one implementation among many objects has
the obvious benefit of reduced source code duplication (which
eases maintenance by avoiding the need for manual propagation
of changes) and reduced executable code size (where sharing of
executable code is possible).

In a distributed system there may be instances of a common implemen-
tation on many different computers with different data representations
and instruction formats, so sharing of a single execution image and data
format is not possible (except in the special case where several
instances reside on the same computer).

Some object systems are reactive in that a change to the source code
for a set of instances is immediately reflected in a change in behaviour
of the instances. This is a difficult effect to achieve in a distributed sys-
tem; it raises many questions about consistency and atomicity since
there is not a single copy of the executable code to be updated.
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Programmers may wish to exercise control over where an instance is
created. This is readily accomplished by providing factory services
which create new instances upon demand. A factory service embodies
a template for the class of which the object to be made is an instance.
All the objects made by the same factory may share the same data for-
mat and executable code.

If an object is to be able to migrate from one computer to another
means must be provided for the object to externalize itself into a
representation which can be moved between machines and re-
instantiated at the destination. In the general case, the external
representation must include information about all the activities that
were taking place inside the object at the moment it began migrating.
If the source and destination computers are identical, the external
representation can be close to the internal representation. If the poten-
tial destinations for a migrating object are known in advance the size of
the external representation can be reduced by pre-arranging for the
code and data formats to exist at the destinations.

5.b. Objects may Partially Share a Common Implementation

Mechanisms are often provided by which the implementation of one
object can not only share the implementation of another object, but
also extend or refine it. (Such mechanisms are generally called inheri-
tance mechanisms.) In this case of partial sharing implementations, the
classification of object implementations becomes hierarchical.

Benefits: In addition to the maintenance and size benefits listed
above, partial sharing of implementations extends the benefits of
software re-use to cases where implementations are similar but
not identical. Partial sharing is a useful technique for encourag-
ing consistent behaviour among related objects.

Inheritance has a number of properties that make it unsuitable for gen-
eral use in distributed systems [Raj89al:

1. Encapsulation is violated — Inheritance may violate encapsula-
tion in at least three ways: a subclass may (a) refer to data
defined in the superclass, (b) request an internal service of the
superclass, and (c), refer to the superclasses of its superclasses.
The consequence of this in a distributed system is that the local-
ity of objects is lost — inheritance introduces object dependence
on unknown, potentially remote, inherited information defeating
the major benefits of objects as independent units of migration,
failure propagation and security.

3. Classes are not automatically reusable — For successful reuse,
inheritance requires the use of a set of coding rules and a set of
design rules to ensure consistent interpretations. In a distributed
context it is not viable to expect all code to be written to the
same conventions except in as much as there must be a commit-
ment to the same means of interaction between objects. The
internal structure of objects is a local concern guided by the
implementor’s local rules. (Indeed it cannot be assumed in a dis-
tributed system that all implementors are using object-oriented
languages, let alone the same language and the same inheritance
structure!)

4. Class organization is not scaleable — Inheritance is successful
where software is written by a few people working together with
an agreed hierarchy and where the number of classes is hundreds
at most; inheritance falls down when there are large numbers of
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classes involved or where there are large numbers of people
involved.

5. Reactive inheritance is difficult to achieve — Reactive inheritance
requires a consistent, atomic update be made to all members of a
class and its sub-classes wherever they are located.

6. There should be no linkage between typing and implementation —
The desirability of types as a means to permit multiple imple-
mentations of the same service has already been discussed.
Many object-oriented systems use inheritance as a substitute for
type-checking — two objects are deemed to be of the same type if
they are made from the same components. This is too restrictive
a view for a distributed system. Implementations have no part to
play in the classification of services.

Thus implementation inheritance has little part to play in distributed
systems. The objectives of maintenance and re-use must be met by
techniques for the identification, sharing and composition of source
code components alone. (Only where a same component is referenced
several times by objects which are going to be co-located on the same
computer is there scope for sharing object code as an optimization). If
maintenance and re-use are conducted at this level, many other tools
beyond inheritance become available for classifying and linking
together software components. Distributed systems are facilitated by
objects whose definition and implementation are fully self-contained.
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Abstract

Many different paradigms for parallel programming exist, nearly each
of which is employed in dozens of languages. Several researchers have
tried to compare these languages and paradigms by examining the
expressivity and flexibility of their constructs. Few attempts have been
made, however, at practical studies based on actual programming
experience with multiple languages. Such a study is the topic of this
paper.

We will look at five parallel languages, all based on different para-
digms. The languages are: SR (based on message passing), Emerald
(concurrent objects), Parlog (parallel Horn clause logic), Linda (Tuple
Space), and Orca (logically shared data). We have implemented the
same parallel programs in each language, using real parallel machines.
The paper reports on our experiences in implementing three frequently
occurring communication patterns: message passing through a mailbox,
one-to-many communication, and access to replicated shared data.

1. Introduction

During the previous decade, a staggering number of languages for pro-
gramming parallel and distributed systems has emerged
[And83a, Balg89a]. These languages are based on widely different pro-
gramming paradigms, such as message passing, concurrent objects,
logic, and functional programming. Both within each paradigm and
between paradigms, heated discussions are held about which approach
is best [Car89a, Kah89a, Sha89a].

The intent of this paper is to cast new light on these discussions, using
a practical approach. We have implemented a number of parallel
applications in each of several parallel languages. Based on this
experience, we will draw some conclusions about the relative advan-
tages and disadvantages of each language. So, unlike most of the dis-
cussions in the literature, this paper is based on actual programming
experience in several parallel languages on real parallel systems.

This research was supported in part by the Netherlands Organization for Scientific Research (N.W.0.).
A preliminary version of the paper appeared in the Proceedings of the PRISMA Workshop on Parallel Database Systems, Noordwijk,
The Netherlands, September 1990.
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Language Paradigm Origin

SR Message passing University of Arizona
Emerald Concurrent object-based language | University of Washington
Parlog Concurrent logic language Imperial College

Linda Tuple space Yale University

Orca Distributed shared memory Vrije Universiteit

Table 1: Overview of the languages discussed in the paper

The languages studied in this paper obviously do not cover the whole
spectrum of design choices. Still, they represent a significant subset of
what we feel are the most important paradigms for parallel program-
ming. We discuss only a single language for each paradigm, although
other languages may exist within each paradigm that are significantly
different.

The languages that have been selected for this study are: SR, Emerald,
Parlog, Linda, and Orca (see Table 1). SR represents message passing
languages. It provides a range of message sending and receiving con-
structs, rather than a single model. Emerald is an object-based
language. Parlog is a concurrent logic language. Linda is a set of
language primitives based on the Tuple Space model. Orca is represen-
tative of the Distributed Shared Memory model.

We focus on languages for parallel applications, where the aim is to
achieve a speedup on a single application. These applications can be
run on either multiprocessors with shared memory or distributed sys-
tems without shared memory. We have selected only languages that
are suitable for both architectures. So, we do not discuss shared-
variable or monitor-based languages, since their usage is restricted to
shared-memory multiprocessors. Functional languages are not dis-
cussed either. Most functional languages are intended for different
parallel architectures, (e.g., dataflow or graph reduction machines) and
often try to hide parallelism from the programmer. This makes an
objective comparison with the other languages hard. We also do not
deal with distributed languages based on atomic transactions (e.g.,
Argus [Lis88a]), since these are primarily intended for fault-tolerant
applications. The issue of fault-tolerant parallel programming is dis-
cussed in a separate paper [Bal90a].

The outline of the rest of this paper is as follows. In Section 2, we will
briefly describe the applications we have used, focusing on their com-
munication patterns. Next, in Sections 3 to 7, we will discuss each of
the five languages, one language per section. Each section has the fol-
lowing structure:

° Background information on the language. (All languages have
been described in a recent survey paper [Bal89a), so we will be
very brief here.)

A description of our programming experience. We will com-
ment on the ease of learning the language and on the effort
needed to implement the communication patterns discussed in
Section 2.

Comments on the language implementation and its performance.
Unfortunately, there is no single platform on which all the
languages run, so we had to use many different platforms. The
systems we used differ in the number of processors, processor
type and speed, as well as in the way processors are intercon-
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nected. A fair comparison between the languages is therefore
not possible, but the measurements do give some rough indica-
tion of the relative speedups that can be obtained.

. Conclusions on the language.

Finally, in Section 8, we will compare the approaches used for the dif-
ferent languages.

2. The Applications and their Communication Patterns

There are many ways to compare parallel languages. One way is a
theoretical study of the expressiveness of their primitives. This works
well for languages using the same paradigm (e.g., message passing),
but is more problematic for comparison between different paradigms.
Comparing, say, remote procedure calls and shared logical variables is
not a trivial task.

The approach taken in this paper is to implement a set of small, yet
realistic, problems in each language, and compare the resulting pro-
grams. The example problems we have used include matrix multiplica-
tion, the All Pairs Shortest Paths problem, the Traveling Salesman
Problem, alpha-beta search, and successive overrelaxation.

The applications and the algorithms used for them are described in
detail in [Bal90b]. For this paper, we will restrict ourselves to only two
applications: the All Pairs Shortest Paths problem and the Traveling
Salesman Problem. These applications will be described below. We
will focus on the communication aspects of the applications, since,
from a parallel programming point of view, these are most interesting.

The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem computes the shortest route for a
salesman among a given set of cities. The program uses a simple
branch-and-bound algorithm and is based on replicated workers style
parallelism [And89a, Car86a]. The TSP program uses two interesting
communication patterns: mailboxes and replicated shared data.

A mailbox (see Figure la) is a communication port with send (non-
blocking) and receive operations [Bal89a]. Mailboxes can be con-
trasted with direct message passing, in which the sender always
specifies the destination process (receiver) of the message. With mail-
boxes, any process that can access the mailbox can receive a message
sent to it. So, each message sent to a mailbox is handled by one pro-
cess, but it is not determined in advance which process will accept the
message.

The TSP program uses a mailbox for distributing work. A process that
has computed a new job (to be executed in parallel) sends it to a mail-
box, where it will eventually be picked up by an idle worker process.
Since it is not known in advance which worker %rocess will accept the
job, mailbox communication is required here, rather than direct mes-
sage passing.

The second communication pattern used in the TSP program is repli-
cated shared data (see Figure Ic). The branch-and-bound algorithm
requires a global variable containing the length of the current best solu-
tion. This variable is used for pruning partial solutions whose initial
paths are already longer than the current best full route.
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(a) Message passing through a mailbox (used by TSP)

(b) One-to-many communication (used by ASP)

write

read read read

(c) Communication through replicated shared data (used by TSP)

Figure 1: Communication patterns used by the two applications discussed in the paper

In a distributed system, this global variable cannot be put in shared
memory, since such systems lack shared memory. One solution is to
store the variable on one processor and let other processors access it
through remote operations. For TSP (and many other applications),
however, a much more efficient solution is possible. The bound is usu-
ally changed (improved) only a few times, but may be used millions of
times by each processor, so its read/write ratio is very high. Therefore,
the variable can be implemented efficiently by replicating it in the local
memories of the processors. Each processor can directly read the vari-
able. Physical communication only occurs when the variable is writ-
ten, which happens infrequently.

The All Pairs Shortest Paths Problem (ASP)

The second application is the All Pairs Shortest Paths problem, which
computes the lengths of the shortest paths between each pair of nodes
in a given graph. ASP uses a parallel iterative algorithm. Each proces-
sor is assigned a fixed portion of the rows of the distances matrix. At
the beginning of each iteration, one process sends a pivor row of the
matrix to all the other processes. Each process then uses this pivot row
to update its portion of the matrix.

The most important communication pattern of the ASP program thus is
one-to-many communication (see Figure 1b). This pattern transmits
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data from one process to many others, all of which use these data. (In
contrast, a message sent to a mailbox is used by only one process.)

Of course, this pattern can be simulated through multiple point-to-point
messages, but frequently much better solutions are possible. Many net-
works have a multicast or broadcast capability, which can be used to
speed up one-to-many communication significantly. So, there are two
issues involved here: how one-to-many communication is expressed in
a given language and how it is actually implemented. For ASP, it is
very important that the implementation uses a real multicast. Other-
wise, the communication costs may easily become a dominating factor.

3. Synchronizing Resources (SR)

Programming Experience

SR [And86a, And88a] is a language for writing distributed programs,
developed by Greg Andrews, Ron Olsson, and their colleagues at the
University of Arizona and the University of California at Davis. The
language supports a wide variety of (reliable) message passing con-
structs, including shared variables (for processes on the same node),
asynchronous message passing, rendezvous, remote procedure call, and
multicast.

Given its ambitious goal of supporting many communication models, it
is not surprising that SR is a fairly large language. Yet, we found it
reasonably easy to learn. With regard to the sequential parts, the syn-
tax, type system, and module constructs are different from most other
languages. Nevertheless, these were fairly easy to learn, although the
type system is far from perfect [Bal90c].

SR tries to reduce the number of concepts for distributed and parallel
programming by using an orthogonal design. There are two ways for
sending messages (blocking and nonblocking) and two ways for
accepting messages (explicit and implicit). These can be combined in
all four ways, yielding four different communication mechanisms. We
agree with the designers that this orthogonality principle simplifies
SR’s design. Unfortunately, there also are some less elegant design
features. The concurrent-send (co) command, for example, is a rather
ad-hoc extension of the basic model, with specialized syntax rules.

Our programming experience indicates that, even within the restricted
domain of parallel programming, nearly all facilities provided by SR
are useful. We found uses for synchronous and asynchronous message
invocation, explicit, implicit, conditional, and ordered message receipt,
and multicast [Bal90c]. Below we will report on our experiences in
implementing the three communication patterns of Figure 1 in SR.

Mailbox communication. Despite its large number of features, SR
does not directly support message passing through a mailbox. The
receiver of a message is fully determined when the message is sent.
With a mailbox, the destination process is not determined until the mes-
sage is accepted (serviced).

In contrast with the sender of a message, the receiver need not specify
the other party, so in this sense message passing in SR is asymmetric.
This observation also implies a solution to the mailbox problem. We

+ The language used for this paper is referred to as SR Version 1.1. The SR designers are currently working on Version 2, in which
many of the problems described here will be solved.
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Figure 2: Simulating message passing through a mailbox in SR

can simply add an intermediate buffer process between the sender and
receivers, as shown in Figure 2. The sender sends its message to this
buffer process, so the (initial) destination is fixed. The receivers ask
the buffer process for a message, whenever they need one.

The buffer process accepts SendMsg and ReceiveMsg requests one at a
time; if the buffer is empty, only SendMsg will be accepted. With this
scheme, the destination of each message is fixed: it is sent to the buffer
process. In this way, the asymmetry of message passing is worked
around, at the overhead of implementing an extra process.

In applications where only one process is sending messages, a simpler
solution can be used. When the sender wants to send a message, it
blocks until a receiver asks for a message. In this case, the receiver can
directly fetch a message from the sender, thus eliminating the need for
a buffer process.

One-to-many communication. The second communication pattern,
one-to-many communication, is supported in SR through a special
language construct:

¢co (i :=1 to P)
send receiver[i]).SendMsg (msg)
oc

The co statement sends a message concurrently to several processes,
as specified in the array receiver. This approach to multicasting has an
important disadvantage, however. If two SR processes concurrently
multicast two messages, these messages need not arrive in the same
order everywhere. In other words, multicast in SR is not indivisible.
Applications for which the ordering matters must do it themselves.

Shared data. The third communication pattern, replicated shared data,
is not supported by SR. Only processes running on the same node can
share variables, other processes must communicate through message
passing.

Of course, shared data can be simulated by storing them on one server
process and having other processes send messages to this server. As
stated before, however, we assume that the read/write ratio of the
shared data is very high, in which case it is far more efficient to repli-
cate the shared data in the local memories. Each processor keeps its
own local copy, which is used for reading. Whenever the variable is
written, all these copies are updated.

Concurrent updates of the shared data will have to be synchronized.
For example, if two processes P and Q simultaneously write the shared
data, all copies should be updated in a consistent way. It should never
be the case that part of the copies are set to P’s value while another part
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is set to Q’s value. With message passing this requirement is difficult
to realize, because messages are not globally ordered. In other words,
the update messages sent by P and Q may arrive in different orders at
different receivers.

The solution we have taken is to send update messages through a cen-
tral manager process. This process orders the update messages and for-
wards them in a consistent order to all other processes. These update
messages are accepted implicitly by each receiver, which means that
the run time system will automatically create a new process for servic-
ing such a message. This is important, since it is not known in advance
when the update messages may arrive.

Implementation and Performance

Conclusions on SR

SR has been implemented on a range of multiprocessors (Encore,
Sequent Balance, Sequent Symmetry) and distributed systems (homo-
geneous networks of VAXes, Sun-3s, Sun-4s, and others). The com-
piler and run time system are available from the University of Arizona.

We have done some initial performance measurements on a Sequent
Symmetry with 6 CPUs. Although this machine has a shared memory,
SR uses it only for implementing message passing, so the machine is
not really used as a multiprocessor.

For the All Pairs Shortest Paths problem, we have measured a speedup
of 4.08 (on 6 CPUs). The reason why this speedup is less than linear is
the fact that the co statement currently is not implemented as a true
(physical) multicast. The message is copied once for every receiver.
The communication overhead of the ASP program therefore is high,
which prevents a linear speedup.

For the Traveling Salesman Problem, we measured a maximum
speedup of 5.87. The latter program uses the simplified solution for
mailbox communication (i.e., the manager generates only one job at a
time and blocks until this job has been accepted).

Since SR provides so many communication primitives, it is a flexible
language. SR is also more expressive than most other message passing
languages. It can be argued, however, that message passing is a low
level of abstraction. As we will see, for several applications other
mechanisms than message passing are simpler to use. These higher-
level mechanisms are frequently more expressive yet less flexible. In
conclusion, SR is reasonably suited for virtually all applications. It is
seldom spectacularly good or bad for any application.

4. Emerald

Emerald (Bla87a, Jul88a] is an object-based Ian%:]age, designed at the
University of Washington by Andrew Black, Norman Hutchinson, Eric
Jul, and Henry Levy. An object in Emerald encapsulates both static
data and an active process. Objects communicate by invoking each
other’s operations. There can be multiple active invocations within one
object, which synchronize through a monitor. The remote invocation
mechanism is location transparent.

Central to Emerald’s design is the concept of object mobility. An
object may migrate from one processor to another, as initiated either by
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the programmer or the system. Emerald uses a novel parameter mode,
call-by-move. This mode has similar semantics as call-by-reference,
but additionally moves the object parameter to the node of the invoked
object.

Programming Experience

Emerald is reasonably easy to learn. Since it is an object-based
language, it treats all entities as objects. Unlike object-oriented
languages, it does not support inheritance. Nonwithstanding its
object-based nature, Emerald contains many constructs also found in
procedural languages (e.g., nested scopes, functions, expressions,
assignment and control statements). The type system is one of the
more important contributions of the language. Although it is not easy
to get used to, it is flexible and features static type checking and
polymorphism.

Below, we will discuss how mailboxes, one-to-many communication,
and shared data can be implemented in Emerald.

Maitbox communication. A message (or operation) in Emerald is
always sent to a specific object, so mailbox-style communication is not
provided. It is possible, however, to construct a mailbox object, which
can be accessed by the senders and receivers. Such an object has the
following user-defined polymorphic type:

type Mailbox
operation AddMsg[eType] % Add a message to the mailbox
operation GetMsg -> [job: eType] = Fetch a message from the mailbox
end Mailbox

The object type is implemented using a queue of messages. To syn-
chronize access to the queue, it is encapsulated in a monitor. The
AddMsg and GetMsg operations are thus executed in a mutually
exclusive way. Also, the GerMsg operation will block on a condition
variable if the queue is empty; this condition variable will be signalled
by an invocation of AddMsg.

This implementation of mailboxes is roughly similar to the SR version,
except that a passive object rather than an active process is used for
storing the message queue. Also, the synchronization of the queue
operations is entirely different. In the SR version, the buffer process
synchronizes the operations by accepting them one at a time and by
delaying requests for messages when the buffer is empty. The Emerald
version uses a monitor and a condition variable for synchronizing the
operations.

One-to-many communication. Emerald does not support any form of
one-to-many communication. To send data to multiple objects, a
sequential £or loop has to be used. A subtle problem arises here that
does not occur in the other languages. Emerald provides a uniform
parameter mechanism: all objects are passed by reference, no matter
where the sender and receiver are located. With multicasting, however,
each receiver should be given a copy of the data, not a remote reference
to it. What is needed here is call-by-value semantics, which is not sup-
ported in Emerald.

Thus, the sender must copy the data explicitly and pass this copy as
call-by-move parameter. A distinct copy must be made for every
receiver. So a multicast is simulated as follows in Emerald:
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for all receivers r do
r.send[move copy[msg]]

Here, copy is a user-defined procedure that copies a message.

The Emerald implementation of one-to-many communication is fairly
complex. In addition, the solution is far from efficient. Not only does
it refrain from using physical multicast, but it also forces the sender to
copy the message once for every receiver, which may become a
sequential bottleneck.

Shared data. Although Emerald supports a shared namespace for
objects, this is not sufficient for implementing replicated shared data.
If a shared variable were stored in a single object, nearly all accesses to
the variable would require physical communication, including read-
only operations. What is needed is a replicated object, which is not
provided in Emerald.

The programmer therefore has to replicate data explicitly. A copy of
the shared data is kept by each process needing the data. To update
these copies, a similar scheme as for SR is used, based on implicitly
received messages. The main difference with the SR solution is the
usage of a monitor for synchronizing access to the local copy of the
shared variable.

Implementation and Performance

Conclusions on Emerald

A prototype implementation of Emerald exists on networks of VAXes
or Sun-3 workstations, connected by an Ethernet. The Emerald system
is not yet available to other users. We have not been able to do any
meaningful performance measurements on the prototype system.

Support for parallel and distributed programming in Emerald is best
understood using two levels of abstraction. At the highest level, we
have concurrent objects that invoke each other’s operations in a syn-
chronous (blocking) way, certainly a nice and simple abstraction. To
see what is really going on, we need to look at how invocations are
implemented and synchronized. Here, we are at the level of monitors.
Monitors are well understood, but are harder to program than most
other mechanisms discussed in this paper. This clearly shows of in the
implementation code: most of our Emerald programs are significantly
longer than their counterparts in the other languages.

For parallel programming, Emerald is less flexible than SR. It provides
only one form of interprocess communication: synchronous remote
procedure calls that are accepted implicitly. The parameter mechanism
is consistent (call-by-reference is used throughout), but copying param-
eters is a problem. In principle, call-by-value parameters could have
been allowed for passive objects (not containing a process). This
extension would have made the parameter mechanism less uniform,
however, and would have created a distinction between active and pas-
sive objects.

Emerald probably is more suitable for distributed applications (e.g.,
electronic mail, name servers) than for parallel applications. For such
distributed applications, features like object migration and location
independent invocations are more beneficial and the need for copying
objects (e.g., electronic mailboxes) will be less.
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5. Parlog

Programming Experience

We have chosen Parlog [Cla88a, Cla86a, Con89a, Gre87a] as represen-
tative for the large class of concurrent logic languages. Parlog has
been developed at Imperial College, London, by Keith Clark, Steve
Gregory, and their colleagues.

The language is based on AND/OR parallelism and committed-choice
nondeterminism. The user can specify the order (parallel or sequential)
in which clauses are to be evaluated. For this purpose, sequential and
parallel conjunction and disjunction operators can be used.

The time needed for leaming Parlog depends on ones background edu-
cation in concurrent logic programming. The language itself is quite
simple. In addition, there are certain programming idioms one should
master, such as streams and objects built with shared logical variables.

Mailbox communication. As in most concurrent logic languages,
processes in Parlog can communicate through message streams. Such
streams can easily be built out of shared logical variables. Streams,
however, have one disadvantage: the receiving end can scan over the
stream, but it cannot remove items from it [Car89a]. Thus, mailbox-
type communication cannot be expressed easily with streams.

Instead, we can use similar solutions as for SR, which means either
adding a buffer process between the sender and receivers (see Fig-
ure 2), or blocking the sender of the message. For our TSP program
[Bal90d], we have chosen the latter option. There is only a single
sender, which blocks when it wants to send a message. The sender
takes a stream of incomplete messages of the form germsg(Msg) as
input. These messages are generated by the receivers. After receiving
such a message, the sender instantiates the logical variable Msg to the
next message it wants to send.

One-to-many communication. One-to-many communication is easy
to express using shared logical variables. All that is needed is a stream
of messages shared among the sender and the receivers. All receivers
can scan this stream, thus receiving all the messages.

It depends on the language implementation whether physical multicast
is used for this type of one-to-many communication. For example,
multicast is used to some extent in the hypercube implementation of
Flat Concurrent Prolog [Tay87a). The Parlog system we have used
uses shared memory, which takes away the need for physical multicast.

Our Parlog ASP program uses an even simpler approach to one-to-
many communication. Rather than creating a fixed number of long-
living processes, it creates a new set of parallel processes for each
iteration of the algorithm. The pivot row for the next iteration is passed
as parameter to each of these processes. In other words, the program
does not send a message to existing processes, but it creates new
processes and passes the message as a parameter. This approach only
works well because the Parlog system efficiently supports fine-grained
parallelism. With the other languages discussed in this paper, the over-
head of creating new processes for each iteration would be far too high.

Shared data. Parlog supports shared logical variables, but these vari-
ables can be assigned only once. Implementing mutable shared vari-
ables in Parlog is much more complicated. We represent such a vari-
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able as a stream of values, the last one of which is the current value of
the variable. The predicate current value scans the stream until the tail
is an unbound variable, and returns the current last element of the
stream as output value:

2

mode current value(Stream?, Value”). % Stream is input, Value 1s ocutput

current _value([VI|Vs], Value) <- var({Vs): Value = V; ¢ tail is unbound
current value(l_I|Vs], Value) <- current_value(Vs, Value). % try next element

To update the variable, a new value is appended to the end of the
stream. A process using the variable must periodically check for new
values, by scanning the stream until the end. (This technique is also
used by Huntbach [Hun89a]).

An important issue is how often to check the stream. Since scanning
streams is expensive, it cannot be done too often. On the other hand, if
it is done infrequently, the process will usually have an old value of the
shared variable. For branch-and-bound applications like TSP, this
means pruning will become less efficient, so more nodes will be
searched (the so-called search overhead).

This solution is somewhat similar to the SR and Emerald implementa-
tions described above. The stream representing the shared variable can
be regarded as a stream of update messages. An important difference
is the way these messages are accepted. In SR and Emerald, a new
process is created when a message arrives, which will service the mes-
sage immediately (i.e., the message is received implicitly). Parlog does
not have implicit message receipt, so the receiver must explicitly look
for new messages. Since it is not know in advance when update mes-
sages may arrive, there is a problem in deciding when to look for them.

Implementation and Performance

An interpreter for Parlog has been implemented on several shared-
memory multiprocessors (Sequent Balance and Symmetry, Butterfly).
A commercially available subset of Parlog, called Strand, has also been
implemented on distributed systems (hypercubes, networks). The Par-
log system is available from Imperial College.

We have used a 6-CPU Sequent Balance for running some initial per-
formance measurements. This implementation of Parlog relies on the
presence of shared memory. Also, the implementation is based on an
interpreter and runs on slow processors, so its absolute performance
currently is one to two orders of magnitude less than that of the other
languages described in this paper. These two issues taken together
result in a relative communication overhead that is far less than what
would be expected in a production-quality, distributed implementation.

We have measured a speedup of 5.33 for ASP and 4.98 for TSP, using 6
CPUs. The speedup for ASP is fairly high, due to the low communica-
tion overhead. For TSP, the speedup is not optimal, because the global
bound is not kept up-to-date everywhere. The TSP program therefore
suffers from a search overhead.
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Conclusions on Parlog

The shared logical variable is at a higher level of abstraction than mes-
sage passing. For some applications, it is spectacularly expressive.
Our Parlog program for ASP, for example, is just as simple as the origi-
nal sequential algorithm. The synchronization of the parallel tasks is
done implicitly, using suspension on unbound logical variables. On the
negative side, it is not clear whether the program will run efficiently on
a realistic large-scale parallel system.

For other applications, shared logical variables are less suitable, but
one can then fall back on message passing through streams. This form
of message passing has some drawbacks, however, as discussed in
[Car89al.

Programming Experience

Linda is a set of language primitives developed by David Gelernter and
colleagues at Yale University [Ahu86a,Car89b,Car89a]. Linda is
based on the Tuple Space model of communication. The Tuple Space
is a global memory consisting of tuples (records) that are addressed
associatively. Three atomic operations are defined on Tuple Space:
out adds a tuple to TS; read reads a tuple contained in TS; in
reads a tuple and also deletes it from TS, in one atomic action.

Of all five languages discussed in this paper, Linda undoubtedly is the
simplest one to learn. It adds only a few primitives to an existing base
language. Below, we will discuss how these primitives can be used to
implement the three communication patterns.

Mailbox communication. The simulation of a mailbox in Linda is sim-
ple. A mailbox is represented as a distributed data structure [Car86a]
in Tuple Space. To send a message to the mailbox, a new tuple con-
taining the message is added to this data structure. To receive a mes-
sage, a tuple is retrieved from Tuple Space and its contents are read.

To preserve the ordering of the messages, a sequence number field is
added to each message tuple. The tuples are generated and retrieved in
the same order. The next sequence number to generate and the
sequence number of the next message to accept are also stored in
tuples. They are initialized to zero, by the statements:

out ("head", 0); # initialize tuple containing index of
# head of gqueue

out ("tail", 0); # initialize tuple containing index of
# tail of queue

To send a message msg to a mailbox, the following code is executed:

in("tail"™, ? &tail); # obtain next sequence number
out ("tail", tail + 1); # put back next sequence number
out ("MB", msg, tail); # put message with sequence

# number in TS

The in operation blocks until a matching tuple is found. Next, it
assigns the formal parameters of the in (denoted by a *“7*) the
corresponding values of the tuple. Finally, it deletes the tuple from
Tuple Space. All of this is done atomically.

Receiving a message from a mailbox is implemented through the fol-
lowing code:
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in("head", ? &head); # first obtain sequence number

out ("head", head+l); put sequence-number tuple
back in TS

now fetch message with right
sequence number

in("MB", ? &msg, head);

#
#
#
#

The tuples can be thought of as forming a distributed quene data struc-
ture, with pointers (indices) to the head and tail of the queue.

This example clearly illustrates the advantages and disadvantages of
Linda. The mailbox implementation is very simple: it requires only a
few lines of code. On the other hand, the operations used for accessing
the mailbox are fairly low-level. For example, three Tuple Space
operations are needed for sending or receiving a single message. It is
far from trivial that this code is correct. Also, the implementation must
do extensive optimization to make the send/receive operations efficient.

One-to-many communication. In Linda, data can be transferred from
one process to all the others by putting the data in Tuple Space, where
it can be read by everyone. So, expressing one-to-many communica-
tion in Linda is trivial; it just requires a single out statement:

out (msqg) ;

A key question that remains, however, is what really happens. For
efficiency, it makes considerable difference whether the data are
transferred through a real multicast protocol or not.

There are many different implementations of Tuple Space to consider.
The S/Net system replicates all tuples everywhere, using the S/Net
broadcast capability [Car86b]. The hypercube and Transputer imple-
mentations of Linda, on the other hand, hash each tuple onto one
specific processor and do not replicate tuples [Bjo89a,Zen90a]. In this
case, the data in the message will not be multicast. Each receiver will
have to fetch the data itself, using a read statement. The communi-
cation overhead will thus be linear to the number of receivers. In con-
clusion, expressing one-to-many communication is Linda is trivial, but
the performance will be hard to predict.

Shared data. In theory, a shared variable can be simulated in Linda by
storing it in Tuple Space. This solution makes heavy demands on the
implementation of Tuple Space, however. If the variable is read very
frequently (as is true in TSP), the overhead of reading it must be very
low. So, for efficiency each processor should have a local copy of the
tuple. Not all Tuple Space implementations have this property. The
hypercube and Transputer implementations mentioned above, for
example, store each tuple on only a single processor. An additional
performance problem is the associative addressing of Tuple Space.
Part of this overhead can be optimized away [Car87a], but it is not
clear whether it can be eliminated entirely. So, whether or not the
above solution is practical, depends on the implementation.

Implementation and Performance

Linda has been implemented on many parallel machines, both with and
without shared memory. and has been used for numerous applications
[Car89a]. The system is distributed as a commercial product. (The
Linda system we have used for our performance measurements is not
the most recent one; newer versions of the Linda software may obtain
better performance.)

We have used a VME-bus based multiprocessor for some initial perfor-
mance measurements. For the All Pairs Shortest Paths problem, we
have measured a speedup of 7.4 on 8 CPUs. Since the implementation
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Conclusions on Linda

uses shared memory, the distribution of the pivot rows is efficient.
Each new pivot row is put in a tuple in shared memory, where it can be
read by all processors.

The Traveling Salesman Problem program obtains a speedup of 7.06 on
8 CPUs. The program stores the global bound in a tuple. In our Linda
system, using this tuple for every read access is too expensive. There-
fore, each processor also keeps a local copy of the variable. These
copies are updated occasionally. So, this implementation is similar to
the Parlog implementation, except that the bound is stored in a tuple
rather than in a stream. Updating the local copies is relatively cheaper
in the Linda version, so it can be done more frequently. As a result, the
relative search bverhead in the Linda program is less than that of the
Parlog version.

Most of the criticism on Linda in the literature is related to efficiency.
The associative addressing and global visibility of the Tuple Space
have led many people to believe that Linda cannot be implemented
efficiently. However, its implementors have made considerable pro-
gress during the past few years in optimizing the performance on
several machines. The in operation, for example, hardly ever scans
the entire Tuple Space, but typically uses hashing or something even
more efficient. Just as with virtual memory, however, there will prob-
ably always remain cases where the easy-to-program approach will not
be optimal. So, the performance of Linda programs may sometimes be
hard to predict.

An important decision in Linda is to hide the physical distribution of
data from the user. In contrast, Emerald gives the programmer control
over the placement of data, by supporting user-initiated object migra-
tion. The Linda approach is simpler, but it makes heavier demands on
the implementation. Again, the transparent approach will sometimes
be less efficient, but it remains to be seen how big the differences in
performance are for actual programs.

The concept of distributed data structures is probably one of the most
important contributions of Linda. However, the way Linda implements
distributed data structures — through a fixed number of operations on
Tuple Space — is rather low-level, in our view [Kaa89a].

7. Orca

Oreca is a language for implementing parallel applications on distributed
systems. Orca was designed at the Vrije Universiteit in Amsterdam
[Bal90b, Bal89b, Bal90e, Bal88a].

The programming model of Orca is based on logically shared data.
The language hides the physical distribution of the memory and allows
processes to share data even if they run on different nodes. In this way,
Orca combines the advantages of distributed systems (good
price/performance ratio and scalability) and shared-memory multipro-
cessors (ease of programming).

The entities shared among processes are data objects, which are vari-
ables of user-defined abstract data types. These data objects are repli-
cated in the local memories, so each process can directly read its own
copy, without doing any communication. The language run time sys-
tem atomically updates all copies when an object is modified.
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Programming Experience

This model is similar to that of Distributed Shared Memory (DSM) sys-
tems [Li89a]. In Orca, however, the unit of sharing is a logical (user-
defined) object rather than a physical (system-defined) page, which has
many advantages [Bal90b].

Orca is a new language rather than an extension to an existing sequen-
tial language. An important disadvantage of extending a base language
is the difficulty of implementing pointers and global variables on sys-
tems lacking shared memory. These problems can more easily be
avoided if the language is designed from scratch. Orca, for example,
supports first-class graph variables rather than pointers. Unlike
pointers, graphs can freely be moved or copied from one machine to
another. Of course, this approach also implies that programmers have
to learn a new language. The design of Orca has been kept as simple
as possible, so this disadvantage should not be overestimated.

Mailbox communication. A mailbox can be implemented in Orca in a
similar way as in Emerald, by using a shared mailbox object. The
specification of a generic abstract data type Mailbox in Orca is shown
below:

generic (type T)

object specification GenericMailbox;
operation AddMsg (Msg: T);
operation GetMsg(): T;

end generic;

The implementation of the mailbox is simpler than the one in Emerald,
because operations in Orca are indivisible. In other words, mutual
exclusion synchronization is done automatically in Orca, whereas
Emerald requires the usage of a monitor construct for this purpose.
Also, Orca provides a powerful mechanism for condition synchroniza-
tion (based on guarded commands), so blocking the receivers when the
mailbox is empty is easy to express.

One-to-many communication. Orca’s shared data-objects can be used
for expressing one-to-many communication. If one process applies a
write-operation to an object, all other processes sharing the object can
observe the effects. Our ASP program in Orca, for example, uses an
object-type RowCollection, with the following operations:

object specification RowCollection;
type RowType = array|integer] of integer;

operation AddRow (iter: integer; R: RowType);
# Add the row for the given iteration number
operation AwaitRow(iter: integer): RowType;
# Wait until the row for the given iteration is
# available, then return it.
end;

The process that wants to send the pivot row applies the operation
AddRow to the object. The run time system will then update all copies
of this object by multicasting the operation [Bal89b]. A process requir-
ing the pivot row invokes the operation AwaitRow, which blocks until
the requested row has been added to the object ‘and then returns this
row. The latter operation is done locally, without needing any com-
munication. So, the Orca solution is efficient, since it uses physical
multicasting, if available.

Shared data. Orca has the support for logically shared data as a design
goal, so it is no surprise that communication through shared data is
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easy to express in this language. The shared variable is put in a data
object shared among all processes. The run time system automatically
replicates the object in the local memories, so processes can directly
read the value. Whenever the object is changed, all copies are updated
immediately, by broadcasting the new value. Moreover, atomicity of
the operations is already guaranteed by the language. This solution is
both simple and efficient. The only overhead in reading the value is
that of a local operation invocation. When the variable is changed, its
new value is broadcast to all processors containing a copy.

Implementation and Performance

Conclusions on Orca

Orca has been implemented on top of Amoeba [Tan90a] as well as on a
collection of MC68030s connected through an Ethernet. The latter
implementation uses the physical multicast capability of the Ethernet.
The Orca implementation is being distributed as part of the Amoeba
system.

We have done many performance measurements on these systems, as
described in detail elsewhere [Bal90b]. Here, we will present some
recent results for the multicast system, using 16 CPUs.

The measured speedup for the All Pairs Shortest Paths problem on 16
CPUs is 15.9. This high speedup is mainly due to the efficient broad-
cast protocol, which is used for transmitting the pivot rows. For the
Traveling Salesman Problem, the speedup on 16 CPUs is 14.44. Since
all copies of the global bound are updated immediately, the search
overhead is low.

Orca is not an object-based language; it merely provides abstract data
types. It supports both active processes and passive data-objects.
Since objects in Orca are purely passive, they can be replicated, which
is a very important goal in the implementation.

An important difference with Linda is the support for user-defined,
high-level operations on shared data [Kaa89a]. Linda only provides a
fixed number of built-in operations on tuples, but Orca allows program-
mers to construct their own atomic operations. Unlike Linda, Orca
uses direct rather than associative addressing of shared data, and thus
avoids any problems with associative addressing.

For some applications, Orca has important advantages over other
languages. Programs that need logically shared data are easy to imple-
ment in Orca and are efficient. Orca also is one of the few languages
that uses physical broadcasting in its implementation. As we have
seen, for ASP this is of critical importance. On the other hand, there
also are cases where the model is less efficient, for example when plain
point-to-point message passing is required.

8. Discussion

In the previous three sections we have looked at how the five languages
deal with three example communication patterns. The results of this
study are summarized in Table 2. Below, we will compare the
approaches taken for the different languages.

For communication through mailboxes, there are three different solu-
tions. For Linda, we store a mailbox as a distributed data structure in
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-to- li
Mailboxes One-to many Replicated
communication shared data
Messages wi
SR Buffer process Concurrent send v essages WI.th
implicit receive
Emerald || Snared-object Point-to-point messages Messages with
message queue implicit receive
Parl Buffer process Shared stream (or solution Messages with
arog uierp ’ with fine-grained parallelism) | explicit receive
Linda Distr. data structure Shared data Shared tuplf: (or m.p.
message queue with explicit receive)
Orca Shared-object Shared data Distributed
message queue shared memory

Table 2: Summary of the solutions taken for all 5 languages to the 3 communication patterns

Tuple Space. This solution requires only a few lines of code. For
Emerald and Orca, a mailbox is represented as an abstract object, with
operations to send and receive messages. This approach requires more
code, especially for synchronizing access to the mailbox. On the other
hand, the abstract operations on a mailbox object are higher level than
the Linda operations on tuples. The third solution, used for SR and
Parlog, is to add an extra buffer process between the sender and
receivers.

For one-to-many communication, Parlog, Linda, and Orca provide the
simplest solutions, all based on shared data. SR has a concurrent-send
primitive built in, but it does not make any guarantees about the order
in which messages are delivered. Emerald has no provision for one-
to-many communication, so it must be simulated with multiple point-
to-point messages, which are sent sequentially. An important issue is
how one-to-many communication is implemented: as a physical multi-
cast or not, Most language implementations do not use multicast, Orca
and Linda being two notable exceptions.

The third communication pattern, replicated shared data, is simple to
express in Orca and Linda, since these languages provide logically
shared data. For Linda, the performance of the resulting programs is
hard to predict, because many different strategies are used for distribut-
ing tuples. Orca, on the other hand, always tries to replicate shared
objects wherever they are needed. For the other languages, we simu-
late shared data through message passing. Here, the ability to accept
messages implicitly (i.e., by a newly created process) is very important.
SR and Emerald both provide this facility. Parlog uses only explicit
message receipt, which makes efficient updating of the copies of shared
data harder.
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Abstract

This paper describes how two tools that were developed quite indepen-
dently gained in power by a well-designed connection between them.
The tools are Python, an interpreted prototyping language. and AIL, a
Remote Procedure Call stub generator. The context is Amoeba, a
well-known distributed operating system developed jointly by the Free
University and CWI in Amsterdam.

As a consequence of their integration, both tools have profited: Python
gained usability when used with Amoeba — for which it was not
specifically developed — and AIL users now have a powerful interactive
tool to test and experiment with new client/server interfaces.

1. Introduction

Remote Procedure Call (RPC) interfaces, used in distributed systems
like Amoeba [Mul90a, Tan90a}, have a much more concrete character
than local procedure call interfaces in traditional systems. Because
clients and servers may run on different machines, with possibly dif-
ferent word size, byte order, etc., much care is needed to describe inter-
faces exactly and to implement them in such a way that they continue
to work when a client or server is moved to a different machine. Since
machines may fail independently, error handling must also be treated
more carefully.

A common approach to such problems is to use a stub generator. This
is a program that takes an interface description and transforms it into
functions that must be compiled and linked with client and server appli-
cations. These functions are called by the application code to take care
of details of interfacing to the system’s RPC layer, to implement
transformations between data representations of different machines, to
check for errors, etc. They are called “stubs™ because they don’t actu-
ally perform the action that they are called for but only relay the
parameters to the server [Bir84a).
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Amoeba’s stub generator is called AIL, which stands for Amoeba Inter-
face Language [Ros90a]. The first version of AIL generated only C
functions, but an explicit goal of AIL’s design was retargetability: it
should be possible to add back-ends that generate stubs for different
languages from the same interface descriptions. Moreover, the stubs
generated by different back-ends must be interoperable: a client writ-
ten in Modula-3, say, should be able to use a server written in C, and
vice versa.

This interoperability is the key to the success of the marriage between
AIL and Python. Python is a versatile interpreted language developed
by the first author [Ros91a]. Originally intended as an alternative for
the kind of odd jobs that are traditionally solved by a mixture of shell
scripts, manually given shell commands, and an occasional ad hoc C
program, Python has evolved into a general interactive prototyping
language. It has been applied to a wide range of problems, from
replacements for large shell scripts to fancy graphics demos and com-
plete window-based applications.

One of Python’s strengths is the ability for the user to write some code
and immediately test it: no compilation or linking is necessary.
Interactive performance is further enhanced by Python’s concise, clear
syntax, its very-high-level data types, and its lack of declarations
(which is compensated by extensive run-time type checking). All this
makes programming in Python feel like a leisure trip compared to the
hard work involved in writing and debugging all but the smallest C pro-
grams.

It should be clear by now that Python will be the ideal tool to test
servers and their interfaces. Especially during the development of a
complex server, one often needs to generate test requests on an ad hoc
basis, to answer questions like “what happens if request X arrives when
the server is in state Y, to test the behavior of the server with requests
that touch its limitations, to check server responses to all sorts of wrong
requests, etc. Python’s ability to immediately execute “improvised”
code makes it a much better tool for this situation than C.

The link to AIL extends Python with the necessary functionality to con-
nect to arbitrary servers, making the server testbed sketched above a
reality. Python’s high-level data types, general programming features,
and system interface ensure that it has all the power and flexibility
needed for the job.

1.1. Overview of this Paper

The rest of this paper contains three major sections and a conclusion.
First an overview of the Python programming language is given. Next
comes a short description of AIL, together with some relevant details
about Amoeba. Finally, the design and construction of the link
between Python and AIL is described in much detail. The conclusion
looks back at the work and points out weaknesses and strengths of
Python and AIL that were discovered in the process.

2. An Overview of Python

Pythons " owes much to ABC [Geu90a], a language developed at CWI
as a programming language for non-expert computer users. Python

+ Named after the funny TV show, not the nasty reptile.
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borrows freely from ABC’s syntax and data types, but adds modules,
exceptions and classes, extensibility, and the ability to call system
functions. The concepts of modules, exceptions and (to some extent)
classes are influenced strongly by their occurrence in Modula-3
[Car89al.

Perhaps the best introduction to Python is a short example. The follow-
ing is a complete Python program to list the contents of a UNIX direc-
tory.

import sys, pOSix

def ls(dirname) : # Print sorted directory contents
names = posix.listdir (dirname)
names.sort ()
for name in names:
if name[0] <> ’.’: print name

ls(sys.argv[l])

The largest part of this program, in the middle starting with def, is a
function definition. It defines a function named 1s with a single
parameter called dirname. (Comments in Python start with ‘#’ and
extend to the end of the line.) The function body is indented; Python
uses indentation for statement grouping instead of braces or begin/end
keywords. This is shorter to type and avoids frustrating mismatches
between the perception of grouping by the user and the parser. Python
accepts one statement per line; long lines may be broken in pieces
using the standard backslash convention. If the body of a compound
statement is a single, simple statement, it may be placed on the same
line as the head.

The first statement of the function body calls the function 1istdir
defined in the module posix. This function returns a list of strings
representing the contents of the directory name passed as a string argu-
ment, here the argument dirname. If dirname were not a valid
directory name, or perhaps not even a string, 1istdir would raise an
exception and the next statement would never be reached. (Exceptions
can be caught in Python; see below.) Assuming 1istdir returns nor-
mally, its result is assigned to the local variable names.

The second statement calls the method sort of the variable names.
This method is defined for all lists in Python and does the obvious
thing: the elements of the list are reordered according to their natural
ordering relationship. Since in our example the list contains strings,
they are sorted in ascending ASCII order.

The last two lines of the function contain a loop that prints all elements
of the list whose first character isn’t a period. In each iteration, the
for statement assigns an element of the list to the local variable name.
The print statement is intended for simple-minded output; more ela-
borate formatting is possible with Python’s string handling functions.

The other two parts of the program are easily explained. The first line
is an import statement that tells the interpreter to import the modules
sys and posix. As it happens these are both built into the inter-
preter. Importing a module (built-in or otherwise) only makes the
module name available in the current scope; functions and data defined
in the module are accessed through the dot notation as in
posix.listdir. The scope rules of Python are such that the
imported module name posix is also available in the function 1s (this
will be discussed in more detail below).
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Finally, the last line of the program calls the 1s function with a definite
argument. It must be last since Python objects must be defined before
they can be used; in particular, the function 1s must be defined before
it can be called. The argument to 1s is sys.argv[1], which hap-
pens to be the Python equivalent of $1 in a shell script or argv[1] in
a C program.

2.1. Python Data Types%

Python’s syntax may not have big surprises (which is exactly as it
should be), but its data types are quite different from what is found in
languages like €, Ada or Modula-3. All data types in Python, even
integers, are “objects”. All objects participate in a common garbage
collection scheme, currently implemented using reference counting.
Assignment is cheap, independent of object size and type: only a
pointer to the assigned object is stored in the assigned-to variable. No
type check is performed on assignment; only specific operations like
addition test for particular operand types.

The basic object types in Python are numbers, strings, tuples, lists and
dictionaries. Some other object types are open files, functions,
modules, classes, and class instances; even types themselves are
represented as objects. Extension modules written in C can define
additional object types; examples are objects representing windows and
Amoeba capabilities. Finally, the implementation itself makes heavy
use of objects, and defines some private object types that aren’t nor-
mally visible to the user.

There is no explicit pointer type in Python.

Numbers, both integers and floating point, are pretty straightforward.
The notation for numeric constants is the same as in C, including octal
and hexadecimal integers; precision is the same as 1ong or double in
C. All standard operations are supported, except that integers and
floating point numbers cannot be mixed (yet).

Strings are “primitive” objects just like numbers. String constants are
written between single quotes, using similar escape sequences as in C.
Operations are built into the language to concatenate and to replicate
strings, to extract substrings, etc. There is no limit to the length of the
strings created by a program. There is no separate character data type;
strings of length one do nicely.

Tuples are a way to “pack” small amounts of heterogeneous data
together and carry them around as a unit. Unlike structure members in
C, tuple items are nameless. Packing and unpacking assignments allow
access to the items, for example:

‘World’ # x is a 3-item tuple,
# its middle item is (1, 2)
# unpack x into p, q and r
# unpack q into a and b

A combination of packing and unpacking assignment can be used as
parallel assignment, and is idiom for permutations, e.g.:

p, 9 =49, p # swap without temporary
a, b, ¢ =b, ¢c, a # cyclic permutation

Tuples are also used for function argument lists if there is more than
one argument. A tuple object, once created, cannot be modified; but it

t This and the following subsections describe Python in quite a lot of detail. If you are more interested in AIL, Amoeba and how they
are linked with Python, you can skip to section 3 now.
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2.2. Statements

is easy enough to unpack it and create a new, modified tuple from the
unpacked items and assign this to the variable that held the original
tuple object (which will then be garbage-collected).

Lists are array-like objects. List items may be arbitrary objects and can
be accessed and changed using standard subscription notation. Lists
support item insertion and deletion, and can therefore be used as
queues, stacks etc.; there is no limit to their size.

Strings, tuples and lists together are sequence types; these share a com-
mon notation for generic operations on sequences like subscription,
concatenation, slicing (taking subsequences) and membership tests. As
in C, subscripts start at (.

Dictionaries are “mappings” from one domain to another. The basic
operations on dictionaries are item insertion, extraction and deletion,
using subscript notation with the key as subscript. The current imple-
mentation allows only strings in the key domain, but this is a relict of
the extensive use of dictionary objects in the Python interpreter for all
kinds of symbol tables.

Python knows various kinds of simple statements, such as assignments
and print statements. and several kinds of compound statements, like
if and for statements. Formally, function definitions and import
statements are also statements, and there are no restrictions on the ord-
ering of statements or their nesting: import may be used inside a
function, functions may be defined conditionally using an if state-
ment, etc. The effect of a declaration-like statement takes place only
when it is executed.

All statements except assignments and expression statements begin
with a keyword; this makes the language easy to parse. Here follows
an overview of the most common statement forms in Python.

An assignment has the general form
variable = variable = ... = variable = expression

It assigns the value of the expression to all listed variables. (As shown
in the section on tuples, variables and expressions can in fact be
comma-separated lists.) The assignment operator is not an expression
operator; there are no horrible things in Python like

while (p = p->next) { ... }

Expression syntax is mostly straightforward and will not be explained
in detail here.

An expression statement is just an expression on a line by itself. This
writes the value of the expression to standard output, in a suitably
unambiguous way, unless it is a procedure call that returns no value.
Writing the value is useful when Python is used in ““calculator mode™,
and forces the programmer to do something with function results.

The if statement allows conditional execution. It has optional elif
and else parts; a construct like 1f ... elif ... elif
elif ... else can be used to compensate for the absence of a
switch or case statement.

Looping is done with while and for statements. The latter iterates
over the elements of a “sequence’ (see the discussion of data types
below). It is possible to terminate a loop with a break statement.
There is no continue statement (it smells too much of goto). Both
looping statements have an optional else clause which is executed
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2.3. Execution Model

after the loop is terminated normally, but skipped when it is terminated
by break. This can be handy for searches, to handle the case that the
item is not found.

Python’s exception mechanism is modelled after that of Modula-3.
Exceptions are raised by the interpreter when an illegal operation is
tried. It is also possible to explicitly raise an exception with the raise
statement:

raise expression, expression

The first expression identifies which exception should be raised; there
are several built-in exceptions and the user may define additional ones.
The second, optional expression is passed to the handler, e.g., as a
detailed error message.

Exceptions may be handled (caught) with the try statement, which
has the following general form:

try: block
except expression, variable: block
except expression, variable: block

except: block

When an exception is raised during execution of the first block, a
search for an exception handler starts. The first except clause whose
expression matches the exception is executed. A handler without
expression serves as a ‘“‘catch-all”. If there is no match, the search for a
handler continues with outer t ry statements; if no match is found on
the entire invocation stack, an error message and stack trace are
printed, and the program is terminated (interactively, the interpreter
returns to its main loop).

Other common statement forms, which we have already encountered,
are function definitions, import statements and print statements.
There is also a del statement to delete one or more variables, and a
return statement to return from a function or procedure. Finally, the
pass statement serves as a no-op.

A Python program is executed in a straightforward manner. At any
point during execution, two “symbol tables” are used to hold variables:
the local and the global symbol table. When a variable is assigned to,
an entry for it is always made in the local symbol table. When a
variable’s value is needed, it is searched first in the local symbol table,
then in the global one. Pointers to the current local and global symbol
table are kept on a stack, which is pushed or popped whenever a scope
is entered or left.

The term “variable” in this context refers to any name: functions and
imported modules are also searched in this way (and usually found in
the global symbol table). Names of built-in functions and exceptions
(though not keywords like if) are found in a built-in symbol table,
which is searched after the global symbol table.

The local symbol table is bound to a particular function invocation,
giving standard semantics for local variables. It is initialized with the
values of the call’s arguments.

The global symbol table used by a particular function call is that of the
module where the function was defined. Names in a module’s symbol
table survive until the end of the program. This approximates the

234
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2.4. Classes

semantics of file-static global variables in C or module variables in
Modula-3.

The statements in a module (written in Python) are executed when the
module is first imported; this ensures modules are always properly ini-
tialized before used. For statements executed directly in the module,
the global symbol table is also the local symbol table, so assignments
here have a global effect. The program (script) itself is a nameless
module which is executed first. Since import statements have to be
executed like all other statements, the initialization order of the
modules used in a program is well-defined.

The “attribute” notation m.name, where m is a module, accesses the
symbol name in that module’s symbol table. It can be assigned to as
well. This is in fact a special case of the construct x.name where x
denotes an arbitrary object; the type of x determines how this is to be
interpreted, and what assignment to it means.

For instance, when a is a list object, a.append yields a built-in
method object which, when called, appends an item to a. (If 2 and b
are distinct list objects, a.append and b.append are distinguish-
able method objects.) Normally, in statements like a.append (x),
the method object a . append is called and immediately discarded, but
this is a matter of convention.

List objects refuse assignment to attributes. Some objects, like
numbers and strings, have no attributes at all. Like all type checking in
Python, the meaning of an attribute is determined at run-time — when
the parser sees x.name, it has no idea of the type of x. Note that x here
does not have to be a variable — it can be an arbitrary (perhaps
parenthesized) expression.

Given the attribute notation, one is tempted to use it to replace all stan-
dard operations. Yet, Python has kept a small repertoire of built-in
functions like 1len () and abs (). The reason is that in some cases the
function notation is more familiar than the method notation; just like
programs would become less readable if all infix operators were
replaced by function calls, they would become less readable if all func-
tion calls had to be replaced by method calls (and vice versa!).

The choice whether to make something a built-in function or a method
is a matter of taste. For arithmetic and string operations, function nota-
tion is preferred, since frequently the argument to such an operation is
an expression using infix notation, as in abs (a+b); this definitely
looks better than (a+b) .abs (). The choice between make some-
thing a built-in function or a function defined in a built-in method
(requiring import) is similarly guided by intuition; all in all, only
functions needed by “general” programming techniques were made
built-in functions.

Python has a class mechanism distinct from the object-orientation
already explained. A class in Python is not much more than a collec-
tion of methods and a way to create class instances. Class methods are
ordinary functions whose first parameter is the class instance; they are
called using the method notation.

For instance, a class can be defined as follows:

class Foo():
def methl (self, arg):
def meth2(self):
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2.5. The Python Library

A class instance is created by x = Foo () and its methods can be
called thus:

x.methl ("Hi There!’)
xX.meth?2 ()

The functions used as methods are also available as (read-only) attri-
butes of the class object, and the above method calls could also have
been written as follows:

Foo.methl (x, ‘Hi There!’)
Foo.meth2 (x)

Class methods can store instance data by assigning to instance data
attributes, e.g.:

self.size = 100
self.title = ’'Dear John’

Data attributes do not have to be declared; as with local variables, they
spring into existence when assigned to. It is a matter of discretion to
avoid name conflicts with method names. This facility is also available
to class users; instances of a method-less class can be used as records
with named fields.

There is no built-in mechanism for instance initialization; classes con-
ventionally provide an init () method which initializes the instance
and returns the instance, so the user can write

x = Foo().init(...)

Any user-defined class can be used as a base class to derive other
classes. However, built-in types like lists cannot be used as base
classes. (Incidentally, the same is true for CH+ or Modula-3.) Multiple
inheritance is supported: a derived class can have multiple base classes.
A class may override any method of its base classes. Instance methods
are first searched in the method list of their class, and then, recursively,
in the method lists of their base classes (depth-first). Initialization
methods of derived classes should explicitly call the initialization
methods of their base classes.

T At least in theory...

Python comes with an extensive library, structured as a number of
modules. A few modules are built into the interpreter; these generally
provide access to system libraries implemented in C such as mathemat-
ical functions or operating system calls. Two built-in modules provide
access to internals of the interpreter and its environment. Even abusing
these internals will at most cause an exception in the Python program;
the interpreter cannot dump core because of errors in Python code."

Most modules however are written in Python and distributed with the
interpreter; they provide general programming tools like string opera-
tions and random number generators, provide more convenient inter-
faces to some built-in modules, or provide specialized services like a
getopt-style command line option processor for stand-alone scripts.

There are also some modules written in Python that dig deep in the
internals of the interpreter; one module can browse the stack backtrace
when an unhandled exception has occurred, and one module can
disassemble the internal representation of Python code.
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2.6. Extensibility

It is easy to add new built-in modules written in C to the Python inter-
preter. Extensions appear to the Python user as built-in modules.
Using a built-in module is no different than using a module written in
Python, but obviously the author of a built-in module can do things that
cannot be implemented purely in Python.

In particular, built-in modules can contain Python-callable functions
that call functions from particular system libraries (‘‘wrapper func-
tions”), and they can define new object types. In general, if a built-in
module defines a new object type, it should also provide at least one
function that creates such objects. Attributes of such object types are
also implemented in C; they can return data associated with the object
or methods, implemented as C functions.

For instance, an extension was created for Amoeba: it provides
wrapper functions for the basic Amoeba name server functions, and
defines a “capability™ object type, whose methods are file server opera-
tions. Another extension is a built-in module is called posix; it pro-
vides mostly wrappers around UNIX system calls. Extension modules
also provide access to two different windowing/graphics interfaces:
STDWIN [Ros88a] (which connects to X11 on UNIX and to the Mac
Toolbox on the Macintosh), and the Graphics Library (GL) for Silicon
Graphics machines.

Any function in an extension module is supposed to type-check its
arguments; the interpreter contains convenience functions to facilitate
extracting C values from arguments and type-checking them at the
same time. Returning values is also painless, using standard functions
to create Python objects from C values.

2.7. Statistics and Performance

The source code of the Python interpreter currently consists of about
100 files, totalling about 390 kbytes or 19000 lines, not counting the LL
parser generator that comes with it. Included in these numbers are
several large optional built-in modules, but no generated files. The files
used for the Stubcode interpreter (the link to AIL) comprise less than
five percent of the total.

On a Silicon Graphics 4D/25 (a MIPS R3000 based system) the stripped
binary is 709 kbytes in size, of which 624 kbytes are text. This
includes almost all optional built-in modules. It also includes the
STDWIN standard window interface library and the GNU Readline
library; SGI's Graphics Library (GL) and X11 are shared libraries and
thus not counted. The stripped binary size of the minimal portable ver-
sion of the interpreter (which excludes all optional modules) is much
smaller; this size is given for various architectures in Table 1. This
table also shows the range of architectures to which Python has been
ported to date.

A small performance test was done: how long does it take to compute
fac (5), defined by the following function:
def fac(n):

if n = 1: return 1
else: return n * fac(n-1)

This particular test was chosen since timing figures for it are also given
by Ousterhout for Tcl [Ous90a]. It is not representative for Python’s
performance when its high level data types are used, but gives some
insight in the interpreter’s overhead for basic operations like function
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Machine Time to compute | Time for fac (5) | Stripped binary
fac(5) (ms.) in Tcl (ms.) size (kbytes)
SGlI 4D/25 1.4 - 176
SparcStation 1+ 2.7 - 208
Sun 3/260 7.2 - 176
Sun 3/75 - 11.25 176
DECstation 3100 1.3 3.63 168
VAXstation 2000 11.8 - 120
Harris HCX-7 (tahoe) 3.9 - 112
Macintosh Plus 53 - 162

\
Table 1: Python Statistics

calls, arithmetic, and flow control. The test was performed using
Python’s built-in t ime module; results are shown in Table 1, with
Ousterhout’s figures for comparison.

3. A Short Description of AIL and Amoeba

An RPC stub generator takes an interface description as input. The
designer of a stub generator has at least two choices for the input
language: use a suitably restricted version of the target language, or
design a new language. The first solution was chosen, for instance, by
the designers of Flume, the stub generator for the Topaz distributed
operating system designed at DEC SRC [Bir87a, McJ87a].

Flume’s one and only target language is Modula-2+ (the predecessor of
Modula-3). Modula-2+, like Modula-N for any N, has an interface
syntax that is well suited as a stub generator input language: an inter-
face module declares the functions that are “exported” by a module
implementation, with their parameter and return types, plus the types
and constants used for the parameters. Therefore, the input to Flume is
simply a Modula-2+ interface module. But even in this ideal situation,
an RPC stub generator needs to know things about functions that are not
stated explicitly in the interface module: for instance, the transfer direc-
tion of VAR parameters (IN, OUT or both) is not given. Flume solves
this and other problems by a mixture of directives hidden in comments
and a convention for the names of objects. Thus, one could say that the
designers of Flume really designed a new language, even though it
looks remarkably like their target language.

Amoeba uses C as its primary programming language. C function
declarations (at least in pye-Standard C) don’t specify the types of the
parameters, let alone their transfer direction. Using this as input for a
stub generator would require almost all information for the stub genera-
tor to be hidden inside comments, which would require a rather con-
torted scanner. Therefore we decided to design the input syntax for
Amoeba’s stub generator “from scratch”. This gave us the liberty to
invent proper syntax not only for the transfer direction of parameters,
but also for variable-length arrays.

On the other hand we decided not to abuse our freedom, and borrowed
as much from C as we could. For instance, AIL runs its input through
the C preprocessor, which gets us macros, include files and conditional
compilation for free. AIL’s type declaration syntax is a superset of C’s,
so the user can include C header files to use the types declared there as
function parameter types — which are declared using function proto-

238

EurOpen 91 — Tromss, 20-24 May

X
ol "I
ey




Linking a Stub Generator (AIL) to a Prototyping Language (Python)

3.1. Amoeba

types as in CH or Standard C. It should be clear by now that AIL’s lex-
ical conventions are also identical to C’s. The same is true for its
expression syntax.

Where does AIL differ from C, then? Function declarations in AIL are
grouped in classes. Classes in AIL are mostly intended as a grouping
mechanism: all functions implemented by a server are grouped together
in a class. Inheritance is used to form new groups by adding elements
to existing groups; multiple inheritance is supported to join groups
together. Classes can also contain constant and type definitions, and
one form of output that AIL can generate is a header file for use by C
programmers who wish to use functions from a particular AIL class.
Here are a few (unrealistically) simple class definitions:

#include <amoeba.h> /* Defines capability, etc. */

class standard cps {1000 .. 1999] {
/* Standard operations supported by most interfaces */
std info(*, out char buf(size:100], out int size);
std destroy (*);
bi
class tty [2000 .. 2099] {
inherit standard_ops;
const TTY MAXBUF = 1000;
tty write(*, char buf[size:TTY MAXBUF], int size);
tty_read(*, out char buf[size:TTY MAXBUF], out int size);
Vi
class window {2100 .. 2199] {
inherit standard ops;
win create(*, int x, int y, int width, int height,
out capability win_cap);
win reconfigure(*, int x, int y, int width, int height);
Vi

class tty_ emulator [2200 .. 2299] {
/* Demonstrate multiple inheritance */
inherit tty, window;

}i

(The bracketed number ranges after the class names are used to assign
request codes; for various technical reasons AIL cannot be trusted to
choose request codes itself.)

Note that the power of AIL classes doesn’t go as far as C+. AIL classes
cannot have data members, and there is no mechanism for a server that
implements a derived class to inherit the implementation of the base
class — other than copying the source code. The syntax for class
definitions and inheritance is also different.

48

The smell of “object-orientedness” that the use of classes in AIL creates
matches nicely with Amoeba’s object-oriented approach to RPC. In
Amoeba, almost all operating system entities (files, directories,
processes, devices etc.) are implemented as objects. Objects are
managed by services and represented by capabilities. A capability
gives its holder access to the object it represents. Capabilities are pro-
tected cryptographically against forgery and can thus be kept in user
space. A capability is a 128-bit binary string, subdivided as follows:

24 8 48 Bits

Service
port

Object Rights Check
number bits word

EurOpen 91 — Tromss, 20-24 May




Linking a Stub Generator (AIL) to a Prototyping Language (Python)

3.2. How AIL Works

The service port is used by the RPC implementation in the Amoeba ker-
nel to locate a server implementing the service that manages the object.
In many cases there is a one-to-one correspondence between servers
and services (each service is implemented by exactly one server pro-
cess), but some services are replicated. For instance, Amoeba’s direc-
tory service, which is crucial to gain access to almost all other services,
is implemented by two servers that listen on the same port and know
about exactly the same objects.

The object number in the capability is used by the server receiving the
request to identify the object to which the operation applies. The rights
bits specify which operations the holder of the capability may apply.
The last part of a capability is a 48-bit long “check word”, which is
used to prevent forgery. The check word is computed by the server
based upon the rights bits and a random key per object that it keeps
secret. If you change the rights bits you must compute the proper
check word or else the server will refuse the capability. Due to the size
of the check word and the nature of the cryptographic “one-way func-
tion” used to compute it, inverting this function is impractical, so forg-
ing capabilities is impossible."

A working Amoeba system is a collection of diverse servers, managing
files, directories, processes, devices etc. While most servers have their
own interface, there are some requests that make sense for some or all
object types. For instance, the std_info() request, which returns a short
descriptive string, applies to all object types. Likewise, std destroy()
applies to files, directories and processes, but not to devices.

Similarly, different file server implementations may want to offer the
same interface for operations like read() and write() to their clients.
AIL’s grouping of requests into classes is ideally suited to describe this
kind of interface sharing, and a class hierarchy results which clearly
shows the similarities between server interfaces (not necessarily their
implementations!).

The base class of all classes defines the std_info() request. Most server
interfaces actually inherit a derived class that also defines
std_destroy(). File servers inherit a class that defines the common
operations on files, etc.

The AIL stub generator functions in three phases:

] Parsing,
) Strategy Determination,
. Code Generation.

Phase one parses the input and builds a symbol table containing every-
thing it knows about the classes and other definitions found in the
input.

Phase two determines the strategy to use by taking each function
declaration in turn and decides upon the request and reply message for-
mats. This is not a simple matter, because of various optimization
attempts. Amoeba’s kernel interface for RPC requests takes a fixed-
size header and one arbitrary-size buffer. A large part of the header
holds the capability of the object to which the request is directed, but
there is some space left for a few integer parameters whose interpreta-

+  As computers become faster, inverting the one-way function becomes less impractical. Therefore, the next version of Amoeba will

have 64-bit check words.
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tion is up to the server. AIL tries to use these slots for simple integer
parameters, for two reasons.

First, unlike the buffer, header fields are byte-swapped by the RPC
layer in the kernel if necessary, so it saves a few byte swapping instruc-
tions in the user code. Second, and more important, a common form of
request transfers a few integers and one large buffer to or from a
server. The read() and write() requests of most file servers have this
form, for instance. If it is possible to place all integer parameters in the
header. the address of the buffer parameter can be passed directly to
the kernel RPC layer. While AIL is perfectly capable of handling
requests that do not fit this format, the resulting code involves allocat-
ing a new buffer and copying all parameters into it. It is a top priority
to avoid this copying (‘“marshalling™) if at all possible, in order to
maintain Amoeba’s famous RPC performance.

When AIL resorts to copying parameters into a buffer, it reorders them
so that integers indicating the lengths of variable-size arrays are placed
in the buffer before the arrays they describe, since otherwise decoding
the request would be impossible. It also adds occasional padding bytes
to ensure integers are aligned properly in the buffer — this can speed up
(un)marshalling.

Phase three is the code generator, or back-end. There are in fact many
different back-ends that may be called in a single run to generate dif-
ferent types of output. The most important output types are header files
(for inclusion by the clients of an interface), client stubs, and “‘server
main loop” code. The latter decodes incoming requests in the server.
The generated code depends on the programming language requested,
and there are separate back-ends for each supported language.

It is important that the strategy chosen by phase two is independent of
the language requested for phase three — otherwise the interoperability
of servers and clients written in different languages would be
compromised.

4. Linking AIL to Python

From the previous section it can be concluded that linking AIL to
Python is a matter of writing a back-end for Python. This is indeed
what we did.

Considerable time went into the design of the back-end in order to
make the resulting RPC interface for Python fit as smoothly as possible
in Python’s programming style. For instance, the issues of parameter
transfer, variable-size arrays, error handling, and call syntax were all
solved in a manner that favors ease of use in Python rather than strict
correspondence with the stubs generated for C.

4.1. Mapping AIL Entities to Python

For each programming language that AIL is to support, a mapping must
be designed between the data types in AIL and those in that language.
Other aspects of the programming languages, such as differences in
function call semantics, must also be taken care of.

While the mapping for C is mostly straightforward, the mapping for
Python requires a little thinking to get the best results for Python pro-
grammers.
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4.1.1. Parameter Transfer Direction

Perhaps the simplest issue is that of parameter transfer direction.
Parameters of functions declared in AIL are categorized as being of
type in, out or in out (the same distinction as made in Ada).
Python only has call-by-value parameter semantics; functions can
return multiple values as a tuple. This means that, unlike the C back-
end, the Python back-end cannot always generate Python functions
with exactly the same parameter list as the AIL functions.

Instead, the Python parameter list consists of all in and in out
parameters, in the order in which they occur in the AIL parameter list;
similarly, the Python function returns a tuple containing all in out
and out parameters. (In fact Python packs function parameters into a
tuple as well, stressing the symmetry between parameters and return
value.) For example, a stub with this AIL parameter list:

in int pl, in out int p2, in int p3, out int p4
will have the following parameter list and return values in Python:

(pl, p2, p3) - (p2, p4)

4.1.2. Variable-size Entities

The support for variable-size objects in AIL is strongly guided by the
limitations of C in this matter. Basically, AIL allows what is feasible in
C: functions may have variable-size arrays as parameters (both input or
output), provided their length is passed separately. In practice this is
narrowed to the following rule: for each variable-size array parameter,
there must be an integer parameter giving its length. (An exception for
null-terminated strings is planned but not yet implemented.)

Variable-size arrays in AIL or C correspond to sequences in Python:
lists, tuples or strings. These are much easier to use than their C coun-
terparts. Given a sequence object in Python, it is always possible to
determine its size: the built-in function len () returns it. It would be
annoying to require the caller of an RPC stub with a variable-size
parameter to also pass a parameter that explicitly gives its size. There-
fore we eliminate all parameters from the Python parameter list whose
value is used as the size of a variable-size array. Such parameters are
easily found: the array bound expression contains the name of the
parameter giving its size. This requires the stub code to work harder (it
has to recover the value for size parameters from the corresponding
sequence parameter), but at least part of this work would otherwise be
needed as well, to check that the given and actual sizes match.

Because of the symmetry in Python between the parameter list and the
return value of a function, the same elimination is performed on return
values containing variable-size arrays: integers returned solely to tell
the client the size of a returned array are not returned explicitly to the
caller in Python.

4.1.3. Error Handling

Another point where Python is really better than C is the issue of error
handling. It is a fact of life that everything involving RPC may fail, for
a variety of reasons outside the user’s control: the network may be
disconnected, the server may be down, etc. Clients must be prepared to
handle such failures and recover from them, or at least print an error
message and die. In C this means that every function returns an error
status that must be checked by the caller, causing programs to be clut-
tered with error checks — or worse, programs that ignore errors.
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In Python, errors are generally indicated by exceptions, which can be
handled out of line from the main control flow if necessary, and cause
immediate program termination (with a stack trace) if ignored. To
profit from this feature, all RPC errors that may be encountered by
AlL-generated stubs in Python are turned into exceptions. An exira
value passed together with the exception is used to relay the error code
returned by the server to the handler. Since in general RPC failures are
rare, Python test programs can usually ignore exceptions — making the
program simpler — without the risk of occasional errors going
undetected. (I still remember a hundredfold speed improvement
reported, long, long, ago, about a new version of a certain program,
which later had to be attributed to a benchmark failing silently...)

4.1.4. Function Call Syntax

Amoeba RPC operations always need a capability parameter; the ser-
vice is identified by the port field of the capability. In C, the capability
must always be the first parameter of the stub function, but in Python
we can do better.

A Python capability is an opaque object type in its own right, which is
used, for instance, as parameter to and return value from Amoeba’s
name server functions. Python objects can have methods, so it is con-
venient to make all AIL-generated stubs methods of capabilities instead
of just functions. Therefore, instead of writing

some stub(cap, other parameters)
(as in C), Python programmers can write
cap.some_stub{other parameters)

This is better because it reduces name conflicts: in Python, no confu-
sion is possible between a stub and a local or global variable or user-
defined function with the same name.

4.1.5. Example

All the preceding principles can be seen at work in the following exam-
ple. Suppose a function is declared in AIL as follows:

some stub(*, in char buf(size:1000], in int size,
out int n _done, out int status);

In C it might be called by the following code (including declarations,
for clarity, but not initializations):

int err, n done, status;
capability cap;
char buf[500];

err = some_stub(&cap, buf, sizeof buf, &n_done, &status);

if (err != 0) return err;
printf ("%$d done; status = #d\n", n_done, status);

Equivalent code in Python might look as follows:

cap = ...
buf = ...

n_done, status = cap.some_stub (buf)

print n done, ‘done;’, ‘status =’, status

No explicit error check is required in Python; if the RPC fails, an excep-
tion is raised so the print statement is never reached.
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4.2. The Implementation

More or less orthogonal to the issue of how to map AIL operations to
the Python language is the question of how they should be imple-
mented.

In principle it would be possible to use the same strategy that is used
for C: add an interface to Amoeba’s RPC primitives to Python and gen-
erate Python code to marshal parameters into and out of a buffer.
However, Python’s high-level data types are not well suited for
marshalling: bytellevel operations are clumsy and expensive, with the
result that marshalling a single byte of data can take several Python
statements. This would mean that a large amount of code would be
needed to implement a stub, which would cost a lot of time to parse and
take up a lot of space in “compiled” form (as parse tree or pseudo
code). Execution of the marshalling code would be sluggish as well.

We therefore chose an alternate approach, writing the marshalling in C,
which is efficient at such byte-level operations. While it is easy enough
to generate C code that can be linked with the Python interpreter, it
would obviously not stimulate the use of Python for server testing if
each change to an interface required relinking the interpreter. This is
circumvented by the following, rather elegant solution: the marshalling
is handled by a simple virtual machine, and AIL generates instructions
for this machine. An interpreter for the machine is linked into the
Python interpreter and reads its instructions from a file written by AIL.

The machine language for our virtual machine is dubbed Stubcode.
Stubcode is a super-specialized language. There are two sets of about a
dozen instructions each: one set marshals Python objects representing
parameters into a buffer, the other set (similar but not quite symmetric)
unmarshals results from a buffer into Python objects. The Stubcode
interpreter uses a stack to hold Python intermediate results. Other state
elements are an Amoeba header and buffer, a pointer indicating the
current position in the buffer, and of course a program counter.
Besides (un)marshalling, the virtual machine must also implement type
checking, and raise a Python exception when a parameter does not
have the expected type.

The Stubcode interpreter marshals Python data types very efficiently,
since each instruction can marshal a large amount of data. For
instance, a whole Python string is marshalled by a single Stubcode
instruction, which (after some checking) executes the most efficient
byte-copying loop possible — i.e., it calls memcpy ().

Construction details of the Stubcode interpreter are straightforward.
Most complications are caused by the peculiarities of AIL’s strategy
module and Python’s type system. By far the most complex single
instruction is the “loop” instruction, which is used to marshal arrays.

As an example, here is the complete Stubcode program (with spaces
and comments added for clarity) generated for the function
some_stub () of the example above. The stack contains pointers to
Python objects, and its initial contents is the parameter to the function,
the string buf. The final stack contents will be the function return
value, the tuple (n_done, status). The name header refers to
the fixed size Amoeba RPC header structure.
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BufSize Allocate RPC buffer of 1000 bytes

Dup Duplicate stack top

String$S Replace stack top by its string size

PutlI h extra int32 Store top element in header.h_extra
TStringSlt 1000 Assert string size less than 1000

Putvs Marshal variable-size string

Trans 1234 Execute the RPC (request code 1234)
GetT h extra int32  Pushinteger from header .h_extra
GetT h size int32 Push integer from header .h_size
Pack 2 Pack top 2 elemenis into a tuple

As much work as possible is done by the Python back-end in AIL,
rather than in the Stubcode interpreter, to make the latter both simple
and fast. For instance, the decision to eliminate an array size parameter
from the Python parameter list is taken by AIL, and Stubcode instruc-
tions are generated to recover the size from the actual parameter and to
marshal it properly. Similarly, there is a special alignment instruction
(not used in the example) to meet alignment requirements.

Communication between AIL and the Stubcode generator is via the file
system. For each stub function, AIL creates a file in its output direc-
tory, named after the stub with a specific suffix. This file contains a
machine-readable version of the Stubcode program for the stub. The
Python user can specify a search path containing directories, which the
interpreter searches for a Stubcode file the first time a particular stub is
used.

The transformations on the parameter list and data types needed to map
AIL data types to Python data types make it necessary to help the
Python programmer a bit in figuring out the parameters to a call.
Although in most cases the rules are simple enough, it is sometimes is
hard to figure out exactly what the parameter and return values of a
particular stub are. There are two sources of help in this case: first, the
exception contains enough information so that the user can figure what
type was expected where; second, AIL’s Python back-end optionally
generates a human-readable “interface specification™ file.

5. Conclusion

We have succeeded in creating a useful extension to Python that
enables Amoeba server writers to test and experiment with their server
in a much more interactive manner. We hope that this facility will add
to the popularity of AIL amongst Amoeba programmers.

Python’s extensibility was proven convincingly by the exercise (per-
formed by the second author) of adding the Stubcode interpreter to
Python. Standard data abstraction techniques are used to insulate
extension modules from details of the rest of the Python interpreter; in
the case of the Stubcode interpreter this worked well enough that it sur-
vived a major overhaul of the main Python interpreter virtually
unchanged.

On the other hand, adding a new back-end to AIL turned out to be quite
a bit of work. One problem. specific to Python, was to be expected:
Python’s variable-size data types differ considerably from the C-
derived data model that AIL favours. Two additional problems we
encountered were the complexity of the interface between AIL’s second
and third phases, and a number of remaining bugs in the second phase
that surfaced when the implementation of the Python back-end was
tested. The bugs have been tracked down and fixed, but nothing per-
manent has been done about the complexity of the interface.
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5.1. Future Plans

AIL’s C back-end generates server main loop code as well as client
stubs. The Python back-end currently only generates client stubs, so it
is not yet possible to write servers in Python. While it is clearly more
important to be able to use Python as a client than as a server, the abil-
ity to write server prototypes in Python would be a valuable addition: it
allows server designers to experiment with interfaces in a much earlier
stage of the design, with a much smaller programming effort. This
makes it possible to concentrate on concepts first, before worrying
about efficient implementation.

The unmarshalling done in the server is almost symmetric with the
marshalling in the client, and vice versa, so relative small extensions to
the Stubcode virtual machine will allow its use in a server main loop.
We hope to find the time to add this feature to a future version of
Python.
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Abstract

Applications that are interoperable (like federated databases) may be
manipulated together by the user without global integration. This can
be achieved by providing a uniform language format for the definition
and manipulation of multiple autonomous applications.

In this paper is given an overview of a proposed uniform language for-
mat FRIL based on a computing model and interface paradigm combin-
ing functional and object-oriented approaches. The framework for this
approach is given as a distributed generic infrastructure (or platform)
supporting interoperability of separate and autonomous applications.

FRIL provides remote programmable services interfaces to heterogene-
ous autonomous applications and includes constructs for formulating
global actions combining operations from these interfaces. Global
actions are supported by a distributed execution system executing FRIL
programs as distributed transactions. Using a functional computing
model for the area of distributed transaction processing is an original
approach which is both interesting and challenging.

We also briefly present the transaction model for the generic infrastruc-
ture and the exception handling facilities of FRIL. The transaction
model allows for applications with highly different requirements to
local autonomy and local transaction management to participate in the
same distributed transaction, e.g. they may exhibit different degrees of
control over subtransactions they execute. Fault tolerance is supported
by allowing for alternative transactions that are executed instead of
transactions that fail.

1. Introduction

It is widely recognized that future information systems will be hetero-
geneous and distributed containing a wide variety of computer and net-
working technologies, supplied by a number of information technology
vendors. This has generated a strong need for principles and tools for
integration of separate functions of independent systems in an organi-
zation and for linking together various functions of information sys-
tems of autonomous organizations as e.g. in electronic trading and
international banking [Eli87a].
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Within this general framework, the goal of our research activity is the
development of a distributed generic infrastructure (or platform) pro-
viding supporting services and tools for making (possibly) preexisting,
heterogeneous applications interoperable. Applications that are
interoperable may be manipulated together without global integration
[Lit86a]. The approach taken is to provide a uniform language format
combining functional and object-oriented paradigms, for the definition
and manipulation of multiple autonomous applications [Eli88a, Eli89a].

The suitability of a function-based approach as the basis for a canonical
data model or uniform language for heterogeneous databases and appli-
cations integration has been advocated by many authors. The applica-
tion of functional programming concepts to the data representation and
querying aspects of databases has been discussed in, for example,
[Shi81a, Atk84a, Bun84a] while functional approaches to additional
aspects of database systems like updating and transactions are advo-
cated in [Kel85a]. In recent years object-oriented approaches have also
been applied for (generalized) databases [Kim89a). Also a growing
interest in combining functional and object-oriented approaches have
been observed over the last years [Gog87a,Fis87a, Day89a]. For
example, queries against databases are applicative in nature and hence
can be expressed as functional programs. A declarative style for query
languages is generally considered an advantage. From these develop-
ments we have come to the conclusion that the combination of the
functional and object-oriented approaches seems highly suitable for
modelling and integrating a wide variety of different application sys-
tems and their (programmatic) service interfaces, including (general-
ized) databases, multimedia and multipurpose systems.

Our approach to a uniform language format encompasses a notation

(SESSL) for specifying abstract service interfaces. An abstract service
interface defines the view remote systems will have of the offered ser-
vice. Application interoperation is supported through the language
FIOL that allows for the formulation of expressions (i.e. global pro-
grams) combining individual operations from multiple service inter-
faces. SESSL and FIOL together constitute the two language component
of the language FRIL [Eli88a, Eli89a].

The interface notation must be capable of expressing semantics
preserving abstractions of highly different (existing) service interfaces.
We have therefore based the notation for specifying abstract pro-
grammable service interfaces on the idea of algebraic specifications of
abstract data types (ADTs) [Gut78a). This technique facilitates object-
oriented and fully implementation independent interface specifications
which is of particular value for the purpose of overcoming hetero-
geneity.

An additional requirement to the infrastructure is to support reliable
execution of global actions, i.e. actions with transactional properties
like atomicity, consistency preservation and concurrency [Eli88a]. To
support this requirement a flexible transaction model preserving the
autonomy of the component systems of a federation and tolerating
failures of individual subtransactions, have been developed [Kar91a].

In most (database) systems, updates are provided through different
“non-functional” mechanisms relying on side-effects. These mechan-
isms are clearly in conflict with a functional approach. However, to
serve as a vehicle for application interoperability, the uniform language
format must also be able to capture this kind of semantics. The out-
standing challange is to represent update in such a way that it can be
handled within a functional programming framework and without com-
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Figure 1: Layered architecture for interoperable applications

pletely destroying the elegance of the language [Bun90a]. Our contri-
bution to this challenge is a way of declaring side-effects of functions
and constraining permissable threads of applications of functions with
side-effects. This mechanism can be used to model different forms of
updates of objects within a functional framework, including update
semantics relying on side-effects.

In the remainder of the paper we present our approach in greater detail.
In Section 2 we give a overview of an architecture model for applica-
tion interoperability. Section 3 gives a brief overview of the flexible
transaction model supporting local system autonomy and alternative
transactions. It is shown how this model can be integrated into the
infrastructure by mapping different levels of transaction management
functions onto different entities of the above architecture. In Section 4
we present FIOL and the notation for interface specifications (SESSL),
including our approach for modelling update. Section 5 presents
exception handling in SESSL and FIOL for the support of alternative
transactions.

2. Overview of System Architecture Model

The conceptual framework for the functional approach to interoperable
applications is modeled as a three layered architecture. Figure 1 shows
the architecture as shells of an onion. The viewpoint or perspective of
the architecture is interoperation. It is not intended as a total model
covering all aspects of distributed applications.

The application layer contains the existing information systems to be
made interoperable as well as entity types representing the users of
these information systems. These systems interface to the infrastruc-
ture using the services and functions of the abstraction layer. The
abstraction layer is populated by generic entity types called client and
server entities. The purpose of the abstraction layer is to add the func-
tionality required for enhancing or abstracting the application service
interfaces to the linguistic form required by the interoperability layer.
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The actual set of required abstraction layer functions will vary from
application to application depending on the properties of the actual
application service interface and thus in general can not standardized.
For some application types, however, it is envisaged that more or less
standardized abstraction layer front end server entities can be
developed (e.g. front-ends to standard SQL databases [Eli90a]).

At the boundary between the abstraction layer and the interoperability
layer the decentralized environment of interoperable applications
appears as composed of server entities and client entities. The intero-
perability layer provides the necessary services that enable clients to
manipulate together the services of one or more servers. Its primary
service is the EVAL service. The EVAL service executes programs
expressed in the functional resource integration language FRIL on
request from clients. The language supports application interoperation
by allowing for the formulation of expressions (i.e. global programs)
combining individual operations from multiple server interfaces.

Architecturally the EVAL service is modeled as a set of cooperating
Evaluation Managers (EMs) managing the evaluation of FRIL expres-
sions as global distributed transactions (see Figure 1). The evaluation
generally proceeds in a distributed and nested manner based on
repeated decompositions of FIOL expressions and evaluation of subex-
pressions by different EM entities. Each decomposition will be done
according to the locations of the data objects being addressed in the
(sub)expression and possibly according to some overall optimization
strategy (e.g. to reduce network traffic). The EM entities exploit the
appropriate servers to evaluate the different component functions.

The EMs communicate using the asynchronous remote function call
(RFC) protocol. Through this protocol an EM entity (the requestor)
requests some other EM entity (the responder) to evaluate a FRIL
expression for some given arguments and subsequently collects the
result. The EMs communicate with the client and server entities using
a similar protocol. This latter protocol defines the boundary of auton-
omy between a local and the global system.

3. Flexible Transactions for Interoperable Applications

One of the main difficulties to overcome in the design of a transaction
model for interoperable applications is implied by the requirement for
autonomy. The notion of flexible transactions have been developed to
solve some of these difficulties [Kar91a]. In the following we briefly
describe the flexible transaction model and its relation to the architec-
ture described in the previous Section.

3.1. Properties of the Flexible Transaction Model

The requirement for autonomy implies that the transaction model sup-
porting interoperation needs to distinguish between locally and globally
controlled transaction management. Thus a global transaction will be
managed partly at the global level (i.e. interoperability layer) and partly
at the local level (i.e. abstraction and application layers).

Applications in a federation are autonomous [Eli87b]. This implies
(among others) that an application may require transaction commit
based on local considerations only (locally controlled commit) or it
may leave commit control to the EM (globally controlled commit).
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The transaction model supports both kinds of commit within one global
transaction.

Requirements for fault tolerance give raise to the concept of alternative
transactions [Eli87a]. This means that the specification of a global
transaction can include the specification of alternative subtransactions
which will be executed if a specific subtransaction is unable to com-
plete successfully. A flexible transaction concept can thus be sup-
ported allowing users to specify alternative actions for implementing
the same task. Consequently a global transaction can execute success-
fully and commit even when some of its subtransactions fail.

Traditional transaction models (e.g. [Ber87a, Cer84a]) does not fulfill
the requirement for flexibility in the above sense. An independently
developed transaction model supporting interoperability for the Inter-
Base system [EIm90a], are in some respects similar to the transaction
model presented in this paper.

3.2. Architecture for Transaction Execution

We assume the global layer management is handled by several global
transaction managers (GTMs) being constituent parts of the evaluation
managers (EMs) of the interoperability layer. We also assume that
every autonomous application entity has a local transaction manager
(LTM) which manages the execution of local transactions (see Fig-
ure 2).

The GTMs require a minimum level of functionality from the LTMs in
order to be able to utilize local transaction management as a basis for
the management of global transactions. This functionality is for each
application entity provided by a module of the application’s associated
server entity called LTM*. The LTM™* thus enhances the functionality
of the LTM to the minimum level required by the GTM.

When a global transaction T is submitted by a client to its associated
EM, the transaction is decomposed into a number of subtransactions
T,,...,T, by the global resource manager module GRM (see Fig-
ure 2). Each subtransaction is assigned to an appropriate subordinate
EM for execution. This process is called mapping.

Client
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Figure 2: Transaction execution
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A subtransaction ¢;; mapped to a server is executed as an autonomous
transaction managed by the LTM in association with the LTM*. The
server entity prepares the subtransaction for local execution by setting
up an execution plan for 7;; and translates it into the transaction
language of the LTM.

After the completion of a subtransaction T; the result v; is communi-
cated back to the superior EM which uses the result to complete the
execution of its assigned subtransaction. When the execution of the
global transaction T is completed, T is commited and the final result V
is returned to the client (commitment is not shown in Figure 2).

3.3. A Transaction Model for Flexible Transactions

In the flexible transaction model global transactions are executed as
nested transactions where each global transaction (GT) consists of a
number of (sub)transactions organized into a hierarchy. The top level
GT represents the global transaction issued by the client. Each GT in
the hierarchy is mapped to an EM entity and managed by the
corresponding GTM.

The leaf transactions (having no subtransactions) we call canonical
local transactions (CLT). A CLT is mapped to a server entity and
managed by the LTM/LTM™ as a single autonoumous transaction. A
CLT is local in the sense that it is executed in its entirety by a single
server, and it is canonical in the sense that it is expressed in the uni-
form language format of the infrastructure.

A global transaction T is represented by a tuple <ST,0,D,C> where

ST is a set of subtransactions {T,,...,T,}, O is a partial order on
{Ty,...,T,}, D is a set of subtransaction dependencies among
T,,...,T, and C represents consistency information. The GTM asso-

ciated to the EM evaluating T is responsible for managing the set of
subtransactions (represented by ST) as one global transaction.

The partial order O determines the execution order of T, ..., T, and
can be derived from the set of subtransaction dependencies D. The
model distinguishes between compositional, conditional and failure
dependency.

o Compositional dependency. A transaction T; is compositional
dependent on a transaction T, if T; uses the result of (a success-
fully executed) T; as argument. This implies that T; can not be

executed before T; has completed successfully.

. Conditional dependency. A transaction T is conditional depen-
dent on a transaction T; if T; is executed only if T; terminates
with a particular (explicitly specified) result.

. Failure dependency. A transaction T is failure dependent of a
transaction T, if T; is executed only if T, is tried executed and
has failed. 7; is the primary transaction while 7'; is an alternative
transaction.

The latter kind of dependency is of particular interest for fault toler-
ance. The intended meaning of failure dependency is that a primary
transaction is the preferred transaction (the first choice) while an alter-
native transaction is executed only if T; fails. An alternative transac-
tion can itself be a primary transaction having a set of failure depen-
dent, alternative transactions attached.

The consistency information C is used by the GTMs to enforce con-
sistency for concurrent transactions.
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3.4. Transaction Management

The execution of a global transaction will either complete successfully
or fail. This outcome depends on the success or failure of its subtran-
sactions.

For every global transaction T=<ST,0,D,C> a set Q of subsets of ST
can be derived from the dependencies D. Every member of Q
represents an alternative acceptable execution of T. A member of €2
thus consists of a set of subtransactions that together represent an
acceptable result and hence a complete execution of T. The transaction
T can be committed only if T is successfully executed according to
these requirements.

When a subtransaction T, terminates, the subordinate GTM returns
either a positive or negative response to its superior GTM. A negative
response indicates that T, has failed and has been aborted and undone
while a positive response indicates that T, was successfully executed.
The superior GTM can request either a commit or an abort action from
a successfully executed subtransaction.

CLTs are either globally or locally committed. Local commit of a CLT
is controlled by the LTM/LTM*. The CLT is normaily commited as
soon as it is successfully executed. CLTs committing locally must be
compensatable, meaning that there exist a compensating transaction
that semantically undoes the result of the executed and committed CLT
[Gar83a]. A locally committed subtransaction can on request from the
GTM be compensated (by the LTM™*). It is assumed that the LTM*
managing a compensatable CLT also constructs the corresponding com-
pensating transaction during the execution of the CLT.

Global commit of a CLT is controlled by the GTMs and is executed
when the global transaction T is successfully executed (and ready to
commit). Abort is the only recovery action needed for globally com-
mitted CLTs.

If T; is mapped as a global transaction and fails, a negative response is
returned by the subordinate GTM. The superior GTM aborts T and
chooses the preferred alternative subtransaction for T among the failure
dependent transactions (if any). If no alternative transaction exist or
every alternative has been executed and failed, T can not be success-
fully executed and is deemed to fail. As a result a negative response is
returned to the next superior GTM.

If T, is mapped as a CLT and fails, the GTM receives a negative
response from the corresponding server. In this case the GTM chooses
the preferred alternative transaction S for 7, and executes S as a sub-
transaction of T. If no alternative exist for T;, T is aborted and an alter-
native for T is searched for (c.f. above).

A transaction T can be committed if the set of successfully executed
subtransactions is in Q. To commit a transaction T, commit requests
are (recursivly) propagated to every subordinate transaction manager
managing a successfully executed subtransaction. To abort T, abort or
compensate requests are sent instead.

To preserve consistency, a transaction 7 must satisfy both global and
local consistency constraints. Local constraints describe the internal
consistency requirements for each application. Global constraints must
be an addition to local constraints and describe consistency require-
ments between the interoperable applications. This implies that global
consistency can only meaningfully be concerned about dynamic con-
straints determining the manner in which state transitions may occur.
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Concurrent execution of conflicting transactions must be synchronized
to prevent inconsistency. Due to autonomy requirements, synchroniza-
tion of concurrent transactions spanning interoperable applications is
generally difficult [Du89a]. Consistency is often achieved at the
expence of concurrency and/or autonomy. For the GTMs we combine
two approaches. Firstly, the decomposition of global transactions is
constrained (e.g. to preserve the view of immutability, see Sec-
tion 4.2.4). Secondly, a global scheduler will synchronize concurrent
execution of conflicting global transactions according to global inter-
leaving constraints. The details of this approach will be reported else-
where [Kar91a].

4. The Functional Resource Integration Language

In the overview of FRIL we shall concentrate on semantics and only
briefly describe its built-in data types and control structures. The syn-
tax of FRIL is mainly inspired by the syntax of Backus” FP [Bac78a]
and an extension of FP with a type system described in [Gut81a]. FP
embodies a functional style of programming in which variablefree pro-
grams are built from a set of primitive programs by a small set of com-
bining forms. We describe the two components of FRIL. SESSL and
FIOL, separately.

4.1. Global Transaction Programs

FIOL is the glue that ties all the export schemata (in a federation)
together in the sense that it allows for the formulation of global transac-
tions combining functions of multiple export schemata in a single
expression.

FIOL recognizes two kinds of functions. Server functions are func-
tional operators provided by servers via corresponding export schemata
while primitive functions of FIOL correspond to the operators of the
built in primitive data types and the sequence data type. Typical ones
are addition, subtraction, multiplication and division of numbers,
boolean operators like logical and, or and not, as well as operators for
manipulating sequences.

In FRIL, everything is considered a function. For example, the integer
number 4 is considered a constant function with codomain integer.
Thus the result of every function evaluation is a function. The evalua-
tion stops when the function cannot be evaluated any further (i.e. a nor-
mal form is reached).

Combining forms are the programming constructs of FRIL and are used
to construct new functions from already existing functions. They take
functions as arguments and map them into “higher-order” functions.
The combining forms of FRIL are basically those found in FP. Some of
them are defined below. The symbols f, g, h, x, y, xy,..., x, denote
arbitrary function expressions, while p denotes a function with range
boolean. The sequence manipulating function Apnd! (append left)
appearing below, is defined by the equation

Apndll [y, [x i, ..o x, 0 T =1y, ..oy X,
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4.2. Server Interfaces

Composition: flglhlx = fl(gl(hlx))
Construction:  [f, g, h]llx=[flx,glx, hlx]
Condition: (p—f.g) x=ifplx=true then f | x else gl x
Filter: &pllxy,....x,] =if plx, =true then

Apndl| [x, &pllxy, ..., x, ]l else &pl[x5,...,x,]
Apply to all: i ag,oo,x, ) =0 lay, oo flx, 1L, %) =[]

Insert right: Il xy, o x,] =l U o, .o x, 1/ f 1 [x] =x

A FIOL program denotes a global transaction definition. It is a set of
equations of the form f=e defining various functions where f is a sim-
ple identifier and e is an expression. A very simple example of a FIOL
program is:

def

€

t = €

All except the first equation of the program are local definitions. Local
definitions are evaluated when needed (lazy evaluation) and reused by
reference to their identifiers (£, and ¢, in the example).

The combining forms define different ways of combining functions into
higher order functions. In general they also express various forms of
dependencies between functions corresponding to the concept of sub-
transaction dependencies defined in Section 3.2. The combining forms
composition, filter, apply to all and insert defines different forms of
compositional dependencies, while condition is the combining form for
expressing conditional dependency. The construction combining form
does not imply any dependencies at all between its argument functions,
while the concept of failure dependency in the flexible transaction
model is supported by substitute functions and will be dealt with in
Section 5.

The language for specifying abstract server interfaces we name SESSL.
Below we comment on the notions of object persistency, dependency,
immutability, mutability, naming and update all supported by the
language. Additionally SESSL supports a number of other concepts
like subtyping, inheritance, and modular and parameterized
(polymorphic) specifications. For details the reader is referred to
[Eli89a].

4.2.1. Programmable Server Interfaces

A server offers its services to potential clients through a server export
schema [Hei85a]. The server export schema contains a specification of
the offered services and comprises the set of operation requests it may
accept from potential clients and for each operation request, the
responses that can be expected as a result of the request. The export
schema also groups the functions into access control groups. Clients
need not be given access to all the groups.

An abstract server interface is programmable in the sense that a server
accepts from clients complete FIOL expressions for evaluation. Such
expressions correspond to the notion of canonical local transactions
(CLTs) in the flexible transaction model. It is required that a CLT con-
sists of functions all specified in the server’s export schema. We
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assume that the set of built-in functions in FIOL are implicitly part of
any export schema,

The abstract syntax of SESSL is mainly inspired by algebraic
specification languages like OBJ2 [Fut85a] and Larch [Gut85al. A
specification of a server interface providing access to a database of
accounts would typically include two ADTs AccDB and Account. The
signature of each ADT describes the operations that can be performed
on objects of the type. The specification of the database type could
include the functions

insert:{ AccDB, Account] — AccDB
delete:[ AccDB, Account] — AccDB

while the specification of the type Account might encompass functions
like

name : Account — AccName

bal: Account — Money

hist: Account — *[Date, Money]
credit: [ Account, Money|] — Account
debit: [ Account, Money| — Account

The notation f:S — T indicates a function with domain S and
codomain T. The type constructor [T,...,T,] denotes the type of
tuples of objects of type T,,...,T,, while the type notation *T
specifies a sequence or stream of objects of type 7. The filter combin-
ing form of FIOL can be used to restrict streams of objects (i.e. retrieval
by object value). An example of a derived operation (method) might
be

transfer:| AccDB, AccName, AccName, Money | - AccDB

A server specification method based on the approach of ADTs, supports
an object-oriented model of information services. ADTs are essentially
abstract definitions for potential data objects in a system (i.e. a server).
The export schema specifies the semantics of these data objects basi-
cally in terms of how they can be accessed and manipulated by clients.
SESSL supports the specification of both mutable and immutable object
types. A mutable object has value (i.e. state) that can change while the
value of an immutable object never changes.

Following [Gut78a] the type being defined is referred to as the type of
interest (TOI). In the above example the TOI for the functions insert
and delete is the type AccDB while the TOI for the functions name, bal,
credit and debit is the type Account. The functional operators belong-
ing to the TOI are grouped under appropriate headings according to
their class. The classes are primitive constructors to construct starting
values of the TOIl, constructors to construct new values of the TOI from
old ones, mutators that modify the object value of a mutable TOI, or
extractors for extracting component values of the TOI [Lis86a].

4.2.2. Global Object Representation

To overcome heterogeneity at the global level (i.e. in the interoperabil-
ity layer) there is a need for a global object representation format
independent of the various local object representation formats that can
be found in existing systems and applications. Use of ADTs as the
abstraction mechanism of objects means that we can represent an
object by its state.
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[Eli89a] introduces unique identifiers (UIDs) as global level object
representation. When a client requests a server to create a new account
(say), the global level representation of the state of the account (a UID
generated by the server) will be returned to the client. The server is
responsible for maintaining a mapping between the UID and some
internal representation of the account’s state. The internal representa-
tion is hidden for the client. A client can later reference or access the
account by presenting the corresponding UID to the server. Formally
UIDs are considered as constant functions. E.g. if # denotes a UID for
an account, ¥ would have signature u:— Account.

We integrate UIDs into SESSL by letting the TOI argument of a func-
tional operator be the carrier of the global object representation (UIDs).
Hence if f:T, X—Y is a function provided by some server and T
represents the TOI, the first actual argument in a call on f will be a UID
identifying a corresponding data object of type T on which the opera-
tion f'is to be applied.

4.2.3. Object Persistency

The general mechanism of providing UIDs described above, is a way of
modelling persistent server objects. However, without any additional
mechanisms constraining this approach in some way, a server will be
forced to maintain UIDs even for very fine grained objects. A worse
problem is that the application to be made interoperable may not sup-
port an object concept at all (e.g. a relational database) and hence no
concept of object identifier either.

In order not to put too strong requirements on the server functionality,
the concept of persistence dependency allows a server to declare for
which object types it will provide UIDs to clients and for which it will
not [Eli89a]. This does not prevent servers and applications internally
to maintain (surrogate) UIDs for dependent objects, but these UIDs are
never revealed for clients other than as a particular nil-value denoted
void. In fact, the computational model of FRIL assumes the logical
existence of internal surrogate UIDs for all data objects provided by a
server. These are needed for specifying the semantics of the execution
of CLTs.

In general the persistency and life time of an object is tightly coupled to
the ability to reference it. The persistency of objects of a type T
declared to be persistent dependent must rely on the existence of a
parent type that has an extractor having T as codomain. This means
that an object of type T can only be made persistent in the context of a
parent object of type Q and can only be referenced via extractors of the
latter object. Both objects must be located at the same server.

The concept of attribute-relation (or o-relation for short) is introduced
to capture the idea of objects having other objects as attributes. Infor-
mally an object O, is o-related to an object O, if O can be retrieved
via some extractor function of O,. This relation is used to express the
condition for persistency of dependent objects. A dependent object O
is persistent if and only if there exists a persistent object O, such that
0, is a-related to O ,.

The underlaying computational model of FRIL specifies that when the
computation of a CLT terminates (i.e. the CLT commits), all dependent
objects accessed by the CLT that does not have an o-relationship to
some persistent object, will (logically) be taken by garbage collection.
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4.2.4. Modelling Update of Objects

Under a pure functional approach there is no concept of updating an
object and accordingly no notion of mutability and corresponding
mutators. Rather there is only immutability and the effect of applying a
constructor function will be (at least conceptually) to create a new
object from the old one referred to in the function argument. The old
object will remain as before. This we refer to as the view of immutabil-
ity and allow us to more easily model concepts like object versions and
version histories. A constructor can be viewed as creating a new ver-
sion of an object, and repeated applications of constructors as creating
version histories.

It is required, t\10wever. that SESSL also be capable of expressing
abstractions of applications that do not support immutability, but rather
model update relying on side-effects (i.e. mutable objects). Most data-
base systems are of this kind. In response to this requirement, SESSL
allows an ADT appearing in an export schema to be declared mutable
(c.f. above). Naturally it is only mutable types that can have mutators,
but mutable types may of course also have constructors.

In order to avoid a wholesale compromise of a pure functional
approach, the computational model of FRIL requires the view of immu-
tability be supported by the servers for all objects during the execution
of a transaction. For mutable objects this means that during execution
of a transaction, mutators logically behave like constructors such that
executing a mutator results in a new object being constructed in stead
of modifying one. The binding between UID and object value does not
change before the transaction commits. Informally this corresponds to
establishing a shadow copy of the mutable object to be updated and
performing the update on this copy. Once the CLT commits, the old
object version is made unavailable for future access (and thus can be
deleted) and the updated shadow copy is established as the “current
one”. The Ilatter is achieved by letting the UID that previously
identified the old object, now identify the updated shadow copy.
Repeated updates requires a shadow copy be established for each
update.

When the CLT commits, intermediate object versions that was (logi-
cally) created during the execution of the CLT and that can not be refer-
enced by clients after commit, can be considered garbage collected by
the server. This applies equally to mutable as well as immutable
objects and enables complex transformations of immutable objects to
be expressed without the need to store intermediate object versions as
would have otherwise been the case.

Formally our approach for dealing with mutable objects within a func-
tional framework, is similar to the idea of reflective semantics of func-
tional languages |Gog87a]. The effect of updating a mutable object is
reflected in a changed semantics of the UID viewed as a function. The
semantics of the UID is given by the value of the extractors functions of
its type when composed with the UID. The changed semantics is real-
ized when the CLT commits.

With respect to concurrent transactions, a sufficient condition for being
able to provide the view of immutability is that all global transactions
can be decomposed in such a way that there is at most one CLT per
server per transaction (a constraint found in many other transaction
models as well, see e.g. [Gli84a, Gli86a, Du89a]. Under this condition
it is sufficient to consider CLTs only for providing the view of immuta-
bility. It is possible, however, sometimes to relax this constraint.
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In order to avoid inconsistencies w.r.t. the meaning of FIOL programs
containing applications of mutators, there is a need to constrain the per-
missable threads of applications of mutators within a transaction. This
need mainly stem from the possibility of formulating FIOL programs
producing inconsisent results. For mutable objects, there is the global
constraint that a complex update of a mutable object performed by a
transaction, involving several applications of mutators, must form a
linear version history and that (under the view of immutability) no
intermediate object versions satisfies the conditions for persistency.
The constraint guarantees that there never can be more than one candi-
date object version to be established as the new object value of a mut-
able object when the transaction commits. Servers may optionally
specifiy a similar constraint for immutable object types as well. For
objects constrained to linear version histories, servers can also specify
that intermediate object versions can not be “observed” during program
execution, i.e. extractor functions can not be applied to intermediate
object versions. This reduces or eliminates the need for maintaining
shadow copies during transaction execution and when applied properly,
allows single threaded object constructions to be safely implemented as
a series of destructive updates.

5. Linguistic Support for Flexible Transactions

5.1. Exception Handling

The requirement for a flexible transaction model for FRIL is based on
the assumption that the evaluation of a CLT can be refused by the
server for whatever reason (e.g. violation of behaviour rules or con-
straints or lack of access rights). This also normally leads to that the
subtransaction enctosing the CLT fails. The execution of subtransac-
tions may also fail due to a variety of other exceptional conditions like
communication failure, type errors, etc. This may lead to situations
where a global transaction can only be partially executed. In this Sec-
tion we present language constructs of FRIL supporting the fiexible
transaction model w.r.t. alternative subtransactions.

The support for alternative transactions is represented by the FRIL sig-
nalling mechanism and the facility for specifying substitute functions.

The FRIL signalling mechanism allows a server to signal error condi-
tions when a ‘“normal” result cannot be obtained. Our approach is
based on the concepts of named terminations (or named returns as we
call them) [ANS89a| and errorsorts [Gog87a]. Named returns are a
generalization of the exception handling scheme found in many pro-
gramming languages. In FRIL named returns for an object type T are
represented by signalling functions of the form

E:->T

The codomain of E is actually T? and is called the error type of T.
When the execution of a CLT results in a named return E for one of its
component function, the actions taken by the LTM" is to abort the CLT,
recover from the potential effect of the already evaluated component
functions of the CLT and issue an error return to the GTM conveying
information about the reason for the abort (i.e. some server function f
reduced to the named return E).

In addition to the named returns specified by the servers, there are a
number of implicit built-in named returns which may be generated by
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5.2. Substitute Functions

the FRIL run time system itself corresponding to system failures of dif-
ferent kinds. It is assumed that every function may reduce to system
generated named returns.

In a FIOL program it is possible to specify for each occurrence of a
server function which named returns the program is willing to accept.
If named returns not specified as acceptable to the program should
occur, a standard exception (or error recovery) action is started (usually
the transaction is aborted).

The concept of alternative subtransactions and the corresponding con-
cept of failure dependency introduced in Section 3, is in FRIL sup-
ported by the notion of substitute functions. When specifying accept-
able named returns, a substitute function to be executed in stead of the
function F that failed (or produced the named return E) must be
identified.

Any function that has a substitute function we call a primary function.
If no substitute function is specified for a given server function, the
default substitute function D will be evaluated. Usually D will
correspond to an abort action. A requirement to a substitute function H
is that its signature must conform with the signature of its primary
function F.

The exception handling mechanism of FRIL is in fact more flexible and
general than the mechanism sketched above since not only single
server functions can be substituted for but also complete expressions.
This will become clearer through the following example illustrating an
abstract syntax for declaring substitute functions in FIOL:

def

e: (f=n)-s, (rl)
e: (f=any)—>s, (r2)
e, (h=k)—>s, (r3)

We assume that f, ¢ and & denote server functions which all may pro-
duce named returns. The def and subst sections of the program defines
the primary and substitute functions respectively, while the rules sec-
tion defines the rules for function substitution for some named returns.

The notation f=n denotes the event that the evaluation of a server
functions f reduces to the named return # while e:(f=n) denotes the
event (f=n) occurring while f is being evaluated as a component
function of the expression e (i.e. within the context of ¢). We call the
expression e the substitution context for f=n. The notation
e:(f=n)—s denotes the rule stating that if the event f=>n occurs in
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the substitution context e, the expression ¢ will be substituted for by the
expression s. The symbol any denotes either amy function or any
named return depending on textual context.

Substitute functions may themselves fail. Since the same exception
handling mechanism applies to substitute functions, exception handling
can be nested to arbitrary depth. In the above example we see that the
subexpression ¢ of the substitute function s, has substitute function s
for the event h=>k. If the execution of the substitute function itself
fails, the further exception handling will be based on the named return
that originally caused the attempted execution of the substitute.

When two different substitution rules for the same event have overlap-
ping substitution contexts (i.e. where the one context is a subexpression
of the other) a set of precedence rules for deterministically choosing
between the substitution rules is applied. Generally the substitution
rule with the smallest context is applied first. Within one context the
substitution rule with the most specific named return has precedence.
(i.e. (f=n) before ( f =any) before (any=any)).

In the above example suppose the evaluation of f produces the named
return n. Any of the substitution rules r; and r,, can be applied. The
precedence rules give the applications an explicit order

ry<rsp
If s, fails with the named return (2=>k) the application order is
ry<r3<rjp

If all the substitutes fail, T fails with the named return ( f =n).

When applying the substitution rule e:( f=>n)—s, (say), the potential
durable effects of already executed component functions of e at the
time of the event f = n, are (semantically) undone by performing com-
pensating and/or abort actions, before the evaluation of s, is started.
Hence a substitution context is atomic. The effect of the transaction
will be the result of evaluating T[s/e] rather than T. Given the above
presedence rules, the potential different alternative effects of the tran-
saction are in order of presedence

T <Tls /e] <T]l[s»/e]

And as above, if s, fails with the named return (h=>k) the order
becomes

T<Tls /el <Tl[s|[s3/ei],e] <T[s,/e]

We do not present any details of the distributed exception handling in
this paper. The interested reader is referred to [El90b] in which is
presented a detailed abstract algorithm of the distributed exception han-
dling of FRIL as an amendment to the transaction execution algorithm
presented in Section 3.4. The algorithm is based on the set of parse
trees of the global transaction program; one for the defining expression
of the global transaction and one for each of the defined substitute
functions.

6. Conclusion

An infrastructure for interoperable heterogeneous applications must
support a wide variety of data models to allow for easy and flexible
manipulation and combination of information stored in different
heterogeneous systems. By considering entity types of data models as
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abstract data types, the problem of achieving interoperability can be
expressed as the problem of combining data conforming to different
abstract data types.

Interoperability can be guaranteed through the provision of homogen-
ized abstract interfaces (export schemata) and the availability of a com-
mon kernel set of primitive data types. The common kernel set of
abstract data types must be supported by all component information
systems as well as by the infrastructure itself and enables the exchange
of structured values between information systems so that outputs from
one system can be used as inputs to an other system, and outputs from
different systems can be computationally combined.

This paper has priesented an architecture for the interoperability infras-
tructure. Within this framework was presented the functional resource
integration language FRIL with its two language components FIOL and
SESSL as a linguistic tool conforming to the above approach. The
specification of abstract interfaces (export schemata) is formulated in
the abstract data type language SESSL while the functional language
FIOL is used to formulate global operations combining operations from
multiple abstract interfaces. The infrastructure also provides mechan-
isms for the evaluation of FIOL expressions as distributed flexible tran-
sactions. This mechanism has been named the EVAL service.

The presentation has focused on the support for important database
concepts as object persistency and object update, and the novel concept
of alternative transactions. Our goal has been to make FRIL mappable
to other existing data models and data languages so that it can be used
as a unified language format for achieving interoperability. A first
study of making FRIL interfaces to relational databases seems very
promising [Eli90a). A similar study of object-oriented databases is
under way. These studies will give us valuable feed-back for the
further development of FRIL. For the FIOL language component and
the associated EVAL service, the integration of the flexible transaction
model is well under way as reported in this paper. However, several
issues need to be further studied. These are mainly related to require-
ments for program transformation and decomposition strategies, and
access control. In relation to SESSL, details of mechanisms for publica-
tion (export) and import of schemata also need to be studied.

For our first prototype we consider ANSA testbench as our implementa-
tion basis [ANS89a] since this system contains many of the infrastruc-
ture functions that are required for federations. A FRIL server genera-
tor to be used to generate FRIL server front-ends to relational database
systems is under design and implementation. The server generator
takes a given relational schema as input and produces a corresponding
SESSL specification as well as code for mapping between FIOL and
SQL. Thus our first experiments on application interoperability will be
based on relational databases.
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Abstract

The need for high quality distributed systems is a great challenge the
computer community is faced with. The quality attributes are, for
instance security, reliability, and maintainability. In this paper a few
questions will be answered in order to (/) gain a deeper understanding
of the problems of distributed systems and to (ii) propose a methodol-
ogy to overcome some of these problems. The questions which we are
concerned with are:

What can we learn from current and recent approaches in
Distributed Ada for the specification, design, construc-
tion, and implementation of distributed systems?

How can we implement distributed systems in an elegant
and impressive way using a methodology called concept’s
stepwise refinement?

Some answers to these two questions will be given in this paper. Two
ideas predominate in our approach for constructing distributed systems.
The former idea states, that abstractions should be defined by means of
languages. The latter idea says, that the implementation strategy
should be guided by concept’s stepwise refinement.

1. Introduction

One great challenge the computer community is faced with is the need
for distributed systems with attributes, which express high quality.
These attributes are, for instance security, reliability, and maintainabil-
ity. The main subject of this paper is the construction of distributed
systems. In this context the following questions should be answered.

What can we learn from current and recent approaches in
Distributed Ada for the specification, design, construc-
tion, and implementation of distributed systems’”

Can concept’s stepwise refinement be used in order to
implement distributed systems in an elegant and impres-
sive way?

This work has been partially supported by Competence Center Informatik (CCI), Meppen, Germany.
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What is the motivation for our own OIDiLa / VERITOS
approach and what are the conclusions, which can be
drawn from distributed Ada?

The answers to these questions will help to gain a deeper understanding
of the problems in the area of constructing distributed systems. A
methodology will be proposed, as well, in order to overcome some of
the existing problems.

In our opinion “specification, design, construction, and implementation
of distributed systems should start at a very high level of abstraction” .
Therefore, the orientation towards high level languages is the best way
to produce high quality distributed systems. Simplicity, generality, and
expressive power of language concepts form a sound basis for the con-
struction of distributed systems at a high level of abstraction. In addi-
tion, concept’s stepwise refinement supports and improves the imple-
mentation.

Ada is a programming language which defines a powerful and expres-
sive set of concepts. Ada can be used to specify and program various
kinds of applications. Compilers and programming environments are
implemented for a large number of computer systems. But only a few
approaches exist in the area of distributed Ada. These approaches sup-
port programming of distributed Ada applications as well as their dis-
tributed execution in a distributed target hardware configuration.

Our recent investigations are carried out in the area of distributed sys-
tems, especially distributed operating systems. Programming
languages for specifying distributed systems and distributed applica-
tions are in the center of interest.

On the one hand we are elaborating an integrated approach for specify-
ing, designing, constructing, and implementing distributed systems.
Work in this area has been done within the VERITOS project at the
University of Oldenburg [Bau90a]. The project is still in progress and
will be continued in the future. We have developed an experimental
programming and specification language, called OIDiLa — Oldenburg
Distributed Language — which is an essential part of our project.

On the other hand we have investigated in detail current approaches in
Distributed Ada which made substantial efforts in the area of distri-
buted execution of Ada program systems and which will clearly
influence this area. A detailed comparative study has been elaborated
in 1990 [Bau90b]. Some of its main results will be presented. Conclu-
sions will be drawn with respect to specification, design, construction,
and implementation of distributed systems in general.

Having both activities in mind this paper
(a)  Presents some of the main results of the study in distributed Ada,
(b) Identifies significant problems in at least two areas, namely in

(i)  The definition of distributed solutions of application prob-
lems and in

(i1)  The distributed execution of these solutions,

(c)  Discusses the solutions which are elaborated for Distributed Ada,
and

(d) Presents conclusions drawn from the area of Distributed Ada,
which have effects on the design and construction of distributed
systems as well as on our solution including further levels of
concept’s stepwise refinement.

A summary of the topics, which are discussed in this paper, will be
given in section 2 based upon the central Figure 1. As to these topics
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some further details will be presented in section 3. These details
include the motivation of the language-oriented approach within the
VERITOS project. Our investigations about distributed Ada will be out-
lined. A few characteristic approaches will be mentioned. The con-
cepts of OIDiLa will illustrate the objectives of our own project. Some
examples will explain concept’s stepwise refinement. - Finally, some
conclusions will be given in section 4.

2. Summary of Topics’ Discussion

The design and implementation of high quality distributed systems is a
time-consuming and difficult process. This experience has been pub-
lished by Schlichting et al. [Pet87a] as well as many other projects.
Therefore, the need for structuring this process becomes evident.
Design and implementation can be divided and structured in many
ways. In our opinion four important distinctions lead to an improve-
ment.

° First of all different levels of abstraction have to be identified.
This distinction leads to at least two levels of abstraction, namely
abstractly distributed and physically distributed systems.

[ Secondly an in accordance to the first, application programming,
which can be done independent of any physical distribution, and
distribution programming which takes into account the physical
hardware configuration can be separated. This is a distinct
separation of concerns.

) Thirdly, the distinction between partitioning and configuration
follows the same direction. Units which define possible distribu-
tion units have to be identified. Their definition should not take
into account the mapping onto physical nodes. By definition, a
distribution unit is a unit, which is localized as an entire unit at a
node. No possibility is supported to move parts or to place parts
of a distribution unit on other nodes. The mapping onto physical
nodes is done by configuration.

. The fourth distinction leads to an implementation method.
Implementation decisions which are mutually correlated will be
grouped together by means of concept’s stepwise refinement.
Concepts will be refined in order to reflect these decisions mainly
by adding appropriate details.

Distributed systems have to be modeled at various levels of abstraction.

Distributed systems with a high degree of abstraction are called

abstractly distributed systems. They are positioned at the top in Fig-

ure 1. In contrast, distributed systems with little abstraction which are
very close to the hardware are called physically distributed systems.

They are positioned at the bottom in Figure 1.

In our approach the models which are used to specify abstractly distri-
buted systems are language-oriented. The functionality of the whole
system will be expressed by means of language concepts. As well, the
functionality of components, the structures of components, and the
cooperation among components including communication are specified
likewise. Candidates for such languages are Ada and O/DiLa as well
as languages like SR [And86a], Emerald [Jul88a], and LADY
[Wyb90a].

A small number of abstractions can be found in physically distributed
systems. Their characteristics are defined by the properties of the
hardware configuration (processors, memory model, communication
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system, network configuration). Physically distributed systems may be
tightly-coupled multiprocessor systems, loosely-coupled computer sys-
tems, which may be multiprocessor systems, connected by a communi-
cation system, or other hardware configurations like embedded sys-
tems. Examples for the abstractions that can be found at this level are
network protocols.

The central questions for the implementation of distributed systems are

What is the appropriate method for transforming
abstractly distributed systems into physically distributed
systems and what are the methods and tools which can be
used to perform these transformations?

In other words, the relationships and mappings which define the con-
nections between systems at different levels of abstraction have to be
stated. These relationships can be established by bringing together the
models resp. the concepts at different levels. This is exactly the pur-
pose of what we call concept’s stepwise refinement. Concepts of a
less abstract level result from refinement of the concepts of a more
abstract level. Thus, the approach of concept’s stepwise refinement
bridges the gap between operational (i.e. language-oriented) levels
models and concepts and physical levels models and concepts by
defining intermediate levels. Examples are given below.

The level of abstraction, whose concepts define distributed systems in a
language-oriented manner, is called operational level within the VERI-
TOS project. Semantics of components are defined in an operational
way. The bottom level is called physical level in order to indicate that
the characteristics of the physical hardware configuration predominate.
In Figure 1 concept’s stepwise refinement is pictured left-hand.

The approach of concept’s stepwise refinement is necessary and useful.
Both can be motivated from a simple example.

Physically distribution is fully transparent to application programmers
in abstractly distributed systems. These programmers should solve
given problems in terms of concurrency and communication concepts.
Abstractly distributed systems can be designed and constructed as sets
of active and passive components. These sets of components can be
structured in many ways. Components can cooperate by means of
communication, operation invocation, or access of shared components.

Abstractly distributed systems which are constructed using Ada are
defined as Ada programs, which consist of Ada packages, tasks, and
library units. These components may be nested. They may cooperate,
for instance, by means of the operation-oriented rendezvous concept.

Abstractly distributed systems have to be partitioned in order to prepare
and integrate physical distribution. The resulting partitions (distribu-
tion units) have to be mapped onto the set of computer systems or pro-
cessors. This mapping is called system configuration. The concepts of
the operational level have to be refined with respect to distribution.
This refinement of concepts can be performed as follows. The choice
of suitable partitioning and configuration concepts may be constrained
by the concepts of the operational level. These constraints result from
the requirement, that semantics of systems resp. components may not
be altered by transitions from one levels of abstraction to another. In
other words, the properties of a system at the operational level — like
functionality and structure — have to be maintained at each intermediate
level. Therefore, concepts can be modified by adding appropriate dis-
tribution information.
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Possible solutions in the area of distributed Ada are surveyed in
[Bau90b]. The refinement of concepts may be very simple. Tasks can
be selected as distribution units. Their mapping onto the nodes of a
hardware configuration can be expressed using additional pragmas
determining their locations. On the other hand, distribution units which
are groups of Ada programming units may be introduced. The concept
of virtual nodes [Atk88a] proceeds in this direction. Virtual nodes
define distribution units. They are closely related to Ada library units.
But several restrictions may be imposed on them. They are mapped
onto the nodes of physical configurations.

Partitioning and configuration can be performed implicitly or expli-
citly. A diS[riblTlliOH programmer’s view will be added, if partitioning
is done explicitly. In the Honeywell distributed Ada approach [Jha89a]
a separate language, APPL, Ada Program Partitioning Language, is
used for this purpose. Otherwise, pragmas and precompilers are used
for the specification of distribution units. If the implicit way is
favoured the whole work of partitioning and configuration has to be
done by the compiler and the underlying run-time system. The respon-
sibility and burden are taken away from the programmer. In Figure 1
implicit approaches as well as explicit approaches are represented.

Three different classes exit, into which all approaches can be divided.
These classes will be described now.

Approaches belong to the first class — the purists’ class — if at most
concepts of the language at the operational level can be used to define
distribution units. The repertoire of partitioning and configuration con-
cepts is a subset of the repertoire of pure language concepts. The
definition of distribution units can be done either explicitly or impli-
citly. In the latter case distribution is completely transparent to the
application if these declarations are done implicitly. Abstractly distri-
buted systems reflect the solution of problems from the application
programmer’s point of view. Physical distribution is not visible at this
level. Partitioning and configuration of programs are left to the com-
pilers and to the run-time systems. Partitioning and configuration con-
cepts have to be defined in the frame of given language concepts.
Examples for this class (cf. *-path and o-path) are presented in sec-
tion 3.

Abstractly distributed systems can be partitioned in an explicit manner
in agreement with the concepts of the language used at the operational
level. These approaches belong to the second class — the conformists’
class. Concepts for program partitioning and configuration are derived
from the concepts of the original language using extensions or restric-
tions. They are conform with these language concepts.

Further strange concepts, which are not included in the language, of
partitioning and communication can be used additionally. The
approaches which define an extended repertory of concepts belong to
the third class — the strangers’ class. Strange concepts are added. Par-
titioning is done explicitly by application programmers, too.

Figure 1 outlines these classes. The application programmers’ point of
view (APV) and the distribution programmers’ point of view (DPV) are
added explicitly. Examples of the conformists’ and the strangers’ class
will be given in section 3 (cf. ¢-path and A-path).

Functionality which is in general provided by run-time systems or
operating systems has to be integrated in lower levels of abstraction in
all approaches. Clearly, additional implementation concepts (like mes-
sage passing, scheduling algorithms, etc) may be involved.
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3. Motivation and Details

3.1. Motivation

Some further details of the topics mentioned above will be presented in
this section.

In the introduction we stated, that

Specification, design, construction, and implementation of
distributed systems have to start at a very high level of
abstraction.

This statement includes many aspects, which will be separated now.

Distributed systems are very complex systems. Therefore, the amount
of work which must be done to solve the whole set of problems has to
be reduced. One possible way consists in the separation of the set of
problems into different problem areas. Problems of these areas can be
solved independently. The specification of distinct levels of abstraction
is an appropriate approach.

Programmers of distributed applications are interested in problem solu-
tions. They specify their solutions, for instance, in terms of functions,
relations, effects and properties. They usually are not interested in the
way systems are producing these results. Therefore, very high abstrac-
tions are needed.

In addition, a methodology is needed which guides the implementation
of distributed systems. In VERITOS this methodology is called
concept’s stepwise refinement. Abstractly distributed systems are the
starting points within this method. Concepts are refined step by step.
Finally, the method leads to an implementation at the level of physical
distribution. This approach can be described as a top-down approach.
In contrast, distributed systems can be built from scratch following a
bottom-up approach. Many existing distributed systems follow this
approach. The starting points of these approaches are hardware
configurations with fixed properties. These properties, which include
primitive mechanisms, are used to provide higher abstractions.
Kernel-oriented approaches define low level abstractions for basic
memory management, process management, scheduling, communica-
tion among processes, and security. At a second level of abstraction
several servers can be constructed based upon the kernel in order to
provide functionality of a higher level. Mach [Bla90a], Chorus
[Roz89a], and Amoeba [Tan90a] are well-known kemels for distri-
buted operating systems. The mechanisms which are provided by these
bottom-up approaches are very flexible. Nevertheless, they neglect
higher level attributes and properties, which, we believe, cannot be
implemented in a provable and efficient way, if no provisions are made
at the very first levels. Examples are context-dependent migration of
components, dependability, and many other properties, which heavily
rely on the semantics of applications. Therefore, we favour a top-down
approach.

The abstractions chosen have to be integrated in a language in order to
facilitate the specification of distributed systems and distributed appli-
cations. SR, Emerald, LADY, and Ada are examples for the language-
oriented construction of distributed systems. The language SR is used
for programming distributed systems from the systems programmers’
point of view. The distributed operating system Saguaro [And87a] is
an example which is implemented by means of SR. Emerald is a
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language for programming distributed applications. Many distributed
real-time systems are programmed using Ada. Examples are given in
[Nie90a] and [Bur90a].
In the preceding paragraphs we have elaborated the advantages of top-
down approaches. Nielsen presents results in the same direction.
There, the two terms “top-down” and “bottom-up” are replaced by
“hardware-first” and “software-first”. He favours a top-down
approach, too, and says in [Nie90a] page 167:

Whenever the hardware dictates the software design

approach, we should expect a suboptimal correspondence

of the software solution for the problem specification.
So far, the motivation for a top-down language-oriented approach is
given. Additionally, further pros and cons should be mentioned. Pros
are

(a) That formal models can be applied to model different aspects and
attributes,

(b) The possibility of a clear formal definition of semantics of distri-
buted systems,

(c) The possibility of verification of implementation steps and the
assurance of various properties,

(d) The integration of software engineering methods and tools,

() The modeling of the whole system and its implementation by a
repertoire of homogeneous concepts, and

(f)  Typing as very useful mechanism.
Cons may be

(a) That special characteristics of special purpose systems (like
embedded systems and real-time systems) are reflected inade-
quately or

(b) Performance flaws.

3.2. Results of the Investigations in Distributed Ada

Our investigations in the area of distributed Ada will be outlined
shortly. A few characteristic approaches will be mentioned.

In these investigations about distributed Ada we have used another
classification scheme which is slightly different from that used in the
section above. The counterpart of the purist’s class, which we have
defined in section 2, is the first class in the investigations about distri-
buted Ada. But the first class shows some differences to the purists’
class.

Partitioning and configuration are completely transparent to the appli-
cations for those approaches of distributed Ada which belong to the
first class. The first class is a subset of the purists’ class including only
those approaches, which use implicit declarations of distribution units.
Ada tasks are preferred as distribution units. Examples are the NYU
Ada/Ed Project [Dew89a], the MUMS approach [Ard89a], the Encore
approach [Ric89a), and Honeywell Distributed Ada {Jha89a]. The *-
path in Figure 1 describes distributed Ada systems like NYU Ada/Ed,
MUMS, and Encore. They are implemented on a shared memory archi-
tecture, where shared memory is either physically present based upon a
tightly-coupled multiprocessor configuration (NYU Ada/Ed and
Encore) or emulated by the operating system (MUMS). Physical distri-
bution is transparent to the application programmer. The tasks are the
distribution units. They are prepared for separate execution by the
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compiler and they are represented in the shared (virtual) memory. The
tasks are dispatched by the operating system which is supported by the
Ada run-time system. The Honeywell Distributed Ada approach fol-
lows the o-path in Figure 1. Many different kinds of Ada program units
are explicitly eligible for distribution units.

Partitioning is done in an explicit manner in agreement with the con-
cepts of Ada in those systems which belong to class 2. Virtual nodes
[Vol89a] are the distribution units. Examples are DIADEM [Atk88a],
ASPECT-YDA [Hut89a], and Michigan Ada [Vol89b]. They follow the
¢ -path in Figure 1.

Further concepts for partitioning and communication will be used in
addition to the concepts of Ada for those approaches belonging to
class 3. Partitioning is done explicitly by application programmers.
Entire Ada programs are the distribution units. In this sense, distribu-
tion units are specified using concepts, which do not belong to Ada’s
repertoire of concepts (they are strange), because entire Ada programs
cannot be parts of other Ada programs. These distribution units can
cooperate by means of interface modules which, among other things,
provide facilities for communication. Examples are DARK [Sco90a],
Alsys Transputer [Dob89a], Chorus [Gui89a], and RTAda/OS [Rab89a].
They follow the A-path in Figure 1.

3.3. Concepts of VERITOS and OIDiLa

The concepts of OlDilLa will be described shortly in this section. They
illustrate the main ideas of the VERITOS project. The highest level of
abstraction is, at the moment, expressed in terms of programming
language concepts.” This is done, because distributed operating systems
are of primary interest in our current activities. Nevertheless, func-
tional abstractions and abstractions describing the behaviour of distri-
buted operating systems as reactive systems [Pnu86a] are in considera-
tion. OIDiLa is an experimental programming language for the
specification of abstractly distributed systems. Distributed systems,
which are specified by means of OlDilLa, are sets of active and passive
components. Both kinds of components are objects referring to the
principle of object-orientation (cf. [Mey88a]) and each of them offers
a set of operations. Simple objects like constants or variables of ele-
mentary (e.g. integer) or structured types (e.g. arrays or records) are
not handled as separate self-reliant components; they exist local to
components only.

Components are used (by other components) following the concept of
operation invocation. Passive objects are used by means of procedure
calls, whereas active components, which are capable of communica-
tion, can communicate among each other following the operation-
oriented rendezvous concept. At this level of abstraction, the client-
server model does not predominate the cooperation concepts. The set
of active components is divided into two sorts. Active components
with communication facilities are mentioned above. They are called
c-actors in OIDiLa. Active components without communication facili-
ties cannot be controlled by other active components. They define a
single (“mono”) operation and are called m-actors in OlDilLa. These
m-actors can be influenced by other components only on instantiation
and by means of parameter passing to these m-actors at the moments of
their initial and their final synchronization (similar to a procedure call).

All components are specified following the c¢lass concept in such a way
that strong type checking is possible.
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The set of components which constitutes a distributed system is struc-
tured in different ways. These structures form important properties of
distributed systems in the VERITOS approach. Both the development
methodology and the development process are built around these struc-
tures. Therefore, they will be sketched below.

The general concept behind all structures is the concept of nesting.
Components may be nested along their definitional dependencies,
according to their executional dependencies in a sequential or a parallel
manner, along their localities and lifespans.

In accordance to the class concept components are defined using gen-
erators, which are comparable to classes or types in other languages.
Generators defihe those properties of components which are common
to all instances of that class represented by the generator. Generators
themselves must be defined local to components. A dependency is
established between any component instantiated referring to the gen-
erator and the component which defines this generator. In this way the
definitional dependencies determine the definitional structure of com-
ponents. This structure is the base for the visibility, usability and
further dynamical development.

Executional dependencies are established by means of invocation of
operations of passive components or by cooperation with c-actors. The
same dependencies result from instantiating active components (c-
actors and m-actors). They determine the executional structure with its
sequential, its parallel and its communicational parts. Synchronization
of active components is another aspect in this area which is mentioned
earlier for example in the context of parameter passing for m-actors.

Not only generators but also components may be defined in a manner
that they are local to other components. By means of locality usage
from outside can be hidden or restricted. The resulting dependency is
called the locality structure of components.

The phase between instantiation (start) and deletion (termination is a
necessary precondition) is the lifespan of a component. The lifespans
of many components may depend on each other caused by the principle
of nesting. In this way the lifespan structure is determined.

3.4. Concept’s Stepwise Refinement

In section 2 concept’s stepwise refinement has been introduced. In the
following a level of abstraction which has been developed within the
VERITOS project will be outlined. Additionally, the method itself will
be illustrated in this section by means of a simple example.

The hardware independent level is an example of concept’s stepwise
refinement. OIDiLa components are represented in a single abstract
storage. Every component of the operational level corresponds to a
group of typed segments at the hardware independent level. Activities
are summarized in a coarsened manner in form of classes of equivalent
processors [Eck90a].

Another step towards further levels in concept’s stepwise refinement
may deal with cooperation between components. At the operational
level the cooperation among components is determined by operation-
oriented communication concepts (cf. Ada’s rendezvous concept),
whereas message-oriented communication concepts may be used at the
level of run-time support by the operating system.

OIDiLa components are defined at the operational level. There, they
belong to abstractly distributed systems. Therefore, they cannot have a
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location attribute, which expresses their physical location. The ques-
tions are now:

Can OlIDiLa components have a location? Which is the
level of abstraction expressing the location of a com-
ponent?

In the simplest solution an additional level of abstraction which just
adds location information to each OIDiLa component can result from
refinement.

Another solution can be based upon the hardware independent level
which is mentioned above. OI[DiLa components are represented in
form of sets of typed segments in a single non-distributed storage.
Now, this level may be refined, again, in order to add location (distribu-
tion) information. At least two alternative solutions exist. In the first
solution an O/Dil.a component stays a distribution units. The conse-
quence is, that the segments of the group which represent this com-
ponent are located in the same way at the same node of the hardware
configuration. In the second solution the segments may be located
individually and independent form each other. The result in this
second solution is that segments which belong to the representation of
the same O/DiLa component may have different locations.

Both solutions are more complicated, if the locality structures, which
relate many OI/DiLa components, are taken into consideration. Are
those components which are local to a distinct component integral part
of that distribution unit to which the distinct component belongs? Pos-
sible solutions for distribution can be simplified, if O/DiLa components
and all of their local components must have the same location.

4. Conclusions

We have outlined our opinion that

Specification, design, construction, and implementation of
distributed systems should start at a very high level of
abstraction.

Physical distribution should be as transparent as possible. Useful sup-
port for the implementation is provided by concept’s stepwise
refinement. Programming languages are important tools for specifying
various kinds of abstractions. But their importance will increase in the
near future, because they are valuable tools for enforcing quality
requirements.
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Abstract

Concepts and related support services for co-operation in an open ser-
vices environment are described. The environment will develop as a
consequence of the installation of wide-spread fiber optical networks
and future communication systems and the development of open distri-
buted processing standards. A domain concept is introduced for struc-
turing the environment and applications according to organisational
and operational aspects. A service concept provides means for
specification and administration of service types, services, and servers.
Server identification and selection is a basic functionality considered
for delegation to a supporting environment of co-operating open sys-
tems.

We describe a domain-oriented concept and an information system for
the support of service administration and server selection and its imple-
mentation on the basis of standard directory services.

1. Introduction

Standardisation bodies and research projects currently work on con-
cepts and architectures for an Open Services Environment which is
characterised by a large, heterogeneous number of service users and
service providers connected via future communication systems. ISO is
working on a Basic Reference Model and related concepts for Open
Distributed Processing (ODP). CCITT is developing a Distributed
Application Framework (DAF) and ECMA a Support Environment for
ODP (SE-ODP). The European Community sponsors work on open ser-
vices architectures within the framework of RACE and ESPRIT, other
research projects elaborate on specific aspects such as trading or
domain management.

The environment considered is open and unlimited. It includes
numerous components belonging to a variety of interconnected subnets
and organisational domains. Mostly, the components will be installed,
operated, and used according to local requirements and, therefore, will
be characterised by design heterogeneity, different administration and
management policies, and different operational characteristics such as
availability, performance, and load. In contrast, distributed applica-
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tions require that groups of components co-operate according to a com-
mon plan, co-ordinate their activities, share common resources, and
adhere to common concepts and agreements. For structuring the open
environment and co-operating groups of components, the domain con-
cept has been introduced. [Slo89a] provides an overview on recent
approaches. Generally, domains are a means for grouping components
according to common characteristics or for particular purposes.

Co-operating components must have a common view and understand-
ing of the functionality which can be delegated to or which is offered
by other components. Generally, the term “service” is used to describe
the functionality Pffered or requested. A service administration pro-
vides means for specification and administration of service types, ser-
vice offers, and service requests, as well as for administration and
management of service requestors and service providers.

The open environment may contain a large number of service offers of
a given type, differing only in certain service attribute values or proper-
ties of the service providers. Basically, each service request may be
directed to any of these offers, provided that the attribute values
requested match the values offered, and the quality and cost of the ser-
vice are acceptable. The selection of suitable service offers for a given
request is one of the basic functionalities which are considered for
delegation to support services.

We describe a domain-oriented concept and an information system for
the support of service administration and server selection and its imple-
mentation on the basis of standard directory services.

The concepts and implementation guidelines were developed within the
framework of BERCIM, a project sponsored by BERKOM, the
broadband-ISDN research and development initiative of the German
PTT. The approach can be distinguished from related work by the
combination of the following design principles: integration of auto-
nomous components, inclusion of dynamic server properties, integra-
tion of standard directory and management services, use of
broadband-ISDN communication facilities, and an implementation in a
heterogeneous, multi-organisational environment.

2. The Open Services Environment

An open services environment encompasses a large community of
users and components which are interconnected via advanced com-
munication facilities. Applications in such an environment usually
arise from a loose coupling of existing entities rather than being imple-
mented by dedicated components. Distribution is less a design princi-
ple than an outcome of geographical and organisational conditions.
The user community and the work are distributed and, therefore, the
applications must be distributed, too. Most of the components have
been designed for local purposes. They have developed separately and
independently within their local environment and thus have specific
properties. Local authority and local tasks influence the characteristics
and the behaviour of the components and must be described and han-
dled properly if the components are to be integrated in common activi-
ties.

The following design principles support the integration of distributed
applications from existing components by combining the local interests
and tasks with the requirements of global co-operation [Tsc90a]:
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A methodology for identifying the structure of distributed appli-
cations, i.e. which functions are distributed in the application,
which services may be received from existing components,
which supporting system services are available, and which ser-
vices must be newly developed.

A methodology for describing the context of such applications so
that the designer can determine which organisational, administra-
tive, and operational constraints exist, for example access restric-
tions, processing and communication costs, hardware constraints,
etc.

A methodology for matching the interests of component owners
to the interests of application owners, so that configurations can
be constrained by application development goals, e.g. perfor-
mance, fault tolerance, security, and by local operational goals,
e.g. local tasks and loads, privacy of resources, etc.

A methodology for defining relations between components in
terms of when they are bound together, and which support ser-
vice must apply to the selection of servers, server invocation,
error recovery, etc. That means that the control thread and the
degree of supervision of the activity flow from one component to
another must be specifiable.

The removal of directional constraints between different com-
ponent classes as regards assumptions of who is a server and
who is a client. In principle, each component may adopt the role
of a client within one interaction and the role of a server within
another, i.e. all components may be servers of each other.

Most of the design principles developed so far build on the concept of
“roles” and “services” to describe the different parts which components

play within joint, co-ordinated activities, and the functionality which is
offered and used in co-operations.

A role designates a specific part within the overall activity. It implies
dedicated rights and duties and requires particular interactions with
others. The definition of roles within a distributed application ori-
ginates from the application structure and context. The assignment of
users and components to roles is constrained by the application context
and the interests of application and component owners, i.e. the organi-
sational and operational environment. Human users or managers of
applications usually occupy specific roles or positions within their
organisations and acquire specific authority as occupants of such posi-
tions. We regard humans to be the initial source of activity within an
application and assume that they are ultimately responsible for the
activities initiated. Usually, humans are represented by automated
agents, i.e. dedicated components, which perform roles on behalf and
under control of the humans. The agents then acquire the specific
rights and duties of the humans they represent, such as managers,
administrators, service users and service providers.

Components occupying a specific role have to perform dedicated func-
tions. From the designer’s point of view these functions have interrela-
tionships with the functions of other components in the course of the
overall activity. From a component’s point of view, from which the
global context is hidden, it is important to know about which assistance
from others can be expected and which functionality can be delegated
to others. The term “service” is often used as an abstract notation of a
component’s view of a functionality which another component has
made available for external use. There must be a common understand-
ing of the services offered and requested within an application, and
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common interfaces and protocols for the use of these services must be
defined. An adequate service administration must provide for common
agreements on services, for information about existing service offers
and service providers, and for the adequate handling of the organisa-
tional context of interactions between service users and providers.

3. The Domain Concept

The following domain concept is an adaptation of the principles intro-
duced by [Slo89a] to our scheme of structuring an open services
environment. Geherally, a domain is a collection of entities which
have been explicitly grouped together by system administrators for par-
ticular purposes. Currently, entities may be other domains, com-
ponents, and services. Other entities may be introduced if necessary.
A domain has at least one attribute, called its “member set”, which
defines the set of member entities. The minimum representation of a
member entity in a domain is its unique identifier which can be used to
locate the entity. Additional entries for entities may be defined. An
entity is referred to as a member of a domain if its identifier is a
member of the domain’s member set. In addition to the “member set”
attribute, domains may have other attributes which support the posi-
tioning of domains within the domain hierarchy or which describe
characteristics common to all members or common management poli-
cies. Examples are manager-domains which group managers or
administrators, service-domains which contain abstract or concrete ser-
vices, and definition or search areas which group components for ser-
vice administration or server selection. Another useful attribute of a
domain or component is the “domain set”. It defines the set of domains
an entity is direct member of. We distinguish between two types of
domains: hierarchical and federal domains.

Hierarchical domains form a domain hierarchy according to long term
organisational structures, like companies, sites, departements, and their
computing environment. Hierarchical domains have distinctive
identifiers and may have additional attributes which reflect organisa-
tional aspects and which support service administration and server
selection mechanisms. As a hierarchical domain reflects a dedicated
organisational structure, the domain may exist independent of the
existence of its elements as long as the structure remains unchanged.
Hierarchical domains are basically long living because they change
only when the organisational structure changes. Changing this struc-
ture requires dedicated authority. It is granted by trusted components
to particular components called “domain managers™ which are respon-
sible for specific subtrees of the domain hierarchy. A hierarchical
domain is defined as a set of components and/or other hierarchical
domains. The latter are called subdomains of the domain. The position
of a hierarchical domain is defined by its superdomain which the
domain is direct member of, and by its subdomains.

Each entity is assigned to a dedicated “home domain™, i.e. a specific
hierarchical domain which allows to locate the entity unambiguously
within the domain hierarchy. Each entity must be member of one and
only one hierarchical domain, i.e. its home domain. An entity is
created and destroyed in its home domain. After creation, an entity is
present, may perform its roles in distributed applications, and may
become a member of federal domains. After destruction the entity does
not further exist and consequently, it must vanish not only from its
home domain but automatically from all federal domains as well.
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Federal domains reflect groups of entities with common attributes
and/or management policy, independent of the entities” membership in
hierarchical domains. Their member sets may be grouped into further
federal subset domains. Federal domains have distinctive identifiers
and may have attributes that support the administration and server
selection mechanisms. A federal domain may exist independent of the
existence of its elements. They are created and destroyed at adminis-
trators’ need and will. This requires dedicated authority that is granted
by trusted components to particular domain manager sets. Adding
members to and removing members from a federal domain is a typical
domain manager activity.

4. The Service Concept

Service use in an open services environment requires a common under-
standing about the syntax and the semantics of a service between the
interacting entities. In our approach, that is achieved by means of the
following service concept. It includes specifications of abstract ser-
vices, and concrete service offers and service requests.

The formal specification of a service is called “abstract service”. If we
take an object-oriented view, abstract services are mapped on types.
The abstract service or service type defines what can be used by other
components, i.e. the service semantics, and how it can be used, i.e. the
service interface. The specification includes a service name, a set of
logically interrelated operations, a list of attributes and a list of pre- and
post-conditions for each operation. Attributes are typed, and default
values, limits, and ranges are given. An explanation of the functional-
ity represented by the service type is added in plain text so that human
users and application designers can be informed about the functionality
available.

The implementations of the service specification are called *“concrete
services”. In an object-oriented approach, concrete services could be
mapped on classes. All concrete services implementing a particular
abstract service have the same interface but their internal structure and
implementation may vary.

Associated with an abstract service is a specific federal domain, called
the definition area of the service. Its member set includes all those
components which have access to the information about the abstract
service and, therefore, can offer or request concrete services. These
concrete service offers and requests are characterised by specific values
of attributes and links to the service offering or service requesting com-
ponent, respectively. Components have specific properties such as
location, load, and status, which define the context of the concrete ser-
vice and its qualities.

Associated with each concrete service offer is a specific federal
domain, called “scope”, which defines the group of components to
which the service is offered. Associated with each concrete service
request is another specific federal domain, called “search area”, which
delimits the search for suitable offers within the open environment.

If the service administration uses subset domains of the definition area
to define the scopes and the search areas of service offers and requests,
it supports the fact that both, the requesting and the offering component
have the same understanding of the service semantics and each
interacting entity can be sure that the partner which it has been bound
to uses the interface properly.

EurOpen 91 — Tromsp, 20-24 May

285




Domain-based Support for Service Administration and Server Selection

Service use across the borders of service definition areas is not possible
with the current implementation of the service concept. In advanced
structures, however, negotiation between service administrators of dif-
ferent definition areas may achieve a common understanding even
across these borders. But this is for further study.

5. An Information System for the Support of Service
Administration and Server Selection

We classify the services which support the interactions between com-
ponents of an open services environment into information handling and
decision making services. This does not necessarily anticipate that
both categories must be implemented by separate components. How-
ever, the separation of concerns has certain advantages:

1. The system is more flexible because different decision making
entities may access and use the information services independent
of each other.

The configuration of the information system, i.e. the distribution
of the storage and processing of different types of information
between information sources, information sinks, and third parties
may be optimised independent of the distribution of decision
making and control [Wil89a].

The implementation of the information services via standardised
support services such as directories is facilitated.

5.1. Information Service Types

The information system administers information about domains,
abstract services, concrete services, and components.

The information about domains reflects the structure of hierarchical
and federal domains. Domain entries contain the name and type of the
domain and type specific attributes. The name of a domain must be
unique within the organisational hierarchy. This is achieved by the
managers creating the domain. Mandatory attributes of hierarchical
domains are the name of the home domain and the domain manager,
and the member set. The home domain and the member set attribute
define the position of the domain in the organisational hierarchy. The
manager attribute provides a reference to the entity which is allowed to
create and destroy entities within the domain, i.e. to add and remove
elements to and from the member set. An optional attribute of
hierarchical domains is the domain set. It defines the set of federal
domains which the domain is member of. Federal domain entries must
contain the domain manager set and the member set. The manager set
represents the board of managers from different organisations which
are allowed to add and remove entities to and from the member set and
to create and destroy subset domains. Optional attributes of federal
domains are the subset and the superset attribute. They include the
names of the federal domains which are subsets of the domain, or
where the domain is a subset of, respectively.

Operations on domain information allow the registration and deletion
of hierarchical and federal domains and their elements and managers.
Further operations provide information about domain attributes and
allow modifications. Very useful for domain management, server
selection and service administration are operations that check the
member and domain set attribute or the domain manager attribute.
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The information about abstract services contains service specifications
together with their definition areas, and templates for service requests
and offers. Operations on the information about abstract services allow
the registration and deletion of services in or from a given hierarchical
domain. Service requestors and service providers may use operations
resulting in the delivery of the machine readable templates for correct
service offers and requests. Other operations list services defined
within a given domain, or provide a service manual, i.e. a description
of the service readable by human users.

The information about concrete services contains entries for service
offers together with information about the components that made the
offers, i.e. the service providers. Each entry includes the service type
implemented, the associated service offer template filled with actual
attribute values, including the scope of the service offer, and a refer-
ence to the service provider. Operations on the information about con-
crete services allow the registration and deletion of service offers in or
from the home domain. Further operations read and modify selected
attribute values. A search operation supports a yellow pages service
which lists all concrete services of a given service type that are offered
within a given search area and satisfy requested attribute values. The
result of this operation also includes a reference to the service provider
associated with a concrete service.

The information about components includes entries for application and
system components which take the role of service users and/ or service
providers. Component entries contain the identifier and a list of man-
datory and optional attributes. Entries must contain the home domain.
Entries may contain the domain set, the managed object set, the set of
service offers, and a set of static attribute values. The component name
must be unique within the home domain. Together with the home
domain name it identifies and localises the component unambiguously
within the open environment and provides an address useable for con-
tacting the component via a given communication service. The domain
set defines the set of federal domains which the component is member
of, the managed object set defines the set of domains managed by the
component, the set of service offers defines the set of concrete services
provided by the component.

Operations on the information about components allow the registration
and deletion of a component within its home domain as well as in other
federal domains. Name server operations provide identification and
location services. Operations of the type “get value™ provide attribute
values. Further operations list the sets of domains, managed objects, or
concrete services associated with the component. A useful variant of
these is the “is member of” operation which checks whether a com-
ponent is within the member set of a given domain.

5.2. Support for Service Administration

The information system is able to support a service administration
scheme in a hierarchical, domain-structured environment where the
static information is stored and administered by a specialised third
party. Static in this context means that the rate of update operations is
very much lower than the rate of read operations. The usefulness of
such an approach has been discussed elsewhere. e.g. in [Lor90a]. The
approach becomes even more attractive, if standard directory services
are involved in the third-party's operation.
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Our approach supports an administration scheme for domains, services,
and components that can be installed at the enterprise level. An initial
structure of <country><locality><organisation> is assumed. Such a
structure is generally supported by common services like standard
directories. In this basic structure our hierarchy of domains can be
included, with hierarchical domains representing the specific organisa-
tion of enterprises, departements, and their computing environment. A
typical structure that can be mapped on hierarchical domains and com-
ponents is <institute><department><network> <node><process>.

The information system provides the information base for the service
administration and domain concept described above. Its operations can
be used to check!ithe pre- and postconditions of domain management
operations and to store the effects of these operations.

For example, the management operation
destroyHierarchicalDomain ‘D’ inHomeDomain ‘X’

issued by manager ‘M’ has the preconditions:

° ‘M’ isManagerOf ‘X’

° ‘D’ isMemberOf ‘X’

. memberSetOf ‘D’ is “empty”

) domainSetOf ‘D’ is “empty” or “notEmpty”

These conditions can be checked by information system operations
reading the “manager” and “member set” attributes of ‘X’, and the
“member set” and “‘domain set” attributes of ‘D’.

The effects of the “destroy’ operation are stored by modifying the the
“member set” attribute of ‘X’ and of all federal domains listed in ‘D’s
“domain set” attribute.

Likewise the configuration of abstract and concrete services is sup-
ported. The information system operations can also be used to check
pre- and postconditions of operations performed by service administra-
tors and to store their effects.

For example, the administrator operation
create ServiceOffer ‘E’ ofType'S’ inHomeDomain'Y’
withProvider P’
issued by manager ‘Q’ has the preconditions:
. ‘Q’ isManagerOf 'Y’
. ‘S’ isAbstractService in ‘P’s homeDomain
) ‘E” isCorrectServiceOffer of ‘S’
. scopeOf ‘E’ isSubsetOf ‘S’s definitionArea
° ‘E’” isNotMemberOf ‘Y’
These conditions can be checked by information system operations
reading the “manager” and “member set” attributes of ‘Y’, the
“member set” attribute of the “services-domain” of manager ‘Q’, the

“definition area” and the “templates” attribute of ‘S’ and the “subset”
attribute of the federal domain identified as the definition area of ‘S’.

The effects of the *““create” operation are stored by modifying the
“member set” attribute of ‘Y.

In this way the information system keeps track of the configuration of
domains, components, and services, and supports the constraints that
reconfigurations are made by authorised managers only and that ser-
vices are not offered and used outside their definition areas.
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5.3. Support for Server Selection

The services provided by the information system are particularly useful
for traders, mediators, and brokers. etc. These are specialised entities
which support the association of service users and service providers.
Depending on the intelligence of the support entity the following ser-
vices with increasing functionality are provided:

1. A simple “name” service which locates a specified server and
p P!
provides its home domain and communication address.

2. A “list” service which lists the service offers of a given type
within a given search area which match the values of static attri-
butes requested.

3. A “dispatcher” service which selects one suitable service offer
according to its static attributes and given criteria, and identifies
and locates the appropriate server.

4. A “mediator” service which preselects suitable service offers
according to static attributes and given criteria, identifies and
locates appropriate servers, updates the values of dynamic attri-
butes, and selects one suitable service offer according to given
criteria.

5. A “negotiation” service which identifies and locates providers of
suitable service offers, negotiates service modalities and quali-
ties, and makes an agreement with one selected server that asso-
ciates it with the requestor.

6. An “invocation” service which invokes a service at a selected
server according to the agreement made.

These support services have to operate at run time and, therefore, must
perform effectively. With the aid of the information system they can
rely on a preconfigured structure of domains, services, and components
which maps “yellow pages” and “white pages” services on simple and
effective “list” and ““search” operations on the “member set” attributes.

So far, the information system administers only static and long term
information, i.e. the configuration of domains, services, and com-
ponents, and the values of static attributes. Dynamic information is
kept at the information sources, i.e. the service providers themselves,
and must be interrogated there. Therefore, the information system is
able to support only the name, list, and dispatcher services directly,
while more intelligent service use the system for preselection based on
static attributes and for localisation of servers.

An example for the support provided is the operation

getSuitableServiceOffers ofType'S’ inSearchArea ‘A’
forRequest'R’

invoked by a “list” service provider on behalf of client ‘C’. It has the
preconditions:

. ‘S’ isAbstractService in ‘C’s homeDomain
° ‘R’ isCorrectServiceRequestof ‘S’
* searchArea ‘A’ isSubsetOf ‘S’s definitionArea

With the aid of information system operations these conditions can be
checked already at ‘C’s creation time and, thus, need not effect the per-
formance of the server selection and service invocation. The search for
concrete services which match the requested attributes and the
identification and location of the related service providers is achieved
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by a simple sequence of “search” and “get attribute value” operations
on the information base.

5.4. Information System Implementation

The application environment of the information system requires that
the information about domains, abstract and concrete services, and ser-
vice providers has global significance and is globally available
although the individual entries are stored and administered locally by
autonomous agents. This is a typical requirement that is satisfied by a
directory. Therefore, the information system was implemented by
means of standard directory services.

The preconditions of such an implementation are the following: The
information must be long living, required extensions to the directory
scheme must be allowed by the standard, and the information system
services must be mapped effectively on standard directory operations.

Most of the information considered is long living except that on
dynamic service provider properties. Therefore, the information about
domains and services, and most of the information about service pro-
viders, i.e. components, can be considered for inclusion in the directory
scheme. The dynamic service provider properties are available from
the components themselves via references stored in the directory.

The static information is mapped on directory object classes and attri-
bute types. Mostly, existing classes and types are used. For the rest
new classes and types are introduced within the constraints prescribed
by the standard [Hal90a]. As far as possible, the new entries and their
attributes are structured with respect to performance aspects. Off line
configurations, like “register”, “delete”, and “modify entry”, are less
critical than run time “search” and “list” operations which influence the
performance of the server selection mechanisms.

The entries for domains are mapped on a generic class “general
domain” with two subclasses ‘“hierarchical domain” and “federal
domain”. The generic class defines the “domain type” and the “domain
manager”. The domain type is hierarchical or federal, and the domain
manager attribute contains the distinguished names of the managers.
The hierarchical domains are mapped directly on directory nodes and
subtrees. A federal domain which generally comprises different sub-
trees of the organisational hierarchy must explicitly define its member
set. In the directory hierarchy, federal domains are administered as ele-
ments of hierarchical domains. Federal domains inherit the attributes
of the generic classes “general domain” and “group of names”. The
latter is a general means of defining a set of directory entries under
specific aspects. It must contain a common name and the member set,
and may contain further descriptive attributes such as “definition area
of service” or “scope of service offer”.

For abstract services the new generic object class “service description”
is introduced. The class must contain a common name, the definition
area, and a set of descriptive attributes which specify the service inter-
face, mandatory attributes, the templates for requests and offers, and
the service description. The only attribute of specific interest is the
“definition area” which contains a reference to the domain wherein the
abstract service is defined.

For concrete service offers the new generic object class “service offer”
is introduced. The class must contain a common name, the service
name, the scope, the service provider, and a set of descriptive attributes
according to the mandatory part of the service offer template. The ser-
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vice name provides the reference to the abstract service and the service
provider attribute provides the reference to the component offering the
service. The scope contains the name of the domain wherein the offer
is valid. It must be a subset domain of the definition area of the
abstract service.

The obiject class “service provider” is a subclass of the existing generic
class “application process”. It must contain the references to its service
offers. References to the managed object encapsulating the dynamic
service provider information are currently implemented as optional
attributes. Directly associated with the application process class is
another existing generic class “application entity” which represents the
communication with other OSI-applications. It must contain the
presentation address and may contain additional information about
locality, organisation, etc., i.e. the “domain set”. Entries of the type
application entity are arranged directly below the service provider
entries within the directory hierarchy.

Service descriptions and federal domains may be arranged below
“country”, “locality”, “organisation” or “organisational unit” in the
directory scheme. Service provider entries may be arranged only
below “organisation” or “organisational unit”.

In this paper we do not further elaborate on naming schemes, reponsi-
bilities for manipulations, etc. General information about these subjects
is found in the directory standard, specific aspects are described in
[Hal90a].

Access to the directory information is provided by directory user agents
(DUAs) which are connected to directory acces points. Acces points
are provided by directory system agents (DSAs). The set of co-
operating DSAs represents the directory system. A DUA may get
access via any access point provided that he is authorised to do so. The
link between DUAs and DSAs is established by means of the “directory
bind” operation and released by the “directory unbind”, respectively.

The configuration of domains, services, and components performed by
the domain and service administration is supported by the information
system via operations that allow the manipulation of system entries
under the given consistency constraints.

Creation, modification, and destruction of domains, services, and com-
ponents is supported via “add entry”, “modify”, and “remove entry”
operations which check the constraints on the membership and unique
naming. “Read” operations on the domain manager attributes support
authority checks. Reading domain entries allows checks of the
existence of federal or hierarchical domains named as definition areas
in service specifications. “Compare” operations on the templates in
service specifications support checks of the correctnes of service offers.
“Read” and “list” operations check the existence of a service provider
for a given service offer, the membership of a service provider in the
definition area of the related service, and the subset relation between
the definition area of the service and the scope of a service offer or the
search area of a service request.

The server selection is supported by the information system via search
operations on available service offers in a predefined search area.
These operations are mapped directly on “directory search” operations
which search the directory for entries that have the attribute values
requested. The consistency between the search area and the definition
area of the requested service is checked via a directory read of the
member set attribute of the domain representing the definition area.
Identification and localisation of service providers is supported via
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directory read operations on the application entity entry associated with
a service provider.

6. Conclusion and Future Work

We have described an information system which supports domain and
service administration in an open services environment. The system is
part of a supporting environment for the co-operation of autonomous
components which is developed as a work bench for the investigation
and realisation of design concepts for domain-oriented structuring and
management, dervice administration, server selection and service
access control. The concepts allow the configuration of the environ-
ment by domain and service managers so that run time search and
selection mechanisms perform more effectively.

The system serves as an information base which supports the actions of
managers and administrators by operations that check pre- and
postconditions, and that store the effects of these actions.

The separation of information handling from decision making and con-
trol entities allow the information base to be used my managers,
administrators and run time support services independently. It further
facilitates implementations via standard directory services.

Future work will primarily elaborate on the domain management and
service administration scheme. We shall investigate how concepts
developed for the delegation of authority to domain manager agents
can be applied to our system. We shall further work on the concept of
defining abstract components similar to the concept of abstract ser-
vices. Such a concept would provide a framework for the implementa-
tion of concrete components. The component types will probably con-
tain templates for attribute sets associated with the various component
types, including mandatory and optional attributes, and static as well as
dynamic attributes. A classification of attributes in static and dynamic
attributes, for example, would facilitate the reference to classes of
information services provided for handling the actual values of these
attributes.

A domain-based access control scheme which operates within service
definition areas and their subset domains is another subject for future
work. It is to provide access rules between a group of service reques-
tors belonging to a given scope and a group of service offers found in a
specified search area.
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Abstract

The Kerberos Authentication Service, developed at MIT, has been
widely adopted by other organizations to eliminate the trusted-host
problem in open networks. While a step up from traditional security in
networked systems, Kerberos version 4 is not sufficiently flexible for
some environments. These inflexibilities and the remedies introduced
with the Kerberos version 5 are described.

Introduction

The Kerberos Authentication Service was originally developed at the
Massachusetts Institute of Technology (MIT) for its own use to protect
Project Athena's emerging network services. Versions 1 through 3
were internal development versions; protocol version 4 has achieved
widespread use. However, it was designed for the envisioned use at
MIT, and does not completely “fill the bill” for sites with different
models of computer use and administration. Protocol version 5 incor-
porates new features suggested by experience with version 4 which
make it useful in more situations. Version 5 was designed by Clifford
Neuman of the University of Washington and the author, based in part
upon input from many contributors familiar with version 4.

The first section of this paper briefly discusses the Kerberos model and
basic protocol exchanges. Section 2 discusses the shortcomings of ver-
sion 4. The third section reviews the new features found in version 5.
Section 4 discusses the implementation of the new protocol and the
compatibility support for converting existing applications from ver-
sion 4 to version 5. The final section concludes with a status update
and considerations of future work.

Terminology and Conventions

A principal is the basic entity which participates in network authentica-
tion exchanges. A principal usually represents a user or the instantia-
tion of a network service on a particular host. Each principal is
uniquely named by its principal identifier.
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Systems like the Data Encryption Standard (DES) [Com77a] which use
a single key for both encryption and decryption are referred to as
secret-key cryptosystems. The keys used in such systems are called
secret keys. Encryption systems like RSA [Riv78a] which use different
keys for encryption and decryption are referred to as public-key cryp-
tosystems; their encryption keys are referred to as public or private
depending on whether the key is widely known or known only to a sin-
gle entity.

Plaintext refers to an unencrypted message, while ciphertext refers to
the encrypted form of the message.

In figures, encryption is denoted by showing the plaintext surrounded
by curly braces ([ }) followed by a key (K) whose subscript denotes the
principal(s) who possess or have access to that key. Thus, “foo”
encrypted under c’s key is {foo}K..

1. The Kerberos Model

Kerberos was developed to enable network applications to securely
identify their peers. To achieve this, the initiating party (the client)
conducts a three-party message exchange in order to send the contacted
party (the server) an assurance of the client’s identity. This assurance
takes the form of a ticket (shown in figures as T, ) which identifies the
client, and an authenticator (shown in figures as A . ) which serves to
validate the use of that ticket and prevent an intruder from replaying
the same ticket to the server in a future session. A ticket is only valid
for a given time interval, called its /ifetime. When the interval ends, the
ticket expires; any later authentication exchanges would require a new
ticket.

Tickets are issued by a trusted third party Key Distribution Center
(KDC). As suggested by the Needham and Schroeder protocol
[Nee78a], the KDC is trusted to hold in confidence secrets known to
each client and server on the network (those secrets are established
either out-of-band or through an encrypted channel). That trust forms
the basis upon which clients and servers can believe the authenticity of
the messages they receive.

Each installation establishes its own autonomously administered KDC.
Each such installation comprises a realm. Most currently-operating
sites have chosen realm names that parallel their names under the Inter-
net domain name system (e.g. Project Athena’s realm s
ATHENA.MIT.EDU). Clients in separate realms can authenticate to
each other if the administrators of those realms have previously
arranged a shared secret.

1.1. The Initial Ticket Exchange

Figure I shows graphically the messages’ exchanged in an
application’s authentication process. Both Kerberos versions 4 and 5
share the same framework for messages (although the encoding details
of the messages differ). A typical application requires a three-message
exchange with each server to establish authentication on its first invo-
cation and a single message on subsequent invocations (client caching
eliminates the need for the first two messages until the ticket expires).

# The figures actually show a simplified version of the messages for clarity. Other message fields are present in the actual messages,

but are primarily for “bookkeeping™ purposes not relevant to the present discussion.
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Client Server

1. Client » KDC:c, s
2. KDC — Client: {K_ K AT, K
3. Client — Server: {A }K_ ¢ AT 1K

(In version 4, message 2 is {KC‘S ,{TC‘S} K 1K)

Figure 1: Getting and Using an Initial Ticket

An application client contacts the KDC to obtain a ticket and associated
credentials. The KDC generates a new ticket by selecting a random
encryption key K ;, called the session key, to include in the ticket, set-
ting the start and expiration times in the ticket as requested, and
encrypting the ticket with the server’s key K. It assembles the ticket
and session key into the response and encrypts it with the client’s secret
key K. The client decrypts the response using its key (which may be
algorithmically derived from a password) and caches the ticket and
associated session key for future use. It then presents the ticket and a
freshly-generated authenticator to an application server formatted as a
KRB_AP_REQ (application request) message. The server can decrypt
this ticket using its own secret key (which is kept in secure storage on
the server’s host) and verify the identity of the client. If the client
desires authentication of the server, the server can send a reply to the
client using the key K. ; from the ticket, enabling the client to verify
the identity of the server (only the proper server could obtain this key,
as it is inside the encrypted ticket, and no intruder can gain the server’s
secret key). More detail on the formats of the messages used in ver-
sion 4 can be found in [Ste88a] and [Mil87a]; detail on version 5 for-
mats are in [Koh90a].

1.2. The Additional Ticket Exchange

In order to reduce the risk of exposure of the client’s secret key K. and
make the use of Kerberos more transparent to the user, the above
exchange is primarily used to obtain a ticket for a special ricket-
granting server (TGS). Once this ticket-granting ticket (TGT) is
obtained, the client erases the copy of the client’s secret key to prevent
its disclosure.

The TGS is logically distinct from the KDC which provides the initial
ticket service, but runs on the KDC host and has access to the same
database of clients and keys used by the KDC. A client presents its TGT
(along with other request data) to the TGS as it would present it to any
other application server (in a KRB_AP_REQ); the TGS verifies the
ticket, authenticator and accompanying request, and replies with a new
ticket for the application server. The protected part of the reply is
encrypted with the session key from the TGT, so the client need not
retain the original secret key K . to decrypt and use this reply.
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usually co-located

. Client - KDC: ¢, tgs,

. KDC — Client: {Kc‘lgS
. Client — TGS: {AC}KC‘Igs
. TGS — Client: {KC.S]KC,tgs
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Figure 2: Getting a Service Ticket

The client then uses these new credentials to authenticate itself to the
server, and perhaps to verify the identity of the server. Once the
authentication is established, the client and server share a common ses-
sion key K., which has never been transmitted over the network
without being encrypted. They may use this key to protect or obscure
their messages. Kerberos provides message formats which an applica-
tion may generate as needed with the session key to assure the integrity
or both the integrity and privacy of a message.

2. Why Change It? Version 4 Limitations

Although Kerberos version 4 is in widespread use, it is not sufficiently
flexible to meet the needs of some sites. As a result, work on Kerberos
version 5 commenced in 1989, fueled by discussions with version 4
users and administrators about their experiences with the protocol and
MIT’s implementation.

2.1. Environmental Shortcomings

Since Kerberos version 4 was targeted primarily for the Project Athena
environment (described in [Tre88a]), it has several features which can
be troublesome in other environments:

Encryption system dependence: The version 4 protocol uses only the
Data Encryption Standard (DES) to encrypt messages. The
export of DES from the USA is restricted by the U.S. Government,
making truly widespread use of version 4 difficult.

Internet protocol dependence: Version 4 requires the use of Internet
Protocol (IP) addresses, which makes it unsuitable for some
environments.

Message byte ordering: Version 4 uses a ‘“receiver makes right” phi-
losophy for encoding multi-byte values in network messages,
where the sending host encodes the value in its own natural byte
order and the receiver must convert this byte order to its own
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native order. While this makes communication between two
hosts with the same byte order simple, it does not follow esta-
blished conventions and will preclude interoperability if some
machine with an unusual byte order not understood by the
receiver is used.

Ticket lifetimes: The valid life of a ticket in version 4 is encoded by a
UNIX timestamp issue date and an 8-bit lifetime quantity in units
of five minutes, resulting in a maximum lifetime of 21% hours.
Some environments require longer lifetimes for proper operation
(e.g. a long-running simulation which requires valid Kerberos
credentials during its entire execution).

Authentication forwarding: Version 4 has no provision for allowing
credentials issued to a client on one host to be forwarded to some
other host and used by another client. This may be useful if an
intermediate service needs to access some resource with the
rights of the client (e.g. a print service needs access to the file
service to retrieve a client’s file for printing), or if a user logs
into another host on the network and wishes to pursue activities
there with the privileges and authentication she had on the ori-
ginating host.

Principal naming: In version 4, principals are named with three com-
ponents: name, instance, and realm, each of which may be up to
39 characters long. These sizes are too short for some applica-
tions and installation environments. In addition, due to
implementation-imposed conventions the normal character set
allowed for the name portion excludes the period (.), which is
used in account names on some systems. These same conven-
tions dictate that the account name match the name portion of the
principal identifier, which is unacceptable in situations where
Kerberos is being installed in an existing network with non-
unique account names.

Inter-realm authentication: Version 4 provides cooperation between
authentication realms by allowing each pair of cooperating

Server

Client 5 remote

1. Client > TGS, ;: 1A, }KC‘tgs ’{Tc,lgs}ths » 188rem
2. TGS a1 — Client: {Kc‘lgsrm]Kc'lgs AT
3. Client —» TGS (ALK
4
5

C eS8 0m } thsrem

S

C‘lgsrcm ‘gsft’"]’ rem

AT, K,

"’"gsrcm *“rem Srcm

1}K5

remote’ CU8Sem AT
. TGS, ote — Client: {KCYSW}K

. Client — Server ;.0 {ANK  ATe MK

(In version 4, message 2 is {Kcigﬁmn .{TQIgs Klgs

and message 4 is {K_ ,(Tc‘S ) JK

em rem C,lgS’

] ]Kc.tgs )

rem rem

Figure 3: Getting a Foreign Realm Service Ticket

EurOpen 91 — Tromsg, 20-24 May 299




The Evolution of the Kerberos Authentication Service %ﬁ

IFS.UMICH.EDU

UMICH.EDU / \ MIT.EDU

EDU Berkeley. EDU

Figure 4: Version 4 Realm Interconnections

realms to exchange an encryption key to be used as a secondary
key for the ticket-granting service. A client can obtain tickets for
services from a foreign realm’s KDC by first obtaining a ticket-
granting ticket for the foreign realm from its local KDC and then
using that TGT to obtain tickets for the foreign application server
(see Figure 3). This pair-wise key exchange makes inter-realm
ticket requests and verification easy to implement, but requires
o(n?) key exchanges to interconnect n realms (see Figure 4).
Even with only a few cooperating realms, the assignment and
management of the inter-realm keys is an expansive task.

2.2. Technical Deficiencies

In addition to the environmental problems, there are some technical
deficiencies in version 4 and its implementation. [Bel90a] provides
detailed analyses of some of these problems.

Double Encryption: As shown in Figure 1, the ticket issued by the
Kerberos server in version4 is encrypted twice when being
transmitted to the client, and only once when sent to the applica-
tion server. There is no need to encrypt it in the message from
the KDC to the client, and doing so can be wasteful of processing
time if encryption is computationally intensive (as will be the
case for most software-based encryption implementations; see
[Mer90a] for discussion of fast software-based encryption
methods).

PCBC encryption: Kerberos version 4 uses a modified mode of DES to
encrypt its messages. [Com80a] describes the normal cipher-
block-chaining (CBC) mode of DES. Kerberos version 4 uses a
non-standard modified version called plain- and cipher-block-
chaining mode (PCBC). This mode was an attempt to provide
data encryption and integrity protection in one operation. Unfor-
tunately, it is flawed since an intruder can modify a message with
a special block-exchange attack and have this modification pass
undetected to the recipient [Koh89a].

Authenticators and replay detection: Kerberos version 4 uses an
encrypted timestamp method to verify the freshness of messages
and prevent an intruder from staging a successful replay attack.
If an authenticator (which contains the timestamp) is out of date
or is being replayed, the application server rejects the authentica-
tion. However, maintaining a list of unexpired authenticators
which have already been presented to a service can be hard to
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implement properly (and indeed is not implemented in the ver-
sion 4 implementation MIT distributes).

Password attacks: The initial exchange with the Kerberos server
encrypts the response with a client’s secret key, which in the case
of a user is algorithmically derived from a password. An
intruder is able to record an exchange of this sort and, without
alerting any system administrators, attempt to discover the user’s
password by decrypting the response with each password guess.
Since the response from the Kerberos server includes plaintext
she can verify, the intruder can try as many passwords as she has
available, and she will know when she’s found the proper pass-
word, since the decrypted response will make sense [Lom8&9a].

Session keys: Each ticket issued by the KDC contains a key specific to
that ticket, called a session key, which may be used by the client
and server to protect their communications once authentication
has been established. However, since many clients use a ticket
multiple times during a user’s session, it may be possible for an
intruder to replay messages from a previous connection to clients
or servers which do not properly protect themselves (again,
MIT’s version 4 implementation does not properly implement
this protection for the KRB_SAFE and KRB_PRIV messages).
Additionally, there are situations in which a client wishes to
share a session key with several servers. This requires special
non-standard application negotiations in version 4.

Cryptographic checksum: The cryptographic checksum (sometimes
called a message authentication code or hash or digest function)
used in version 4 is based on the quadratic algorithm described in
[Jue85a]. The MIT implementation does not perform this func-
tion as described; the suitability of the modified version as a
cryptographic checksum function is unknown.

3. Remedies and Changes Introduced with Version 5

Version 5 of the protocol has slowly evolved over the past two years
based on implementation experience and discussions within the com-
munity of Kerberos version 4 users. Its final form is now nearing clo-
sure, and a draft description of the protocol is available [Koh90a]. It
addresses the concerns above and provides additional functionality.

3.1. Changes between Versions 4 and 5

Use of Encryption

To modularise the system and ease export-regulation considerations for
version 5, the use of encryption is separated into distinct software
modules which can be replaced or removed by the programmer as
needed. When encryption is used in a protocol message, the ciphertext
is tagged with a type identifier so that the recipient can identify the
appropriate decryption algorithm necessary to interpret the message.

Each encryption algorithm is responsible for providing sufficient
integrity protection for the plaintext so that the receiver can verify that
the ciphertext was not altered in transit. If the algorithm does not have
such properties, it can be augmented by including a checksum in the
plaintext before encryption. By doing this, we can discard the flawed
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PCBC DES mode, and use the standard CBC mode with an embedded
checksum over the plaintext.

Encryption keys are tagged with a type and length when they appear in
messages. Since it is conceivable to use the same key type in multiple
encryption systems (e.g. different variations on DES encryption), the
key type may not map one-to-one to the encryption type.

Network Addresses

When network addresses appear in protocol messages, they are simi-
larly tagged with a type and length field so the recipient can interpret
them properl&. If a host supports multiple network protocols or has
multiple addresses of a single type, all types and all addresses can be
provided in a ticket.

Message Encoding

Network messages in version 5 are described using the Abstract Syntax
Notation One (ASN.1) syntax {Sta87a] and encoded according to the
basic encoding rules [Sta87b). This avoids the problem of indepen-
dently specifying the encoding for multi-byte quantities as was done in
version 4. It makes the protocol description look quite different from
version 4, but it is primarily the presentation of the message fields that
changes; the essence of the Kerberos version 4 protocol remains.

Ticket Changes

The Kerberos version 5 ticket has an expanded format to accommodate
the required changes from the version 4 ticket. It is split into two parts,
one encrypted and the other in plaintext. The server’s name in the
ticket is in plaintext, since it need not be encrypted to provide secure
authentication. The server’s name is retained since it may be needed to
select a key with which to decrypt the ticket if a server has multiple
identities (such as an inter-realm TGS). Everything else remains
encrypted. The ticket lifetime is encoded as a starting time and an
expiration time (rather than a specific lifetime field), affording nearly
limitless ticket lifetimes. The new ticket also contains a new flags field
and other new fields used to enable the new features described below
(such as authentication forwarding).

Naming Principals

Principal identifiers are multi-component names in Kerberos version 5.
The identifier is encoded in two parts, the realm and the remainder of
the name. The realm is separate to facilitate easy implementation of
realm-traversal routines and realm-sensitive access checks. The
remainder of the name is a sequence of however many components are
needed to name the principal. The realm and each component of the
remainder are each encoded as an ASN.1 GeneralString, so there
are few practical restrictions on the characters available for principal
names.

Inter-Realm Support

In version 5, different Kerberos realms cooperate by establishing a
hierarchy of realms (based on the name of the realm). Any realm can
interoperate with any other realm in the hierarchy as long as they can
interoperate with the realms between them in the hierarchy. Each
realm exchanges a different inter-realm key with its parent node and
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Figure 5: A Version 5 Hierarchy of Realms

each child node, and uses that key and a common encryption system to
obtain tickets for each successive realm along the path. This arrange-
ment reduces the number of key exchanges to O(log(n)).

When an application needs to contact a server in a foreign realm, it
“walks” up and down the tree toward the destination realm, contacting
each realm’s KDC in turn, asking for a ticket-granting ticket to the
foreign realm. In most cases, the KDC will issue a ticket for the next
node in the proper direction on the tree. If a realm has established a
“shortcut” spanning link with some realm further in the path, it issues a
ticket-granting ticket for that realm instead. This way every realm can
interoperate, and heavily-traveled paths can be optimised with a direct
link.

When a ticket for the end service is finally issued, it will contain an
enumeration of all the realms consulted in the process of requesting the
ticket. An application server which applies strict authorization rules is
permitted to reject authentication which passes through certain
untrusted realms.

3.2. New Protocol Features in Version 5

Ticketing Options

In addition to the ticket changes discussed above, there are a set of
timestamps and flags which allow more flexible use of tickets than was
available in version 4.

Each ticket issued by the KDC is flagged as having been issued based
on an initial ticket exchange or an additional ticket exchange. Some
application servers (such as password changing programs) may require
that a client present a ticket obtained by direct use of the client’s secret
key K, so that intruders who might try to abuse that service cannot
simply steal cached credentials from an unattended user session.

Tickets may be issued as renewable tickets with two expiration times,
one for a time in the near future, and one for a farther point. The ticket
expires like normal at the earlier time, but if it is presented to the KDC
in a renewal request before this earlier expiration time, a replacement
ticket is returned which is valid for an additional period of time. The
KDC will not renew a ticket beyond the second expiration indicated in
the ticket. This mechanism has the advantage that although the creden-
tials can be used for long periods of time, the KDC may refuse to renew

EurOpen 91 — Tromsp, 20-24 May

303




The Evolution of the Kerberos Authentication Service

tickets which are reported as stolen and thereby thwart their continued
use.

A similar mechanism is available to assist in authentication during
batch processing. A ticket issued as postdated and invalid will not be
valid until its post-dated starting time passes and it is replaced with a
validated ticket. The client validates the ticket by presenting it to the
KDC as described above for renewable tickets.

Authentication forwarding can be implemented by contacting the KDC
with the additional ticket exchange and requesting a ticket valid for a
different set of addresses than the TGT used in the request. The KDC
will not issue such tickets unless the presented TGT has a flag set indi-
cating that this is a permissible use of the ticket. When the entity on
the remote host is granted only limited rights to use the authentication,
the forwarded credentials are referred to as a proxy (after the proxy
used in legal and financial affairs). Proxies are handled similarly to
forwarded tickets, except that new proxy tickets will not be issued for a
ticket-granting service; they will only be issued for application server
tickets.

In certain situations, an application server (such as an X Window Sys-
tem server) will not have reliable, protected access to an encryption
key necessary for normal participation as a server in the authentication
exchanges. In such cases, if the server has access to a user’s ticket-
granting ticket and associated session key (which in the case of single-
user workstations may well be the case), it can send the server’s
ticket-granting ticket to the client, who then presents it and the user’s
own ticket-granting ticket to the KDC. The KDC then issues a ticket
encrypted in the session key from the server’s ticket-granting ticket; the
application server has the proper key to decrypt and process this ticket.
[Dav90a] provides details on the fine points of this exchange.

Authorization Data

Some network operating system applications need to provide tamper-
proof arbitrary data to an application server (for example, such infor-
mation might include group membership information). It is convenient
to collect or generate such information at a KDC and insert it into a
ticket as authorization data, where it is encrypted and protected from
any client or intruder tampering. In the protocol’s most general form, a
client may request that the KDC include or add to such data in a new
ticket. The KDC does not remove any authorization data from a ticket;
the TGS always copies it from the TGT into the new ticket, and then
adds any requested additional authorization data. Upon decryption of a
ticket, the authorization data is available to the application server.
While Kerberos makes no interpretation of these data, the application
server is expected to use the authorization data to appropriately restrict
the client’s access to its resources.

This field can be used in a proxy ticket to create a capability. The
client requesting the proxy ticket from the KDC specifies any authoriza-
tion restrictions in the authorization data, then securely transmits the
proxy ticket and session key to another entity, which can then use the
ticket to obtain limited service from an application server. [Neu9la]
discusses in more detail some uses of this field.

Pre-Authentication Data

In an effort to help alleviate the ever-present problem of stolen pass-
words, the Kerberos version S protocol has fields available in the
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initial- and additional-ticket exchange messages to enable alternative
identification methods, such as hand-held authenticators (devices which
have internal circuitry to help a user identify herself to the system). In
the initial ticket exchange, these fields might be used to alter the
client’s key K. in which the reply is encrypted; they may also be used
to implement a challenge/response protocol which must be completed
before the issuance of a ticket. Both alternatives can help alleviate the
password attack problems discussed above, if they make the derivation
of the key from a typed password hard or impossible to compute
without the additional information utilised in the exchange, or if they
eliminate the use of passwords to derive or protect encryption keys.

This pre-authentication data field is used by the client in the additional
ticket exchange to pass the ticket-granting ticket to the KDC; since it is
a variable-length array, other values may also be sent in the additional-
ticket exchange.

Subsession Key Negotiation

Tickets may be cached by clients for later use before their expiration
dates. In order to avoid problems caused by re-using a ticket’s session
key (which is held for the duration of the user’s login session) for
several application sessions, a server and client can cooperate to choose
a new subsession key to protect just that application session. This sub-
session key is discarded after the application session concludes.

A clever use of this negotiation allows an application to use a broadcast
medium while protecting its messages to several recipients. The appli-
cation can negotiate individually with each recipient to use the same
subsession key before beginning its broadcasts.

Sequence Numbers

Kerberos provides two messages for applications to protect their com-
munications. The KRB_SAFE message uses a cryptographic checksum
to insure data integrity. The KRB_PRIV message uses encryption to
insure integrity and privacy. In version 4 these messages included as
control information a timestamp and the sender’s network address.
With version 5, an application may elect to use a timestamp (as before)
or a sequence number. If the timestamp is used, the receiver must
record the known timestamps to avoid replay attacks; if a sequence
number is used the receiver must verify that the messages arrive in the
proper order without gaps. There are situations where one choice
makes applications simpler (or even possible) to implement; see the
discussions in [Koh90a].

4. Implementation Features

4.1. The Base Implementation

The MIT implementation of the version 5 protocols is composed of
several run-time libraries with which a program may link. The core
library functions will probably be used by all applications; other
libraries or subsystems may be replaced or omitted as needed by an
application programmer. All code is currently written in “C.”

The base functions: The core Kerberos library contains the routines
which assemble, disassemble and interpret the network mes-
sages. This includes ASN.1 encoding and decoding functions
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Field name

Field use

encrypt func()
decrypt func ()
process key ()

finish key ()

string to_key()
init random key ()
finish random key ()
random_key ()

block length

pad minimum

keysize
proto _enctype
proto_ keytype

Entry point to encrypt an input.

Entry point to decrypt an input.

Entry point to perform any necessary key processing (must be called
before either encrypt funcor decrypt func).

Entry point to clean up from any key processing (called after
encrypt funcor decrypt func).

Entry point to convert a string to a key.

Entry point to initialise state for generating random keys.

Entry point to clean up state from random key generation.

Entry point to generdte a random key.

The minimum size of input and output for this encryption system.

The minimum padding space required of any input (used to insert in-
tegrity checks).

The length (in octets) of keys used by this system.

The encryption type value used in the protocol.

The key type value used in the protocol.

Table 1: A Cryptosystem Table Entry

which convert from a machine’s native format to the network
encoding (currently based on the ISODE library, but used in a
way to allow easy replacement of the ASN.1 routines), routines
which verify that requests are answered as expected, and routines
to determine which messages are necessary. This core set of
routines calls out to the remaining portions of the library as
required. A programmer may replace those portions at certain
specified interfaces.

Encryption routines: Since multiple encryption types may be in use
simultaneously, the core functions call encryption routines
through a function table which has entries provided by each
encryption system implementation. Table 1 shows the fields in a
cryptosystem table entry. The core library provides a default
cryptosystem table, initialised to list the known encryption types.
A programmer may load his own cryptosystem table to replace
the default table and avoid linking with the default encryption
libraries.

In an attempt to alleviate some possible export restrictions, MITs
implementation distributes its encryption systems separately
from the remainder of the system. Only DES is currently avail-
able from MIT.

Checksum routines: In a similar fashion to the encryption routines,
the core routines call any needed checksum functions through a
function table, and compute any necessary sizes based on the
information in the table. Certain applications of checksum tech-

Field name

Field use

sum_func ()
checksum length

is _collision proof
uses_ key

Entry point for the checksum function.

The length (in octets) of the checksum produced by the sum func.
Binary value indicating whether this checksum is collision proof.
Binary value indicating whether this checksum is keyed.

Table 2: A Checksum Table Entry
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Field name Field use

prefix The string prefix used to name this variety of credentials cache.

get name () Entry point to return the name of a key table.

resolve () Entry point to reserve a cache name, prepare to access it, and return an
access handle.

gen new () Entry point to generate a unique credentials cache, prepare to access it,
and return an access handle.

init () Entry point to create or erase a cache.

destroy () Entry point to destroy a cache and invalidate the access handle.

close () Entry point to close a cache and invalidate the access handle.

store () Entry point to store an entry in the cache.

retrieve () Entry point to retrieve an entry from the cache.

get princ() Entry point to retrieve the primary principal named in the cache.
get first() Entry point to prepare to sequentially read all entries in the cache.

get next () Entry point to read the next entry in the cache.

end get () Entry point to stop reading every entry in the cache.

remove cred() | Entry point to remove an entry or entries from the cache.

set flags () Entry point to set various flags for the cache routines.

Table 3: A Credentials Cache Table Entry

nology require that the checksum have certain properties. The
table entry indicates whether the checksum is keyed (its algo-
rithm is perturbed by an encryption key which cannot be
discovered with knowledge only of the algorithm and the check-
summed text) and whether the checksum is collision proof (it is
computationally infeasible to discover a different checksum text
which has the same checksum). Table 2 shows the fields in a
checksum table entry. The core library provides a replaceable
default checksum table.

Three checksums are currently available from MIT: the CRC-32,
which is neither keyed nor collision proof (but it is useful for
integrity checks within encryption systems); the DES message
authentication code (MAC), which is both keyed and collision
proof, and MD4 [Riv90a], which is collision proof but not keyed.

Credentials cache and key table routines: When clients store tickets
and credentials in a cache, the core routines call out through a
credentials cache table entry to a separate library module which
implements the storing and searching routines for credentials
caches (see Table 3). An environment variable can be used to
specify the default type and location of a credentials cache, so a
user can switch between different types and locations of caches
as needed (perhaps if she is working in two roles and wants to
keep the credentials for each role separate). MIT’s implementa-
tion provides two credentials cache implementations, one built
on C “standard 1/0” routines and the other built on UNIX file-
descriptor semantics. Other implementations could provide
shared-memory or kernel-resident caches.

Servers likewise store their secret keys K in key tables accessed
by the core routines through a key table function table entry (see
Table 4). MIT’s implementation provides a key table library built
on C “standard 1/0” routines.

KDC database support: All accesses to the KDC’s principal database
by the KDC and administrative programs are mediated by a data-
base library which can be replaced if needed. MIT’s implementa-
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Field name Field use

resolve () Entry point to resolve a key table name, prepare to access it, and return
an access handle.

get name () Entry point to return the name of a key table.

close () Entry point to close a key table and invalidate its handle.

get () Entry point to search the key table and return a requested entry.
start_seq_get () | Entry point to prepare to read every key in the table.

get next () Entry point to read the next key in the table.

end get () Entry point to stop reading every key in the table.

add () Entry point to add an entry to the table.
remove () Entry point to delete an entry from the table.

Table 4: A Key Table Function Table Entry

tion uses the UNIX dbm database system. Since dbm does not do
any record or database locking, it is augmented with separate
locking code to mediate between writers and readers. Adminis-
trative requests (e.g. adding entries, changing keys or passwords)
can be handled on-line.

Operating system support: Although it is targeted for UNIX systems,
the MIT implementation is careful to access operating system
features only in a few well-contained modules. An operating
system support library performs all the accesses required by the
rest of the code, such as transmitting and receiving network mes-
sages, examining configuration files, checking the system’s
time-of-day, translating from account names to Kerberos names
(and vice versa), and performing rudimentary account access
checks.

4.2. User Interaction

If all parts of Kerberos are working properly, a user will normally not
be aware that Kerberos authentication is in use by her applications.
The normal login process obtains and caches an initial ticket-granting
ticket, and applications automatically obtain and cache service tickets
as required. Only when authentication fails will the user become aware
of the underlying use of Kerberos.

If the user needs to refresh tickets (say, if they expire), then she can use
the kinit program, which will get a new ticket-granting ticket after
reading her password from the keyboard. She may examine the cached
tickets with klist and destroy the cache with kdestroy.

When principal names need to be displayed to human users, by conven-
tion" they are represented as the sequence of name components
separated by slashes (/), followed by an at-sign (@), and the realm
name. Thus, a principal with two name components jtkohl and
role2 in the realm ATHENA.MIT.EDU would be represented as
jtkohl/role2@ATHENA.MIT.EDU.

Password to Key Conversion

Since users are not good at remembering binary encryption keys, we
provide routines to convert passwords into keys. The algorithm used to
convert a password into an encryption key performs a non-invertible

T Please note that this is only a convention. and other implementations may display the principal names differently.
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transformation, so that an attacker cannot discover a user’s password if
he knows the K.. The conversion can be seeded with an additional
string which perturbs the output key, so that a user who is registered in
multiple realms and uses the same password in two of those realms will
have a different K in each realm. Without this perturbation, someone
discovering the user’s key in one realm could impersonate that user in
the other realm (without knowing her password!). When no additional
perturbation string is supplied, the resulting key is the same as the key
produced by the version 4 algorithm.

4.3. Compatibility Support for Version 4

There is a small but growing base of Kerberos version 4 applications,
and a number of sites running a Kerberos version 4 authentication
server. Several features of MIT’s implementation of version 5 can help
sites and programmers convert to using the newer protocol.

Interface compatibility: MIT’s implementation of version 5 includes a
“glue library” which may be used to convert applications which
are coded to use the version 4 application programming interface
(API) to use version 5 protocol messages and routines. This
library converts data structures as much as possible between the
differing version 4 and version 5 data structures. In many cases
(especially those that use only a common subset of the version 4
library functions), an application need only be re-linked with this
library and the remainder of the version 5 code to use version 5
protocols. However, such applications will no longer be compa-
tible with older peer processes, which would still expect the ver-
sion 4 messages, and continued maintenance may be made more
difficult.

A generic authentication interface: An authentication-system
independent programming interface [Lin90a] has been discussed
by representatives from several computer system manufacturers.
MIT provides a binding of this interface to the Kerberos version 5
implementation. For new applications which desire the most
flexibility to have different authentication systems (even ones not
yet invented) supplied by the system, this offers an attractive
abstraction boundary. If an application needs more detailed
access to a particular authentication system, it would probably do
better to code to that system’s native interface.

Protocol compatibility: For those sites which wish to convert the Ker-
beros server to provide the features of version 5, a compatibility
mode may be enabled on the server to access the version 5 style
authentication database but provide version 4 format tickets and
messages. This allows an administrator to convert a version 4
installation to version 5 slowly, by supporting the old users with
the compatibility code. After some grace period, the version 4
compatibility would be turned off. If a user wishes to use both
version 4 and version 5 programs simultaneously, the compatibil-
ity code can utilise the pre-authentication data in the ticket
responses to indicate which algorithm should be used to convert
her password to an encryption key.

Interface coexistence: The MIT version 5 libraries were purposely
designed to allow an application to simultaneously support both
versions 4 and 5, and this is the suggested compatibility mode.
The telnet {Pos83a] program distributed with the MIT code can
automatically choose an authentication system to use when it

EurOpen 91 — Tromsg, 20-24 May

309




The Evolution of the Kerberos Authentication Service M

try protocol A

Client A Server A
| |
| |
|(execute B if A fails) | (might be the same program)
| |
l I'
Client B try protocol B Server B

Figure 6: Implementing Protocol Compatibility by Executing Separate Programs

connects to a remote system, based on what credentials the user
holds and what versions of authentication the remote telnet
server will accept. It implements the current draft specifications
of the authentication {Bor90a] and encryption [Bor90b] options.

Program compatibility: Another possible compatibility mode can be
fabricated by maintaining separate copies of network applica-
tions which use version 4 and version 5 protocol messages. The
user would use a generic name for the application, and the appli-
cation would try each authentication system in turn, by executing
a separate copy of the program for each system (see Figure 6).
When authentication is successfully completed, the application
would proceed as normal. On both the client and server sides of
the application, this approach requires two copies of the same
program, each linked with a different authentication system. The
different versions of the server would each accept requests at dif-
ferent network ports, and the different clients would only send a
request to the server which supports its authentication type.

This approach could be mixed with the glue library and/or
single-server approaches, by creating the separate clients using
the glue library and/or using a single server program which
understands both protocols.

5. Status and Future Work

Kerberos version 5 is a large step forward toward generalising Ker-
beros to make it globally useful. We believe its framework will be
flexible enough to accommodate future requirements. Some items we
expect to be incorporated into Kerberos in the near future include:

Public-key cryptosystems: The encryption specifications in Kerberos
version 5 are designed primarily for secret-key cryptosystems,
but there is some ongoing work into the integration of public-key
cryptosystems into Kerberos, and we hope to be able to better
support them in future code releases. However, public-key cryp-
tosystems have different characteristics than secret-key systems,
and their use in Kerberos may not take advantage of those
characteristics.

“Smartcards”: Several companies manufacture hand-held devices
which can be used to augment normal password security
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methods, and there is strong interest within the industry to
integrate one or more of these systems with Kerberos.

Remote administration: The current protocol specifications do not
specify any administrative interface to the KDC database. MIT’s
implementation provides a sample remote administration pro-
gram which allows administrators to add and modify entries and
users to change their keys. We would eventually like to standar-
dise such a protocol. Some features we would like to add include
remote extraction of server key tables, password ‘“quality
checks,” and a provision for servers to change their secret keys
automatically every so often.

Directional inter-realm keys: The protocols will support the use of a
different inter-realm key for each direction of an inter-realm link,
but our implementation only allows for the same key to be used
for both directions. We would like to allow separate keys in our
implementation, to reduce the exposure from a disclosed key.

Database propagations: The current implementation provides reliable
KDC service by a periodic bulk-copy of the KDC database to
slave KDC machines. It might be more convenient and/or
efficient to build the KDC on a distributed database technology.
However, the technology must provide a secure, private
transmission of the database elements to each server, to insure
that an attacker cannot illegitimately obtain any database entry.

Validation suites: The current implementation does not include a com-
plete validation suite to verify that the protocol is properly imple-
mented. Such a suite could prevent future security problems in
the case of a faulty implementation, and would help facilitate
interoperation of diverse implementations.

Applications: There are many more network applications that would
benefit from the addition of authentication which we have not
had time or resources to convert. Among the highly visible
examples are electronic mail and popular bulletin-board systems
(such as Usenet).
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Abstract

Traditionally, filesystems under UNIX have been built into the operat-
ing system kernel. The Sun Network File System (NFS) has not been an
exception. The NFS client is implemented under the vrode layer, a
filesystem implementation-independent layer that allows access to mul-
tiple filesystems through a common interface. The NFS server is
merely a kernel daemon that services request from NFS clients.

In addition to consuming physical memory resources, a kernel imple-
mentation has the disadvantage of reducing extensibility and portabil-
ity. These problems can be overcome by implementing NFS in user-
space. This, however, may result in a severe performance degradation
unless the underlying operating system provides specialized support for
an extensible [/O mechanism.

This paper explores the architechtural and implementation issues
involved in constructing a user-space NFS over such a mechanism, fol-
lowing which current performance data and possible enhancements for
further performance improvements are presented.

1. Introduction

I/0 services are increasing in complexity as they strive to provide
increased network access, transparency of access and high performance
[Gol90a]. For example, NFS provides in-place access to remote
networked filesystems allowing users to access these remote filesys-
tems as if they were local. Since UNIX I/O has typically been imple-
mented in the kernel, this increased complexity has resulted in larger
kernels which in turn result in an increased consumption of physical
memory resources at the cost of memory that would have otherwise
been available to applications.

In addition, introducing new 1/O services such as NFS into the system
has required modification to kernel source modules and a subsequent
kernel rebuild. Coupled with the increased consumption of memory,
this restriction has resulted in reduced extensibility: the memory limita-
tion places a limit on the number of new 1/O services that may be intro-
duced and the requirement for a kernel rebuild makes the addition of
these services more difficult. Finally, portability is reduced as kernel
resident modules will most likely be forced to use operating system
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Figure 1: The Domain Typed Object Management System

dependent services as standard application programming interfaces are
not typically available to them.

These problems can be ameliorated with the introduction of an extra-
kernel 1/0 mechanism. Such a mechanism allows 1/O services to be
built as pageable user programs and thus those services do not require
locked physical memory. Furthermore, introducing these services into
the system does not require kernel modifications and moreover, they
can be developed and debugged using conventional programming tools.
As a result, the extensibility of the system is significantly increased.
Since these services can be implemented using standard application
programming interfaces, portability is likewise increased.

The Domain operating system has such an extensible file /O frame-
work for stream operations. It consists of a typed object management
system [Ree86a] on which a stream file 1/O facility is layered as a
user-state library that is mapped into every process’ address space. It
allows users to define new types of I/O objects and to associate user-
defined sets of generic file operations, traits, with these types. For
example, an io trait could be read, write, and seek. Type managers are
programs that implement these traits. After a type manager for a given
set of typed objects is created it will be dynamically bound to those
typed objects on demand. The relationship between type managers and
their objects is illustrated in Figure 1.

The Domain NFS implementation is built on this framework. An object
of type NFS is defined and NFS mount points (local filesystem entries
that point to remote NFS mounted filesystems) are objects of this type.
The NFS client is a type manager that implements a set of open/close,
io, and directory traits, that initiate NFS server operations via Sun
RPC/XDR. Basically, a client I/O operation against an object of type
NFS results in the NFS type manager being dynamically loaded into
that client’s address space to handle the operation. The NFS server is
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Figure 2: Types, Traits, Managers (TTM) and EPV's

merely a collection of user-space daemons that authenticate and service
NFS requests from clients.

2. An Extra-Kernel 1/0O System

2.1. The Client-Side

The principal responsibility of the /O client side is to identify and
categorize each object and to invoke operations that define each object
as necessary. This can be accomplished by strongly typing each object
with a set of states and maintaining well-defined traits that implement
the state transitions. A trait can thus be considered a specification of
the state transitions of an object and represents the class of behaviour
that the object can support (e.g. files, directories, block devices, etc.).
As previously mentioned, the program that implements the traits for an
object type is known as that object’s type manager and an object sup-
ports a trait only if its type manager implements those trait operations.
Support for a trait is accomplished by associating an entry point vector
(EPV) with an object type. An EPV is an ordered list of pointers to
functions that implement the trait operations as illustrated in Figure 2.

The usefulness of this framework hinges on the ability to uniquely
identify an object and its type. This is best accomplished by means of a
typed filesystem. A type <> trait database that maintains a list of traits
that each type supports must also exist and finally, some mechanism to
bind the <object, trait > tuple to an EPV is required. This will allow for
a quick transalation from <object, trait > — type manager.

2.2. The Server-Side

Exporting server-side 1/O to user-space is much simpler. All that is
required is a daemon to service client requests. For better throughput it
is advisable to use either a multi-threaded daemon or multiple
cooperating daemons.
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2.3. Vnode Layer +

The vnode layer [Kle86a] in traditional UNIX kernels is a separation of
generic filesystem operations from their implementation characteristics.
Applications invoking vnode supported calls will cause the vnode layer
to invoke the appropriate kernel-resident filesystem-dependent pro-
cedure. The previously described extensible I/O system exhibits this
same funcitonality in user-space. In additon to the greater extensibility
and portability that results from a user-space system, the extensible I/O
system also enjoys greater flexibility in the granularity at which new
types can be introduced into the system. While the vnode layer can
only define new filesystem types (coarse granularity), the extensible 1/O
system can add a large number of file types within any filesystem (fine
granularity).

3. System Support for Extensible 1/0

The implementation of the described 1/O systen in user-space requires
support from several system facilities. In particular:

. Object/type identification

° Object mapping into process address spaces
) User-space storage pools

. Object concurrency data

. Dynamic program loading

° Type manager pathname resolution

o User-space synchronization

3.1. Object/Type Identification

Every I/O object must have a type associated with it. A typed filesys-
tem enables files to be divided into classes of objects with each class
corresponding to an object type. Since the type information is part of
the filesystem, type managers can use the filesystem to store objects.

3.2. Object Mapping into Process Address Spaces

Type managers must have controlled low-level access to the raw data
that their objects represent. This enables them to efficiently implement
their own caching and buffering schemes. Mapping objects into a pro-
cess’ address space affords a type manager such access. Furthermore,
it causes an address space to be characterized in terms of objects that
are mapped. When an object mapping occurs, a binding between that
object and its type manager can be created.

3.3. User-space Storage Pools

Since the extensible I/O system is implemented in user-space, an
object’s state information should also be stored in user-space. Multiple
pools are required: one for per-process information, another for
ancestor-common processes, and a third for global storage. The per-
process pools are used to store process stacks, while the ancestor-
common pools store stream information, such as the position in a byte
stream, that must be available to both the parent and child processes
after a fork. The global pool is used for storage that must be visible in
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all process address spaces, such as the file handle and attributes of an
NFS object.

3.4. Object Concurrency Data

Kernel-resident NFS implementations have used the vnode structure to
store file/data concurrency information such as an indication as to
whether the data is being accessed for read or write. A similar user-
space facility is required for a user-space NFS implementation in order
to coordinate access by multiple processes to the same object. In addi-
tion to being associated with a particular object, this data must be
stored in a global pool. Thus, there must exist a mechanism for any
process to aquire the virtual address of the gloabl data. The first pro-
cess to access the object allocates the storage. Subsequent processes
increment a reference count and are allowed access to the data. The
storage space is reclaimed when the reference count falls to zero indi-
cating that all processes have completed their access.

3.5. Dynamic Program Loading

A dynamic program loader allows for a type manager to be loaded
when an object of a type that it implements is accessed. This has the
advantage of not consuming virtual address space for type managers of
unaccessed object types.

3.6. Type Manager Pathname Resolution

While not strictly required for a user-space NFS implementation, type
manager pathname resolution is useful as part of an extensible 1/O sys-
tem. It allows type managers to resolve names that may not exist in the
filesystem namespace and thus could not be resolved by traditional ker-
nel pathname resolution algorithms. Thus applications have the ability
to use object specific names without kernel knowledge of them.

3.7. User-space Synchronization

Since multiple processes may be waiting for I/O events involving the
same object, a user-space synchronization facility must exist.

4. The NFS Protocol

The NFS protocol provides transparent, in-place access to remote
networked filesystems by means of remote procedure calls (RPC)
[San85a). A mount operation results in the insertion of a foreign
filesystem subtree into the native filesystem. Any client operations
below the new mount point will transparently be converted to opera-
tions on the remote filesystem. Every NFS object (files and directories)
is identified by a thirty-two byte file handle that the server passes to a
client. An NFS server exports the synchronous procedures listed in
Table 1.

The NFS protocol is transaction oriented. Each NFS request from client
to server is independent of any other request (see Figure 3). That is,
each request provides all the necessary information for the server to
perform the operation. Thus, the NFS server is stateless and does not
maintain any information about its clients. This results in a simple,
lightweight server and a trivial crash recovery algorithm. The disad-
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NFS Protocol Server Procedures

Null
GetFileAttributes
SetFileAttributes
LookupFileName
ReadSymbolicLink
ReadFile

WriteFile

CreateFile
DeleteFile
RenameFile
CreateLinkToFile
CreateSymbolicLink
CreateDirectory
RemoveDirectory
ReadDirectory
GetFilesystemAttributes

Table 1: NFS Protocol Server Procedures

vantage of a stateless server is that all state has to be written to stable
storage before a request is acknowledged, thus forcing a synchronous
style of interaction. Consequently, a significant performance degrada-
tion can result for disk intensive operations such as writes.

5. Implementation of a User-space NFS Client

A user-space NFS client can be implemented with an NFS typed mount
point in the native filesystem and an NFS type manager to manage the
NFS objects as illustrated in Figure 4. The mount point stores
sufficient information to contact the remote NFS server. This includes
the server’s internet address, file handle of the remote filesystem mount
point and any mount options such as timeout values and network
packet sizes.

During pathname resolution, when an NFS mount point is encountered
the remainder of the pathname is passed on to the NFS type manager
and it asssumes responsibility for resolving the pathname. This

NFS Client
The client now has the fh of via Sun RPC/XDR fh generation
the NFS mount point and can NFS
now get fhs of other subtree objects| mount MOUNT Daemon
from the server by doing an W
NFS_lookup (dir fh, "leats) and the

server sends back the leaf’s fh.

Operation on an NFS object
(for which a fh <Th NES S
ne ; , roc, args
has been obtained) <ui(T.pgid ) g NFS Server Daemon
reply

NES transaction

Figure 3: NFS Server/Client Interaction
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removes the need for the kernel to have knowledge of object specific
pathname syntax and leads to further extensibilty in naming.

In order to manage NFS objects, the NFS type manager maintains state
in per-process, ancestor-common and global storage pools (see Fig-
ure 5). The per-process data are process-specific items such as the Sun
RPC client handle and owner credentials, while the ancestor common
information is essentially a stream position pointer and a reference
count to track active clients. The global data such as the object’s NFS
file handle, the parent directory file handle and their associated attri-
butes are stored in the object concurrency data facility in order to regu-
late access among multiple processes.

6. Implementation of a User-space NFS Server

A user-space NFS server can be implemented as a daemon that invokes
native filesystem operations on receipt of an NFS request. In order to
increase throughput, it is desirable to run multiple cooperating NFS
server daemons. However, to allow consecutive NFS operations on the
same file, as in sequentially reading pages from a file, in a multi-
daemon environment raises issues that merit additional thought.

It is not deisrable to perform a file open/close on each NFS operation as
this introduces a significant expense. The open/close operation can be
avoided by keeping the file open for a few seconds after a single
request has been completed. Subsequent NFS operations will typically
arrive within a second and will thus not require an additional open.
The multi-daemon environment introduces an additional complication:
the system must keep track of which daemon has which files open.

The design of the multideamon system raised many issues. A decision
had to be made regarding whether a single multi-threaded server or
separate multiple servers should be constructed. Since NFS operations
pass along a <uid, gid> tuple and since in user-space credentials are
defined by the process’ credentials, it would be difficult for multiple
threads to service requests from different users. Hence the NFS server
side was constructed as multiple cooperating daemons.
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The multi-daemon system could have been designed such that all dae-
mons waited for requests on a single socket or such that one daemon
acted as a dispatcher to other slave daemons. The former approach
would have resulted in excessive context switching: all daemons would
have been awakened on receipt of a request and all but one would have
to return to sleep pending arrival of another request. The latter
approach allows a dispatcher to send requests out to slave daemons
with little additional overhead. The dispatcher must track which dae-
mon has which files open.

The multi-daemon dispatcher/slave NFS server design is illustrated in
Fugure 6. An NFS request described by < file handle, NFS procedure,
arguments > and <uid, gid> tuples arrives. The dispatcher validates
the <uid, gid > pair and passes the request to one of the slaves. Since
the request can be up to 8K in size, the request is not physically sent to
a slave but rather stored in global mapped memory described by a slot
number. The dispatcher sends the slave the client address and slot
number allowing the slave to respond directly to the client after
fulfilling the request. The dispatcher/slave architechture involves an
additional data transfer of approximately 50 bytes, resulting in a small
delay that is far outweighed by the increased availability.

7. Performance

Table 2 shows the results of running the NFS regression tests between
two kernel implementations and between kernel and user-space imple-
mentations. All times are in seconds.

These results show that in most cases there is no significant penalty for
using user-space 1/O services. It is important to note, however, that the
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User-space Client & Server Performance
Regression Test Kernel <> Kernel | Kernel « User Server | User Client «— Kernel
File & Dir Creation 36.41 40.1 434
File & Dir Removal 33.1 35.2 37.2
Lookup 1.3 1.5 1.9
Setattr, Getattr 40.26 55.2 53.3
Write 215.32 285.46 260.64
Read 342 7.5 6.8
Readdir 46.31 57.86 54.72
Smalil Compile 10.5 12.4 13.3
Tbl 1.1 1.3 1.4
Nroff 5.8 6.1 6.9
Large Compile 14.2 18.2 20.2
4 Large Compiles 65.3 73.6 high

Table 2: Client and Server performance
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lack of a BIOD facility has resulted in degraded performance for tests
involving many reads and writes.

8. Future Optimizations

Both the NFS client and server can be optimized in a fairly straightfor-
ward fashion. In particular, a user-space client BIOD daemon could
asynchronously perform read-ahead and write-behind, storing the
resulting information in the object’s concurrency data. On the server
side, a cache can avoid duplicate work in the case of lost replies. It is,
in essence, a work avoidance technique [Jus89a] that both increases
server bandwidth and avoids destructive reapplication of non-
idempotent operations such as write.

9. Summary

This paper has shown that given an extensible I/O system it is possible
to build new user-space /O services such as NFS, with a minimum of
effort, achieving greater portability with no significant performance
degradations.
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Abstract

XEUS is a UNIX based intelligent terminal system that makes it possible
for PC (DOS) users to work under a more powerful operating system
without having to change from their familiar user interface and
hardware environment. Additionally, the system provides methods for
a UNIX program running on the host machine to download routines to a
terminal. By offering synchronization and parameter passing facilities,
XEUS can support distributed processing.

XEUS Director is a distributed shell that works on the XEUS intelligent
terminal system. It is designed to provide a common user interface for
both the UNIX and the DOS mode of the terminal while fully utilizing
the features of the XEUS system.

1. General Description of the XEUS System

XEUS is a software environment that makes it possible for PC based
systems to be more powerful than individual or networked MS-DOS
machines.

The XEUS system is based on a host machine running UNIX, sur-
rounded by IBM PCs or compatibles used as intelligent terminals under
MS-DOS. The computers are connected over an ARCNET network,
which provides an appropriate data transfer rate for host terminal com-
munication.

The goal of the system is to integrate the well known DOS environment
into the UNIX one, while maintaining the advantageous characteristics
of the DOS system.

Therefore the XEUS system:

) Makes it possible for DOS programs running on terminals to
access, under appropriate protection, the UNIX file system;

) Unloads the UNIX host by using the PCs as intelligent terminals,
in this way increasing the maximum number of users that can be
handled by the host;
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) Makes a DOS like user interface possible for UNIX applications
by expanding the UNIX user interface with PC services;

. Supports distributed processing between the host and the termi-
nals. By using XEUS library calls it is possible to utilize the
advantageous characteristics of both the UNIX and the DOS
environment.

The “heart” of the system is the special terminal emulator. This pro-
gram is an ANSI terminal emulator, capable of supporting all the
features a PC can offer, including total keyboard and screen handling.
Additionally, the terminal emulator — with the help of a C library sup-
plied with the XEUS package — makes it possible for processes running
on the host to download routines and even complete programs to the
terminal. These programs (or routines) can receive and send parame-
ters from/to the process that invoked them (synchronization and param-
eter passing).

Taking into account the process downloading possibilities, XEUS can
be regarded as a special kind of distributed system.

The XEUS system can simplify the change from DOS to UNIX in the
IBM PC world. Using the unique facilities of the terminal emulator this
“painless” change can be combined with better performance. The spe-
cial features provided by the XEUS system are designed to support dis-
tributed processing and, by using these capabilities, an advanced pro-
grammer can write programs that combine the unique features of the
UNIX and the DOS systems.

2. The Need for a Distributed Shell

The XEUS terminal emulator program provides an alternative to the ter-
minal user: working under UNIX with the emulator, or running DOS
and using the UNIX file system of the host computer — as a DOS logical
drive — for background storage. This means that users who wish to
fully utilize the capabilities of the system have to deal with two dif-
ferent operating systems — not to mention the special XEUS services; it
is not very convenient to work in such an environment. While develop-
ing the XEUS system, the need soon emerged for an integrated environ-
ment that provides a common, easy to use, user friendly environment
for both alternatives.

XEUS itself is not a distributed, but rather an intelligent terminal sys-
tem. In this way it does not have all of the symptoms given by
Schroeder to define a distributed system. XEUS has, however, symp-
toms that are similar to those can be found in a distributed system.

The XEUS system

. Consists of multiple processing elements, that can run indepen-
dently, i.e. each processing element (the UNIX host and the IBM
PCs as terminals) contains at least one CPU and memory;

. Has interconnection hardware to make communication possible
between the processing elements. It allows processes (UNIX
processes and downloaded intelligent routines) running in paral-
lel to communicate and synchronize;

. Is structured in such a way that processing elements fail indepen-
dently. This means that even if a host machine fails, terminal
(IBM PC) users have the possibility to continue working on their
computer under DOS, or to connect to another host if there is any.
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The only symptom XEUS does not have is that the nodes do not keep
shared state for the distributed system. In this way a node failure
causes some parts of the system'’s state to be lost. If a host crashes, the
information in it is inaccessible until the host comes back up: and when
a terminal crashes, the whole of its internal state is lost.

From another point of view the XEUS system does not provide tran-
sparency in the manner defined by Tanenbaum and van Renesse, i.e.
terminal users do not view the system as a “virtual uniprocessor” but
rather as a collection of distinct machines. Moreover, in the base sys-
tem terminal users see only the host machines attached to the network,
but they know little about other terminals, and there is no way for them
to attach themselves to other terminals or copy files from there, etc.

While keeping shared state for the system would require major changes
in the XEUS concept, the utilization of the process downloading facili-
ties of XEUS makes it possible to provide a more transparent view of
the system. Moreover, if the system supplies primitives for terminal-
terminal interaction, users are able to view XEUS as a “virtual unipro-
cessor” system.

3. Capability Code System

The XEUS system’s Remote Procedure Call mechanism is based on a
method called Capability Code System (CCS). In order to describe this
method at first we must take a look into XEUS’s process downloading
facility.

XEUS makes it possible for UNIX programs running on the host to
download (DOS format) routines or even complete programs to the ter-
minal. As XEUS does not provide compiler level RPC support these
programs can receive and return parameters from/to the host process
through library functions supplied with the system. Processes to be
downloaded must be complete DOS style executable programs. Such a
remote procedure gets its parameters in the “main” function’s parame-
ter list similarly to the "argc, argv'" parameters in common C pro-
grams. In XEUS, however, the main function looks something like this:

void main{ int command, union pars *parameters )

where command is a request code supplied to the procedure by the sys-
tem, and parameters is a pointer to the actual parameter structure sent
by the host process.

Furthermore the main function of the downloaded program looks like a
big “case” table which is “switched” on the command parameter. The
program should support at least two command values: XS_CCS_INIT
and XS_CCS_TERM.

When a UNIX process loads a program into the terminal’s memory, the
XEUS system immediately calls that program with XS_CCS_INIT in the
command parameter. At this point the downloaded program has the
opportunity to process all of the initializations necessary for the correct
execution (memory allocation, initializing variables, etc.). Moreover,
the remote procedure can define the command values it supports.
These command values are called “Capability Code”. The host process
can then invoke a remote procedure by “requesting” it from the system.

As XEUS does not provide compiler level RPC support there is no way
for compile time parameter checking between the host and the terminal
routines. In order to support some parameter checking, the system
requires the downloaded program to define its parameter structure
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along with the capability codes. This method makes it possible for
XEUS to provide run time parameter check, in order to locate parameter
passing errors and to make developers’ life longer. This checking can
be disabled by the developer to gain better performance after the
debugging sessions.

The XS_CCS_TERM code is supplied to the procedure in case the host
process terminates, or when the system detects fatal errors that make
error free communication impossible between the remote processes. If
a downloaded routine gets this command parameter, it should clean up
(free allocated memory, release interrupts, etc.) in order to enable the
system to remoye the program safely from the memory.

The current version of the system supports capability codes between
the terminal on which the remote procedure resides and the host pro-
cess which loaded the program into the terminal’s memory. There is
no real reason against implementing network wide capability codes as
well.

4. The XEUS Director

The XEUS Director is a distributed shell that works on the XEUS intelli-
gent terminal system. It is designed to provide common user interface
for both the UNIX and the DOS mode of the terminal while fully utiliz-
ing the features of the XEUS system. The shell consists of a UNIX and
a DOS program, communicating over the network.

The UNIX part:

) Makes it possible for the user to use UNIX commands,
° Handles the UNIX file system requests of the shell,
. Provides access to the local storage of the other terminals,

. Keeps track of the maintenance operations, changes, etc. made
by the shell itself.

The DOS part:

. Provides an easy to use user interface,

) Makes it possible for the user to use DOS commands,

) Handles the DOS file system requests of the shell,

) Handles the local storage requests sent by other terminals.

In order to provide better memory usage, the DOS part of the XEUS
Director was developed by using dynamic linking techniques.

The shell has a window and menu driven user interface (with mouse
support) to hide the operating systems’ details from the user. The shell,
however, makes it possible for the user to use all the UNIX or DOS
commands in the same manner as he/she would use them normally.

The XEUS Director provides methods for users to combine UNIX and
DOS commands. This can be done by writing UNIX shell scripts and
using the DR (dosrun) utility supplied with the XEUS system, or by
using the XEUS Director’s macro language.

The system enables the user to link files and actions (executable files)
together. The appropriate action is activated if the user selects a file
associated with a valid action.

The shell makes it possible to “tie” files or even directories. This
means that every change that have occurred in these files and subdirec-
tories is also made in the “tied” files or subdirectories by the Director.
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(The user can use this facility to keep an always up to date copy of
his/her files in his/her local storage device.)

5. The Filesystem of XEUS Director

In order to provide common user interface for both the UNIX and the
DOS mode of the terminal, and to hide the details of the different
operating systems from users, XEUS Director manages a common
filesystem for both operating modes of the terminal. This filesystem is
totally transparent to the terminal user. And as XEUS is a UNIX based
intelligent terminal system it was obvious that this filesystem must be
the UNIX one.

Why the UNIX filesystem? When the user turns on the terminal, the
system immediately loads the XEUS terminal emulator. The user
should login into UNIX (of course) to get access rights to the filesystem.
It seemed to be natural to use these rights in terminal-terminal com-
munication, too. By making it possible for XEUS to use the same pro-
cessing of access rights between two terminals as does UNIX, the XEUS
system can benefit from an existing, well understood access method.
Moreover, as the DOS style naming method is only a subset of the
UNIX one, terminal filesystems can easily be viewed as ordinary UNIX
directories. In this way XEUS is capable of showing a unified filesys-
tem both to hosts and to terminals.

The realization of this method is closely related to the UNIX filesystem.
A special directory called xeusterms is created by the XEUS Director
installation procedure. This directory contains nothing apart from
some other directories. Each of these directories is logically connected
to one of the terminals. The name of these directories must be unique
for each terminal. When the user decides to work in another terminal’s
filesystem, he/she has to open the appropriate directory in the same
manner as he/she would work with any other directories. (As XEUS
Director is a window oriented shell, this happens by moving the selec-
tion bar to the desired directory name and pressing “enter”, or by dou-
ble clicking the mouse on the appropriate name.) If the user has the
right to open the directory, he/she is allowed to work in the desired
terminal’s filesystem. After the successful opening, however, the user
does not see the real components of that directory, but the elements of
the selected terminal’s root directory.

Every directory in xeusterms contains a file named types.ter. This file
holds information on the files residing in that terminal’s filesystem.
Some part of this irformation makes it possible for the shell to perform
the appropriate action when somebody clicks on that file.

As this file resides in the UNIX host’s filesystem while the files on
which it contains information stays on the terminal, this file may not
hold consistent information. As users can use their terminal without
the help of XEUS Director, new files can be created, old ones can be
deleted, etc., between two shell sessions. Although the information in
the file becomes obsolete, it will be found out in time (e.g. somebody
tries to use a file not listed in types.ter). For this reason the XEUS
Director treats these files like hints, rather than trying to update them
every time when the shell starts. This results in performance improve-
ment in the system.
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6. Filesystem Problems

While users work with XEUS Director, they view the system as a con-
tinuous hierarchical filesystem. The shell hides all differences, incom-
patibilities of the different operating systems. Well, almost all of them.
There are situations when differences just cannot be hidden.

Let us suppose that a user, while working with XEUS Director, decides
to copy a file from one directory to another. While he/she is copying
between real UNIX directories (that reside physically in the host
machine’s filesystem) there will not be any problem. Similarly he/she
will find it easy to copy from one terminal to another, or from a termi-
nal to a host. The only situation when something strange happens is
when the user tries to copy from a host to a terminal. The reason is the
difference of the file naming schemes in UNIX and DOS.

DOS file names length can be a maximum of 12 characters divided into
two parts:

) The name of the file, which can be up to 8 characters, and
. The extension, which is maximum 3 characters long.

The two parts of the name are separated by a *.” character which must
reside in the 9th position. Taking into account that UNIX has a more
flexible naming scheme, it will not take long for a user to try to copy
such a UNIX file to a terminal, which name violates the DOS naming
conventions. The XEUS system itself had to face this problem in order
to make it possible for terminal users to use the host machine’s hard
disk drive as background storage even in the DOS mode of the terminal.
The conclusion was the need for a kind of filename conversion.

The solution which provided satisfactory results in that situation, how-
ever, cannot be applied directly to the problem mentioned above. First
of all, users will not be able to recognize the copied file with the con-
verted name. Second, there are files that cannot be converted at all.

One solution could be to let users make a decision:
° Users themselves name the new file explicitly, or
) Let the system convert the filename.

Although this method has some drawbacks, it provides an acceptable
solution to the problem.

Another problem is that the UNIX access rights method ensures the
rights only for the whole filesystem of the terminal. Users cannot
determine the rights of individual files or directories residing on the ter-
minal.

Although this problem is not solved in general, XEUS Director makes it
possible for users to define which files and/or directories can be seen
from another terminal (if it has access rights to this filesystem at all).

7. Conclusion

The XEUS development has indicated the need for a shell that hides the
details of the different operating systems in a distributed environment.
By providing such an easy to use, window and menu driven shell, users
can utilize the services of this environment without too deep
knowledge of the different operating systems.

Such a shell can best be implemented by building upon the special
characteristics of the distributed system.
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The XEUS Director is such a shell built upon the process downloading
and RPC facilities of XEUS. Although this shell does not provide every
symptom necessary for a real distributed system, it provides a common
view of the filesystems of the different machines. Hiding away most
differences among operating systems, XEUS Director provides faster
success in using the XEUS intelligent terminal system.

Bibliography

1. A.D. Birrel, R. Levin, R.M. Needham, and M. Schroeder. “Gra-
pevine: An Excercise in Distributed Computing”. Communica-
tions of the ACM 25: 260-274, April 1982.

2. A.S. Tanenbaum and R.van Renesse. “Distributed Operating
Systems”. ACM Computing Surveys 17(4): 419-470, December
1985.

3. S. Mullender: “Distributed Systems”. ACM Press Frontier Series
1989.

4. L. Biczok, K. Szeker, “XEUS: An Intelligent Terminal System,”
in UKUUG proceedings, Summer 1990

EurOpen 91 — Tromsa, 20-24 May

331










