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Distributed Operating Systems Anno 1992
What Have We Learned So Far?

Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam, The Netherlands
ast(@cs.vu.nl

Abstract

Research on distributed systems has been going on for over a decade.
Perhaps it is time to sit back and take stock. What have we learned in
this time? In this paper the author presents one viewpoint of what is
important in the field. The topics covered include system structure,
communication, and distributed shared memory. The paper concludes
by discussing some open issues for future research.

1. Introduction

When 1 signed up to give this keynote address, I saw it as an opportu-
nity to sit back and reflect on what we have learned about distributed
systems so far. After some thought, I came up with a list of what |
thought were the main concepts most researchers in the field agreed
with. To test out these ideas, I posted them to the USENET news group
comp.os.research, a sleepy little backwater, populated by gentle
souls interested in fairly esoteric matters. I asked for comments and
additions to my modest list or alternative lists. I thought a few people
might agree with me, and another few might have some minor changes.
I was wrong.

My posting ignited a firestorm. Hundreds of responses were posted,
most of them ranging in tone from livid to outraged. I was simultane-
ously accused of being both a hopeless dreamer and an old stick-in-
the-mud. Much spleen was vented.

When the dust had settled, I carefully read all the responses and noticed
something curious. While many people were most unhappy with some-
thing or other that I had written, few had alternatives. This led to my
second posting, in which I specifically challenged the previous posters
(whose names I had carefully collected) to each produce a list of the
five most important things we had learned so far about distributed sys-
tems. I decided to be a sport, and included my own list in the posting.
I thought I would now get nice fat lists at which I could take a few pot
shots. I was wrong again.

Another firestorm ensued, with everyone going after my list again, but
only one or two people proposing alternative lists. Several hypotheses
come to mind to explain this sequence of events:
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It is more fun to jump on someone else’s ideas than to think up
your own.

Researchers in distributed systems do not read
comp.os.research.

As a profession, we are a bunch of prima donnas who listen to no
one.

4.  We really have not learned anything at all in the past 20 years.

I am willing to go along with some combination of 1-3, but I do not
agree with 4. I strongly believe we have learned some things about
distributed operating systems. In this paper I will tell what they are. It
may well be that [ am the only person in the field who believes these
things (but I very much doubt it), but if this paper does nothing else but
stimulate thought and discussion about the subject, I think it will have
been worth the effort. To emphasize the possibly personal nature of
these thoughts, I will write the paper in the first person, a style that is
normally frowned upon in Science.

What is a Distributed System?

Before answering the question of what I have learned about distributed
operating systems, 1 have to first explain what I mean by the term.
When the term “distributed system” first became popular, at least one
vendor began advertising that it already had a distributed system for
sale, consisting of a large mainframe to which several hundred dumb
ASCII terminals could be connected. This is not quite what I had in
mind.

I think that a distributed system has two essential characteristics:

) The system has a number of independent, autonomous, commu-
nicating CPUs.

. The system looks to the users like a single computer.

Each of these requires some explanation. The first point means that the
system consists of separate computers connected by a network. The
old mainframe is still not a distributed system, even if the ASCII termi-
nals are replaced by X-terminals each containing a 50 MIPs CPU, 64M
of RAM, a large hard disk to hold all the fonts, and a fiber optic connec-
tion to the mainframe. An X-terminal is not an independent computer;
it is still operating as a terminal.

A shared-memory multiprocessor, while interesting and important, is
also not a distributed system. The CPUs are not independent (e.g., a
failure in one of them can corrupt the others). More important, some of
the hardest problems that occur in distributed systems, such as lack of
global state information, agreement about the exact time, and process
synchronization, are easy to solve in multiprocessors. This fact makes
their operating systems simpler.

Another common computing model consists of a collection of personal
computers or workstations, which all have access to one or more file
servers. This configuration meets the first criteria, but not necessarily
the second. If each user “owns” one workstation, and can only use
other (idle) workstations with some special effort, the whole system
does not look like a single computer. When running an interactive edi-
tor, the distinction is minimal. The real test comes when a process
forks off a sequence of compute-bound children. In a true distributed
system, the operating system, not the user, would place each new pro-
cess on the “best” machine, taking into consideration CPU load, mem-
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ory availability, location of files needed, network bandwidth, communi-
cation patterns, and other factors. Thus a network of personal worksta-
tions that use a common file system (e.g., NFS or Andrew) is not a dis-
tributed system.

In contrast, one possible way to build a distributed system would be to
assemble a collection of single board computers located in a rack in the
machine room. Each board would contain a CPU, private memory, a
network interface, and its own copy of the operating system. A user at
an X-terminal can type a command, which is then executed in this pro-
cessor pool. Simple jobs may only require one CPU, but other jobs,
such as a chess program, may require hundreds of CPUs working in
parallel. The location of processors, files, and everything else is done
automatically, by the operating system. To the users, the computing
power is a single shared resource, like an old-fashioned timesharing
system, only constructed with modern technology.

A slightly far-fetched, but possibly instructive, analogy to a distributed
system is the worldwide telephone system. The telephone system con-
sists of many thousands of switches (essentially large computers), no
one of which is the boss of all the others. Whether a call is routed over
fiber optic links, microwave links, coaxial cables, or some combination
of them is up to the system, not the user. Similarly, whether analog or
digital technology is used is also hidden, as are gateways between dif-
ferent telephone companies and different countries. Calling an 800
number (free number) is a complicated process, involving looking up
the “real” number in a distributed data base, but this, too, is not visible
as a separate part of the system. To the telephone user, the whole thing
looks like a single gigantic switch to which every telephone in the
world is connected. This illusion, sometimes called the single system
image, along with the use of independent computers to implement it, is
what sets distributed systems apart from their nondistributed cousins.

It should be clear from the above discussion, that being distributed has
at least as much to do with the software (i.e., the operating system) as it
has to do with the hardware configuration. The same hardware can
either form a distributed system or not, depending on the software.

Few distributed computer systems are currently available commer-
cially, although they will start becoming more numerous during the
1990s. Various prototypes are currently under construction in research
laboratories. It is from these experimental systems that most of our
knowledge on the subject has come from. It is perhaps worth pointing
out explicitly that distributed systems are not easy to design and pro-
gram — if they were, we would have had a lot more of them in commer-
cial use already. The fact that they are difficult to program suggests to
me that we should use techniques that simplify their construction wher-
ever possible. This point will come up over and over in the rest of the

paper.

2. System Structure

A good place to begin our discussion is the structure of the operating
system, since it is here that the biggest changes have occurred. In this,
and subsequent sections, I will try to summarize what I have learned in
a short observation i~ boldface type, followed by my reasons for
believing it.
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Files

Printing

Directories

Terminals

Microkernel

Figure 1: (a) System with a monolithic kernel. (b) System with a microkernel. Ellipses are processes.

Observation 1: Distributed operating systems should be
based on microkernels

A microkernel is a relatively small operating system kernel with a lim-
ited functionality. It runs on the bare hardware. Unlike a conventional
operating system, which is intended to directly support application pro-
grams, a microkernel is intended to make it possible for system pro-
grammers 1o use it as a base for building various operating systems on
top of it. The services provided are those needed by operating systems
builders, not those needed by ordinary users. A comparison between a
microkernel-based system and a conventional (i.e., monolithic) system
is shown in Figure 1.

Microkernels are basically a recent phenomenon, although a case can
be made that Brinch Hansen’s RC 4000 system had some of the ideas
20 years ago [Han73a). Well-known examples of microkernels are
Amoeba [Tan90a], Chorus [Roz88a], Mach [You87a], and V [Che88a].

For years, operating system designers have made a distinction between
mechanism and policy. The mechanism is the code that actually does
the work. The policy is what the user wants done. Microkernels shar-
pen this distinction by putting much of the mechanism in the microker-
nel, but leaving the policy out. For example, a microkernel might
implement priority-based process scheduling, but allow the owner of a
group of processes to set the relative priorities of the processes himself
(or herself).

Microkernels typically perform the following functions:
) Interprocess communication

. Low-level process management

. Low-level memory management

° Input/Output

How much they do in each area and the exact functionality they pro-
vide varies from system to system, but it is clearly less than in conven-
tional operating systems. Each of these points will be described briefly
below.

Since processes in a distributed system can run on disjoint computers,
at the lowest level, interprocess communication must be based on mes-
sage passing. The microkernel must provide some primitives to send
and receive messages. Many options are possible, including syn-
chronous vs. asynchronous, reliable vs. unreliable, blocking vs. non-
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blocking, buffered vs. nonbuffered, and point-to-point vs. group com-
munication. Each combination has its own properties.

Distributed systems need processes as an abstraction tool, just as cen-
tralized ones do. Managing these processes is clearly a job for the
microkernel. Due to the existence of considerable parallelism in dis-
tributed systems, having multiple threads within a single process is
often desirable. Although some thread packages can run entirely in
user space, without the kernel even being aware of them, for perfor-
mance and other reasons, it is often useful for the kernel to provide at
least some support for threads.

Memory management is clearly a microkernel function, at least in part.
The MMU has to be set up, and page faults have to be handled. Some
of the work can be done outside the kernel, as in Mach.

Input/output is also done in the microkernel, but typically as an artifact
of current architectures. If there is a simple, portable, protected way to
allow, say, a disk driver, access to the 1/0 instructions and 1/0 ports it
needs while running in user mode, there is no reason to put the driver in
the microkernel. If the architecture makes this impossible, then the
driver has to go in the microkernel.

There is a clear analogy between microkernels and RISC machines.
RISC machines have fewer instructions than CISC machines. The guid-
ing principle of RISC design is: if an instruction is not essential, leave it
out. To a considerable extent, the same holds for microkernels: if the
same functionality can be provided outside the kernel, put it outside the
kernel. In short, microkernels can be thought of as RISC operating sys-
tems.

The same general advantages that RISC machines have over CISC
machines also hold for microkernels: simplicity, modularity, and flexi-
bility. First, they are simpler to design because they do less. They are
also easier to implement and debug because there are fewer lines of
code there. Since the correct functioning of the entire system is criti-
cally dependent on the kernel working correctly, it stands to reason that
making the kernel small and simple will also make it more reliable.

Second, microkernels lead to modular systems. Removing the file sys-
tem from the kernel does not make it go away, but having the file sys-
tem run as a user process does make it easier to test and debug the file
system, since a file system crash does not bring the whole system
down, as is the case with a monolithic kernel.

Closely related to modularity is the third advantage, flexibility. The
same microkernel can be used as the base for multiple operating sys-
tems. The Mach kernel can run UNIX and MS-DOS simultaneously.
Microkernels also allow users with special needs (e.g. data base design-
ers) to design and implement their own file systems. With monolithic
systems, you are pretty much stuck with whatever file system the oper-
ating system provides, which is sometimes a serious problem [Sto81a}.

The primary potential disadvantage of a microkernel-based system is
performance. On a single processor, consider the difference between a
monolithic kernel containing the file system, and a microkernel-based
system in which the file system is a user process. In the former, a
READ system call traps to the kernel, does the work, and returns. In
the latter, it requires sending a message to the file system and getting a
reply. Doing so may be slower than just trapping to the kernel, depend-
ing on what optimizations are used.

In a d.stributed system, the situation is somewhat different. The file
system is on another machine anyway, and the relative difference in
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Request

Client Server
process process

Reply

Figure 2: The client-server paradigm

cost between sending a message to a file system in a remote kernel vs.
sending one to a file system running as a remote user process is small.
I do not believe that this small difference in performance even comes
close to outweighing the advantages of simplicity, modularity, and
flexibility.

Put in other terms, I think the key challenge facing us is how to make
the software work, not how to make the system go a little bit faster. If
a small amount of performance has to be sacrificed to produce software
that is easier to write, get correct, and maintain, I think this is a worth-
while tradeoff.

Observation 2: The client-server paradigm is a good one

Using a microkernel is only part of the story. There remains the issue
of how to structure the rest of the software — the part that is outside the
microkernel. One paradigm that is widely used, and with great success,
is the client-server paradigm. In this model, system services are pro-
vided by server processes, each process typically offering one specific
service. Examples are file servers, directory servers, print servers, time
servers, mail servers, data base servers, and so on.

Application programs run as client processes, normally on different
machines from the servers. To obtain service, a client sends a message
to a server, which then carries out the work and sends back a reply.
During the course of an application, a client may interact with a variety
of different servers to get the job done, but each interaction is struc-
tured as a request from the client to a server, followed by a reply from
the server back to the client, as shown in Figure 2.

The client-server model fits in well with the idea of a microkernel. By
having the servers run outside the kernel, they can be highly modular,
with each server providing one service well (in the spirit of UNIX).
This design also makes it possible to have multiple file servers (e.g.,
UNIX and MS-DOS) running simultaneously and offering different ser-
vices to different clients.

The client-server model represents a paradigm shift from systems like
UNIX in an important way. In traditional operating systems, everything
is either a process or a file. Almost all the system calls relate to manip-
ulating processes and files.

The client-server model, in contrast, is based on abstract data types
(objects). A server can define and make available for use any kind of
objects it wants to, and provide whatever operations are needed on
these objects. It encapsulates the objects and allows only the permitted
operations to be performed on the objects. This paradigm allows infor-
mation hiding and makes it easier to construct correct and easy-to-
understand programs.

While it is true one can simulate objects in a system like UNIX by put-
ting them in files and creating daemon processes to manage them, it is
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Figure 3: Achieving binary compatibility with UNIX

an unnatural way of programming in UNIX, and it is in direct contrast
to the mental model that most programmers have that “everything is a
file.”

Observation 3: UNIX can be successfully run as an
application program

If one accepts the idea that the operating system should be based on a
microkernel, upon which server processes run, then the logical conclu-
sion is that UNIX (or MS-DOS or other operating systems) should be run
as applications. Existing distributed systems have tried two different
approaches, both of which seem satisfactory.

In the short run, binary compatibility is often needed to run existing
software whose source code is not available. Mach and Chorus have
taken this route. One way to provide binary compatibility is to map a
(shared) emulation library into the top part of the address space of all
UNIX processes. When a process makes a system call, the microkernel
catches the call and reflects it back to a handler inside the emulation
library. The library then calls a UNIX server to do the work, as shown
in Figure 3.

The other approach is to provide a library of UNIX system calls,
(OPEN, READ, etc.) and recompile existing programs to use the new
library. The library routines can make use of whatever services are
needed to get the job done and do not have the overhead of trapping to
the kernel. In the long run, it is the most efficient approach since it
avoids the emulation trap overhead. This approach is taken in
Amoeba.

Many optimizations can be applied here, such as trying to minimize the
number of calls to the external UNIX server [Gol90a). While there is
clearly some performance loss compared to running a monolithic UNIX
on a single processor, once again | believe that the advantages of hav-
ing distributed systems such as having more CPU power available,
modularity, flexibility, fault tolerance, and more, outweighs the slight
loss in performance and makes this approach acceptable.

3. Communication

Since a distributed system consists of many processes communicating
with one another, a key issue in the design of any distributed operating
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Figure 4: Request part of a remote procedure call. The reply follows the reverse path.

system is how communication is managed. In this area | have three
observations.

Observation 4: Remote procedure call is a good
communication model

The client-server paradigm provides a framework for having processes
interact, but leaves open the question of what the communication prim-
itives should be. In a now-classic paper, Birrell and Nelson showed a
way to hide the communication altogether, so the only abstraction
needed by the client and server was the long-familiar procedure call
[Bir84a]. This technique, known as Remote Procedure Call (RPC), has
become widely used as the basis for communication in distributed
operating systems. It is illustrated in Figure 4.

Briefly, for each service that a server offers, it provides a correspond-
ing procedure, called a stub, in the library so that clients can use it. For
example, a file server might provide stubs for read and write, each
with appropriate parameters. To read data from a file, the client calls
read. The read stub then collects its parameters and puts them into a
message, along with a code indicating which operation is desired. It
then passes the message to the network driver, which sends it to the
server. Once there, the server’s network driver passes the message to
the server stub, which unpacks the parameters and calls the server as a
procedure. When the server has finished its work, it returns to its stub,
which builds a reply message and sends it back to the client.

The beauty of this scheme is that neither the client procedure nor the
server procedure have to know that they are engaging in remote com-
munication. The client calls a local procedure (its stub) using the usual
calling sequence to pass parameters. Similarly, the server is called by a
local procedure, and thus gets its parameters on the stack in the usual
way. It notices nothing strange.

With RPC, all the message passing is hidden away in the stubs, which
are usually generated by a special compiler from a functional descrip-
tion of the server’s interface. This mechanism is an enormous advance
over having the client and server directly sending and receiving mes-
sages, an unfamiliar and error-prone way of programming. By forcing
all communication to be synchronous (callers are blocked until their
calls finish), many kinds of subtle programming errors are eliminated.
Using RPC means that programming the client-server model in a dis-
tributed system is not all that different from traditional sequential pro-
gramming.

RPC also has several disadvantages. For the sophisticated programmer
with a special application requiring unusual communication patterns,
RPC can be restricting. It is sometimes argued that given SEND and
RECEIVE primitives, it is possible for those programmers who want
RPC to build it, and those who do not to ignore it. This is like saying
that a programming language should just supply the IF and GOTO state-
ments, since FOR and WHILE loops can be constructed from them.
This argument is specious. Given that the major problem facing us is
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how to make all this complicated software work, it is essential that the
system provide high-level primitives, not low-level ones in the hope the
programmers will not abuse them. Applications that absolutely cannot
live with synchronous communication should use multiple threads
combined with RPC to achieve parallelism in a clean way.

RPC also has the disadvantage that it is hard to use it along with global
variables and unconstrained pointer use. Whether the loss of global
variables is bad is arguable. Pointers are a more serious issue, but
experience shows that it is usually manageable.

Observation 5: Globally ordered, reliable broadcasting is
useful

A distributed system can be constructed and used in various ways. If a
large number of CPUs are available for use, either idle workstations or
a centralized collection of processors in the machine room, it may be
possible to harness multiple machines to work together in paralle] to
speed up a single application. Alternatively, the system may be
designed this way from the beginning.

For certain applications, communication is generally not from a client
to a server, so RPC is not appropriate. More often, communication is
from one process to many processes. While it is possible to simulate
this one-to-many (i.e., broadcast or multicast) communication by
repeated RPCs, doing so is inefficient. Furthermore, if two or more
processes are engaged in one-to-many communication at the same
time, the messages may be interleaved, leading to race conditions and
€rTorS.

As a simple example, consider a data base system that replicates its
data on multiple machines so that each one can handle queries in paral-
lel with the others. Reads are done locally, but when a record is
changed, it must be updated on all machines simultaneously to avoid
inconsistencies. Other examples involve simpler shared data struc-
tures, where multiple machines need to read and write the same vari-
ables. Having a basic primitive to broadcast a message to all machines
reliably and indivisibly is a valuable tool.

Various distributed systems have supported broadcasting in diverse
forms, starting with V and ISIS [Che88a, Bir91a]. Based on consider-
able experience with Amoeba, I have seen that having reliable, indivisi-
ble, globally ordered broadcasting as a basic primitive makes parallel
programming (and also fault-tolerant programming) of distributed sys-
tems much easier. Two key properties are needed:

) Either a message is received by all interested processes or by
none

. All processes receive all messages in the same order

Using this broadcasting, it is possible to update a variable in all pro-
cesses simultaneously, without having to worry about the consequences
of lost messages, interleaved messages, and other problems. This
mechanism can be used to construct even easier-to-use abstractions,
such as shared data-objects [Bal91a]. Not having this kind of broad-
casting makes programming these applications much more difficuit.

The difference between reliable, globally ordered broadcasting and not
having it is illustrated in Figure 5. In this example, machines A and B
simultaneously want to broadcast messages. In one case, first A goes
then B (or vice versa), as shown in Figure 5(a) and (b). In the other
case, Figure 5(c), some processes may get the messages in the order (A,
B), while others get them in the order (B, A). Having the system guar-
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()
Figure 5: (a)-(b) Ordered broadcast, first A then B. (c) Interleaved broadcast

antee that all processes get all broadcasts in exactly the same order,
with no lost messages and no interleaving of concurrent broadcasts,
makes programming much easier than having weaker semantics.

Observation 6: Communication transparency is important

When one process talks to another process (or to a group of processes,
using broadcasting), it should not have to worry about the relative loca-
tion of the processes. Communication schemes that have one seman-
tics when the communicating parties are on the same machine and dif-
ferent semantics when they are on different machines make program-
ming harder. Programmers have enough to worry about without loca-
tion being an additional issue (analogous to MS-DOS programmers hav-
ing to treat memory addresses below 640K, between 640K and 1M,
between 1M and IM+64K, and above 1M as different categories).

The issue of transparency arises in a variety of contexts. For example,
having to make distinctions between two machines on the same LAN,
two machines on interconnected LANs, and two machines in different
countries. For example, if files are named using something like
/machine/filename or machine!filename the system is not
transparent. In such a system, it is impossible for the file system to
transparently move files from one server to another (e.g., to balance the
load) because the location is effectively visible to the users.

4. Distributed Shared Memory

Multiple CPU systems come in two forms: multiprocessors (which have
shared memory), and multicomputers (which do not). Building large
multiprocessors is difficult due to the need to keep memory coherent
over potentially thousands of processors. On the other hand, these sys-
tems are straightforward to program. Processes can directly share vari-
ables and can synchronize using semaphores, monitors, and other
well-known techniques.

Multicomputers, in contrast, are easy to build since each CPU-memory
pair is independent of all the other ones. They are harder to program,
however, especially for parallel applications. In recent years, a hybrid
form has been developed that simulates shared memory on multicom-
puters. This technique is called distributed shared memory and leads
ta the next observation.
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Observation 7: Distributed shared memory makes parallel
programming easier

Distributed shared memory comes in two varieties: page based and
object based. Page-based distributed shared memory was pioneered by
Li and Hudak [Li89a]. It operates as a paging system across machine
boundaries. All machines share a common virtual address space, with
the pages themselves spread over the machines as need be. When a
page fault occurs, the needed page is fetched from the machine that is
currently holding it. Read-only pages can be replicated, but read-write
pages must be unmapped from the current host, as they may not be pre-
sent in two machines at the same time.

With object-based distributed shared memory the unit of sharing is
defined by software objects [Bal92a, Car89a, Jul88a]. Operations are
defined on objects, and when an operation is executed on an object, the
software that manages the object goes and gets the object if it has to.

In both cases, the multicomputer programmer is presented with the illu-
sion of having a form of shared memory. Processes on different
machines can use the shared memory for communication and synchro-
nization, which is usually much more convenient than message passing.
In Amoeba, object-based shared memory is implemented by replicating
objects on all machines, doing reads Jocally, and doing writes using
reliable, globally ordered broadcasting [Tan92a). Other implementa-
tion techniques are also possible, of course.

5. Open Issues

5.1. Machine Ownership

Many other design issues are still open. In this section I will briefly
mention some points that are potentially subjects for inclusion in the
second edition of this paper, assuming we can figure out which ideas
are good and which are not.

The issue of machine ownership will occur acutely when the eco-
nomics make it possible to provide, say, 32 times as many CPUs as
there are users. In one model, each user gets a personal 32-node multi-
processor, exclusively for his or her own use. It is likely that nearly all
this computing power will be idle all the time, which by itself is not so
bad, but once in a while a user will want to start a heavily compute-
bound job (e.g. heuristic search in A.l, VLSI placement and routing, or
analysis of a digitized photograph). In the pure “personal multiproces-
sor” model, no one may use anyone else’s machine, so all the idle CPUs
are wasted.

If users are permitted to find and use other people’s idle CPUs, then the
communication model can no longer be based on shared memory, since
some of the CPUs will be local and others remote. Programming this
mixed-mode model will be complicated. In addition, if a CPU machine
has been declared “idle” for lack of activity for n minutes and then the
owner tries to use it, either the owner is out of luck or the foreign pro-
cess must be migrated somewhere quickly. If n is small, there will be a
lot of migration; if it is large, there will be few CPUs available.

As an alternative model, it might be better to say that most (or all)
CPUs are public, with no owner. For example, they could all be put in
the machine room in a big rack, and dynamically allocated among users
as needed. In this “pool processor” model, all the users get is a simple
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workstation for running the window system and simple interactive pro-
cesses, like editors. From queueing theory it is well known that the
performance of a system with a large shared resource is better than that
of a system in which the resource has been divided statically into n
fixed, dedicated chunks. Which model is more (cost) effective remains
to be seen.

5.2. File Caching

In a distributed system, there are various places one can do caching.
These include the server’s main memory, the client’s main memory,
and the client’s local disk (if any). There is little controversy about the
value of server caching. The problem arises when the caching is done
on the client side. When the workstation model is used, it is at least
clear where the caching has to be done — in the client machine. The
complication arises when two clients have the same file cached and
both want to modify it. Either a central administration is needed to
keep track of who has which file open for reading or writing, or unso-
licited messages are needed to ask clients to delete files from their
cache, or something else. There does not appear to be any clean, scal-
able solution known yet.

In the pool processor model, the issue is even worse. There is no guar-
antee that just because user u happened to be assigned processor p last
time, that he will get it again next time. That depends on many factors.
A serious question about whether client caching on p is worth doing at
all arises here.

5.3. Thread Management

There seems to be general agreement having multiple threads of control
in a process is frequently useful, both in centralized and distributed sys-
tems. The question that arises is how much should the kernel know
about the threads. At one extreme, the kernel manages the threads
completely, just like processes. At the other, it knows nothing about
them. Both of these have problems. In the former, thread switching
requires a kernel trap, with considerable overhead. In the latter, when
one thread blocks on I/O or a page fault, all the threads are blocked,
since the kernel does not even know threads exist. Some intermediate
forms have been proposed but the last word has not yet been said
[And91a].

5.4. Atomic Transactions

Atomic transactions are a powerful technique used in data base systems
to maintain consistency in the face of concurrency. They are poten-
tially applicable to many areas of distributed computing as well. The
problem is that atomic transactions are extremely heavyweight and
expensive. It remains to be seen if they are worth the price.

6. Conclusion

In summary, the main thing I have learned is that designing and imple-
menting distributed operating systems is not as easy as it fooks. It is
essential to avoid complexity where possible, and resist the temptation
to add more features whenever they rear their ugly heads. Putting in 4
ways to do x, 9 options for doing y, and 13 parameters for z is
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definitely not the way to go. The trick is to have simple conceptual
models and not to try to be all things to all people. We should take our
inspiration from UNIX Version 7, not 0S/360. If every system designer
had a great big sign with the old motto:

KISS - Keep It Simple, Stupid

we would go forward quickly.
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Abstract

The paper starts with an examination of the notion scalability. After-
wards it discusses scalability issues in state-of-the-art kernel architec-
tures, i.e., microkernels. It motivates the program family concept and
object-orientation as the key to success in the design of an open micro-
kernel architecture. To meet the special needs for massively parallel
distributed memory machines, a kernel family is proposed by present-
ing the PEACE approach as case study.

“There is no tabula rasa.
We are like skippers
who have to rebuild their ship on the open sea
without ever being able to dismantle it in a dock
and reconstruct it of best parts.”

(Otto Neurath)

1. Introduction

In the light of short-lived cycles of development it is of no surprise that
nearly every hard- or software-system is decorated with the attribute of
being scalable. Regarding kernel architectures, we hear about scalabil-
ity just like multi-threading or virtual memory support. However, in
difference to the latter concepts there is only a vague understanding of
what scalability really means within a kernel architecture.

A lot of work has been done on scalable computing system architec-
tures. In this context, scalability refers to an unlimited extensibility of
computing systems, e.g., scaling up a 64-node system to a 512-node
system without running into architectural bottlenecks. Usually, scal-
able computing systems are not based on shared memory, but on dis-
tributed memory, and often rely on simple processors with a limited
general computation capability. In the area of parallel algorithms the
notion of scalability is known as well. Despite different metrics, scala-

This work was supported by the Ministry of Research and Technology (BMFT) of the Federal Government, grant no. ITR 9002 2.
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bility of a parallel algorithm on a paralle] machine is a measure of its
capability to utilize a larger number of available processors.

But how are we supposed to understand the notion of scalability con-
cerning kernel architectures? Mainly, it is the task of a kernel to sup-
port the mapping of (parallel) algorithms on (parallel) computing sys-
tems. As mentioned, scalability issues are considered in the applica-
tions as well as in the underlying hardware architecture, but they are
neglected by state-of-the-art kernel architectures. Up to now, kernel
architectures rely on an autonomous design. Dependent on hardware
properties a closed set of functionalities is provided, e.g., multi-tasking
or virtual memory support. The kernel takes the same shape for all
kinds of applications, thus, ignoring the concrete demands on an appli-
cation.’

The autonomous design of a kernel enforces that the scalability is lim-
ited to a scale with exactly one mark. Accordingly, a scalable kernel
must provide the whole set of functionality at all time. This spoils the
scalability of a parallel algorithm, since the presence of unnecessary
code-parts results in a reduced effectiveness. Such a drawback is unac-
ceptable for a high-performance kernel architecture and suggests that
autonomy and scalability are incompatible topics within a kernel archi-
tecture.

The paper starts with an examination of state-of-the-art operating sys-
tems, i.., microkernel architectures. Afterwards it discusses the design
of the parallel operating system PEACE [Ber92a]. It illustrates basic
PEACE concepts and explains by what means support for massively
parallel, distributed systems is given. Object-oriented mechanisms as
well as strategies for dynamic system reconfiguration in PEACE are
presented.

2. Microkernel Architectures

State-of-the-art operating systems are based on microkernel architec-
tures. One of the most favorite systems representing this category is
Mach [YouB7a]. A microkernel architecture is the attempt to decom-
pose an operating system structure with the overall design rule to keep
hold on those functions, whose processing on top of the kernel would
be critical. The bulk of operating system services is accordingly exe-
cuted in non-privileged user mode. Only a small set of services is sub-
ject to privileged supervisor mode execution. This organization sup-
ports a fault tolerant and application-oriented system structure. It
hence seems to be the appropriate basis for all fields of application.
This is true for distributed systems, but does not hold entirely for mas-
sively parallel distributed memory systems. Even the microkernel is
too complex and, thus, too overhead-prone if the very hard perfor-
mance requirements of massively parallel systems are taken into
account. These requirements are to support a system-wide message
startup time in the order of magnitude of 10 microseconds (using a 40
MIPS processor) [Mie89a].

Mach is a good example to clarify what the climax of microkernel
complexity can be. The Mach 3.0 kernel is a software system of about
100,000 lines of C code (with comments excluded). Alone this large
amount of source code is in contradiction to the common understanding
of the notion microkemel. As a comparison, the ancestor of the most

t Some very first and timid attempts has been done to break up the inflexibility. These efforts are related to the notion of
extensibility.
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successful operating system known to date was based on a kernel
implementation of about 10,000 lines of C code (with comments
included) [Lio77a]. Microkernel-based operating systems have been
developed as counterpart to monolithic operating systems such as
UNIX. However, this does not imply that the microkernel is no mono-
lith too. The monolithic Mach microkernel is an order of magnitude
more complex than the original monolithic UNIX kernel.

From the functional point of view, standard microkernels as used in
Mach and Chorus [Roz88a] typically encompass interprocess commu-
nication, scheduling, security, process management, (virtual) memory
management and exception handling. These are functions to support a
multi-tasking mode of operation. They are necessary to process
microkernel-based operating systems where services are provided by
tasks being executed in user mode. Thus, even if an application does
not require this operation mode, it must pay for it. This introduces
significant overhead for those types of parallel applications which
expect that tasks are mapped in one-to-one correspondence with the
nodes of a massively parallel distributed memory system [Sch9la].
Multi-tasking is not free of charge and it is only needed if the one-to-
one mapping can’t be done for all the tasks.

It is true that, in terms of software engineering arguments, a microker-
nel must not be of minimal size [Gie90a]. However, are all the func-
tions really mandatory fundamental building blocks? It obviously
depends on the application field. Only if applications always demand
these functions, either explicitly or implicitly, then a microkemel of
this complexity is the right choice. A further software engineering
argument is to have available for user applications only those functions
which are really demanded. This is the only way to keep kernel com-
plexity as small as possible, to have the chance to understand potential
performance bottlenecks and to be really application-oriented [Par79a].
In addition, for security reasons complexity must be sacrificed as far as
possible.

3. Approaching the Concept of Program Families

Forthcoming massively paralle! systems are distributed memory archi-
tectures and will consist of several hundreds to thousands of
autonomous processing nodes interconnected by a very high-speed net-
work. A major challenge in operating system design for these parallel
architectures is to elaborate a structure that reduces system bootstrap
time, avoids bottlenecks in serving system calls, promotes fault toler-
ance, is dynamic alterable, and application-oriented. At the same time
utmost highest communication performance must be provided. The
solution to these problems is an approach in which an operating system
is understood as a family of program modules [Par79a] and not as a
monolithic “saurian” of more or less related components.

A parallel operating system has to provide only a minimal subset of
system functions. Driven by the application, additional system/kernel
services are to be considered as minimal system extensions [Par79a].
In order to optimally support applications, minimal system extensions
then are loaded on demand, at the time initially requested.

This approach especially would mean that a microkernel is built by
minimal extensions to a “nanokernel” and the minimal extensions are
subject for incremental loading. Operating system scalability is gener-
ally improved. While the microkernel approach promotes a scalable
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3.1. Minimal Basis

system organization for distributed systems, the “nanokernel” does so
for massively parallel systems too — it promotes a scalable kernel archi-
tecture. Hence, a “nanokernel” bridges the gap between massively par-
allel systems and distributed systems. It makes it feasible that design
principles of distributed systems can be applied to massively parallel
systems.

In the program family concept a minimal subset of system functions
provides a common platform of fundamental abstractions. This mini-
mal basis encapsulates solely mechanisms from which more enhanced
system functions can be derived. It will be built by a consequent post-
ponement of design decisions. Fundamental abstractions to make mas-
sively parallel systems work then are processes and communication,
i.e., message passing.

Processes introduce scaling transparency and, thus, make the modeling
of parallel applications independent from the actual number of process-
ing nodes. Scaling transparency, however, is not only an issue in the
programming of massively parallel systems [Gil91a], but improves also
availability in the case of permanent nodes failures. Even if the appli-
cation is tailored to the actual number of processing nodes, the crash of
a single node could mean the premature end of application processing
if the system does not support the migration of program activities onto
still functioning nodes. For this purpose the system needs an instru-
ment for the modeling of program activities, which is the process.
Thus, a process serves as the common abstraction for both the applica-
tion and the operating system.

Communication based on message passing is a must when processing
nodes have direct physical access only to local memory. Access to
non-local memory, i.e., to the local memories of other nodes, involves
the execution of a network communication protocol. Because pro-
cesses form the basic abstraction to model (user/system) activities,
interprocess communication rather than internode communication is
required.

Whether synchronous or asynchronous communication should be sup-
ported strongly depends on the process model and on its implementa-
tion [Beh88a]. Synchronous interprocess communication is the best
choice in order to achieve the maximal utilization of network band-
width. In contrast to asynchronous communication, intermediate
buffering and, hence, additional overhead of message copying is not
implied by the communication model; at most, it will be implied by the
network hardware interface.

The decision for synchronous interprocess communication implies a
potential loss of parallelism. This must be compensated by a process
model which allows concurrent programming even on a single node,
i.e., which supports a multi-threaded address space. Obviously, the
implementation of this process model must lead to a process switch
time which is significantly smaller than the copying and buffering over-
head involved in asynchronous communication. Such a model is mech-
anized by lightweight processes [Hew77a] and being implemented as
featherweight processes [Gil91a] to meet the performance require-
ments for parallel operating systems. The minimal basis then strongly
promotes a processing model in which concurrency is not a side effect
of communication, but is expressed explicitly by means of threads
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building a team. 1t implements a process execution and communication
environment (PEACE) for parallel/distributed applications.

3.2. Minimal Extensions

A minimal basis which supports threading and communication already
suffices to execute parallel programs. Moreover, it could be considered
as the only operating system support residing on a processing node and
being required by the application. In these dedicated applications the
minimal basis is already the optimum. Additional functions are not
used on the nodes and, hence, would only withhold system resources
(such as memory space and processor time) from the given application.

It is the second important feature of the program family concept, that,
dependent on the individual application, a stepwise functional enrich-
ment of the minimal basis is performed by means of minimal system
extensions only. These extensions encapsulate mechanisms and/or
strategies. However, it might be the case that no system extensions are
necessary at all. The application itself is always the best extension one
can think of — it is the final extension anyway.

By adding minimal extensions, an operating system family is con-
structed bottom-up, whereby construction is controlled top-down:
lower-level components are introduced only when required by higher-
level components. This way, system functions for scheduling, security,
process management, (virtual) memory management, exception han-
dling, file handling, checkpointing and recovery are introduced. An
open, application-oriented and evolutionary system organization is the
consequence.

Understanding functional enrichment as an add-to in terms of compo-
nents is only one aspect. It also includes component replacement.
During the design phase a commitment on the minimal subset of sys-
tem functions must be made. This includes the risk of stating wrong
design decisions. One of the most important decisions is concerned
with the identification of the proper operation mode, i.e., whether
single-tasking or multi-tasking is to be supported.

The processing of parallel applications by a massively parallel machine
always implies communication, hence the need for communication
functions. The application might also call for a single or multi-
threaded address space (i.e., task) on a node. Another application
demands multi-tasking, which then is a functional enrichment of
multi-threading. Should the minimal basis therefore support multi-
tasking? If the design decision advocates multi-tasked nodes and tasks
are mapped in one-to-one correspondence with the nodes, then a
significant degradation of the message startup time will be the result
[Sch91a]. Multi-tasking is not free of charge, even if not utilized by
the application. A design decision to support solely multi-tasked nodes
will handicap single-tasking applications and, thus, will not be conform
with the idea of program families.

To overcome this problem, all applications must see the same external
(abstract) interface of the minimal basis. What differs is the internal
behavior, i.e., the concrete implementation. The external interface is
mainly concerned with communication, while the internal behavior
mainly dictates the process model and the operation mode of the node.
With the minimal basis being an abstract data type [Lis74a) a number
of implementations of the same interface can coexist. This makes the
minimal basis exchangeable at least from the design point of view.
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Flexibility is maintained although the minimal subset of system func-
tions must have been fixed early in the software design process.

4. The Role of Object Orientation

Applying the family concept in the software design process leads to a
highly modular structure. New system features are added to a given
subset of system functions. One instrument to implement a program
family is to apply the abstract data type mechanism. An instance of an
abstract data type is implemented by a module. System functions then
are represented by the operations which are defined by the module
interface specification. The entire system ends up with a multi-level
hierarchy of a multitude of program modules, with a well-defined uses
relation [Par79a) between the modules to associate them to levels in
the hierarchical system.

A problem with the module-oriented approach is the potential for a
large number of redundant code and data portions in those cases where
different implementations of the same module interface coexist
[Cam87a]. That the redundant portions are not encapsulated by an
abstract data type on its own, i.e., extracted and implemented by a sep-
arate “service module” and then being properly used by the instances is
due to at least two facts: genericity and efficiency. One often examines
that the new service module must be capable to deal with objects of
different type, whereby the type is defined by those instances which
will use the new module: the new module is generic. Having strongly
followed the pattern of abstract data types, the additional module
boundary often implies an increase in runtime overhead due to addi-
tional procedure calls for operation invocation: the new module intro-
duces a potential performance bottleneck.

The feasibility of this kind of abstract data typing depends on the
power of the programming language to implement generic module
interfaces and on the function inlining capabilities of the compiler. If a
parallel operating system is required to guarantee a message startup
time in the order of magnitude of 10 microseconds (assuming a 40
MIPS processor), any increase of runtime overhead caused by either of
programming paradigm, programming language or compiler is not
acceptable."

The much more promising approach in the design and development of
operating system families, therefore, is to apply object orientation
[Weg87a]. In other words, object orientation is the natural choice to
build program families [Cor9la). The buzzword is inheritance
[Hal87a] to avoid large portions of different module versions to be
identical. Functional enrichment defines new family members, which
always inherit properties of existing family members. The new family
member is built by at least one new specialized class by derivation
from one or more base classes (single/multiple inheritance). This
implies the re-usage of existing implementations on a sharing basis,
meaning that code/data redundancy will never appear in a clean
object-oriented design.

+ The first PEACE kernel prototype for a distributed memory parallel computer was implemented in Modula-2. Performance was not
acceptable. A transformation into C and non-optimized compilation lead to a negligible performance improvement. Applying the
keyword “register” at meaningful places and with optimized compilation, a 40 percentage performance increase was obtained
[Sch88a]. Register optimization lead to fewer memory traffic, which is significant if the processor executes 3 {4) wait states on each
read (write) memory access.
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In class-based object orientation [Bla89a], the class definition includes
the implementation of the methods defined on objects of that class.
This makes function inlining straightforward and, hence, reduces the
procedure call overhead to an absolute minimum. An example is C+
[Str86a], which also supports abstract data type based object orienta-
tion. Note, the major problem with identical portions of different mod-
ule versions primarily is not wasted memory space, which function
inlining implies too. Above all, it is a software maintenance problem,
which (class-based) object orientation with or without function inlining
helps to avoid.

There is another feature of object orientation which is of importance
for the implementation of a family of operating systems. This feature
is known as polymorphism. A base class specifies the operations which
are defined on objects of that class. In the course of inheritance, a
derived class may specify either the same operations again or a subset
only. These redefined operations usually show for a different, more
specialized implementation. The external class interface is still
described by the same base class, while different implementations of
the same interface can coexist by means of inheritance and dynamical
binding. Polymorphism strongly supports the design and implementa-
tion of replaceable components. Featuring the proper derived class is
dynamic and works transparently to the instance applying the base
class only.

5. A Parallel Operating System

The PEACE family concept distinguishes between a macroscopical
view to identify the overall system architecture and a microscopical
view to define the minimal subset of system functions that must be pre-
sent on each node. The former aspect deals with distribution and the
latter aspect deals with performance.

user mode

application

P {arallel}
Ofperating}
S {ystem}
E {xtension}

nucleus

supervisor mode

Figure 1: Building Blocks
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5.1. Macroscopical View

A member of the PEACE paralle] operating system family is constituted
by three major building blocks: nucleus, kernel, and POSE (Figure 1).
The nucleus implements system-wide interprocess communication and
provides a runtime executive for the processing of threads. The PEACE
nucleus is part of the kernel domain, with the kernel being a multi-
threaded team that encapsulates minimal nucleus extensions. These
extensions implement device abstraction, dynamic creation and
destruction of process objects and the association of process objects
with address spaces. Application-oriented services such as process and
memory management, file handling, i/o, are performed by POSE, the
parallel operating system extension of PEACE. It is built by a multitude
of active objects (i.e., servers) distributed over the nodes of the parallel
machine.

The dividing line between user and supervisor mode is a logical bound-
ary only. It depends on the concrete representation of the interactions
specified by the functional hierarchy (and of the processor architecture)
whether this boundary is physically present. The functional hierarchy
of these components (Figure 2) defines the way decentralization works
with PEACE. All components are encapsulated by (active/passive)
objects. An object invocation scheme must therefore be used to ask for
service execution.

Nucleus services are made available to the application via nearby
object invocation (NOI). The logical design assumes a separation of
the nucleus from the application (and POSE), which calls for the poten-
tial of address space isolation and of traps to invoke the nucleus. This
is the place where cross domain calls may happen. The kernel shares
with the nucleus the same address space and, hence, performs local
object invocation (LOI) to request nucleus services. Kernel services are
made available via remote object invocation (ROI) [Nol92a], an
object-bound mechanism similar to the remote procedure call para-
digm [Neli82a]. Services of POSE are requested via LOI and ROL.
Here, LOI is used to interact with the POSE runtime system library and
ROl is used to interact with the POSE active objects.

From the design point of view neither the kernel nor POSE need to be
present on each node, but the nucleus. In a concrete configuration, the

application

Figure 2: Functional Hierarchy
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majority of the nodes of a massively parallel machine is equipped with
the nucleus only. Some nodes are supported by the kernel and a few
nodes are allocated for POSE. All nodes can be used for application
processing, but they are not all obliged to be shared between user tasks
and system tasks.

It is important to understand that the functional hierarchy of the three
building blocks expresses the logical design of PEACE only, and not
necessarily the physical representation. The building blocks are
designed with respect to the various schemes of object invocation as
shown in Figure 2. However, it depends on the actual operating system
family member whether these schemes become effective as specified
by the design or can be replaced by a more simple alternative. For
example, although the functional hierarchy assumes NOI for the inter-
action between application (POSE) and nucleus, the LOI scheme is used
for those members of the nucleus family which place their focus on
performance and support single-tasking mode of operation only.

5.2. Microscopical View

A process execution and communication environment forms the mini-
mal subset of system functions required by massively parallel systems.
This minimal basis of PEACE is a compromise between transparency
and efficiency. For different applications there are different implemen-
tations of the same interface of the minimal basis, hiding all the inter-
nals. This transparency is to the convenience of the application pro-
grammer.

The minimal basis is defined as a family of functional dedicated units
with a single external interface — ail family members inherit the same

single-user - single-taskung

network communication

thread scheduling

nucleus separation

kernel 1solation [ task scheduhng

multi-user- | | single-user,
single-tasking |

!

1

i network integrity Vo task isolation

security

' multi-user muln-taskmg

Figure 3: Nucleus Family Tree

+ In reality there are several base classes which represent the external view of the minimal basis. These classes are ticket (delivery of
system-wide unique communication endpoint identifiers), notice (intra-team thread synchronization with empty messages), parcel
(packet-based synchronous, system-wide inter-process ~ommunication), and region (segment-based asynchronous, system-wide inter-
team communication). They stand for horizontal independent functional units of the nucleus.
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base class that specifies the unit interface.” This minimal basis is repre-
sented by the PEACE nucleus, i.e., a nucleus family. The nucleus fam-
ily implements four different operation modes (Figure 3). Each opera-
tion mode is represented by a subfamily, with several implementations
of the same nucleus abstract data type. Presently, eight nucleus family
members are distinguished.

The entire family tree shows different nucleus versions, with the root
(top) being the most simple and the leaf (bottom) being the most com-
plex instance. As complexity increases, performance drops.

The nucleus family defines a pool of functional units of more or less
complexity, likewise offering lower or higher performance. Dependent
on application requirements and on the actual utilization of the parallel
machine, the proper nucleus version comes into play. Whether a
nucleus instance is being integrated statically or dynamically is not of
primary importance from the design point of view. First the complete
family structure must be known and then the decision can be made to
implement the family as a dynamically alterable system.

5.2.1. Single-User / Single-Tasking

There are three different nucleus instances supporting single-user/
single-tasking mode of operation. The two most efficient instances
provide network communication and thread scheduling on a library
basis. Thus, these nucleus instances are part of the address space of the
user/system process. This implies that no overhead-prone address
space boundaries must be crossed to invoke the nucleus.

PEACE only implements synchronous interprocess communication.
Concurrency then is to be modeled explicitly by the application using
multiple threads of control. The threading instance (i.e., thread
scheduling) is the corresponding mechanization. Because of the non-
existent address space boundary, this nucleus is extremely lightweight
and, thus, supports the notion of featherweight processes. Feather-
weight processes are a specialized implementation of lightweight pro-
cesses. They are the purest form in PEACE to represent units of execu-
tion, without consideration of any protection and security measure.

The threading instance combined with the need for kernel code separa-
tion makes nucleus calls more heavyweight. Now, traps are used to
invoke the nucleus. This implies very small stub routines to marshal
and unmarshal nucleus service requests similar to the remote procedure
call paradigm. However, instead of passing a message over a narrow
channel, a local trap is to be performed. A featherweight remote proce-
dure call (i.e., NOI) is executed to activate the nucleus. Solely the gap
implied by the trap interface is bridged. Kernel code separation is sup-
ported, but not memory protection. As a consequence, the passing of
complex data structures between the nucleus and higher-level entities is
straightforward and involves no programming of address space protec-
tion hardware.

The functional enrichment introduced by nucleus separation enables
dynamic component replacement by a third party. Higher-level entities
are physically uncoupled from nucleus code. Because'each nucleus
instance is an abstract data type, these entities are also logically uncou-
pled from nucleus data. The basic mechanism to switch between dif-
ferent nucleus instances on the fly is to exchange trap vector entries.
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5.2.2. Multi-User / Single-Tasking

In a distributed memory parallel machine, multi-user mode of operation
is feasible even if only a single task is mapped onto each node. The
entire multi-node machine can be allocated to different users at the
same time. Obviously, this does not require local (“on-board™) security
measures to protect the tasks from each other, but it requires to protect
the network interface from unauthorized access. By direct network
access the user task could be able to intrude the network and, thus,
tasks of different user applications.

In order to provide a multi-user function, the nucleus must be com-
pletely isolated. Memory protection is to be introduced, leading to a
new instance: kernel isolation. Because the nucleus is part of the ker-
nel domain, applying memory protection to the nucleus also implies the
isolation of parts of the kernel address space. Conceming nucleus sep-
aration, no additional overhead is introduced. However, the isolated
nucleus address space makes the passing of complex data structures
heavyweight. It mainly depends on the address space protection hard-
ware how crucial the additional overhead really is. Anyway, the
increase of nucleus functionality is encompassed by the potential of
communication performance loss.

On each node, nerwork integriry must be guaranteed, but not necessar-
ily the integrity of user task address spaces. This leads to the introduc-
tion of communication firewalls between different user applications.
Each user application builds a unique communication domain. The
same holds for the set of system processes constituting the operating
system. Within the same domain communication is unlimited. In order
to invoke system services, application processes must communicate
with system processes. Consequently, different communication
domains must overlap to let communication succeed. Thus, communi-
cation security does not mean complete isolation, solely, but also con-
trolled access.

A capability-based approach is used in PEACE for this purpose. This
approach grants object access only if a thread (i.e., subject) is in the
possession of that object or one of its proxies. An object must be cre-
ated before it can be used. It is then the autonomous decision of the
object creator to make the object globally accessible. The access
domain of an object may be extended by the object creator by export-
ing a proxy object [Nol92a]. Via the proxy global (i.e., network-wide)
object access is then feasible.

5.2.3. Single-User / Multi-Tasking

The first step towards multi-tasking support is to introduce task
scheduling. In PEACE, a task maybe multi-threaded, which implies
only lightweight scheduling. In order to schedule tasks, a second
scheduling level is implemented. This level knows the bundle as
scheduling unit, which consists of one or more threads. A single
threads bundle always is executed by one processor, with non-
preemptive scheduling of the threads of the same bundle. Preemptive
scheduling is between bundles only, and so is shared-memory multi-
processor scheduling with the different bundles being executed by dif-
ferent processors. A task then may consist of several bundles to take
advantage of preemption and of the shared-memory processor architec-
ture. The result is a slightly more expensive scheduler.

At this stage, multi-tasking can be supp-rted even if task isolation by
means of private address spaces is not provided. A private address
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space serves for two basic purposes. On the one hand it implements
memory protection, isolating programs from each other. On the other
hand it defines a logical address space for program execution, enabling
code/data relocation at runtime. Being relocatable is also a property of
position independent code, which then needs to be generated by a com-
piler. In addition, the use of secure programming languages supports
program isolation without the necessity of address space protection
hardware. Therefore, the minimal basis to support multi-tasking is task
scheduling. Task isolation is the minimal extension of task scheduling.
It is used to generally improve system availability and in those cases
where neither the programming language nor the compiler supports the
nucleus.

5.2.4. Multi-User / Multi-Tasking

The fourth operation mode being supported by the nucleus family is the
natural consequence of the two modes discussed before. There is little
more of functionality to add. Global multi-user mode of operation is
made feasible by enforcing network integrity, whilst local multi-user
function is directly supported by task isolation. The nucleus then pro-
vides general security measures, with completely isolating different
(user/system) domains from each other.

6. Adaptive Operating System Architecture

The operating system building block of PEACE is mainly represented
by POSE, which implements a family of parallel operating systems.
POSE services are application-oriented extensions of the PEACE mini-
mal basis, i.e., of the nucleus and the kernel. These services are pro-
vided by teams of lightweight processes and, usually, are executed in
non-privileged user mode. Since the representation of the functional
hierarchy of PEACE enables an almost arbitrarily decentralization of
the building blocks, this does not enforce a microkernel approach and,
thus, the need for multi-tasking on a single node.

6.1. Active Objects

Distributed memory architectures at least call for an object-based sys-
tem design. In POSE, system services are represented by active objects,
i.e., teams of lightweight processes implement system functions such as
process management or file handling. Consequently, requesting the
execution of a system service requires to send a message to some pro-
cess. A typical client-server relation is established. POSE then consists
of a multitude of cooperating teams distributed over the nodes. These
teams are called manager.

The consequent usage of teams for system service encapsulation has
several benefits. It provides a natural basis for building application-
oriented operating systems. System services need only be present if
they are required, meaning that the corresponding teams are created
and loaded on-demand. Especially in the case of massively paraliel
systems, it is not required that user teams share the same node with sys-
tem teams. This significantly reduces global system initialization time
and makes the parallel system to appear as a processor bank whose
purpose is to exclusively execute user applications.

Following the team structuring approach, the notion of a system call
(service invocation) is slightly different from the traditional viewpoint
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application

manager

administrator

Figure 4: System Access

of a trap. A system call must be requested by means of message pass-
ing. distinguishing between local and remote operation. In order to
hide all these properties from both the service user (client) and the ser-
vice provider (server), a PEACE system call in general takes the form of
remote object invocation [Nol92a).

6.2. Functional Replication

There are several reasons for service replication in massively parallel,
distributed systems. One aspect is to avoid the presence of bottlenecks
when a manager tends to be overloaded by too many service requests.
Another case is redundancy for fault tolerant purposes. Furthermore,
there might be replicated 1/0 hardware units such as disks. In all these
cases, managers are replicated because of performance, availability, or
architectural reasons.

This leads to the concept of distributed managers. The set of managers
of the same type (i.e., class) constitutes a PEACE administrator. For
scalability reasons, processes should not be aware of using replicated
services. Rather they interact with an administrator. In this situation,
the administrator has to keep track of which manager is to be selected
for service execution. For these reasons, the PEACE administrator con-
cept is not only supported by a number of managers, but also by a
related porter that directs requests to the proper manager and, thus,
serves as an administrator interface (Figure 4).

The porter takes the form of a library; it is part of the team address
space of the service-requesting process. Dependent on the type of ser-
vice, the porter may also encapsule private threads. For example, using
porter threads caables service-related exception handling on a
message-passing basis.
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6.3. Third Party Configuration

Above all, a paralle] operating system must be designed such that the
amount of system software which is to be executed by each node can
be reduced to an absolute minimum; otherwise, system bootstrapping
becomes a nightmare. For this reason, POSE distinguishes between
site-dependent and site-independent managers.

A site-dependent manager typically provides low-level and hardware-
related services. For example, the disk manager encapsules device
dependent functions and, thus, must reside in a node that has a disk
attached. It is site-dependent, whereas the file manager, which uses the
disk manager, may reside elsewhere and is considered as site-
independent. Another example of a site-dependent manager is the ker-
nel team. If dynamic process management is required on a node, a ker-
nel must be present on that node to construct/destruct process objects.
A process manager, however, is site-independent. It may reside on any
other node and may also be responsible for the management of several
nodes.

The property of being configurable is absolutely necessary to meet the
needs for massively parallel systems. Except in the case of site-
dependent managers, a third party is able to establish PEACE (i.e.,
POSE) configurations based on the individual needs of parallel/dis-
tributed applications. The configuration decision then will be made
with respect to either performance, protection, or hardware availability.

6.4. Incremental Loading

The basic idea in PEACE is to perform on-demand loading of system
services [Sch91b]. That is, system services are only loaded at the time
when they are really needed. On-demand loading of services at run-
time can be accomplished either explicitly, by using dedicated system
calls, or implicitly, during service invocation if the corresponding man-
ager does not yet exist. The latter approach requires close cooperation
with the ROI layer.

If service addressing fails, a server fault is raised, similar to a page
fault in virtual memory systems. Handling a server fault results in the
loading of the requested service, i.e., the proper manager team is cre-
ated and given a program for execution.” Entity (or server) faults are
propagated to a system team called plumber. Basically, this means that,
once having determined that the entity is not yet available, a stub rou-
tine requests entity loading by instructing the plumber accordingly
(Figure 5). The stub passes the load request to the plumber which then
takes charge of all activities related to the loading of the specified
entity. Note, the porter takes the form of a system library and belongs
to the team of the thread that caused the entity fault. As long as fault
handling is in progress, on behalf of the porter the thread is biocked on
the plumber, waiting for loading to be completed.

The plumber maps entity names onto file names, i.e., associates with
entities a file that describes the team image to be loaded. With each
entity name several attributes are stored. For example, the file may
describe either a plain team image or a complete boot image. In case
of site-dependent managers, the node addresses are stored with the

+ Any kind of service that can be loaded on demand is in no way distinguished from an application process. Thus, on-demand load-
ing works for both user and system applications. The general term entity is used for teams that belong to either of these application
classes. In this sense, the server fault actually means an entity fault.
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Figure 8: Entity Fault Handling

entity name. A distinction between the single-tasking or multi-tasking
mode of operation for the entity is also made.

In PEACE, the minimal basis for dynamic restructuring requires no
complex memory management functions. A maxim was that even with
a single-tasking nucleus instance, which is not based on address space
protection and, therefore, encompasses no memory management func-
tions, dynamic restructuring of the node of that nucleus must be feasi-
ble yet. This node, e.g.., must be given multi-tasking capability by
exchanging the kernel and then allocating tasks. If the PEACE kernel
comes up, and so the nucleus, it always assumes non-protected address
spaces. The capability to protect address spaces is the kernel taught by
the memory manager, a site-independent system team which is loaded
on demand.

7. Related Works

The PEACE approach goes beyond that what is presently intended by
state-of-the-art microkernel designs, it defines a microkernel family. In
systems such as Mach [You87a] and Chorus [Roz88a], the microkernel
is a fairly complex component, used to support the implementation of
operating system services and the processing of distributed applica-
tions. As in PEACE, a Chorus operating system is considered as a
member of a family of functional units, with a unit being represented
by a (multi-threaded) system server process, i.e., an active object.
PEACE also applies the family concept to structure the kernel and not
only an operating system. This results in a (multi-threaded) kernel
ir..plementation with a distinguished component, the nucleus, providing
a common process execution and communication environment. The
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Chorus microkernel (also termed nucleus) is the only choice applica-
tions have. In PEACE, the nucleus family presents an assortment of up
to eight different members.

Ra[Aub88a] is a minimal kernel for the Clouds distributed operating
system [Das88a]. The Ra kernel is designed to support the implemen-
tation of large scalable object-based systems. Ra is a fairly complex
minimal kernel too, implementing segment-based virtual memory man-
agement and short term scheduling. At best, Ra can be compared to
the PEACE nucleus instance that provides task isolation, which is one
of the most complex nucleus family members of all.

Clouds distinguishes between objects and threads, i.e., it is structured
by passive objects. The rationale for this approach is to avoid perfor-
mance penalties caused by the virtually more complex code of muiti-
threaded server implementations. That multi-threaded servers are more
complex is only true for completely hand-coded implementations. but
not for implementations that are supported by a class-based stub gener-
ator as in PEACE [Nol92a]. Anyway, reducing server code complexity
by downward migration of functions into the minimal kernel as fol-
lowed with Ra is not the ultima ratio. It makes the minimal basis more
complex and, thus, more overhead-prone.

The system which comes very close to PEACE is Choices[Cam87a].
Many ideas found in Choices are present in PEACE, and vice versa.
This is because both systems share the same fundamental, classic idea
of a family of operating systems [Hab76a). They extend this idea into
object-oriented, distributed/parallel environments. As Choices, PEACE
is a class-hierarchical system. By means of the nucleus family, PEACE
further distinguishes between a number of operation modes a node of a
massively parallel system is exposed to. It is exactly this feature which
becomes more and more important for forthcoming parallel operating
systems.

Dynamic restructuring in PEACE is related to active and passive
objects. Introducing active objects is straightforward and based on ser-
vices to create and destroy teams of lightweight processes. Exchanging
passive objects is limited to the nucleus. This is in contrast to Clouds,
e.g., where arbitrary passive objects may be dynamically introduced.
For this purpose Clouds relies on the segment-based virtual memory
management service of the Ra kernel. These constraints are not given
with PEACE in general. There are some PEACE family members
implementing segment-based virtual memory management; there are
others not being dependent on the presence of address space protection
hardware and supporting dynamic restructuring yet.

8. Conclusion

This paper described rationale and concepts for the design of scalable
operating systems for massively parallel systems. The program family
concept combines a number of solutions to different application
requirements. This concept promotes not only customized operating
systems from the application point of view (top-down customization),
but also from the hardware architecture point of view (bottom-up cus-
tomization).

A distinction between operating system family and a nucleus family
must be made 1o meet the performance requirements of forthcoming
massively parallel systems. In the former case, the family is built by a
number of site-independent functional units representing typical oper-
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ating system services. In the latter case, a platform for both kernel con-
struction and application processing is provided. A member of the
nucleus family must be an abstract data type to allow a number of dif-
ferent implementations to coexist. The nucleus family takes the form
of an assembly camp, but not the single nucleus implementation. From
this assembly camp the proper solution is selected to optimally support
a given application. This way, the PEACE approach provides a scal-
able, i.e., WYNIWYG-architecture (What You Need Is What You Ger)
for both the kernel and the operating system. A single solution always
is a bad compromise if utmost highest communication performance
must be guaranteed and a large spectrum of applications must be sup-
ported.

Approaching the family concept as exemplified with PEACE makes
microkernels appear as extensions to a minimal basis. That is, PEACE
provides a framework not only to build upward scalable but also down-
ward scalable kernel architectures, an important property of parallel
operating systems. The microkernel as being understood to date is
merely a member of the PEACE family. To keep things right in mind:
the functionality of state-of-the-art microkernel architectures facilitate
scalability but at the same time forms an essential scalability handicap
in case of unnecessary functionality is provided. Thus, the PEACE
family design bridges the gap between distributed systems and mas-
sively parallel systems which are based on distributed memory archi-
tectures.

The family is designed, constructed and implemented following the
paradigm of object orientation {Cor91a]. Classes implement system
features and inheritance (i.e., subclassing) is used to derive new fea-
tures or specializations of existing ones. First experiences with objec-
tive PEACE show that object orientation is superior to non-object ori-
ented approaches. This is true for aspects such as maintainability,
extensibility and performance of the resulting operating system. It is
indeed a myth that object orientation makes the implementation of very
high-performance operating systems impossible. Rather, it is true that
object orientation is the only chance to build high-performance systems
while maintaining a clean and evolutionary system structure.

The object-oriented paradigm in design and implementation of a
distributed/parallel operating systems is widely accepted but, with the
exception of a few operating systems, e.g., Choices and PEACE, not
applied in correspondence to Wegners definition [Weg87a]. A general
problem for commercial systems like Mach or Chorus is how to orga-
nize a complete redesign of their operating system. There are plans
going into this direction and which shows that the system’s investiga-
tors are encouraged of the object-oriented paradigm. Unfortunately, as
pointed out by Neurath, they can’t enjoy all the opportunities object-
orientation offers because of their market constraints.
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Abstract

In microkernel paradigm, a kernel only provides basic computation
mechanisms, and conventional operating system environments (poli-
cies) are implemented as system servers, e.g., the Mach UNIX server.
In this paper, we present the checkpointing mechanisms that we add to
the Mach 3.0 microkernel and discuss a fault-tolerant environment that
we build on top of the modified kernel.

1. Introduction

A distributed system is called reliable or fault-toleran: if it has the
capability 1o allow user-level processes to survive partial system fail-
ures, including hard and transient failures. A process that can with-
stand system failures is called a resilient process. The choice as to
whether a particular process is to be executed as a resilient process is
made by the user when that process is started. We refer to the saved
state of a process as a checkpoint and the act of taking a checkpoint as
checkpointing.

The basic objective of checkpointing is that when failures occur a job
can resume its computation without Josing all its previous work. In the
60’s, when computers were stand-alone and programs were isolated
from each other, checkpointing meant copying intermediate data to sec-
ondary storage periodically [Jas69a]. Today a computation is often
carried out on a multi-processor computer or in a multi-computer net-
work environment, and checkpointing has to deal with process syn-
chronization and message logging in addition to backing up memory
images [Lee90a].

Message logging is a variation of checkpointing. Instead of taking a
full fledged checkpoint every so often, a process saves messages either
on its stable storage or on a different machine. In case a failure occurs,
the process will resume from its last checkpoint and then replay the
past messages it had received in order to reconstruct its state consistent
with the rest of the system. The duplicate messages produced by the
backup process are discarded.

Implementations of software checkpointing algorithms are constrained
by the underlying operating system designs. For example, the UNIX
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process’ pid is an index of the kernel process table on a specific
machine, the same pid might not be available when the process is res-
tarted on a different machine. Therefore, inter-process communica-
tions based on pid may not be possible unless the UNIX kernel has to be
modified substantially. Similar problems occur for UNIX socket num-
bers and in-kemnel file systems. Due to implementation limitations and
complexity, few software fault-tolerant systems have justified their per-
formance on real machines.

During the past few years, the microkernel [Use92a)] has become a new
area in operating system research. In microkernel paradigm, a kernel
only provides basic computation mechanisms, and conventional operat-
ing system environments (policies) are implemented as system servers,
e.g., the Mach UNIX server. Since microkernels do not have any
machine dependent information tied to processes, restarting a process
from one of its past checkpoints on another machine is both feasible
and relatively easy to implement. In this paper, we present the check-
pointing mechanisms that we add to the Mach 3.0 microkernel and dis-
cuss a fault-tolerant environment that we build on top of the modified
kernel. The technique is also applicable to other microkernels, such as
Chorus or Amoeba.

In our computation model, a process can be in only one state at a time.
The state of a process may change after the process receives a message.
State changes are irreversible and a checkpoint is performed whenever
a state change occurs. The states of all communicating processes at a
given time are called consistent states, if they are reachable through
normal executions.

We assume all processes are fail-stop, i.e., a process crash results only
in the loss of all state information acquired since the last checkpoint.
The algorithm that we implement sustains only single machine failures.
The kernel checkpointing mechanisms, however, should be general
enough to support different checkpointing algorithms.

2. Motivation

We make a few observations about fault-tolerant computation in a dis-
tributed environment.

. In a message passing system, some messages are more crucial
than others, e.g., missing a read request might not be as critical
as losing a write buffer for a file server. That is, checkpointing at
every message or logging all messages between checkpoints may
not be necessary.

We only need to checkpoint a sender process whenever it sends a
message that could cause a state change at the receiver. We call
such a message a modify message (see also [Lin90a]).

By letting senders, rather than receivers, keep most state infor-
mation, the number of server state changes would be reduced,
and so would be the number of checkpoints. An example is the
design of stateless file servers [San85a].

Data caching in a distributed environment improves both
efficiency and reliability, as demonstrated by the Coda file sys-
tem developed at CMU [Sat90a]. The client may flush back the
pages again if its server crashes [Joh87a].

Application-dependent information may further reduce the cost
of checkpointing, e.g., an X server can always ask its clients to
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redraw the contents of windows [Sch86a], so that it does not
have to save clients’ bitmaps when checkpointing.

We strongly feel that a software checkpointing system should allow
individual applications to take advantage of the above optimizations. It
would be difficult, however, to implement some of our observations in
traditional monolithic kernels, such as UNIX. But microkernels, such
as Mach [Loe92a] and Chorus [Roz90a], which emphasize the client-
server computation model, define a small set of operating system
abstractions that allow the flexibility of customizing programming
environment at the user level.

Similar to UNIX or DOS operating system environments, we can build a
fault-tolerant computation environment on top of Mach, such that when
a resilient process starts, it automnatically communicates with servers
that support checkpointing and message logging. All environments
may co-exist on the same hardware at the same time. We argue that
using message semantics to guarantee data consistency is both efficient
and suitable for building a fault-tolerant system at the software level.

3. The Basic Idea

For any resilient process (also known as the primary process), we
assume that there is a backup process, presumably on a different
machine on the network. Under the basic checkpointing scheme, a
resilient process saves its execution state periodically to a more reliable
storage, in this case, to the backup process. If the primary fails, the
backup will resume the computation from a previous checkpoint,
instead of always restarting from the beginning, thus guaranteeing for-
ward progress.

Both application programs and the operating system may initiate
checkpointing. The action may be triggered either by message
exchanges or by timer exceptions. The checkpointing interval, to a cer-
tain extent, determines the relative costs of the failure-free execution
overhead and recovery delays. However, if a process is sending out a
message that will modify the state of a receiving process, it is forced to
checkpoint first.

The information as to whether a message would change the state of
receiving process is defined by using the modified MIG interface
specification language [Loe92b]. We call the communication interface
generated by MIG, a contract. Client programs link with MIG interface
functions at compile time. A message being sent through a contract
will guarantee not to cause any inconsistency between the sending pro-
cess and the receiving process despite failures of the sender, the
receiver, or both. Therefore, the consistency of global states is guaran-
teed at all times. The main advantage of using contracts is that check-
pointing can be avoided when a message does not modify the
receiver’s state.

Our proposed system is an otherwise regular operating system (i.e.,
Mach) except for those processes that have to be resilient to failures.
In our computation model, we do not assume repeatable process execu-
tions, that is, we allow non-deterministic executions. Messages are not
required to arrive in the same order when a program is executed twice.
It is, however, the responsibility of the designer of the server (receiver
process) to eliminate all non-deterministic program behavior by care-
fully defining the contract between the server and its clients (sender
processes). For example, if a RPC message could potentially be non-
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deterministic, the sender should checkpoint before the request can be
processed by the receiver. With our simple checkpoint protocol, both
multiple rollbacks and cascading rollbacks are prevented.

4. An Example

Using our checkpoint system, the cost of checkpointing depends on the
way servers are designed. By changing the server (MIG) interface, an
application can decrease the frequency of checkpointing and therefore,
the cost of checkpointing.

For instance, in a file server supporting sequential file access, an appli-
cation has to keep track of an index which points to the next location
for file access. If this piece of information is kept in the server, the
client would only have to issue an access request and the server would
be able to determine the location from its own state. According to our
checkpoint protocol. since the state of the server (the index) is modified
each time by an access request, the client is forced to checkpoint each
time it accesses a file. Similarly, the server is forced to checkpoint
each time it returns from an access request in order to keep the consis-
tency of the server state (the real index) and the client state (the
assumed index). On the other hand. if the index state is kept by the
client, the index would have to be sent along with each access request,
but no checkpointing would be needed by the client or by the server if
the access is a read request.

When a file is opened, a checkpoint is performed in order to guarantee
consistency between the server and the client; since reading a file block
does not change the state of file server, the message is simply passed
through. Whereas, every block written is subject to later reading, so
write messages have to be checkpointed immediately. Checkpointing
every block written is expensive, yet it guarantees strict UNIX file
semantics. However, most distributed file systems (e.g., SUN NFS,
AT&T RFS and CMU AFS) cache data on the client machine, avoiding
strict UNIX emulation for efficiency reasons.

The concept of memory-mapped-file is studied in Mach [Tev87a]. As a
file is opened, the whole file is mapped onto the local virtual memory
space. Subsequent read and write calls are treated as accesses to the
local memory. The memory-mapped-file concept changes the seman-
tics of UNIX sequential file access to random access. The original con-
cern of memory-mapped-file is to improve the efficiency of distributed
file servers. If we take a closer look at the implementation of a
memory-mapped-file, we will see two copies of the same file, one on
the client machine and the other on the server machine.

It is possible to take advantage of the memory-mapped-file concept and
use it to improve the reliability of both the server and the client.
Specifically, the copy mapped on the client machine can be treated as a
backup to the file on the server. If the server fails, the client can trans-
fer its local copy to the server and rebuild the server state. Under the
new scenario, a memory-mapped-file need only be checkpointed when
the file is opened or closed. When a file is opened for writing or updat-
ing, a new version number is assigned to the client copy of the file.
When the file is closed, the whole memory-mapped-file will be flushed
back 1o the server. In other words, we define that a file server changes
its state when a file is being closed.

Intermediate write operations can be sent back to the server, but they
are merely treated as optimizations to the general mechanism. In the
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case of client failure, all write operations will be undone. This way, no
checkpoint is required for write operations. The close operation will
flush back the dirty pages that have not been sent to the server or flush
all the modified pages to the server depending on whether the primary
server has failed after the last open operation. The performance
improvement over the sequential file access mechanism is obvious.

5. The Environment

A user invokes a resilient process by typing:

buoy prog argl arg2 ...

where, buoy is a utility command, similar to the time command in
UNIX. It contacts the checkpoint manager residing on each machine,
finds one that will spawn a backup server for the user prog command,
requests a port send-right from the new backup server, registers the
right for the prog task using task_set_checkpt_port(). and
finally, executes the prog command with given arguments. The ker-
nel considers a task to be resilient, if and only if the task has a check-
point port registered in its task structure. Otherwise, the kernel would
treat all functions mentioned above, e.g., task_checkpoint (), as
null functions.

After a primary process crashes, the backup server will resume the
computation from the last checkpoint received for the primary. For
reconnecting all port rights, a unique identifier is attached to every port
(Chorus furnishes this abstraction but Mach does not). A backup
server, before loading the memory image of the recovery process, pub-
lishes a port’s unique identifier in the name server, if it should hold the
receive-right of the port. Otherwise it tries to look up a port’s unique
identifier in order to re-establish communications. The name server
(checkpoint  manager) uses mach_port_get_uid() and
mach_port_set_uid() to propagate a port’s identifier across the
network.

In other words, interprocess communication is resumed using existing
Mach mechanisms, but messages in communication channels, such as
those in port message queues, are lost in the event of a system or appli-
cation failure. Logged messages, if necessary, are played back from
user level message servers that were intercepting and forwarding mes-
sages between clients and servers.

When inquired by a resilient process, the name server tries to find a ser-
vice port that supports resilient processing. For example, if the name to
look up is FOO_BAR, the name server searches the port with name
RESILIENT_FOO_BAR in its first attempt; if that fails, it will return
the port FOO_BAR with a warning. Regular Mach processes will not
see any differences. Similarly, when a resilient process checks in a
name, the prefix RESILIENT _would be added transparently.

6. Implementations

The main kernel abstractions of Mach [Loe92a) are task, thread, port,
message, virtual memory and memory object. In order to facilitate
checkpointing in the kemel, we add a new system call,
task_checkpoint (), in our system. The system call suspends the
designated task; it notifies those servers that are currently communicat-
ing with the task about the event of their client being checkpointed.
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The kernel sends the task’s kernel state (e.g., registers etc.), dirty pages
and port information to the task’s backup server. It then waits for
acknowledgments from the notified servers. The servers send acknowl-
edgments after they have reacted appropriately to the kernel
notification.

We also add following functions into the Mach kernel task interface:
mach_notify task_checkpoint(),
task_get_checkpt_port(),
task_set_checkpt_port(),
mach_port_get_uid(),
mach_port_set_uid(),
vm_checkpt_policy(),
port_sync_policy(), and
cohort_checkpt_resume().

System servers use these functions to define the checkpointing argu-
ments and policies for a given task.

There are several possibilities for checkpointing a virtual memory
region. The text region needs to be saved only once. On the other
hand, the initialized data region is saved in full for the first time and
only the dirty pages are saved afterwards. For the stack region, we
only need to save the dirty pages. And for a region mapped to an exter-
nal memory object, we flush back all dirty pages and let the memory
object handle its own checkpointing. All the policies of virtual mem-
ory regions are defined by servers, mostly by the UNIX server, through
the vim_checkpt_policy() call. The UNIX server even specifies
some regions, such as those for the emulation library code as don’t-
care, so the kernel would skip those regions when checkpointing a
client task.

In the MIG interface generator, we add three key words, query, modify,
and partial, to specify the nature of a message. Each message would
carry the new type information in its header. When the kernel sees a
modify message, it will force the client (sender) to checkpoint, if it has
not already done so. In addition, it will invoke the checkpoint handler
function in the server (receiver) before returning a reply. The check-
point handler is task_checkpoint(), by default, and the server
may change it to only checkpoint the client’s data. If a message has the
partial flag on, message servers (e.g., the NetMsgServer) will log
the message until the message receiver checkpoints.

The kemnel coordinates all the servers during checkpointing, e.g., UNIX
server, net-message server, file servers, etc., in a client’s environment
with a one-phase commit protocol. Servers use the Mach
mach_port_request_notification() call to the kernel to
indicate its interest in getting checkpoint notifications, and the kemnel
informs the servers using the mach_notify_ task_checkpt()
call when their client is checkpointed. Upon receiving notifications,
servers must save the client’s state, if any, to their own backup tasks or
on a stable storage.

Similar to the vim_checkpt_policy() call for VM, we introduce a
corresponding function for port, namely, port_sync_policy().
A server uses the new system call to indicate (to the kernel) how it will
react to a client’s checkpointing. For example, a server may want to
receive a special control message every time its client checkpoints, or
not at all, or only when the server port is dirty. We say a port is dirty if
there are partial or modify messages sent through the port since last
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checkpoint. The kernel keeps a count on the number of control mes-
sage being sent out, and waits for acknowledgments from informed
servers before committing a checkpoint.

7. Related Work

Checkpointing is often implemented by using dedicated hardware. For
example, Targon/32 [Bor89a] designates a spare processor to log all
messages, and guarantees that every message is delivered to its
receiver, receiver’s backup, and sender’s backup in an ordered atomic
fashion via special devices. Two other well known hardware fault-
tolerance systems are Stratus [Har87a] and Tandem [Bar87a]. They
provide redundant circuitry such that no single hardware failure can
disable an entire system. All three systems support checkpointing at
the operating system level.

Many pure software approaches for distributed systems have been
described in the literature. For example, the algorithm in [Koo87a]
insures that when a process checkpoints (or recovers from a failure), a
minimal number of communicating processes are forced to checkpoint
(or rollback) at the same time. In object-based systems, message
semantics helps to eliminate some checkpoint (and recovery) depen-
dencies [Lin90a]. therefore improves the performance of the previous
algorithm. To avoid multiple and cascading rollbacks, there are also
proposals that emulate Targon/32 system in software [Bab9(0a] or log
messages only on their senders in order to tolerate single site (or n site)
failures [Joh87a, Str88a].

Because of the popularity of UNIX, many attempts have been made to
implement checkpoint mechanisms on top of it [Tay86a, Smi89a].
Unfortunately, UNIX was designed for stand-alone machines in the
early 70's. It distinguishes main memory from the secondary storage;
the file system and network protocols are built in the kernel. Certain
process information is hidden in the kernel, i.e., the u-block for
efficiency purposes. Moreover, some UNIX attributes are machine
dependent, e.g., pid and socket number, etc. For all the above reasons,
it is inherently difficult to adopt UNIX kernel as the base for distributed
fault-tolerant systems.

The KeyKOS [Bom92a] system guarantees process and data persistency
by conducting periodic system-wide checkpoints. The kernel imple-
ments a single-store abstraction, that is, physical memory is mapped
onto the secondary storage. The dirty pages in memory are dumped to
a predefined disk partition during checkpointing, from where a daemon
process would move them to their mapped blocks on disk. Inter-
process communication is end-to-end using capabilities and there are
no message queues in the kernel. After a power failure, the failed
machine falls back to the previous checkpoint. Consistency among
coordinating processes is application user’s responsibility, while the
kemnel allows processes to commit pages individually.

BirliX [Sch92a] has mechanisms to checkpoint an individual process
(known as team). The process state is mapped in its virtual memory,
and the virtual memory is mapped to secondary storage servers (called
segments). The kernel checkpoints a process address space in the vola-
tile memory by marking it copy-on-write before the dirty pages are sent
to segments asynchronously. Applications selectively choose whether
they want to be checkpointed, and may implement different global
checkpoint schemes based on the fact that any one process can be
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checkpointed by the kernel. Similar to KeyKOS, however, applications
must manage the dependency list of processes themselves.

8. Conclusion

Our system is a regular Mach system except for the resilient processes.
Using the utilities we have implemented, one can achieve transparent
fault-tolerant processing for client applications. The kernel checkpoint
functions follow the Mach microkernel philosophy, that is, they only
define mechanisms. And different checkpoint policies should be
implemented in system servers. We demonstrate our system by design-
ing one specific checkpoint algorithm. However, many different
checkpoint algorithms may be implemented using our kernel support.
With carefully designed server interfaces, the overhead incurred due to
checkpointing can be further reduced through data caching concepts
and by using the Mach external memory management mechanism.

Our approach does not require any special hardware. And the pro-
posed fault-tolerant system is implemented on a set of Sun3 worksta-
tions. We have basically finished the kernel programming and debug-
ging. A simple testing environment is working, e.g., we can run a pro-
gram as resilient process and restart from its checkpoints. The devel-
opment of a prototype file server and several benchmarks are under
way. The total checkpointing related code in the kernel is about 2,500
lines of C code. Comparing with around 100,000 lines of Mach kernel
code, the implementation overhead is small, yet it creates a new testbed
for fault-tolerant computing.
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Abstract

A number of current operating systems have been implemented using
the micro-kernel approach, which moves functionality from the kernel
to user-level servers. MESHIX is a System V UNIX compatible
message-passing distributed operating system implemented using this
approach. In this paper we evaluate some of the design choices taken
in MESHIX, particularly aspects associated with the micro-kernel. To
examine the overhead associated with the micro-kernel we analyse
local RPC performance and message-delivery, and give timings for the
constituent parts of these operations. We conclude that although
MESHIX has similar performance to other micro-kernel systems, a
significant penalty is paid for the micro-kernel and propose specific
optimisations to reduce this penalty.

1. Introduction

MESHIX is a System V UNIX compatible distributed message-passing
operating system which is implemented using the micro-kernel
approach [Win90a). Several micro-kernel based operating systems
have emerged over recent years following a general movement away
from monolithic systems such as BSD UNIX, System V and more
recently Sprite [Ous88a), to smaller, simpler and more portable kernels.
By layering the operating system in this way, the kernel can be kept
fast and efficient with the more complex tasks being provided by
servers. Other implementations of this model are Amoeba [Mul90a],
Chorus (version 3) [Bri91a] and Mach (version 3) [Acc86a].

The purpose of this paper is to evaluate some of the design choices
taken in MESHIX, particularly aspects associated with the micro-kernel.
Some parts of MESHIX, such as the filesystem and process migration,
are therefore outside the scope of this paper and are not described here.
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We first give a brief overview of the current hardware platform for
MESHIX, then we describe the organisation of the micro-kernel and
some of the functions it performs, a performance analysis of RPC is
then presented which highlights some of the problems, and we con-
clude with our plans for the further development of MESHIX.

2. TOPSY Multicomputer

The current implementation of MESHIX runs on the TOPSY multicom-
puter, a MC68030 based distributed memory multiprocessor [Win89a).
TOPSY is designed to be a low-cost extensible general purpose com-
puter which supports standard UNIX software. A TOPSY machine con-
sists of a number of nodes connected in a mesh topology by a circuit-
switched network.

Each TOPSY node contains an MC68030 processor,'r 8 MBytes of mem-
ory and various peripheral controllers such as a SCSI disk controller, a
MC68450 DMA controller, a serial interface, and a network interface. A
separate Ethernet card can also be connected. The interconnection net-
work is a custom circuit-switched mesh network called MESHNET
[Wil91a]. The current network devices have a maximum bandwidth of
12 Mbytes/sec, although the performance of the particular DMA con-
troller and the software overhead constrain the effective throughput to
about 0.5 MBytes/sec.

The maximum size TOPSY machine that can be constructed with the
current hardware is 256 nodes. We have built a number of 4 node
machines and a 16 node machine which are used mainly for systems
development. The machines are connected to the departmental Ether-
net and generally accessed using the X11 interface.

3. MESHIX Operating System

Operating systems such as MESHIX and Sprite aim primarily to provide
a standard UNIX interface giving access to existing UNIX software but
with increased performance, which is accomplished using distributed
servers running in parallel over multiple networked processors. In
Sprite, the physical distribution of the machine is hidden behind a
shared filesystem. MESHIX, however, makes the entire distributed sys-
tem appear as a single, timesharing UNIX. In contrast, systems such as
Amoeba, Chorus and Mach are designed in an object oriented manner
to provide a general set of facilities upon which different operating sys-
tem interfaces can be constructed, and provide some support for paral-
lel and distributed programming. These overall design decisions, and
the implementation on the TOPSY machine, have dictated to some
extent how MESHIX is structured internally.

3.1. Structure of the Kernel

MESHIX is divided into three layers: the micro-kernel, the macro-
kernel which includes system server processes, and the user processes.
The micro-kernel provides the basic message-passing, interrupt han-
dling, scheduling and memory management functions. The network
driver, the clock driver and the swap manager process are part of the
micro-kernel. This is shown in Figure 1.

t Clock speed of 16MHz and 1 wait state memory.
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ck: the scheduler
mem: the virtual memory manager
nt: Network driver

et: ethernet driver

8d: scsi device drivers

fs: Meshix Filesystem

dsm: Distributed memory server

ipd: Internet Protocol Daemon

Figure 1: The structure of the MESHIX operating system. The “ipd”
process lies in the user applications area of the operating system, but
provides services to applications in a similar way to other macro-
kernel services.

The macro-kernel includes other device drivers and the server pro-
cesses which provide System V operating system functions using the
client-server abstraction. These have special memory and scheduler
privileges and run at a higher priority than user processes. Examples
are the process and signal manager services, and the device drivers.
Some servers like the process, filesystem managers, and device drivers
which are attached to specific hardware, are placed only on certain
nodes, while other services are replicated on each node.

In the highest layer is the application space, in which user processes are
placed. These can request services from the operating system using
remote procedure calls which are directed to the appropriate system
servers, or in some cases by communicating directly with the micro-
kernel.

Unlike Chorus, which supports user-level device drivers, the MESHIX
device drivers and most system services are compiled into the kernel
and execute in the kernel address space, improving their performance.
All communication between servers and drivers however, is accom-
plished using message-passing.

3.2. Interprocess Communication

Communication between processes on a node and between nodes is by
message-passing. A message is a contiguous byte structure of fixed
size containing addressing information, credentials and a data area.
Messages are addressed using unique identifiers within a TOPSY
machine defining the network location of a node and a port on that
node, the node location being given relative to the sender. A port is an
integer representing a registered recipient of a message on any node.
Ports may have symbolic names attached to them, in which case pro-
cesses can look up a service by name using the service map. This map
provides aliasing and location transparency for services. Ports are pro-

Technical - OpenForum 92 - Utrecht, 23-27 November 47




Evaluating MESHIX — A UNIX Compatible Micro-Kernel Operating System

tected by assigning standard UNIX user, group, world permissions to
them.

The send () function is provided to send a message asynchronously to
any destination in the machine. The complementary function,
receive( ), blocks waiting for a message from another process. For
remote procedure calls, the transact () function is available to send
a request to a specified address and then block waiting for the server’s
reply.

Because of the small message size the copy-on-write optimisation for
message transfer as used in Mach is not applicable. To enable copying
of messages, MESHIX uses the vtop( ) function to re-map the mes-
sage from the sending process’ address space into the kernel address
space.

When transferring memory between nodes, messages cannot be the
sole agent because of the overhead of fragmenting a large contiguous
memory area into many fixed size messages. Instead, a request is made
to the micro-kernel to transfer the entire memory block. To do this, the
micro-kernel communicates directly with the network driver. The rou-
tine globcopy() is provided to perform direct memory transfers
between process address spaces (which may be on different nodes), and
is used to transfer disk blocks and virtual memory pages.

3.3. System Call Execution

In MESHIX the UNIX system calls are compiled into RPC stubs [Bir84a]
which marshal the parameters into a message packet and then send the
message to the required server process using the transact () call.
The memory manager process for example is responsible, among oth-
ers, for the fork( ), exec() and exit () system calls.

The location of the server processes is completely transparent to the
client, in the case of a remote server the message being first routed to a
pre-registered virtual port and then on to the server’s true destination
by the messaging system. The server then executes the system call on
behalf of the client process, and may communicate with other pro-
cesses during this. Any result is then sent back to the waiting client via
a return message.

4. Virtual Memory Management

The MESHIX virtual memory management system originates from a
segmented processor architecture (the 68070) but was extended to sup-
port a paged model when the system was ported to the 68030. The
facilities provided are the same as conventional System V UNIX.

4.1. The Virtual Memory Facilities

The virtual memory model supports the following features:
. Demand paging of binaries,
Page stealing of both read-only and modified pages,
Copy-on-write data duplication,
Per node binary caching, and
Idle time page scrubbing.

Of these facilities, the first two are commonplace in current UNIX Sys-
tems, whilst copy-on-write data duplication is used, we believe, more
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extensively in MESHIX. Copy-on-write allows data to be duplicated
into two or more independent processes’ address spaces without actu-
ally performing a physical copy which may ultimately be wasted time
if the duplicated data is not modified by any sharer. However, when
data is modified, the process does not change the shared version but
takes a copy. Only modified pages are ever copied, thus decreasing the
time to duplicate data and reducing the core utilisation.

Generally, copy-on-write techniques are used to speed execution of
fork() which duplicates an entire process. In MESHIX copy-on-
write is also used for exec(); every node in the system supports a
binary cache which is used to hold copies of the most recently executed
programs on that node. When a process executes a new program, this
cache is searched to locate it. If found, the program executes directly
from the cache. However, in the course of execution, pages of the pro-
gram will be modified. When this occurs, the copy-on-write mecha-
nism is used to duplicate the data from the cache rather than lose the
cached copy.

The binary cache stores its data in otherwise unused core pages. As a
system requires these pages, they are removed from the cache’s control
to prevent the cache holding copies of binaries which are no longer
useful or relevant. Additionally, pages may be lost when a copy-on-
write from the cache is attempted. If there is insufficient core available
and no other processes are sharing the page, rather than perform a
copy-on-write operation, the page is removed from the cache and used
directly.

The addition of this binary cache greatly improves program startup
time by removing the need to demand load from the disk system
(which in MESHIX could conceivably be on another node). However,
some communication with the file system is still necessary to determine
whether the binary in cache is up-to-date. If not, it is flushed from the
cache and re-demanded from the file system.

Finally, the idle process on each node is assigned the task of page
scrubbing; filling free core pages with zeroes. Most requests for zero-
filled pages are satisfied with pages from this source.

Operating Times (us)

System Zero-fill | Copy-on-write
Chorus (one 8K page) 1150 1700
Mach (one 8K page) 1550 2120
MESHIX (four 2K pages) 1360 3740
MESHIX (one 2K page) 340 935

Table 1: Times taken to allocate and zero-fill a page of memory and
the performance of copy-on-write. The quoted figures for Chorus and
Mach are taken from [Abr89a]. If we had 8K pages, the zero-fill time
for one page would be the same as the time for one 2K page, due to the
idle page scrubber. The copy-on-write times shown would also be re-
duced, as only one page fault would occur.
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4.2. Performance

Some figures are presented in Table 1, comparing MESHIX times to
similar measurements from other systems.

As can be seen, MESHIX compares favourably, even with our smaller
page size. However, one failing of the system is its handling of the
binary caches which it does on a per node basis. If a binary cannot be
found in the cache it is demanded from disk; if it is in other node’s
cache the fact cannot be determined. For large parallel programs, ini-
tial startup time can be large as each node of a sixteen node machine
demands the binary from the same disk (in fact, we added a block
cache to the disk device driver to prevent numerous disk accesses for
the same page).

5. Inter-Process Synchronisation

5.1. Sleep and Wakeup

Because MESHIX is a message passing kernel, synchronisation between
two processes implicitly occurs with the transmission of data from a
sending process to a receiving process. Although this is a simple
model for synchronisation, it is too limited. For example, a simple
point-to-point message exchange does not handle such events as one-
to-many process synchronisation. Therefore, another mechanism is
provided in MESHIX: Sleep/Wakeup.

The Sleep/Wakeup mechanism is primarily provided for the use of the
virtual memory implementation (see §4.1) where a page fault repair
might need to release many sharing processes. This situation arises
when read-only binaries are shared. Messages cannot be used here for
a number of reasons:

1. A number of arbitrary processes can wait for the same synchro-
nisation event, a situation the message system could only handle
by sending of multiple messages,

Page faults required efficient and speedy handling while only
requiring local synchronisation operations. Therefore, the cost of
using messages when no data is to be transferred and no remote
synchronisation is to be undertaken is prohibitive,

The message system relies on facilities provided by the virtual
memory system and any attempt to use messages to implement it
can lead to unresolvable deadlock conflicts.

Sleep allows a process to block on an arbitrary physical address. The
process will not be executed again until another process issues a
Wakeup on that same address, at which point all processes waiting on
the address are released. This mechanism is identical to that used in
UNIX System V [Bac86a]. This simple system has a number of draw-
backs. Most importantly, it causes processes to block on local physical
addresses and so cannot be used to provide synchronisation between
remote processes. Furthermore, because there is no sleep control asso-
ciated with the address being blocked upon, an unforeseen race condi-
tion between two processes could allow the wakeup to occur before the
sleep. In such circumstances the wakeup would be lost and the sleep
would continue indefinitely.
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5.2. Comments

The sleep/wakeup mechanism is efficient (see Table 2) and simple
although it can only be used between kernel processes on the same
node. However in retrospect, the introduction of another mechanism
was a mistake. A far better alternative would have been to improve or
redesign message delivery, allowing one-to-many messages and
improved efficiency of local delivery.

Operation | Time (pus)

Sleep 105
Wakeup 155

Table 2: Sleep() and Wakeup() tim-
ings. Times include a reschedule (100 ps).

6. Interrupt Handling and Drivers

In UNIX there are two ways to handle interrupts from devices. The first
is to process the event in the interrupt handler itself; known as a bottom
half routine. Such handlers must be quick and not attempt to gain
resource locks since they cannot block (the interrupts will be disabled
so preventing any other event from occurring). Alternatively, the bot-
tom half routine simply initiates an action in an top half routine and ter-
minates. The top half routine is then executed by the kernel as a nor- -
mal kernel procedure, obtaining locks and blocking as necessary. The
bottom half routines provide very fast interrupt handling but are limited
by what they are allowed to do. Top half routines may handle much
more complex situations but do so by paying a time penalty.

6.1. MESHIX Interrupt Handling

In MESHIX three mechanisms are provided to handle interrupts. These
are:

1. Priority handlers,
2. Synchronisation handlers,
3. Message handlers.

Priority handlers correspond to UNIX bottom half routines, providing
limited access to resources but with the lowest latency. In MESHIX
these are only used to handle kernel profiling. Synchronisation han-
dlers correspond to UNIX top half routines, providing a means to
release a MESHIX kernel process. These are adequate if an interrupt
only informs a process of an important event but does not need to pro-
vide any other data. In MESHIX these are used in the SCSI driver.
Finally, Message handlers have no UNIX equivalent. When an inter-
rupt is generated, a message is sent to the relevant handler. This mes-
sage is then processed by the handler.

Message handlers are much more flexible than either of the other two
mechanisms. Firstly, the handler need not be located on the same node
as the interrupt generator. Secondly, the interrupt handler need not be
part of the kernel and can exist as a standard user process (MESHIX
provides its TCP/IP service in this way). This enables drivers to be
improved and modified without recompiling the kernel and, with care,
inserted and removed from running machines.
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6.2. Comments

A comparison of the different overheads in using these mechanisms is
shown in Table 3.

Mechanism Time (us)

Priority handlers 55
Synchronisation handlers 205
Message handlers 345 (506)

Table 3: Timing overheads of the interrupt mecha-
nisms. The interrupt itself takes 50 us. For the mes-
sage handler, also shown is the time taken by the
server to receive the message.

The provision of three mechanisms to do essentially the same task is
horrible. An improved messaging system would allow the combination
of synchronisation handlers and message handlers. MESHIX could then
be modified to rely on only that system (we will allow the exception of
kernel profiling interrupts).

7. Analysis of Meshix RPC Performance

7.1. Message Delivery

The micro-kernel implementation of MESHIX results in increased
cross-domain communication and context-switching to achieve basic
system functions. The MESHIX message system is examined and as an
example, we consider MESHIX RPC performance.

In MESHIX, Amoeba and Chorus, local and remote RPC is implemented
using message passing (although the latest version of Chorus allows an
optimisation similar to lightweight RPC [Ber89a]). In Sprite a local
RPC is simply a trap into the kernel. A table of comparative times to
perform these operations is shown in Table 4. MESHIX's RPC times
compare favourably with the other systems, but the local RPC time is
disappointing. Below, we examine local message delivery in detail.

Operating Time (us)
Processor
System Local | Remote

Amoeba 68020 500 1200
Mach C-VAX - 754
MESHIX 68030 900 1300
Sprite 68020 70 1900

Table 4: Time taken to perform an RPC for various oper-
ating systems (quoted results from [Dou91a, Ber89a])

The message delivery system is invoked in two main ways: as a result
of send( ), receive() or transact () system calls, or by direct
invocation of the delivery system by the kernel itself. The system call
interface is entered by a trap call with two parameters in registers. The
function is decoded and the address parameter verified with the
process’s message permission mask held in the process table. The
delivery system is then called to pass on the message.
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The delivery system contains two main parts: put_message () and
get_message(). Put_message() is the kernel routine imple-
menting the send system call. It validates the address of the message
and maps it into the kernel memory space using vtop (). If the desti-
nation address is local, then the address is mapped through the service
map. If the destination is then remote, the destination address is
packed into the message address fields and the destination address is
aliased to the network device driver. At this point the destination is
local. If the flags in the receiving process indicate the process is
blocked in receive then the process table is checked to see if the mes-
sage is acceptable. If the message can be delivered then it is copied
into the receiver memory buffer and the destination process is added to
a run queue. If the process is not waiting then a buffer is allocated and
the message copied into the buffer. The buffer is then appended to a
doubly linked list of waiting messages in the destination process’s table
entry (put_message() takes a further option which allows syn-
chronous message delivery by kernel processes. Currently this mecha-
nism is only used by interrupts.).

Get_message () is the kernel routine which implements the receive
system call. Addresses are mapped through the service map in the
same way as for put_message (). The message pointer is validated
and mapped into the kernel by vtop() as in put_message(). A
selective receive is implemented by storing the required source process
address in the process control block. If there are queued messages then
each is searched in turn for a matching source. If a match is found then
the message is copied into the user buffer and the kernel buffer is
linked out of the message queue and deallocated. The process then
continues. If no message can be found then the process is blocked in
the receive state and another process scheduled.

7.2. Performance Analysis

Figure 2 shows a time diagram for the processing and hardware activity
involved in a typical Jocal RPC. It identifies the most costly activities
and their relationships.

Assume a client and server process on the same node. At the start the
client process is executing user code (activity al) and the server is ini-
tialising (activity b2). When the server completes initialisation, it
blocks receive( )ing a message. During execution the client pro-
cess requests a service. It forms a request message and performs a
transact () with the server. This causes a message to be sent to the
server which then is scheduled. The server performs the required ser-
vice and send( )s a reply message to the client which is rescheduled
and continues.

Below we describe the observed behaviour of the system, concentrating
on the activities identified in Figure 2. The activities are described and
the times taken by each identified.

Client Process Execution (a)
Client process executing in its own domain.

Context Save (s) and Restore (r)
At various stages in the RPC call the system saves and restores
the processor state. Saves and Restores each take approximately
15 ps.

Message Mapping (M) and Release (R)
In order to transfer a message from one process address space to
another the micro-kernel maps the source and destination mes-
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Figure 2: A time diagram showing the activities of client
and server processes involved in a remote procedure call

sage buffers into the kernel address space. When the mapping is
no longer required it is released. Mapping a memory segment
takes approximately 26 us. Releasing a memory segment takes
approximately 21 us. The release necessitates a TLB and cache
flush. If the destination process is not currently waiting for a
message then the data is copied into a kernel message buffer and
this forces an additional message copy.

Message Copying (C)
The message is transferred from the source message buffer to the

destination message buffer by the processor. This takes approxi-
mately 47 us.

Server Process Execution (d)
Activity d2 indicates the time taken by the server to perform the
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requested task, at the end of which the reply is made. Activity
d3 indicates the time taken by the server to return to the main
server loop and wait for another request.

Processor Rescheduling (p and X)

Once the client has sent its request message it sleeps, waiting for
the reply message. At this stage there is a reschedule causing the
server to run. At the end of the server run it sleeps waiting for a
new request and a second reschedule causes the client to con-
tinue. The reschedule involves finding and selecting a process to
run, this takes approximately 100 us. If the destination of a mes-
sage send is blocked waiting to receive the message then the pro-
cess is added to the scheduler queues. This takes approximately
34 us.

Miscellaneous
In addition to the major activities detailed above there are a num-
ber of minor overheads which account for a further 40 ps.

7.3. Measured Performance

From the times identified above it is now possible to determine the total
RPC time for MESHIX.

Time in ps

Activit
Y Send Receive

Scheduling 34 34 0)
Context Save 15 15
Context Restore 15 15
Mapping 26 26
Releasing 18 18
Message Copy 47 0 47
Miscellaneous 40 40

Total 195 | 148  (161)

Table 5: Breakdown of where the time goes during send and
receive operations

These figures give 195 us for a send( ) and 148 us for a receive( )
(161 ps if request is delivered while the destination process is running).
A transact () costs 313 us (one send( ), one receive() less a
context save and restore). An RPC is made up of one send( ), one
receive( ) and one transact () plus the rescheduling overheads
(shown in Table 6). Using these figures, the total null RPC time is
816 us.

Activity Time in ps

Scheduling 100
Context Save 30
Context Restore 30

Total 160

Table 6: Micro-Kernel Reschedule Time
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7.4. Comments

During the progress of a RPC call ten context saves and restores are
performed. These, in most cases, are unnecessary as the kernel is a
“well behaved” program and saves changed context. Physical servers
(those running in the kernel memory map) use the same mechanism
provided to users preventing many optimisations. Judicious optimisa-
tion would reduce context saves and restores to four with a saving of
90us. The actual context switch time is a direct function of the proces-
sor speed and cannot be improved.

The message data is mapped from the user process into the kernel in
order to copy it to the destination, then the map is released. Next a new
map (to the same memory) is made for the reply message. If the map
were retained for duration of the RPC then maps and releases could be
reduced from eight to six with a saving of 44 us. In addition to the visi-
ble costs of the map and release each map incurs a hidden performance
loss caused by forced TLB and cache flushes.

If the destination of the RPC is waiting when the RPC is initiated, then
the message data is only copied once to the destination buffer. How-
ever, if the destination is busy the message is copied into a kernel mes-
sage buffer. As the initiator is waiting for a reply message from the
server, the message buffer is not changed and therefore need not be
copied. This would result in a saving of 47 us.

Scheduling overheads resulting from the RPC mechanism account for
268 us. The RPC involves two full context switches; in comparison a
conventional UNIX system call would make a single context switch
(one save and one restore).

Inspection of the messaging profiles indicate that these improvements
and hardware support [Whi92a] reduce the local RPC time below
500 ps.

8. Conclusion

We have described the micro-kernel of the MESHIX operating system,
and have analysed the performance of virtual memory, exception han-
diing, synchronisation and message-passing. MESHIX performs simi-
larly to other micro-kernel systems in these areas.

We conclude that there is a significant penalty in structuring MESHIX
as a micro-kernel using a client-server abstraction and message-
passing, as we have shown in our analysis of RPC performance. This
results mainly from the increased number of context-switches and
message-passing overhead necessary to perform basic kernel functions.
The performance penalty must be compared to the software-
engineering advantages of structuring the system in this way.

A number of specific optimisations to the message-passing system were
proposed to decrease local message-delivery time. We are also investi-
gating the use of a co-processor to provide message-passing and
scheduling support (we estimate that scheduling overhead can be
reduced to 10 us) [Whi92a). Upgrading the TOPSY hardware to a pro-
cessor with support for address space identifiers, such as the MIPS
R4000, would also reduce the performance penalty.
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Abstract

Micro-kernels and operating systems export a set of abstractions and
services. Traditionally, these have been designed to mimic low-level
hardware constructs. However, a micro-kernel should be devised with
the same concern for computational models that is used in designing
high-level languages, balancing ease of use, flexibility, and perfor-
mance. Higher-level abstractions can provide ample opportunity for
efficiency without dictating the nature of the operating system above
the micro-kernel. They also allow a variety of implementation options
which enables interoperation between new kernels and existing sys-
tems. The abstractions in ARCADE, an ARChitecture for A Distributed
Environment, mirror the constructs found in many procedural lan-
guages. The architecture has been realized as a micro-kernel and as
add-ins to widely used operating systems. This paper describes some
of the experiences with the ARCADE high-level abstractions as well as
their relationship to other work.

1. Introduction

Traditionally, micro-kernels, and sometimes operating systems, have
presented abstractions which reflect a virtual machine view of comput-
ing. By offering a hardware-based service set, they provide a highly
flexible platform for applications. Unfortunately, they also provide one
that is not easy to use, and thus application programmers are not always
capable of extracting maximum performance. However, a service set
based on high-level abstractions, such as those in modern programming
languages, can be easier to use. This is particularly valuable in dis-
tributed systems where machine-level abstractions are complex. In
addition, since the services are optimized by systems programmers,
they may be very fast. Also, high-level abstractions can be added to
existing operating systems to allow interaction between heterogeneous
systems.
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1.1. Virtual Machines and High-Level Abstractions

A primary goal of operating systems is to provide controlled access to a
computer’s resources. These include hardware resources such as mem-
ory and processor time, data resources such as files and keystrokes, and
abstract resources such as buffers and semaphores. Typically, the
operating system exports services designed to allow client code to be
written as if it were the sole user of the resources. In order to keep the
service layer thin and to minimize overhead, the abstractions seen by
the client resemble the actual hardware. Thus, they are generally low-
level and often machine specific.

Modern software, however, is written in high-level languages, and its
design integrates the constructs provided by such languages — proce-
dure calls, global variables, objects, pointers, etc. However, these
abstractions do not always directly map to the underlying system.
Related data structures in a program can be mapped onto different vir-
tual pages, thus making items separate that should be grouped. The
reverse is also true; unrelated things can be mapped onto the same
page, generating contention for it. To prevent such mismatchs, the
abstractions presented by the system should resemble those used by
high-level languages.

1.2. The Value of High-Level Abstractions

High-level languages provide programmers with a set of tools to facili-
tate the construction of applications. They optimize the trade-off
between expressiveness, performance and flexibility. Their models
enable programmers to express applications concisely, and their con-
structs are easy to understand. Clearly, a problem is often more simply
described in C than in assembler. Modern compilers are written with a
deep understanding of performance issues on the target machine. It is,
therefore, not reasonable for an application programmer to manually
optimize low-level code for a modern processor. However, ease of use
and performance come at a price. High-level languages provide less
direct control] than assembly code, and each language tends to focus on
a particular class of applications.

Operating systems and micro-kernels provide a set of tools and also
must make tradeoffs. The same three measures can be applied to them,
and a similar set of arguments can be made.

An operating system which is modeled on high-level abstractions offers
expressiveness. The power of its abstractions and services is more
accessible if they match a programming model. Consider the RPC pro-
gramming paradigm, perhaps the most successful distributed coopera-
tion model. It transforms a low-level message passing system into a
high-level abstraction. By hiding the details of network communica-
tion under the cloak of a classical procedure call paradigm, RPC
reduces programming complexity in distributed systems. It generalizes
a familiar sequential flow control mechanism by allowing the proce-
dure call target to be remote. The success of this paradigm can be
traced to the universal nature of the procedure call.

Performance is a critical measure for operating systems. It might seem
that it is always possible for a system based on low-level abstractions
to be at least as efficient than one whose abstractions are high-level.
The high-level abstractions could simply be constructed from the low-
level ones. For example, a programmer could use basic communica-
tion primitives to build his or her own RPC system. However, in real-
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ity, it does not work that way. The typical application programmer has
neither the time nor talent to write system level code. When higher-
level services are built as add-ins between the application and the oper-
ating system, the services are written on top of an original interface.
Therefore, the new services are not privy to the implementation of the
base services. For example, an add-in RPC system cannot access the
communication buffers or the hardware directly. Just as with compil-
ers, the operating system and micro-kemel writer has a deeper knowl-
edge of the hardware and can tailor an implementation to match it.

Unfortunately, high-level operating system constructs suffer some loss
of flexibility, or control. If the constructs match an application’s pro-
gramming model, they work well; if not, there can be problems. Low-
leve] abstractions have the advantage of being able to serve as building
blocks for higher-level services, while the reverse is not always true.
For example, Mach’s thread primitives are low-level, and language
independent, but difficult to use. The C Threads run-time library raises
the level of the threads abstraction and facilitates their use by C pro-
grammers. However, if only the C interface to threads were available,
a Lisp programmer would be forced to twist his application to fit the
provided model.

Since a micro-kernel is generally used for a broader range of applica-
tions than a programming language, flexibility is critical. Therefore,
the selection of abstraction set must be done with care. Those high-
level ideas with broad applicability are particularly attractive.

1.3. Implementation Options

High-level abstractions offer several interesting implementation
options. The same services can be built in three different ways:

° Services provided on top of the kernel
° Add-ins to an existing kernel
. Kernels built directly on the hardware

The C threads package and the RPC implementation are examples of
providing high-level abstractions on top of a lower-level ones. An
add-in implementation adds abstractions and services either directly to
the operating system kernel or as kernel extensions. The direct kernel
approach allows the implementation to be optimized for the details of
the hardware.

These three options demonstrate two important properties of high-level
abstractions. They allow the interface to be separated from the imple-
mentation and they permit cooperation between dissimilar systems.
The separation means that applications written for one implementation
run without modification on another. This has been the driving force
behind the wide-spread acceptance of open systems and is an essential
element of any future operating system design. The interoperation
opportunity is an important indirect benefit of high-level abstractions.
It allows a new operating system design to coexist with more tradi-
tional approaches.

System software developers can learn a lot from language designers.
Abstractions and services should be presented at a level high enough
for programmers to use, yet low enough to permit higher-level con-
structs to be built on top of them. Such abstractions can provide multi-
ple implementation options and enough room for efficient realizations.
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1.4. The ARCADE Architecture

The trade-off between ease of use, performance and flexibility for a
micro-kernel requires the same concern for computational models that
is used in designing high-level languages. There is ample opportunity
for efficiency without dictating the nature of the operating system
above the micro-kernel. ARCADE, an ARChitecture for A Distributed
Environment, presents abstractions which mirror the constructs found
in many procedural languages. The architecture was originally realized
as a micro-kerne! and has subsequently been implemented as add-ins to
widely used operating systems. This paper describes some of the expe-
riences with the ARCADE high-level abstractions as well as their rela-
tionship to other work.

To optimize the trade-off between ease of use, flexibility and perfor-
mance, a micro-kemel should be devised with the same concern for
computational models that is used in designing high-level languages.
This allows ample opportunity for efficiency without dictating the
nature of the operating system above the micro-kernel. ARCADE, an
ARChitecture for A Distributed Environment, presents abstractions
which mirror the constructs found in many procedural languages. The
architecture was original realized as a micro-kernel and has subse-
quently been implemented as part of other well-known, commercial
operating systems. This paper describes some of the experiences with
the ARCADE high-level abstractions, as well as their relationship to
other work.

2. Micro-Kernels

Some of the benefits of high-level abstractions are particularly valuable
in attaining the goals of a micro-kernel. A micro-kernel is defined by
its top boundary, a hardware independent architecture. This specifies
the conceptual structure and functional behavior of the layer as seen by
the operating system. The architecture is a set of abstractions, general-
ized elements removed from implementation details, and the services
which act on them. By making these abstractions high-level, we can
achieve a good trade-off between performance and function.

One of the principal roles of a micro-kernel is to act as an insulating
layer between hardware and system software, thus isolating each from
changes in the other. This prevents the operating system from becom-
ing hardware dependent and non-portable. By making no assumptions
about the operating system, the micro-kernel can serve as the founda-
tion for a variety of such systems.

Many micro-kernels present abstractions which are based on hardware
models. In order to provide the portability desired of a micro-kernel,
abstractions should make as few assumptions about the hardware as
possible. Although such assumptions may improve performance, they
limit portability. The abstractions should be able to exist on a wide
variety of platforms.

For example, DSM implementations [Li86a] are often based on hard-
ware features intended for paged virtual memory. Page faults handlers
are defined on a shared region and page faults are used to ensure that
writes are propagated to remote sites and that reads return fresh data.
Such implementations are often difficult to port to systems which do
not provide page-based virtual memory.
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The computational mode! presented by the micro-kernel abstractions is
available to both operating system and application programmers. Any
ties the abstractions have to the hardware also tend to distract the pro-
grammer from the nuances of the application at hand. The programmer
who wants optimum performance is often forced to deal with hardware
issues. However, with a properly designed micro-kernel, the program-
mer deals with familiar computational concepts. Thus, since program-
ming is normally done in a high-level language, the efficiency of high-
level abstractions can be easier to attain.

In the DSM example, performance difficulties often result from false
sharing and thrashing. False sharing occurs when independent sets of
processes use shared data items that happen to fall on the same page,
introducing contention for the page. Thrashing occurs when two pro-
cesses on different machines alternately write to a common shared
page. The operating system, in an attempt to maintain coherency, shut-
tles the page back and forth between the two systems to accommodate
the alternating writes. Solutions to such problems do exist, but they
invariably involve revealing the implementation in the abstraction
interface [Ana92a). Optimizations using programmer supplied help
and programmer controlled distribution expect the programmer to
directly deal with pages of memory, thus diverting the programmer’s
attention from the actual application.

Heterogeneity is also a reality in any modern interconnection. Abstrac-
tions that reveal hardware dependencies in their service interface do
not provide an appropriate substrate for heterogeneity. Support for het-
erogeneity needs to be an integral component of the abstraction. This
greatly increases its merit, applicability and portability. In the DSM
example above, page size and data alignment differences can kill the
ability of heterogeneous realizations of the abstraction to cooperate.
Sun RPC, one of the most popular commercial distributed abstractions,
integrates the use of the XDR protocol as a part of its service interface,
thus allowing 680x0s to interact with SPARCs and i386s.

High-level abstractions also promote the interoperation provided by
micro-kernels. A micro-kernel that provides location independence
enables cooperation between two similar remote operating systems. To
do this, it typically has an implicit interface to the communication sub-
system. In addition, since the interface is hardware-independent, it
automatically provides cooperation between dissimilar operating sys-
tems built on the same kernel. This interoperation may be local with
multiple operating systems running above a single kernel, or remote
also. High-level abstractions are implementation independent. They
can be implemented upon a wide range of systems using multiple
implementation options. In all cases, applications built using these
abstractions can cooperate across the variant systems. The program-
mer has the ability to use the system with which he is most familiar
while gaining access to the tools and services of others.

3. The ARCADE Architecture

The ARCADE architecture is designed to provide easy access to paral-
lelism in heterogeneous interconnections. Its abstractions closely
match a programmer’s view of computation. It models the physical
world as a set of resources and provides an event notification mecha-
nism. The resource abstractions are orthogonal; defining a high-level
view of data, a global identification tool and a classic execution thread.
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Data units are a high-level data abstraction. Unlike simple memory
with its raw bytes, they correspond to typed data as seen in procedural
languages. Their size and type composition are specified when they are
created, and they serve as the basis for a variety of data paradigms.
They can be moved to serve as messages and can be shared to act as
distributed shared memory. The type information allows automatic
translation between heterogeneous machines. Lock services may be
used to define synchronization points for flexible control of shared data
coherency.

The data unit link abstraction is essentially a generalized global refer-
ence mechanism. It provides a system-managed, location-independent
handle for data units residing throughout a distributed system. Data
unit links correspond to pointers as seen in C. Since they span machine
boundaries, data unit links can be used to build distributed dynamic
data structures. The architecture specifies the data unit link interface,
allowing optimization of its realizations. For example, it could be real-
ized as a 64-bit global address in systems which provide such capabili-
ties. When global addresses are not available, the data unit link may
still be optimized to an address for local references. As an abstraction,
additional properties may also be associated with data unit links. For
example, in ARCADE, they include security provisions; they could be
extended to include version identification, indexing and a variety of
other functions.

The ARCADE task abstraction is essentially the same as other kernel-
level active abstractions. It consists of a thread of execution that owns
other resources. One resource is its address space which is composed
of data units. Each task is given a globally unique, hierarchically struc-
tured name. For convenience, they are also given fixed-length unique
identifiers, known as UIDs, to facilitate identification. Every task also
owns both a synchronous and asynchronous queue for receiving data
units which have been transferred to them. Task properties also
include the input/output line synchronization mechanism described
below.

Input/output lines are a general event notification mechanism. They
can be used to signal events such as the receipt of data units, changes in
the state of locks or pulses in other task’s output lines. They can also
represent external events such as interrupts and timer ticks. A task’s
input lines control its run/sleep and live/die status through a
configurable logic mechanism. Input/output lines can be used to simu-
late semaphores, monitors and other synchronization mechanisms.

4. ARCADE Services

In keeping with the high-level nature of ARCADE’s abstractions, the
services which act on them are also high-level. To a large extent, they
mirror the kind of operations a programmer would normally use. To
see this, we will examine the services associated with data units and
data unit links.

A data unit is realized as a block of memory which can be mapped into
a task’s address space. A task creates a new data unit by invoking the
allocate() service. Unlike conventional systems, ARCADE
requires the caller to specify the structure of the data unit, rather than
its size. Given the structure information, ARCADE maps a block of
memory large enough to hold the specified data fields into the request-
ing task’s address space. When a task no longer needs a data unit, it

Technical - OpenForum “92 - Utrecht, 23-27 November




Basing Micro-Kernel Abstractions on High-Level Language Models

may invoke the release () system call, causing the kernel to unmap
the associated memory block. Tasks can also obtain information about
data units with gstruc() and gsize () which return the structure
and size respectively.

The move () service corresponds to standard message passing. How-
ever, the abstract nature of data units yields some significant benefits.
First, the data unit concept allows the communication and memory
management paradigms to be merged. Tasks do not send messages to
each other; instead, they transfer data units between their address
spaces. The benefits of this approach, in terms of both performance
and ease-of-use, have been demonstrated by systems such as Mach
[For88a] and [Arm89a)]. Second, the availability of structure informa-
tion at run time allows data translation to be performed, and perhaps
optimized, below the application level.

When requesting the move () service, a task specifies the address of
the data unit to be transferred and identifies the destination task. The
kerne! unmaps the data unit from the sender’s address space and, even-
tually, maps it into a free region in the destination’s address space.
This operation is similar to a message transfer in a more conventional
setting.

For tasks whose most natural form of interaction is direct access to
shared data, ARCADE provides the share() service. As with
move( ), a task calling share( ) specifies the address of a data unit
and identifies the sharing task. However, unlike move ( ), the data unit
is not removed from the caller’s address space. By using share(),
the sender’s data unit mapping is retained, and both tasks are able to
directly access the data unit.

In either case, a notification packet data unit, NPDU, is placed into
either the destination task’s synchronous or asynchronous input queue.
The notification packet contains information about the transferred data
unit including its origin, size and a data unit link pointing to it. The
destination task uses the receive() service to transfer the
notification packet to its address space. The NPDU is used to determine
if access to the transferred data unit is desired and, subsequently, to
access it.

In order to access the data unit itself, the receiver must use
access (). This service has a data unit link as an argument and
causes the target data unit to be mapped into the caller’s address space.
Once accessed, the data unit appears as directly accessibly memory.
Access () is a general purpose data unit link de-referencing service,
and it works with any data unit link. The process of receiving a
notification packet and accessing its data unit link to acquire a trans-
ferred data unit is just a particularly important case.

The wait_du( ) service combines the receive() and access()
operations into a single service. It allows a task to wait until a data unit
arrives, receives the notification packet and accesses the data unit itself.

The data unit link, or DUL, can be used by tasks to build dynamically
linked data structures. With the setlink( ) system call, a task can
specify the target of a DUL, i.e. setlink() parallels a pointer
assignment operation. When a target data unit is assigned to a DUL,
the kernel maintains an internal, globally-unique identifier of the target.
This identifier helps the kernel find the data unit when the data unit link
is accessed. Data unit links have been found to be an effective way to
construct dynamic data structures which can span machine boundaries.
The entire structure can be stored in an innovative file system
[Smi%0a]. '
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To alleviate the performance problems of DSM, we use an application-
level locking scheme similar to, but less sophisticated than, that used
by Amber [ChaB9a]. Specifically, tasks may acquire and release locks
on data units to prevent potentially dangerous concurrent access. In
addition to ensuring correct program behavior, this technique reduces
the impact of thrashing and completely eliminates false sharing.

Locks allow the programmer to regulate concurrent access to shared
data units. Such regulation is frequently necessary to ensure the con-
sistency of the shared data; in ARCADE, it also ensures coherency.
ARCADE’s transparent, update propagation protocol also includes pro-
visions for a translation phase to accommodate sharing among hetero-
geneous machines. Locking services similar to those of classical data-
base systems are provided: read locks and write locks. These locks can
be used by applications to provide a variety of coherency schemes.

The lockdu() and unlockdu() services are used to control the
consistency and coherency of a shared data unit. A task calls
lockdu( ) specifying a read lock to acquire a shared lock on a data
unit that is mapped into its address space. A task which successfully
acquires this type of lock can safely proceed to read the contents of the
locked data unit. No changes will be made to the data unit by other
tasks that are participating in the lock-based concurrency control
scheme.

Specifying a write lock allows a task to obtain an exclusive lock on a
data unit. After acquiring such a lock, a task is guaranteed that no
other task is holding either type of lock on the data unit. Internally, as
with the read lock, the kernel ensures that the local replica of the data
unit is up-to-date before returning control to the requesting task. A task
with a write lock can safely modify the contents of the locked data unit.
Changes made to the data unit are guaranteed to be propagated to all
replication sites upon the locks release.

When a task wishes to release either a lock held on a data unit, it
invokes the unlockdu( ) system call. Upon release of a write lock,
the kernel propagates updates to remote replication sites. The current
implementation actually uses an invalidation scheme. Remote sites
pull the data after the invalidation; updates are not pushed by the
source of the modifications. The update propagation is handled by the
kernel thus shielding programmers from the details of tracking remote
replicas.

Every ARCADE tasks controls a set of binary output lines. The first
line is reserved and remains high throughout the task’s life and effec-
tively goes low when the task dies. A second reserved line goes high
when the task’s input queue is not empty. All other lines can be used
to send event-like information to other tasks.

A task also owns a set of input lines which are used for synchronization
and event notification. It can connect these to other task’s outputs, to
lines associated with data units, or hardware interrupts. The value of
the input lines can be read with readip(). More importantly, they
are the inputs to a simulated programmable array logic, PAL, which can
be programmed to generate run/sleep and live/die controls. These con-
trols can suspend the task or cause it to terminate.

This PAL mechanism can be used as a building block for classical syn-
chronization primitives such as semaphores, monitors, etc. However,
experience with this mechanism shows that it is difficult to use and
ARCADE programmers have generally refrained from using it. The
fact that this paradigm was too low-level and did not fit well with any
programming language construct, resulted in a rather alien abstraction.
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Thus, input/output lines and the PAL mechanism are not included in
subsequent implementations of the data unit paradigm.

5. Experiences with ARCADE

To verify that the ARCADE architecture is implementation independent,
it has been realized both as stand-alone micro-kernels and as extensions
of existing operating systems. The micro-kernels run on the “bare
iron” of 386-based workstations and in IBM System/370 virtual
machines. These implementations support various operating systems
as sets of ARCADE tasks. The ARCADE abstractions have allowed con-
struction of a small development operating system, of a POSIX compli-
ant environment and of a replicated distributed file system.

The orthogonal nature of the ARCADE abstraction set makes it possible
to implement a subset, without compromising its functionality. Thus,
the key abstractions, data units and data unit links, have been incorpo-
rated into three significantly different operating systems: VM/CMS,
0S/2 and Mach. In VM/CMS, the abstractions were implemented as
kernel extensions. For 0OS/2 and Mach, data unit services are provided
by user-level servers executing above the operating system kernels.
Names were added to the normal execution elements of these systems
and their regular synchronization mechanisms replaced input/output
lines. Data units and data unit links were then available to normal
applications.

These diverse implementations of data units have clearly demonstrated
their support for transparent interoperation between heterogeneous sys-
tems. Applications running in, say, OS/2 can share data units with
Mach tasks or VM/CMS processes. Issues of communication and trans-
lation are all hidden below the interface. In fact, application source
code dealing with data units is portable across all of these environ-
ments.

As a micro-kernel, ARCADE/386 has been called on to support a variety
of system tasks. The first application of ARCADE was a basic operat-
ing system built on top of ARCADE/386 [Tra89a]. This Kernel Operat-
ing System (KOS) includes such services as device support, a file sys-
tem, a command interpreter and a loader. It was built as a set of nor-
mal ARCADE tasks using the abstractions and services described
above.

The original design of the ARCADE architecture integrated security
features into each of the abstractions. These features conform to the

most stringent security requirements. Thus, when the micro-kernel is
combined with an encrypted communication subsystem, it is possible to
build a provably secure operating system. Subsequently, a version of
KOS was designed to address security needs [Bel90a]. The Secure
ARCADE-Based Operating System (SABOS) follows the stringent secu-
rity requirements of the “Orange Book” [Def83a].

KOS’s device support allows multiple tasks to share physical hardware
without interfering with each other. KOS’s three main device support
tasks are the console manager (conman), the file system (filesys), and
timer (timer). The conman task maps a single physical console, con-
sisting of a screen and keyboard, to multiple logical consoles, each
with its own screen and keyboard. User tasks, even remote user tasks,
may request logical consoles from conman. A task on one machine can
manipulate a console on a second machine by using standard library
routines.
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The filesys task mediates user task requests for file access, converting
them into a series of disk reads and writes. These are forwarded to the
proper disk driver task. The disk format is the same FAT-based struc-
ture used by DOS and 0S/2.

File access requests need not be only from local tasks. A task can
operate on a remote file by dealing with the remote filesys task. The
KOS file system can be viewed as a simplistic, location-dependent dis-
tributed file system. A user task can use the KOS cfs (change file sys-
tem) command to direct its file system requests to the filesys task on
any machine. A true location-independent distributed file system (DFS)
has been built above KOS and its file system. DFS spans multiple
machines and shields the user from file location concerns. It uses repli-
cated files to provide fault tolerance and data units to support hetero-
geneity.

DFS extends the file abstraction by including structure information
along with the data. Data units and their metadata are be saved and
retrieved as units, rather than as streams of bytes. A file written by a
machine of one architecture can be correctly read by a machine of
another. An entire binary tree can be saved and retrieved without
either the reader or writer knowing its configuration or size.

The basic ARCADE abstractions can also be used as building blocks for
higher-level abstractions. A Nested Transaction Subsystem (NTS) has
been implemented to add the transaction paradigm to ARCADE
[Kul91a). While the kernel provides coherency among data unit repli-
cas, consistency constraints that span multiple data units must be han-
dled above the kernel. NTS offers both serializability and recoverabil-
ity. Serializability guarantees that interleaved accesses to data units by
different transactions are equivalent to some serial order among the
transactions. Recoverability allows partial changes to be undone and
ensures that committed transactions are never lost. An NTS task uses
blocking locks for serializability and DFS files allow recoverability by
making data units persistent.

Two projects have evaluated language-level support for ARCADE
abstractions. One, ABC, augmented standard C to hide ARCADE-
specific details, while a second created support for object-oriented pro-
gramming in ARCADE. ABC is implemented as a preprocessor which
converts a superset of C into a combination of C code and ARCADE
service calls [Ban90a]. It allows data units to be viewed essentially as
simple C structures. The type information for the data units is automat-
ically generated from the struct declaration by the preprocessor. In
addition, data unit links appear as C pointers and the preprocessor
inserts the required access () calls.

The object oriented environment based on ARCADE is designed for
“programming in the large” [Bry89a]. Active objects are built on the
ARCADE task abstraction. Five types of inter-object communication
are seen by the programmer:

) tell() is a method invocation that does not expect a reply

. submit () is an invocation that blocks waiting for a reply
ask( ) is a non-blocking invocation which expects a reply
reply( ) is the response to ask( ) and submit ()

forward() lets its destination reply() to the original
request.
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A preprocessor translates each of these requests into ARCADE service
calls. Thus, the programmer sees object oriented services which are
really ARCADE-based.

6. Comparisons with Related Work

ARCADE makes several important contributions to the current discus-
sion of distributed computing. Perhaps the three most significant are:

. The nature of distributed computing abstractions
° Structured heterogeneous distributed shared memory
) Security and resource identification mechanisms.

This section discusses these contributions and their relationship to on-
going work in distributed computing.

The ARCADE service interface is designed to support both system-
software and user applications. Other systems, including Mach
[Ace86a], Chorus and Amoeba [Mul90a], also hide the hardware but
are intended to support only system-software, not applications. For
example, Mach was initially designed as a micro-kernel to support 4.3
BSD. Although other operating systems have now been built on Mach,
it is a difficult interface for applications. With Chorus, the nucleus nor-
mally presents its abstractions to a set of system servers, collectively
called a subsystem. The subsystem, in turn, provides operating system
services which are seen by application processes.

Micro-kernels have been used to realize portable distributed systems.
Mach has been implemented on 80386s, 680x0s and SPARCs, and oth-
ers, and Chorus is available on multiple platforms. However, while it
is possible to mimic standard operating system services on top them
[Go190a}, they cannot co-exist with standard operating systems. Their
abstractions are close to the hardware and implementations typically
need complete control.

There are systems that offer abstractions close to application program-
ming constructs. Amber’s passive and active objects allow the pro-
grammer to develop flexible object-oriented programs. Concert
[Yem89a] extends standard programming languages such as C and PL/1
to implement heterogeneous cooperative peer-processing. Such sys-
tems are typically implemented on top of an existing operating system,
Amber on Topaz and Concert on 0S/2 and VM/370. However, they
confine the programmer to a particular programming model, Amber
with object-oriented programming and Concert with RPC.

The ARCADE abstractions strike a balance. Data units and data unit
links are high enough for multiple cooperating implementations and
low enough to support a variety of computational models.

Distributed shared memory has been implemented in hardware
[Len90a], as operating system software and through compiler gener-
ated code [Bal89a]. The major DSM design issues are granularity of
shared data, coherence protocol and support for heterogeneity [Nit91a].
Ivy classically assumes shared data is totally unstructured, using
hardware-dependent page-based granularity. Linda’s shared data is a
tuple space [Ahu86a], defining application-dependent tuple-based
granularity. Munin [Car91a] structures its shared data on the basis of
variables in the source language. Most sharing schemes commit to
either a page or a data object as a unit of granularity, but not both.
However, depending on the data usage patterns, either approach may
be best. Thus, it can be desirable to support both types of granularity.

Technical - OpenForum “92 - Utrecht, 23-27 November 69




Basing Micro-Kerne! Abstractions on High-Level Language Models

This is only possible when, as in ARCADE, the abstraction-level unit of
coherency is a data object.

Coherence protocols can be classified on the basis of synchronization
points in a sequence of shared accesses. With Ivy’s strict coherence,
every read or write is a synchronization point. Munin’s release consis-
tency is based on acquire and release operations which are similar to
ARCADE’s lockdu and unlockdu. Clouds offers both strict and weak
coherency.

Weaker coherency typically increases the concurrency of shared data
accesses, but their use depends on the application’s ability to tolerate
stale data. Therefore, application specific coherence policies, can be
more efficient. Applications can use ARCADE’s advisory locks to con-
trol the coherency semantics. In fact, when it makes sense, applica-
tions can choose to ignore some synchronization points and use data
that may be incoherent.

Several projects have extended the DSM abstraction a to heterogeneous
environments. In Mermaid [Zho90a] for example, memory is shared in
pages and a page contains data of only one type. Whenever a page is
moved between two architecturally different systems, the data is con-
verted to the appropriate format. Since the unit of coherency is a page,
several restrictions apply. The size of each supported data type must
be uniform and the translation process is not entirely transparent.
Agora [Bis87a], on the other hand, provides a multi-language struc-
tured shared data facility which can span heterogeneous architectures.
However, shared data is accessible only through a set of access func-
tions and it may not contain references to other data objects. While
these projects make important contributions, none offers the flexibility
and ease of use available with data units and data unit links.

A fairly common resource identification and protection mechanism is a
capability [Tan86a]. Mach, Amoeba, Chorus and Concert all support
capabilities which contain encoded access rights to a resource. Not all
capabilities are not context sensitive. A thread which possesses one
may have the access rights, regardless of how it was obtained. They
can be passed by one thread to another, allowing unconstrained access
to the resource. Other identification mechanisms, such as global virtual
addresses in Amber, have trouble supporting heterogeneity.

ARCADE associates security information with all of its abstractions,
including data unit links. Data unit links are context sensitive, prevent-
ing illegal transfers of access rights. Once a task has access to a data
unit, the data unit link can be optimized to a pointer.

7. Conclusions

ARCADE demonstrates the value of an implementation-independent
architecture based on high-level abstractions. It shows that basing
abstractions on a computational model can leave adequate room for
performance optimization without dictating the method of computation.
Data units and data unit links are particularly valuabie for distributed
applications and for cooperation between dissimilar systems. While it
is not yet clear whether the ultimate micro-kernel will be superior to
macro-kernels, ARCADE tells us a great deal about what that ultimate
micro-kernel will be.
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Abstract

The Delta-4 project developed a distributed fault-tolerant architecture
featuring:

(a) A distributed object-oriented application support environment;
(b) Built-in support for user-transparent fault-tolerance;
(c)  Use of multicast or group communication protocols; and

(d) Use of standard off-the-shelf processors and standard local area
network technology with minimum specialized hardware.

This short paper gives a brief critical overview of the Delta-4 fault-
tolerance techniques and their validation. A subject-classified bibliog-
raphy is given for readers requiring a more in-depth description of
Delta-4 concepts and mechanisms and their validation.

1. Introduction

It is a common observation that fault-tolerance and distribution are
quite intimately related. First, should a single element of a distributed
system fail, users expect at worst a slight degradation of the service
that they are offered; distributed systems must thus at least have some
built-in fault-tolerance. Such distribution-motivated fault-tolerance is
thus aimed more at avoiding a decrease in dependability due to distri-
bution rather than achieving significantly higher levels of dependability
than in a non-distributed (fault-intolerant) system. Consequently, the
main aim in such “fault-tolerant” distributed systems is to tolerate the
common situation in which nodes in the system have become silent or
“crashed” (e.g., due to a local power outage). More rarely, attention is
also given to situations in which the distributed system may become
partitioned. In this case, the objective is to avoid the inconsistencies
that may occur should the various partitions be allowed to continue
operation as “independent” systems.

This work was supported from March 1986 to January 1992 by the CEC Esprit programme (projects 818 and 2252). The consortium
for project 2252 consisted of Bull SA (France), Crédit Agricole (France), Ferranti International (UK), IEI-CNR (ltaly), 1I'™8-Fraunhofer
(Germany), INESC (Portugal), LAAS-CNRS (France), LGI-IMAG (France), MARI (UK), SRD-AEA Technology (UK), Renault (France),
SEMA Group (France) and the University of Newcastle (UK). The opinions presented here are those of the author.
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On the other hand, systems that are specifically designed to achieve
high dependability by means of fault-tolerance can always be regarded
as being distributed at some level or another since it is impossible to
achieve fault-tolerance without redundancy. The redundant elements
are distributed in the sense that they must constitute independent fault
containment regions and must interact in such a way as to achieve a
given level of service although some of them may be faulty. Such
fault-tolerance-motivated distribution is therefore guided by a specific
requirement to improve dependability with respect to a fault-intolerant
(non-distributed) system. Consequently, much attention is paid to the
definition of the components that are the elements of distribution
(redundant fault containment regions), the way in which these compo-
nents can fail and the means by which they are interconnected. Since
the motivation in this case is high dependability (rather than just distri-
bution), it is therefore common to admit that components may fail in a
more arbitrary fashion than just by going silent. Furthermore, the inter-
connection scheme is often purpose-designed to be itself fault-tolerant
to avoid partitioning.

In the Delta-4 Esprit project, the aim was to investigate how both
objectives — distribution and fault-tolerance — could be pursued simul-
taneously to define an open and highly dependable distributed architec-
ture for money-critical (as opposed to life-critical) applications. We
wanted to be able to reap the potential modularity and multi-vendor
support advantages of open distributed systems and to take advantage
of distribution in order to provide useful levels of dependability by
means of fault-tolerance. The challenge was to find a way of linking
together standard, possibly heterogeneous, off-the-shelf computers with
user-transparent fault-tolerance implemented in software to minimize
the need for re-design of specialized hardware during technology

updates.

2. Failure Mode Assumptions and Hardware Architecture

To achieve high dependability, we did not want to restrict ourselves
systematically to the assumption that nodes were “fail-silent” in the
sense mentioned in the introduction. For such an assumption to be
justifiable to a high degree, it would be necessary to impose that all
nodes included in the system would be equipped with extensive self-
checking to ensure local error-detection with high coverage and low
latency. Such a requirement is hardly compatible with our desire to
accommodate standard off-the-shelf node hardware.

The least restrictive assumption about the way that nodes can fail is
that they are “fail-uncontrolled”, i.e., that they do not possess any local
error-detection mechanisms and can thus produce quite arbitrary or
even malicious behaviour. In particular, a fail-uncontrolled node may:

(a) Omit or delay sending (some) messages,
(b) Send extra messages,

(c) Send messages with erroneous content, or
(d) Refuse to receive messages.

Unfortunately, if complete nodes can fail in such an arbitrary fashion
then the interconnection scheme must be made much more complex
than the single (or possibly, duplex) broadcast channel that would be
sufficient for fail-silent nodes. For example, a fail-uncontrolled node
connected to multiple channels could fail by saturating all channels,
thus bringing down the complete system. Furthermore, protocols for
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ensuring agreement under such a failure mode assumption are notori-
ously complex and time consuming.

Therefore, the Delta-4 architecture is based on a hybrid approach
whereby each node is split into two sub-systems:

. An off-the-shelf computation component, called a hosz, that may
be fail-uncontrolled;

A communication component, called a nerwork attachment con-
troller (NAC), that is assumed to be fail-silent.

The fail-silent assumption for the network attachment controllers alle-
viates the problems stated earlier regarding agreement protocol com-
plexity and the use of broadcast channels. In Delta-4, the NACs of each
station are interconnected by a standard LAN (8802.4 or 8802.5).
Duplex (or even simplex) channels have been shown to be sufficient
for achieving a very low probability of communication system failure
in the maintainable environments for which Delta-4 is intended. The
communication system is therefore considered as hardcore and no
attempt is made at the application level to tolerate physical network
partitioning.

The network attachment controller consists of a pair of piggy-backed
cards that plugs into the host’s back-plane bus and interfaces the node
with the physical communication channels. The NAC is very similar to
any other standard LAN controller card; the only difference is that it
uses built-in hardware self-checking to substantiate the assumption that
it is fail-silent. Self-checking is achieved by standard duplication and
comparison techniques for the main processing part of the NAC in con-
junction with a watchdog timer. A hardware-implemented memory |
protection scheme is also used to prevent corruption of the NAC mem-
ory by some fail-uncontrolled behaviour of the host. Duplication could
not be carried out in the low-level interface to the network due to the
impossibility of synchronizing the specialized LAN-specific VLSI com-
ponents; coverage of faults in this part of the NAC therefore relies on
the built-in error detection capabilities of these components.

3. Fault-Tolerance Mechanisms

The NACs are the only specialized hardware components in the Delta-4
architecture; the rest of the Delta-4 fault-tolerance and functionality is
achieved by system software implemented either on top of the hosts’
local operating systems or on the NACs’ real-time kernels. The system
software consists of three parts:

) A host-resident infrastructure for supporting distributed compu-
tation;

A computation and communication administration system (exe-
cuting partly on the hosts and partly on the NACs);

A multipoint communication protocol stack (executing on the
NACs).

A particular host-resident infrastructure for supporting open object-
oriented distributed computation was developed for the Delta 4 archi-
tecture: the Delta 4 Application Support Environment (Deltase).
According to the philosophy of “open” distributed processing, Deltase
facilitates the use of heterogeneous languages for implementing the
various objects of a distributed application and allows the differences
in underlying local operating systems to be *idden (in practice though,
all the implemented Delta-4 prototypes were based on UNIX). Deltase
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provides the means for generating and supporting interactions between
run-time software components called “capsules” (executable represen-
tations of objects).

Fault-tolerance in Delta-4 is achieved by means of replicating capsules
on separate nodes. Delta-4 applications can be made incrementally
fault-tolerant on a service-by-service basis; at application configuration
time, the application designer can choose which services he wishes to
make fault-tolerant and to which degree. Extensive use is made of
group or multipoint communication protocols that enable capsule inter-
actions to be programmed without heed for the degree of capsule repli-
cation.

The design of the Delta-4 fault-tolerance mechanisms makes a clear
distinction between error processing and fault treatment. Error-
processing aims to remove errors from the computational state, if possi-
ble before the occurrence of a failure in the service delivered by the
system. It involves the coordination of interactions between replicas
using error detection and recovery or compensation to mask the fact
that one (or more) of the underlying nodes may be faulty. Subsequent
fault-treatment is aimed at preventing faults from being activated again.
It can be seen as self-repair facility that identifies and passivates faulty
nodes and, by creating new replicas, can allow software components to
survive further faults (within the limits of available hardware
resources).

Delta 4 provides three different - but complementary — techniques for
coordinating replicated computation: active, passive and semi-active
replication. The active replication technique relies on the assumption
that replicas supplied with the same input messages are deterministic in
the absence of faults. This technique must be used when hosts are
fail-uncontrolled; it allows messages produced by replicas to be cross-
checked in value and time to detect and compensate errors produced by
a minority of replicas. This cross-checking is carried out through an
inter-replica protocol on the basis of message signatures rather than
complete messages. The active replication technique can be optimized
when is is justifiable to assume that hosts are fail-silent (value error
detection is no longer necessary). The other two replication techniques
can only be used when hosts can be assumed to be fail-silent. The pas-
sive replication technique relies on a primary/standby approach in
which the primary checkpoints its state to the standby replica(s) when-
ever it sends an output message. At the expense of a decrease in per-
formance, this approach has the advantage of not requiring computa-
tion to be deterministic. The semi-active replication technique is a
hybrid approach that seeks to achieve the low recovery overheads of
active replication while relaxing the constraints on computation deter-
minism. This approach is based on a replica group consisting of a
leader replica and one or more follower replicas. The follower replicas
carry out exactly the same computation as the leader replica except
when some non-deterministic decision must be made; when this occurs,
they wait until the leader instructs them as to the decision that he took
at that point in the computation.

Any error detected locally (by a NAC or a host) results in the node dis-
connecting itself from the communication network. Any error detected
remotely (i.e., when active replication is used) is reported to the admin-
istration system that then passivates the incriminated host by instruct-
ing its NAC to remove itself from the network. The administration sys-
tem then attempts to carry out reconfiguration by cloning new replicas
on other nodes to replace those that were resident on the faulty node.
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This involves choosing the nodes on which new replicas are to be cre-
ated, setting up template replicas, initializing them by copying and
transferring the state of cohort replicas on unaffected nodes, and then
re-synchronizing each reconfigured replica group.

Since any detected error results in node passivation, this approach to
fault treatment treats all faults as if they were permanent faults. How-
ever, the mechanisms could be modified to provide an improved treat-
ment of temporary faults (widely known to be much more common
than permanent faults) which affect only a single replica (or even a
subset of replicas). In this case, the replica cloning operation could be
used to re-initialize the replica(s) on the same node instead of passivat-
ing the node and cloning all resident replicas to new nodes.

4. Validation

Validation — both from the verification viewpoint (removal of faults in
the specification, design and/or implementation) and the evaluation
viewpoint (quantification of the provided dependability and perfor-
mance) — should be carried out at each step in the process of producing
a “dependable” system. At the specification stage, validation consists
essentially of verifying that the system specifications are consistent
both with each other and with the requirements of the intended applica-
tion domains. This “informal” verification was carried out in Delta 4
by a peer review process during scientific and technical committee
meetings and during project reviews. More tangible validation activi-
ties were carried out during the design and implementation phases.
Ideally, all components of a system should be extensively validated.
However, for the money-critical (as opposed to life-critical) applica-
tions for which Delta 4 is intended, it was decided to restrict the valida-
tion to the most important (or the most critical) sub-systems.

Design validation is centered on descriptions or models of the future
implementation. Its purpose is (a) to verify that these models are con-
sistent with the specifications and (b) to evaluate (predict) some charac-
teristics (e.g., performance, dependability) of the future implementa-
tion. Two design validation activities were carried out:

) Protocol verification aimed at removing faults in the protocol
design was carried out on two protocols in the Delta-4 multipoint
communication stack: the basic atomic multicasting protocol and
the inter-replica protocol for active replication. Inconsistencies
of different nature were detected such as incorrect initializations
of local variables, state machine transition conditions that were
too weak, etc. Other inconsistencies, such as unspecified recep-
tions, non termination of certain protocol phases and message
duplications, were only detectable in some peculiar sequence of
events that it would be unlikely to obtain by simulation. Imple-
mentations of these protocols were derived from the formal
specifications.

Dependability evaluation work was carried out with a view to
quantifying the dependability actually achievable by the Delta 4
architecture. The initial work concentrated on the communica-
tion system and demonstrated the sufficiency of simplex or
duplex channels since undependability was mainly dominated by
the lack of coverage of the NAC self-checking mechanisms.
Later work considerer the availability and reliability of a simple
banking application using various Delta 4 fault-tolerance models.
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One important conclusion of this work was a demonstration of
the importance of input and output configurations on the overall
dependability.

Implementation validation is centered on testing actual prototype ver-
sions of the architecture instead of on models. Like design validation,
its purpose is two fold: (a) to verify that the implementation provides
the specified functionality and (b) to evaluate (measure) some charac-
teristics of the actual implementation. Implementation validation
included three aspects:

Performance testing was carried out to assess the overheads of
software-implemented fault-tolerance. In particular, the over-
head due to the cross-checking activity of the inter-replica proto-
col for active replication was assessed by measuring the round-
trip delay of a null-RPC (a client sends a message to a replicated
server that replies immediately with the same message). As was
to be expected, the signature-comparison technique that is used
causes the overhead to decrease rapidly with message size. With
very small messages (a few bytes) the overhead is in the order of
150%, which is lower than the 200% minimum that would be
expected when comparing complete messages from a triplicated
server. With large messages (several tens of thousands of bytes),
the overhead drops to about 30%.

Software reliability evaluation was carried out on many of the
major software subsystems of the architecture. Static testing
tools were used to identify important characteristics of the imple-
mented software so as to focus the testing effort on the compo-
nents that were likely to be the most unreliable. In addition, fail-
ure data was collected during the software development and test-
ing phase in order to predict the rate at which it can be expected
that residual design/implementation faults will cause the system
to fail when in operational use. Unfortunately, however, the
amount of data collected was insufficient for any useful estima-
tions of software reliability to be made.

Fault injection (into the prototype hardware) has been used as a
means for validating (a) the self-checking mechanisms of the
Delta 4 network attachment controllers (NACs) and (b) the
implementation, on these NACs, of the Delta-4 atomic multicast-
ing protocol. Fault injection is a technique for testing fault-
tolerant systems in the presence of the very faults they are meant
to tolerate. In addition to identifying implementation faults (and
residual design faults), fault-injection also enables the measure-
ment of the effectiveness of the built-in error detection and
fault-tolerance mechanisms by means of coverage, dormancy
and latency estimations. As a result of these fault-injection
experiments, several improvements were made to the NAC self-
checking mechanisms and the atomic multicasting protocol
implementation with demonstrable evidence of reliability
growth.

5. Conclusions

Several lessons can be learnt from the distributed software-
implemented approach to hardware fault-tolerance adopted in Delta-4:

The performance of the system, especially in the presence of
faults, is evidently an important aspect to be taken into account
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when comparing the approach with hardware-intensive tightly-
synchronized approaches. Still, the performance overheads are
quite reasonable and are acceptable price to pay when consider-
ing the flexibility advantages of software-implemented fault-
tolerance.

Distributed techniques for fault-tolerance like those used in
Delta-4 are also capable of tolerating those software design faults
that cause replicas to fail independently. However, this advan-
tage should be carefully weighed against the complexity of the
additional system software that is necessary for fault-tolerance.
Unless one is careful, design and implementation faults in this
additional software can have very detrimental effects on system
dependability. It was unfortunate that insufficient software fail-
ure data could be collected during the project’s lifetime for it to
be able to assess the trend in system software reliability. Never-
theless, the achievement and assessment of reliability of the addi-
tional system software would clearly be facilitated in a pure
development framework rather than in a pre-competitive project
such as Delta-4.

Another possible disadvantage of distributed fault-tolerance
implemented by software concerns the interface that is offered to
application software. Re-utilisation of code written for a non-
fault-tolerant system is often difficult and sometimes impossible.
Even new code should be written respecting special rules if the
choice of replication technique is be left open (e.g., to ensure
replica determinism). One possible way round this problem,
other than resorting to tightly-synchronized redundant hardware,
may be to implement the fault-tolerance software on top of a
micro-kernel together with servers providing a “standard” oper-
ating system interface. The use of micro-kemnel technology
could also greatly simplify the checkpointing and cloning opera-
tions if the execution contexts of replicas can be clearly
identified and managed.

The Delta-4 project nevertheless showed successfully that software-
implemented mechanisms can be used to tolerate hardware faults in
off-the-shelf distributed computing nodes. A little specialized hard-
ware support can also allow the range of accommodated host failure
modes to be considerably wider than in approaches that prefer to ignore
hardware details by means of simplifying assumptions that are often
unjustified.
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Abstract

This paper discusses the concepts developed within the DOMINO pro-
ject on Domain Management for Open Systems, and how these con-
cepts are implemented. Domains are a means of grouping objects, dis-
tinct from the management policies which are specified in terms of
domains. Domains and policies are discussed from the viewpoint of
both the manager and the underlying mechanisms which implement
them. The emphasis of the user view is on conceptual clarity and the
emphasis of the mechanism view is on efficient implementation in dis-
tributed systems. Both views need to be implemented, although in
some cases there may be a direct correspondence between the two
views. The paper argues that keeping managers independent from the
domain of objects they manage gives flexibility and simplifies both the
user and mechanism views of system management.

F.E Smith, the famous advocate, once saw two housewives
haranguing each other from upstairs windows across a
street. “They will never agree.” he observed, “They are
arguing from different premises.”

1. Introduction

There is not yet general agreement on the concepts which are needed
for the automation of Distributed System Management (DSM). This
paper presents a set of concepts for specifying management policy as
defined and implemented in the Domino project. Discussions with
other research groups and within standard organisations has indicated
confusion between the user interface view of management concepts
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+ Abbreviated to domain in this paper.

and the underlying implementation mechanisms. Both views are
needed to allow users to express their management requirements while
enabling efficient implementation of the mechanisms.

‘The Domino project on Domain Management in Open Distributed Sys-
tem is a collaborative project funded by the UK Information Engineer-
ing Directorate and involves Imperial College, SEMA Group and Brit-
ish Petroleum. This project is concerned with managing very large dis-
tributed processing systems which typically consist of multiple inter-
connected networks and span the computer systems belonging to a
number of different organisations. They cannot be managed from one
central point, but management has to be achieved by negotiation
between independent managers who wish to cooperate while retaining
their autonomy.

We have identified two separate generic activities of managers in sys-
tems:

Performing management operations for monitoring or control-
ling the behaviour of object related to a management function
such as configuration or accounting.

Creating, interpreting and monitoring policies. Policies are dif-
ferent from management operations. A management operation is
an instantaneous activity, whereas a policy is intended as a per-
sistent means of influencing operations. Large scale systems
may have millions of objects so it is impractical to specify poli-
cies for individual objects. Policies need to be specified and
applied to a set of objects as discussed in more detail below.

It was the need to be able to group objects in order to specify a com-
mon policy for them which led to the introduction of management
domains’ as a key concept in the Domino project. A domain is an
object which represents a set of objects which have been explicitly
grouped together to apply a common management policy. A domain is
also used as a means of structuring the namespace for objects.

The concept of grouping objects should not be confused with that of
encapsulation. Hierarchical composition can be used to construct a
composite object from several primitive or other composite objects
[Mag89a]. The composite object is viewed as a single object for the
purposes of invoking operations and the interface of the composite
object hides its internal structure from the user. The component objects
are then said to be encapsulated. Encapsulation is an essential concept
for coping with the complexity of distributed systems and for building
management systems. Although it is sometimes useful to apply a man-
agement operation to a set of objects, in many cases the managers have
to perform management operations on the individual objects, which
encapsulation prevents. Domains provide grouping but not encapsula-
tion. Section 2 of this paper distinguishes between the user and mecha-
nism views of management, and justifies the need for the coexistence
these views in a system. The views are related to the domain concept
in section 3 and to policies in section 4. Section S5 shows how domains
can represent users and manger positions. Section 6 discusses some of
the related work on domains, and section 7 relates our approach to
Open Distributed Processing (ODP) viewpoints.
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2. User and Mechanism Views

One aspect of DSM which has taken some time to emerge is the impor-
tance of distinguishing between a manager’s view of an enterprise
which is often reflected in the human interface to the management sys-
tem and the underlying mechanisms used within the system for imple-
menting this view. The following examples will help to illustrate this.

2.1. Object Based Approach

The emergence of graphical interface technology has made the object
based approach to human interfaces very popular. Objects are repre-
sented by icons which can be selected by means of a mouse, and the
operations applying to an object can be selected from a menu for invo-
cation on the object. Different icons are used to represent object types,
and instances are distinguished by means of names. This approach is
supported by object oriented environments which provide the means to
define object types, create/delete instances of objects and for objects to
invoke operations on each other. The manager’s view is thus one of
obtaining information on the objects they are managing and performing
management operations on them to change their behaviour.

In some cases this view may not be able to map onto the underlying
mechanisms. The object being managed may be a hardware compo-
nent which does not support an object invocation mechanism compati-
ble with that of the manager object. It is then necessary to “front” the
managed resource with an adapter which provides a representation of
the resource which is compatible with that of the manager. The
approach of a managed object separate from the resource object is part
of the OS! Management model [ISO91a] and has been built into both
their user and mechanism view even though it is inappropriate for soft-
ware objects, which can be managed directly. Another justification
given for managed objects being independent from the resources they
represent is that the managed object can provide an abstraction of the
resource for management purposes and hide the resource’s normal
functionality. Our approach (Figure 2.1) simply assumes a managed
object may have multiple interfaces such as a management interface
which defines the management operations it supports, an interface for
interaction with a file service, plus other interfaces to support
application-dependent functionality.

Management
Policy

R Management
Interpret Interface

Information Normal

E Functionality
Q ' Control Interfaces
N

Manager Managed Object

Figure 2.1: Domino Management Interactions
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There is another example of low level mechanisms which confuses the
higher level object interaction view in the OSI Management Model.
The concept of a local agent in a computer is a common means of
implementing remote invocations; the agent receives an invocation
message from a remote manager and then performs the invocation on a
local object. Again this has been built into the OSI management model
rather than being considered a transparent implementation mechanism.
If the OSI model is represented directly in an object based implementa-
tion a manager would invoke an operation on a remote manager agent,
which would invoke an operation on a local managed object, which
would finally invoke an operation on the resource being managed,
rather than the manager directly invoking operations on a managed
resource object (see Figure 2.2).

2.2. Management Domains

Typical graphical window interfaces to computer systems provide the
concept of a directory or folder to contain files or programs. The direc-
tory is a naming context so that object names need only be unique
within a directory. The human manager needs a similar view for
grouping objects in order to apply a common management policy. A
domain provides this means of grouping objects for management pur-
poses. From the manager’s viewpoint, domains contain named objects,
but it is necessary to permit objects to be members of multiple domains
to reflect overlapping responsibility or different types of management
responsibility for the same object. For example the manager responsi-
ble for the security of an object may be different from the manager
responsible for maintenance of that object.

The underlying implementation mechanism for domains has no concept
of containment of the object itself. Instead the domain holds a refer-
ence to an object and provides a mapping from a text name string to an
internal object identifier and address (see section 3.3). Users refer to
objects by names or using a pointing device, while the system refers to
them by object identifiers.

2.3. Access Rules

Access rules specify discretionary access control policy in terms of the
set of operations which any of a set of users is authorised to perform on
any of a set of target objects. This also is a concept which users find
intuitively easy to deal with, but does not implement efficiently. It
would involve unreasonably long searches to evaluate access requests
if the system had to search through all access rule objects in order to

Management

Common Management interaction

Protocol (CMIP)

= Manager
Agent

Figure 2.2: OSI Management Interactions
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2.4. Users

decide whether to allow the request. Therefore, for the Domino pro-
ject, we are implementing the access rules by means of Access Control
Lists (ACLs) attached to target object domains. The user sees and
makes policy in terms of access rule objects, but the system maps these
access rules onto ACLs, which it uses as the mechanism to interpret
policy when it receives an access request. See Section 4.

Although users of a computer system may be human, managers manip-
ulate user objects representing registered users within the computer
system. These user objects define the resources allocated and the ser-
vices accessible to the user. There are substantial advantages to be
gained from a mechanism in which user objects are implemented as a
special kind of domain, which we call a user representation domain
(URD). The URD represents the persistent aspects of a user from one
logon to the next. When the user logs on, process objects which tem-
porarily represent the user become members of the URD and gain the
privileges and authority which belong to that user. When the user logs
off, the processes cease to be members and no longer have the users
privileges. In this case the user interface view of user objects does not
use the concept of a domain at all, but the system uses the mechanism
view of a domain.

We believe that it is important to maintain both a distinction and a rela-
tionship between the user interface and mechanism views of manage-
ment concepts. As with any system, the user requirements must drive
the mechanism, but it must be subject to the condition that it can be -
implemented efficiently. The user interface and mechanism views in
Domino both have to be implemented; human managers have to be able
to work with objects which are implemented in accordance with their
view, while the underlying system has to be able to use a mechanism
which provides an efficient implementation of the functions seen by the
manager.

3. Domains

We have already observed the need to be able to group and structure
objects for management operations and policies. In practice, it is an
essential aspect of this grouping that it should be hierarchical. There
are two reasons for this. The first is that, as illustrated in the examples
below, many existing special-purpose management structures use hier-
archical structuring, and so any generic method of grouping must be
able to reflect this. In addition, hierarchical structuring methods have
come into existence because it is, in practice, impossible to manage
large numbers of objects in a purely linear way, hence the widespread
use of tree structures of objects in computer systems. Exactly the same
reasoning applies to management policies; a means of hierarchical
grouping of objects must be integrated into any system for defining
policies.

Two familiar examples of hierarchical grouping are the description of
organisations in a hierarchical manner, and the grouping of files into
hierarchical directories. Figures 3.1 and 3.2 show these examples
expressed traditionally; Figure 3.1 is an enterprise view of its personnel
structure, while Figure 3.2 is a file directory structure. Both are typi-
cally, but not necessarily, associated with hierarchical policy state-
ments, e.g. “members of an organisation have authority over those
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Figure 3.1: Organisation Tree

below them in the hierarchy” or “access to a directory gives access to
all its subdirectories”.

In order to represent these concepts we have defined domain objects,
with attributes which include a policy set and a set of constraints.
Their purpose is to group objects together for management purposes,
while not affecting the objects’ normal functionality. Domains are
described in [Slo89a].

3.1. The Policy Set and Subdomains

The policy set of a domain consists of an enumerated set of member
objects to which the policy associated with the domain applies. From
the point of view of a user it would have been quite feasible to define
domain membership in terms of a predicate on object attributes, e.g.
“the set of all users under 65 years age”. However determining the set
of members would require the underlying mechanism to examine every
object within the system to check whether it met the constraints of the
predicate. Also tracking current domain membership as the attributes
of distributed objects change would incur very heavy overheads (see
our comments on constraints below). This is an example of problems
with the mechanism view which forced us to drop a concept from the

Files Directory
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Directory *

* Registered under the

I 1

Finance Research
Directory Directory

Suppliers ABCDEF X Project
Directory * Project Directory
Directory
]

Data Protection Act ABCDEF ABCDEF

Private Shared
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Figure 3.2: Directory File Structure

Technical -~ OpenForum *92 - Utrecht, 23-27 November




User and Mechanism Views of Distributed Systems Management

user view. However, another motivation for the decision is that it
avoids potential logical paradoxes, such as Russells Paradox: is the
class of all classes which are not members of themselves a member of
itself? This definition cannot be expressed by us and therefore the
paradox cannot arise.

There are some definitions of “domain” which do not make it clear
whether the members are defined by enumeration or predicate. For
example the ISO Security Frameworks Overview [ISO92a] says: “A
security domain is a set of elements under a given security policy
administered by a single authority for some specific security relevant
activities.” We are given no indication of whether its members are
defined by the predicate “under a given security policy ..." or whether
they are an enumerated set of objects to which a policy is to be applied.

The policy set achieves a simple grouping facility by enumerating the
set of objects which are direct members of the domain. Membership
of domains has no effect on the state of the member objects. However,
the power of domains for structuring is provided by the concept of sub-
domains which are domain objects that are members of other domains.
In order to understand this, it is useful to explain the subdomain, over-
lap and subset relationships between domains.

If one domain object is a member of another, the first is referred to as a
subdomain of the second. In Figure 3.3a, we refer to D2 as a direct
subdomain of D1, and to D4 as an indirect subdomain of D1. An
object is a direct member of a domain if it is in the domain’s policy
set. An object is an indirect member of a domain Dx if it is a member
of a domain Dy which is a subdomain of Dx. Note that indirect mem-
bers of a domain are not enumerated in the domain’s policy set. When
we refer to a “member” (unqualified), we mean a direct or indirect

member. If an object (domain or other) is a direct member of a
domain, then the domain is its parent, and if it is a member, then the
domain is its ancestor.

Two domains overlap if there are objects which are members of both
domains. A special case of overlapping occurs when the objects in one

(a) Subdomain Relation (b) Subdomain or Subse: Relarion (c) Subset Relation
(ambiguous notation)

Figure 3.3: Subdomain and Subset Relations
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domain are a subset of the objects in another. This is illustrated in Fig-
ure 3.3c.

An alternative notation for showing a subdomain relation is shown in
Figure 3.3b. It is simpler, but ambiguous, as it can also be seen as a
subset relation. We use the “shorthand” notation of Figure 3.3b in this
document to denote the subdomain relation, for compactness. Figures
3.4 and 3.5 show the examples of Figures 3.1 and 3.2 expressed in
terms of domains in this way.

In a static situation the evaluation of the indirect membership of a
domain hierarchy such as shown in Figure 3.3 would yield the same
overall set of objects whether the domains were subsets or subdomains.
However, the effect of removal or inclusion of an object in D2 will

Files_Dom

Admin_Files Finance_files Research_Files
' ™
Personnel_Files Suppliers_Files

.i ABCDEF_ ABCDEF_
: Private Shared

Res_Files_X ABCDEF_Project

* Domain of files registered under the Data Protection Act

Figure 3.5: Domain Representation of Directory File Structure
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have different results for the evaluation of the membership of D1,
depending on the sort of relation.

If D2 is a subset of D1, as in Figure 3.3c, then the addition of an object
010 to D2’s policy set does not affect D1 in any way and there is no
resulting relationship between 010 and D1. After the operation, D2 is
no longer a subset of D1, but D1 and D2 overlap. If D2 is a subdomain
of D1, as in Figure 3.3a, then 010 becomes an indirect member of D1
and of all parent domains of D1.

Figures 3.4 and 3.5 show the domain representation of the hierarchies
shown in Figures 3.1 and 3.2. In Figure 3.4, Research Dept is a subdo-
main of ABC Ltd and General Research is a subdomain of Research
Dept, so when a user becomes a member of General Research he auto-
matically becomes an indirect member of Research Dept and ABC Ltd.
However, if the relationships were subset relationships instead, it
would be necessary to perform three separate operations to include the
user in the three different domains. For this reason subsets are not a
particularly useful relationship for structuring management.

The 1SO Security Frameworks Overview defines “subdomain” as a sub-
set rather than a membership relationship, which makes hierarchical
structures difficult to express.

3.2. Constraints on Membership Operations

We envisage the constraints attribute of a domain being used to place
constraints upon the membership of the domain. Some examples of
possible application-specific constraints are:

° There must be at least two members of the domain of Security
Administrators.

Processors in a domain must be able to support the M68000
instruction set.

Destroying an object is not possible if the object is still a member
of another domain.

There are of course two possible kinds of constraint. The first, which
we favour, is a constraint upon the operations which affect domain
membership, typically the create and destroy operations for any object
type and the include and remove operations on a domain. These add
and subtract objects to and from the policy set. The predicate defined
by the constraint has to be evaluated once only, when the operation is
performed. Constraints on the number of members, object types or
other object attributes can be enforced by constraints of this kind. The
second kind of constraint is a general predicate, which the system is
required to maintain, about the attributes of members of a domain. We
regard this as being potentially very difficult to achieve, because every
time any application functional operation attempts to change an
object’s attribute, the system is required to verify that the domain con-
straints, of every domain of which the object is a member, are not vio-
lated. We do not therefore envisage users being permitted to specify
constraints of this kind. We still have a lot of work to do on con-
straints.

3.3. User and Mechanism Views of Objects and Domains

There is no incompatibility between the user view of objects being con-
tained in domains and the mechanism view of actually holding refer-
ences. The mechanism view is in fact what is implemented, aud the
user view is provided by filtering out the invisible mechanical features
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User View

Object Name

Parent Relationship

Other Attributes

Mechanism View

oD

Parent Set

Other Attributes

Figure 3.6: User and Mechanism Views of Objects

and presenting objects in terms of names, not object identifiers. This is
a summary of the differences:

In the users view, objects are referred to by local names (within a
domain) or a domain path name plus local name. In the mecha-
nism view they are referred to by unique identifiers, through
addresses. An OID (Object ID), consisting of its address and
identifier, is associated with each object.

The decision to take this approach for the mechanism was in order to
avoid possible inconsistencies when an object is a member of several
domains; there is only one copy of the object, upon which all opera-
tions are performed. The approach achieves consistency at the cost of
having to perform remote accesses when the object is remote from one
of its parent domains. A different approach is being considered by the
DOMAINS project [DOM91a), where even in the mechanism view it
will be a local shield object which is encapsulated with a manager
within a domain. The shield object may cache state information relat-
ing to the remote managed object. This requires mechanisms to main-
tain consistency of the distributed and replicated state information
relating to a managed object which is a member of multiple domains.
Our experience indicates that the complexity and costs in maintaining
consistency far outweighs the benefit of local caching of the compara-
tively small amount of management information needed for a managed
object.

Policies relate to domains, and in order to determine the policies which
apply to a particular object, it is necessary to know its ancestors. It is
impractical to inspect all domains for this purpose, so in our implemen-
tation the domains service maintains a parent set for each object,
which is a list of its parent domains, enabling derivation of its ances-
tors. The parent set is the implementation mechanism for the
parent/ancestor relationship of the user view.

The relationships between the user and mechanism views of objects
and of domains is illustrated in Figures 3.6 and 3.7.

User View

Object Name

Parent/Ancestor Relationship

Policy Set { Name }

Constraints

Mechanism View

OID

Parent Set

Policy Set { (OID, Local Name) }

Constraints

Figure 3.7: User and Mechanism Views of Domains
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3.4. Domain Expressions

Domains and subdomains are a powerful means of expressing hierar-
chical membership and set union, but provide no means of expressing
other basic set operations such as Set Difference and Set Intersection.
Set Difference can express sets of objects such as “all files in
Payroll_Files except Payroll_Master”. Set Intersection can express sets
such as “all files which are in Payroll_Files and also in Personal_Data”.
We have therefore introduced domain expressions, which allow the
expression of a set of objects in a policy by means of a formula con-
taining the standard set operations.

It would be possible to use domain manipulation operations to create a
new domain with the required membership e.g. create DomA with the
same members as (DomB N DomC), and refer to DomA in the policy.
However, the policy then applies to membership of DomB and DomC
at the time DomaA is created and not at the time that its applicability is
checked. Static enumeration of objects at some point in the past is not
usually what is required in evaluation of policies, and domain expres-
sions in a policy such as an access rule are evaluated at the time the
rule is checked.

4. Policies

We have recently presented a generic user view of policies [Mof91a]
which identifies their essential characteristics and models them as
objects with the following attributes: subjects who are motivated or
authorised, depending on the modality of the policy, to achieve goals
on target objects. While we believe that this may be a good model to
develop, in Domino we so far only have one kind of policy object
which is modelled, and this is an access rule. The user view of an
access rule is straightforward. It is an object with four attributes:

° Subject Domain, which is a domain expression defining the set
of subjects of the policy.

Operation Set, a set of permitted operations.

Target Domain, which is a domain expression defining the set
of target objects of the policy.

Constraints, which limit the applicability of the access rule, and
which we currently see as using generally available information
such as date, time of day and the terminal at which the current
user is logged on.

An access rule, shown in Figure 4.1, maps exactly onto policy objects
in which the modality is positive authorisation and the goals are opera-
tions in the interface of the target objects of the access rule. There is a
good reason for users having a view which shows them access rules,
rather than generic policies, and this is that they actually think in terms
of making rules which authorise access or remove authorisation, rather
than in terms of making generic policies. We therefore envisage any
generic model of policies which may emerge in future as a framework
for ensuring that a consistent user interface is provided rather than a
view which the user sees directly.

The actual representation of authority to perform management opera-
tions in an organisations hierarchy is not by the domain hierarchy, but
by access rules which give users that authority. The contribution of
domains to that authority is that, while access rules determine the oper-
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Figure 4.1: An Access Rule

ations which can be performed, the target domains of the rules deter-
mine the scope of that authority.

The meaning of an access rule is straightforward. It states that any user
object in the set defined by the User Domain of the rule is authorised to
perform any of the operations in the Operation Set on any of the
objects in the set defined by the Target Domain of the rule. There is a
fixed policy that in the absence of authorisation by an access rule, an
operation request (attempted access) is forbidden. In the user view of
the system, whenever a user issues an operation request, the system
must search every access rule in the system, allowing the request if an
access rule matching it is found, but forbidding it if none can be found.
This is clearly completely impractical as a mechanism.

We therefore use two implementations of access rules: an access rule
object corresponds to the user view (Figure 4.2) and is the means by
which users specify access control policy. The underlying mechanism
which controls access uses Access Control List (ACL) entries for each
domain (and its subdomains) which is specified in the Target Domain
expression of the access rule (for implementation efficiency the lowest
level of granularity for target objects is a domain). The Access Con-
trol Entries (ACEs) consist of the User Domain expression and the
Operation Set of the access rule object. Every operation request carries
with it an authenticated list of the domains which are ancestors of the

User View Mechanism View

User Domain (Name Based DE")

Operation Set

Constraints

Target Domain (Name Based DE)

Object Name OID

Combined to form an ACL entry
which is an attribute of every domain
affected by the Target Domain ex-
pression.

Not yet implemented

Every domain affected by the Target
Domain expression holds an ACL
entry.

Figure 4.2: User and Mechanism Views of Access Rules

t DE - Domain Expression.
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Operation
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ACL
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UDom1; OpA, OpB
ACL
UDom]1; OpA, OpB

Access 66htrol Entry

(ACE)

Figure 4.3: An Access Rule, and its Corresponding Access Control Lists and Entries

user object which makes the request. The system can therefore evalu-
ate the request by reference solely to the information in the operation
request and the parent domains of the target object. Details of this
implementation can be found in [Twi92a]. The relationships between
the user and mechanism views of access rules is illustrated in Figures
4.2 and 4.3. Note that the access rule applying to TDom1 in Figure 4.3,
propagates to subdomains TDom2 and TDom3 and so appears as
entries in the ACL of each domain.

There is clearly a problem of ensuring consistency between the views
of access rules. Ideally, at the design stage, we should have taken our
formal specification of the user view [Mof91b] and either refined it to
the mechanism view while ensuring the preservation of properties or
created a formal specification of the mechanism view and proved that
the properties were preserved. However, in the absence of tools to sup-
port these activities we have opted for an informal design of the mecha-
nism view.

There also a problem of ensuring consistency between views during
operation, as the two views can become inconsistent through system
errors and failures. We are therefore developing consistency checking
and restoration tools in order to diagnose and recover from any incon-
sistencies.

5. Representing Users and Manager Positions

Two default domains shown in Figure 5.1 are needed to represent
human users within the system:

i) A User Representation Domain (URD) is a persistent represen-
tation of the human user or manager. When the user logs into the
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system an user interface object is created within the URD and
inherits all access rules specified for the URD.

A User Personal Domain (UPD) corresponds to a user’s home
directory and represents the personal resources which the user
“owns”. In addition the user may have limited access to other
service domains representing the shared resources the user can
access.

In most cases policies should be expressed not in terms of individual
users but in terms of manager positions which they occupy so that
when the human manager is transferred to another position, the access
rules pertaining to the positions do not have to be changed. Since posi-
tions are “occupied” and domains have members, the correspondence
is so close that, even at the user view, we regard it as satisfactory to see
positions as being represented by domains, with constraints on mem-
bership operations to ensure that only user objects can be members and
that there are the appropriate limits on the number of members. As far
as practical, all access rules are specified with respect to a Manager
Position Domain (Figure 5.2). Allocating a human manager to a posi-
tion is accomplished by including his/her URD within the position
domain. The manager automatically inherits all rights for that position
and may be a member of multiple position domains if performing mul-
tiple management roles.

6. Alternative Views of Domains

One feature of several other approaches to the definition of manage-
ment domains stands out. This is a definition of domain which includes
both the manager and the objects which are managed [ISO92a,
DOM91a]. It may also include an implicit or explicit definition of the
management operations or goals in the domain. It then enables policy

User Representation
Domain (URD)

User interface

User Personal
Domain (UPD)

-

R L

~

Service Domains

Figure 5.1: Default User Domains
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to be expressed in a single object, without the need for a separate pol-
icy object. Also, in the DOMAINS approach the domain encapsulates
the manager and objects.

Domains should not be defined to include managers as well as target
objects, for the following reasons:

. Managers in one organisation may be given (limited) manage-
ment rights over objects in other organisations. A domain which
includes managers from one organisation with objects from
another organisation leads to policy and implementation prob-
lems. The manager or the managed object has to become a
member of a domain “owned” by another organisation. What are
the policy implications of this? Does the access control system
allow the operation? What if an external manager is only to be
allowed a limited subset of the management operations which are
available to local managers?

Encapsulating managed objects plus managers in a domain
makes it very difficult to permit the objects or managers to be in
multiple domains. Implementing a “shared” encapsulated object
is not easy as the encapsulated object is usually dependent on the
encapsulating object for its existence. In some circumstances it
may be appropriate to encapsulate a manager with the objects it
manages and treat this composite object as a single entity. How-
ever the model should permit, but not enforce it.

A single manager object may be responsible for managing multi-
ple independent sets of objects and so would have to be included
in multiple domains.

There is a need to specify policy in terms of the user’s position in
an organisation, not the individual user, and so a new concept of
position has to be invented.

There is sometimes a need to treat managers as managed objects
in a domain hierarchy which is independent from the domain
hierarchy of the objects they manage. How can this be achieved
if managers are in the same domains as the managed objects?

We have no doubt that these questions can be solved, but only at the
cost of additional complexity. We believe that our simple concept of
domain and the use of access rules to indicate the relationship between
managers and managed objects makes it much easier to represent the
flexible relationships shown in Figure 6.1.

User
Representation Position
Domain

Figure 5.2: Manager Positions
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The DEC Enterprise Management Architecture [Str91a)] uses a domain
to define a “sphere of interest of a set of managed objects for a man-
ager” — managers are not part of the domain. Only the managers are
aware of the domains and objects do not know which domains they are
members of. This model is compatible with the Domino approach as it
implements a subset of our concepts. There are no domains of man-
agers and relationships between a manager and domain are implicit in
the knowledge of the domain name rather than explicitly shown by the
use of access rules. They do not use the domains for access control.
Domain membership information is held by the name service.

7. ODP Viewpoints

The I1SO Open Distributed Processing (ODP) work [Lin91a] defines the
following viewpoints on distributed processing:

° Enterprise viewpoint — this describes the overall objectives of a
system in terms of roles, actions, goals and policies. Many of the
user view concepts we have discussed in this paper e.g. domains,
users, manager positions, policy would have to be modelled in
the enterprise viewpoint.

° Information viewpoint — this provides a framework to describe
the information requirements and information flows of a system.
It does not have to differentiate between parts that are to be auto-
mated, or performed manually.

) Computation viewpoint — this provides a framework for mod-
elling the operations necessary to automate information process-
ing. The mechanisms required to support this model are
specified in the engineering projection of the system.

) Engineering viewpoint - this provides a framework for describ-
ing how to mechanise an application.

[ Technology viewpoint - this provides a framework for describ-
ing the technical artifacts from which a distributed system is
built.

Our user interface view has points in common with both the informa-
tion and computation viewpoints. It describes the information which a
user is dealing with, but it is also explicitly an automated view, because
it is the user interface to a system.

Manager Managed 4 A
Domain Object Domain P

L R —

O
i
O
O]
4
>
H[3S

Reflexive Management

x
E
5

Figure 6.1: Typical management relationships
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The obvious parallel for our mechanism view is the engineering view-
point. However, the mechanism view does not provide additional func-
tionality for the user interface view, such as the transparencies which
are provided as a service by the engineering viewpoint to the computa-
tional viewpoint. All that it does is provide identical functionality with
better performance. Extra functionality, such as transparencies, could
also be provided by it — we plan to provide replication of domains for
fault tolerance - but need not be.

We believe that our identification of a user interface view is an essen-
tial aspect of our system modelling which is not recognised explicitly
by ODP. A corollary of this view is a consideration of the performance
implications which then forces a mechanism view upon us. If this were
to be implemented on an ODP platform, it is probable that we would
choose to represent both the user interface and the mechanism views
with the computational viewpoint. This is the highest level at which
the viewpoint is explicitly automated, and would enable the trans-
parency services provided by the engineering viewpoint to be available
to the implementations of both our views.

8. Conclusions

There are several tasks to be performed by users carrying out Dis-
tributed System Management. One of these is grouping and structuring
large numbers of objects. We achieve this by our concept of Domain
objects, allowing hierarchical structuring by allowing domains to be
members (subdomains) of other domains. Another task is to define the
actions which managers are motivated and/or authorised to do, and the
objects which are the targets of their management. This is done by the
definition of a generic Policy object, of which Access Rules are a spe-
cialisation. There are, of course, other tasks which we have not yet
even recognised, which will be revealed by methodically analysing the
power and limitations of our present concepts.

Work on implementation in the Domino project has shown that it is
essential to have separate coexisting user and mechanism views of
some of the concepts, both of which are implemented. The emphasis
for the user view is conceptual clarity while the emphasis on the mech-
anism view is efficient implementation. There are substantial differ-
ences between the user and mechanism views of Domains, while
retaining the same basic structure. On the other hand the structure of
the mechanism for Access Rules is completely different from the object
which the user sees.

We have developed an approach to Distributed System Management
concepts which separates the different concerns of managers into two
main types of object which they can work with: Domains and Policies.
We have further separated these into User and Mechanism views. This
has enabled us to address our work to the correct concern and at the
correct level, in order to make sound progress.
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Abstract

The OSF Distributed Computing Environment (DCE) constitutes a set
of technologies which have been selected through an open acquisition
process and integrated into a coherent DCE architecture. This paper
discusses the architecture of DCE while focusing on the architecture of
the name service as one of the key elements.

The notion of the cell is introduced and described. The cell is an essen-
tial property of the DCE architecture. While providing a means for
modeling a distributed system, cells go beyond being a formalism for
describing the system. This paper elaborates on the role and purpose of
the cell, the semantics of the cell namespace, the placement in a large
worldwide spanning system, the implications of security in a dis-
tributed system, and other related architectural properties of DCE. All
this will be discussed in conjunction with other architectural
approaches of modeling distributed systems.

The research and engineering work on this paper is based on a leading
involvement with this project during the last 4 years. It includes stud-
ies and evaluation of worldwide available technologies and research
projects, architectural, design and developmental work on these tech-
nologies and experience with further usage of this system, in particular
the integration of the object oriented distributed management technol-
ogy, using DCE Naming and Security Services.

1. The Key Elements of a Distributed System

The DCE architecture was determined and developed by analyzing cur-
rently available technologies and by defining the inherent properties of
distributed systems [Les90a, Joh91a). Essential requirements are the
needs for integrating networked systems into a coherent distributed sys-
tems environment and for solving system growth from homogeneous
parallel processing systems into distributed systems [Bir89a].

The architecture of a distributed system cannot make any assumptions
on homogeneity due to the diversity of the distributed environment.
One has to deal with heterogencity on all levels, from different
machine types, various networks and communication protocols, up to
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service levels. Multipurpose services may be sufficient for most appli-
cations but for various reasons, be it competition or be it the need for
especially tailored services, the distributed systems architecture must
be capable of adopting diverse technologies.

Another significant area which needs attention in architecting the dis-
tributed system is the need for unlimited growth of the system. The
entire connected distributed system must be sufficiently scalable world-
wide and may have to deal with millions of nodes.

1.1. The Core Distributed Services and the Role of Naming

In creating an architecture for the distributed computing environment
we were faced with the requirement that the traditional modeling of
single systems on one hand and purely network and communications
technologies on the other hand are not sufficient to provide a coherent
view of the distributed system. Thus, we developed an architecture
which provides for an integration of a well defined set of core services,
creating an infrastructure for programming and using the facilities of
the distributed system. These services include technologies for Remote
Procedure Call (RPC) based communication, security, a provider for a
truly distributed time, and a naming system [OSF91a, OSFO1b]. Figure 1
shows the relationship of the DCE technology components.

Naming was always considered to play a central role in meeting the
goal of providing transparency and homogeneity to the consumers of
the system by hiding the inherent complexity, heterogeneity, and diver-
sity of the distributed environment. The naming architecture must be

Other (Future)
Distributed Services

Distributed Directory
Time Service Service

-~ 3 o 3 ©®o o » 3 o0 I

Remote Procedure Call

Threads

Figure 1: DCE Component Architecture
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able to cope with the broad variety of entities in the system as well as
with the unlimited size and growth.

One may imagine how different this can be. Already after only 12
years of Internet the Domain Name Service (DNS) just hit the 1 mil-
lionth registered node, while these nodes are only network addressable
hosts, and other to be named and addressed entities such as distributed
services are not manged with DNS. Furthermore, the increasing settle-
ment of object oriented modeling and programming in the distributed
environment will have to deal with the creation, and deletion, of objects
at a much higher rate. Even if only a small part of these objects are
permanent and need to be registered, it becomes obvious that the
growth rate will be even higher than currently experienced.

While the entities mentioned above, network nodes, services and appli-
cation objects, are essential for architecting naming in the distributed
environment, there are a number of other types of objects such as per-
sistent traditional directory entries (countries, organizations, persons,
mail addresses) or data entities like files which should fit coherently
into the naming model.

1.2. The Architectural Requirements for Naming

It appears obvious that this wide variety and number of objects cannot
be sufficiently dealt with by just one technology. But it is also obvious
that the usage of the distributed system requires as much uniformity as
possible in accessing the entities.

The first distinct requirement one can observe for name services is the
access model. Most commonly, name services are used to look up the
desired information based on a given name for an entity, where names
are either fully distinguished names or names relative to a certain start-
ing point (context) in the namespace. The access model also implies
that updates and changes are usually much less frequent than lookup
operations. For other special purposes, more complex queries which
involve extensive filtering and searching or requirements for a very fre-
quent update rate may become dominant.

The other area where name services behave distinctly is in the organi-
zational model of the namespace. While usually a hierarchical tree
organization is sufficient, in other cases a flat organization with access
through hash tables, or topographical views and directed graphs which,
for example, account for multiple inheritance, may be preferable.
Also, the desired complexity and flexibility of the structure of the orga-
nization may vary. Systems which provide for sophisticated schema
management need to be considered.

In this context, the complexity and semantics of entries varies widely.
For some applications it may be preferable to have just basic attribute
values associated with entries while for other applications structured
attribute value assertions (type — value attribute pairs) are required.

Other requirements for the name service are reliability, manageability,
and security. Since these usually conflict with performance and scala-
bility, one has to be able to balance them according to the particular
purposes. Replication, for example, the technology to provide for reli-
ability and availability of the name service information, can be pro-
vided with varying degrees of weak to strong consistency. While in
some cases lookup failures and retries are cheaper and more acceptat.e
than in others, no single solution can be optimal.
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Can Federated Naming Solve the Problems?

An uncountable number of technologies which deal in one or the other
way with naming have been developed and have matured. These range
from complex directory services to location brokers, network informa-
tion systems, object inheritance services, and file systems. Although
these various naming facilities coexist in the network, and will continue
to do so due to the outlined technical reasons and because of political
considerations such as corporate and national policies, suppliers inter-
ests in particular market segments, and commercial and financial secu-
rity, this approach is not acceptable in a distributed environment if
there is no means provided for a coherent integration of these technolo-
gies.

Several approaches for solving these problems have been discussed to a
large extent in the community and have been accompanied by several
experimental implementations. One of the inspiring architectural dis-
cussions was driven by the Advanced Networked Systems Architecture
(ANSA), developed at Architecture Projects Management Limited in
1989 [APM89a]. This work introduced the notion of federated naming
as a fundamental concept of modeling naming. Federated naming
allows for coexistence of distinct and diverse name services and pro-
vides translators and gateways to communicate beyond the system’s
boundaries. Rather than approaching a global naming model, the
unambiguity of this naming model is based on context relative naming
in federated, heterogeneous domains. Interworking is achieved through
bilateral cooperation.

Cooperation of federated naming domains, which is more precisely
described as interconnection rather than interoperability, is achieved
through gateways which wrap and unwrap the appropriate reference
information. The wrapper provides an envelope which details the con-
text and mapping of higher level domains. Directed graphs of name
contexts rather than the ordering in a hierarchical tree structure is the
basis for this structural model.

Federated naming, though, does not completely address the one crucial
issue in a distributed environment. It is necessary to mask the com-
plexity and heterogeneity of the system by providing as much trans-
parency and homogeneity to the users as possible. Transparency is cer-
tainly not a fixed measure, but final consumers of the system usually do
not want to have to deal with differences in the underlying technolo-
gies, while programmers or administrators need to have more flexibility
to fine tune and tailor the system. However, since pure federated nam-
ing does not prescribe basic semantics and certainly not syntaxes, inter-
operability is limited and requires the knowledge of all involved
instances.

Strictly centralized name system such as the X.500 directory system
[OSI188a] is the orthogonal approach. It does not provide a means for
incorporating other naming systems, but it seems to be much more
appropriate and intuitive for a user to think in and deal with hierarchi-
cally structured organizations.

2. The Notion of Name Spaces

In refining the naming architecture for DCE we intended to combine the
compelling features of both approaches, the federated naming and the
centralized global naming model, into one coherent architecture.
Instead of addressing the bilateral issues between heterogeneous nam-
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ing domains, which are actually instances of particular services, the
scope of the naming system was defined by discrete namespaces with
its distinct properties in the distributed environment. These composite
namespaces are an abstraction of particular name services or resource
managers' describing their syntactical and semantical rules.

The primary namespaces are the global namespace and the cell
namespace which are connected via a gateway, the Global Directory
Agent (GDA). This decomposes the namespaces into a hierarchical
organization (see Figure 2).

Although this paper primarily addresses the DCE naming architecture,
specifying the global and the cell namespaces, the service instances, the
DCE Global Directory Service (GDS) and the DCE Cell Directory Ser-
vice (CDS) will also be discussed. It should be noted that the current
implementation of the interfaces and protocols already provides the
core features, but some of the functionality outlined in this paper are
under development and will be noted accordingly. For instance, the
refinement of the junction protocol and the specification of a uniform
AP] are currently in the design phase.

2.1. Assumptions for the Cell Name Space

The cell name space is the basic entity which describes an organiza-
tional unit of DCE, an administrative domain. Policies and various
degrees of protection levels, the security realm is determined by these
cell boundaries. Administrative regions and domains may share the
same boundaries or they could be organized as substructures.

Typical considerations for the requirements are:

) The intra-cell connectivity is usually higher than the degree of
connectivity with systems located outside the cell. LANSs rather
than WANSs are the primary communication channels of systems
inside the organizational boundaries of a cell.

There is implicitly more trust between a principal and an object
within the cell than those across cell boundaries.

Global Namespace

Cell Namespace

Cell Namespace

Cell Namespace

Figure 2: DCE Name Spaces

t In many instances the term resource manager is being used since the services supporting these composite namespaces are not neces-

sarily name services in the generic sense.
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The cell naming environment is unified regarding the semantics
and syntaxes applied to this namespace.

2.2. The Global Name Space

To provide uniformity and worldwide interconnectivity, cell names-
paces are always part of and integrated into a global namespace which
provides at minimum the location service for foreign cells. The global
namespace is represented by a defined small set of globally available
centralized name or directory services. Supported references of the
global directory services are the Internet Domain Name System (DNS)
and the X.500 directory system.

Although a single directory service technology would not be a
sufficient and acceptable solution for the entire namespace, it appeared
to be sensible to use the few dominant and matured central directory
services as facilities for the global namespace. The Internet Domain
Name System (DNS) and the IEEE X.500 directory system are clearly
the preferred name services which provide worldwide access and inter-
operability. Both are supported as reference in the DCE implementa-
tion. It is likely that X.500 will be the dominating system in the future.
Nevertheless, the DCE naming architecture does not restrict the instan-
tiation of the global namespace to just one directory system. Multiple
global directory systems can coexist and provide interconnectivity
between cells” which are represented by different global directory sys-
tems.

Additionally, the architecture allows a single cell to be registered with
multiple global directory services, however, it is still debatable whether
this is desirable. The current implementation of DCE restricts the cell
registration to one instance of the global directory service.

The registration of a cell in a global directory service differs for each
particular service, depending on registration policies and semantics. In
X.500, two attributes in the directory entry composing the cell name
(CDS-Cell and CDS-Replica) contain the cell identifiers and protocol
sequences necessary to access the instance of the cell directory service.
Analogous in DNS, cell names and other relevant information are asso-
ciated with resource records.

2.3. The Global Directory Agent (GDA)

The connection between the global namespace and the cell namespaces
is handled through a Global Directory Agent which acts as a gateway.
The primary function of this gateway is to resolve the global part of a
given pathname by issuing a referal protocol exchange to the appropri-
ate global directory service. A successful path resolution returns a set
of binding handles for the directory service in the targeted cell. The
second task of GDA is its function as protocol translator.

While the cell namespace is RPC protocol based, the global namespace
is considered to use the respective native protocols such as Internet or
the OSI stack.

The initial purpose and design of the GDA is its function as trader. It
delivers the binding information of the remote service provider to the

t This can be achieved since cells, and more generally each DCE entity, is uniquely identified by an Universal Unique Identifier
(UUID) which is guaranteed not to be duplicated or reused, even if generated in independent and disconnected systems. The UUID is
an automatically generated 128-bit identifier using IEEE node identifiers and time stamps for its generation and therefore is unique
across both space and time. It does not contain the location information of an object. The UUID, with its fixed length, is not infinite,
but it is large enough to allow the generation of more than 10° objects per second on each node over the next 10* years.
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service requester. It is conceivable that a GDA could also act as a gate-
way for performing other directory service operations in the global
namespace such as lookup on arbitrary attributes or modification of
entries. This is an area which requires some more investigation; in par-
ticular the expected benefits need to be defined.

3. The Properties of the Cell Namespace

The DCE Cell Directory Service (CDS) represents the cell namespace.
It plays a key role in the DCE naming architecture. While the cell is the
administrative domain in the distributed computing environment, CDS
is particularly suited to provide the following services:

. Providing the information for distributed applications to locate
and bind the service requester (client) with the service provider
(server). These operations which generate and obtain the binding
information are also called trading.

° Connecting multiple heterogeneous naming domains into one
coherent environment. This includes the resolution of references
to the global namespace and junctions to descendent names-
paces which can be subcells of a hierarchy of cells or names-
paces represented by distinct services such as the file system.
CDS can essentially be considered as the central instance for con-
necting composite namespaces.

__Global Directory Agent (GDA)

Nl

O subsys

Junctions _

Security Namespace

File Service
Namespace

Cell Namespace Other Composite

Namespace

Figure 3: Decomposition of the Cell Namespace
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Figure 3 shows the organization of a cell namespace. The composite
namespace within the cell namespace are accessed through the junction
points which are actually directory entries in CDS. Directories and
objects registered in CDS (connected by solid lines) are primarily used
for the trading purposes. For instance, subsys decomposes a subtree
containing protocol towers (see below).

3.1. DCE Cell Directory Service

Although the design of the cell directory service is explicitly tailored to
meet the naming needs for the distributed system itself, to act as trader
and as a service which integrates the various namespaces, there is no
reason why it could not be used as a general purpose directory service
as well. Its semantic is rich enough to support arbitrary attributes and
application-specific naming needs. It is the application design which
will determine whether this is sufficient or whether special purpose
naming services may be more applicable.

In contrast to a universal directory service, the name service supporting
the cell namespace is tailored to meet the special needs in the cell envi-
ronment. Key requirements are protection, reliability and availability,
lookup speed, ease of management, and sufficient communications pro-
tocol.

While the binding information retrieved from the cell name service is
essentially a reference pointer, the authentication and authorization
verification of a client/server application is a function of the respective
applications. In DCE, the name services are not part of the trusted com-
puting base (TCB), and therefore, cannot guarantee integrity of the con-
tents of the information which has been generated by the service pro-
viders. This raises interesting security considerations for name services
which have similarities to databases. Not the (name service) database
but the services which are permitted to access and modify its contents
are the trusted entities. Services should always rely on the DCE Secu-
rity Service, which is part of the trusted computing base in DCE.
Assuming the usage of the mutual authentication and authorization
capabilities of the DCE Security Service, denial of service attacks
would be the worst case scenario with compromised Cell Directory
Services. This is usually acceptable, but if security sensitive environ-
ments require protection against denial of service attacks as well, their
name services must explicitly be integrated into the TCB (for example,
installing them on secure hosts).

Availability and reliability of the cell directory service information is
one of the other requirements with high priority. One can make the
observation that the distributed system can only be as reliable as the
cell directory system. While availability is usually achieved through
replication of complete databases or subsets of them. the degree of
consistency depends on the underlying replication technology. For the
purposes of the cell directory service it is usually not necessary to pro-
vide a strong transaction based replication but the probability of acquir-
ing reliable data should be very high. The system must be capable of
detecting mismatches and must provide the flexibility of invalidating
and refreshing cached information.

The ratio between update and lookup frequency is an important factor
in the name service layout. A well designed distributed environment
must be designed in such a way that bottleuecks in large scaled systems
and additional overhead introduced by distributing applications is kept
to an absolute minimum. Crucial areas here are additional computation
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3.2. Trading

and traffic for security operations, computation for converting data rep-
resentations, the speed of the physical links, and in particular the
latency during association setup and binding. For the purposes of the
cell name service, an optimized high speed retrieval of registered bind-
ing information has a clear priority over the registration operations,
which is an administrative activity and performed much less frequently.

The communications protocol for CDS is RPC based. DCE RPC pro-
vides the desired degree of transparency independent of the underlying
communications structure. Both Local Area Networks and Wide Area
Networks (primarily used for inter-cell communication) are efficiently
supported. The semantics of the DCE RPC protocol provide the
required reliability and guarantees of delivery. Both a security inter-
face for providing mutual authentication and an interface for trading
are inherent in the RPC support.

Trading in the client/server mode! is the notion of establishing the asso-
ciation between matching service requesters and the service providers.
This process of associating a client to its server peer is of a dynamic
nature in the distributed system and it is essential that this is kept as
transparent to applications and users of the system as desired. Trading
involves a number of considerations:

. Clients and servers may have been developed independently, at
different times and sites, by different developers.

Multiple instances of servers may offer the same services, and
they may operate on the same or on distinct objects.

The number and sites of clients is not predetermined.

The selection of servers can depend on factors such as load, net-
work latency and bandwidth, availability.

Servers may crash or hang, and a rebinding may be appropriate,
assuming the context has been preserved.

Trading is a generic service which can provide arbitrarily complex
information and sophisticated operations. Algorithms can be applied to
trading for very dynamic binding behavior, depending on a number of
parameters to allow for load balancing or process migration in the dis-
tributed sense; or the binding to methods and operations on objects can
be supported by following inheritance rules. Such elaborated systems
can be built using the DCE naming architecture and atop of the DCE
technology implementation. This paper primarily outlines the more
primitive operations and facilities necessary to provide for automatic
binding, transparent to applications and users.

For resolving the trading issues, the client/server model uses object ori-
ented concepts and treats server instances as objects. Servers export
an interface or a set thereof which specify the remote operations which
can be performed on these servers. These interfaces are uniquely and
unambiguously identified by Universal Unique ldentifiers (UUIDs), and
the trading operations essentially resolve the match of interfaces sup-
ported by clients and servers. Servers therefore export their interfaces
to the cell directory service.

Since instances of servers may operate on one or multiple objects, a
further determination of the target in the client/server connection
allows for additional object UUIDs. For instance, a printer server may
support various different printers such as postscript or line printers.
While the interface UUID defines the printer server, object UUIDs
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3.3. Junctions

optionally can further detail on which printer a certain job shall be per-
formed.

The client, which is the service requester, on the other hand, imports
the binding information for establishing the association with any
available and matching server from the cell directory service. The
algorithm for selecting one of the available servers can be predeter-
mined or specific to a particular instance of an application.

The binding information obtained from the name service contains the
location, the network address of the server, and the set of matching pro-
tocol stacks, since it is possible that servers may have exported multi-
ple sets of supported protocols. These protocol sets are actually stored
as protocol towers in the name service. The number of levels of these
towers certainly varies, but a tower must sufficiently define the match-
ing set of protocols. A protocol tower could, for example, contain pro-
tocols for the data representation, RPC, transport, and the network, in
addition to the interface UUID.

For navigating through the namespace and finding the right set of
servers, the trading facility provides for three classes of entries: server,
group, profile. Server entries contain the protocol and addressing
information of one server instance, while groups are an unordered set
of equivalent server entries (servers with common interface and object
UUIDs). Groups can be nested.

The profile entry in the name service contains a collection of profile
elements. These elements are determined by a single interface and
contain an ordered list of members which can be servers, groups, or
profiles. The ordering of these providers for the particular interface is
achieved through priorities. A profile may also contain a default profile
element, which is a pointer to another (default) profile which will be
searched if no compatible binding could be found in the profile. This
allows for customizing the ordering of the search for a compatible
server. This could follow topological views or other means of structur-
ing the organization.

The outlined model demonstrates how the cell directory service pro-
vides a means of hiding the complexity of the distribution for the con-
sumer of applications. Administration and mangement of these entries,
such as profiles, can be centralized within cells but it is also permitted
and possible to overwrite certain default setups.

As clearly as the final consumers of the system must be supported, the
programmers of distributed applications must also be provided with
instruments able to handle the complexity but also flexible enough to
develop applications which can dynamically be installed and
configured. A special purpose application programming interface
(API) must be sufficient for exactly performing the set of name service
operations necessary for the binding or trading operations. Only desig-
nated system administrators should be required to further manage the
name service setup and only those application writers who want to use
the cell name service for purposes beyond the trading operations should
be required to use a more sophisticated general purpose application
programming interface.

We can make the assumption that a generic naming service has proper-
ties such as slowly changing namespace and weakly consistent replica-
tion. While this may be suitable for objects which reside in global or
cell directory services, there are a number of objects in the distributed
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computing environment which have different naming characteristics.
This requires a mechanism to incorporate composite namespaces into
the global namespace, or more precisely, the cell namespace.

All object names which are exported to the cell namespace must be
resolved via a single name resolution protocol. This includes the capa-
bility of deriving from the name the object location and potentially a
minimal set of other information about the object. DCE introduces a
DCE RPC based junction protocol which currently provides for the
incorporation of the security and the distributed file service namespaces
into the cell namespace.' Other examples for special purpose resource
managers are inheritance trees for object oriented modeling or services
for transitive, very short lived entities such as processes. The junctions
allow clients to resolve the CDS portion of the name and pass the resid-
ual part of the name to the resource managers of the respective com-
posite namespaces. While these junctions are currently specific to each
resource manager, DCE will provide a generic junction protocol and the
appropriate interfaces to support uniform cross resource manager oper-
ations (see Figures 3 and 4).

GDS Global Namespace (X.500)
Internet DNS Global Namespace (optional)
O Global Root (/...)

O subsys

/

principal group

/

O O b
hosts dce-ptgt

this.pic
" Cell Namespaces
Cell OSF

Figure 4: Example of a complete DCE Directory System

+ The Global Directory Agent (GDA) is a special form of junction which provides the capability of resolving the binding for a foreign
cell to the local Cell Directory Service. The referral of a successful GDA operation points to CDS in the targeted cell.
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3.4. Hierarchy of Cells

In order to integrate other composite namespaces into the cell names-
pace, the junction protocol requires the resource managers to support at
minimum a set of functions to resolve the residual components of the
pathname by using a defined referral mechanism. The binding infor-
mation of the target object and possible attributes, defined in an
attribute schema, will be the result of the junction operations.

It is conceivable that future protocol extensions and agreements on a
low level naming interface will allow for rudimentary operations across
name services and resource managers. These may be operations such
as add, update, delete, and list objects and attributes.

The syntax of the pathname passed to the junction protocol must com-
ply with the DCE name syntax described below. As outlined, compo-
nents of this pathname (slash separated) may contain a name structure
according to the semantics of particular resource managers.

Cells are administrative domains which are essentially determined by
the security policies of organizations; thus cells are usually equivalent
to realms in the security space. Communication across cell names-
paces requires the establishment of additional trust relationships
involving the cell-based certification authorities. Independent of the
employed encryption technologies, whether they are public or secret
key based, it is not likely that independent organizations will agree on
an external agent controlling the global certification authority.

Matters are completely different within enterprises and organizational
boundaries. For managerial or other organizational reasons it appears
that enterprises want to be able to manage subdivisions separately, but
in contrast to inter-cell relations apply central authorities for policy
determination, administration, and security. For instance, an organiza-
tion may have security policies and trust relationships for the whole
enterprise while a number of separate administrative domains may be
in existence.

This requirement can be complied with by allowing cell roots to be reg-
istered inside another cell instead of registering a cell in the global
namespace. This leads into an arbitrarily nested hierarchy of cells.
These hierarchies of cells with the top level cell registered in the global
namespace are collected in a particular cell namespace representing an
enterprise. Here we have to make the distinction between a cell which
characterizes the organizational boundary, administered by an instance
of a cell directory service, and the cell namespace which is the union of
all cells of a single rooted hierarchy of cells.

There are a number of benefits of subdividing the cell namespace into
a hierarchy of cells. Higher transparency and less administrative over-
head in establishing the security context has already been mentioned.
Creating subcells does not require the involvement of an external
authority to register a cell and it does not require the availability of a
global directory service for inter-cell communication within a cell
name space. Furthermore, enterprise-wide central policies and admin-
istrative authorities can easily be applied to a hierarchy of cells.

Another aspect which needs to be considered by supporting cell hierar-
chies is the natural migration of legacy systems into a DCE namespace.
While the creation of cell hierarchies top down may apply to newly
created environments, these namespaces will usually be deployed from
bottom up. Disperse subdivisions may create cells independently and
want these to be connected to one uniform cell namespace eventually.
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Although it may disrupt the transparency goal (the distinguished names
for objects changes), a facility for renaming cells must be provided for.

4. Security Implications

Since the security aspects are some of the most sensitive aspects in a
distributed computing environment, the naming architecture cannot be
separated from the architecture of the security system. From the secu-
rity perspective, a realm is the administrative unit for authorization
control. A realm is represented by a common certification authority
while a cell represents the collection of resources which belong to a
common naming authority. A cell, or in a hierarchical organization of
cells the top level cell, usually maps directly to a realm.

Access to entities is granted to authenticated principals (such as users,
groups, and services) based on their ability to construct and present a
Privilege Attribute Certificate (PAC). These certificates sealed in
PACs are compared with the identifiers represented in Access Control
Lists (ACL).

Since it is not practical that all principals who are potentially involved
in cross realm interactions establish direct links to the foreign realms,
DCE adapted the Kerberos V5 model of transitive trust which allows
access to be granted through established trust relationships between the
authorization authorities.

To contain potential damage of the system, the security system in DCE
imposes a hierarchical structure of transitive trust. It limits transitive
trust to either those principals which share a common certification
authority within a given structure or substructure of a hierarchy of cells
or to those entities which directly share inter-realm keys through their
certification authorities.

5. Management Implications

The naming architecture in a distributed environment has to take into
account that not only a very large number of nodes and entities needs
to be manageable but also that the complexity of the system grows
exponentially by introducing diverse technologies which have distinct
and sometimes contradicting requirements on naming. Not only must
the naming architecture provide for facilities which can be exploited by
the management systems, but it also must be carefully designed to
avoid additional unnecessary complexity.

The scalability is doubtlessly one of the major concerns. As discussed
earlier, single naming systems in the order of 10> and 10° nodes are
already in active use and the conceivable scope of addressable entities
will be much higher in the near future.

One other, often underestimated, aspect of scalability is the capability
of down scaling. Distributed system environments involving just a few
systems may very well exist. Apart from possible performance over-
heads, system administrators in those environments must not be bur-
dened with management functions which are only necessary in large
systems. But since systems are dynamic and may grow into larger
more complex environments, the same uniform interfaces must be
applicable.

DCE addresses these administrative problems by providing rules for
organizing the namespaces around cells, the basic administrative units
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and by potentially subdividing cells into smaller administrative regions
(hierarchical cells). In addition, there are underlying rudimentary oper-
ations which will be specified by a common name syntax, a defined set
of Application Programming Interfaces, and access protocols which
define cross namespace operations through junctions.

To reduce the demand on system managers and consumers, the
required security services must provide as much transparency as possi-
ble. Various protection levels must not require completely different
activities. Security will not be enforced if there is no coherency, if the
model is not intuitive, and if the administrative overhead is disruptive.

This requires a well balanced model which provides the basic set of
specified rules and operations but also the right amount of freedom to
apply organizational or personal policies. Again, cells are the domains
in which policies are being defined.

However, generic administrative tasks such as user management or
resource management can sensibly be performed using the technologies
associated with the DCE naming architecture. Obviously undesirable
behavior, circularities and duplications such as several user accounts
for the same person or different views of the directory structure depen-
dent on the workstation are prevented by the architecture.

Other technologies layered on top of DCE such as the Distributed Man-
agement Environment (OSF DME) can further exploit the underlying
services to provide this uniform and coherent system view.

6. DCE Name Syntax

Since DCE naming deals with composite namespaces and service
implementations thereof, a number of distinct semantical rules and syn-
taxes must be accommodated. Some basic guidelines for the syntax of
representing names applicable to the entire global namespace must be
followed. These rules provide for a uniform notation of human-
readable, character-string-based names. Special rules apply to the glo-
bal part of a name, the global typed name syntax, describing an abstract
data type for representing names and its matching rules for equality

[Tuv90a].

The name syntax is intended to represent unambiguously names which
are hierarchically ordered as an ordered set of components. This order-
ing follows the rules left-to-right and top-to-bottom, where top is the
superordinate finally representing the root of the tree structure.

The components of a name are separated by slashes (/). A name may
have a random number of components which in turn may represent
simple names or a complex structure according to the semantics of
respective name system or resource manager. The pathname prefix
“/...” determines the global root, while the prefix “/.:” is the sig-
nature of the root for the local cell (shortform of the global part of the
pathname).

For X.500 based global names, equal signs concatenate the type value
pair of AVAs (attribute-value-assertions) and comma-separated fields
represent multiple AVAs. The global part of the name must not contain
empty components. For example,

/.../C=US/0=0SF/OU=DEV, L=CAMBRIDGE/

is the name of the OSF development cell in Cambridge.
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In a global namespace using the Internet DNS, the complete Internet
cell name would be represented in one component in the usual dot-
separated notation in little-endian format. For example

/.../osf.org/

would name the cell OSF.

The name syntax can be equally applied to typed names such as X.500
as well as to untyped names such as the DCE Cell Directory Service. A
resulting global name representation therefore can be a combination of
concatenated typed and untyped names.

An example of a global name for an object (file) in the Distributed File
Service would look like:

/.../C=US/0=0SF/fs/usr/nl/this.ms

or equivalently, the same file would be addressed relative to the cell as:

/.:/fs/usr/nl/this.ms

Figure 5 shows the distinct components of the pathname in the example
above.

One caveat in determining generic syntax rules for naming is the fact
that name services and other resource managers use different character
sets, need various control characters, and support different encodings
for the representation of characters. Also, the support of national lan-
guages requires further considerations. While there has been some
progress made in addressing these issues for standalone systems, it is
largely unresolved and not standardized for distributed systems yet.
This is one challenging area which requires attention in the future.

7. Portability and Seamless Programming Interfaces

While this paper discusses primarily the capability of the naming archi-
tecture to provide for interoperability between namespaces and related
issues, requirements of programmers for portability of their applica-
tions must not be neglected. It is necessary to expose a set of well
specified application programming interfaces which can uniformly be
used for any integrated name service.

Global Root Global Cell Name

N2

/.../C=US/O=0SF/fs/usr/nl/this.ms

Junction (DFS) Residual (POSIX Pathname)

/.:ffs/usr/nl/this.ms

Cell Root

Figure 5: Pathname Components
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The DCE implementation supports two programming interfaces, the
X/Open Directory Service API (XDS) [CAES91a, CAE91b] and Name Ser-
vice Independent Interface (NSI).

XDS is the generic directory service interface which exposes the full set
of semantics supported by directory services such as X.500. It is the
primary API used for GDS and CDS based applications.

NSI is an RPC (Remote Procedure Call) interface targeted to manage
and obtain server binding information. NSI provides the interface to the
trading capability of CDS.

OSF is investigating a generic name service APl which provides access
to a common set of rudimentary name service operations which can be
performed on any resource manager in composite namespaces which
comply to the junction protocol. This APl would be on a low level,
much less rich than XDS requires.

This paper discusses the underlying information model of the DCE
naming architecture and addresses the issues involved with incorporat-
ing the various distinct needs and solutions for object naming in the
distributed computing environment. It points out that the architecture
provides a sound framework and that the implementation of the DCE
technology has already laid the groundwork to solve naming in dis-
tributed systems.

The paper did not address application usages of name or directory ser-
vices. It is obvious that the DCE naming technologies are useful for
other purposes such as storing arbitrary directory information. This
would have exceeded the scope of this discussion, but opens a wide
field of opportunities. Also, other related technologies such as DCE
Time Service and Remote Procedure Call have not been elaborated in
this paper, but they should be considered as prerequisites for building
the described system.

There are a number of areas which require further efforts to refine the
architecture and implementations thereof. Some of these issues are
subjects of further research in the community, still need to mature and
may need additional standardization efforts. Areas which need most
attention are:

° Providing an uniform access mode! (interfaces and protocols) to
explore fully the capabilities of composite namespaces.

Expanding the trading capabilities to incorporate object-oriented
models.

Finer granularity and even more flexibility in the structural orga-
nization of cells by completely solving the modeling of hierarchi-
cal cells and the associated security issues.

Improving the management capabilities of the distributed system

by integrating DME.
Finally, I would like to point out that the DCE architecture represents a
synergy of requirements to solve the inherent issues in distributed sys-
tems with matured and proven technologies. One major effort taken by
OSF was the integration of various orthogonal technologies into one
coherent and expandable model. The first release of DCE has been
shipped in January 1992. Already a number of companies have
adopted DCE and its model and gained expertise with DCE in several
projects. For example, the Distributed Management Environment, a
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technology currently being developed at OSF, extensively uses DCE
facilities.
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Abstract

The BERKOM Management Platform supports the development of man-
aging and managed applications based on OSI management standards.
The Basic Management Support System (BMSS) constitutes the core of
the platform assisting in the exchange of management information.
Additionally, the platform provides two tools which also support the
development of managing and managed applications: an MO definition
tool called DAMOCLES and a MIB browser which is intended to sim-
plify the testing of managed object implementations and which can also
be regarded as a simple manager. This paper presents an overview of
the concepts used within the BMSS and the features of the supporting
tools.

1. Introduction

The BERKOM project (BERliner KOMmunikationssystem) was started
in Berlin in 1986 in order to provide experience in using high-speed
140 Mbit/s broadband ISDN networks that the German PTT, the
Deutsche Bundespost, was installing in Berlin. Various projects have
been initiated within the framework of BERKOM in order to evaluate its
potential, with particular attention being paid to new protocols for
high-speed bulk transfer over reliable links, group communication,
inter-organisational networking, and the possibilities offered by the
high-speed network for transmitting video pictures, text and speech and
the innovative applications that can be developed in such an environ-
ment.

All these projects need to be concerned with the management of their
particular application and in the first version of the BERKOM reference
model [Pop88a] it was acknowledged that a unified management con-
cept should be developed for the BERKOM integrated services. In
order to prevent each project developing its own management solutions
that are incompatible with the othcr BERKOM projects, the BERKOM
project “Management of Distributed Applications in B-ISDN” (BER-
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MAN) was started in the autumn of 1988 within the GMD-FOKUS Open
Management Architecture Group.

The aim of the BERMAN project is to develop a model for managing
distributed applications in an open broadband ISDN environment and to
provide the BERKOM Administration Infrastructure (BAl) which con-
sists of the BERKOM Directory [BER91a] and the BERKOM Manage-
ment Platform [BER91b). The Basic Management Support System
(BMSS) constitutes the core of the BERKOM Management Platform
enabling the exchange of management operations. Furthermore, the
platform includes a tool for the definition of managed objects called
DAMOCLES and a MIB browser which allows the inspection and manip-
ulation of managed objects located in a particular MIB.

Section 2 describes the architecture of the BMSS. Section 3 presents
the features of the DAMOCLES tool and Section 4 discusses the charac-
teristics of the MIB browser. Finally, section 5 outlines future develop-
ments within the framework of the BERKOM Management Platform.

The Basic Management Support System

The Basic Management Support System (BMSS) is based on OSI man-
agement thus enabling cooperation with other management systems
which support this standard. It encompasses (see Figure 1):

° A CMIP [ISO90a] implementation based on ISODE,"

Manager

MIB browser

D Platform tools

Application

Systems
L MOR

integrated
MOR

CMIP

1
' Managed
' Application
| !
AN :
I__\‘___I l—_IL__—_I
! Schema | _>; MIB L
 Access  Generator
R Seegm--

N Mgmt

Schema

Platform interfaces BMSS components

Figure 1: Architecture of the BERKOM Management Platform

+ ISODE (ISO Development Environment) is a non-commercial, frecly available development environment for distributed applica-
tions, which was developed by a number of companies and institutions (including University College of London and Wollongong
Group). The aim of ISODE is to facilitate the development of applications which communicate using OSI protocols.
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A Management User Agent (MUA) offering the Management
Support Service (MSS) which gives managing applications access
to OS] management,

An OS] management agent called the Managemen: Support
Agent (MSA) and

A programming interface which supports the implementation of
MOs and the establishment of Managed Object Repositories
(MORs). This interface provides the Managed Object Repository
Service (MORS). '

Additionally, a library of C+ classes representing generic attributes
and basic managed objects is provided.

The various BMSS components are described in the subsequent subsec-
tions.

Managed Object Repositories

OSI management is carried out by accessing and manipulating managed
objects (MO). Managed objects are abstractions of data processing and
data communications resources {ISO91a]. A managed object class is
defined as a collection of attributes, actions and notifications and
related behaviour. The value of an attribute can determine or reflect
the behaviour of a managed object. The attribute is observed or
modified by sending a request to the managed object to read (“get”) or
write (“set”) the attribute value. Actions are operations on a managed
object, the semantics of which are specified as part of the managed .
object class definition. Notifications are emitted by a managed object
and contain information relating to an event that has occurred within
the managed object. The Management Information Base (MIB) is the
conceptual repository of all managed objects located within an open
system. Thus, a MIB can be seen as a deposit of information required
for management purposes.

Frequently, information which is of interest to management is already
maintained in volatile memory by an application for application-
specific purposes. BERMAN is particularly concerned with such appli-
cations because integrating MOs into these applications avoids the
duplication of this information. Moreover, if this information is of a
highly dynamic nature this method ensures minimal access time by the
application and the most consistent view of the application state for a
manager. It also simplifies controlling the application by management
requests since write operations on attributes and action operations on
managed objects will be performed directly on the application itself
and not on any representative, located for example in a database, which
would require additional effort in order to process the requests.

There is no prescription as to how a MIB should be implemented. The
BERMAN approach for a MIB implementation is called Managed
Object Repository. A Managed Object Repository (MOR) contains a
set of MOs and administers the containment relationship between these
MOs. The local root of a part of the overall containment tree main-
tained in a MOR s called a subtree-root MO (SRMO). These SRMOs
play an important role for the administration of Managed Object
Repositories which is explained in subsection 2.2. A MOR controls the
access to its MOs and ensures the synchronisation of operations upon
them. It is generic since the type and number of MOs which can be
stored in a MOR is uarestricted. The union of all MORs established
within an end system constitutes this system’s MIB.
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The Managed Object Repository integrated into the Management Sup-
port Agent is called Systems Managed Object Repository (SMOR). The
MORs to be integrated into managed applications are named
Application-integrated Managed Object Repositories (AMOR). The
SMOR is intended to store the root of the local MIB, i.e. an instance of
the MO class “system” or one of its subclasses. Furthermore, system
managed objects like discriminators and logs are to be maintained
within the SMOR. Within the BMSS the assumption has been made that
within one end system exactly one SMOR, but any number of AMORs
can exist.

Since a MOR’s task is to enable managed applications as well as man-
agers to access the managed objects it maintains, two interfaces have
been defined:

1. The manager interface is used if a request from a manager has to
be performed on managed objects stored in the MOR. Thus it
provides operations similar to CMIS, i.e. managed objects can be
created and deleted and they can be selected by means of scoping
and filtering. Actions can be invoked on the selected MOs or
their attributes accessed. Moreover notifications will be emitted
via this interface.

The application interface enables the managed application to
access and manipulate the stored managed objects. It allows the
creation, manipulation and deletion of managed objects. How-
ever, only a single MO can be accessed by an operation invoked
at this interface since no scoping or filtering is supported. No

Managed
Application :

Managed
. Application

Managed Application

E managed object - subtree-root MO

Figure 2: The concept of Managed Object Repositories
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actions can be performed via this interface but the emission of
notifications can be explicitly triggered.

Although similar in functionality, the operations available at both inter-
faces are mapped onto different operations supplied by the managed
objects, i.e. the distinction between a manager and an application inter-
face at the MOR level is reflected at the MO level. The reason for this
separation is to clearly distinguish the different views and required
operations of a manager and a managed application. For example,
managed objects need not always be created or deleted on behalf of a
manager’s requests, but then, of course, the managed application must
be able to initiate the MO creation or deletion. Different accessibility
of attributes has to be supported, too. A non-resettable counter can
only be read by a manager, but the application must be able to incre-
ment, i.e. to write, this counter whenever the counted event has
occurred.

The Management Support Agent

The Management Support Agent (MSA) is the BMSS representation of
an OSI management agent. Therefore it

° Receives CMIS requests from local and remote managers,
'y Performs access control and authentication,

] Determines which MORs are affected by the request, i.e. it com-
putes in which MOR(s) the requested managed objects are
located,

Distributes the CMIS requests to the selected MORs,

SRMO Tree -

ore] o] |

Figure 3: The SRMO tree
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° Processes the responses of the MORs and returns the result to the
requester.

The MSA also receives notifications emitted by managed objects and
decides whether they have to be disseminated to managers or whether
they have to be logged locally. In the former case it is responsible for
establishing an association to the manager and for transmitting the
notification. In the latter case the MSA creates the new corresponding
MO(s).

The selection of the repositories affected by a management request is
based on the SRMO tree maintained by the MSA. Each time a subtree-
root MO is created within a MOR its local distinguished name is
reported by the MOR to the MSA. This name and the identification of
the MOR is stored in a newly created leaf of the SRMO tree. If a man-
agement request is received, the MSA looks for the longest matching
prefix of the specified name of the base MO. For example, according to
Figure 3 the longest match for the MO “A/B/F/M/R/V” within the
SRMO tree is “A/B/F/M/R”. Thus, the management request is sent
directly to AMOR C.

If the CMIS scope parameter is used, the MSA computes for each
affected MOR the “local” base MO and the adequate value of the scope
parameter. For example, if the originally specified base MO is
“A/E/N” and the scope value is specified as “individual nth level” with
n set to 3, the MSA sends a request to AMOR B with base MO
“A/E/N” and an unchanged scope level, and a request to AMOR C
with base MO “A/E/N/Q/T” and the scope level set to 1.

When a subtree-root MO is deleted, its local distinguished name is
reported by the MOR to the MSA which in turn deletes the correspond-
ing entry within the SRMO tree.

The Management User Agent

The Management User Agent (MUA) offers the Management Support
Service (MSS) which permits an application to assume the manager
role. It is supplied by a function library which currently only supports
the pass-through services as defined by the Object Management Func-
tion [ISO91b]. That is, it supports the basic services for creating and
deleting managed objects, reading and modifying attribute values as
well as for receiving notifications about the occurrence of predefined
events within a particular managed object.

In addition, functionality for handling management associations is pro-
vided, permitting a managing application to determine by itself when
connections should be established or terminated. If these services are
not used, management associations are established and terminated
automatically by the MUA if a management request is to be sent. How-
ever, in this case the use of global distinguished names is required.

The MUA uses the Directory [ISO89a] to obtain presentation addresses
and further useful information about the capabilities of a managed sys-
tem. The managed system is specified by supplying the Distinguished
Name (DN) of a directory entry of class managementSupportAgent
which describes the remote MSA [BER91c]. Listing 1 shows the
definition of this class.

The superclass applicationProcess is defined by the Directory stan-
dards [1SO89b] and is intended to represent the part of an OSI applica-
tion which performs the actual information processing. The attributes
added to the “managementSupportAgent” class give information about
the standardised and non-standardised, i.e. BERKOM-specific, capabili-
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managed object

direciory entry

BERMAN Direclory
Schema exiensions

Management
Support Agent, Support Agent
CN=Terrs-MSA CN=Sol-MSA

" Systems Mgmt S R Systems Mgmt
Application Entity Application Entity

[ _Srsem |
(_systemid=Terrs

Figure 4: Use of Directory within the BMSS

ties of the MSA. Their values are a set of object identifiers (OID) speci-
fying the supported management functions and managed object classes.

Within the Directory Information Tree an entry of class systemsMan-
agementApplicationEntity is subordinated to the MSA entry (see Figure
4). This is a subclass of the predefined class applicationEntity which
holds among other things the presentation address of the entity. The
subclass “systemsManagementApplicationEntity” additionally gives
information about the supported CMIS capabilities, e.g. if scoping and
filtering can be selected for use on a connection.

Within the BERKOM Management Platform the Directory is also used
to construct global distinguished MO names. This is done by virtually
linking a system’s MIB to the directory entry of the MSA responsible
for this MIB. According to Figure 4 the global distinguished name of

managementSupportAgent OBJECT-CLASS

SUBCLASS OF applicationProcess

MUST CONTAIN {
supportedOsiManagementFunctions,
supportedOsiManagedObjectClasses,
supportedManagementFunctions,
supportedManagedObjectClasses }

::= {berk-mObjectClass 5}

Program 1: Definition of the directory object class “managementSupportAgent”

Technical - OpenForum °92 - Utrecht, 23-27 November




The BERKOM Management Platform

the system MO “systemId=sol”is
“C=def0O=gmdeoU=fokus@CN=sol-MSA@systemId=sol”.

The MUA scans a global distinguished name for the presence of a Rela-
tive Distinguished Name (RDN) concerning the attributes “systemld” or
“systemTitle”. The preceding sequence of RDNs is assumed to be the
directory name of an entry of class “managementSupportAgent”.

3. DAMOCLES

Within the framework of the BERKOM Management Platform the tool
DAMOCLES ([Wit91a] has been developed which simplifies the
definition of management information. The definition process can be
divided into several steps and DAMOCLES supports these steps by pro-
viding the following capabilities:

1. After the “management” aspects of an application to be managed
have been determined, i.e. which information is required and
which operations have to be performed, an “informal” definition
can be made. An important issue within this phase is to check
whether any existing definitions could be used, either directly or
by means of inheritance and specialisation. DAMOCLES supports
this task by providing a Management Schema Browser and a
Management Schema Library which includes all the definitions
specified within [1SO91c] and those definitions already made by
means of DAMOCLES. The Schema Browser allows to examine
the contents of the Management Schema Library and is also able
to display the inheritance relationships of particular entries.

2. After that, the “formal” definition can be made according to the
templates and rules defined in the “Guidelines for the Definition
of Managed Objects” (GDMO) [ISO91d]. DAMOCLES supports
this step by providing a Template Editor. The Template Editor
provides a template for each desired definition type, the syntax of
which is adapted to the GDMO standard. Since the templates
already contain most of the defined keywords, the number of
possible syntax errors is reduced. Moreover, the Template Edi-
tor guarantees the consistency of the definitions. For example, it
prevents the definition of an MO class from referencing an
unknown attribute. It also ensures that no object identifier is
assigned twice.

3. In the last phase, the management information has to be imple-
mented and integrated into the managed application. This could
be supported by the “automatic” generation of code based on the
formal definitions made with DAMOCLES. However, the current
version of DAMOCLES does not support this.

DAMOCLES divides the process of defining new management informa-
tion into two phases (see Figure 5):

) In the first phase new definitions are added to a local manage-
ment schema. The definitions can be entered interactively with
the Template Editor or read in from an ASCII file. In the latter
case, a syntax check is made as to whether the structure of the
definitions corresponds to the notation defined in [ISO91d]. In
the former case, only the syntax of the specified labels and object
identifiers is checked. During the subsequent semantic analysis
the uniqueness of the specified labels and object identifiers is
ensured. In addition, a type check of the references is made. For
example, it is proved that a label used within the ATTRIBUTE
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section of an MO class definition really names an attribute
definition. However, since the local management schema can be
incomplete, i.e. the contained definitions can reference other
definitions that do not already exist, this check can only be done
if the referenced definition already exists.

In the second phase schema definitions from the local schema are
added to the global management schema represented by the
Management Schema Library. However, this can only be suc-
cessful if all referenced definitions are now available either in the
local or in the global managemerit schema and the reference
check does not indicate any type errors. In order to ensure the
consistency of the global management schema at any point in
time, the definitions from the local management schema are
inserted into the global management schema in a specific order.
First of all, the behaviour definitions and all definitions which do
not reference any other definitions are stored. Then, definitions
which exclusively reference definitions already available within
the global management schema are inserted. This step is iterated
until all definitions made within the local management schema
are processed.

DAMOCLES is implemented in ANSI-C and runs under SunOS. Its
graphical, interactive user interface is based upon X11R5 and OSF/Motif
1.1. The global management schema is kept within the UNIX filesystem
so that DAMOCLES is independent of any commercial database.

4. The MIB Browser

The need to test MO implementations led to the development of a so-
called MIB browser which is a tool for inspecting managed objects of
any management information base and for supporting the execution of
operations defined on these MOs. Figure 6 shows an example display
of the MIB browser. When invoking the program a list of hosts, which
is read from a configuration file, is displayed (the window in the upper
left corner of Figure 6). After selecting the desired host, a management
association is established to the corresponding management agent and

Management
Schema

global
management
schema

Phase 1 Phase 2

Figure 5: Processing of MO definitions by DAMOCLES
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Figure 6: Example display of the MIB browser

the root MO of the remote MIB and its immediate subordinates are
shown in a separate window (the window in the upper right corner of
Figure 6). Several MIBs can be inspected simultaneously in this way.

By moving a virtual pointer, which initially refers to the root MO, it is
possible to select any managed object contained within the MIB in
order to invoke management operations on it. The current version of
the MIB browser only supports the “Get”, “Set” and “Action” opera-
tion. According to the definition of the class of the selected managed
object the list of attributes or actions which may exist within the MO is
displayed (the window in the lower left corner of the figure). In the
current version, the MIB browser only has a schema knowledge about a
fixed set of managed object classes. By having access to the global
management schema maintained by DAMOCLES, future versions
should be able to handle every defined managed object class. More-
over, the set of known attribute syntaxes, i.e. a set of encoding and
decoding functions, has to be enhanced. Currently, attributes with the
syntax “string”, “counter”, “gauge”, “threshold”, “tide-mark”, “object
identifier” or “set of object identifier” are supported.

The MIB browser is implemented in ANSI-C and runs under SunOS. Its
user interface is based upon X11R5 and OSF/Motif 1.1. The Manage-
ment Support Service provided by a Management User Agent is used to
examine and manipulate the contents of a MIB.
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5. Future developments

The BERKOM Management Platform has been successfully used within
the BERCIM project which is another sub-project of BERKOM
[Tsc92a). However, further development of the services offered by the
BMSS and improvements to the features of DAMOCLES and the MIB
browser are necessary:

° The MSS is to be extended by adding further OSI management
functions, e.g. the event report management function [ISO91e].

The provided library of managed object and attribute implemen-
tations is to be enlarged.

DAMOCLES is to evolve from an MO definition tool into an MO
development tool. It is planned to develop a GDMO compiler
which will automatically produce C+ code from the GDMO tem-
plates. This code may be used as a skeleton for the implementa-
tion of specific managed objects. Additionally, data structures
and the associated encoding and decoding functions for parame-
ters and attributes have to be created. In order to complete an
MO implementation all that is then needed is the binding to a real
resource. However, the extent to which automatic code genera-
tion is possible for specific MOs must still be studied in detail.

Currently, DAMOCLES is a single-user tool. An important work
item is the development of a “Distributed DAMOCLES” which
allows multiple user to work simultaneously with DAMOCLES.
An issue to be studied within this framework is whether the
Directory can be used for storing standardised definitions of
management information.

Moreover, besides the interactive access to the management
schema, a programming interface (API) is desirable. This APl is
to allow components of the Management Platform to query infor-
mation from the schema. Such capabilities may be feasible, for
example, in order to check the validity of management operation
calls.

The MIB browser is to use this DAMOCLES API for the retrieval
of management schema information. Furthermore, the creation
and deletion of managed objects should be supported.

Another objective of the BERMAN work is the integrated use of Direc-
tory and OSI Management services. In the future, a new service called
Management Information Service (MIS) is to be developed which is
intended to hide the location of management information whether it is
stored within the Directory or in a MIB.
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Abstract

The current UNIX implementation of the X11R5 Window System pro-
vides only single-threaded support of client requests, event processing,
and device input. Each request and event is processed one at a time to
the exclusion of all other processing. This approach leads to a non-
interactive server. With X clients that use the Phigs+ X Extension
(PEX), X Image Extension (XIE), and integrated multimedia, the per-
formance and usability of the X11RS server is severely degraded.

This paper presents the object-oriented design and implementation of
an X Window Server with multi-threaded concurrent support and
shows how multimedia X clients can take advantage of the resulting
gains in interactivity using Symmetric Multi-Processor (SMP) platforms
such as OSF/1 and DG/UX. Lessons learned can be applied to client
side threads design.

1. Introduction

The X Window System [Sch92a] is based on the client-server model of
process interaction. This paradigm is the basis of most network com-
munication, and is followed in X to give users the appearance of seam-
less applications concurrently using distributed resources. In actuality,
this model permits independent applications to display data and com-
municate over a local-area network by means of a well-defined
client/server protocol.

1.1. Limitations of X11RS

For SMP platforms, it is highly inefficient, in terms of processor utiliza-
tion, to execute processes without a kerne! that supports multi-
threading. Since DG/UX is an SMP operating system, it treats all pro-
cessors as equivalent and capable of sharing memory. The X Window
System can benefit from multi-threading by partitioning concurrent
tasks across the processors so that they are executing in parallel.

In particular, the X11RS (R5) Window System includes a server that
processes one client protocol request at a time. If there are multiple
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1.2. Objectives

clients in the client queue that are simultaneously sending requests to
the server, the server processes requests using a round-robin scheduling
policy. Each client can have up to ten requests processed before the
server preempts that client and starts working on the next client.
Although the current server is implemented with a single-thread of con-
trol, it tries to give the appearance of concurrency by switching
between clients after each block of requests. The issue then is that the
R5 server multiplexes rather than batches the client requests.

The RS Server creates problems for client requests that require a large
amount of execution time. For instance, if a client executing
Phigs/Phigs+ Extension to X (PEX) requests were to generate a struc-
ture traversal, the server would walk the entire structure tree, and
depending on the size of the structures and the type of traversal, this
walk could take several hours to complete. While the server is walking
the structure tree, all other pending requests and input events are
queued. All client activity, including the window manager, and mouse
motion is frozen. This policy supports serve-to-completion rather than
any type of preemption.

The other component of the RS Window System is the X client. The
R5 X client requests services of the X server, but is also limited to exe-
cuting only one task at a time. A multi-threaded X client can perform
concurrent activities only if the underlying Xlib libraries are made
reentrant and thread-safe.

Threads are used to correct these limitations with the client and server
sides of the X Window System. Multi-threading allows a greater
degree of concurrency than is possible in X11RS5.

Although the client and server have common threads design issues,
multi-threaded X clients must be designed with the application in mind
while the single X server must be designed so that it can handle the
requests of any client. This makes the X server the bottleneck in X
Window System performance and interactivity improvements. Since
the X server is the bottleneck, and is also the harder of the two thread-
ing problems, the remainder of this paper focuses on the design of the
multi-threaded X (MTX) server. Lessons learned about the design of
the MTX server can be applied to the design of MTX clients.

The primary goals of the MTX server are:

° Conform to the existing server protocol.

° Increase server interactivity.

o Efficiently use SMP workstation platforms.
The secondary goals of the MTX server are:

. Do not significantly degrade server performance from the RS
levels.

° Design the product with a CASE toolkit [Int90a] that supports the
object-oriented (OO) paradigm. We feel this design approach is
a natural consequence of the client/server model as embodied in
the X Window System and will result in a cleaner implementa-
tion. A beneficial side-effect of using a structured methodology
is automatic documentation of the MTX server as the product is
developed.
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2. Object Oriented Design

After the limitations of the current X server were identified, it was real-
ized that a new design was required for a concurrent implementation.
Since the Multi-Threaded X (MTX) server requires the implementation
of concurrent programming ideas, we were motivated [Smi91a] to con-
sider Object Oriented Structured Design (OOSD) techniques [Hen90a]
in the project life-cycle. Software through Pictures (StP) [Int90a] is
one such tool that provides a variant of the OOSD design process.

At the heart of OOSD, is the object-oriented (OO) paradigm. The OO
paradigm [Kor90a] focuses on objects and emphasizes the relationship
between those objects as fundamental to the system architecture.

Objects are treated as the basic run-time entities in this design
approach. In the X server, these objects include the window, screen,
region, drawable, pixmap, visual, device, cursor, colormap, fonttable,
resourcetable, selection, client, and others. Each of these objects work
at different layers of the server. For example, the region object is
active at the machine independent (MI) layer and not the device inde-
pendent (DIX) layer while the window is primarily a DIX object.

The objects are pieces of the design that are conceptually grouped into
classes. Each class defines a set of permissible objects that are eventu-
ally implemented as user defined types. Hence, a class becomes an
implementation of an Abstract Data Type (ADT). Further, a good
design results in the encapsulation of the ADT and all access to that
ADT through a monitor.

Objects and classes are the first two facets of OOSD. Inheritance, poly-
morphism, and dynamic binding are the others. Inheritance allows the
reuse of objects and other software entities such as modules. The cur-
rent X server defines the Window and Pixmap as Drawables. The Win-
dow and Pixmap classes are derived from the more common class of
drawables. Code to render to a drawable can be used for both a win-
dow object as well as a pixmap object because render is a polymorphic
operation on the class drawable. Lastly, the function pointers defined
in the routing of protocol requests is an example of using dynamic
binding.

In addition, an Entity-Relationship diagram (ERD) was developed as
part of the MTX data object design. This ERD conforms to the method-
ology used by StP and is described in the MTX Component Design
Specification.

3. Concurrency Mechanisms

Object-oriented techniques promote program modularity through the
need for data abstraction. Concurrency is also concerned with data
abstraction since this concept allows for the efficient management of
resources in an environment requiring resource sharing and distributed
problem solving. Data abstraction in turn leads to a development based
on the concept of objects. Hence, we discover that concurrency is a
natural consequence of the OO paradigm.

Solving problems using concurrency [Agh90a] can be divided into
three types, pipeline, divide and conquer, and cooperative. The coop-
erative problem solving technique is very close to the description of
how the client/server model operates. Since the MTX server is based
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on the client/server paradigm, we concluded that the cooperative tech-
nique is our best choice for the MTX server.

Since the application of cooperative problem solving involves the shar-
ing and synchronization of resources among objects, we manage those
resources through the use of mutexes and condition variables. These
synchronization tools are necessary in order to avoid deadlock and star-
vation.

In a concurrent environment such as DG/UX, access to shared data must
be arbitrated by some [Kel89a] access control policy. Mutual exclu-
sion is one such policy that prevents two concurrent activities from
accessing the same shared resources at the same time. These shared
resources may include data as well as code segments called regions.

Mutual exclusion prevents activities from colliding over regions. If we
want to prevent an activity from continuing until some general condi-
tion is met, then we must synchronize that activity with the condition.
Hence, synchronization is a generalization of mutual exclusion. The
use of conditions implies a causal dependence on the execution of
activities. For instance, reading the drawables associated with a win-
dow object depends on the condition that the window object exist. If
the create activity has not completed access to the window object, then
the read activity will conditionally wait for synchronization from the
create.

Read and write access to data structures that must be shared by many
activities can be effectively managed using the Hoare monitor synchro-
nization mechanism. This programming construct [Fin88a] encapsu-
lates the shared data object in a protective wrapper. The wrapper
enforces mutual exclusion by allowing only one activity access to the
shared data object. The monitor is a global object that advertises all of
the public access routines of the object to the current set of activities.

The Hoare monitor is a poor performer when there are many more
readers than writers. We would like to allow multiple reads to occur
concurrently while allowing only one write access at a time. This solu-
tion to the reader-writer problem is handled nicely by the crowd moni-
tor. The crowd monitor has guard procedures that decide when each
activity may enter or leave a reader or writer access group. These
guard procedures arbitrate access to the protected data object. The
crowd monitor determines which group currently has access permis-
sion, and queues those activities that must wait.

Also, activities should be able to exclusively lock multiple data objects
before execution proceeds. For example, a ReparentWindow request
requires that particular window objects be exclusively locked before a
window is moved in the window hierarchy. This situation is similar to
the readers/writers problem. Also, there are event queues that are filled
by input device activities and drained by activities that report the events
to the appropriate clients. This is the producer/consumer problem.

4. Threaded X

The previous sections discussed how the MTX server is based on the
client/server model and how this model is best expressed using an
object-oriented methodology. In turn, this server model was shown to
require concurrent activities that are best managed using concurrent
programming constructs such as crowd monitors. This section dis-
cusses how the OO paradigm and concurrency can be implemented
with DG/UX threads [Alf91a] and locking primitives.
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4.1. Constraints

A thread is a sequential fiow of control. There may be more than one
thread executing within a process. Each thread shares the address
space of the process with all other threads that are created in the pro-
cess. A thread has its own execution stack, erro, and thread id. The
benefits to using threads are that disjoint sets of code may be executed
in parallel while sharing a common code and data address space.
Using threads increases the concurrency and interactivity of a process,
and allows for more efficient use of multiprocessor architectures.

DG/UX was designed to support multiprocessors, and conforms to the
POSIX 1003.4a Pthreads standard. This standard supports,

. The creation, control, and termination of threads;

. The use of synchronization primitives by threads in a common,
shared address space.

There are several issues to consider when threading the X server.
° What are the implementation constraints
. What level of granularity is needed to enforce resource locking

. What mechanism should be used to pass messages between
threads

° What is the impact of reentrancy.

The design of the MTX server results in a list of objects and their
related functions. The server must be designed so that those functions
that do not collide over data objects execute in parallel, and those func-
tions that are related are given fair access to data and are synchronized
when required. There are several constraints that affect the implemen-
tation of the server functionality.

4.1.1. Protocol Conformance

The MTX server must continue to conform with the existing X11 core
protocol. The X11 core protocol [Sch92a] treats the service given to
any one client as separate from all other clients. Hence, the protocol
requests from each client must be treated as atomic and serial.

The MTX server must simulate the atomic behavior by not allowing dif-
ferent threads to collide over the same data object. In this way, the
server executes each client request as if it were the only one being ser-
viced.

The protocol demands that requests from the same client be executed in
serial order. The effect of this requirement is that the MTX server
should concurrently execute requests from the same client only if the
appearance to the user is one of ordered changes. So, a client that gen-
erates a request for a font load and also a request to install a new col-
ormap can expect the server to execute these requests concurrently
since the font and colormap resources are distinct. Requests to change
window attributes and reparent a window must occur in serial order
since these requests access the same window resource.

4.1.2. System Resource Usage

The primary goal of the MTX server is to increase interactivity but not
at the expense of the RS server level of performance. Implementation
techniques that would increase the level of interactivity but degrade
MTX performance below that of RS were not used. Related to perfor-
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4.2. Resource Locking

mance is memory usage. A server that uses great amounts of memory
Or generates excessive paging is not acceptable. Partitioning the server
data and code into logical pieces should keep memory requirements at
an acceptable level.

Use of sharable data objects pervades the MTX server. The concur-
rency paradigm refers to these as sharable resources and suggests that
access to the resources be synchronized between multiple contending
threads. The MTX server wants to avoid having two clients change the
same colormap at the same time.

During the OO design of the MTX server, an object hierarchy was gen-
erated along with a description of how the objects should be accessed.
Part of the process of building the list of objects is discovering the
locking requirements on those objects. Objects may theoretically be
accessed in any of the read and write mode combinations, but practi-
cally, we want to impose resource locks to insure mutual exclusion
while ensuring maximum concurrency. Locks on shared objects are
enforced by crowd monitors. For example, the Resource Database
Monitor protects the Client/Resource Table.

Another issue is the lock granularity. Lock granularity can be defined
in terms of the size of the resource to be locked and the length of time
that a resource is protected from mutual access (i.e from lock to
unlock). Granularity is either fine or coarse grained. In fine grained
locking, a small resource is locked frequently for very short periods of
time. In coarse grained locking, a large resource is locked for long
periods of time, but much more infrequently. Determining the lock
granularity of each object is dependent on the expected use of that
object and the read/write access level required. The granularity for
each object is coded in that object’s access routines as defined by the
monitor.

Choosing the correct level of lock granularity for each resource is
important in maximizing performance and interactivity. For instance,
if multiple threads reading trackball input were to lock around each
read while updating the device record, then more time would be spent
in locking/unlocking than if the thread were to execute a lock, multiple
reads, and then an unlock. Since there is overhead in locking and
unlocking, fine grained locking consumes many system resources but
provides quick access to objects. Generally, coarse grained locking
consumes fewer system resources but results in a higher probability of
contention of threads. Fine grained locking increases interactivity at
the expense of performance and memory usage while coarse grained
locking increases performance at the expense of interactivity.

To avoid deadlock, each lock is accessed in a strictly defined order.
For acquisition of nested locks, lock precedence insures that deadlock
will never occur in the server. In addition, deadlock avoidance keeps
the server from having to manage costly rollbacks when data changes.

In order to increase the interactivity of the server but not degrade per-
formance, the granularity and position in the lock hierarchy is deter-
mined for each server object while keeping the above tradeoffs in
mind. A important factor in this determination is the expected usage
pattern for each object in relation to each protocol request. Frequency
of object use directly affects how that object is accessed.
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4.3. Reentrancy

Since threads share code and global data, the procedures that are call-
able from within threads must be reentrant or within a critical region.
Requiring reentrancy means that a large part of the RS server code can
not be reused, even at the Ml layer.

4.4. Development Platforms

4.5. MTX Threads

The MTX prototype was developed on an Omron Luna88k QuadPro-
cessor workstation running Carnegie-Mellon’s Mach [Ras87a] dis-
tributed systems kernel. Full implementation of MTX is proceeding on
workstations that support OSF/1 and DG/UX. Mach uses Cthreads
[Coo88a) while DG/UX and OSF/1 support the pthreads POSIX 1003.4a
standard library.

Both Cthreads and it’s descendent Pthreads provide a high level C pro-
gramming interface to the low level kernel thread primitives. These
thread packages support multiple threads of control for concurrency
and parallelism through shared variables, mutual exclusion of critical
regions, and condition variables for thread synchronization.

The functionality of the MTX server is approximately the same as that
defined by the current RS server. Although the functionality is equiva-
lent, the implementation is not. The MTX server is implemented with
threads and concurrency support whereas the R5 server has a single
thread of control. The current X server looks for client requests, input
events, and new client connections within the dispatch code. By com-
bining these three unrelated functions into one serial loop, the perfor-
mance of the server suffers. We can divide these functions into sepa-
rate flows of control [Tev87a] by using threads.

A sample implementation of the use of threads in the MTX server is
described in the following sections and is diagrammed in Figure 1. In
the diagram, circles indicate threads, boxes indicate external objects,
dark directed lines indicate inter-thread data flow, grey directed lines
indicate data object access, dashed directed lines indicate thread cre-
ation, and two horizontal lines enclose data objects.

4.5.1. Main Server Thread (MST)

The MST manages the global MTX server environment. This thread
initializes the MTX server and the input devices, and creates the Device
Input Thread. It also creates the Client Connection Thread so that X
Clients can establish communications with the server. If the MST
receives a wakeup command, it cleans up the global MTX server envi-
ronment and checks to see if the server should reset or terminate. If it
should reset, the MST reinitializes the environment and starts the MTX
setup over again.

The functionality of the Main Server Thread is similar to that found in
R5’s main.c. In the RS implementation, however, new client connec-
tions, new protoco! requests, and new device input are processed seri-
ally in a complicated dispatch loop. The complexity of the overloaded
dispatch loop is a direct result of the need to handle many different
asynchronous functions in one location. This area of the server was
greatly simplified in MTX by creating separate threads for each of these
functions.
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Figure 1: MTX Server Threads

4.5.2. Client Connection Thread (CCT)

New client connections are processed by the CCT. This thread accepts
the client connection request, validates the connection dependent infor-
mation (such as socket or shared memory), and creates the Client Input
Thread to handle new requests if validation was successful.

4.5.3. Client Input Thread (CIT)

There exists a CIT for each client connected to the MTX server. The
function of this thread is to process requests for its assigned client
while adhering to the atomicity and serial execution constraints
described in the protocol. When the CIT initializes, it determines byte
order for the client, accepts the client connection, and sends server
information to the client.

After thread initialization, this thread blocks until there is a client
request. This thread also handles the byte ordering of the OS connec-
tion to the client. The request is processed similar to the function
pointer mechanism used in the X11RS dispatch loop.

All CITs are able to process any protocol request. Since each protocol
request accesses both shared and private resources, locking policies are
invoked to protect multiple CITs from accessing the same resources.
Resources in the Resource Database are considered to be shared
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objects. Access to these shared objects are through the Resource Data-
base Monitor.

If a CIT wishes to gain access to event related objects (such as the
event mask, GrabRec, or DevicelntRec), the CIT requests access
through the Device/Event Object (DEO) Monitor. The DEQO Monitor
insures exclusive access to the event related objects and blocks other
requesting threads to enforce serial access to the event related objects.
The DEO Monitor returns contro] to the requesting CIT when the moni-
tor finishes.

All events that originate in the CIT are précessed by the DEO Monitor
before routing to the X Client. Errors and replies are sent directly to
the X Client.

The CIT also handles client shutdown activities. When a client dies or
is killed, the appropriate CIT frees resources from the Resource Data-
base and frees local data structures. If the CIT represents the last client
connected to the MTX server, then it acquires a lock to insure that no
new connections are made to the server while it signals the MST to
wakeup and reset the server.

If there is output to be sent to any devices, this thread manages that
activity through the Device Dependent X (DDX) layer. This includes
rendering to the graphics output device (e.g. framebuffer or graphics
processor) and generating feedback for the feedback devices (e.g. led
and bell). Rendering to the graphics output devices is a frequent opera-
tion and could generate an unacceptable number of thread context
switches if this functionality were placed in a thread other than the CIT.

Only one input buffer exists per CIT rather than a pool of buffers as
currently exists in the RS server. This approach allows us to localize
the input buffer processing to individual CITs and remove dependence
on the slower select () call.

4.5.4. Client Output Thread (COT)

COTs are created whenever the CIT or DIT (producer threads) must
buffer messages for delivery to X Clients. The DIT always creates a
COT since we do not want the DIT in a arbitrarily long blocking write
to the X Client when input could be processed. CITs usually deliver
messages directly to the X Client except when buffering would be
more efficient.

The producer threads deliver messages to the COT via an output buffer.
The COT flushes messages from the output buffer to a client’s socket
when necessary. If the socket is full, the thread will block.

The COT decouples message delivery from more essential server oper-
ations. When the server is very busy, COTs are created more fre-
quently. Likewise, when the server is at low throttle, our design
bypasses the overhead of creating a separate thread if that would be
more efficient.

4.5.5. Device Input Thread (DIT)

The DIT waits for device input and creates a COT thread to route the
device events to the appropriate X Clients. The DIT(s) are created at
server initialization in the MST.

There is at least one DIT to handle all device input to the server.
Device input from the mouse, keyboard, trackball, etc. is currently
placed in the ProcesslnputEvents function. This function has device
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4.6. MTX Monitors

independent and device dependent code based on the type of device.
The DIT accepts input from all registered devices.

Read and write access to data structures that must be shared by many
threads can be effectively managed using the Hoare monitor. This pro-
gramming construct encapsulates the shared data object in a protective
wrapper. The wrapper enforces mutual exclusion by allowing only one
thread access to the shared data object at any one moment. The moni-
tor is a global object that advertises all of the public access routines of
the object to the current set of threads.

The Hoare monitor is acceptable if the object requires exclusive access.
But, it is a poor performer when there are many more readers than writ-
ers. Typically, we would like to allow multiple reads to occur concur-
rently while allowing only one write access at a time.

This solution to the reader-writer problem is handled nicely by the
crowd monitor. The crowd monitor has guard procedures that decide
when each thread may enter or leave a reader or writer access group.
These guard procedures arbitrate access to the protected data object.
The crowd monitor determines which group currently has access per-
mission, and queues those threads that must wait.

A simple Hoare monitor is used to control access to the DEO. A crowd
monitor is used to control access to each client’s resources in the
Resource Database.

4.6.1. Device/Event Object (DEO) Monitor

The DEO Monitor arbitrates exclusive access to the device database
and any event related data objects. This includes the window event
mask, the window optional donotpropagate mask, the grab record, the
deviceint record, and others.

The DEO Monitor also allows serial access to device and window
objects when device events are propagated from the event window up
the window tree to the root.

4.6.2. Resource Database (RDB) Monitor

All shared resources such as windows, pixmaps, graphics contexts, col-
ormaps, etc. are kept in the RDB. When a client creates a resource, the
client id is used as a unique index into the table. For each client, there
is a hash table of resources where the resource id is used to hash into a
table of buckets that contain a list of resources owned by that client.
Each entry in the list in turn points to the actual resource object.

The resource-id is the unique identifier that is both understood by the
Xlib and the MTX server sides of the client/server model. Since the X
protocol must be preserved and the format of this resource-id is tied to
the protocol, we must preserve this table in the MTX server.

The RDB Crowd Monitor maintains this table by processing add, read,
and free requests from threads that manipulate these shared resources.
The CITs and the DEO Monitor can manipulate shared resources and
therefore use this monitor.
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4.6.3. Pending Operation Queue (POQ) Monitor

The POQ is a database describing how server objects are locked by cur-
rently running server operations (such as CITs or the DIT). By looking
in the POQ, the server can determine if a new protocol request from the
X Client would conflict with any other running thread. If no conflict
exists, the server operation puts an entry in the POQ, and continues exe-
cution. If a conflict occurs, the conflicting request is blocked unti] the
conflict is resolved. When execution of the operation is complete, the
thread removes the POQ entry and waits for further requests from the X
Client.

5. Multimedia Applications and X

One of the original driving problems for the design of a multi-threaded
X server was the efficient use of PEX. Multiple PEX applications
severely degrade the interactivity of the current X server as each 3D
image is rendered. An application that uses all of the PEX graphics fea-
tures, such as lighting. shading, and depth cueing, can make the other
day-to-day applications unusable.

We can also envision that other proposed media extensions to X will
compete in a similar way for server bandwidth.

The Video Extension (VEX) [Bru90a] was proposed as an extension to
X to provide a standard interface to video operations. These operations
include video input and output, manipulating a video picture on the
screen, acquiring digitized pixels from video frames, cutting portions of
the screen for video recording devices, and control of external video
devices. Full television resolution video processing is not yet a feasibie
application because video signal rates are still high compared to disk
storage rates. But, applications that require lower video rates such as
video post-production, simulation, video teleconferencing, and image
processing could benefit from the use of VEX.

The X Image Extension (XIE) [Web91a] is motivated by the growth in
applications requiring efficient image rendition, document image man-
agement, and interactive continuous tone color enhancement and analy-
sis. Cartographic and Geographic Information Services (GIS) applica-
tions would benefit mostly from the XIE standard.

By integrating PEX, VEX, and XIE applications with those requiring
audio and graphic capabilities, the X server is able to support a full
range of multimedia services. This paper has demonstrated that the
current X server does not give PEX users, let alone VEX and XIE appli-
cations, the performance and interactivity that they should expect. The
MTX server attempts to address this problem by providing a server that
can take advantage of SMP capabilities on platforms designed to sup-
port multimedia services.

A multi-threaded DG X server allows users to manipulate multimedia
applications while simultaneously reading mail or news, and editing a
emacs document. Users can expect that highly interactive applications
can coexist in an environment with reasonable performance if the
server providing these services is designed from the beginning to solve
these problems of concurrency.
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6. Conclusion

This paper has shown how using PEX and multimedia services render
the current X server incapable of adequately supporting these services.
The reason for this breakdown in service is due to the single-threaded,
one request at a time, implementation of the current X server.

We have shown that in order to provide sufficient services in a
client/server environment, the server must be designed with concur-
rency mechanisms in place to take advantage of SMP and multiproces-
sor operating systems. These concurrency mechanisms are best imple-
mented after an object-oriented approach uncovers the objects and their
inter-object relationships in the server.

The MTX server is being developed with concurrency mechanisms to
solve the problems of interactivity and performance that can be
expected from high demand applications such as PEX.

No project of this complexity can proceed without proper tools. StP
was chosen as the CASE tool to automate design and implementation.
The Mach kernel was chosen for implementation of the MTX server
prototype, while final development is proceeding on DG/UX, a pthreads
capable kernel.

Although the MTX server carries the overhead of thread creation and
object locking, the more efficient threads design has allowed the MTX
server to perform favorably compared with the RS server. Interactivity
has been increased without sacrificing performance.
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Abstract

The Streams architecture has been extended (as Parallel Streams) to
take advantage of symmetric multiprocessor environments in UNIX
SVR4/MP and other operating systems. This paper describes our expe- .
riences in providing fine grain parallelism for protocol drivers in Paral-
le] Streams. A multiprocessor simulator forms part of the development
environment. The design of the TCP and IP drivers is discussed in
detail, focussing on certain interesting race conditions in TCP. Perfor-
mance tuning, measurement and analysis are covered. The parallel
TCP/IP stack has been ported to Windows/NT ™.

1. Introduction

The growth of distributed computing, particularly networked file sys-
tems, and high bandwidth media, mean that networking performance in
operating systems is increasingly important. Shared memory symmet-
ric multiprocessors use off-the-shelf components, are extensible, have
the programming advantages of a global address space, and contain
some fault tolerance. They are increasingly popular for high perfor-
mance systems, ranging from tens of processors utilising a time shared
bus for processor-memory interconnect (such as the Sequent Symmetry
series [Seq87a)), to hundreds of processors with an interconnection net-
work or other highly scalable architecture (such as the BBN TC2000
[BBN90a], NYU Ultracomputer [Got83a], and Stanford Dash [Len92a]).

The networking drivers are candidates for parallelisation in a symmet-
ric multiprocessor architecture. Protocol processing is only one bottle-
neck in network 1/O. As important, if not more so, are a fast network
controller designed for a multiprocessor, adequate memory and 1/O bus
bandwidth, an architecture that minimises data copying, and an appro-
priate memory allocation policy [Cla91a, Rud90a, And91a]. These
factors have been modelled in detail [The92a]. Previous approaches to
parallel processing of network i/O have addressed the needs of gigabit
networks [Jai90a], utilised hardware optimised for a specific protocol
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Background

[Kan88a], or dedicated processors to particular protocol functions
[Zit89a, Jen88a, Gui90a]. The symmetric multiprocessor architecture
is not optimal for standalone communications processors. Fast proces-
sors can handle even fibre optic bandwidth, and an asymmetric
approach is better suited for high performance packet switches. It may
be preferable to run host protocol processing on a front end, although
symmetric multiprocessing offers undeniable flexibility.

We consider the need for providing scalable performance for standard
networking protocols (TCP/IP, X.25 and OSI) on a conventional sym-
metric multiprocessor, at current network bandwidth (up to 100
Mbit/s). Our definition of high performance is the completion of many
concurrent requests for network 1/0 by users in little more than the time
taken to satisfy a single such request. Increased throughput or
decreased latency for a single user is a secondary goal. On an other-
wise lightly loaded system, the throughput per transport connection
should degrade only slightly as the number of simultaneous connec-
tions increases towards the number of processors, with a ceiling of the
network bandwidth.

To achieve this performance, consider the following loosely defined
hierarchy of parallelism. A protocol machine provides the service of a
single communications protocol.

1. Serialise access to the protocol stack. No two processors are
simultaneously processing any part of the protocol stack.

Serialise access to a particular protocol machine, but permit con-
current processing of different protocol machines (vertical paral-
lelism).

Serialise processing of outgoing packets on a particular transport
connection, but permit concurrent processing of different trans-
port connections in a particular protocol machine (horizontal
parallelism). Permit concurrent processing of incoming packets
on different transport connections; demultiplexing at the trans-
port layer means that all incoming packets are processed concur-
rently up to this point.

Permit concurrent processing of outgoing and incoming packets
on a particular transport connection.

Permit concurrent processing of different parts of the same
packet, outgoing and incoming [Jai90a).

The third level in the above hierarchy, which we call fine grain paral-
lelism, satisfies the throughput goal." This can be provided for proto-
cols in the Streams environment, with standard parallel extensions to
Streamns. The rest of this paper describes our experiences in doing this
for the TCP/IP protocol stack.

The Stream 1/0 system (Streams [Rit84a)) is an environment allowing
modular development of layered communications protocols. First
made commercially available in UNIX V.3 [AT&86a], extensions for
multiprocessor support were carried out by Sequent Computer Systems
and incorporated with minor modifications in UNIX SVR4/MP
[AT&89a] as Parallel Streams. An introduction to Streams and discus-

t [Jai%a] defines this to be coarse grained, reserving fine grained for level 5. Most current protocols cannot efficiently exploit this
level of parallelism. The increasing relative cost of communication versus computation in symmetric multiprocessors means that fine
granularity may not be appropriate for large multiprocessors {Mar92a).
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sion of these extensions may be found in [Gar90a]. Appendix A
explains relevant Streams terminology.

The Streams environment has also been independently implemented as
SpiderStreams by Spider Software.® This has been ported to many
other operating systems, such as QNX [Hil92a], pSOS [SCG90a], and
Vrix [Rea88a). Multiprocessor support conforming to SVR4/MP
Streams has been added to SpiderStreams, and this has been ported to
Windows/NT [Cus92a] on Intel 80486 and MIPS R4000 architectures,
and to the Sequent Symmetry ™ 2000 [Seq87a] as a multithreaded user
process.

Within Parallel Streams, the protocol drivers must themselves synchro-
nise access to shared data. This has been described for TCP/IP in a
non-Streams kemnel [Boy89a], and for Streams drivers [Dov90a,
Nuc91a). The requirements of supporting many operating systems and
architectures, allowing future functional enhancements, and maintain-
ing a scalable parallel protocol stack dictate the following goals:

1.  All multiprocessor and single processor environments should
share a common code base. Performance in a single processor
environment should not degrade.

2. Modifications to the current implementation should be limited.
As our Streams-based protocol drivers were developed at Spider,
we are not constrained to track future releases of operating sys-
tem code, such as Berkeley TCP/IP. Some performance enhance-
ments and minor algorithmic modifications were made for better
support of multiprocessor environments, but we did not wish to
rewrite the protocol drivers.

3. There should be minimal assumptions about the underlying
architecture:

° There is hardware support for interprocess coordination.

° That memory reads and writes are atomic for 8 bit and
aligned 16, 32 bit and word quantities.}

. There may be hardware support for distribution of inter-
rupt servicing among all processors.

The protocol stack should be scalable up to the number of
processors that can efficiently support other parallel appli-
cations.

To date, the parallel implementation of TCP/IP (SpiderTCP/MP) has
been ported to SpiderStreams in Windows/NT, and user space Spider-
Streams on the Sequent Symmetry. A port to SVR4/MP on an Intel
80386 is in progress.

The next section reviews the architecture of Parallel Streams. Section
3 describes the development environment, and Sections 4 and 5 discuss
the design of multiprocessor support for TCP/IP protocols in Parallel
Streams. Section 6 describes performance measurement and analysis,
tuning for the Sequent Symmetry. The paper concludes by assessing
achievement of the above goals, and points to future work.

+ There are several other independent implementations of both single processor and multiprocessor Streams, although we claim to
have the earliest (1988). Appendix B provides an overview of the architecture of SpiderStreams.

f This is true for most symmetric multiprocessors, with the notable exceptions of early versions of the BBN Butterfly, and the Alliant
FX/8. Relaxing this assumption precludes much algorithmic lock avoidance.
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2. Parallel Streams

Parallel Streams supports fine granularity in Streams-based drivers,
through the concurrent execution of Streams service procedures oper-
ating on different queues in the same module or driver. This horizontal
parallelism is necessary for scalable performance; in addition, vertical
parallelism is supported, in that different drivers can execute in paral-
lel.

SpiderStreams is upwardly compatible with SVR4/MP Streams, with
two enhancements:

1. Levels of parallelism

The protocol drivers may run at one of several levels of parallelism.
The level is an additional field in the driver ginit structure, which holds
other driver information. Full Parallelism, the default, is equivalent to
the SVR4/MP Streams architecture; Subsystem Parallelism serialises
all service procedure execution on any queues in a subsystem, defined
as a stipulated collection of modules and drivers. The driver will run
safely on a multiprocessor without explicitly synchronising access to its
private data.” Streams drivers in different subsystems execute concur-
rently, so there is a gain from vertical parallelism. Drivers supporting
both levels may be mixed, allowing incremental development of fine
grain parallelism.

2. Asynchronous close without context switch

A mechanism has been added to support asynchronous close of a
stream without recourse to sleep and wakeup. These cannot be pro-
vided in context-free environments, and their use complicates the lock-
ing in Parallel Streams drivers, as spin locks cannot be held across
sleep calls. In fact, SVR4/MP allows this, as it automatically releases
locks before sleep and reacquires them on wakeup. When the applica-
tion closes a stream, the Stream head issues a special I_CLOSE ioctl,*
and keeps the stream open. The ioctl is acknowledged asynchronously
by the driver, and at this point, the stream is closed down, and the
driver close routine is called and returns immediately.

The rest of this paper assumes the Parallel Streams architecture as
defined in [Gar90a], with the optional SpiderStreams extensions. We
merely note that this architecture is a fertile subject for further study
itself. Issues include the following.

° Scalability of Parallel Streams itself is a more challenging prob-
lem, as all Streams drivers share access to message, timer and
other free lists, queues and streams. In contrast, the driver’s pri-
vate structures are only shared by put and service procedures
operating on that driver’s queues.

. Serialisation of service procedure execution of messages on the
same queue, while appropriate for protocols containing much
connection state, does not allow connectionless protocols such as
UDP to process datagrams in parallel. In addition, queuing mes-
sages to a service procedure in a multiplexed protocol like IP ter-
minates the parallelism of transport layer processing, as later
message processing is serialised.

t Other schemes exist for running Streams modules without adding fine grain parallelism, for instance [Kle92a)], where they are re-
ferred to as MulriThreaded(MT)-unsafe.

1 Only drivers that register for this at open time via an M_SETOPTS message receive it. Otherwise, the driver close routine is called
as usual, 50 that orthodox Streams drivers do not get confused.
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. The SVR4/MP architecture does not provide cross-multiplexor

flow control, nor protect against race conditions in multiplexors
during stream close. This is because it is not possible to trace the
path traversed by a message across a multiplexor without access
to protocol-specific addresses contained within the message.
Streams itself does not know when a pur procedure executing
within a driver demultiplexes to an upper or lower stream, nor
the stream on the other side of the multiplexor where a message
originated. Similar considerations affect interrupt handlers, time-
out routines, and bufcall and esballoc callback routines. It is
necessary to announce the entry into a stream or queue via a
Streams primitive; this enhancement was adopted in Plan9
[Pre90a] and SunOS 5.0 [Sun92a]. It is then possible to serialise
all service and put procedures operating on input and output
sides of the same stream, so that data private to the stream does
not require synchronisation."

3. Development Environment

Introduction

Multiprocessor Simulator

Parallel support was debugged and tested on a multiprocessor simulator
and an implementation in user space on the Sequent Symmetry. A pre-
vious implementation of uniprocessor Streams as a UNIX V.3 user pro-
cess was enhanced to provide a similar development environment for
parallel Streams drivers. Fine grain locks were added to each driver
separately, using drivers running at both full and subsystem paral-
lelism as defined in Section 2. In addition, both development environ-
ments allowed multiple instantiations of the Streams environment to
run in a stable operating system, permitting independent work on the
same machine. Initial development and informal testing were carried
out using the simulator, and final testing was done on the Sequent Sym-
metry. The implementation was then ported to Windows/NT by
Microsoft Corporation.

A multiprocessor architecture was simulated by a server process con-
taining the Streams environment, with semaphores and coroutines
based on setjmp and longjmp, similar to those implemented by
{Pik92a]. Applications communicate with the server by emulating
QNX intertask communication [Kol89a], using message queues in
UNIX System V. The system comprises several processes, shown in
Figure 1. A separate process handies messages from applications, as
the server cannot sleep in a system call without blocking all coroutines.
This message receiver process communicates with the Streams server
using a buffer pool and two circular buffers in shared memory, one to
pass application requests, and one to return pool storage (see Figure 1).

The coroutines within the Streams server process yield control when
blocked on a semaphore (cr_p) and by an explicit instruction
(cr_switch). Streams primitives always call cr_switch, ensuring a high
degree of concurrency. Some parallel extensions were made to the
GNU debugger [FSF87a] to provide per-coroutine stack traces.

t See Queue-pair safe modules in {Kle92a].
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The simulator-based TCP/IP protocol stack may run side-by-side with
the in-kernel TCP/IP, ensuring stable networking during development.
This is done by appropriating unused Ethernet types for IP and ARP, so
that both stacks may multiplex onto the same Ethernet driver. A dae-
mon transfers packets between the Ethernet driver and the Streams
server. An IP router with a Streams conversion module swaps Ethernet
types and permits communication between the simulator TCP/IP and a
conventional TCP/IP stack. The simulator has been ported to Interac-
tive System V/386 Release 3.2 on Intel 80386 and 80486, ICL DRS/NX
on a Motorola 68000, and RiscOS 4.52 on a MIPS RS2030.

Sequent Symmetry

Streams was ported to a multithreaded user process on an 18-processor
Sequent Symmetry 2000/700 running DYNIX 3.1.4 on 80386s, and an
8-processor Sequent Symmetry 2000/750 running DYNIX/PTX 3.2.0 on
80486s. Several threads are dedicated to handling message from appli-
cations, while the rest execute Streams service procedures and call-
backs. The service procedure threads block on reading from a pipe,
and are woken up by writing data to the pipe when a queue is first
scheduled and on bufcall callback. Client applications and the server
communicate via System V message queues. The architecture for
interfacing to the Sequent Ethernet driver is identical to that used in the
simulator. A parallel version of dbx supplied with the Sequent Sym-
metry was used for debugging.

Debugging

Parallel debugging proved to be easier than anticipated. The user space
environment provides a stable platform and fast build route. It allows
use of familiar source level debuggers, breakpointing, easy process ter-
mination and examination of core dumps. The ability to run the simu-
lator on most of our workstations greatly speeded development.
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Figure 1: Architecture of Multiprocessor Simulator
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Deadlock detection was helped by the inclusion of lock-specific trace
information, notably the file name and line number where the lock was
last acquired. A deadlocked thread hangs the server process in the sim-
ulator, or spins indefinitely on the Symmetry; it can be aborted and the
problem rapidly isolated by inspection of stack trace and file name and
line number associated with the lock. Additional runtime checking,
static analysis and production code diagnostics are described in
[Pea92a, Pac91a, Eyk92a], but are probably unnecessary for debugging
in a standalone Streams environment; almost all deadlocks were
detected in the simulator.

Experiences in porting to Windows/NT revealed some weaknesses in
the development environment. The arrival of network interrupts is not
adequately simulated. Currently these are treated identically to appli-
cation requests. Interrupt levels have no meaning in a user context,
although some detection of incorrect interrupt level setting is possible.
The scheduling policy, two FCFS queues for application messages and
service procedures, is infiexible. A configurable policy that permitted
priority scheduling of user level threads, network interrupts or Streams
service procedures would better reflect that adopted in the target archi-
tecture.

4. Design of Parallel Drivers

Optimising Single Processor Performance

The performance of algorithms with a high overhead on a single pro-
cessor degrades in a multiprocessor environment. The machine is
likely to be more heavily loaded, lists and tables are larger, and linear
searches take longer. Critical sections are serialised, so that contention
adds a further penalty. The UDP control block chain was the only such
structure utilising a linear search, and has been converted to a hashed
lookup (TCB chain,’ routing table and ARP table lookups were already
hashed). Replacement of timers by timestamps reduces contention,
especially for removing expired table entries. If the table entry is allo-
cated from dynamic memory, garbage collection can be carried out
infrequently. New features have been designed with inherent support
for parallelism; for instance, always using a single function to read or
modify a shared datum allows the lock to be defined locally to the func-
tion (the object oriented approach).

Well Behaved Streams Drivers

There are some rules that well-behaved Streams drivers should follow,
which are especially important in a multiprocessor environment. They
include not accessing internal Streams structures directly (particularly
the queue), assuming concurrency of put and service procedures, and
awareness of race conditions in flow control and stream closure; see
[Gar90a] for further details. All the TCP/IP modules and drivers con-
form to these rules.

t The TCP Control Block (TCB) holds the state for each TP connection. TCBs are linked together to demultiplex incoming segments;
there is a similar linked list of UDP Control Blocks. The advantages of hashing TCB lookups are described in [McK92a].
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Put Procedures, Service Procedures, and Synchronisation

For purposes of synchronisation and contention, it is assumed that all
protocol processing on both input and output may be executed within
one service procedure. Alternatively, there may be arbitrary reschedul-
ing at each layer. The choice depends on the relative costs of
rescheduling messages versus potential advantages thereby for cache
affinity scheduling, and is target dependent.

Spin locks provide all synchronisation in the protocol drivers. The use
of sleep and wakeup is avoided in SpiderStreams, and so semaphores
are not required. As communication within Streams is message based,
data structures are local to a module, and locks need not be held across
different modules. Any locks acquired within a put or service proce-
dure are released before the next put procedure (putnext, qreply, putctl,
and purctll). This simplifies the design, bounds the time for which a
spin lock can be held, and avoids deadlocks through attempts to reac-
quire the same lock. This deadlock is particularly dangerous in
Streams because later greply calls may reenter the driver (see
[Kle92a]). Locks may be held across putg calls, as these simply enable
the service procedure for scheduling. Following the above precepts
ensures that critical sections are small and bounded, so that spin locks
are adequate.

The TCP driver contains the longest critical sections, during segment
transmission and reception. Connection state is altered during these
critical sections. There is contention between two outgoing threads
(the Stream head write put procedure, and the TCP upper write service
procedure), some incoming threads limited to the number of segments
in a TCP window, and any threads gathering statistics. Critical sections
accessing global shared data are shorter, although contention is
increased: an outgoing thread for each transport connection, incoming
packets and threads gathering statistics and configuring tables. The
number of such threads can reach the number of processors in a system
under heavy load.

Locking Strategy

Coarse grained locks were used unless performance requirements war-
ranted otherwise. Much global data is concurrently read by many
threads but rarely modified. Contention for these was reduced by
readers/writer locks, which allow concurrent reads but serialise writes.
Circular Wait deadlock is prevented by enforcing a strict lock hierar-
chy. As all locks are local to a particular protocol driver, only a small
number can be held concurrently, and it is unnecessary to use a more
complex scheme such as conditional locking [Pac91a]. Another danger
is deadlock through an interrupt service routine (ISR) attempting to
acquire a lock held by the interrupted processor. To avoid this, lock
acquisition for any datum that may be locked within an network ISR
must disable network interrupts. Interrupt related issues are discussed
in [Kel89a] and [Eyk92a).

Locking Implementation

Synchronisation around critical sections is coded using c¢pp(I) macros,
and disappears when compiling for a uniprocessor. There are two lev-
els of macros. A separate set of macros is defined for each shared
datum, this level allows the locking scheme for that datum to be easily
modified, unless the scope of the lock is being widened or narrowed.
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These macros are defined as system-wide macros implementing mutual
exclusion, readers/writer locks and other simple schemes such as incre-
menting a shared counter.! This second level permits efficient tuning of
the synchronisation primitives for each target. Macros also permit
statements to be embedded for debugging and, redefined as functions,
allow profiling for performance analysis.

5. Protocol Driver Implementation

To illustrate issues in adding parallel support to the communications
drivers, examples are taken from the TCP and IP drivers. Fine grained
parallelism was also added to the NetBIOS, telnet, rlogin, UDP, loop-
back, ARP, SNAP, LLC1 and Ethernet drivers.

5.1. The TCP Driver

The TCP Driver is an upper multiplexor, where each TCP connection
has an entry in a device array indexed by minor device number, and a
Transport Control Block (TCB), allocated from Streams dynamic
memory, holding state information for the connection. TCBs bound to
an [address, port] pair are added to the TCB chain. This is a linked list
of TCBs, and is used for demultiplexing incoming segments, traversed
to carry out retransmission and other timer-related events, and to col-
lect statistics. A hash table speeds TCB lookup for incoming segments.
Figure 2 shows the relationships between these structures.

There are two main requirements for mutual exclusion in the TCP
driver;* protecting access to the TCB holding the state for each TCP
connection, and to the TCB chain.
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Figure 2: The TCB Chain, TCBs, device entry table, and TCB hash table

t On some architectures, this operation can be made atomic without recourse to a spin lock.

1 The design is similar to that briefly described in [Boy89a).

Technical - OpenForum 92 - Utrecht, 23-27 November 153




Experiences in Fine Grain Parallelisation of Streams-Based Communications Drivers

The TCB Lock

Message Reordering

The TCB requires locking, as both write and read side threads modify
connection state. The latter includes TCP sequence numbers, offered
window size, and data buffered internally because of flow control or
for potential retransmission. A mutex lock protects almost the entire
TCB. Some fields, such as local and foreign addresses and the TCP
state, are not protected for reading. Threads that scan the TCB chain do
not need to acquire and release the lock for each TCB. Instead, when
the desired TCB is found and locked, it is verified that the state is
unchanged,; if it has altered, the search is repeated.

Most of the incoming segment processing occurs before the TCB lock
is acquired (lower layer processing, segment validation, which consti-
tutes most of the processing for data segments,’ and demultiplexing),
so a mutex lock permits some concurrency for processing outgoing and
incoming segments on a particular connection. Increased throughput
for a single connection is not the primary goal, so finer granularity
would introduce unnecessary complexity for little gain.

As TCP segments outgoing data, it is possible to make several putnext
calls within one thread. The TCB lock must be released before and
reacquired after the putnext call to adhere to the principle of never
holding locks across a put procedure. However, this opens a window
for incoming segments to acquire the TCB lock, so that it must be
released with the TCB in a state consistent with incoming segment
reception. This issue was sidestepped for paths with minimal influence
on performance (connection establishment, connection termination, and
delayed ACK generation) by calling putq to queue the message for later
handling by the TCP lower write service procedure. Threads transmit-
ting data and ACK segments, being performance critical, call putnext
immediately, with the TCB in a consistent state. A similar approach
was used when sending data and closing indications up to the applica-
tion. The old interrupt level is always stored as a field (olevel) in the
TCB on acquisition of the TCB lock, ensuring correct interrupt level
restoration when the lock is released before putnex:.

Inherent parallelism carries the potential for message reordering on
both input and output. This can happen because of flow control, lock
schemes that do not queue requests, and ISRs.

Flow control can reorder messages because of the concurrency of put
and service procedures. Spinning threads acquire the TCB lock in ran-
dom order, unless the mutual exclusion primitives queue requests. The
write put and service procedures are the only threads that acquire the
TCB lock on output, and there can only be one of each for a particular
TCB. These problems reduce to that of ensuring that all pending mes-
sages for the service procedure are processed before a subsequent put
procedure. A flag in the TCB enforces this.

Neither of the above problems occur on input. Flow controlled data for
upstream transmission is queued internally in TCP, rather than on the
service queue. The TCP protocol reorders out-of-sequence segments,
so incoming threads may acquire the TCB lock in any order. Reorder-
ing is a possibility when TCP input processing may be carried out
within an ISR. An incoming thread, not called from an ISR (for exam-

+ Unless the checksum calculation is implemented in hardware.
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ple, as a result of upstream flow control), acquires the TCB lock, pack-
ages pending data into a Streams message, releases the lock and calls
putnext to pass the message up. An ISR is scheduled on the same pro-
cessor between the lock release and punext call. The ISR repeats the
above operation, calls putnext and exits. Putnext is then called by the
interrupted thread, and the two messages have been reordered. Note
that this is erroneous behaviour if the second thread is attempting to
send up either a data segment or a close indication. To detect this, a
flag (in_putnext) is set across the putnext; the second thread checks
this, and if set, queues the data internally in the TCB and enables the
service procedure for later handling. The flag ensures that only one
thread is allowed to execute upward putnext calls at a time. Figure 3
shows a code fragment to implement this. P_LOCK and V_LOCK are the
system wide macros for mutual exclusion, which take the address of
the lock and the interrupt level at which it is held (the second level
macros are omitted).

The TCB Chain
The TCB chain is protected by a readers/writer lock. Hashing reduces
contention when demultiplexing incoming data segments. However,
the entire chain may be traversed during connection establishment,
statistics gathering, retransmission, and binding to a unique address, so
a mutex lock is inappropriate. Modification is frequent, when opening
and closing connections, so the lock is implemented to give writers pri-
ority.
The ordering of the individual TCB locks and TCB chain lock presents a
problem. For operations such as retransmission, it is natural to acquire
the TCB chain lock first, and then the TCB lock; for other operations,
such as opening and closing connections, the reverse is true. The first
case is the obvious ordering; otherwise, the TCB chain lock must be
released and reacquired to enforce the lock hierarchy, creating a win-
dow during which the current TCB may be removed from the TCB
chain. To circumvent this, the TCB chain lock is acquired before the
TCB lock when a connection is opened, well before it is needed in the
thread. The alternative, unwinding the locks (acquiring the TCB lock,
releasing it, acquiring the TCB chain lock and then reacquiring the TCB
TCB *tcb; /* TCP Control Block: tcb_lock points to mutex,
olevel holds interrupt level */
mblk_t *mp; /* message block containing data in TCP segments */
#define PASS_DATA_UP(mp, tcb) { /* macro to ensure no reordering */
tcb->in_putnext = 1; /* set flag */
V_LOCK(tecb->tcb_lock, tcb->olevel); /* unlock TCB, using TCB field as
pointer to lock */
putnext (tcb->tcb_gptr, mp); /* tcb_qgptr is read queue:put message up */
tcb->olevel = P_LOCK(tcb->tcb_lock, SPLSTR); /* lock TCB */
tcb->in_putnext = 0; /* clear flag */
}
/* check on input */
if (tcb->in_putnext) { /* another thread is putnext’ing a message up */
gueue_data_internally(mp, tcb); /* queue message internally */
genable(tcb->tcbh_qgptr); /* enable read service procedure, held in tcb_gptr */
} else
PASS_DATA_UP(mp, tcb); /* send message up */

Figure 3: Avoiding data reordering on input
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lock), is dangerous for a networking driver, as an incoming segment
may acquire the TCB lock during the window.

Contention for the TCB chain when closing connections was reduced in
the following manner. Regular events in TCP are handled by a timer,
which enables a service procedure used for retransmission, keep-alive
generation and other purposes. This ensures that critical sections do
not execute at timer interrupt level. Many TCP connections are closed
in this service procedure, on expiry of the TIME_WAIT timer. It is
straightforward to require that all TCBs be removed in the same way;
those that should be removed immediately merely wait for the next
invocation of the retransmission service procedure, meanwhile mark-
ing themselves as expired. This is the only thread that acquires the
TCB chain lock for writing during TCB removal,almost halving the
number of threads contending for this lock. Note that this service pro-
cedure must acquire the TCB chain lock for reading anyway.

Vanishing TCBs

The TCB is held in a Streams message block, dynamically allocated
when the connection is opened. When the service procedure described
in the previous section removes the TCB, it acquires the TCB lock, frees
the dynamic storage used to hold the TCB, and releases the lock. Sev-
eral events may occur while this in progress; a timeout routine, bufcall
callback, or the demultiplexing of an incoming segment onto this TCB.
Any of these spin on the TCB lock; on acquisition, the TCB has disap-
peared.” SVR4/MP Streams provides a disable_procs call that does not
return until all messages queued on the read and write side of the
stream have been processed, but it does not deal with these three issues.

It is insufficient to cancel the zimeout or bufcall, as they may fire
between the acquisition of the TCB lock by the closing thread, and call-
ing untimeout or unbufcall (in which case they spin on the TCB lock
until the closing thread releases it). To avoid this, a consistency check
is required. At this point, the contents of the TCB are unreliable, so that
it is important that neither the TCB lock nor the entry point used to find
the TCB should be held in dynamic memory.

The following solution was implemented. The TCB lock and a
sequence number are stored in the device array, along with a pointer to
the TCB. The index into the array is logically ORed with the current
sequence number,} and this is passed to the timeout routine or bufcall
callback. Before TCB deletion the sequence number is incremented
while holding the TCB lock. A consistency check (using a field in the
TCB, id, that holds the index into the device array for that TCB), shows
that the TCB has expired, and the routine returns without corrupting a
freed or reused message block. Figure 4 illustrates the problem by
showing data structures and a code fragment based on the timer that
implements delayed ACKs.

As incoming segments can only access the device array through the
index held in the TCB (without scanning the entire array), the sequence
number check cannot be used. Instead, a consistency check is carried
out on the addresses used to demultiplex, which are zeroed during
closedown. If these have changed once the TCB lock has been
acquired, the segment is dropped. The TCP protocol prevents immedi-

+ SunOS 5.0 extends the Streams architecture to solve this problem, which is avoided by calling the enterg, leaveq, entrstr and
leavestr routines {Sun92a;.

1 The combined array and sequence number spaces cannot exceed the size of the parameter passed to timeout or bufcall, i.e. the word
size.
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struct tcbarray { /* device array, one for each open TCP connection */

TCB *tcb; /* pointer to TCP Control Block */

lock_t lock; /* mutex lock for TCB */

unsigned char seq; /* 8-bit sequence number */
} tcentry[NTCPCON]; /* NTCPCON < 2+*+*(gizeof (int)-sizeof (unsigned char)) */
#define DEVICE_ARRAY_ SPACE 24 /* 24 bits for device array */
#define DEVICE_MASK Ox00ffffff /* mask off top 8 bits */

#define DEV_OR_SEQ(tcb) ((tcentry|[tcb->dev].seq << DEVICE_ARRAY_SPACE) | tcb->dev)

#define SEQ(segdev) (seqgdev >> DEVICE_ARRAY SPACE) /* current sequence
number */

#define DEV(segdev) (seqgdev & DEVICE_MASK) /* used to find TCB */

tcb->tickid = timeout(acktick, DEV_OR_SEQ(tcb), HZ/5); /* delayed ACK timer,
200 ms */

void acktick(segdev) /* ACK timer fires */

caddr_t seqdev;

{

int olevel, dev = DEV((int)segdev); /* calculate index into tcentry array */
TCB *tcb = tcentry[dev).tch; /* calculate pointer to TCB */
olevel = P_LOCK(&tcentry{dev].lock, SPLSTR); /* acquire TCB lock,

using global address,
as TCB may have gone */

if (SEQ(seqgdev) == tcentry[DEV(seqdev)).seqg) { /* check sequence numbers */
/* ....usual processing.... */

} /* else: do nothing, connection has vanished */

V_LOCK(&tcentry[dev].lock, olevel); /* release TCB lock */

Figure 4: Detecting Vanishing TCBs

ate reuse of addresses, so there is no possibility of a new connection
with the same addresses immediately reusing the message and mas-
querading as the same connection. However, it is unsatisfactory to
carry out a consistency check on a freed message. The solution is to
extend the Streams multiplexor architecture as described in [Sun92a].

Other Areas

The device entry and hash lookup tables, packet identifier and flow
control status flag are protected by write locks. A mutex lock on the
TCB chain is required when scanning it to check unique use of
[address, port] pairs. SNMP and other statistics updates require syn-
chronisation. There is a potential race condition between timeout and
untimeout being called on the same identifier, resulting in the timer
continuing to fire. This is avoided by a mutex lock.

5.2. The IP Driver

Introduction

The IP driver is both an upper and lower multiplexor. A protocol table
multiplexes incoming datagrams up to the TCP driver, UDP driver or
ping utilities.’ A network table multiplexes outgoing datagrams onto
network interfaces. There is a routing table for outgoing route determi-
nation, and a double chain of fragment chains for receiving fragmented

t ICMP is also implemented within the IP driver.
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datagrams. Incoming datagrams contend for the network table, the pro-
tocol table and, if fragmented, the fragment chains. Outgoing data-
grams, statistics gathering routines, and SNMP management requests
contend for the network table and the routing table. Figure 5 shows the
data structures.

Upper and Lower Multiplexing Tables

The upper multiplexing table is protected by a mutex lock. Although
this uses a linear search, and there is contention for this by all incoming
threads, the critical section is short, as most threads are TCP segments
or UDP datagrams, which are matched in the first two entries; later
entries are used for demultiplexing ICMP Echo Replies to the appropri-
ate ping application, which is rarely used.

The lower multiplexing table is protected by a readers/writer lock.
SNMP commands to disable or enable interfaces can alter entries. In
addition, the table is filled when the protocol stack is linked together at
startup, and cleared when it is dismantled. The entries are rarely
modified, so the lock can be implemented to give readers priority.

Routing Table

The routing table is implemented as an array of hash buckets, and pro-
tects the entire array by a readers/writer lock. As change occurs only
during routing instability, this scheme suffers less contention than a
mutex lock per hash bucket. Many outgoing IP datagrams routed to the
same IP network require access to the same routing table entry, and
would contend for a mutex lock on the entry.

Fragmentation and Other Areas

Locks must be released before putnext of fragmented datagrams, as in
the TCP driver. Rather than risk changes to the network table between
fragment transmissions, lock release and reacquisition is avoided. All
the fragments of an outgoing datagram are constructed and queued

Protocol Table (mutex tock)

[TCP [UDP |ping
loopback netl net2
@ ‘& Network Table (readersiwriter lock)

Routing Table (readersiwriter lock) Fragment Chains _(mures lock

(| [T T T 1] ) g"-ﬂ"_)g

S 5

Figure 5: IP Multiplexing Tables, Routing Table, and Fragment Chain
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internally, the locks are released, and putnext is called for each queued
fragment. The chain of received fragment queues is protected by a
mutex lock. Fragmented datagrams are rarely received, and carry a
performance penalty themselves, so that contention may be accept-
able. Other locks include write locks for the IP device entry table and
ICMP packet identifiers.

5.3. Performance Measurement and Analysis

Performance Tuning

It is important to tune the synchronisation primitives (mutex locks,
readers/writer, and atomic increments) for the target architecture. The
implementation of these mechanisms varies depending on the coordina-
tion primitives that are available on a particular architecture [Gle91a,
Mel91a, Fre91a, Bae91a]. For example, impiementations of readers
and writers that utilise compare&swap, load-linked/store-conditional,
and ferch&add offer higher performance than those based on mutual
exclusion primitives such as test&set [Got8la, Joh92a, Mel91lb,
Hsi91a).

The Intel 80486 is a popular architecture for shared bus multiproces-
sors. The development environment, Windows/NT and SVR4/MP all
run on 80486-based multiprocessors. The 80486 xadd instruction,
when combined with a bus lock, provides an atomic ferch&add. This
allows us to implement fetch&add based optimistic writer priority algo-
rithms for readers-writers coordination, supplied by Eric Freudenthal of
the research staff at the NYU Ultracomputer laboratory.} Appendix C
shows the C source for the algorithms. In the absence of writers, this
algorithm requires a single fetch&add for reader lock acquisition,
which is no more expensive than a mutex lock. Mutex locks can be
implemented using test&ser with exponential backoff, which yielded
good results in [Mel91a]. Shared counter increments avoid the penalty
of a mutex lock by prefixing the increment with the 80486 bus lock
instruction. Appendix C includes the inline assembler source for this
on the Sequent Symmetry. It would be fruitful to investigate queuing
locks and other synchronisation primitives.

Performance Measurement

Scalability can be measured by using the TCP/IP performance bench-
mark program ftcp. This measures memory-memory transfer rates for
a variety of buffering strategies. Parallel benchmarks may be measured
by increasing the number of connections simultaneously running ticp.
The time taken to complete one transfer indicates scalability, as long as
the other transfers do not complete beforehand.

Currently, the only platform available to us for measurement is the
development environment running on the Symmetry. This architecture
is optimised for ease of development, not performance. The Streams
server and all applications run as user processes. Packets to and from
the network incur large IPC and context switch overheads. The archi-
tecture could be improved by multithreading data source and sink
applications, and the Streams server, as the same user process. Loop-
back transfer would then incur no IPC overhead. The server is suited

+ In some configurations, NFS iragments UDP datagrams. The lock granularity may be reviewed in the light of this behaviour.
1 The algorithms will be included in a forthcoming technical report by the NYU Ultracomputer Research laboratory.
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Performance Analysis

for a real time operating system or microkemnel architecture, and it
would be interesting to measure performance in such an environment.
Performance in Windows/NT and SVR4/MP will be measured in the
future.

A tool has been developed to collect lock contention statistics (others
include [Cam91a] and [Pea92a]). The Streams trace logger is used to
collect output for later analysis. Figure 6 shows the statistics collected.
In addition, a configuration structure allows fine control over collection
of statistics, which may be turned on or off while the system is running,
or by triggering certain thresholds.

Profiling of the message server process using gprof[Gra82a] can pro-
vide useful information about bottlenecks. Redefining the locking
macros as functions provides an indication of contention for those
locks. A specialised parallel program performance tool like IPS-2
[Mil90a] would be more flexible, as pointed out in [Hol92a). The com-
bination of more sophisticated profiling techniques and the lock spin
statistics package should allow fine grain monitoring and tuning of the
parallel protocol stack.

6. Conclusions

In this paper we have investigated some aspects of the implementation
of TCP/IP in Parallel Streams. These include the design of the TCP and
IP drivers, the development environment, implementation on an Intel
80486 architecture, and techniques for performance analysis and mea-
surement.

The lower layers, and important areas such as statistics, have not been
described. Scalability measurement and analysis of overheads on vari-
ous platforms remains to be done. Traffic analysis for WANs and LANs
could be used to model realistic workloads for both small and large
numbers of processors.

The effect of varying parameters such as lock implementations and
scheduling policies could also be measured.

struct cr_lock {
lock_t slock;
char *name;
char *file;
int line;
int held;

#ifdef PERFORMANCE_TRACE
int report;
int reset;
unsigned long as
unsigned long as
unsigned long to
unsigned long ma
char *maxspins_f

structure holding the lock, debugging and statistics */
the lock itself */

debugging information */

debugging information */

debugging information */

debugging information */

/* sequence number indicating when to report */

/* sequence number indicating when to reset */
sertions; /* number of times lock is acquired */
sert_no_spins; /* times lock acquired w/o spinning */
tal_spins; /* total number of spins */

x_spins; /* maximum number of spins */

ile; /* file where max spins occurred */

int maxspins_line; /* line where max spins occurred */
unsigned long min_spins; /* minimum number of spins */

#endif
}i

Figure 6: Spin Lock Statistics and Debugging Information
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Appendix A: Parallel Streams Terminology

Parallel Streams is discussed in [Gar90a, Pea92a, Cam91b, Kle92a]. A
Streams-based protocol stack is composed of modules and drivers,
which are used interchangeably in this paper except when specifically
referring to a multiplexing driver. Entry points to modules or drivers
are queues, and all intermodule communication is via messages placed
on the queues. A put procedure is a function call to another Streams
module, passing the queue and the message as parameters. A service
procedure is a thread of execution within Parallel Streams, which has
its own non-preemptive FIFO multithreaded scheduler. When the
Streams scheduler runs, the service procedure for each enabled queue
is executed; it calls (possibly zero) pur procedures, until the message is
queued for another service procedure, when it returns, terminating the
thread of execution. This means that pur procedures on different
queues also execute in parallel.

Appendix B: Overview of the SpiderStreams Architecture

SpiderStreams provides an environment in which modules and drivers
written to run in a UNIX V.3 or V.4 kernel may be used on other sys-
tems not supporting Streams. It consists of a library of functions which
provide a UNIX-like interface, and a server process in which the
Streams “kernel” code runs. SpiderStreams uses a message passing
mechanism between applications and the server process in which the
Streams drivers execute. This is very suitable for microkernel-based
operating systems like Mach or QNX. For operating systems with a
UNIX-like system call interface, the server may be converted to a pro-
cedural interface. This model is strongly process-oriented, and
assumes that a process will handle a limited number of streams, and
that concurrent activity on those streams will not be the normal mode
of operation.

SpiderStreams may also provide a bare protocol stack on a front end
card. Note that Streams itself does not require a multitasking environ-
ment; the Streams scheduler is single threaded and service procedures
(Streams threads) do not have a context. A Cross Bus Driver has been
implemented to extend the Streams interface across a bus, for PC (ISA),
Muitibus II and VME architectures, with SpiderStreams running on
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multiple front end cards, possibly with Streams also on the host, allow-
ing Streams protocols to run in both environments.

Streams requires basic services from the underlying operating system;
store allocation, a source of real time, and an interface to the 1/O hard-
ware. If applications are required, there must be some kind of interpro-
cess communication. The Streams server communicates with applica-
tions via a synchronous message passing interface, which can be imple-
mented as a library based on IPC facilities; this has been ported to
UNIX System V message queues and shared memory, QNX RPC primi-
tives, pSOS message queues and Vrtx message queues. In particular,
SpiderStreams has been implemented as a UNIX user process. This
forms a powerful development environment; the kernel is stable, many
instances of SpiderStreams may be running on one machine, source
code debuggers are available, and the edir-build-debug cycle is very
short, deriving all the advantages of user level versus kernel program-
ming.

Appendix C: Lock Implementations on the Intel 80486

/*
* inline assembler macro for atomic counter increment
*/
asm void INCREMENT(laddr)
{
treg laddr;
/PEEPOFF
incl laddr
/PEEPON
fmem laddr;
/PEEPOFF
lock
incl laddr
/PEEPON
}
/>
* NYU Ultracomputer Laboratory readers/writer algorithms provided by Eric Freudenthal
* readerPrologue, readerEpilogue, writerPrologue, writerEpilogue
*/

/* C versions - faa() is an atomic fetch&add */
#define BIG 65536

readerPrologue(lock) {
t = faa(lock, BIG); request lock */
while (t & BIG) { is there a writer? */
t = faa(lock, -BIG); release request */
while (t % BIG) wait till other writer drains... */
t = lock;
t = faa(lock, BIG); request lock */

}

readerEpilogue(lock) {
faa(lock, -BIG);

}
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writerPrologue(lock) {
top: t = faa(lock, 1);
if (t % BIG != 0) {

/* request lock, lock out readers */
/* is there another writer? */

t = faa(lock, -1) - 1; /* undo reguest */

while (t & BIG != 0) /* wait for other writers */
t = *lock;
goto top;
}
while (t / BIG) /* wait for readers to drain */

t = *lock;
}

writerEpilogue(lock) {
faa(lock, -1);
}
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Abstract

Although there has been a significant increase in the use of distributed
systems, we are yet to see them being commonly employed to solve a
problem concurrently. One of the obstacles to programming dis-
tributed systems is the absence of the tight coupling that characterizes a
parallel processing MIMD machine. Programming with distributed
memory can be extremely difficult, owing to the fact that the program-
mer needs to deal with the complexities of communication across
machine boundaries and that, this is the only form of communication
possible. Problems with communication include network protocols,
asynchrony inherent in such an environment and the incompatibilities
of various architectures that go to form any heterogeneous distributed
platform. What is therefore required is, an environment that can pre-
sent to the developer an illusion of shared memory atop a platform of
distributed memory machines. This is distributed shared memory, an
idea which makes possible shared memory parallel programming on
distributed networks. This paper discusses the design and implementa-
tion of such a system under development at Syracuse University.

1. Background

Networks of powerful workstations are becoming increasingly com-
mon because of the enormous computing power they offer at low cost.
Recent advances in workstation technology coupled with the availabil-
ity of high speed networks (FDDI) has not only made these architec-
tures viable alternatives to massively parallel ones, but their low cost
has made them attractive as well. Some of the other reasons that have
attributed to the rising popularity of distributed systems include high
availability (fault tolerance) and the scalability afforded by these archi-
tectures.

Despite all their advantages we are yet to witness the collective use of
these workstations as a single parallel machine to solve computation-
ally intensive problems, since they lack the ease of programmability
that shared memory multiprocessors have to offer. To program the
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1.1. Motivation

required communication and synchronization into a distributed applica-
tion is no easy task, primarily due to the reasons of complexities and
cost of network communication and the asynchrony of events in dis-
tributed systems. The availability of a shared memory abstraction on
top of such an architecture is therefore likely to provide the necessary
incentive to users to utilize networks to their fullest extent possible.
We present here, an effort to design and implement such an abstraction
on a platform consisting of a heterogeneous network of workstations.

The rest of this paper is organized as follows. We first describe the
goals of this project. This is followed by the motivation for such an
effort and a discussion of issues important to the design of such a sys-
tem. We then describe in detail, the design and implementation of our
system.

There exist two basic models of communication for co-operating pro-
cesses — the message passing model and the shared memory mode!. In
the latter paradigm processes share a common address space and this
tight coupling allows processes to communicate through shared data.
Shared memory provides a simple, yet powerful way of structuring sys-
tems. But as we slowly approach the physical limits of processor and
memory speeds, it is becoming necessary to extend this paradigm to
non-shared memory (distributed memory) architectures as well.

However, for a loosely coupled distributed system, there is no physi-
cally shared memory to support such a model and communication is
commonly achieved by passing messages. Programming using this
model is often tedious as it is the responsibility of the programmer to
move data back and forth between processes as well as handle the
inconsistencies arising out of the different representations of data on
different architectures. These reasons make it attractive to have avail-
able, an abstraction of shared memory on a loosely coupled distributed
system. Therefore the primary advantage of distributed shared memory
over the message passing model is the simpler abstraction provided to
the application programmer. In spite of structuring such a DSM system
over a message passing one it sometimes delivers better performance as
compared to the latter because of the following reasons:

[ If the application exhibits a sufficient degree of locality, then the
overhead of moving data by message passing get’s amortized.

We can exploit concurrency better by spreading out the data
exchange phase of the application.

There is a corresponding decrease in the paging and swapping
activity due to the net increase in memory available.

Sharing can be provided either at the level of pages and segments or at
the level of user-defined data structures. Most of the systems that we
have seen use the page or segment as the unit of sharing. But from the
programmer’s point of view sharing is in terms of the data structures
that he/she declares and manipulates. We intend to provide sharing
directly at this level — the leve! of data structures (objects). The other
important point to note is that support for DSM is built into the operat-
ing systems kernel in most of these systems. This implies that porting
the DSM portion to a new architecture really means porting the entire
operating system kernel. By providing DSM as a separate service on
top of the operating system kernel we reduce the effort required to port
this to a variety of architectures thereby facilitating portability and het-
erogeneity.
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1.2. Goals

The primary aim of this project is to provide an easy fo use environ-
ment for shared memory parallel programming atop a distributed mem-
ory architecture such as a network of workstations. The main goals
arising out of this are to:

1. Provide support for sharing at the level of user defined data
structures including types that can be defined in the context of an
object oriented language such as C++.

Provide this abstraction as a software layer on top of the operat-
ing system for reasons of portability.

Make the environment machine-independent and thereby support
heterogeneity.

Provide a structured interface to the environment’s capabilities.

Provide language/compiler support for this abstraction thereby
automating the required interaction of the user with our environ-
ment.

Make available a larger total virtual address space than is indi-
vidually available on any one machine in the network.

Make all of this possible with the lowest possible run time over-
head.

Serve as a testbed for evaluating the performance of shared
memory applications on a network.

2. Related Work

There has been a significant amount of research done on DSM systems
over the last decade [Tam90a, Kes89a, Stu90a, Tan90a]. We now dis-
cuss some of the systems that were developed and then provide the
motivation for our design.

IVY [Li86a] is a coherent, shared virtual memory system on a loosely-
coupled multiprocessor — the Appolo Domain System. Shared data is
paged between processors, some of which have copies of the virtual
address space pages. The model assumes ownership of pages can vary
from processor to processor either statically or dynamically. The last
writer 10 a page becomes the new owner. Unless the local processor
owns the page a managing site must be inquired before a write can
occur.

Clouds [Das88a] is an object oriented distributed operating system
which supports DSM through data mobility and replication. Segments
[Ram89a] are the units of sharing and are classified upon movement
into none, weak-read, read-only, and read-write. The none mode
guarantees exclusive access, but the segment in this mode can be taken
away at any time and data consistency is not guaranteed. The read-
only mode provides that guarantee until the reading process has explic-
itly unlocked the segment. The read-write mode provides exclusive
access and a guarantee that the segment will not be taken away till it is
explicitly unlocked. The segment can be acquired by a process in a
weak-read mode, but data consistency is not guaranteed. Extensive
work has been carried out for coherence and synchronization protocols.
The main contribution of Clouds is in recognizing that the combination
of memory coherence protocol and process synchronization can
improve the performance of DSM [Ram89b]
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Mach [Acc86a] supports a shared memory server. Memory objects are
managed either by the Kernel or by the user programs through a mes-
sage interface. Sharing of memory is provided between the tasks run-
ning on the same machine or across machines. An external memory
paging task handles the paging duties and is responsible for the mem-
ory object. Mach attempts to deal with multiple page sizes and some
aspects of heterogeneity.

An object oriented language and run time environment supporting DSM
indirectly through object mobility is Emerald [Jul88a]. All movement
must be explicitly specified by the developer through movement primi-
tives built into the language.

Munin [Ben90a] is an object-based DSM system that investigates type
specific coherence protocols. It does not support heterogeneity and
provides synchronized objects for synchronization. It allows for
dynamic system decisions like Replication vs. Remote load store. The
user can specify either of the two decisions based on the program
semantics. Munin requires the programmer to specify all semantic
requirements that are required by the run-time system.

Linda [Nit91a] is a shared associative object memory system which
can be layered atop many languages and machines. It uses the notion
of a globally accessible tuple space into which live data can be cast.
This tuple space is essentially shared memory. It’s coherence seman-
tics does not allow any mutable data.

Mermaid [Nit91a) is a DSM system for heterogeneous systems, where
the compiler forces shared pages to contain only variables of a single
type. Type conversion is performed on reference.

Mirage [Fie89a] provides a kernel level implementation of DSM and
reduces thrashing by prohibiting pages from being invalidated before a
certain minimum amount of time has elapsed.

3. Design Issues

We will take a look at some of the issues that need to be considered in
the design of any DSM system.

° Granularity: This refers to the unit of sharing in any shared
memory system. Most systems previously built consider a line, a
page or a segment to be the unit of sharing. The two issues under
consideration are the way shared data is laid out in memory and
the size of the unit of sharing. Large granularities are useful only
if the degree of locality is high. One must however put up with
the high cost of transferring a page across the network. Fine
granularities may result in a lot of movement and is suited to sys-
tems with a lower degree of locality. However, in order that the
applications using this model be architecture independent it is
necessary that the sharing should be done at program level rather
than at kernel level. The Munin system is one such system that
follows this approach.

) Coherence Protocol: This guarantees the consistency of shared
data across machine boundaries. Strict semantics automatically
enforce consistency and make sure the most recently written
value is returned on a read. Weak semantics on the other hand
leave the task of consistency maintenance to the programmer and
provide some synchronization that can be used for sequentializa-
tion of accesses to shared data. Guaranteeing memory coherence
is one of the principal goals of any DSM system. In systems
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where shared data is replicated, guaranteeing coherence is not a
trivial task. The two main types of protocols that are used in
practice to achieve this are the write-invalidate and write-update
protocols. The write-invalidate protocol makes sure that all
copies of the shared data are invalidated before a write operation.
The write-update protocol updates all the copies during the write
operation.

Synchronization: Any situation that involves multiple processes
and shared data amongst these processes needs to have some
form of synchronization. This exists mostly in the form of con-
structs that guarantee sequentiality of accesses. Common syn-
chronization mechanisms include semaphores, monitors etc.
Locks are commonly used by parallel applications for achieving
synchronization. As these applications are computation inten-
sive, the demand on the lock is usually light and a simple algo-
rithm such as the central server algorithm is sufficient. However
if the lock is highly contended for, then a centralized server
poses to be a performance bottleneck.

Scalability: One of the advantages of distributed architectures is
their ability to be scalable. This is because they are independent
units on a network and it is only the bandwidth of the network
that constrains the number of machines. Any DSM system atop
this network therefore must be capable of scaling with an
increase in the capacity of the system. Central control is likely to
become a bottleneck with increased capacity and is to be
avoided. On the other hand too much decentralization can lead
an increased cost of operation.

Heterogeneity: This is one of the most difficult issues to deal
with in any DSM system design. It is almost certain that two
machines do not use the same representation for even basic data
types. So sharing at the level of pages or segments presents a
multitude of problems including those of fragmentation, repre-
sentation conversions and so on. It becomes possible to accom-
modate heterogeneity easily when the DSM system is structured
around the data structures of the language, for then, the compiler
and the DSM system can insert the necessary conversion code on
transfer.

4. Requirements of a DSM Model

A typical DSM model should be able to support the features mentioned
in the previous section. Some of the requirements of such a DSM
model] are:

1.

A single large virtual address space, distributed over many
machines with overall memory coherence similar to that pro-
vided by cache coherence protocols in a multiprocessor environ-
ment.

All data movement necessary to achieve coherence.

A way to ensure partial ordering of events for synchronization
purposes.
Semaphore-like mechanisms for locking shared address spaces

which may be required by the application to ensure consistency
of shared data during program execution.’
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As Cheriton points out [Che86a], if the underlying system imple-
ments DSM using a communication paradigm then it must sup-
port the identification of the recipients, proper data delivery and
interpretation of data to ensure coherence of state of the shared
object.

5. Design Overview

5.1. The Environment

5.2. The Model

A bus based network of workstations is used as the distributed environ-
ment. The system has been designed to function on a heterogeneous
network made up of workstations such as SUN Sparcs, IBM RS6000s etc
on Ethernet. We also use ISIS [Bir89a, Bir85a] — a network toolkit
based on the notion of process groups, as the primary means of com-
munication and so we require ISIS to be available on each of the archi-
tectures.

The fundamental component of sharing in the proposed model is an
object. An object is nothing but the instantiation of a user defined data
type. In our scheme the ownership of an object is allowed to vary
dynamically from processor to processor. The last writer to an object
becomes its current owner. This requires objects to be migrated from
the current owner to the new owner. Hence, object mobility is sup-
ported insofar as the state of the object is concerned. Because of the
high locality that a given process may exhibit, mobility is backed by
replication of object state and there may be multiple valid copies of a
shared object.

At the highest level the system consists of three types of entities:

) DSM Manager: This is responsible for handling all requests to
the shared objects and is the primary interface for the user pro-
gram to it’s shared data. One DSM manager exists per node in
the system. It is responsible for maintaining the consistency of
the shared objects. The DSMM keeps the the information regard-
ing each shared object in a hashed table. Each entry of the
hashed table stores the attributes related to the shared object
apart from its name. The attributes include the type, status and
the current value of the shared object. Whenever there is a
request for an access of a shared object by a client at a processor,
the DSMM checks the hash table and if the mode is
nonconflicting with the current access request then the request is
satisfied locally. Otherwise the DSMM communicates with all
the other DSMMs to satisfy the request.

Semaphore Manager: Mutual exclusion is now achieved using
the notion of a distributed semaphore. This is nothing but a
semaphore that can be locked or unlocked from any process in
the system with access to it. The semaphore manager is central-
ized and may be replicated only for the purposes of fault toler-
ance.

Synchronization Manager: Barrier synchronization is an inte-
gral part of parallel processing. Hence for any DSM to be useful
it should provide a mechanism to synchronize processes execut-
ing in parallel. The synchronization manager is used to achieve
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Semaphore
manager

Shared Bus

DSMM-Distributed Shared
Memory Manager.

SM - Synchronization Manger.

Figure 1: The DSMM model

5.3. Coherence

barrier synchronization of a group of communicating processes.
This entity is also distributed and one of these exists per node in
the system.

The permissible modes an object can be in, and the actions that are
taken if an object is in any specific mode are as follows:

read-only: If the object is in the read-only mode at a given pro-
cessor, then it will remain in this mode until it is invalidated. At
any give time, there can exist more than one read-only copy of
an object in the system. The mode essentially permits extracting
the state of an object but does not permit mutating it’s state.

read-write: When an object is acquired by a processor in a read-
write more to update the object, all the read-only copies of the
object are invalidated and then the object is allowed to be
updated. At any given time, there can exist only one copy of an
object in the read-write mode. The processor having an object in
read-write mode is the current owner of the object.

invalid: This mode forbids any operations on the object. The lat-
est copy of the object’s state has to be got from it’s current
owner before invoking any operations on the object.

These actions of the DSMM are summarized in Table 1.
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Current Mode || Request

DSMM Action

read

Satisfy the request

read-only

1. Suspend the requesting process

2. Invalidate all other copies

3. Grab ownership of object

4. Write and restart the suspended process

Satisfy the request

read-write

1. Suspend the requesting process
2. Invalidate all other copies
. Write and restart the suspended process

. Suspend the requesting process

. Get the latest state from the owner
. Make mode read-only

. Return value and restart

invalid

. Suspend the requesting process

. Invalidate all other copies

. Grab ownership of the object

. Write and restart the suspended process

Table 1: DSMM Actions

5.4. The Interface

The primary interface to the DSM system is through the three managers
which export the following sets of operations:

° DSM Manager:

*

register: This allows a user to inform the world of a newly
declared shared object.

extract: This helps the user extract the current state of the
shared object. In case the local copy has been invalidated
the latest copy of the state is got from the current owner.

mutate: Used to mutate the state of the object, this opera-
tion requires that the node invoking the operation is the
owner of the target of the invocation. This also implies
invalidating all other copies of the object being mutated.

Semaphore Manager:

.

Declare a semaphore: This allows a user process to
declare a system wide binary semaphore.

Lock: This is used to “lock” the mutex under considera-
tion. Protection against possible deadlocks include genera-
tion of error messages on trying to lock an already locked
semaphore.

Unlock: Simply releases the lock held on the semaphore.
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Synchronization Manager:

¢  Barrier: This is used for declaring a barrier which can be
used to synchronize n processes.

Synchronize: This is used for actual synchronization. The
calling process essentially blocks till “n” processes have
reached the barrier.

The developer now treats the entire distributed system as a shared
memory parallel machine. The additional work required is in register-
ing shared objects with the DSM manager. Semaphores can now be
declared and manipulated just as on any other shared memory machine.
In fact the synchronization manager provides additional functionality
that is normally not available on a multiprocessor. The first time the
object is registered with the manager as a shared object it’s initial value
is written through to all the managers involved in the application. Sub-
sequent updates take place only when required. One of the objectives
of this project is to provide network transparency. This means that the
applications programmer need not be concerned about the details of
communication and he/she views the entire network as a single shared
memory multiprocessor. This transparency is provided by DSM man-
ager at each processor. Requests to manipulate shared objects at any
given processor are handied by the DSM manager at that site. Hence,
the user program does not have to locate the shared object and maintain
its consistency in the distributed environment. In order to be able to
support complex user defined data structures we intend to provide
language/compiler support so that the composition of the data type
being manipulated becomes visible to our system. Figure 1 gives a pic-
torial representation of the proposed system.

6. Implementation Notes

As we have mentioned in earlier sections we have used ISIS to imple-
ment all the managers. Each of the managers has been structured as an
ISIS process with the corresponding interface being equivalent to the
tasks (entry points) of an ISIS process. The client and the manager ser-
vice essentially bind by joining a process group and then communicate
by means of point to point messages. The managers themselves talk
with each other through the use of broadcasts to the entry point under
consideration. Here are some points which try to briefly describe the
implementation and design features relevant to the managers:

° Every client joins a group with it’s manager while all the man-
agers form another group not accessible to the client.

Each DSM manager maintains a hashed map which maps each
object identifier to it’s attributes (like type, status etc). This
enables quick access to any shared variable at the time of an
update(write) or a read.

The “register” function allocates space for the shared object at
the local node and informs other DSMMs of the existence of the
shared object.

The current implementation requires an explicit call to the regis-
ter entry point of the DSMM at the site.

The coherence mechanism is built into the manager and is not
available to the client to control. In case of “writes”, the man-
ager at which the write is requested broadcasts an invalidate and
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completes the write only after an acknowledgment is received
from each of the others owning a valid copy of the variable.

An encapsulation of UNIX semaphores is available through the
mutex class. An interesting feature of the UNIX semaphore is
that it outlives the life of the process which created it and hence
has to be explicitly destroyed using system calls. Encapsulating
it in a C++ class implies that this is automatically taken care of
since the destructor of an object is called upon exit and the
destructor can contain the appropriate system call.

The barrier synchronization functions are built in as a set of entry
points in the DSMM. Barrier synchronization is mainly to be
used to synchronize a set of asynchronous concurrent processes.
The way we accomplish this is by initially declaring that a “bar-
rier” which takes as an argument the number of processes to be
synchronized. At the time synchronize is called form any pro-
cess, it increments a local count which keeps track of how many
processes have already reached this barrier. We then broadcast
to other managers to inform them that another process has
reached it’s barrier. Each manager, on receiving this message
increments it’s count. If this count is equal to the number of
number of processes to be synchronized then the call to synchro-
nize returns and the process which requested synchronization is
allowed to continue.

7. Conclusions

In summary, we feel that it has been a really useful experience trying to
translate theory into something useful and practical. C++ and ISIS
proved to be good choices, the former because of the clean-style of
programming it promotes and the latter for extremely reliable commu-
nication that it allows us to provide. As of now, we have not utilized
the “fault-tolerance programming facilities” offered by ISIS in our sys-
tem. However we believe that it is possible to make our DSM man-
agers “reliable” without significant changes to the design by writing the
appropriate monitoring routines for group changes. For example a situ-
ation in which a manager either goes down or get’s isolated from other
managers because of a network break can be handled if the group
change operation alerts other members of a change in group. One of
the managers can then start up the dead manager and bring it up to date
on the state of the various shared variables. We can simply invalidate
all variables or get a valid copy of each and write it’s value in.

We feel that this effort has indeed provided a proof of concept for dis-
tributed shared memory at the level of user-defined data structures.
What we feel, is essentially required is to be able to integrate this into
the compiler so that sharing can be identified without the user ever
bothering to make calls to the manager functions. The main advantage
of language/compiler support would be static identification of sharing
and dependencies. The other logical way would be to add keywords to
the language like shared so that the compiler recognizes the shared
objects and inserts the necessary calls to the DSMM. Compiler support
would be the only way to support object mobility where objects are
complex entities like those in C++ primarily because we need access to
the internal structure of the object for it’s mobility. A third area of
improvement is in handling heterogeneity. What is essentially required
is ISIS on each of the target architectures. Since all object movement is
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done by sending ISIS messages just having ISIS on target architectures
would take care of all of the associated problems.

In retrospective, we hope that this effort will provide a much needed
incentive for increased use of distributed systems in parallel process-

ing.
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Abstract

In this paper, we present an integrated approach for the specification,
implementation and management of distributed applications. Driven
by the basic characteristics of distributed applications, we introduce a
distributed application model enabling the integration of different
aspects during the development phase of a distributed application.
Based on this model, we explain our specification technique for inter-
faces, components, and application configurations.

In order to support reusability of distributed applications, we propose
some research directions for the design of generic distributed applica-
tions. For this purpose, we introduce the concept of templates, which
serves as a framework that provides a skeleton for developing dis-
tributed applications with a specific cooperation pattern. Templates are
a technique for making application specifications as general and flexi-
ble as possible. It allows interfaces, components and application
configurations to have generic parameters. During application engi-
neering a generic distributed application is reused to construct specific
applications, i.e. a concrete running application through an instantiation
process. Based on practical examples, we demonstrate the usefulness
of our approach by specification of templates for client server applica-
tions and different types of distributed group work applications.

Moreover, we will illustrate an object-oriented realization of the
specification technique and discuss several tools supporting the
specification and implementation steps.

1. Introduction

A distributed application is composed of a set of cooperative applica-
tion components. The name results from the fact that such applications
typically execute on distributed systems, such as local area networks.
There is a growing demand for distributed applications, especially in
the areas of computer integrated manufacturing, office automation and
cooperative work. Although the advantages of distributed applications
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are well known and widely recognized many questions are still open,
especially adequate abstraction mechanisms which provide appropriate
and user-friendly specification and implementation techniques.

New models such as Open Distributed Processing (ODP) [Gei90a]
intend to address distributed applications from the application point of
view by masking distribution aspects. Meanwhile, there are numerous
activities in standardization bodies, in research projects and in the com-
mercial sector in order to define a general framework for distributed
application development, such as DAF [CCI90a], SE-ODP [ECM90a],
ANSA [ANS89a], REX [Mag90a] and OSF-DCE [OSF90a].

From the application viewpoint, major goals to be achieved by dis-
tributed applications are the decentralization of functionality and data,
the shared use of distributed and expensive resources and the realiza-
tion of parallelism between loosely coupled components.

From the management viewpoint, distributed applications are long live
applications. This implies that new components can be inserted or
deleted during runtime. This requires mechanisms which allow to
express consistency properties, e.g. configuration properties like the
availability of components with certain characteristics. Moreover, in
order to support a consistent integration and termination of compo-
nents, we need appropriate language support for the specification of
configuration steps to be performed on integration or termination of
components. As a consequence, from the management viewpoint
mechanisms for monitoring and controlling a distributed application
configuration have to be provided.

Specification of distributed applications is a quite complex activity. In
order to support reusability at specification level, a designer should be
able to describe generic distributed applications. Distributed applica-
tions are called generic when they are created from specific ones
through an abstraction process. A generic application is represented in
our specification technique as a set of interface-, component- and appli-
cation configuration templates.

The paper is organized as follows: As an integration effort Section 2
formulates a model for distributed applications, which meets the
requirements resulting from the basic characteristics of distributed
applications. The model is then used as a base for an integrated
specification technique for distributed applications. In Section 3 we
introduce the basic concepts of our interface-, component- and applica-
tion configuration language. In order to support reusability of
specifications, Section 4 presents an extension which allows the
specification of generic distributed applications based on templates.
Section 5 discusses how the specification technique can be mapped
onto an object oriented architecture using C+. Finally, Section 6 gives
the current status of our research and concludes the paper.

2. Distributed Application Model

Distributed applications are built from a set of interacting application
components which form the basic building blocks of a distributed
application (see Figure 1). Each application component could be
defined context independent, i.e. there are no references to other com-
ponents. Components are related to each other by the specification of
bindings between interfaces. The application behaviour of an applica-
tion component is defined by the interaction behaviour at its application
interfaces.
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Distributed applications are long living applications which have to be
monitored and controlled during runtiome. In order to enable manage-
ment activities, each application component must provide management
interfaces which define operations for the control, maintenance and
monitoring. Distributed application management involves establishing
and terminating of a distributed application within a given computer
network. In the establishment phase, the application components have
to be located on the nodes, initialized properly and finally the bindings
have to be established. During runtime, we have to provide mecha-
nisms for monitoring and controlling the behaviour of the application
components. Management is performed by management components,
which are associated with the application components via management
interfaces.

The communication-oriented aspects are integrated by the concept of
communication contexts, which describe the communication require-
ments of an application component, like the communication relation
(connection-oriented or connectionless), the interaction type
(message-oriented or operation-oriented) and the properties of a trans-
port service such as time contraints and the desired throughput.

A communication context can be assigned to each interface of an appli-
cation component to deal with their varying communication needs.
Alternatively, a default communication context can be defined, which
enables the specification of a single communication context for an
application component as a whole. Furthermore, we are able to assign
more than one communication context to an interface to reflect that this
interface is accessible via different communication services.

In the paper we concentrate on the application and management ori-
ented aspects. The concept of communication contexts is introduced in
[Fel91a].

application interface communication context management interface

application component management component

2l (= B i

application configuration

ED binding D:D

Figure 1: Distributed Application Model
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3. Specification Support

3.1. Interface Specification Language (ISL)

Our interface concept is based on a bidirectional interaction
specification and describes what operation each of a pair of compo-
nents could request the other to perform. The specific behaviour at an
interface, i.e. the determination whether an application component is
acting as a consumer and/or a supplier, is defined when we describe
how a component is constructed from a set of interfaces. Moreover,
each operation specification could be decorated with attributes, such as
an attribute declaring an operation to be performed atomically.

In contrast to other approaches, our ISL allows in addition to operation
specifications, the integration of a cooperation protocol, which is an
optional part of an interface specification. A cooperation protocol
allows the specification of regulations, i.e. which operation should be
executed on which interface and by whom. This allows the
specification of the dynamic cooperation behaviour at an interface, i.e.
the behaviour can be restricted by the definition of a cooperation proto-
col in terms of sequencing rules, synchronisation and responsibility.

Sequencing rules are useful for the specification of ordering constraints
for operation invocations and can be expressed by extended path
expressions. Synchronisation is necessary if the interactions of two or
more components have to be coordinated. Responsibility aspects are
needed if we want to express that the initiation of an interaction has to
be performed by a consumer requiring certain properties.

In our approach, roles are used to express synchronisation properties
and responsibility aspects, i.e. the initiation of an operation is only
allowed if the invoking component has a specific role (Figure 2).
Moreover, roles can be assigned statically to a component or requested
dynamically.

Figure 2 illustrates an example from the office procedure domain. In
our context, an office procedure is represented as a component
specification. The related interface in Figure 2 defines the operations
separated in a consumer and supplier part. The cooperation protocol
defines the required roles for initiating the operations and a path
expression defining the sequence rules.

The separation of operations and cooperation protocol within an inter-
face specification supports reusability (i.e. the cooperation protocol and
the operations could be extended or changed separately). This modu-

officeProcedureInt INTERFACE

CONSUMER INVOKES {
fillin ExpenseData
fillinManagementData
.o}

SUPPLIER INVOKES (
approved }

COOPERATION PROTOCOL
ROLES { Manager, .. }
fillinManagementData REQUIRES ROLE Manager
fillinExpenseData < fillinManagementData < ,....

ceeene}

Figure 2: Example of an interface specification
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larity is very important for the design of an interface (“What is to be
done?” is not mixed with “When does it have to be done?”), as well as
for readability.

3.2. Component Specification Language (CSL)

From the application viewpoint, a component is defined by its inter-
faces and a related behaviour (supplier and/or consumer). Regarding
the cooperation at an interface, we could associate each component
with a set of potential roles according to the interface specification.
This allows the specification of restrictions in respect to its behaviour,
e.g., a client component may only be allowed to act as a reader when
interacting with a file server. Moreover, for each potential role we
could specifiy a request policy. We distinguish between implicit and
explicit role requests. In the first case, a role is requested automatically
when an operation is invoked.

A binding specification enables the definition of the allowed binding
topology (single/multiple binding) and the component responsible for
establishing the binding. Moreover, the time for the establishment and
termination of a binding can be specified. For example, binding could
be established at instantiation time or interaction time. In the second
case, binding is only established when an interaction takes place at an
interface. A component could be associated with a scheduling policy if
it provides an interface which is decorated with the attribute multiple
binding. There are some predefined scheduling policies, such as FCFS.
However, sometimes an application dependent policy is required, e.g. a
disc driver needs an internal scheduling policy to manage a disk.

We distinguish between interactive and not-interactive distributed
applications. The attribute interactive supports the requirements of
CSCW and office procedure applications. Interactive applications are
composed of interactive components and require a set of users to work
properly. This attribute has impact on the application configuration
process, e.g., an interactive distributed application may not be estab-
lished until the required users are available personally. In this case,
establishment of an application configuration has to be delayed until all
the required users are available.

Composition of components is provided by different composition
schemes. A hierachical composition enables components to be con-
structed of subcomponents and related bindings. Moreover, collections
of components, i.e. aggregates of same type components, can be
defined. For this purpose, we support the notation of component
groups.

A component or component group could be enriched with constraints,
which describe properties valid at each time of a running distributed
application. Constraints can be described in terms of configuration
restrictions. For a component group we could specify a constraint
which is valid independent of the current amount of members. Con-
straints are defined by predicates which have to be valid either for all
components or part of them (e.g. all components having a specific
role).

Distributed applications are characterized by evolutionary changes dur-
ing runtime. Components could join or leave a distributed application.
Dependent on the state of the components of a running distributed
application, a new component have to be initialized properly. More-
over, on termination of components, the resulting distributed applica-
tion must be kept in a consistent state. However, the merge activities
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officeProcedureComp COMPONENT
APPLICATION PROPERTIES {
INTERFACES
SUPPLIER AT
OfficeProcedurelnt
BINDING PROPERTIES
MULTIPLE BINDING RESTRICTED TO n
IMPLICIT ESTABLISHMENT {
AT INTERACTION TIME }

Figure 3: Example of a component specification

and their ordering are often application dependent. To reflect this prop-
erties we have developed a method for specifying instantiation and ter-
mination rules. This concept enables a consistent integration of newly
created application components into a running distributed application
and also a correct termination of components. Moreover, they allow
the encapsulation of all application dependent actions which have to be
performed on configuration changes. For example, in a distributed
application representing a set of dining philosophers, instantiation of a
new philosopher means that dependent on the application state of its
neighbours, a new fork has to be created.

Figure 3 illustrates a component specification representing an office
procedure.

3.3. Application Configuration Specification Language (ACSL)

Our configuration language follows the concepts introduced in
[Kra90a). A complete configuration of a distributed application
describes the types of application components from which the dis-
tributed application is to be constructed, the instances, how these
instances are interconnected and optionally where they are located.
Additionally, in case of interactive applications we need a specification
of the required users which are associated with the components.

A binding between two interfaces of different components is only pos-
sible if the interfaces and the related communication contexts can be
matched. This means that either two related interfaces must both be
symmetric or one of them must act in a supplier role and the other one
must act in a consumer role.

Moreover, time restrictions can be defined for the establishment of dis-
tributed applications. For example, if not all the members from the
critical member set are available the distributed application can not be
established. An application configuration could be decorated similar to
a composite component with a set of instantiation/termination rules and
a set of constraints.

4. Templates

If we analyze distributed applications, we could find typical coopera-
tion paradigms, independent of the specific functionality of an applica-
tion. Each cooperation paradigm is a model of an interaction pattern
between the components of a distributed application.

From the application designer’s point of view, it would be helpful to
provide a set of predefined generic distributed applications representing
specific cooperation paradigms. Breaking down distributed applica-
tions into generic distributed applications enables us to structure them
in advance, enabling the designer to be guided and understood more
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efficiently in their applications. For this purpose, we have extended our
specification technique by providing the concept of templates. Tem-
plates are a technique for making application specifications as general
and flexible as possible. They serve as a framework that provides a
skeleton for developing distributed applications with a specific cooper-
ation pattern. Templates can be regarded as black boxes by completing
partially defined behaviour. It allows interfaces, components and
application configurations to have generic parameters. As a conse-
quence, a cooperation paradigm could be expressed by the specification
of a set of related interface-, component- and application configuration
templates containing generic parameters. During application engineer-
ing a generic distributed application is reused to construct a specific
application, i.e. a concrete running application through an instantiation
process.

Figure 4 illustrates as an example the basic structure of an application
configuration template graphically. It is composed of a generic
configuration specification and a set of properties: The application is
interactive, has a set of related constraints, and instantiation and termi-
nation rules. In the following two cooperation paradigms, client server
and group cooperation are discussed in more detail.

4.1. Client Server Cooperation

Client server applications are asymmetric applications, consisting of a
set of client components and a server component, i.e. regarding the
configuration, we have a n:1 binding topology, each client component
is bound to the server component. A client is a triggering component
acting as a consumer at an interface. Clients make requests that trigger
reactions from server components. A server is a reactive component
supplying operations at an interface. Moreover, a server allows multi-
ple binding at its interfaces. Regarding the lifetime, a server is usually
a nonterminating component. Its main purpose is to manage a collec-
tion of resources and to service requests from any client who wants to
access those resources. Service requests are performed according to a
scheduling policy. In order to coordinate concurrent access to the
resources we need appropriate synchronisation mechanisms between
the client components.

A generic specification for a client server application consists of the
following parts: An interface template which defines an asymmetric
behaviour. The operations are generic parameters, which have to be

interactive :
application [ j E
]
|
constraints | & :
[}
I
1
1
[}
|
]
]
]
1
1

L

instantiation @
termination

rules

L

Figure 4: Example of an application configuration template
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provided when defining a specific client server application. Synchro-
nization between client components is expressed by a role template
providing roles Reader and Writer. When using an interface template,
a designer has to define which operations require the Reader and which
require the Writer role.

At component level, we have a server and client component template.
For example, a server component template is a component acting as a
supplier at an interface, allowing multiple bindings (see Figure 5). The
job control policy determines the mechanism for performing the incom-
ing requests. We support some basic scheduling policies.

The configuration template contains a generic specification of a n:1
configuration.

4.2. Group Cooperation

In a distributed group work application we have a set of same type
components which cooperate in order to provide an application func-
tionality. We distinguish between explicit and implicit group coopera-
tion. In the first case, interaction is performed directly between the
group members of a group whereas in the second case cooperation is
performed via one or more shared components.

4.2.1. Implicit group work

Applications following this cooperation paradigm are composed of a
set of same type components representing the group members of a
group (consumers) and one or more components representing shared
objects. Cooperation takes place implicitly by interaction of the group
members with their shared components. These kinds of applications
have in common that one or more actions on a shared component are to
be carried out by the members of the group. Moreover, certain group
members may be responsible for certain actions and the actions may be
dependent on each other, e.g. they have to be performed in a specific
order.

One application which follows this cooperation type is a group of repli-
cated workers which are responsible to perform a bag of tasks (repre-
sented as shared components), e.g. distributed calculation of the adap-
tive quadrature problem [And91a]. Initially, there is one task corre-
sponding to the entire problem to be solved and a set of worker compo-
nents responsible for solving the problem. In order to solve a task a
worker component has to establish a binding to a task, often generating
new tasks corresponding to subproblems. The cooperation terminates
when all tasks have been processed.

Another type of application based on implicit group work are applica-
tions from the office procedure domain. A common example of an

<< server >> COMPONENT
APPLICATION PROPERTIES
SUPPLIER AT << interfaces >>
MULTIPLE BINDING RESTRICTED TO n
SCHEDULING << policy >>
COMMUNICATION PROPERTIES
<< communication contexts >>
MANAGEMENT PROPERTIES
REPLICATION << policy >>
MIGRATION << policy >>

Figure S: Template for a server component
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office procedure application is the processing of a travel expense form
requiring interactions of an initiator (employee), of his manager and
secretary, and of the travel expense office. An office procedure typi-
cally consists of a set of execution steps which are handled by actor
components which represent the group members of a related group
[Sch91a]. In this application, the cooperation protocol can be regarded
as a routing specification which describes all the required steps (opera-
tions) to execute the office procedure and the responsible components.

Using our specification technique, implicit group cooperation is sup-
ported by the following templates: An asymmetric interface template is
used to represent the cooperation between a group member and the
shared component. There are three generic parameters: The operations
which have to be initiated by the worker components in order to per-
form the different steps of the cooperation protocol, the required roles
to initiate the operations, and finally a path expression in order to
express the specific sequence ordering. A role template defines the
required roles and their relationships, i.e. who is responsible for each
single execution step. Component templates are provided for both the
shared component and the worker components.

The shared component template is defined by a supplier behaviour at its
interface and a binding policy which defines that binding has to be
established at interaction time and terminated when the cooperation
protocol has been completed. This means, after performing each single
step of the office procedure a new worker component responsible to
perform the next step has to be selected and an appropriate binding
must be established. Selection of a worker component is driven
according to the role requirements of the actual operation to be per-
formed.

Finally, an application configuration template defines the overall appli-
cation structure. This involves the specification of the application
configuration, its constraints and instantiation/termination rules for
integration of new component instances. Associated with the applica-
tion configuration is a constraint about the required worker components
which must be available. It defines that each required role to perform
the cooperation protocol must be available by at least one worker com-
ponent. Informally, this means that at any given time enough worker
components must exist to perform the cooperation protocol completely.
This also implies, that we have to check the constraints whenever a
configuration change takes place.

<< implicitGroupWork >> DISTRIBUTED APPLICATION
COMPONENTS

<< shared >»>> [ ]: << SharedComponent >>

<< worker >> [ ]: << WorkerComponent >>
INSTANTIATION BY Management
INITIAL MEMBERS << n >>
INITIAL ROLES

<< worker >> [ 1 ] ROLE << rolel >>

Ly

BINDINGS
FOR ALL i: MEMBER OF << shared >>
<< shared >> [ i ) - << worker >> [ 1 ]
CONSTRAINTS
FOR ALL r: ROLES OF << impGrWorkRoles >>
EXISTS j: << worker >> [ j ) HAS ROLE r

Figure 6: Configuration template for implicit group work
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The constraint concept also provides means to express placement
restrictions for components. For example, one may wish to express
that a shared component has to be located at the actual consumer. This
constraint implies, that office procedure components are mobile com-
ponents which are moved dynamically between the worker compo-
nents.

Normally, distributed applications cooperating according to implicit
group work are long duration activities [Sch91a], which have to be
monitored and controlled during livetime. For this purpose, an inter-
face should support generic operations for monitoring and control.
Monitoring involves support for status inquiries to retrieve the current
status, e.g., in case of mobile components we need operations to return
the node where the shared component is currently located or to return
the worker which represents the actual consumer. Operations support-
ing control include status management operations which allows to can-
cel a cooperation or freeze their actual status.

4.2.2. Explicit group work

Applications following this cooperation paradigm are composed of a
set of peer components each providing one or more symmetric inter-
faces. Each component contains one or more subcomponents repre-
senting resources which could be accessed and manipulated by the
other group members.

This category involves applications like replicated servers, date plan-
ning applications or applications from the CSCW domain. For example,
a replicated server is a group of server components that each do the
same thing. Replication serves one of two purposes: It can either be
used to speed up finding a solution to a problem by dividing the prob-
lem into independent subproblems that are solved concurrently by mul-
tiple worker components (implicit group work) or it can increase acces-
sibility of resources. For example, a group of n server components
could manage n copies of a data file. Each group member provides an
identical client interface. However, the server components themselves
have to cooperate to present clients with the illusion that there is only a
single copy of the file. As a consequence, the members of the server
group need to synchronise with each other in order to solve the file
consistency problem. For this purpose, we need appropriate group
cooperation mechanisms between the members in order to guarantee
that at the same time a writing client has exclusive access to a repli-
cated resource.

Using our specification technique, explicit group cooperation is sup-
ported by the following templates: A group interface template is used
to represent interactions between the group members of a component
group. Synchronisation properties are integrated by the specification of
a related role template which defines conditions for initiating group
interactions at a group interface. For example, a role template could
define synchronisation properties in order to provide mechanisms like
floor control for synchronous interactive applications. Component tem-
plates which represent the members of a group are composed of sym-
metric interfaces. Each interface of a component is associated with a
role request policy, which is a generic parameter. For example, a
server component may request implicitly a role Writer before initiating
a write interaction. In the application configuration template the bind-
ings between group members are specified: Each member is connected
with all the group members as a star.
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Regarding the amount of members, we distinguish between static
groups and groups of an indefinite amount of members (open group).
In the second case, a group can be decorated additionally with
attributes, such as an initial and critical member set specification.
Moreover, in order to enable the integration of new members during
runtime, a configuration template could be decorated with a set of
instantiation and termination rules.

Using the concept of instantiation rules, we could specify all the activi-
ties for merging a new member. For example, a new server S wishes to
join a server group SGroup. The join requires the new member S to be
initialized properly. Initialization is typically performed by aquiring a
consistent state from the other group members. In case of a replicated
server this implies, that after joining a group, a new server component
should aquire valid resources (e.g. files) from the other members to
merge into the group’s activities. Moreover, all the required bindings
have to be established. Termination rules determine how to leave a
group. Typically, leaving of a member from a group is performed by
releasing all roles that it holds. Moreover, the binding information has
to be modified to get a consistent configuration.

5. Implementation Support

For the implemention of our approach we have mapped our abstract
component model onto a set of interacting C+ objects. Based on the
formal specification, the implementation of a distributed application is
supported by a set of tools which facilitates automatic derivation of
object-oriented implementations.

An interface specification is mapped onto a set of class definitions.
Instances of interfaces are represented as objects. For each interface
we can define a related application/management class, which realizes
the interface specification. Additionally, in order to enable a remote
access, we need stub objects at the consumer and supplier side. They
function as local representatives of remote objects.

The cooperation protocol feature of an interface is implemented by a
base class realizing the userdefined specification. In our approach, we
model path expressions of an cooperation protocol using petri nets,
roles are mapped onto related role objects which provide operations for
requesting and releasing roles.

Management objects are responsible for providing management opera-
tions. For this purpose, we provide a class library realizing manage-
ment properties. We have developed a classification scheme which
allows to gain systematically the management facilities for a distributed
application.

Built in management facilities are provided for each application com-
ponent and component group independent of its functionality. They
reflect monitoring properties like monitoring the configuration of a
component (static and dynamic information about interfaces, subcom-
ponents, communication contexts and bindings), test of liveness of a
component, status of a component and its memory/processor usage.

Derived management facilities can be directly obtained by analyzing
the specification of the application properties and communication con-
texts of a component. For this purpose, we have to evaluate attributes
such as the behaviour and binding characteristics of components and
component groups. For instance, regarding the behaviour at an inter-
face, monitoring facilities, such as work load monitoring, response time
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monitoring, throughput monitoring and queue monitoring have to be
supported in case of a server behaviour. If a component specification is
decorated with a constraint definition, a management object is responsi-
ble for monitoring and control the constraints after performing
configuration changes in order to preserve consistency of a component.
This category also involves monitoring and controlling the critical
member set of a group before joining or leaving of members.

Optional management properties have to be declared explicitly by the
designer of an application component. They involve configuration
management facilities for performing changes during runtime at com-
ponent and application level. At component level, the declaration of
management properties such as replacement, replication, migration and
checkpointing of components are supported by an extended CSL.

As a result, from the implementation viewpoint, the construction of
application components is supported by configuration of a set of C+
objects (Figure 7).

A management component is responsible for the establishment of a dis-
tributed application. Establishment includes the determination of suit-
able nodes for each component (dependent on the component proper-
ties and the node facilities), distribution of the related source text, com-
pilation, creation of component instances, their initialization, and set-
ting up the defined bindings. Moreover, a management component
enables monitoring and initiating dynamic changes (dependent on the
management characteristics of each application component) during
runtime.

An application configuration specification has to be transformed into a
computational representation. This is achieved by mapping a
specification onto a related object, which can be generated automati-
cally from a formal specification. The public interface supports the
creation of components and bindings as well as the establishment and
termination of the related distributed application. The properties of
each application component are represented as member objects. From
the management point of view, this object architecture allows a fast
access to an application configuration and its consistent computational
representation. For the administration of configuration objects, i.e. cre-
ation, removal and retrieval of application configuration objects, a dic-
tionary object provides appropriate operations.

application management cooperation
objects objects application protocol management

[ objects objects objects
l L ]

communication service
objects dispatcher
[ object

[ [_j

stub objects cooperation protocol

objects
| communication

T service objects

Figure 7: Configuration of an application component
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This approach has several advantages. First of all, a declarative
configuration description can be mapped onto the creation of a compu-
tational application configuration object which are a representative of
the distributed application. Furthermore, a “normal” application com-
ponent can be responsible for the configuration, which means, to define
and initiate a dynamic extension of a distributed application without the
need of a separate configuration description. Consequently, providing
the concept of configuration objects there is no need to extend a pro-
gramming language in order to support a dynamic configuration
modification during runtime initiated by an application component.
This way interactive and programmed configuration and
reconfiguration of distributed applications are possible.

6. Conclusion

In this paper we have developed a new approach for the specification,
implementation and management of distributed applications. Our
specification technique supports the specification of quite different
aspects of a distributed application, namely application behaviour,
management facilities and communication contexts. Reusablity is sup-
ported by the concept of templates which can be used as a base for the
development of generic distributed applications. We have demon-
strated the usefulness of templates by some well known cooperation
paradigms, client server applications and different types of group work
applications.

The clear separation of application-, management- and communication-
oriented aspects of our concept is a solid base for a constructive
approach for building of distributed applications. Moreover, the con-
secutive steps of specification and implementation allow the validation
at specification level and the automatic generation of the implementa-
tion. At the implementation level, the different aspects could be inte-
grated into a general object-oriented architecture. As a consequence,
modularity and reuse of software is improved.

We are currently working on a rapid prototype of the described
approach based on the C+ programming language and X windows.
This includes compilers for the specification languages and manage-
ment tools for the representation and interactive control of distributed
applications. Some basic concepts of our approach have been validated
by a prototype implemenation of the User Agent-Message Store proto-
col (MHS P7) as part of a joint research project with Digital Equipment
Corporation [Doe91a].

Future work will focus on the development of a library of generic dis-
tributed applications and composition schemes for combining generic
distributed applications. A graphical support environment for the
development and management of distributed applications will be real-
ized. Furthermore, we have to analyze how to derive automatically
management and communication properties from the application
specification.
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Abstract

Building distributed operating systems benefits from the micro-kernel
approach by allowing better support for modularization. However, we
believe that that we need to take this support a step further. A more
modular, or object oriented approach is needed if we wish to cross that
barrier of complexity that is holding back distributed operating sysiem
development. The Chorus Object Oriented Layer (COOL) is a layer
built above the Chorus micro-kernel designed to extend the micro-
kernel abstractions with support for object oriented systems. COOL v2,
the second iteration of this layer provides generic support for clusters
of objects, in a distributed virtual memory model. This approach
allows us to build operating systems as collections of objects. It is built
as a layered system where the lowest layer support only clusters and
the upper layers support objects.

1. Introduction

Building distributed systems is difficult simply because the complexity
of interactions among entities scattered on a collection of machines is
enormous. The distributed systems community has long been wrestling
with this complexity and has developed methods such as RPC, group
communications, distributed shared memory etc. in an attempt to pro-
vide mechanisms that abstract over some of this complexity.

However, in attempting to build systems that actively use these mecha-
nisms we have run into two major problems, performance and integra-
tion. Performance because we have tried to add these mechanisms to
existing systems, and integration because we have tried to do so in an
ad-hoc manner without fully considering how these tools should inter-
act, or how applications will use these services.

Work in the operating system community has tried to deal with these
issues by re-visiting our existing operating systems and looking at the
minimum abstractions necessary to build distributed operating systems.
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By combining these with a system building architecture that stresses
modularity, we can begin to address the performance and complexity
issues. This approach, often called the micro-kernel approach, allows
us to provide a2 minimum set of abstractions that can be used to build
operating systems themselves.

We feel however, that while this is the correct approach, it is only one
step in the right direction. We need to augment our basic mechanisms
with a framework that allows system builders to glue functional com-
ponents together in a coherent and performant way. In effect, we need
to provide a system building environment that supports a programming
model, tools and services needed to work within that framework.

The object oriented paradigm offers a solution to this problem by offer-
ing a framework for building large complex applications, such as OS’s
in a way that is amenable to distribution. However, we must not repeat
the mistakes of early distributed system builders by trying to impose a
model on a set of mechanisms, rather, we must actively support the
model at the lowest layers in our system, by making sure that our
abstractions are suitable for supporting objects [Bla92a].

In this paper we discuss how the COOL system has been designed to
exploit the unique features of the Chorus operating system model to
provide an efficient set of abstractions that are well suited to support
the object oriented metaphor. We stress that this approach not only
facilitates building distributed OS’s, but any distributed object oriented
application, because it reduces the mismatch between our OO services
and the model we use to build distributed applications.

Our goal is to provide a framework that will allow operating system
builders to develop their applications, the operating system, in a well
structured, flexible and coherent environment.

We will introduce the basic COOL v2 architecture, and then concentrate
on the Persistent Context Space model that we have developed to allow
us to efficiently support distributed, shared objects at the lowest layer
in the system.

2. COOL v2

The COOL project is now in its second iteration, our first platform,
COOL v1," was designed as a testbed for initial ideas and implemented
in late '88 [Hab90a, Des89a, Lea91a).

Our early work with COOL (COOL v1) consisted of experimentation in
the way that systems could be built using the object oriented model,
and how this supported distributed applications. In an attempt to move
the COOL platform from a testbed towards a full object oriented operat-
ing system we began a redesign of the COOL abstractions in 1990.
This work was carried out in conjunction with two European research
projects, both building distributed object based systems, the Esprit ISA
project and the Esprit Comandos project [Cah91a].

The result of this work has been the specification of the COOL v2 sys-
tem and its initial implementation in late *91, [Lea92a, Ama92a).

+ COOL vl was a joint project between Chorus Systemes, the SEPT (Service d’Etudes des Postes et Telecommunications), and INRIA
(Institut National de Recherche en Informatique et en Automatique)
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3. The COOL v2 Architecture

3.1. The COOL Base

COOL v2 is composed of three functionally separate layers, the COOL-
base layer, the COOL generic run-time and the COOL language specific
run-time layer.

Our goal when designing this architecture was twofold, efficiency and
flexibility. We wanted to support distributed interactions using a num-
ber of base mechanisms.

To allow objects to interact we can;

° Support a communications mechanisms that will allow transpar-
ent invocation.

Allow objects to migrate between contexts by unmapping from
one context and mapping into another, relocating internal point-
ers on the fly.

Use a distributed shared memory mechanisms that ensures object
level faulting.

Each of these mechanisms have their advantages and their drawbacks,
and each will be used in different circumstances. A key element of our
work is that the three levels of the architecture, interact to provide all
three mechanisms, allowing policy to decide which mechanisms to be
used at which particular time.

In the following sections we briefly outline the functionality of the
three levels and then return to the base level and explain further its sup-
port for a distributed virtual memory model and its implementation as a
distributed system support layer.

The COOL-base is the system level layer. It has the interface of a set of
system calls and encapsulates the CHORUS micro-kemnel. It acts itself
as a micro-kernel for object-oriented systems, on the top of which the
generic run-time layer can be built. The abstractions implemented in
this layer have a close relationship with CHORUS itself and they are

COOL-generic run-time
Obyects, cistributed and persistent

CHORUS Nucieus

CHORUS Nucieus

Bus or network

Figure 1: COOL v2 architecture
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intended to benefit from the performance of a highly mature micro-
kernel.

The COOL-base provides memory abstractions where objects can exist,
support for object sharing through distributed shared memory and mes-
sage passing, an execution model based on threads and a single level
persistent store that abstracts over a collection of loosely coupled nodes
and associated secondary storage.

In our initial work with COOL our base leve! supported a simple gen-
eric notion of objects. This proved to be too expensive in terms of sys-
tem overhead so that in COOL v2 we have moved the notion of objects
out of our base layer and replaced it with a more generic set of abstrac-
tions which we term the Persistent Context Space model (PCS).

The persistent context space supports a basic abstraction, the cluster
which is a set of virtual memory regions and provide a repository for
objects. Clusters, being persistent, are represented on secondary stor-
age using the CHORUS abstraction of a segment, and are represented in
memory using the CHORUS abstraction of regions.

Clusters are grouped together into containers which represent collec-
tions of objects whose references are completely contained, i.e. all ref-
erences within clusters point into clusters within the same container.

A context abstracts the notion of an address space, and provides a place
into which containers can be mapped for execution. To support dis-
tributed shared memory we define the context group which is a collec-
tion of contexts, on one or more sites, that map identical containers.

We will return to the PCS model and its implementation in Section 4.

3.2. The COOL Generic Run-Time

The generic run-time implements a notion of objects. Objects are the
fundamental abstraction in the system for building applications. An
object is a combination of state and a set of methods. An object is an
instance of a class which defines an implementation of the methods.
The generic run-time has a sub-component, the virtual object memory
that supports object management including: creation, dynamic
link/load, fully transparent invocation including location on secondary
storage and mapping into context spaces.

Two types of object identifiers are offered by the generic run-time:
domain wide references and language references. A domain wide ref-
erence is a globally unique, persistent identifier. It may be used to refer
to an object regardless of its location. A language reference is a
pointer in CH and is valid in the context in which the object is
presently mapped.

The generic run-time defines the primitives to convert one type of ref-
erence to the other one. When a domain wide reference to a remote
object is converted to language reference a proxy associated to the
object is created [Sha86a]. This proxy is used to transparently invoke
the remote object.

Objects are always created in clusters. Each cluster’s address space is
divided into three parts: the first one is used to store all the structures
associated with the cluster used by the generic run-time, the second one
is used to store the applications objects, and the last one is used to store
the proxies. A different allocator is associated to each part, this alloca-
tor is used to allocate and free space.

The classes are structured in modules (set of classes, unit of code). The
generic run-time allows the code to be dynamically linked. The gen-
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eric run-time offers a primitive to link a module. Each class contained
in the module are store at the context level. When an instance of a
class is created in a cluster, the class descriptor is saved in the cluster.
This class descriptor is used to retrieve the appropriate module and
therefore the appropriate class when a cluster is remapped in another
address space.

The generic runtime provides an execution model based on the notion
of activities which are mapped onto CHORUS kernel supported threads
and jobs which models distributed execution of activities. Each cluster
can support multiple activities, with more than one activity capable of
running within the same object at any particular time.*

One of the main problems with trying to use a single generic base to
support multiple language level models is that of semantics. Most lan-
guages, and systems, have their own semantics, each of which are sub-
tly different. To enable the building of sophisticated mechanism that
support multiple models we have defined a generic run-time to lan-
guage interface based on upcalls.

The generic runtime maintains for each object a link between the object
and its class. This link is used to find the upcall information associated
with each object.

The upcall information, and associated functions is used for a variety of
purposes, including support for persistence, invocation and re-mapping
between address spaces. In fact, any time where a functionality of the
generic run-time needs access to information about objects that only
the language specific environment will know.

For example to support clusters persistence, and hence object persis-
tence, we need access to the layout of objects to locate references held
in the objects data. When a cluster is mapped into an address space all
the objects are scanned by using the appropriate upcall function to
locate the internal references (to external objects) and performing a
mapping from the domain wide references (used when an object is
located on secondary storage) to address space specific references, this
technique if often called pointer swizzeling.

Another example is for object invocation. Invocations between objects
in the same cluster is based on the standard method invocation of the
language (CH method). Invocations between objects in different
address space use the model offered by the COOL-base layer (CHORUS
communication primitives). The proxy is used to trap the normal func-
tion invocation and replace it by an remote invocation which marshalls
the parameters, issues an remote procedure call, and unmarshall the
results. At the receiver, a dispatch procedure, which is part of the
upcall function associated with an object, is used to call the appropriate
method on the appropriate object.

Invocation may also use the underlying cluster management mecha-
nisms to map clusters into local address spaces for efficiency reasons,
or locally to allow light weight RPC and maintain protection bound-
aries, again the upcall functions are used to support this.

3.3. The Language Specific Run-Time

+ Subject to language level constraints.

The language specific run-time maps a particular language object
model to the generic run-time model. This may be achieved through
the use of pre-processors to generate the correct stub code and the use
of the upcall table.
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As discussed above, the GRT will, in the process of operations such as
mapping or unmapping an object from an address space, upcall into the
language specific run time responsible for that object by using the
upcall table associated with the object and generated by the language
specific run-time. This requires that the language run-time, usually the
compiler, generates enough information to interface to the generic
run-time. Currently we use pre-processor techniques to generate this
information so that at run time objects can be managed by the underly-
ing COOL system.

4. The Base Level Revisited

In Section 3.1 we briefly outlined the abstractions that the base level
provides, however the container/cluster mechanism is designed to sup-
port more than a simple grouping of objects.

Our goals when designing the base abstractions where:

° Support distributed, shared virtual memory so that we could
efficiently support languages based on virtual memory refer-
ences.

° Provide a form of memory persistence including the mechanisms
for a single level store so that higher levels would not see a
multi-tiered storage hierarchy.

° Provide a means to structure the distributed virtual memory
space so that system builders can control their use of the dis-
tributed virtual memory.

The mechanisms that form part of individual language run-times and
the GRT support distributed programming, however, in all cases they
are costly. Object relocation requires pointer swizzling when clusters
are mapped and unmapped; invocation using a message passing mecha-
nisms need parameter marshalling and often break the semantics of
object invocation.

Supporting a distributed, shared virtual memory is one solution that
allows efficient transparent programming within a distributed environ-
ment. Although there are many costs and restrictions to a distributed
virtual memory model, when combined with a complete system that
supports other mechanism, such as mapping and remote invocation, it
offers a powerful tool. A key difference between our work and others
is that we offer a range of mechanisms to support distribution, not just
one.

Our basic unit of distribution at the base level is the container, which,
as described in Section 3.1, is made up of several clusters.

Containers are lazily mapped from secondary storage, by the base level
into a virtual address space, or context. This mapping my involve relo-
cation, as the form held on secondary storage may store pointers in a
global format."

Each container is ultimately mapped to one or more CHORUS seg-
ments, the unit of secondary storage. When mapped, a container is said
to have a view. The view represents this mapping from secondary stor-
age segments, to primary storage regions.. More than one view may be
managed by a context at one time, allowing multiple containers to be

+ A vanilla language mapped onto the GRT, without language run time support will not be able to support relocation and will be con-
strained to always be located at a particular set of addresses. An extended language, that was designed to exploit the GRT would allow
addresses to be relocated, thus allowing the system to relocate containers as required.
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Figure 2: COOL-base fragmented objects

mapped into a single context; see Figure 2. The management of dis-
tributed views of a container is carried out by the base level.

A container, once created will remain in the system as long as there are
references to that container. This persistence is managed by the base
level.

Once mapped, objects within the container can carry out invocation
using virtual memory references. If that activity wishes to diffuse to
other sites, for example to allow physical parallel activity, then we cre-
ate a context group. A context group is a set of contexts that support
one or more containers. Each container is mapped at exactly the same
set of addresses in each context in the group.

It is possible, and indeed likely, that a context will support more than
one container at a time. Hence, contexts may belong to multiple
groups at any one time with parts of their address space “allocated” to
different groups. A group of contexts that map a particular container as
said to support a Persistent Context Space, a distributed, persistent
address space from the containers point of view.

The management of these Persistent Context Spaces requires some
form of distributed control. There are several aspects to this. Contain-
ers which wish to diffuse to new contexts need to know if that context
is capable of supporting the container, e.g. if addresses used by the
container are already allocated then the diffusion can not be carried
out." When new virtual memory is added to a container, then allocation
must be carried out across all containers in the group, this is managed
by the distributed view control mechanisms.

4.1. Implementation Structure

To manage these distributed entities, the COOL-base is composed of
several objects, or fragments* represented on each site and each using

+ It may be possible to remap the contain.. to a new set of addresses compatible with the new context.

+ We usc the term fragment, because each local representative, is a part of a global distributed, or fragmented, object.
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the underlying CHORUS mechanisms to implement a distributed algo-
rithm. These objects are grouped into three major components:

) Base Object: it contains all state informations about the local site;

) Base Proxy: transparently addresses the correct base object
whenever a request for some system action must be re-directed to
another site;

° Base Server: transparently forwards incoming remote requests to
the local fragment responsible for managing that resource.

Each COOL-base server implements three protocols (with one CHORUS
thread per protocol):

. Distributed group management: creates and deletes groups,
attaches and detaches contexts from groups and controls address
space allocation;

° Distributed view management: attaches and detaches views to
and from clusters and informs the COOL-base to raise an upcall
whenever these operations can influence the use of the data
stored inside the cluster;

° Distributed cluster management creates, deletes, activates and
de-activates clusters; it is also responsible for adding and delet-
ing segments to/from clusters.

The protocols are mapped directly on to CHORUS IPC. Some opera-
tions have to upcall the generic run time to update upper layer state
information. This also uses the CHORUS IPC, allowing us to upcall
both locally and remotely.

4.2. Persistency Support

Persistent memory is organized in containers as explained above.
Each container is further subdivided in clusters, a cluster being a set of
persistent segments.

Each entity managed by the system layer is named using a CHORUS
capability, which uniquely names it in the distributed system. Capabili-

Distributed base

COOL-base COOL-base

Figure 3: COOL-base fragmented objects
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4.3. Cluster Mapping

ties are the means to manage system entities and are passed between
servers. In the case of clusters and containers; both virtual memory
based entities, capabilities are managed by mappers. Each mapper is
designed to manage the relationship between secondary storage and
main store. When a request to use a cluster is generated, the COOL
base system hands of the request for an unmapped cluster to the map-
per managing that cluster. The mapper is responsible for locating the
secondary storage representation of the cluster, and will understand
enough of this format to allow it to map the cluster into primary store.

Persistency of clusters is also managed by the mapper. In conjunction
with higher level tools such as garbage collectors, the mappers decide
which clusters are referenced and will always ensure that such clusters
are mapped out into secondary store where they will remain until refer-
enced again.

The capability assigned to the cluster, and managed by the mapper is
guaranteed to remain unique during the lifetime of the system. This
guarantee is made by the underlying CHORUS micro-kernel which is
responsible for generating capabilities.

4.4. Cluster Unmapping

An application starts to run within a single context. Initially a single
container will be associated with this application, with a minimum of
one cluster mapped into the context.”

An exception mechanism exist that uses memory faults to map the cor-
rect memory at the right place. The first container mapping can be con-
sidered the highest level fault. It makes visible the next level in the
structure, that is, clusters.

The second exception level is the segment fault: upon an access to
some unmapped memory address, the exception handler verifies if
there is some existing cluster, part of the current complete memory
space, that contains a segment with the needed address when mapped.
It then maps the right cluster. Finally, in a page-based architecture,
each segment is divided in pages, so it is only effectively read to in-
core memory if it is really accessed (in a third level fault).

After mapping, memory may need to be relocated. This is dependent
on the semantics of memory contents and only application levels are
aware of it. The relocation itself is based on symbolic information and
only known symbols can be relocated. The problem is that there may
be pointers that have no correspondent symbols generated normally by
the compilation chain, so, special high level run-time code has to exist
in order to access intrinsic semantic information of memory contents at
user-level in a transparent manner. The base level, causes the run-time
level to carry out any relocation required when the cluster is mapped
into a context for the first time.

The upcall mechanism can also be considered an exception (but a dis-
tributed one). As we saw, cluster mapping and relocation is done auto-
matically by the base and the run-time system when a memory fault
occurs. In the simple case, mapping is carried out from secondary stor-
age on an inactive cluster. However, it is likely that a cluster is already
in use as part of another persistent context space. Hence it is necessary

+ Remember that a container is made up of one or more clusters. Clusters are the unit of mapping.
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4.5. Mutual Exclusion

to force that cluster, and its container, to be unmapped from one persis-
tent context into the faulting one.

An upcall has to be issued from the kernel to the run-time system in
order to unmap the cluster transparently from the application contexts.
This upcall is performed using the CHORUS communication mecha-
nisms allowing the upcall to work in the distributed system.

With the exception and upcall mechanisms in place it is straight for-
ward to assure mutual exclusion of clusters that need to be mapped at
different addresses, i.e., that belong to different active persistent con-
texts spaces.

During memory fault handling, if the system sees that a cluster is being
used by another persistent context space it upcalls all contexts in that
context space to force the unmapping, and proceeds. Later on, if any
one of the other contexts needs that cluster again, it will do exactly the
same in the inverted sense.

After remapping a cluster, the system has to verify if the container
information about that cluster is still valid. The container may have a
different set of clusters or belong to another persistent context. This
has to be done immediately after cluster mapping because it may now
directly reference another cluster after being changed in the persistent
context space where it was previously mapped.

4.6. Shared Memory Coherency

Memory mapped in a context space needs to be assured single-writer
multiple reader coherence between all distributed contexts that have it
mapped into its address space. A distributed shared memory system
such as proposed by Li [App91a] is used. This is a strict coherency
algorithm but is well suited to the semantics of languages such as C+.
We are currently investigating weak coherency support.

5. Conclusion and Current Status

The CHORUS micro-kernel is a set of low level functionality on which
higher level systems can be built. After four years of experience using
it to build object oriented operating systems we are convinced that
micro-kernels are a sensible approach to reduce system complexity and
the development cycle.

The COOL project is building an object oriented kerne! above the CHO-
RUS micro-kernel. Its aims are to provide a generic set of abstractions
that will better support the current and future object oriented languages,
operating systems and applications.

Our experience showed that much of the work in implementing a dis-
tributed system goes into the maintenance of distributed state. We used
an object-based system to describe distributed state with fragmented
objects. The use of the CHORUS micro-kernel allowed the implemen-
tation of these fragmented objects in a natural manner using a set of
protocols over CHORUS [PC based on a distributed capability-based
naming scheme that CHORUS supports.

We currently have a limited COOL platform running above the CHO-
RUS micro-kernel, running native on networked 386 based machine.
This platform implements the basic cluster level including the dis-
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tributed virtual memory support. The COOL GRT offers full support for
object distribution and for persistence. In addition we have built a
pre-processor environment that allows us to generate pre-processor
tools that can be used to extend existing languages such as C+ to take
full advantage of the COOL v2 operating system interface.
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Abstract

Modern computing and networking hardware make the physical inter-
connection of many machines simple. However, programming an
application to take even limited advantage of the interconnection is
notoriously difficult due to the complexity of the protocols involved.
Furthermore, real world demands insist that such applications need to
be programmed in an existing, preferably widely available, language.
One approach aimed at easing this difficulty is based upon the concept
of transparency. By making the underlying distribution of the system
transparent to the programmer it is hoped that the programming task
becomes comparable with that of programming centralised applica-
tions. This paper describes mechanisms and tools that enable the vari-
ous facets of transparency can be accomplished for the language C+
noting what level of transparency can be realistically attained.

1. Introduction

The programming of any large application is notoriously complex,
requiring discipline on the part of both designer and programmer.
Object-oriented design and programming techniques show great poten-
tial for alleviating many of the problems due to the inherent modulari-
sation and encapsulation properties these techniques possess. Cur-
rently, most widely available object-oriented languages and systems
(that is, available in the commercial arena) have little or no support for
the programming of distributed applications despite the ease with
which the computer hardware can be connected to construct a physi-
cally distributed system. Although much notable research effort has
been concentrated upon ways of hiding, to greater or lesser degrees, the
underlying distribution of the system, this has generally been achieved
by creating entirely new distributed programming languages or systems
(for example: Emerald [Bla87a], Clouds [Das85a)], Avalon [Det88a],
Argus [Lis88a}, and Camelot [Spe88al).
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The primary reason for this focus is that existing languages have been
developed without any consideration of the problems introduced by
distribution and thus contain one or more features that are either impos-
sible, or impractical, to distribute for a variety of reasons. A classic
example of such a feature is the assumption that the application will
execute within a single address space.

However, for distributed computing to truly gain importance to a wider
audience does require the ability to program distributed applications in
existing languages — preferably with a minimum of additional effort.
Thus, although total transparency is typically impossible to achieve,
partial transparency is both achievable and highly desirable. Comput-
ing platforms supporting this philosophy are starting to emerge (for
example: Integrated Systems Architecture (ISA) [APM91a], Open Net-
work Computing (ONC) [Sun88a}, the Open Software Foundation Dis-
tributed Computing Environment (OSF/DCE) [OSF91a], and the Object
Management Group Common Object Request Broker Architecture
(CORBA) [OMG91a)) from both manufacturers and international stan-
dards bodies. While generally welcomed by users from a wide back-
ground (as repeatedly stated during a workshop at the ESPRIT Confer-
ence in 1991 [Par91a]) these platforms are not without their flaws, in
particular they still typically do not provide much transparency to the
applications programmer who is forced to write substantially different
code to that written for a normal non-distributed application.

With this philosophy in mind, this paper examines the extent to which
transparently distributed applications can be written in C+ [Str86a] (an
increasingly popular commercially available object-oriented language)
using only features available in the language itself, in combination with
some other auxiliary tools. Furthermore, the implementation is aimed
to be as portable as possible so as to promote the maximum potential
reusability in a real environment.

The driving force behind this work is the Arjuna [Shr91a] project at the
University of Newcastle upon Tyne. Arjuna is an object-oriented pro-
gramming system for the construction of reliable distributed applica-
tions, which provides flexible and integrated mechanisms for the man-
agement of concurrency, recovery, naming, and persistence of CH
objects. These facilities are implemented solely using the inheritance
capabilities of C+ thus gaining considerable flexibility. One basic
facility required by Arjuna is the ability to transparently distribute C+
applications. This paper principally concentrates on the general pur-
pose tool developed as part of the project to address this problem. The
remainder of the paper concentrates on several of the other separate
facets of distribution transparency and examines whether they can be
achieved within a C+ application.

2. Distributing Applications Transparently

The term distribution transparency encompasses many varied attributes
including:
) Location. The current location of an object is hidden from all

other objects, enabling it to be located anywhere within the dis-
tributed system.

Access. The syntax and the semantics of the invocation of opera-
tions upon objects is identical for both local and remote objects.

Failure. The effects of any partially completed operation invo-
cations are hidden in the event of failure.
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Concurrency. The existence of concurrent users of an object are
hidden. That is, the effects produced by any concurrent use of an
object are not observable.

Replication. The existence of multiple copies (for availability
purposes, for example) of an object is hidden.

Migration. This is a dynamic form of location transparency. If
an object moves from one location to another while in use, any
users is unaware of the migration.

Furthermore, an application can be transparent in different ways to dif-
ferent users. For example, an application that is fully transparent to an
end user may not be so to the application programmer. Most of the
platforms mentioned earlier allow the creation of applications that are
transparent to the end user. Their level of transparency to the program-
mer, however, is typically quite limited as will be outlined briefly in
later sections.

Due to the encapsulation inherent in the object-oriented model, object-
oriented systems should provide a natural framework in which the
above transparency attributes can be expressed. For example, since
object interaction is via well-defined interfaces it should be irrelevant
where the actual objects reside, both to the user and the programmer;
all that should be required is a means by which operation invocations
are delivered to the correct object regardless of its current location.

2.1. RPC Systems and Stub Generators

A popular technique employed in the construction of distributed appli-
cations is based upon the concepts of Remote Procedure Call (RPC)
[Bir84a, Ber87a] and Stub Generation [Jon85a, Gib87a, Sun88b]. Con-
ceptually, a distributed application consists of several fragments split
between the client (caller) and the server (callee). These fragments are:
the client, the client stubs, RPC transport, the server stubs, and the
server. Both the client and server are typically designed and imple-
mented as if the application was to execute in a traditional centralised
environment. It is the function of the client and server stubs to hide the
underlying distribution to as great a degree as possible. Since produc-
tion of these stubs can be tedious and complicated the process can be
automated through the use of a Stub Generator. This parses a descrip-
tion of the interface between the client and the server, written in some
Interface Definition Language, and produces the required stub code in
a language compatible with both. In many systems this interface
description language has a different syntax and semantics to the lan-
guage in which the application is programmed. This requires that the
programmer map the original interface description from the host lan-
guage to the IDL before the stub generator can operate. Furthermore,
many platforms require the programmer to write the server routines in
a special way, by either explicitly massaging the names of the server
routines (for example, by appending some number that represents a
unique code for that routine), or by the inclusion of extra arguments to
each routine, or even a combination of both.

3. Distributing C+ Applications

As outlined above, distribution transparency encompasses several dis-
tinct attributes. The following sections describe to what extent an ordi-
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nary C++ application can be made to exhibit the required transparency
attributes.

3.1. Location and Access Transparency

Location transparency effectively requires that the name of an object as
known by the user or programmer does not reveal any information
about its true location. Exhibiting access transparency requires that all
operation invocations performed by a client application upon an object,
such as creation, destruction and normal operation invocation, can be
suitably caught and redirected to the actual instance of the object on
whatever node the object actually resides upon. This access trans-
parency can be achieved simply in C+ by replacing the programmer’s
class declarations with new class declarations such that these new
classes have the same external interface as the original but with new
implementations of all of the operations (as RPC’s, for example). This
approach should produce full access transparency to the programmer
(and, by default, the end user) providing that only the publically avail-
able operations of an object are used.

Arjuna uses stub generation techniques to achieve just these effects.
To further enhance programmer transparency, the Arjuna stub genera-
tor does not have a separate interface definition language, instead its
input is the original C+ class header files that would normally have
been processed by the standard C+ compiler. Since typical C++ header
files both contain things that are a hindrance to this technique (inline
function definitions, macro definitions, etc.), and may also fail to pro-
vide sufficient information in some cases (particularly with respect to
pointers), some programmer assistance may be required. Therefore,
the operation of the stub generator can be controlled in two ways.
Firstly, through flags passed on the command line, and secondly,
through stub generation specific commands inserted into the actual
header files themselves. In order that these header files remain accept-
able to a standard compiler these commands are hidden inside com-
ments that precede the syntactic entities to which they apply (in terms
of the C+ grammar they are classed as declaration-specifiers just like
storage class specifiers, for example).

3.1.1. Client and Server Classes

For any class definition presented as input, the Arjuna stub generator
produces two additional classes that represent

) The replacement class for use by the programmer in the client
program

° The server stub class responsible for decoding an RPC request,
unmarshalling any incoming arguments, invoking the correct
operation on the real class, and marshalling any output argu-
ments and any returned value before returning to the caller.

For example, the class definition shown below in Program 1, which
represents a simple interface to a distributed diary system, when pro-
cessed by the Arjuna stub generator would cause the generation of the
client class shown in Program 2. Simple renaming tricks played using
the standard preprocessor enable this class to be transparently used
under its original name in the programmer’s application code. The
generated client and server stub code is independent (deliberately) of
the particulars of the underlying RPC mechanism since it is accessed
through a class interface (implemented by the class RpcControl)
which has a proscribed minimum set of operations. This class can
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#include "AppointMent.h"

// The following stub specific commands are actually the default
// eRemote, @NoMarshall
class Diary : public LockManager

{

public:
Diary(ArjunaName AN);
“Diary();

String Wherels(time_t now, String user);

AnAppointment GetNextAppointment(time t now);
int AddAppointment(AnAppointment entry);
int DelAppointment(time_t when);

virtual Boolean save_state(ObjectStates&, ObjectType);
virtual Boolean restore_state(ObjectStates, ObjectType);
virtual const TypeName type() const;

private:

String user_name;
Appointment *appts;

Program 1: Sample input class

implement these operations in any manner applicable to the actual RPC
transport mechanism being used. However, since the actual implemen-
tation of the RPC classes is irrelevant to the generated output it will not
be described further.

This generated client stub class has the same set of public operations as
the original (although any constructors have had an extra argument
added to them, this is effectively invisible and the code written to use
instances of the original class will still compile). Public instance vari-
ables, however, are deliberately not included in the generated class for
reasons that will be explained in a later sub-section. Internally the
implementation of the class is totally different. Firstly, only variables
pertinent to the establishment and maintenance of the RPC connection

class RemoteDiary : public RemoteLockManager

{

public:
RemoteDiary (ArjunaName , RpcCcontrol *crpc = 0);
“RemoteDiary ();

String Wherels (time_t , String );

AnAppointment GetNextAppointment (time_t );

int AddAppointment (AnAppointment );

int DelAppointment (time_t );

virtual Boolean save_state (ObjectState & , ObjectType );
virtual Boolean restore_state (ObjectState & , ObjectType );
virtual const TypeName type () const ;

protected:
RemoteDiary(RpcControl *, const RpcBuffer&, char);

private:
virtual RpcControl *_get_handle () const;

RpcControl *_client_handle;

Program 2: Generated client class
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are present. Secondly, all of the operations are reimplemented to per-
form the appropriate argument (un)marshalling and RPC invocation.
Thirdly, some additional operations are introduced including an addi-
tional protected constructor which is used to ensure that certain infor-
mation pertinent to the RPC system is correctly propagated to the stub
generated versions of all base classes (if any).

Similarly, the generated server class (Program 3) has operations that
primarily correspond to those of the original Diary class except that
each is responsible for parameter (un)marshalling and calling the
equivalent operation on the real object. In addition this server class has
operations for server initialisation and two operations that implement
the code that determines from the incoming call which server operation
to actually call (the so-called operation dispatch code).

Each routine in the server class effectively has the same set of argu-
ments. The first is a pointer to the object to be manipulated which is
passed to ensure that the semantics of multiple inheritance are obeyed.
The second is an RpcBuf fer that contains all of the call information
(incoming parameters, for example), and the third is an RpcBuffer
into which the results (if any) can be placed. All operation names in
this class are generated by combining the original name with a hash
value computed from the original full operation signature (class name,
operation name, and types of all parameters). This scheme ensures that
operations overloaded in the original class can be correctly resolved in
the server (otherwise the standard overloading mechanism would not
be able to tell them apart). This computed hash value is also used in
the server dispatch code when determining which operation in the
server to actually call.

class ServerDiary : public ServerLockManager

{

public:
ServerDiary ();
“ServerDiary ();

void Server (int, char **);
long DispatchToClass (LocalDiary*, long, RpcBuffer&, RpcBuffers);

private:
// Main server dispatch operation
long DispatchToOper (LocalDiary *, long, RpcBuffer&, RpcBuffers);

// Operations corresponding to those callable in the client

long Diaryl64312325(LocalDiary *, RpcBuffers&, RpcBuffers);

long Diary262355078(LocalDiary *, RpcBuffer&, RpcBuffers);

long Wherelsl86673735(LocalDiary *, RpcBuffer&, RpcBuffers);

long GetNextAppointment31096804 (LocalDiary *, RpcBuffer&, RpcBuffers);
long AddAppointmentl101964452(LocalDiary *, RpcBuffera, RpcBuffers);
long DelAppointment222961300(Localbiary *, RpcBuffers, RpcBuffers);
long save_statel40478901(LocalDiary *, RpcBuffera, RpcBuffers);

long restore_state9807781(LocalDiary *, RpcBuffers, RpcBuffers);

long typell7319830(LocalDiary *, RpcBuffera, RpcBuffers);

// Pointer to real object
LocalDiary *therealobject;

Program 3: Generated server class
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The stub generator preserves the encapsulation properties of the input
classes in its output classes. That is, the server dispatch code (imple-
mented by the generated routine
ServerDiary::DispatchToOper in this example) will only
directly invoke the operations of the Diary class — not any operations
from any class from which Diary might have been derived (for exam-
ple, LockManager). If an operation inherited from some base class
needs to be invoked the request is passed to the appropriate base class
by the routine ServerDiary: :DispatchToClass (in this exam-
ple). This ensures that the stub code for each class can be compiled
independently from any of its parents and that a change in a base class
need not necessarily force a recompilation of the stub code for any
derived class.

The DispatchToClass routine is also responsible for resolving the
potential ambiguities on which routine to call in the server that can
arise when multiple inheritance is used (the ambiguity cannot exist in
the client otherwise the compiler would have rejected the code). It
does this using information built in the client when the client object
was constructed and which is transmitted as part of the call.

The client stub code produced exploits the CH constructor and destruc-
tor notions to ensure that the real (user) objects in the server have life-
times that match the lifetime of the (stub) objects in the client. At the
point that the stub object enters scope in the client (and thus the con-
structor operation of the object is automatically executed) then binding
of client to server is accomplished using the supplied Ar junaName
(this is part of the standard Arjuna naming scheme for persistent
objects and the mechanism via which location transparency is
achieved). Furthermore, the first RPC sent to the newly created server,
corresponds to the invocation of the constructor for the real object and
is passed the arguments presented by the client application. Similarly,
when the stub object is destroyed in the client, the generated destructor
causes an RPC request to be sent to the server causing the execution of
the remote object destructor before the server is itself destroyed.

3.1.2. Parameter Marshalling

CH+ operator overloading is used to simplify considerably the code
required to marshall (encode) and unmarshall (decode) arguments to
and from the underlying RPC buffers. In particular, the operators >>
and << have been adopted for this purpose (similar to their use in the
CH+ 1/O system). Thus << is used to marshall arguments into the
buffers used by the RPC mechanism, and >> to unmarshall arguments
from the buffers regardless of the actual type of the argument. The
RPC buffer class (RpcBuffer) provides a set of operations that per-
mit the marshalling and unmarshalling of all of the basic types of C+
(int, char, etc.). The marshalling of more complex structures is simply
achieved by breaking the structure up into its component parts and
marshalling each independently. The actual encoding scheme used is
the same as that used by the persistence mechanisms that enable a C+
object to be stored on disk.

Since all C+ objects are treated as encapsulated entities, the stub gen-
erator ensures that suitable definitions exist for these marshalling oper-
ators for all objects passed as arguments — even class objects which
must have their public operation set augmented by the inclusion of the
operations for (un)marshalling. Thus in the above example the mar-
shalling code generated for the class AnAppointment is similar to
that shown in Program 4.
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The generated client stub code for each operation follows a standard
pattern: marshall arguments, send invocation, await reply, unmarshall
results, and return to caller. This pattern is illustrated in Program 5,
which has the corresponding server code of Program 6.

Arguments passed by pointer or reference require special handling. By
default these are treated as in/out parameters and are both sent in the
call and assumed to be returned as part of the result. This behaviour
can be modified in two ways. Firstly, if the argument is declared to be
const then it is automatically treated as input only. Secondly, the pro-
grammer can augment the declaration of an argument with stub genera-
tion specific commands (€In, €Out and @InOut) to guide the pro-
cess explicitly.

So that complicated data structures (such as lists and trees) can be
(un)marshalled automatically the actual routines in RpcBuffer that
do the real work of encoding the data attempt to keep track of whether
a parameter has been packed into the buffer already, in which case it is
not packed again. Instead a special flag is inserted that the unpacking
routines can recognise and can thus compensate appropriately. This
helps to ensure that arguments only get encoded and decoded once. In
addition, the programmer can suppress the automatic generation of
marshalling code and provide alternative implementations if required

class AnAppointment : public StateManager

{
public:
AnAppointment ():
“AnAppointMent ();
// lgnore other operations here for clarity
// These are the added marshalling operations
virtual void marshall (RpcBuffers);
virtual void unmarshall (RpcBuffers);
private:

time_t start;
time_t end;

String description;
Boolean confirmed;

}i

// Overload << to marshall instance into buffer
inline RpcBuffer& operator<< ( RpcBuffers rpcbuff, AnAppointment topack)
{

topack.marshall (rpcbuff);

return rpcbuff;

}

// Marshall each variable in turn
void AnAppointment::marshall ( RpcBuffer& rpc_buff )

{
rpc_buff << start;
rpc_buff << end;
rpc_buff << description;
rpc_buff << confirmed;

}

// Unmarshalling operations are similar only using >>

Program 4: Sample marshalling code
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AnAppointment RemoteDiary::GetNextAppointment (time_t now)

{
RpcBuffer cbuffer, rbuffer; /* call and return buffers */
RPC_Status rpc_status = OPER_UNKNOWN;
long server_status = 0;

class AnAppointment returned_value;

/* marshall parameter */
cbuffer << now;

/* do call */
rpc_status = _client_handle->Call(31096804, cbuffer,
server_status, rbuffer);

if (rpc_status == OPER_DONE && server_status == 0)
{

/* unpack result */

rbuffer >> returned_value;

}
else
rpc_abort();

return (returned_value});

Program 5: Sample generated client code

through a command (@UserMarshall) embedded in the header file
describing the class.

3.1.3. Some Potential Problems

Stub generation is not without its problems caused primarily by the
lack of a shared address space between the client and the server. For
example, the semantics of procedure call may be different (stub genera-
tion usually utilises a copy-in, copy-out process for arguments which
may have a different effect upon application execution). Furthermore,
certain types of parameters may be disallowed altogether (procedure
type parameters, for example). Such problems are not particular to the
stub generation system described here but are inherent in the stub gen-
eration process and affect all conventional languages distributed this
way. Additionally, since C+ was not designed for distributed pro-
gramming some of its constructs are not amenable to stub generation
techniques and have to be disallowed. Examples of such constructs
include:

long
ServerDiary: :GetNextAppointment31096804
(Diary *theobject, RpcBuffer& work, RpcBuffers result)

{
/* unpack incoming argument */
time_t now = 0;
work >> now;
/* perform the real call */
AnAppointment returned_value = theobject->GetNextAppointment(now);
/* send back result */
result << returned_value;
return OPER_DONE;
}

Program 6: Sample generated server code

Technical - OpenForum 92 - Utrecht, 23-27 November 213




Programming Distributed Applications Transparently in C++: Myth or Reality?

° Variable length argument lists. These cannot be marshalled
automatically since the stub generator cannot determine at the
time it processes the header file how many arguments will need
to be marshalled on any given call.

. Public variables and friends. These break the assumed encapsu-
lation model and allow potentially unconstrained access to the
internal state of an object. Since that object may now be remote
from the client application such variables will typically not exist
or at least not be accessible in the same address space.

. Static class members. C+ semantics state that only a single copy
of a static class variable exists regardless of the number of
instances of the class in existence. These semantics cannot be
enforced in a distributed environment since there is no obvious
location to site the single instance, nor any way to provide access
to it.

All of these problems have the effect of lowering the overall access
transparency to the programmer, however, and this is the important
gain, not completely to zero. With care applications can be written that
are fully location and access transparent, while others require only min-
imal additional programmer assistance. However, the point remains
that stub generation relieves the programmer of a significant proportion
of the burden involved in the distribution of applications.

3.2. Failure Transparency

There are many potential sources of failure even in a conventional
non-distributed system. Distribution only complicates matters by
adding communication systems failures and the possibility that only
parts of the system fail while other parts continue working. Handling
failure transparently essentially requires a means by which operation
invocation appears to be atomic. Arjuna, uses the notion of (nested)
atomic actions [Gra78a] familiar to the database community for this
purpose. Atomic actions have the useful properties of:

° Failure Atomicity. All of the operations that comprise the action
complete successfully or none of them do.

. Serialisability. The concurrent execution of actions is equivalent
to some unspecified serial order of execution.

. Permanence of Effect. Once completed, any new system states
produced by the atomic actions are not lost.

Programmer defined groups of operations can be executed under the
control of an atomic action and the Arjuna system ensures that the
effect is as if they all complete or none of them do. Programmers must
currently declare and use atomic actions themselves (by explicitly
declaring instances of the class AtomicAction and invoking the
Begin, End or Abort operations it provides). However, the stub
generator could also make each remote operation execute under the
control of an (potentially nested) atomic action if required which would
result in a system that had similar semantics to Argus.

A simple implementation of the GetNextAppointment operation
for the Diary class might then be as shown in Program 7.

Supporting atomic actions requires that objects be recoverable so that a
prior state of an object can be (re)established in the case of failure.
Using currently available C+ compilers, the Arjuna classes implement-
ing recovery cannot determine the structure of an object at runtime
without programmer assistance (although techniques akin to stub gen-
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AnAppointment Diary::GetNextAppointment (time_t now)

{
AtomicAction A;
AnAppointment retv;
// Start action
A.Begin();
// Set an appropriate lock
if (setlock(new Lock(READ), RETRIES) == GRANTED)
{
// now perform the real operation on the list of appointments
retV = appts->apptAtTime(now);
// Success - commit action
A.End()
}
else
{
// 1 failed - undo all my changes
A.Abort();
}
return retV;
}

Program 7: Example application code

eration could reduce the amount of assistance required). Hence,
Arjuna requires that the programmer provides implementations of the
operations used for recovery (called save_state, and
restore_state) explicitly, although the Arjuna runtime system
controls exactly when these are called. This requirement does appear
to break the failure transparency attribute, however, since Arjuna util-
ises the same operations to provide object persistence, recovery essen-
tially comes about for free.

The most likely additional causes of failure in a distributed system over
those found in a non-distributed one will be caused by failure of the
RPC system for some reason. RPC failure typically comes from two
sources. Firstly the RPC itself fails for some reason (that is, the server
does not respond to the client request for a variety of reasons including,
crashed server machine or process, network partition, or server over-
load). Secondly, the RPC succeeds (in the sense that the call is deliv-
ered) but the server process rejects it as invalid. This latter case can be
caused by mismatches between the client and server interfaces for
example. In either case an exception is raised by the stub code (until
the proposed C#+ exception handling mechanism is available this is
simulated using UNIX signals). This exception can be caught and han-
dled by the programmer and in addition will be caught and processed
by other Arjuna components to ensure orderly cleanup (that is, out-
standing atomic actions are aborted, recoverable and persistent objects
restored to earlier states, etc.).

3.3. Concurrency

In a centralised application, concurrency is likely to be limited unless
the programmer makes explicit use of any system provided facilities or
is accessing some potentially shared resource such as a file. In such
cases programmers will typically have to use the facilities of the system
to avoid any potential interference problems when multiple clients
access any shared object concurrently.

In a distributed system, concurrent use of an object is much r.ore likely
to occur. Furthermore, such usage is likely to be unforeseen and poten-
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tially uncontrolled. Hence more heavyweight concurrency control
requirements may have to be imposed. To provide strong consistency
Arjuna uses the heavyweight concurrency control required by the seri-
alisability property of atomic actions [Ber87b]. This concurrency con-
troller is implemented by the class LockManager which provides
sensible default behaviour while allowing the programmer to override
it if deemed necessary [Par88a]. The programmer interface to the con-
currency controller is via the setlock operation (as illustrated in the
code fragment of Program 7). By default, the Arjuna runtime system
enforces strict two-phase locking following a multiple reader, single
writer policy on a per object basis. Lock release is under control of the
system and requires no intervention by the programmer. This ensures
that the two-phase property is correctly maintained. However, apply-
ing concurrency control (setting locks) to an objects is deemed to be
the responsibility of the programmer of the class who should be in a
position to know the concurrency requirements of each operation.

The introduction of the locking calls could also, however, be handled
automatically by the stub generation system (providing that the default
behaviour is acceptable) since it can determine what type of lock to
apply (read or write) based upon the “constness” of each operation as
determined by its declaration.

3.4. Replication and Migration

Support for transparent object replication requires that the replicas of
an object behave as if they were a single logical object. Migration
requires firstly that the access mechanisms detect that an object has
moved to maintain access transparency, together with a mechanism by
which the state of the object can be moved. This latter problem is akin
to that encountered in passing objects as parameters, or to making them
persistent, and can be solved using similar techniques.

To date, the publically released version of Arjuna contains no mecha-
nisms to handle these transparency attributes. However, a design for
several replication strategies exists [Lit92a] and an experimental imple-
mentation of one of those strategies is currently under test. This imple-
mentation allows the state of an object to be replicated on several
machines and ensures that all replicas remain consistent and is further-
more has been implemented using precisely the same stub generation
techniques described in the earlier sections of this paper. Support for
object migration will naturally follow in due course.

4. Conclusions

Producing transparently distributed applications in C# is possible but
requires care since the language was not designed with distribution in
mind. At Newcastle we have built a distributed diary system, a simple
theatre reservation system, and a moderately sophisticated distributed
bibliographic database system [Buz92a), all using the mechanisms
described here. Certain C+ constructs do cause problems but can usu-
ally be avoided or programmed around. While these restrictions lower
programmer transparency it is a compromise that works well with
existing tools and provides a practical solution to the problem of dis-
tributing C+ applications. In addition, since C+ is rapidly becoming a
“de-facto” standard object-oriented language, the approach adopted
here provides a route for others to exploit the capabilities of distributed
systems without too many of the potential headaches.
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Finally, the capabilities of Arjuna and the stub generation system can
be mixed with other existing C++ class libraries (of which many exist
already). For example, several applications written at Newcastle use
Interviews for their User Interface, Arjuna for Persistence and Recov-
ery, and the Stub Generation system for distribution.

For those whose interest has been piqued and who wish to experiment
further, the source code for Arjuna, together with some other papers
and documentation, is available via anonymous FTP from
arjuna.newcastle.ac.uk (128.240.150.1)
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Abstract

The JEWEL performance evaluation tool, developed at GMD (German
National Research Center for Computer Science), and its application in
microkernel evaluation is presented. Some of the key-mechanisms of
such systems have been observed with this tool. Since JEWEL is able
to detect single events instead of simple mean values very detailed
results are available.

1. Introduction

Performance evaluations of operating systems have always been of
interest to the whole user community, because their results affect any
application on top of a system. In the past, a lot of work has been car-
ried out in the area of classical centralized monolithic operating system
kernels. In the last years microkernel based operating systems
appeared in the arena and became competitive in functionality to tradi-
tional operating systems [Ren89a, Ras88a,Roz88a]. A microkernel
only offers the basic abstractions of memory, computing, and commu-
nication. It serves as a basis for constructing the system functionality
out of several cooperating user-level servers. In comparison with
monolithic operating systems microkernels promise a higher degree of
flexibility and extensibility, better maintainability, and appropriate
paradigms for distributed systems consisting of loosely coupled nodes
and for other architectures, e.g. NUMA. Besides the necessity to assess
the performance of the offered microkernel primitives, e.g. for inter-
process communication, the use of microkemnels raises additional ques-
tions concerning the performance penalties one has to pay for the
advantages coming along with this change in operating system archi-
tecture. A lot of performance evaluation and tuning in the microkernel
as well as in the servers stil; seems to be necessary in order to reach a
comparable performance for providing standard system services.
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In GMD’s project RelaX a distributed measurement system called
JEWEL (“Just a new evaluation too!”) has been designed and imple-
mented to evaluate the performance of distributed systems and applica-
tions and has been applied to these problems [Lan92a]. The fine
grained observation facilities of JEWEL allow for an exact breakdown
of the costs of the key mechanisms in microkernel operating systems.
The measurements not just result in mean-value calculations of execu-
tion times. Since every single event can be observed, the measure-
ments can provide minimum and maximum values, standard deviation
and even empirical distributions for interesting performance measures
reflecting detailed informations about caching effects, scheduling poli-
cies, or e.g. fairness related issues. This is in contrast to former
approaches that normally consist of repeating interesting sequences of
statements several thousand times, measuring the loop’s total execution
time, and computing the average execution time by dividing the mea-
sured execution time of the loop by the number of repetitions.

2. JEWEL - Overview

The overall goal of JEWEL is flexibility in order to avoid a limitation to
specific application domains or specific classes of experiments. JEWEL
has been designed to provide a flexible measurement system consisting
of a set of generic components that can be reused without modifications
and that have clear interfaces allowing for application-specific adapta-
tions and extensions, to instantiate a measurement system that is then
well-suited for the specific domain and the envisaged objectives. But
JEWEL is also flexible with respect to the interface to the experimenter,
which may be both, system developers or system managers. While the
former probably will be more interested in performing off-line analysis,
the latter often wishes to be able to do on-line monitoring. Graphical
visualization of the system activity is very useful to this end because it
eases the understanding and recognition of behavioural patterns.

The second important goal of the JEWEL measurement system is pre-
ciseness of the delivered quantitative results. For reasons of economy,
the experimenter is interested in using adequate tools, i.e. the simplest
or cheapest tools that ensure the accuracy of the measured values
within certain bounds. Preciseness of results is very much dependent
on the amount of interference between the measurement system and the
system under test, on accurate timing facilities, and on the method of
how data is extracted out of the system under test.

The low-interference property subsumes that the measurement process
itself should have negligible or at least predictable influence on the
measured quantities. The experimenter must have evidence that the
observed behaviour reflects the real behaviour in the same non-
instrumented system. The interference problem arises as soon as the
observed system and the observing measurement system share common
resources. The existence of a global timebase with sufficient resolu-
tion and accuracy is necessary to distinguish all relevant events, thus
being able to deduct the correct global ordering of events, and to mea-
sure even time intervals, which are delineated by events on different
nodes. Limitations concerning the quality of results also may be due to
the inadequate extraction of measurement data. As argued above, per-
formance measurement results are provided almost always as mean
values for the interesting quantities, thus loosing important information
and evidence of the measurements. The main reasons for this are that
statistical sampling techniques for extracting measurement data (e.g.
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the UNIX profil() system call) are applied instead of basing extraction
on the occurrence of the relevant events in the system under test. The
discussion above led to the identification of the following three tasks
that have to be fulfilled by JEWEL. First, the measurement system must
provide means to extract information from the system under test based
on relevant events, and, because of the huge amounts of raw data that
come to hand when monitoring computer systems, it must use data
reduction techniques to make that data eligible to human users. Sec-
ond, the collected and reduced data has to be presented to the user in a
way that allows him to pickup the relevant information easily. Graphi-
cal presentation is very helpful here. Finally, an experimenter is inter-
ested in controlling the entire measurement system interactively, e.g. to
change the focus of interest or the level of detail. While data collection
has to be performed in a distributed fashion due to the distributed
nature of the system under test, the experimenter is interested in
observing and controlling the system from a central point.

Besides the System under Test (SUT), the JEWEL distributed measure-
ment environment distinguishes the following three functional biocks:
the Data Collection and Reduction System (DCRS), the Graphical Pre-
sentation System (GPS), and the Experiment Control System (ECS).
Measurement data is extracted from the SUT, collected, filtered and
processed by the DCRS, and then passed to the GPS for visualization to
the experimenter. ECS supports an experimenter in managing his
experiments efficiently by offering flexible mechanisms for experiment
definition and maintenance and automated setup.

JEWEL supports the notions of performance index, aspect and level (of
detail) to the experimenter for logically structuring the system under
test from the measurement point of view. Performance indices are
quantities that characterize the performance of the system under test.
An aspect corresponds to a certain topic of interest inside the system
under test (an aspect of an operating system may be, e.g., page usage or
network communication) and is defined by a set of related performance
indices. For further structuring of this set of performance indices, in
order to limit the amount of information the experimenter has to per-
ceive, different levels of detail can be used. The highest level of detail
encompasses the entire set of performance indices for that aspect, each
lower level defines a subset of the performance indices of the next
higher level. During an experiment, the experimenter may select some
aspects as currently being relevant at a certain level of detail, and it is
the task of the measurement system to provide the results for the corre-
sponding performance indices and to visualize them. The experimenter
may specify a so-called report mode for each aspect which determines,
whether the measurement system will present the results as soon as
they are available, or whether it will buffer them. In the following sub-
sections the design and implementation of the JEWEL subsystems are
described to a certain level. More details are presented in [Lan92a].

2.1. Data Collection and Reduction System

Computing the performance indices is the general task of the DCRS
subsystem. In general, this is a multi-stage process involving different
kinds of DCRS components linked together to form a distributed mea-
surement data processing network: sensors recognizing relevant events
inside the system under test and extracting local measured quantities;
collectors receiving these from sensors, perhaps residing on different
machines, aud combining them to provide global measured quantities;
and evaluators computing performance indices based on both local and
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global measured quantities from sensors and collectors, respectively.
Additionally, a fourth type of component called mediators allows for
recording and replaying of measurement data into or from files. Medi-
ators may be inserted at any stage of performance index computation.
The information flow between DCRS components and the GPS is
achieved by exchanging typed messages called measurement data
records (MDRs) which have a generic structure suited for all measure-
ment purposes.

The low-interference property requires that as many of the DCRS tasks
as possible are done outside of the system under test. Therefore, the
JEWEL measurement system is generally provided with its own physi-
cal resources attached to the system under test for filtering, collecting
and evaluating of measurement data, and its own measurement LAN for
exchanging MDRs. On the other hand most of the important events are
only observable from inside the software with the knowledge of the
internal logic of the observed code, so nearly each experiment has to
have some influence on the measured quantities. JEWEL uses a hybrid
approach to overcome these problems. Sensors are divided into a
SUT-internal part and a SUT-external part which runs on resources ded-
icated solely to the measurement system. Event detection and mea-
sured value extraction are implemented by inserting so-called sensor
statements (the internal part of the sensor) at appropriate locations in
the code of the SUT. Sensor statements are really small pieces of code
that writes an event record into a shared data structure, called event
queue, where they are picked up by the SUT-external sensor part. If the
instant when an event occurs is of interest, it has to be passed as an
argument explicitly. After the event record has been placed in the
event queue, the measurement data processing takes place concurrently
to the operation of the SUT. This is done by the SUT-external part of
the sensor.

The choice where to put the sensors depends heavily upon the con-
straints imposed by the actual system to be observed. In cases where
the source code of the observed program is available, the most detailed
and precise results will be achieved by instrumenting the program
itself. Of course this requires knowledge of the logic of the observed
code. This knowledge is typically given if JEWEL is used by a devel-
oper during software engineering. In cases where this approach seems
to be too expensive or if only binaries are accessible there are three
other, more generic possibilities for sensor placement with a decreasing
level of observable details. If the code will be linked before execution,
sensors may be placed inside the libraries. If the code is statically
linked, it may be possible to modify the underlying operating system
(e.g., each communication request or even every system call may exe-
cute at least one sensor). The last and most coarse grained possibility
is to use separate observer processes, that report parts of the machine
state via sensor macros. All these placement strategies may be used
intermixed in a single JEWEL environment and they are independent of
the actual JEWEL-adaptation.

Another question is, how to insert the macros. Currently, in JEWEL
instrumentation of the SUT has to be done by hand. This requires
knowledge of the program and causes additional coding work. On the
other hand, such an instrumentation may be very problem-specific. A
few sensors reporting the state known only in the context of the execu-
tion are often enough to give a very detailed view of the programs
behaviour. Aliernatively sensor placement can be done automatically
by the compiler or a precompiler (e.g., before and after each subrou-
tine). This would cause no additional programming, but it leads to an
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unspecific instrumentation with a lot of useless, but time-consuming,
sensor code. Such an instrumentation may be sensible to get a first,
rough overview of what is going on, but it will reach its limits as soon
as one wants to go into details.

2.2. Graphical Presentation System

The graphical presentation system (GPS) is the front end to the experi-
menter with respect to measurement data processing. The performance
indices computed by the DCRS are usually sent to GPS for presentation
to the experimenter. GPS supports the visualization of numerical values
by providing a set of high-level graphical objects called charts. Based
on X11 and OSF/Motif a completely graphical user interface to GPS has
been designed and implemented. Each aspect corresponds to a so-
called view and is graphically represented by a view window. In the
same way that an aspect encompasses a number of performance
indices, a view window consists of a number of charts, each of these
displaying one or more performance indices of the corresponding
aspect. Different levels of detail for an aspect result in different num-
bers and/or types of charts within the corresponding view. For presen-
tation of performance indices GPS provides the following well-known
chart types: pie chart, bar chart, curve, time series diagram, kiviat-
graph, ganttdiagram and speedometer. The appearance of a view can
be manipulated interactively according to the preferences of the experi-
menter. This process is called customization modifications made by an
experimenter can be saved for reuse in following sessions. The GPS
also has an integrated archiving mechanism that allows for recording
and redisplaying of view snapshots.

2.3. Experiment Control System

2.4. Time Base

The experiment control system (ECS) of JEWEL provides means for the
experimenter to control the mode of operation of both the DCRS and
the GPS. Like GPS, it provides a user interface based on the standards
of X11 and OSF/Motif. According to the JEWEL architecture, ECS sup-
ports the notion of aspects and components. While aspects are abstrac-
tions used to logically structure the SUT from the measurement point of
view, components are instances which collect, process, and present
measurement data related to one or several aspects. ECS provides
another abstraction, called an experiment, to refer to a real or planned
configuration with respect to the entirety of defined aspects and compo-
nents. Accordingly, the operations which are supported by ECS can be
divided into three categories: operations on components, aspects, and
experiments. With respect to the scope of ECS operations, an aspect
can be viewed as affecting a set of components which support that
aspect, while an experiment in turn can be viewed as providing a set of
aspects. Thus, operations on experiments usually result in execution of
a set of operations on aspects which in turn result in a set of operations
on individual components.

As pointed out before, an accurate global time base with high resolu-
tion has to be available for performance measurements in distributed
systems. The solution to be applied depends on the granularity of the
time intervals to be measured. If the granularity is coarse, a system
clock providing a resolution of the order of 10 microseconds, combined
with a software clock synchronisation protocol, may be sufficient, gen-
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erally resulting in a total accuracy of the order of several tens of
microseconds. An example of such a time base is the Digital DECdts
time service (now part of OSF/DCE). A global time base with a resolu-
tion of the order of 10 microseconds requires, at least, measurement of
time intervals of the order of seconds in order to ensure a reasonably
low measurement error. However, for fine-grained measurements
interesting distributed actions occur (e.g. reliable multicasts) which
take even less than a single tick of such a clock. If one is interested in
measuring actions with much shorter execution times, a fine-grained
global time base becomes necessary.

For Jewel such a global time base has been designed and built in col-
laboration with GMD ASA project [Kle92a]. It consists of several
high-resolution local clocks which are synchronised with each other by
hardware. The first solution was based on clocks implemented as
VME-bus boards which optionally can be synchronised with each other.

3. Applications

In the following, we will concentrate on two applications of JEWEL.
Although main parts of JEWEL are generic and have been used in both
applications without any modifications, the examples differ with
respect to the implementation of the SUT-dependent part of the Data
Collection and Reduction System. While one implementation uses a
hybrid approach by deploying dedicated hardware to keep interference
low, the other has been explicitly aimed at developing a pure software
solution that does not require any special hardware. The first imple-
mentation of JEWEL was done in cooperation with the European Space
Research and Technology Center (ESTEC), Noordwijk (NL), of the
European Space Agency (ESA). This implementation is based on
VMEbus-based hardware. To prove the viability of this approach,
JEWEL was applied to assess the performance of the RPC mechanism
of the Amoeba Distributed Operating System. Subsequently, an adap-
tation of JEWEL to the Mach 3.0 microkernel was done in collaboration
with the Open Software Foundation (OSF) Research Institute at Greno-
ble (F). It was used to analyse the UNIX system call emulation of the
OSF/1 server on top of Mach 3.0.

Server Local Server Remote

Bytes 0 8192 30000 0 8192 30000
no. of RPCs | 99761 100000 100000 | 100000 10000 10000

min 0.631 2.182 6.013 1.109 12.854 43.670
mean 0.661 2.217 6.046 1.126 12.891 43.775
max 2.662 3.645 7.472 102.610 114.215 144994
std.-dev. 0.028 0.033 0.042 0.717 1.014 2.269

In Comparison to the Results of [Ren89a]:

0.8 25 7.1 14 13.1 44.0

Table 1: Amoeba RPC Performance measured with JEWEL [microseconds]
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3.1. Amoeba RPC

The overall goal of the joint project DOSVAL (Distributed Operating
Systems Validation Method) has been to provide methods and tools
allowing ESA to identify distributed operating systems that are suited to
be used in on-board data management system environments and to pro-
ceed with the actual validation of such identified candidates. The
Amoeba Distributed Operating System [Ren89a] has been selected as
the system under test.

The DOSVAL implementation of JEWEL makes extensive use of dedi-
cated hardware resources in order to keep interference between the sys-
tem under test and the measurement system low. The SUT consists of
two (or more) VME crates running Amoeba 4.0 and a SUN 3/60 work-
station acting as Amoeba file server, i.e. soap and bullet server. The
VME crates contain pool processors according to the Amoeba terminol-
ogy which are MC68030 based CPU boards. Pool processors and file
server are connected by a dedicated 10 MBit/s Ethernet.! To each VME
crate another MC68030 based processor board has been attached that
belongs to the measurement system. The VxWorks real-time kernel is
running on these boards. All VxWorks boards have been connected by
a second Ethernet as measurement LAN with other workstations
(SUN 4, DECstation) which host ECS and GPS. In order to solve the
problem of global time the DOSVAL implementation of JEWEL uses
several high-resolution clocks (640 ~ 5120 ns) which are synchronized
with each other. SUT and measurement system communicate with each
other via event queues that are located in physical shared memory on
the measurement boards, and are accessible from the Amoeba boards
via the VME-bus. Thus, interference between SUT and the measure-
ment system is restricted to the overhead induced by executing the sen-
sor statements. The execution time of a sensor statement can be deter-
mined exactly and depends on the number of measured values to be
passed to the measurement system. The execution time is given by the
following equation:

execution time = 17.4+1.1*number of arguments [microseconds]

The constant part of the execution time is due to reading the clock, syn-
chronising access to shared data structures, and writing an event record
into this data structure. Any further processing of the measurement
data is performed outside the SUT.

This configuration was used to assess the performance of the Amoeba
RPC in detail. The primary goal of this performance evaluation was to
demonstrate the feasibility of the JEWEL approach, secondary goal was
to extend the knowledge about the Amoeba RPC mechanism itself.

Comparison of our results with those published by other researchers
[Are8%a, Lan90a, Ren89a] yielded close conformity and thus gave evi-
dence for the feasibility of our approach to performance evaluation.
For this validation of our JEWEL measurement environment we
observed, e.g, the performance of a local and a remote Amoeba-RPC on
our hardware platform. We have chosen the same RPC-sizes of 0, 8192
and 30000 bytes as van Renesse et al. in [Ren89a). The results are
shown in Table 1. Our figures are slightly better than those reported by
van Renesse. This has to be explained by the different hardware (25
vs. 16 MHz M68020). But the comparison of the mean values is only
one aspect our measurement. As JEWEL is able to observe the whole

t Because it is currently not possible to download the Amoeba kernel from the file server to the pool processors, another Sun 3/60
running a version of 5unOS 4.1 which has been extended by the Amoeba communication protocols is used to this end.
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population, and not only the mean values much more information is
available. The small standard deviations, e.g., show, that nearly all
RPCs execution times are closely distributed around the mean value.
This might be expected in the local case but it is a notable feature in the
distributed case where protocol processing has to be done. A packet
loss seems to be seldom but when it happens the retransmission occurs
after a timeout of 100 microseconds, as one can obtain from the maxi-
mum values in the remote case.

The second goal was also achieved, because some interesting results
became apparent, which - to our knowledge — have not been reported
before. Among others, we got results that indicate that the RPC mecha-
nism of Amoeba is unfair with respect to clients that run together with
the server on the same node. Table 2 presents these results that were
obtained with a configuration of 1 server containing eight server-
threads and eight clients either local or remote to the server. The cho-
sen message sizes were a 0 byte call and an 8 Kbyte reply, which mod-
els the typical pattern for file server access. All clients tried to get as
much RPCs done as possible. The striking fact is that in the local case
all the time only one out of eight clients (the one we started last) was
scheduled and was able to make RPC requests to the server (99.9 % of
all RPCs made). The other seven clients could not sent more than one
single RPC per second, while client number 8 reaches a mean value of
428.13 RPCs/second, which is not much worse that the results in a
configuration with only one client (442.15 RPCs/second). We suspect a
bug in hand-off scheduling between caller and callee that leads to this
behaviour, but this has to be verified.

A more detailed description of our experiments and results can be
found in [Kro92a). As a global summary of the whole study we can
state that the Amoeba RPC works as fast and stable as promised, that
this very good performance scales well to very high workloads.

3.2. OSF/1 on Top of Mach 3.0

In collaboration with the OSF Research Institute, the JEWEL measure-
ment system has been adapted to serve as a development tool for the
OSF/1 operating system server on top of the MACH 3.0 microkernel in a
multiprocessor environment. The primary goal of this activity is to
assess the implications of a microkernel-based operating system archi-
tecture. The UNIX system call emulation done by the OSF/1 server was

Client 1 2 3 4 5 6 7 8 Totally

Local Server

min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 413.00 | 413.00
mean 0.08 0.08 0.08 0.08 0.08 0.08 0.08 428.13 | 428.69
max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 432.00 | 432.00

std.-dev. 0.27 0.28 0.27 0.27 0.27 0.28 0.27 2.25 212

Remote Server

min 1.00 0.00 0.00 0.00 2.00 0.00 1.00 0.00 68.00
mean 1521 1586 1519 1563 15.77 1556 1559 15.61 | 124.42
max 21.00 21.00 21.00 21.00 2200 2300 21.00 21.00 | 127.00

std.-dev. 4.48 3.96 4.15 3.98 3.89 3.98 3.96 4.05 413

Table 2: RPC frequency from 8 clients to 8 servers {RPCs/sec]
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the first aspect to be analysed. Further experiments focussed on the
identification and evaluation of multiprocessor effects.

The current hardware platform is a Zenith Z1000 multiprocessor with
four Intel386 CPUs (one 20 MHz, three 16 MHz) connected via a
high-speed C(ache)-bus (64 MB/s) with 16 MB main memory and 64
KB write-back cache per CPU. Special emphasis has been put on the
exhibition of multiprocessor effects on the system behaviour, which
requires a fine granularity of the measurement time base. To achieve
high portability this adaptation of the JEWEL system has been imple-
mented purely in software, but we are dedicating two processors to the
measurement system. One processor implements a counting clock with
a resolution of 2 microseconds, while the second processor runs the
so-called measurement server. The latter implements most parts of the
data collection and reduction system and has been implemented as a
user-level server on top of the Mach 3.0 kernel and has the regular net-
work interface for transferring the measurement data out of the SUT.
This sharing of resources between the measurement system and the
observed system causes interference that has to be quantified to vali-
date the relevance of the measured results. Several experiments with
different event rates and hardware configurations have been carried out
to give bounds for this interference. The instrumented OSF/1 server
suffers a performance degradation of at most 5 percent compared to the
non-instrumented version. Thus, the behaviour of the observed 4-
processor-machine is comparable to the behaviour of the same unob-
served machine configured with only two CPUs. The generalisation
that an observed N-processor system is comparable in performance to
an unobserved (N-2)-processor system has to be examined when per-
forming similar experiments on a Sequent multiprocessor system with
16 CPUs in the near future. The overhead on the threads of the SUT
caused by instrumentation with sensor statements depends on the rele-
vance of events. For an event that is relevant at the instant of its detec-
tion, the sensor execution time has been measured to be

execution time = 12.0+ 2.0*number of arguments [microseconds]

The sensor statement of an irrelevant event is processed within 3.2
microseconds.

The OSF/1 operating system server has been selected as the first “vic-
tim” of the Mach adaptation of JEWEL, because of the outstanding
importance of the operating system performance having impact on any
running application on top. The microkernel-based version of the
OSF/1 operating system, called OSF/1 MK, has been developed at the
OSF RI, Grenoble [Bar92a). Most of the original code was reused and
combined with the emulation technique of the BSD-server [Gol90a]
from CMU. This lead to a so-called Single Server approach, where the
implementation of the OSF/1-functionality has moved from the kernel-
level to one multi-threaded user-level server. The next step of this
development could be a decomposition of the Single Server into a num-
ber of cooperating servers.

In order to preserve binary compatibility with the monolithic kernel, a
user process on top of OSF/1 has not to be aware of this different oper-
ating system implementation. It simply executes the usual trap instruc-
tion if it needs an operating system service. Involving the server task is
done by the trap-redirection mechanism of the Mach 3.0 kernel in con-
junction with the so-called transparent emulator library [Gol90a] of
OSF/1 MK. An instance of this library is mapped into each user task.
Some cachin_ of information about the emulated process may be done
here. A trap to OSF/1 is caught by the Mach kernel and converted into
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an up-call to the library of the calling task. The library analyses the
system call and, if the necessary information is cached, directly serves
the system call without further communication. If this is not possible,
the library calls an RPC stub and passes control to the OSF/1 MK server
task. In the operating system server a thread receives this request, gets
associated with the calling process, and acts in the server task similar to
an OSF/1 user process entering the equivalent monolithic kernel. After
finishing the service, the RPC returns, and the emulator library transfers
control directly back to the calling task.

The objective of the analysis of the system call emulation aspect was to
compare the costs of the microkernel related actions (i.e. trap redirec-
tion, emulator library execution, and message-based inter-process com-
munication (IPC)) to the amount of time consumed by the servers real
work. This amount represents a measure for the overhead introduced
by the microkernel approach. The described experiments were made
with the OSF/1 Single Server V3.5, the latest available version in March
1992, on top of the Mach 3.0 kernel MK67. Hardware platform for
these measurements was the Zenith Z1000 multi-processor described
above. The WPI scomp and sdump benchmark programs [Fin90a] have
been chosen to produce the workload for the experiments. These
benchmarks produce a synthetic load that is considered to characterize
the UNIX cc and dump programs. For the desired experiments only a
few additional lines of code had to be inserted into the code of the
OSF/1 Single Server and its emulator library. The first pair of state-
ments located inside the emulator library, marks begin and end of any
RPC to the server, and the second pair, inside the servers main loop,
signals the receive- and reply-operation caused by such an RPC. This
instrumentation results in very fine-grained measurements, as each sys-
tem call execution occurring during the execution of a (non-modified)
benchmark program, can be observed exactly.

The set of UNIX system calls can be divided into three classes: calls
handled completely inside the emulation library (like getpid), those
which are served by a short operation of the server (like Iseek), and
those that impose real hard load on the server (e.g., read). Table 3
summarises the results of these three examples as representatives of the
three classes. The overall execution time of these calls is compared to
the execution time needed by the server (given in brackets). The
resulting differences give a measure for the overhead of the RPC.

In some cases the communication time between the emulator library
and the server takes up to 7 times as long as the processing inside the
server. This is true for simple calls like Iseek, but even for the complex
read call communication takes about 37 percent of the total system call
service time. Of course, system calls handled completely in the emula-
tion library were executed fastest. The percentage of such system calls
heavily depends upon the application: in scomp the percentage is 54 %,
in sdump only 1.4 %.

Action Mean Std. Deviation Minimum Occurrences

getpid | 110 (O 35 O 68 225
Iseek | 3878  (536) | 9848 (9275) | 1306 (238) 114
read | 5566 (3465) | 7474 (7133) | 1640 (432) 393

Table 3: Execution times for selected system calls [microseconds] (based on WPI scomp benchmark)
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Execution Time Total System Call | Server Action
microseconds % %

0 99 0.00 0.00
100 199 0.00 0.00
200 299 0.00 19.59
300 399 0.00 49.48
400 499 0.00 16.49
500 599 0.00 3.09
600 699 0.00 2.06
700 799 0.00 2.06
800 899 0.00 0.00
900 999 0.00 1.03

1000 1099 0.00 0.00
1100 1199 0.00 0.00
1200 1299 0.00 0.00
1300 1399 4.39 0.00
1400 1499 7.89 0.00
1500 1599 4.39 0.00
1600 1699 1.75 0.00
1700 1799 12.28 0.00
1800 1899 18.42 0.00
1900 1999 20.18 0.00
2000 2099 10.53 0.00
2100 2199 5.26 0.00
2200 2299 3.51 0.00
2300 2399 2.63 0.00
2400 2499 0.88 0.00
2500 2599 0.00 0.00
2600 2699 0.00 0.00
2700 2799 0.88 0.00
2800+ 7.02 6.19

Table 4: Relative frequencies of the Iseek execution times (based on WPI scomp benchmark)

In contrast to many other tools JEWEL is able to provide even more
detailed results. For example, in addition to the mean values the rela-
tive frequencies (empirical densities) of the execution time of a specific
system call and the induced server action times can be reported, as
shown in Table 4 for Iseek in addition to numbers provided above.
This table explains the large standard deviation measured for this call.
The plot shows that almost all executions take less than 2500 microsec-
onds. Only a few percent have a duration (very much) longer than
2800 microseconds resulting in a mean value of 3878 microseconds.
This effect is related to some phenomenon outside the scope of the
original measurement model. It may be due to a thread being pre-
empted or blocked inside the server (currently being verified). Thus,
the corresponding individuals should be discarded which is impossible
without knowledge of the full population. Recomputing the mean
value for the Iseek system call results in 1861 microseconds with a
standard deviation of 259 microseconds. By this example it has been
demonstrated how helpful the very fine-grained measurement facilities
of JEWEL are for interpreting the measurements and for getting insight
into the system behaviour.

As the overall result of our measurements carried out so far concerning
the discussion on microkernel-based operating system architectures it
has to be stated that the induced message communication seems to be
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still the bottleneck for achieving comparable performance to the tradi-
tional monolithic operating system structure. This might not be so cru-
cial in a single server, where at most one RPC is needed per system call
and where caching in the emulator library avoids a lot of work. But in
a decomposed multi-server system with a lot of tasks working together
to provide the service this will be even more important to realize.

4. Summary

The JEWEL performance evaluation tool has been presented. The main
goals of JEWEL are flexibility and preciseness. These objectives have
been achieved by implementing a set of cooperating, adaptable soft-
ware tools that are able to take adventage of additional hardware
resources wherever possible and affordable. JEWEL allows for fine-
grained event-based measurements in distributed systems. By its abil-
ity to observe the full set of individual events JEWEL can provide
results which are hard to obtain with conventional tools. The flexibility
and reusability of JEWEL has been demonstrated by describing its
adaptation to two different environments, namely DOSVAL and Mach.

JEWEL has been used and tested at GMD for more than a year and it is
now available for other interested researchers as well. The DCRS com-
ponent of the Mach 3.0 adaptation has been given in the public domain.
We hope it will be useful for further microkernel development.
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Abstract

An important resource in distributed systems is CPU-time, for the man-
agement of which clear objectives and good metrics are needed. For a
compute-intensive workload, response time is not adequate as an objec-
tive or a metric. For such workloads, delivery of pre-defined shares of
the total compute power to groups of related jobs is a much more natu-
ral objective. In order to measure CPU-usage and judge compliance of
scheduling policies with this objective, we propose the concept of rate
of delivery. We give definitions and properties of rate of delivery,
show measurements, indicate problems with evaluating policies trying
to achieve target rates of delivery (called share scheduling policies),
and propose heuristics for such policies.

1. Introduction

A potential advantage of distributed computing systems in comparison
to central systems is an increase in flexibility in the availability of
resources. For instance, increasing the processing power of a main-
frame involves upgrading the CPU or adding a CPU in a multiprocessor
system, both of which methods are soon exhausted. Adding a machine
to a distributed system is easy, at least from a hardware point of view.
However, resource management in distributed systems is more com-
plex than in central systems for a variety of reasons, amongst which
lack of adequate software support (e.g., job migration is still not very
common), lack of complete information on resource usage when taking
allocation decisions at a particular node, and the impossibility to allo-
cate more than a relatively small fraction of a resource to one entity
(such as one CPU to a job).

An important resource in a distributed system is CPU-time, for the man-
agement of which clear objectives are needed. Additionally, meaning-
ful ways to measure CPU-usage and time spent waiting for the CPUs,
and good metrics to evaluate whether the objectives are met, are neces-
sary. Traditionally, response time has played a dominant role as a per-
formance metric, both for total system performance and for the CPU
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separately. In this paper we will discuss distributed systems with a
compute-bound workload, in which the delivery of pre-defined shares
of the total system capacity to groups of jobs (such as those belonging
to one user, or to all users of a department) seems a natural objective.
For policies trying to achieve this objective, response time is an inade-
quate metric. Therefore, we propose another measure of CPU-usage
and discuss possible ways to evaluate to what extent a distributed
scheduling policy achieves this objective. In order to do so, we define
rate of delivery (index), which can also be used to state this objective in
the first place. The rate of delivery (ROD) is the number of cycles per
second delivered (to a job or user), and the rate of delivery index
(RODI) indicates the equivalent number of machines (across a dis-
tributed system) a job or a user receives over some period of time.
This concept is sometimes also called service rate.

The notion of allocating equal or pre-determined shares of the available
computing power has only been studied before in the context of unipro-
cessors, where it passes under the name of fair-share schedulers
[Ess90a, Hen84a, Kay88a). A better name would be simply share
schedulers. We feel that in a distributed system RODI is a better con-
cept than share, because first a share is only meaningful when the total
system capacity is known, and second the capacity it stands for may
change over time because machines may be added or go down.

We further describe measurements for rates of delivery, problems with
evaluating policies trying to achieve target rates of delivery, and policy
heuristics to achieve them. The emphasis in this paper is on the
definition of the concepts and the demonstration of their usefulness,
rather than on analysis and evaluation of specific policies, which is
planned for the future.

The work reported on in this paper was performed at the IBM T.J. Wat-
son Research Center in Yorktown Heights, NY, USA, in the context of
a project aimed at using a cluster of IBM RS/6000 RISC-machines as a
high-performance compute service for compute-intensive work. An
important issue there is to provide the users with service that is sub-
stantially better than they can possibly obtain on their own machines,
and so a motivation of the definition of RODI is that the measurements
should clearly show to a user the benefit of using a cluster of machines
instead of only his own. Additionally, because not all users will need
their complete share at all times, there is the possibility of receiving
many more cycles during some periods.

This paper is organized as follows. In Section 2 we discuss some
issues in CPU-time management in distributed systems with a
compute-intensive workload, related work, and the present environ-
ment. In Section 3, the definitions of ROD(I) are presented, along with
some examples and relations between RODIs of jobs and users. Sec-
tion 4 contains measurements, both general CPU-usage measurements
to describe the workload on the cluster, and RODI-measurements of
individual jobs and users. In Section 5 we show that a policy stated in
terms of rates of delivery to be achieved may fall short without this
being its own fault, and we discuss possible metrics to judge a policy.
In Section 6 we discuss policies stated in.terms of initial placement of
jobs, local scheduling, and job migration in order to attain specific
RODIs. The material in Sections 5 and 6 is preliminary and needs
more research. In particular, we do not evaluate policies, but only
motivate possible heuristics.

234
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Ideally, a measure of CPU-usage should offer

1. A means for stating objectives for CPU-usage;
A means for stating an allocation policy of CPU-time;
A meaningful summary of CPU-usage by user and time;
A means for evaluating a share scheduling policy;

A means for finding the reasons why the policy goals were not
met.

Section 7 contains an evaluation of ROD(J) with respect to these
points.

2. Managing CPU-Time in Distributed Systems

2.1. Objectives, Policies, and Mechanisms

2.2. Related Work

We envision that in many organizations where compute-intensive work
is done such as physics and engineering research institutes and indus-
trial design departments, large clusters of systems (compute servers in
a processor pool) will be maintained centrally, or at least on behalf of a
group of users, with departments (users) having the option of request-
ing a fixed share (or a fixed amount) of the total compute power.
Whatever computers the departments themselves own, in such an envi-
ronment there will always be the need to obtain more cycles than
locally available on the user’s workstation, especially when the work-
load varies over time. The objective for processor-management is then
to allocate a fixed share of the available compute power to certain
groups of jobs, and a policy, stated in terms of initial placement of sub-
mitted jobs, local scheduling on the individual processors, and migrat-
ing jobs between compute servers, is successful when the achieved and
target shares do not differ by too much. Of these mechanisms, the lat-
ter is still not very common. For a compute-intensive workload it may
be implemented with current operating systems by means of check-

pointing.

In some central systems, attempts have been made to introduce what
we may term share scheduling, that is, scheduling with as aim the
delivery of specific shares to users. Henry [Hen84a] describes a very
simple approach for achieving share scheduling on computers running
the UNIX operating system. Kay and Lauder [Kay88a] on the other
hand, describe a rather complex share scheduling policy for UNIX,
based on the standard mechanisms, in terms of a large set of parame-
ters. Essick [Ess90a] describes extensions to the UNIX scheduler in
order to support fair share scheduling for large numbers of processes.
Among the modifications is the recomputation of priorities when an
event occurs instead of periodically, in order to decrease overhead in
the scheduler. Hellerstein [Hel92a] analyzes the UNIX System V
scheduler in a very elegant way, and describes the influence of the set-
tings of the nice-values of compute-intensive jobs on their shares of the
CPU (in the context of UNIX, “job” is synonymous to “process” in this
paper). It turns out that the achievable shares depend on the numbers
of jobs for the different nice-values. An important conclusion is that
with the range of nice-values in current implementations of UNIX, the
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possible range of ratios of shares is limited. For instance, if there are
only two processes, the maximum ratio of shares attainable is 2/3.

Also in IBM’s Virtual Machine (VM) operating system, attempts at a
mechanism to deliver shares to compute-intensive workloads have been
made. In VM/XA, the set share command, which takes a numeric
parameter, indicates the relative share of the CPU obtained by a virtual
machine (vm). If this parameter equals 100, the vm gets the default
share (which depends on the number of vms doing compute-intensive
work). Higher values cause the vm to get a larger share and vice versa.
Vms executing batch work can be given a lower share (say 60). It
turns out [Pop91a}, that the share does not behave in a linear way, but
that it can effectively be used to allocate different shares to different
(classes of) vms within a reasonable range.

2.3. The Present Environment

The specific environment discussed in this paper is an institution in
which users have their own workstations, and are connected by a 10
Mbit Local Area Network to a cluster of similar machines (IBM System
RS/6000 machines, which are RISC-machines), amongst which compute
and file servers. This cluster is homogeneous in that all machines run
the same operating system (AIX 3.1 of IBM, a version of UNIX), and
any compute server is capable of running any job submitted to the clus-
ter. The speeds of the CPUs of the compute servers may be different; in
this paper, the capacity of a CPU is supposed to be proportional to its
clock speed (which is a good indicator of performance for a compute-
bound workload on RISC-machines). Each of the machines has local
disk space for only paging, swapping, and temporary files. For access
to the ordinary file system, they depend on the file servers. This cluster
is mostly used for scientific computing, with a workload consisting of
simulations and numerically intensive jobs that may take from a few
hours to thousands of hours of CPU-time. The number of compute-
intensive jobs per CPU is in the range 0-5 and the number of CPUs is 20
(this number varied over the time when the measurements of Section 4
were taken).

Currently, initial job placement and local scheduling are used to
achieve users’ shares. Initial placement can either be done by the user,
who can login and submit jobs to any machine in the cluster, or through
the master-machine. The master picks a compute server based on the
S-minute load averages on all machines. For local scheduling, the
UNIX nice-value mechanism is used [Hel92a). The share of each user
is equal to a default, unless he has an entry in a system file with the
definition of the shares. This file does not enter in the initial placement
decisions, but only in local scheduling decisions. The Watson Share
Scheduler [Mor91a] periodically checks the currently achieved shares
of users, and if necessary adapts nice-values. Job migration is not
used. It is not part of this UNIX-version, and for processes with address
spaces in the range of 1 GB, which is not uncommon on this cluster, it
is very expensive and so would have to be done carefully. It may be
implemented in the future by means of checkpointing.

3. Rate of Delivery: Definitions and Properties

In order to compare the service delivered to a user over some period of
time to what he could have obtained on a single workstation, we intro-
duce the notions of rate of delivery (ROD) and rate of delivery index
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(RODI). Both are designed to capture the amount of service delivered
to a job, user or group of users on a cluster of machines, the first in
absolute terms, the second relative to some standard machine (e.g., the
current top of the line model).

In the following we use a single instruction and a single cycle (inter-
changeably) as a measure of work performed. In the realm of RISC-
machines, this is reasonable; for CISC-machines, the definitions would
have to be adapted. We suppose some standard machine X, which exe-
cutes at a speed of Cy instructions (or cycles) per second (and by
definition will have a RODI of 1).

Below, we start with the definition of ROD(I) to a single job because
of the process-oriented nature of UNIX. We assume that a job stays on
the same machine during its entire lifetime, although the definitions
could easily be phrased so as to include the possibility of job migration.
In fact, the definitions below are valid as long as a job cannot have
threads executing concurrently on different machines. Then we define
ROD(I) to a user on a single machine and on a cluster of machines,
and the ROD(J) of a machine. Some examples are included to illus-
trate these definitions and some relationships among RODIs are
derived.

3.1. Rate of Delivery to a Job

Let s,e be the time of submittal and end time of a job J, and let C, (t)
be the number of cycles received by job J up to time t. The rate of
delivery 1o job J between t and 1, is

Cy(12) - Cy(1y)

ROD(J, l],tz) - -0

The rate of delivery index to job J between ¢, and 1, is

Cy(t2) - Cy(1y)

RODIU, 11, 12) = =~ =

= ROD(J, 1, 13) / Cx -

In the context of a single process, it obviously only makes sense to talk
about its ROD(I) for intervals starting after s and ending before e.
However, the definition is more general so that it can enter in computa-
tions of ROD(I) to a user. In particular, if 1, ss or ¢; 2 ¢
ROD(J, t;,t;) = RODI(J, t;, ;) = 0.

For a job J, ROD(J, s, e) is the average number of cycles it gets per
second, and RODI(J, s, e) is the inverse of its expansion factor, were
it running on a machine of type X. The expansion factor of a job is
usually defined as the quotient of residence time and actual processing
time, giving a measure of contention in the system. Obviously, for
long-running jobs, the ROD computed over relatively short intervals
(e.g., minutes) can vary considerably over time.

3.2. Rate of Delivery to a User

Let C ) (1) be the number of cycles received by all jobs of user U on
machine M together up to time ¢. The rate of delivery to user U on
machine M between t, and ¢, is

Cum(t2) - Cum(ty)
I, - I '

ROD(U, M, t,, t;) =

Technical - OpenForum “92 - Utrechs, 23-27 November




Processor-Management in Distributed Systems with a Compute-intensive Workload

The rate of delivery index to user U on machine M between t, and 1, is

Cum(t2) = Cym(ty)
Cx x(t; - ty)

RODI(U, M, t,, t;) =

= ROD(U, M, t;, t;) / Cyx .

Similarly as for jobs, this definition only has a real meaning during
periods that a user has at least one job on M. A maximal period with
this property is called a busy period for user U on machine M. In this
case, the definition is more general in order to deal with a cluster.

Let C,(t) be the number of cycles received by all jobs of user U across
the whole cluster up to time t. The rate of delivery to user U between
t;andt; is

Cy(ty) - Cy(t
ROD(U, 1, ty) = u(tz) v(ty) _
I -0
The rate of delivery index to user U between t, and ¢ is

Cy(t2) - Cy(ty)
Cx x (12 - 11)

RODI(U, t, t;) =

= ROD(U, t,, ) /Cyx .

This definition is only meaningful during a period when a user has at
least one job in the whole cluster. Again, such a period will be called a
busy period.

Above we have only taken together jobs of one user in order to define
ROD(I). 1t is clear that the definitions can be extended to define
ROD(I) to groups of users, by taking together all their jobs.

3.3. Rate of Delivery of a Machine

3.4. Examples

The rate of delivery ROD(M) of a machine M is the number C,, of
cycles it executes per second. The rate of delivery index RODI(M) of
Mis CM / Cx.

1. A user has two jobs J,, J, on machine M with submit and end
timess; ande;, i = 1, 2, withs, s s, s e; s e;. There are no other
jobs on the machine from s, until e, andJ, and J, share the processor
equally from s, to e;. From the definitions follows easily:

RODI(U, ty, t3) - Cy/Cyx, for sist;st; se;

(s2-5s1)+(e1-52)/2 Cy 1 Cpy

RODI(J, s, €,) = N
ODIC 1, 510 1) e -5, Cx22 Cy
(ey-s2)/2+(e2-€¢;) Cy 1 Cy

RODI(J,, 55, €3) = N
J2, 52, €2) pa— C, 2 5 c,

RODI(Jl, Sa, el) = RODI(Jz, 52, el) - CM/(2CX) .

2. More generally, suppose a user U has jobs J;, with submit and end
times s; and e;, on machine M of type X, i = 1 ,..., I, which
together constitute a busy period. There are no other jobs. Let
s = min{s;},, and let e = max{e;};. Let mpi(t) be the multipro-
gramming level at ¢, and suppose that during periods when there are m
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jobs, they share the processor equally, that is, each job proceeds at rate
1/ m. Then RODI(U, s, e) = 1, and

RODIU,, s,y €)) = ——— [
i~ Sy,

1 dr .
mpl(1)

3.5. Relationships of Rates of Delivery

1. Suppose RODI(U, M, 1y, 1;) = rp, for p = 1,..., P. Then
RODI(U, 1y, 1;) = ¥ r,. This simply says that the RODIs add up

P
for one user across the whole cluster.

2. If user U has jobs J;, fori = 1 ,..., I, on machine M, which are
all submitted before ¢, and end after ¢,, then

1
RODI(U, M, t,,1;) = 3 RODI(J;, M, 1, 13) ,

i=1

that is, the RODI to a user over such a period is equal to the sum of the
RODIs to his jobs.

3. LetU, ,..., Uk be all users who have a busy period that overlaps
with the interval starting at s and ending at e, and let the cluster exist of
machinesM,,p =1,..., P. Then

K P P
S RODI(Uy,s,e)s 3 Cy, /Cx = 3 RODI(M,)
k=1 p=1 p=1

This says that the sum of the RODIs to users is limited to the total pro-
cessing power of the cluster.

4. One may ask the following question. A job J has submit and end
time s, e, and for some ¢, 1, withs < 1; s t; < e, the (time-)average
number of jobs during the interval {7, ;] is m (including J; there is
only a single machine of type X, and we leave out all reference to it).
Jobs always share the processor equally. Then how does
RODI(J, t,, t;)relateto 1 / m? We show here that

RODI(J, ty, 1) 21/ m,
with equality iff the number of jobs during [#;, £;] is constant (equal
to m).

To see this, suppose that the total time during [t;, 7] that there are m;
jobs on the machine isu; > 0,i = 1,..., I with 3 u; = 1, = 1,,

. 1
and 0 <m; <my < --- <my. If m =m;, (and I = 1), the
assertion is clear. If m; = m; + 1(and] = 2), then
uy/my +uy/(m +1)

RODI(J, tl’ 12) - u, + u, ’

and the average number of jobs is

miu; + (ml + 1) Uus
m = .
u; + u;

Now RODI(J, t,, t2) = 1 / mis equivalent to

uy /my +us/(mp +1) U, + us
z

u; + U miu; + (my + Duy
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Multiplying either side by u, + u, and myu; + (m; + 1)u,, and a
simple algebraic manipulation shows that this holds iff

m; + 1 m, 2m} + 2my + 1

5 22,
my m; + 1 mi + m,

which is of course satisfied.

If m; 2 m; + 2, we consider the modified situation in which during
(part of) u; there is one job less (m; - 1), and during (part of) u; there
is one job more (m, + 1), in such a way that the average number of
jobs during the whole interval remains the same. We also show that
RODI(J, t,, t;) decreases, and as we can repeat this modification
until either m; = myorm; = m; — 1, we are done.

We assume that u; < u,, the proof for the reverse or equality being
similar. In the old situation,

1
> uilm;
]

RODI(J, 1}, 1) =

> u
iwl
and in the modified situation,

I-1
/[ (my+ 1)+ (uy—up)/my+ ¥ (u;/mi) +u;/(my-1)
i=2

RODI(J, ty, ;) =

> ’
mi(m; + 1) mi(m; - 1)

which holds because m; 2 m; + 2.

4. CPU Usage and Rate of Delivery Measurements

In this section measurements of CPU-usage and ROD([) are presented.

4.1. General CPU Measurements

In order to give a general idea of what the workload looks like in our
environment, we present some data on general CPU-usage in Figures 1
and 2. In Figure 1, the cumulative distribution function of the CPU-
time of jobs is depicted. It is based on the data of 5331 jobs. It seems
to be a bimodal distribution with a dip in the corresponding density at
1000s. Around 23 % of all jobs need at least 1000s of CPU-time. This
should be contrasted to the measurements on UNIX systems under a
general workload [Lel86a], where an extremely small fraction of the
jobs uses a very large portion of the CPU-time.

In Figure 2, jobs are divided in three classes, small (less than 100s of
CPU-time), medium (between 100 and 10005), and large (over 10005).
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Figure 2: Total CPU-time consumed per class (August-September 1991)
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Figure 3: Total number and 90th percentile of numbers of large jobs (August-September 1991)

The height of the bars (indicated on top of each) is the total number of
hours of CPU-time consumed by the class; the numbers in the parenthe-
ses below the horizontal axis indicate the numbers of jobs in each class.

Contrary to what one would expect in an “ordinary” environment, the
number of large jobs is much larger than the number of medium jobs,
showing the CPU-intensive nature of the workload.

Figure 3 gives an indication of the balance of the workload on the clus-
ter (at a moment when there were still only 13 compute servers). The
higher of the two graphs shows the total number of large jobs in the
cluster, the lower the 90th percentile of the numbers of jobs on all com-
pute servers. The unit of the horizontal axis is day of the year. Obvi-
ously, the load is well balanced when the 90th percentile is close to the
average (the total number of large jobs divided by 13).

4.2. Data for Rates of Delivery

We use two sources of data for determining achieved RODIs, viz. job
accounting data and sampling data. Job accounting data only includes
for every finished job the total amount of CPU-time, its start date and
time, its end date and time, and the identifier of the machine on which
the job ran. What is missing in particular, is in what way a job
obtained its CPU-time over its lifetime, and data of still running jobs.
To obtain a very crude approximation to the real, achieved RODIs dur-
ing an interval, we simply assume that jobs have a constant RODI over
their lifetime, and disregard all jobs still running at the end of the inter-
val.
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Figure 4: Rate of delivery index for a user

Another source of RODI-data is a sampler, which collects data of all
running jobs on all machines at regular intervals, and at roughly the
same time. For every user and machine, we compute the total amount
of CPU-time consumed by all jobs contained in the sample since they
started. The amount of CPU-time delivered to a user in a sample inter-
val is computed as the difference of these amounts in consecutive sam-
ples. There are some potential errors in this computation. First, if a job
exits between two samples, the result may be too low, and even nega-
tive. In the latter case, we artificially set the CPU-time consumed to 0.
Second, jobs may go unnoticed if they start and finish between two
consecutive samples. As we are dealing with compute-bound work, the
interval over which the achieved RODIs are computed may be of con-
siderable length; we use 15 minute intervals. From the sample we also
compute the multiprogramming level (mpl) of a user on every machine,
which is defined as the number of jobs in the sample that have received
at least 5 minutes of CPU-time since they started. Note that even if a
job has received less than these 5 minutes, its CPU-time is included in
the computation above. To obtain the total mpl of a user, his mpls on
the individual machines are simply added. His RODI for an interval is
computed by dividing the amounts of CPU-time received by the interval
length, multiplying each amount by the RODI of the machine, and
adding across the whole cluster.

Although the measurements obtained from the accounting data are very
crude, they turn out to match very well with sampling data. The mea-
surements are used for diagnostic purposes, and to show to users what
share they receive.
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Figure 5: Multiprogramming level and rate of delivery index of six users

4.3. Rate of Delivery Measurements for Users

Figure 4 shows the RODI for a specific user during an eleven day
period, obtained from job accounting data. It clearly shows that during
some periods the user obtained an equivalent of 2-5 machines. In Fig-
ure 5 we show the RODI and multiprogramming level of some users,
based on the sampling data. For userid ROOT we do not inciude the
mpl. We introduce an artificial userid IDLE in order to deal with the
idle time on the cluster. The RODI of IDLE is the equivalent number of
idle (standard) machines (here out of a total of 18 machines).

When the two graphs coincide or are almost equal, all jobs of the user
are on different machines, all of which are of the fastest type. When
the deviation is larger, either his own jobs compete on some machines,
some of his jobs are on slower machines, or they compete against jobs
of other users. For all users shown, the allocation is near optimal. It
only seems that whenever user U3 submits a sixth job, it is placed on a
machine where he (and only he) was already present.

4.4. Measurements for Machines and Diagnostics

In Figures 6, 7, and 8, we show the mpl and fraction of the time the
CPU is busy for all 18 machines. The mpl of a machine is the number
of jobs that have received at least 5 minutes of CPU-time. Obviously,
the mpl is the higher of the two graphs. Not surprisingly for a
compute-intensive workload, the CPU is busy either almost 0% or
100% of the time. From these graphs, we can deduce whether good
job assignments were made, and second, by comparing them with Fig-
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Figure 7: Multiprogramming level and fraction CPU busy on machines M7-M12
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Figure 8: Multiprogramming level and fraction CPU busy on machines M13-M18

ure 5, which users potentially suffered from wrong assignments. In this
way, these two sets of graphs are a good diagnostic tool for judging the
quality of job assignment. One sees for instance, that machine M1 has
at times an mpl of 2 or 3 while M3 is idle, and the same for M11 and
M7. User U1 starts four jobs at 323.5 on machine 2, 3, 7, and 10.

5. Target RODIs versus Achieved RODIs

As a first attempt at a useful evaluation criterion for a policy trying to
achieve target RODIs, if there are G groups of jobs, and group g has a
target RODI t, and an achieved RODI a, then either max(0, 1, - a;)
or max(0, (t; - ag) / t;) may be the measure of deviation for group
8, and the maximum (or some percentile) of all these values across all
groups may be the total metric.

To be more precise with respect to this metric, note that the a, may
deviate from the ¢, for reasons inherent to the configuration of the sys-
tem and the current sets of jobs. For instance, there may be a lack of
demand on the part of a group. If 7, is equivalent to more processors
than the current number of jobs in a group, clearly a, < t,, no matter
what the policy decides. In order to quantify this, consider a P-way
multiprocessor model M with as scheduling policy in each processor
priority processor sharing (PPS) as defined for instance in [Cof68a]
(jobs on one processor can have different shares), and in which PPS
may also be used across processor boundaries. That is, a job may
spend a fraction f, of the time at processor p, p = 1,..., P, with
Y fp s 1. Assuming throughout this section that all machines are
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equal to the reference machine X, the RODI to this job is ¥ f,.
Given a demand D in terms of numbers of jobs for every group, we
define a feasible RODI-allocation in M as a G-tuple (ry ,..., rg),
with r, the RODI of group g, induced in a natura] way by an assign-
ment of all jobs 1o processors and setting of local scheduling parame-
ters. The set of all feasible RODI-allocations in M for a given demand
D is denoted by Ay p. It seems reasonable to compare the perfor-
mance of a share scheduling policy in a distributed system only with
elements inAy p.

To express the quality of a share scheduling policy in a distributed sys-
tem with P processors, let us first consider a static assignment of a cer-
tain demand D, that is, there is a fixed set of jobs for each group, and
the policy under consideration chooses one fixed assignment (as
opposed to a policy that changes the assignments for reasons different
from arrivals or departures of jobs). The performance metric of a pol-
icy we propose is the following. If the achieved RODIs are

(a) -((11 PR aG)

and the target RODIs are
() =(1,..., 1) EAmp

then it is d((a), (1)) for some chosen metric d on G -tuples (such as
the sum of squares).

If (1) €Ay p,letd = d((1), Ay.p) > 0,and let
Au,p = {(r) EAy pld =d((1), ()} .

Intuitively, Ay, p is the set of feasible allocations closest to the target.
It seems only reasonable to compare (a) with elements in Ay p, so the
metric is d((a), Ay, p)-

If either the demand changes over time because of arrivals or depar-
tures, or the policy reassigns jobs for some reason such as the gathering
of more information in some nodes on the assignments in the rest of the
system, we may use the expected value of the proposed metric in the
static case.

6. Heuristics for Initial Placement, Local Scheduling & Migration

In principle, whenever a job arrives or leaves, one can try to recompute
the best assignment of jobs to processors, given the jobs of each user
(group) and the users’ target RODIs. Obviously, in a large system with
many jobs and users this is expensive. Therefore, we present in this
section heuristics on how to use the three mechanisms of Section 2.1 to
achieve target RODIs in a distributed system. We will deal with them
in the natural order initial placement, local scheduling, and migration.
Initial placement has to be done anyway, local scheduling is cheap, and
process migration is often difficult and potentially expensive. We
phrase the heuristics in terms of users instead of groups needing to
achieve target RODIs.

We will use two secondary decision criteria. The first, which is related
to users, is that jobs belonging to the same user should get more or less
equal shares. In particular, no job should starve. The second, system-
related, criterion is that the load in the system should be reasonably
well balanced, that is, the numbers of jobs on the different processors
should not vary too much. When the numbers of jobs per processor are
low, this diminishes the probability of a CPU going idle. Finally, we
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only consider situations in which the jobs on one processor belonging
to the same user get equal shares.

As to the local scheduling algorithm, we assume in this paper for sim-
plicity that each job on a CPU can be given any share on a time scale of
minutes as long as all shares add up to 1. The heuristics below are not
complete and need more research.

6.1. Initial Placement

Suppose a job J for user U enters the system and has to be assigned to a
processor. This can be done according to the following rules.

1. If there is an idle CPU, assign J to the fastest idle CPU.
We now assume there is no idle CPU.

2. If user U has attained or exceeded his target RODJ and U has a
complete CPU, assign J to the CPU completely used by U such
that the resulting RODI of J is largest.

3. If user U has attained or exceeded his target RODI and does not a
have a complete CPU, put J on a CPU on which U already has
jobs (only the local scheduling parameters on this machine have
to be adapted). If there is more than one such CPU, put it on the
CPU with this property with the least total number of jobs, and
among these on the one such that the resulting RODI/ of J is larg-
est.

4.  If user U has less than his target RODI, assign J to the CPU on
which the user U' whose RODI exceeds his target most has jobs
(among these CPUs a further choice has to be made). Local
scheduling policy parameters have to be set in such a way that U
does not exceed, and U’ does not go below, their respective tar-
get RODIs.

6.2. Local Scheduling

Local scheduling parameters have to be adapted at initial placement,
when a job completes and leaves, and when a job is migrated. The first
has been dealt with above and the latter is treated below. When job J
leaves from machine Y, it is determined for all users with jobs on Y
how their achieved RODIs on the system excluding Y compares to their
target RODIs. Local scheduling parameters on Y are set accordingly.

6.3. Process Migration

Job migration should only be invoked when the current RODI of a user
falls considerably short of his target RODI. Whether this is relative or
absolute, and by how much it must fall short, is a parameter of the pol-
icy. Starting with the user whose RODI falls short most, jobs are
migrated, with a maximum number of jobs per user and a maximum
number of users considered each time the algorithm is invoked. This
can be done periodically, or only after the assignment of a newly arriv-
ing job. The following heuristics may be considered.

1. If for a user U migration has to be invoked and there are idle
CPUs, a job is migrated from the CPU on which U has jobs with
the largest total number of jobs, and among these with the largest
number of jobs of U, to the fastest idle CPU.

2. If there is no idle CPU, the choice of the job J to be migrated is
the same, and the job 1s migrated to a CPU on which the user U’
whose RODI exceeds his target most has jobs (among these CPUs
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a further choice has to be made). Local scheduling policy
parameters have to be set in such a way that U does not exceed,
and U’ does not go below, their respective target RODIs.

7. Conclusions and Future Research

In this paper we have discussed a performance measure, RODI, for
compute-intensive workloads in distributed systems, for which a con-
ventional metric such as response time is inadequate. In the introduc-
tion we mentioned five requirements for a measure of CPU-usage.
Clearly, RODI can be used for stating objectives for CPU-usage. To
judge its suitability for stating allocation policies, Section 6 needs
refinement. We believe that the graphs of Section 4 show the useful-
ness of RODI for the presentation of CPU-usage by user and time. The
extent to which it satisfies requirement 4 (a means for evaluating share
scheduling policies) will only be clear once the discrepancies between
achieved and target RODIs due to reasons beyond the policy employed
are clear (cf. Section 5), and once we have evaluated share scheduling
policies. This also holds for requirement 5 (a means for finding reasons
why policy goals were not met), although we have shown that simple
graphs such as those in Section 4 can be helpful. Additionally, it turns
out that the concept of RODI is very useful for clearly stating to users
the benefit of using a cluster of machines.

Obvious subjects for further research are

1.  Finding a good way to compare target and achieved RODIs (cf.
Section 5);

Dealing with situations in which the target RODIs exceed or are
less than the available capacity;

Creating diagnostic rules for finding the reasons why target
RODIs were not met;

Deriving more and better simple heuristics for scheduling poli-
cies (cf. Section 6); and

Evaluation of share scheduling policies.
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Abstract

In a distributed system, it is desirable to keep all the resources ade-
quately utilized and equally loaded in order to reduce the response time
of jobs and improve the utilization of the resources. Thus, arriving jobs
are scheduled to be executed either locally or at a remote host depend-
ing upon the current load distribution. In this paper, a distributed
scheduler is proposed to assign jobs in a distributed heterogeneous sys-
tem. Heterogeneity has been considered in two aspects: different
resources (type, number and speeds) and heterogeneous job types. A
job is selected to be executed on a node which is best matched to the
job’s resource requirements. Hence, the selection of the remote host is
a function of the speed of the host’s resources, the current load on each
resource and the job’s resource requirements. A simulation model was
designed and implemented to evaluate the performance of the sug-
gested scheduler. Several experiments have been conducted and com-
pared to an upper bound where the nodes are non-cooperative and to a
lower bound where all jobs arrive to a central facility that distributes
them across the nodes.

1. Introduction

In distributed systems, due to the stochastic properties of jobs - arrival,
execution times and resource requirements — situation can develop
whereby some of the resources are excessively busy while others are
idle at the same time. This kind of situation is detrimental to perfor-
mance. Therefore, given a dynamically changing workload, distributed
schedulers should cooperate with each other in order to move jobs from
the overloaded resources to the less busy resources based on the current
state of the system.
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In static scheduling [Cho82a, Tan85a, Ni85a], a priori information
about the process and its resource requirements are known and routing
is based on predetermined probabilities. However, variations in the
workload will result in some resources becoming overloaded while oth-
ers are underloaded which requires dynamic reassignments. In
dynamic scheduling [Zho88a, Ram89a, Liv82a, Cas8la, Gao84a,
Wan85a, Cho79a, Efe89a, StaB4a, Lin86a, Sta84b, Pul88a, Kun91la,
Hac87a, Sta85a, Hac88a, Bry8la, Mir89a, Tho87a, Bon88a], it is
unknown in what environment the process will execute during its life
time and no decisions are made until a process begins its life in the
dynamic environment. So, although making decisions at run time
involves extra computation, dynamic systems have potential for adjust-
ing workload fluctuations, enhancing system availability and adapting
to system extensibility.

Distributed schedulers fall into centralized schedulers where the control
resides on a single processor [Cho79a, Efe89a, Bon88a] and decentral-
ized schedulers where the work involved in making decisions is physi-
cally distributed among processors, that is, there is no hierarchy of con-
trol within the system [Zho88a, Ram89a, Liv82a, Cas8la, Gao84a,
Sta84a, Lin86a, Sta84b, Pul88a, Kun9la, Hac87a, Sta85a, Hac88a,
Bry81a, Mir89a]. The weakness of the former system is its vulnerabil-
ity to failure of the central node and the possibility that the central con-
trol may become a bottleneck. This approach is best suited to multipro-
cessor configurations rather than distributed systems.

The decentralized scheduler is composed of two components: local
scheduling and global scheduling. The local scheduler refers to the
scheduling discipline used by a node in executing the jobs accepted to
its local queue. It provides an orderly and controlled allocation of the
processors, memories and /0O devices among the various processes
competing for them and decides which process runs first. The global
scheduler is the part that interacts with the other hosts in order to take
global decisions i.e. to decide where to execute a process.

The global scheduler is composed of two main elements: the control
policy element and the information policy element. The control policy
determines which jobs are eligible for transfer and selects the destina-
tion host for them. The decision is made according to the current avail-
able information on the state of the system. It is the function of the
information policy to collect data for the control elements concerning
the load of the system resources. The information policy decides the
type of state information transmitted e.g. the queue lengths of waiting
jobs [Zho88a, Liv82a, Efe89a, Sta84a, Lin86a, Pul88a, Kun9la,
Hac87a, Sta85a, Hac88a, Mir89a, Mir89b), the accumulated unfinished
work on the CPU [Gao84a, Hac88a], the resources utilization
[Ram89%a]. Also it specifies how this information is transmitted: broad-
casted [Zho88a, Ram89a, Liv82a, Gao84a, Pul88a, Kun9la, Hac87a,
StaB85a, Hac88a, Mir89a), sent to specific host [Sta84a), sent randomly
[Liv82a). The information is sent either periodically [Ram89a,
Gao84a, Sta84a, Pul88a, Hac87a, Hac88a] or asynchronously, e.g. bid-
ding [Sta84b], when conditions change by some amount [Zho88a,
Lin86a] etc... Also, stability control is an issue which had been be con-
sidered in designing a decentralized scheduler [Cas88a, Sta85b].

Many researchers have addressed the scheduling problem, however,
the survey has revealed several limitations among them:

1.  Most studies considered that each node consists of a single
resource (a CPU) ignoring multiplicity of resources such as disks
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and tapes. This is appropriate only if there is a single bottleneck
in the computer systemn, namely, the CPU.

2. They have restricted the local scheduler to a non-preemptive,
FCFS discipline with no multiprogramming. This fits in a batch
environment but not applicable in an on-line operating environ-
ment.

3. They have only evaluated homogeneous systems, that is, identi-
cal resources’ speed and jobs are assumed to have identical
requirements.

4. In order to distribute the work among the nodes, the technique
used was equalizing the queue lengths. But unbalanced queue
lengths are not necessary detrimental to performance e.g. longer
queues should be allowed at faster devices for better perfor-
mance. Further, queue length is an inadequate load indicator
when the nodes possess multiple resources.

5. Most control policies did not specify which job is eligible to
move. Once a node is found to be overloaded a job is selected at
random.

Several researchers have removed some but not all of these restrictions.
In [Mir89a], they have considered heterogeneous speeds but with sin-
gle resource per node. They have used a thresholding technique based
on the queue length where each node is associated with different
threshold to cope with the speed heterogeneity. This strategy lacks
adaptability to system configuration since the threshold value is set
manually. Further, they have ignored multiplicity of resources and het-
erogeneity in the quality of arriving jobs.

In [Sta84b], they have attempted to match processes to processors
based on process” CPU requirements. More specifically, they matched
longer processes (in CPU time) to hosts that are less busy. However,
less busy is determined, again, by an estimate of the current queue
length. Further, they did not account for heterogeneity (neither speed
nor job’s requirements) nor for multiple resources.

In [Ram89a], they have considered multiple resources per host and
described a set of heuristic algorithms to schedule tasks that have criti-
cal deadlines taking into consideration their resource requirements. A
node is selected to execute a task iff it has sufficient resource surplus
on each required resource such that the task will meet its deadlines.
However, their technique was based on prescheduling the tasks assum-
ing a non-preemptive policy where a task locks all its resources
throughout execution. Although this assumption is acceptable for a
hard real-time environment, it results in inefficient usage of resources
and is not applicable in an on-line multiuser environment. Further,
their objective was restricted to maximizing the number of tasks that
meet their deadline i.e. they have solved crisis only with no attempt to
enhance system performance.

In [Kun91a], he used different workload descriptors such as queue
length, rate of CPU context switch, amount of free memory, amount of
free CPU time or a combination of them. Although he used a workload
consisting of a job mix (CPU and /O bound), he concluded that the
queue length was the best descriptor. This was due to that he evaluated
a system consisting of diskless homogeneous workstations sharing a
common file server hence again the CPU is the most important
resource. Further, the descriptors were used just to classify a node as
overloaded or underloaded then a job is sent randomly to an under-
loaded node and not based on its requirements. In [Hac87a, Hac88a],
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they have considered a host consisting of a CPU, a disk and terminals
operating in a multiprogramming environment. However, only homo-
geneous systems were considered and they have relied on a threshold-
ing technique based on the number of active processes.

In this work, a suggested scheme is proposed to alleviate the previous
limitations by incorporating the following:

1. Nodes are heterogeneous, that is, each node contains a set of dis-
tinct resources (CPU, disks) possibly with different speeds.

A multiprogrammed time-sharing environment is considered for
the local scheduler in order to maximize utilization of the
resources by increasing the number of concurrent active jobs.

The workload is heterogeneous. It consists of different types of
jobs: highly interactive jobs and batch jobs where each job has
different requirements at the various resources.

The selection of the remote host is a function of the speed of the
resources, the current load (utilization) on each resource and the
jobs’ requirements of each resource.

A job is selected to be executed on a node which is best matched
to the job’s requirements i.e. the selection is based on the quality
of the job rather than the quantity.

Therefore the problem is defined as: given the processing time of each
job on each resource, how to allocate the jobs in a dynamic environ-
ment to the heterogeneous hosts such that the response time of the jobs
is minimized and the overlap between resources’ utilization is maxi-
mized. This is achieved through optimizing the job mix over the whole
network.

The remaining part of the paper is organized as follows. The next sec-
tion presents the system model. Section 3 discusses the local and glo-
bal components of the scheduler. The simulation model used to evalu-
ate the scheduler is presented in Section 4 and 5 reports the results of
our experiments. Finally, conclusion and final remarks are presented in
Section 6.

2. The System Model

We assume that the system under consideration consists of N nodes
connected by an arbitrary communication subnet (no specific topology
is assumed). Host i consists of nres; heterogeneous resources: a CPU, a
number of disks and nter; terminals. The resources can have different
speeds. The model of a host is shown in Figure 1.

At each node, the workload consists of interactive and batch jobs.
Each job has different requirements on the CPU and disks. Since inter-
active jobs require short service times, they are allowed to join the sys-
tem immediately competing for the CPU, memory and disks. In order
to control the overhead of executing many processes simultaneously,
the number of concurrent active batch jobs (the batch multiprogram-
ming level) is limited to a certain level controlled by the local sched-
uler. Therefore, arriving batch jobs are queued at the BATCH-QUE
until the local scheduler decides to dispatch them as will be described
in the next section.

Jobs arriving at a host (origin node) may be processed either locally or
transferred through the communication network to another node (exe-
cuting node). The results are transferred back from the executing node
to the origin node where no more processing is required. Communica-
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Figure 1: The System Model! of a Single Host

tion delays are incurred during both transfers. Since interactive jobs
require rapid response of their frequent requests for small service
demands, their remote execution is likely to result in poor performance
due to network latencies. Therefore, batch jobs are the candidates for
remote assignment. We assume that entities to be scheduled are inde-
pendent that is there is no communication between jobs and there is no
precedence constraints. Further, once a job becomes active it will exe-
cute on that host until completion with no reassignment i.e. no process
migration is allowed.

A monitor is constantly executed at each node in order to maintain and
update the information about the system state. Periodically, the dis-
tributed global schedulers interact with each other in order to remove
jobs from the BATCH-QUE which are heavy users of contented
resources and assign them to suitable nodes with the goal of minimiz-
ing the average response time through optimizing the job mix. For reli-
ability, the technique functions in a decentralized manner, that is there
is no master controller and the algorithm runs on each node concur-
rently.

3. Distributed Scheduling Scheme

Scheduling occurs at two levels within the system namely, local
scheduling and global scheduling. In our model, several policies could
be adopted for managing the CPU and the disks but we are concerned
with the management of the local BATCH-QUE since it should satisfy
the same objectives as the global scheduler in order to maximize the
possible benefit. This section describes the local and global manage-
ment of the BATCH-QUEs with the common goal of optimizing the dis-
tribution of job mix.
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3.1. The Local Scheduler

The subject of this section is the representation of a policy that man-
ages the batch jobs queued at the BATCH-QUE of node i and controls
the number of batch jobs active in system (the batch MPL).

In multiprogrammed time-sharing environment, performance enhance-
ment could be achieved only by tuning the MPL and by the proper
selection of the jobs that join the system. A batch job should be
allowed to join the system — increasing the MPL — if and only if it is
expected to use underutilized resources (if any). Such a placement
approximately does not affect the performance of the running jobs
since it is using their slack of resources therefore it would increase the
throughput. Moreover, it reduces the time spent by the added job wait-
ing at the BATCH-QUE, hence, it reduces the mean response time.

Therefore, the decision of increasing the MPL and selecting the most
eligible job should consider: the nature of the jobs (their resource
requirements), the base load on the resources which is changing
dynamically, the contention of jobs on the various resources and the
overhead incurred by adding the job. This discussion holds for select-
ing a local batch job to join the local system’s queues as well as for the
decision of sending a job to be executed remotely. To consider all the
factors cited above it is believed that the queue length is not an ade-
quate index to measure the load on the resources.

3.1.1. Batch Job Priorities

A suggested procedure is used to evaluate the eligibility of a job j on
node i. The suggested function assigns the job a priority which is
dynamically computed based on the current resources utilization of
node 1 and classifies the job as eligible/non-eligible candidate to join
the system.

The key idea is to compute the expected new utilization of every
resource r on node { if job j is placed on the current system and to favor
the job that put the maximum load on the underutilized resources while
putting the minimum load on the overloaded resources. Consider the
following definitions:

r_speed;,  Speed of resource r on node i

ut;, Utilization of resource r on node i

req;, Estimated requirements of job j from resource r
min_ut; = Min, {ut;,}

min_res; Least utilized resource of node i

=rs.tout;, = mn_ut;

The algorithmic description of the function that computes the dynamic
priority of job j on node i is given in Appendix A. Since this function
will be used by the local scheduler and the global scheduler it is gener-
alized to perform the computation on any node.

The procedure begins by computing the load that job j would put on
every resource r of node i if job j is placed alone on system i for one
time unit. This value is normalized in order not to differentiate
between two jobs of the same nature but of different durations. Since
the system is not empty, the new utilization should be computed taking
into consideration the base load existing on each resource r which is
reflected by ut;,. This is achieved by loading the least utilized
resource min_res; by the given job such that its utilization reaches
100%. This implies that min_res; is loaded with
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Jobs Requirements norm_load new_ut

CPU DISK1 DISK2 | CPU DISKl DISK2 | CPU DISK1 DISK2
J1 8 20 10 80% 13% 7% 100 89.7 75.2
J2 16 20 40 80% 7% 13% 100 85.2 79.7
J3 8 0 60 67% 0% 33% 100 80 99.5
J4 1 120 30 | 9% 73% 18% 100 567 190
J5 2 240 60 9% 73% 18% 100 567 190
J6 0.5 0 120 6% 0% 94% 100 80 1010

Table 1: Examples on Dynamic Priorities

(1 = min_ut;) / norm_load y;, s, of the load placed on min_res; by
the job. Assuming that the resource requests are uniformly distributed,
the same percentage of the load placed on the other resources is used to
compute their new utilization as given in step 7. Finally, the priority of
job j on node i is considered as the maximum new utilization over all
the resources. Jobs that have low priorities imply that they use heavily
the underutilized resources while not overloading a loaded resource.
On the other side, jobs resulting in high priorities implies that they are
using heavily the overloaded resources.

In Table 1, examples on the priorities of different jobs are given assum-
ing three resources one CPU and 2 disks with speeds 2 MIPS, 30 and 30
1/0 req./sec and utilization 40%, 80% and 70% respectively. The CPU
and disk requirements of jobs are given in Mega instructions and num-
ber of 1/0 respectively. The priority is given by the maximum new_ut
over the two disks.

The proposed priorities capture the nature of the jobs and order them in
such a manner that can tell which job is best suited to the current load
on the system.

Then, a condition is made to classify jobs as eligible/non-eligible can-
didates: if the computed new utilization of any resource bypasses 100%
and this resource is somewhat loaded, the job is considered as a non-
eligible candidate. This condition discards jobs that are heavy users of
the overloaded resources. Further, it accounts for the interaction
between jobs on the resources: it permits to load a resource heavily if
and only if this resource is lightly loaded with respect to the other
resources so that their utilizations are not affected by loading this
resource. Also, to account for the overhead incurred on the system by
placing the job; the resource requirements of the jobs are increased by
a certain amount before proceeding in the computation of the dynamic
priorities. The function computes the priority of the given job and
returns a value which is 0 if the job is a good candidate, 1 otherwise.

3.1.2. Control of the MPL

This function is concerned of determining the current value of the MPL
at a single site. That is it decides whether to increase the MPL or not.
If yes, it selects the most eligible job to join the system as described
above.

It is assumed that there is a minimum level of MPL, min_mpl, kept as
long as there are jobs in the BATCH-QUE. At job arrival, if the
BATCH-QUE is empty and the current number of active jobs (cur_mpl)
is less than min_mpl; the job joins the system immediately. Otherwise,
it is queued at the BATCH-QUE.
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In order to keep the local resources balanced, the scheduler periodically
(every loc_adj_mpl sec) measures the utilization over the past window
then attempts to increase the MPL by one job if there are good candi-
dates jobs. The attempt is done if:

1.  The resources are unbalanced i.e. if there is a significant gap
between the load on the resources, it tries to fill it by a job of an
opposite nature i.e. optimize the job mix. This condition
accounts for the interaction of jobs: no need to add a job if the
resources are already balanced since such action may lower the
throughput. The scheduler computes the dynamic priorities of
jobs waiting at the BATCH-QUE as described before; if there
exists eligible candidates it selects from them the job with the
lowest priority to join the system, otherwise no action is taken.

2. The system is balanced but all its resources are underutilized i.e.
when Max, {ut(i,r)} < low_thresh where low_thresh is a sys-
tem parameter. In this case, the scheduler decides to increase the
MPL, that is, all jobs are eligible candidates and the job with the
least priority is chosen to join the system.

The loc_adj_mpl period should be adjusted such that it reflects the
current load on the resources. Therefore, it is suggested to be set to a
fraction of the average residence time of jobs in the system.

At job departure, if the cur_mpl is greater than min_mpl no action is
taken. Otherwise, the scheduler waits for dep_window seconds during
which it measures the resources utilization to indicate the effect of the
departing job. Upon these measurements, it computes the dynamic pri-
orities of jobs waiting at the BATCH-QUE and selects the most eligible
job to join the system. The algorithms that describes the management
of the BATCH-QUE of a single site are presented in Appendix B.

3.2. The Global Scheduler

The main objective of the global scheduler is to minimize the average
response time of jobs by keeping all the resources busy — as long as
there are jobs waiting for their service — and equally loaded.

3.2.1. The Information Policy

The state information passed between nodes is: the utilization of every
resource, and the resource requirements of every job waiting at the
BATCH-QUE. Every info_upd_per seconds, each node i measures the
utilization of its resources ut; ,,Vr; over the past window and broad-
casts it to every other node. Also, it broadcasts the resources require-
ments of jobs at the BATCH-QUE.

The broadcasting technique is adopted since there are small number of
nodes. More sophisticated updating technique would be used if the
network contains large number of nodes and a specific topology was
assumed. The information sent is assumed to be delayed
info_trans_del seconds due to transmission over the network.

3.2.2. The Control Policy

Controlling the remote execution of jobs is accomplished through two
distinguished strategies. The first one controls the MPL over the whole
network. The second algorithm attempts to equalize the load on the
BATCH-QUEs.
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Each policy is activated periodically at every node and uses the most
recent information received in making decisions. Between updates no
attempt is made at estimating either the current state since the last
update or any future state. Old information is simply used. It is
believed that the additional cost of such estimates is prohibitive in com-
parison to the potential benefits when the update interval is frequent (as
in our case). Two nodes do not need to synchronize their state infor-
mation update nor their control. Hence, the execution of both algo-
rithms is fully asynchronous and distributed.

1. Control of the MPL

This function could be viewed as a logical extension of the local func-
tion that adjusts the MPL described in Section 3.1. It is based on the
same idea: it looks for underutilized resources and selects a job to aug-
ment the MPL that needs these resources without loading an already
overloaded resource. It extends the previous function to cover all
nodes in selecting remote hosts. It uses the DYN-PRIO-FUN function to
evaluate the jobs waiting at its BATCH-QUE on all the nodes in the net-
work including itself and attempts to increase their MPL. This evalua-
tion is based on the utilization of the resources of every node received
from message updates.

The algorithm is executed at each node i every glo_adj_mpl seconds, a
tunable system parameter. This period should be greater than the
loc_adj_mpl period so that global decisions are less frequent than the
local ones. The algorithm is presented in Appendix C. The algorithm
considers only nodes that can accept work (they belong to the set
acc_set), that is:

1. A node that has unbalanced resources ie. when
(Max, {ut,,} — Min, {ut,,}) > gap. The existence of gaps
indicates the lack of work that can optimize the mix locally,
therefore a remote node tends to fill the gaps by one of its jobs.

A node that its resources are totally underutilized i.e. when
Max, {ut(k,r)} < low_thresh. Again, the utilization of the
resources would not have been so low except when the local
scheduler cannot find work to augment its MPL. Therefore, a
remote node tries to send one of its jobs if it has an excess.

If all nodes does not satisfy one of these conditions then the system is
observed as a heavily loaded system and the algorithm stops since it is
not beneficial to move jobs. The algorithm computes the dynamic pri-
orities of all jobs waiting at the BATCH-QUE of node i on all the nodes
belonging to the acc_set. Then, for every node it considers only its eli-
gible candidates.. It proceeds by selecting the job with the minimum
priority over all nodes and sends it to the corresponding node to join its
MPL. It sends no more jobs to that node. Then, it selects the next job
with minimum priority over the remaining nodes. This sequence is
repeated until there is no more nodes that belongs to the acc_set or
when there are no more jobs at the BATCH-QUE.

Due to network latencies, a job should be transferred only if a
significant improvement is achieved from the transfer. Therefore, in
computing the dynamic priority of a job on a remote node the final
value is multiplied by thresh1(=1). So, if a job is a good candidate
locally it would result in better priority than on remote nodes.

1t should be noted that placing the job directly at the MPL and not at the
BATCH-QUE of the remote node is done to eliminate the delay that the
job would experience waiting until the local scheduler at the destina-

Technical - OpenForum *92 - Utrechs, 23-27 November 259




Performance Evaluation of Job Scheduling in Heterogeneous Distributed Systems

tion node decides to dispatch it. Further, it eliminates the risk of job
shuffling since it allows the job to move only once. So, it preserves the
system stability.

2. Balancing the BATCH-QUEs

The objective of this scheme is to equalize the loads on the BATCH-
QUEs of all nodes in such a manner that no node is idle while others
have jobs queued. It intends to give each node an amount of work
enough to keep the node busy until the effect of the next decision. In
job placement, it selects the jobs that are most suitable by minimizing
the maximum load over all the resources taking into consideration the
baseload existing on the node, the jobs’ requirements and the speed of
the resources. Further, in order not to send many jobs to a node at a
time, it considers the actions that could be taken by the other hosts.

The algorithm is activated at each node every bal_que_per seconds, a
tunable system parameter. The description of the algorithm is pre-
sented in Appendix D. It assembles all jobs waiting at the BATCH-
QUEs including itself at one set tot_job. Then, it proceeds with a
greedy approach, to redistribute all jobs at the nodes with the objective
of minimizing the accumulated load (ir time units) of all the resources
over all nodes. The accumulated load at resource r of node k is defined
as the summation of the estimated finish time at r of every job placed at
node k. The estimated time for job j to finish its service at resource r of
node k is given by req;, / (r_speedy, * (1 - ut,,)). In order not to
differentiate between jobs of the same nature but of different durations;
this quantity should be normalized. Further, it is multiplied by thresh2
(2 1) if job j does not belong to the BATCH-QUE of node k so remote
placement is not done except when a significant improvement is
achieved. The Normalized Finish Time of job j on resource r at node k
is at step 7.

The algorithm initializes the accumulated load (accum_load) and the
normalized accumulated load (norm_accum_load) of all resources at
all nodes to zero then it places every job belonging to tor_job at every
node and selects to assign the job (migr_job) that yields the minimum
normalized accumulated load over all resources to the corresponding
node (dest_node). It updates the accum_load and norm_accum_load
of dest_node by placing migr_job then discards the job from tor_job.
If job migr_job belongs to node i and dest_node # i then node i sends
the job to the node dest_node to be queued at its BATCH-QUE. This
procedure is repeated by placing the remaining jobs at tor_job over all
nodes. The algorithm stops placing jobs at node k when it is loaded
with enough work that keeps it busy until the effect of the next decision
i.e. when Max, {accum_load, ,} > min_work where min_work is set
to bal_que_per + info_trans_del + the average job transmission
delay. The whole algorithm stops either when all nodes have enough
work or when there is no more work to distribute i.e. tot_job set
becomes empty. The described technique has the following effects:

1. If a node has no work at all while others are loaded; it sends
some suitable jobs to the idle node.

If all nodes are loaded with suitable jobs; the algorithm will
result in placing jobs locally with no new assignment.

If a node is loaded with unsuitable jobs; if all other nodes are
loaded with jobs of same nature then the technique will assign
each node its local jobs. If there are nodes loaded with jobs of
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opposite nature it tends to exchange jobs between the nodes in
order to rearrange the job mix.

It should be noted that the stability of the system is preserved since the
technique simulates the actions that could be taken by other nodes.
Therefore, it will not send too many jobs to a lightly loaded node as
long as other nodes could send work for it too.

4. The Simulation Model

A simulation model was designed and implemented using the SLAM 11
simulation language for performance evaluation of the proposed sched-
uler. Jobs’ requirements are parameterized in terms of: cpu_req CPU
requests (in mega instructions) and disk_req; the total number of
read/write requests at disk j. The 1/O requests are assumed to be uni-
formly distributed throughout execution. The central server mode! is
chosen to describe the behavior of the multiprogrammed computer sys-
tem. The service time per visit from the disks and the CPU at node i are
drawn from an exponential distribution with mean 1 /d_speed; and
cpu_req [ (cpu_speed; * (1 + X disk_req;)) respectively. A job

J
may have different execution times at the various nodes due to differ-

ent resources’ speed. The workload consists of interactive and batch
jobs. The resource requirements of all types of jobs and all system
parameters, description and default values can be found in Tables 2
and 3.

The CPU scheduler adopted in this study is that of VAX/VMS operating
systems [DEC88a]. It uses a modified round-robin form of scheduling
with preemption. Interactive jobs have higher priority than batch jobs.
Further, the scheduler uses the priority boosting feature which adjusts
priorities dynamically to maximize the overlap of CPU usage and 1/O
processing. The requests pending at disks are served based on the base
priority of jobs. For jobs with the same priorities they are served on
FCFS basis.

The performance metrics considered are: the utilization of various
resources over the netvbvork and the Normalized Waiting Time of jobs
njobs
Y tdep; - tarr; - serv;
et
defined by NWT = 4 - where
njobs
Y serv;
Jj=1

tedp; = departure time of job j

tarr; = arrival time of job j
njobs = total number of jobs
serv; = total service time received by job j

This metric represents the response time of jobs but normalized since
jobs are of different durations. Further, the service time is omitted
since the scheduler cannot optimize this component.

Dispatching batch jobs into the system improves their NWT since it
reduces their waiting at the BATCH-QUE. But this action causes degra-
dation of the NWT of interactive jobs due to the additional load and
system overhead. Therefore, the NWT of each type is represented sepa-
rately to show the effect of the scheduling policy on both the batch and
interactive jobs.
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Parameter Description Default value
N Number of nodes in the network 3
nres; Number of resources at node i 3 (1 CPU, 2 disks)
nter; Number of terminals at node i 20
cpu_mips; CPU capacity at node i 2 (MIPS)
d_speed,; Disk speed at node i 30 (10/sec)
think_time Think time delay 10 (sec)
ov_io CPU cost of 1/0 operation 0.002 (mega instr.)
ov_switch CPU cost of context switch 0.002 (mega instr.)
quantum Time slice quantum 0.025 (sec)
p_long Fraction of long transactions 04
I_long Length of long transaction w.r.t. short 2
f_cpu_bat; Fraction of CPU batch jobs at node i 0.75
f_cpu_int; Fraction of CPU interactive jobs at node i 0.75
tnt_arr_bat; Inter-arrival time of batch jobs at node i 7 (sec)
loc_adj_mpl Period to adjust the MPL locally 2 (sec)
min_mpl Minimum number of active batch jobs 2
gap Gap between unbalanced resources 03
dep_window Utilization window length at job departure 0.5 (sec)
ovrhd % overhead added to the job’s requirements 10
low_thresh Minimum allowable utilization 0.6
mm_qntm The number of quantums after which MM runs 30
mm_cpu_ovrhd | CPU overhead incurred by MM 0.008 (mega instr.)
mm_io_ovrhd I/O requests invoked by MM 2
glo_adj mpl Period to adjust the MPL of all nodes 8 (sec)
bal_que_per Period to balance the BATCH-QUEs of all nodes | 16 (sec)
info_upd_per Period to transmit status information 2 (sec)
job_trans_del Delay of job transmission 1
threshl Threshold of global scheduler part 1 1.5
thresh2 Threshold of global scheduler part 2 1.2

Table 2: System Parameters

System overhead is considered in modeling the scheduler since it has
an impact on the system performance. On the local level the following
overheads are considered: the context switch which is modeled as
ov_switch instructions of CPU, the 1/O pre and postprocessing overhead
modeled as ov_io CPU instructions and the memory manager overhead
is modeled by a CPU overhead (mm_cpu_ovrhd instructions) followed
by mm_io_ovrhd disk operations initiated every mm_gntmth quantum.
Further, there are several costs associated with the decentralized
scheduling which include:

1. The cost of transmission delay of update information which is
assumed to be a constant delay info_trans_del second, equal to
the maximum possible delay between two nodes.

cpu_req disk_req, | disk_req, base
Job Type (mega instr) | (requests) | (requests) | priority
Interactive short CPU-bound 0.2 1 1 5
Interactive short I0-bound 0.05 4 4 5
Batch CPU-bound 8 15 15 2
Batch I0-bound 1 120 120 2

Table 3: Job Characteristics

262 Technical - OpenForum °92 - Utrechs, 23-27 November




Performance Evaluation of Job Scheduling in Heterogeneous Distributed Systems

2.  The cost of transferring jobs and results which is modeled as
job_trans_del times of the total requirements of the job at the
various resources (in time units). However, it is assumed that
each node possesses a controller that is responsible of running
the protocols, packing and unpacking messages, etc...

In the design of the simulation runs, every run was left to execute until
the simulated system has reached a steady state. This was tested by the
stabilization of the CPUs’ utilization of all nodes within a 90% level of
significance. After reaching steady state, all statistics are cleared to
minimize the transient start up effects of an empty system. Some crite-
rion had to be chosen to set the period of time during which the
system’s operation would be studied in steady state. The criterion cho-
sen was to test for the response times of each job type separately,
within a 90% level of significance.

5. Experiments

In the conducted experiments four main characteristics were studied:
the effect of heterogeneous job types, the effect of the delay in the sub-
net, the effect of the scheduling intervals and the effect of the percent-
age of badly estimated requirements. Simulation results are compared
with:

1. A non-cooperative algorithm with no global job scheduling and
no network which constitutes an upper bound on system perfor-
mance.

2.  An ideal scheduling scheme where all arriving batch jobs are
queued at a central BATCH-QUE to be distributed among nodes.
Further, it is assumed that the ideal scheduling scheme is accom-
plished when the communication cost is negligible.

5.1. Effect of Heterogeneous Job Types

This experiment is conducted for a system of 3 nodes where the major-
ity of the workload arriving at N1 and N2 consists of CPU-bounded
jobs (interactive and batch) while at N3 it consists of 1/0-bounded jobs.
More specifically, the f_cpu_int; parameters are set to 0.8, 0.8, 0.15
and f_cpu_bat, are set to 0.75, 0.75, 0.2 for N1, N2 and N3 respec-
tively. Results are obtained under heavy and moderate load conditions
(int_arr_bat = 7 and 8 respectively). The rest of the parameters are
set to the default values. The results of heavy load are shown in
Table 4.

It is seen that a significant improvement in the batch NWT is achieved
over the non-cooperative case (up to 55% under heavy load and 30%
under moderate load). The improvement is on the whole system and on
the individual nodes as well which is due to the fact that N1 and N2
exchange jobs with N3 which balance the load on the resources and
removes the bottieneck. As a consequence of these exchanges, the
interactive NWT is not affected on the overall but it is balanced on the
individual nodes. It is noticed that the BATCH-QUE lengths decrease so
are the MPLs for all nodes. Therefore, we can say that even though the
nodes are loaded but since the jobs are of different nature, exchanging
jobs can result in significant performance improvement specially under
heavy loads when there is a real resource bottleneck at nodes. It should
be noted that these exchanges would not have veen done if the decision
was based on the BATCH-QUE lengths since the queues are balanced on
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System/
Node

Inter Batch BATCH-QUE
NWT NWT length

Non-cooperative

System
N1
N2
N3

0.8061 9.322 - - -
0.6934 9.9 88 36 7.0
0.6825 | 104 87 38 77
0.9944 7.6 39 70 6.1

Algorithm

System
N1
N2
N3

0.8007 4.139 - - -

0.7597 43 75 42 23
0.7546 3.97 75 42 23
0.86 4.1 62 59 1.6

Lower Bound

System
N1
N2
N3

0.7814 2.703 - - 4.0
0.7355 2.6 72 47 -
0.707 2.64 71 47 -
0.877 2.8 56 60 . -

Table 4: Heterogenous Job Types/Heavy Load

5.2. The Delay Effect

high values which reflects that nodes are loaded and cannot receive
more work.

In the system considered in this experiment — and subsequent experi-
ments — N1 and N2 receive the same types of jobs, namely, CPU-bound
but N2 has a faster CPU and N3 receives the majority of its work as 1/0
bounded jobs. This configuration is achieved by the following parame-
ters settings:

. cpu_speed
f_cpu_int | f_cpu_bat (MIPS)

N1 0.8 0.75 2
N2 0.6 0.6 4
N3 0.15 0.2 2

Further, the CPU requirements of jobs arriving at N2 are 1.5 times that
of arriving at N1 and N3. The system is tested under heavy loads by
setting the int_arr_bat to 7 seconds for all nodes. The rest of parame-
ters are at their default values. Performance could be enhanced by
moving CPU jobs from N1 to N2 due to its CPU speed or to N3 due to
lack of work at the CPU and by moving jobs from N2 and N3 to N1
since it has lightly loaded I/0 resources. For space limitations, only the
interactive and batch NWT for the whole system are shown. More
details can be found in [DEC88a].

To consider the effect of different average delays for jobs moving
through the subnet, the parameter job_trans_del is varied from 0 to 10.
Results are shown in Figure 2. They show performance degradation
with increased delay in the subnet as is to be expected. It is observed
that under O delay the results are very close to the ideal balancing
scheme and result an improvement over the non-cooperative case up to
64%. As the delay increases, the batch NWT increases but performance
enhancement is still achieved until the transmission delay reaches §
times the service requirements of the jobs. Beyond this value the per-
formance degrades and it is worse than the non-cooperative algorithm.
The primary reason for this degradation is that improvement can be
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1.0 4 @ Non-cooperative
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X Algorithm
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NWT

job_trans_del
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¢ Lower Bound
X Algorithm

barch

job_trans_del

Figure 2: The Delay Effect

achieved only if the waiting times at the destination queues plus the
time needed to move the job is less than the delay it would have experi-
enced without moving the job. Further, jobs in the subnet are tem-
porarily out of the system in the host’s view: jobs in transit do not alter
the load indices at the receiving host for longer times as delay
increases. Consequently, more outdated state information is transmit-
ted causing jobs to be moved when they should not. Wrong decisions
cause increase in the MPLs and degradation in the interactive NWT (up
to 20%), unbalance in the utilization of the resources and increase in
the batch NWT although the BATCH-QUE lengths are balanced.

5.3. Effect of the Scheduling Intervals

The given method consists of two parts each is activated periodically.
The activation intervals are different for each part: glo_adj_mpl and
bal_que_per for Part 1 and 2 respectively. In the selection of these
values there are two considerations that should be taken into account:

1.  The scheduling period should be greater than info_upd_per oth-
erwise a host would take several decisions based on the same
information.

The scheduling intervais should be much greater than the job
transmission delays plus the information update period plus the
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information transmission delays so that no decisions are taken
while jobs are on the way. In other words, the sender should
give the receiver enough time to dispatch the new transferred
jobs, update its status and send it before giving him more work.

To show the effect of varying the scheduling intervals, it has been
tested by fixing the bal_que_per parameter to a certain value and vary-
ing the glo_adj_mpl parameter. Then, the glo_adj_mpl! is fixed and
the bal_gue_per is varied.

5.3.1. Effect of Scheduling Interval Part 1

Here, the system described in Section 5.2 was considered with
bal_que_per set to 16 seconds and the rest of parameters at the default
values. The glo_adj_mpl was varied from 2 to 35 seconds. The
results are shown in Figure 3.

It is noticed that for glo_adj_mpl! less than 8 the algorithm results in
poorest performance: the batch and interactive NWT experience high
values. The primary reason for this is that the second consideration
mentioned above is not true, since the delay of sending a job +
info_trans_del + info_upd_per sum up to = 10 seconds. Hence, tak-
ing decisions more frequently results in unnecessary job movements.
In the range from 8 to 16, good performance is achieved with little dif-

® Non-cooperative
® Lower Bound

X Algorithm

glo_adj_mpl

® Non-cooperative
@ Lower Bound
X Algorithm

glo_adj_mp!
Figure 3: Effect of Scheduling Interval Part 1
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ference. Hence, there is no need to run the algorithm faster than 16
seconds. When glo_adj_mpl is beyond 20, one starts to see a degrada-
tion in the batch NWT. This is due to that the reaction time is not fast
enough to system dynamicity and there is not enough job movement to
produce the required balance. However, the degradation is not
significant as Part 2 of the algorithm is still equalizing the queues.

5.3.2. Effect of Scheduling Interval Part 2

Here, the same system is considered with glo_adj_mpl set to 16 and
bal_que_per is varied from 4 to 50 seconds. The same comment
applies as the last experiment. For bal_que_per less than 16 the algo-
rithm results in poor performance. For bal_que_per above 16 and
below 35 good results are obtained with little differences. Beyond this
value batch performance begins to degrade slightly due to low fre-
quency of making decisions.

5.4. Effect of the Percentage of Badly Estimated Requirements

The algorithm described is based on the assumption that the job
requirements on each resource are known. More precisely, what is
needed is the knowledge of the job’s nature which is reflected by the
ratios of the resources requirements. This assumption is valid when the
job characteristics are predictable. However, under a development
environment we may be faced with the problem of having badly esti-
mated requirements. The effect of this problem had been investigated
[AdI91a] and had shown that when less than 60% of the jobs have
badly estimated requirements, there is an improvement over the non-
cooperative case in the batch NWT up to 33% with no serious degrada-
tion in the interactive NWT. Beyond this value, the batch NWT
degrades accompanied by degradation in interactive NWT up to 28%.

6. Conclusions

In this paper, we have proposed a decentralized scheduler that assigns
jobs to hosts in a heterogeneous distributed system with the goal of
minimizing the average response time. Two control policies are acti-
vated periodically, the first one controls the MPL of all nodes in order
to keep all the resources busy while equalizing their utilization. The
second one tends to equalize the load on the BATCH-QUEs such that no
node is idle while others are overloaded. The assignment was made as
a function of the speed of the resources, the current load on the
resources and the job requirements. A simulation model was used to
evaluate the performance of the proposed scheduler. We conducted a
number of experiments to examine the effect of a workload consisting
of heterogeneous job types. The algorithm performed well on each
case and showed an improvement in the batch NWT over the non-
cooperative case with approximately no effect on the interactive load
performance. Further, it managed to balance the load over all the
resources. For subsequent experiments, we considered a combination
of a workload consisting of a job mix and different resource speeds.
We examined the effect of the job transmission delay over the network
and concluded that improvements were achieved when the delay is less
than 5 times the job total service time. The scheduling intervals have
been varied and showed that the results are stable for a wide range with
degradation when these periods are too small or too large. Finally, the
effect of relying on badly estimated jobs requirements had been investi-
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gated and it was concluded that improvements are achieved when the
jobs have predictable nature and better results are obtained when more
accurate information about the jobs is available. Thus we conclude that
major improvements can be obtained by matching jobs to hosts based
on their requirements specially when operating under a heterogeneous
environment.

Appendix A - Dynamic Priority Function

function DYN_PRIO_FUN(}, &, i)
/* Compute the dynamic priority of job j on node i given the utilization
of the resources of node i. The job belongs to node k */

(1) forr =1 to nres;
(req; ./r_speed; ;) + ovrhd * r_speed; ,

> req; ,/r_speed; ,

1 srsnres;

2 norm_load, =

(3) endfor
(4)  neutral_ut = (Min, {ut; ,} + Max, {ut; ,})/2
(5) shape =0
(6) forr =1 to nres;
(1 - min_ut;) * norm_load,

@) new_ut, = ut; , +
norm_load iy .5,

® if new_ut, > 1 and ut; , > neutral_ut then
C)) shape = 1 /* non-eligible candidate */
10) endif
(11)  endfor
(12) dyn__P"in, i=0* Maxru-min_res,- {new_ut,}
0=1 k=i
= thresh1l otherwise
(13)  return(shape)
(14) end

Appendix B - BATCH-QUE management algorithms executed on node i

1. Every loc_adj_mpl seconds

(1) Compute ut; , over the past window r = 1...nres;
(2) max_ut = Max,{ut; ,}
() min_ut = Min, {ut, ,}
(4) if (max_ut - min_ut) < gap A max_ut = low_thresh then stop
(5) VY, € job_set; Do
©6) shape = DYN_PRIO_FUN(}, i, i)
@) if shape = Ovmax_ut < low_thresh then
)] /* Job j is an eligible candidate */
C)] good_cand; = good_cand; U {j}
10) endif
(11) enddo
(12) if good_cand; = ® then stop
(13)  min_prio = Min;{dyn_prio; ;} j € good_cand;
(14)  best_job = js.t. dyn_prio; ; = min_prio
(15)  Increase MPL by best_job
(16) end
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2. At Job Departure

(1)  if cur_mpl = min_mpl then stop

(2) Wait for dep_window seconds

(3) Measure ut; , over dep_window r=1.nres;

(4) VYV jE job_set; Do

&) Shape = DYN_PRIO_FUN(j, i, i)

(6) enddo

(7)  Select job j with Min; {dyn_prio; ;} to join the system
(8) end

P.S.job_set; = {set of all batch jobs waiting at BATCH-QUEi}

Appendix C - Global Scheduler Part 1

Executed every glo_adj_mpl seconds on node i (i = 1...N)

(1) acc_set = @

2 fork=1toN

3) max_ut = Max, {ut ,}

“) min_ut = Min, {ut, ,}

&) neutral_ut = (max_ut + min_ut) / 2

6) min_res_k = r st.ut, , = min_ut

©) if (max_ut - min_ut) > gap v max_ut < low_thresh then

(€))] /* node k can accept jobs */

€3)) VjE job_set;do

®) shape = DYN_PRIO_FUN(/, k, i)
10) if shape = 0 v max_ut < low_thresh then

/* job j is a good candidate at node k */
an good_cand, = good_cand, U {j}
12) endif
13) enddo
14) if good_cand, » ® then acc_set = acc_set U {k}
(15) endif
(16) endfor
(17) repeat until job_set; = ® v acc_set = O
(18) min_prio = Min, ; {dyn_prio; ,} ¥V k € acc_set
YV j € job_set; n j € good_cand,
19 Let best_job and dest_node s.1.
dyn_priobesl_job, dest_node ™ min_prio

(20) Send best_job to dest_node
21 acc_set = acc_set — {dest_node}
(22) job_set; = job_set; — {best_job}
(23) endloop
(24) end
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Appendix D - Global Scheduler Part 2

Executed every bal_que_per seconds on node i (i = 1...N)

)

03]
)
4

©)
(©6)
™

(®)

)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17
(18)
(19)
(20)
3y
(22)

(23)

(24)
(25)
(26)
@7
(28)
(29

tot_job = U, {job_set;} k=1.N
/* set of all batch jobs on all BATCH-QUEs */
acc_set = U, {k} k=1.N
V jEtot_job do
for k=1to N

req,-_ r
r_speed,; ,

lot_ser_time = 3
r
for r = 1 to nres,

req; , | r_speed; , .

norm_fin_time; ; , = -
- = " tot_ser_time * (1 - ut; ,)

a=1 k=i
= thresh2 otherwise
endfor
endfor
enddo
accum_load, , = 0 V k, r /* accumulated load*/
norm_accum_load, , = 0 V k, r /* normalized accum.load*/
repeat until acc_set = ® v tot_job = O
Y j Etot_job do
V k € acc_set do
max_load, ; = Max, {norm_accum_load, , + norm_fin_time; , \}
enddo
enddo
min_load = Min, ; {max_load, ;}
let migr_job and dest_node s.t. max_load ge; node. migr_job = min_load
if migr_job € job_set; A dest_node = i then send migr_job to dest_node
for r = 1 to nres je5; node
B Teq migr_job, r
r_speed desi_node, r *(1- Ul des:_node, r)
norm_accum_load jes; node,r = norm_accum_load ges; pode,r + norm_fin_time mig; job, r, dest_node
endfor
if Max, {accum_load 4.5 noge. r} = min_work then acc_set = acc_set — {dest_node}
tot_job = tot_job - {mi-gr_ job}
endloop
end

accum_load 4. noge, r = accum_load 4,5 noge.r +
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Abstract

The PARABASE research effort focuses on shared nothing MIMD
machines used as high performance DB servers in federated DBMS
architectures. In particular, one of the project goals is to improve the
responsiveness of large scale online transaction processing applications
in commercial environments using the performance provided by mas-
sively parallel machines. At the moment, all prototype components are
designed and implemented for an iPSC/2 hypercube machine linked
into an TCP/IP based network.

Two key features of the PARABASE approach which are addressed in
this paper are

° An application transparent multi-level parallel query and update
concept yielding a high degree of parallelisation for DB client
requests and

A highly specialised parallel file system which is able to support
multiattribute tuple access operations on the file system call
level.

Those two key features are described in the context of the overall hard-
ware and system software environment provided by the shared nothing
parallel server machine as well as with respect to the federated DBMS
paradigm used to handle the DB services in a distributed and heteroge-
neous client environment.

1. Introduction and Project Motivation

Considering the practical requirements for modern database manage-
ment system architectures, as stated by large business oriented corpora-
tions with long range information management policies, yields at the
moment at least three important topics, namely
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High performance DBMS architectures designed to handle large
scale online transaction processing applications based on broad-
band (e.g. B-ISDN) data networks,

Federated DBMS architectures combining private databases to be
held on local workstations and shared databases to be held on
performant DB server machines by means of a simple informa-
tion exchange mechanism (i.e. CHECK-OUT and CHECK-IN of
data sets), and

Heterogeneous DBMS architectures designed to integrate differ-
ent DBMS products eventually belonging to different DBMS para-
digms (relational, object oriented, hierarchical, ...) thus providing
at least a minimum of interoperability between different products
and DB paradigms.

Reacting to those requirements to a certain extent, considerable DBMS
research efforts take place. Some of those efforts aim at the efficient
utilisation of parallel processing power in database management and
result in DBMS development projects on parallel machines (see
[DeW86a, Cop88a]). Others deal with federated architectures in dis-
tributed hardware environments (see [Kim91a]).

Using the experiences and results of those projects, the PARABASE
research effort outlined in this paper focuses on shared nothing MIMD
machines used as high performance DBMS servers participating in dis-
tributed workstation environments, in particular on a prototype
designed and implemented for an iPSC/2 hypercube machine linked
into an TCP/IP based network. The main reason not to use shared
memory architectures (see for example [Hon90a} for a description of a
shared memory approach) is the rapid progress in the development of
high-speed processor interconnection technologies. Considering for
example the internode bandwidth claimed for the latest member of
intel’s supercomputer family (i.e. PARAGON), an improvement of
about 2 magnitudes between the iPSC/2 and the PARAGON production
machines (from 2.8 MB/sec to about 200 MB/sec) can be observed. In
[Fri90a], an internode bandwidth of 10GB/sec for fibre optic links is
claimed under laboratory conditions.

Such technologies will compensate for the current inter-processor data
transfer bottleneck caused by the huge data transfer volumes of data
intensive applications like DBMS. In other words, they will provide
superior DBMS performance on shared-nothing massively parallel
architectures according to standard arguments like speed-up and scal-
ing for shared-nothing machines (see for example [Fri90b, Fri90a] or
[Pen92a)).t

Focusing on the high performance DBMS server software of our feder-
ated architecture, two key features of the PARABASE approach are an
application transparent multi-level parallel query and update concept
on the one hand and a highly specialised parallel file system supporting
multiattribute access on the other hand. Our multi-level approach
towards query and update parallelisation includes the parallel process-
ing of concurrently issued query and update requests, the parallel pro-
cessing of query chunks (e.g. four joins belonging to the same SQL-
style query are processed in parallel) and the parallel processing of
some query chunks itself by the underlying file system (e.g. a multiat-

t It should be mentioned, however, that at the present moment, any DBMS system optimised for a shared memory architecture with a
relatively small number of processors which is not going to hit the limit of the system bus bandwidth during query processing will very
likely outperform any other DBMS system dcsigned for a shared nothing architecture with the same number of processors (in {Hon90a)
a factor of 2 is claimed). However, considering realistic project turn-around times even for prototype developments, we are quite con-
vinced about a timely appearance of adequate link technology.
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tribute range query is spread over a disk array). Consequently, a spe-
cialised file system is needed in order to process range queries against
tuple sets as low level file system operation instead of conventional low
level read/write operations against flat files (see [Wit91a] for an outline
of the file system and [Mue91a] for a description of the data structure).

After a brief description of the current hardware platform and the cor-
responding system software environment in Section 2, we give an out-
line of the PARABASE federated DBMS architecture with respect to the
multi-level query and update parallelisation concept. Since the
resource investment for the design and implementation of a non-
standard paralle] file system has to be motivated, we describe our ratio-
nale for this step in Section 4. Additionally, a brief description of the
underlying index data structure is given. Section 5 deals with a number
of technical issues regarding the new file system, as there are organisa-
tional structure, data distribution policy and interprocess communica-
tion pattern. Section 6 provides conclusions and a short outlook at
work in progress and the research agenda in general.

2. Hardware Environment and System Software

At the present moment, an eight processor iPSC/2 machine is used as
shared nothing database server. For workstations running local appli-
cations or other DB client machines, the iPSC/2 DB server is accessible
via TCP/IP. System software includes UNIX System V at the “system
resource manager” (SRM), an i386 based workstation which serves as a
front end system to the actual hypercube, a UNIX derivate called NX/2
as symmetric node operating system and the intel supplied “concurrent
file system™ (CFS, see [Pie89a] for details) used to operate the disk
array.

In contrast to ordinary iPSC/2 or iPSC/860 platforms, all processors of
the project configuration serve both as computing nodes and as I/O
nodes. Each node is equipped with a standard SCSI controller and, at
least at the present moment, with one 650MB SCSI disk. The architec-
tural distinction between computing nodes accessible for application
processes and mass storage nodes (so called 1/0 nodes) only accessible
via file system calls (as used by intel for NIC applications) would be
counterproductive for a mass storage oriented project and has been
omitted for that reason. Consequently, the current hardware
configuration is shown in Figure 1.

The different communication hardware technologies depicted in Figure
1, namely standard Ethernet for client-server communication, intel pro-
prietary DirectConnect for node-node communication and SCSI for
node-controller communication, yield to challenging problems with
respect to bandwidth balancing. Additionally, considering the rapid
change in communication hardware and the resulting rapid change of
bandwidth ratios between the communication layers (client-server,
node-to-node, node-controller), any parallel DBMS architecture has to
provide means for optimisations in case of changing bandwidth ratios.

Under these circumstances, the absolute performance of our project
configuration is not relevant.” The important point with respect to the
hardware and system software configuration is that it allows for the
design, the implementation and, above all, the evaluation of different
parallel database system concepts iri a common framework, namely a

t Obviously, an arbitrary commercially used state-of-the-art database machine will clearly outperform our current configuration as
well as, to our present knowledge, any other research project configuration in 2 university environment.
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Figure 1: iPSC/2 database server hardware configuration

shared nothing MIMD machine running a symmetric node operating
system based on well-known standard concepts.

3. An Outline of the PARABASE Architecture

The database paradigm chosen for the PARABASE approach is known
as federated DBMS paradigm. In a federated DBMS architecture, sev-
eral clients use their private databases (PDB) on local machines and a
number of shared databases (SDB) on one or more host machines.
Additionally, some data sets (tuple sets, object sets, ...) can be trans-
ferred to or from a shared database employing a simple yet elegant
exchange mechanism, namely the CHECK-OUT and CHECK-IN proto-
col known from [Kim91a]. This concept is based on a data set transfer
from a shared database to a private database (CHECK-OUT), an eventu-
ally long lasting data manipulation phase and a final retransmission of
the data set to the shared database (CHECK-IN). Figure 2 is meant to
illustrate that data exchange schema.

According to this paradigm, the PARABASE process architecture con-
sists of

) Local DBMS server processes, called LSP, running on local
workstations for private database manipulation and DB server
communication.

A load-balancing process located on the SRM used to dispatch
client request, e.g. insert, update and delete requests as well as
query requests.

A pair of service processes per processing node, i.e. a file sever
process, called FSSP, for mass storage requests and a DB server
process, called NSP, for high-level data manipulation and query
processing.

Figure 3 illustrates the PARABASE overall process architecture. Addi-
tional information concerning the query processing policy is given
below.
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V data
shared DB

Figure 2: CHECK-IN and CHECK-OUT in a federated DBMS architecture

Basically, each local DBMS server process is able to launch DBMS
requests, i.e. data manipulation and query operations, schema
modifications and CHECK-IN/CHECK-OUT requests which are dis-
patched by a high-level load balancing process on the SRM.

Focusing the discussion at query requests, each concurrently issued
query, is routed to one responsible node server process, parsed and bro-
ken up into several query chunks. Typical query chunks are selections,
projections, joins, unions and so on. Some of those query chunks can
be handled directly by the underlying file system, e.g. orthogonal range
queries, exact match queries and partial match queries issued against
single tuple sets. All other query chunks do not correspond directly to
file system calls and require additional actions by the NSP. The most
prominent example for this type of query chunk is the relational join
operator.

e Ethemnet
...... DirectConnect
RURRR SCSI

Figure 3: PARABASE overall process architecture
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Figure 4: Stepwise decomposition and parallel processing

In the following, those two categories of query chunks are called FSSP
chunks and NSP chunks respectively. If q denotes a particular query
request, by convention the sets ,q - {,;q,..,q} and
q? = {q', .. @™ } shall denote the corresponding FSSP chunks and
NSP chunks. All members of (q, i.e. all query chunks corresponding to
file system calls, are passed to the local FSSP. Basically, those chunks
are broadcasted and processed in parallel by all operational FSSPs. A
detailed description of this level of parallel processing can be found in
Section 4. An additional level of decomposition and parallelisation
takes place for all members of q%. In a first step, these query chunks
are spread over all operational NSPs in such a way that each q' is
assigned to one responsible NSP. In a second step, the NSP responsible
for a particular ¢' decomposes, if possible, the query chunk into a set of
sub-chunks. In the following, this set is denoted by
q. = {q',.. qf}. Consequently, all members of q} are distributed
over all operational NSPs and processed in parallel. Finally, each mem-
ber of q' causes file system calls upon execution. These local requests
issued in order to process sub-chunk q; are denoted by [ q}. Figure 4
illustrates this system of stepwise decomposition and parallel process-
ing.

Considering the process of collecting and assembling the results of
query chunk execution yields a bottom-up schema reflecting the
decomposition schema described above. Each local FSSP collects the
results for all members of (q which have been executed in parallel by
all other FSSPs. Those results are passed continuously to the corre-
sponding NSP on the same node.

Quite similar, each NSP responsible for a query sub-chunk, say q}‘: ,
issues appropriate file system calls, collects the corresponding data
from the local FSSP, executes the sub-chunk and passes the subresi'lt to
the NSP responsible for the query chunk q'. The data resulting from
the overall execution of the query chunk q' is passed to the NSP
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dispatcher T

node 2

Figure 5: Data collection and delivery

responsible for the original query request q which in turn passes the
data to the LSP responsible for the remote data delivery to the applica-
tion. Figure 5 describes this collection schema.

The parallel processing of query chunks corresponding to file system
calls, i.e. the processing of FSSP requests, is described in Section 5.
However, recalling the multi-level concept towards query parallelisa-
tion as depicted in Figure 4 and 5, any query in the PARABASE archi-
tecture is handled in 4 Jevels of parallel processing (Table 1).

After this brief outline of the parallel query processing policies, we
focus on the non-standard file system used to execute the FSSP chunks
mentioned above. In a first step, the rationale for the design and imple-
mentation of a non-standard file system (see [Cho85a] for an earlier
example) is given. Subsequently, the technical characteristics like data
structures, data distribution policies and communication structures are
described.

4. Rationale and Basic Data Structures for a Non-Standard File
System

Standard UNIX file systems as well as state-of-the-art parallel file sys-
tems (see [Pie89a]) maintain flat files, i.e. unstructured byte strings
held on mass storage devices. Common access primitives on such files
are read, write and seek. The operating system supports atomic data
transfer actions for continuous byte segments belonging to files. In
other words, each file system read or write call issued by an application
is intended to transfer a certain amount of uninterpreted data from a
mass storage device into the application address space or vice versa. In
most cases, the continuous byte segments to be transferred are specified
as a number of bytes relative to a so called file pointer. The crucial
point is that all the data have to be uninterpreted, i.e. without any
structure or semantics, as far as the file system itself is concerned. In
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any other case, the flexibility of the data type file and the general
usability for all kinds of applications would vanish.

This type of mass storage subsystem is well established and absolutely
sufficient for non-database environments, especially for numerical
computing. However, data intensive applications which have to rely on
high-performance persistent storage management subunits (e.g. data-
base management systems) reveal the inherent weaknesses of flat file
systems very quickly. In particular, there is a strong need for access
operations acting on tuple sets (or even on object sets, see [Mos90a])
instead of classical access operations acting on continuous byte seg-
ments. Basically, a data intensive application issues mass storage
requests for tuple sets fulfilling certain logical conditions defined over
certain attributes of the stored tuples. A file system designed to execute
such requests with reasonable performance has to include two key fea-
tures, namely internal (in the sense of tightly integrated) multikey
indices and parallel request processing. The former supports fast
attribute-symmetric search operations whereas the latter helps to
bypass the ever present disk 1/0 bottleneck.

Consequently, the design of a non-standard persistent storage manage-
ment system at the operating system interface requires a decision
whether the persistent storage management system should use internal
index structures on top of the common flat file system or instead of the
flat file system. The second alternative implies a complete logical
bypass of the original file system which actually ends up in a physical
replacement in most cases since the partitioning of mass storage
devices for different file systems seems to be rather unattractive for
various reasons. Some basic performance considerations favour the

Level1 High-level dispatching
actor (location)  Dispatcher (SRM)
actions e  System load dependent distribution of incoming query re-
quests (interquery parallelisation), i.e. assignment of each
query request q to a responsible NSP

Level2 Parsing, partitioning and chunk distribution for query request q
actor (location) ~ NSP responsible for q (node)
actions e  Query request parsing

e  Parse tree analysis and isolation of independent query chunks
q' .. " (NSP chunks) and ;q .. ,q (FSSP chunks)

e  Distribution of isolated NSP query chunks (intra-query paral-
lelisation), i.e. assignment of each query chunk q' to a respon-
sible NSP

e  Propagation of isolated FSSP query chunks to the local FSSP

Level3  Partitioning and sub-chunk distribution for NSP chunk q'
actor (location)  NSP responsible for q' (node)
actions e Isolation of independent query sub-chunks ,q' .. , q"
e Distribution of isolated query sub-chunks, i.e. assignment of
each query sub-chunk jqi to a responsible NSP

Level4 Broadcasting and parallel processing of FSSP chunk ; q
actor (location)  FSSP responsible for , q (node)
actions e  Production of an request broadcast for all operational FSSP
e  Management of FSSP subresults produced in parallel

Table 1: The 4 levels of parallel processing in PARABASE
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second alternative, even in spite of the need for additional development
work. Intuitively, each additional layer in a persistent storage manage-
ment system consumes a certain fraction of the overall system power,
therefore the integration of the basic data storage functionality and of
the index maintenance functionality yields significant performance
improvements.

Consequently, the new file system is meant to replace the current flat
file system (in particular the CFS) in case of data intensive applications.
It has to provide flat file system capabilities as well as the tuple set
capabilities outlined above. Fortunately, CFS source code has been
already supplied by intel, therefore an integration of DiNG file and flat
file functionality does not end up in too much additional effort at the
moment.

Following from the above, a file system prototype based on distributed
and nested grid files (called DiNG files in the sequel, see [Wit91a] or
[Mue91a] for details) has been implemented which supports tuple
insert and tuple delete operations as well as parallel exact match, partial
match and range queries quasi at system call level. Distributed and
nested grid files are a multikey index structure designed for mass stor-
age subsystems on shared nothing MIMD machines, i.e. an index struc-
ture which allows for parallel queries against key attribute sets. Prior
to the description of the file system, a few words about the underlying
basic data structure, i.e. nested grid files as presented in [Fre87a] or
[Fre89a], seem to be appropriate.

The key idea common to all grid file design approaches is the interpre-
tation of n-tuple as elements of an n-dimensional space. This space,
called data space in the sequel, has to be successively partitioned into
smaller subspaces as the number of tuples increases. The resulting set
of smaller subspaces used to give a partitioning of the initial data space
has to be mapped to a totally ordered set, namely the disk block address
space. This is to ensure that each relevant subspace of the n-
dimensional data space corresponds to one physically transferable stor-
age unit, i.e. a disk block, since any possible n-tuple has to be stored in
one of the allocated disk blocks if passed to the mass storage subsystem
for insertion. In the original grid file design (see [Nie84a]), the geo-
metric contents of any two subspaces have to be disjoint. With respect
to a reasonable directory expansion behaviour in case of non-uniformly
distributed or correlated raw data, the nested grid file approach relaxes
this condition to some extent. The relaxed partitioning condition reads
as follows: if any two hyperrectangles intersect, one has to enclose the
other.

The resulting partitioning schema, which in turn determines the geo-
metric shape of the subspaces, is conceptually simple. Basically, itis a
buddy system with subsequent binary partitioning of the initial data
space. All hyperrectangles are created as a result of alternating and
cyclic binary domain splitting as depicted for the 2-dimensional case in
Figure 6(a) below. Each hyperrectangle is identified by a pair of val-
ues, namely (RegionNumber, SplitLevel). Region numbers are created
by successive bit interleaving of the domain subinterval bit signatures.
The interleaving sequence is given by the cyclic domain split sequence,
i.e. 1.bit of domain,, 1.bit of domain, --- 1.bit of domain, , 2.bit
of domain , 2.bit of domain, --- 2.bit of domain, and so on. Fig-
ure 6(b) illustrates the bit interleaving concept.

The physical directory structure is implemented as height-balanced
multiway tree. Figure 7 shows a nested grid file, both ir the geometri-
cal representation and in the data structure oriented representation. The
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Figure 6: Data space partitioning and subspace identification

file in Figure 7 contains two subspaces stored in the directory and two
tuples stored in data buckets.

A search for tuple x, in the file of Figure 4 includes a directory traver-
sal to find the subspace identifier corresponding to the enclosing block
region. The data bucket reference attached to block region identifier
provides access to the data bucket in which x, is actually stored. How-
ever, considering x, reveals that the smallest enclosing subspace has to
be found. Actually, x; is contained in both subspaces but stored in the
data bucket referenced by the directory entry of subspace (3,2).

This symmetric multikey approach is in contrast to B*-tree approaches,
which either favour certain attributes or attribute combinations or force
a database administrator to use an unacceptably large number of index

directory

(3.2)((0,0)

data bucket references

L0

Figure 7: Nested grid file example
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structures for one single file. In particular, 2" ~ 2 B*-trees would be
needed for a file with n key attributes. This figure corresponds to the
cardinality of the powerset of m minus 1, since the empty subset of the
p attributes has to be excluded. Additionally, the attribute sequence in
a compound single-key index is not even considered in this figure
although it is of prime relevance for any query optimiser.

5. The DiNG File System - Structure, Data Distribution and
Communication

After the motivation for the design and implementation of a non-
standard file system and the brief outline of the underlying basic data
structure, the technical characteristics of the resulting parallel file sys-
tem can be described. In particular, we elaborate on the actual file sys-
tem structures, i.e. on superblock and i-node maintenance, on the cur-
rent data distribution policies and on the inter-node communication
structure of the FSSP farm with regard to NSPs acting as client applica-
tions.

5.1. The File System Structure

The basic mass storage block allocation, handling and administration
schema of the DiNG file system is conceptually simple and similar to
the UNIX mass storage block administration. At that level, the main
differences between a standard parallel file system and the DiNG file
system stem from the separate handling of data blocks and index block.
Free space administration is done with bit map structures, i.e. the FSSP
control process maintains a super block, an i-node bit map, a bit map
for data and index block, a list of i-nodes and a list of block containing
data blocks as well as index blocks. Since data blocks and index
blocks are handled by different subprocesses of the file system, a dif-
ferentiation between the two block classes is necessary even at this
lowest level of block administration. At the moment, the block buffer
cache employs a standard hash table based LRU displacement strategy
(see [Tan87a) for example). Other displacement strategies are cur-
rently considered, however, a detailed discussion of buffer cache con-
siderations would be beyond the scope of this report. Readers inter-
ested in this topic may refer to [Mue91a).

At this point, the internal process structure of the FSSP (depicted in Fig-
ure 8) has to be described. However, the discussion of the control flow
and the data flow between the subprocesses and the NSPs in case of
tuple insert requests or query requests is delayed to Subsection 5.2.

Each NSP acting as DiNG file system client has to use a FSSP client
library which is responsible for correct protoco! handling and appropri-
ate message formats. This library provides access to the local file sys-
tem server, i.e. the FSSP located on the same node as the NSP. All FSSP
requests issued by NSPs are initially handled by the FSSP local to the
requesting NSP. Subsequent parallel processing is transparent to the
NSP, since requests are passed to and results are obtained from the
local server.

The FSSP client library has a counterpart in the FSSP, namely the client
message handling library used by the FSSP control process. The con-
trol process uses a second message handling module, namely the con-
trol message handling library for all internal communicatiors with
other control processes on different nodes. Besides all coordination
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and control tasks in the context of insert, delete and query request han-
dling, the control process manipulates directly all index blocks. In
other words, the control process executes all index searches and passes
the resulting data block numbers subsequently to the fetch & send pro-
cess, which is responsible for data block handling. A third process, the
so called get & send process is responsible for all query result deliver-
ies. It collects all query subresults from all fetch&send processes, i.e.
from the local f&s as well as from all other f&s on different nodes, and
passes the collected data to the local NSP.

The data distribution policy can be described as round robin tuple dis-
tribution. Each insert request INSERT <tuple> INTO <file> is
passed to the local control process and triggers a lookup operation in
the corresponding i-node which yields the appropriate node number for
the next insert into <€ile>. In particular, if last_FSSP(<file>)
denotes the number of the FSSP which received the last tuple previ-
ously inserted into <file> and if p denotes the number of operational
FSSPs, the expression (last_FSSP(<file>)+1 modulo p) yields
the number of the FSSP which has to insert <tuple>. If the calcu-
lated FSSP number refers to the local node, the correct data block num-
ber is determined, the tuple together with the data block number is
passed to the f&s process and finally inserted by the f&s process. If the
calculated FSSP number refers to a different node, the control process
passes the tuple to the corresponding control process which takes the
appropriate steps for local insertion.”

As a result of this distribution schema, each DiNG file is spread over
all available nodes. In other words, each logical DiNG file as seen
from a client’s point of view consists of a number of physical DING
files. The contents, i.e. the tuple set of one logical file equals the union
of all corresponding physical files.

FSSP client library

4§ FSSP

client message | | contro! message

handling library | | handling library

get & send

control process
process

fetch & send

disk driver

NX/2 kemnel

Figure 8: FSSP subcomponents

+ All further implementation details of the distribution process (e.g. the node counter update per file) are omitted due to space consid-

erations.
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Figure 9: Query execution

5.2. Control Flow and Data Flow in the File System

Control flow and data flow in the context of query executions represent
probably the most interesting parts of the interprocess communication
in the file system. The following description refers to the process struc-
ture discussed in Subsection 5.1 and to Figure 9, which depicts the situ-
ation in case of an FSSP query execution.

A particular query request on node i is launched via an FSSP library
call, received by a client message handling function and passed to the
local control process on node i. This responsible control process sends
the query request to all other control processes (phase 1). All control
processes perform an index search on their local part of the DiNG file
(see above) in parallel and extract all relevant data block numbers from
the index (phase 2) and pass these numbers to the corresponding f&s
processes. All f&s processes fetch the appropriate data blocks in paral-
le! and send the retrieved data to the g&s process on node i (phase 3).
As soon as the g&s buffer area on node i is filled, the g&s process
broadcasts some kind of <stop_transmission> signal to all f&s
processes and engages in the data delivery to the client process (phase
4). As soon as the g&s buffer contents has been delivered, a
<restart_transmission> signal is broadcasted by the g&s pro-
cess. The protocol iterates in phase 3 and phase 4, until all the data
qualified by the query request has been delivered.

6. Conclusions and Near Future Research Agenda

The PARABASE research project aims at shared nothing MIMD archi-
tectures to be used as high performance DBMS servers in federated
environments. Central parts of the PARABASE project are a multilevel
approach towards query parallelisation and a high performance parallel
file system, namely the DiNG file system. The file system has been tai-
lored for DBMS needs and includes a’low level query processing policy
based on a particular multiattribute search structure, namely on nested
grid files. The index in‘ormation is stored in a balanced multi-way tree
similar to a B*-tree.
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The near-future research agenda contains various open problems con-
cerning different tuple distribution policies, some considerations about
bandwidth balancing between links and SCSI-devices with regard to
query processing, a number of topics in the context of replicated data
maintenance and a number of additional DBMS oriented problems like
concurrency control (see [Lue92a] for a first non-distributed solution).
From a different point of view, a considerable research effort is needed
in order to investigate the relevance of throttling and speculative work
for DBMS topics. In particular, certain throttling policies in case of
heavy join processing (i.e. not engaging all processing nodes for all
joins) seem to be promising.
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Abstract

This paper describes a system to manage objects in a distributed envi-
ronment. The basic configuration consists of a set of loosely intercon-
nected object repositories storing strongly typed objects. Objects are
collections of data and associated operations and can have complex,
nested structures. They can be accessed remotely and can move
dynamically between repositories. Objects and object classes are only
shared in a limited way, i.e. we do not require a global schema as in the
distributed database model.

We present several alternative mechanisms to locate mobile objects,
and to implement object mobility. Both aspects are shown to be
closely related. Finally, we illustrate the application-level functionality
of our approach by describing a distributed office procedure facility on
top of the basic system.

1. Introduction

This paper describes the architecture and implementation of a dis-
tributed object management system. The basic system configuration
consists of a set of loosely interconnected object repositories storing
strongly typed objects. Objects are collections of data and associated
operations and can have complex, nested structures. They can be
accessed remotely and can move dynamically between repositories.

This basic model provides important advantages as compared to cen-
tralized solutions and to other distributed system approaches. It allows
a natural modeling of applications in decentralized organizations. For
example, the major organizational units of a corporation can be mod-
eled as coarse-grained objects with a large population of fine-grained
data objects circulating between them in order to do data processing.
The objects can be statically or dynamically mapped to network nodes
of a distributed environment; nodes can operate relatively
autonomously. As opposed to distributed database systems, the differ-
ent nodes may perform their individual schema management and typi-
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cally only share a limited amount of type and instance information. We
do not require a global schema as required by the distributed database
model. The performance of local processing can be improved by an
appropriate initial object placement and by adapting the object distribu-
tion dynamically. As opposed to more conventional distributed sys-
tems, the distribution can be relatively transparent once a specific
object placement has been determined. In particular, objects can be
accessed and invoked in a location independent way. In our mobile
environment, this is achieved by an extended forward addressing mech-
anism.

We present several alternative mechanisms for locating mobile objects
and for implementing object mobility. Both aspects are shown to be
closely related. We also illustrate the application-level functionality of
our approach by describing a distributed office procedure facility on
top of the basic system.

Conceptually, our approach is language-independent: we define a gen-
eric distributed systems service to manage a distributed object environ-
ment. Several object-based languages can exploit our facilities by
adding special distribution-related object classes and modest language
extensions. The only basic requirements of our approach are that
objects are typed and have a global identity, that layout description
information for object data structures is available, and that operation
invocations on objects can be intercepted in order to perform
distribution-related actions.

In summary, our major contribution is to design a generic approach to
manage mobile objects in a persistent environment, to integrate the
approach with supporting mechanisms, and to present a sophisticated
application-level service which directly exploits our facilities. The
paper is organized as follows. Section 2 discusses related approaches
and outlines their implications for our work. The main Section 3
describes our approach to distributed object management. We also
give an outline of an associated implementation structure that is the
conceptual base of our current UNIX implementation, as well as of a
former implementation in an IBM PC/Host environment. In Section 4,
we describe our application-level office procedure service. Section 5
concludes with an outlook to future work.

2. Related Work

A number of existing approaches have been concerned with distributed
object-based systems [Chi91a] and also with the distribution of object
repositories. The Emerald system [Bla87a,Jul88a] supports fine-
grained, mobile objects in a distributed environment. It offers opera-
tions to locate and move objects explicitly and makes object invoca-
tions location transparent. A specific feature is the ability to move
objects even if they are currently being accessed. Moreover, mobile
Emerald objects can contain a set of internal objects which cannot
move independently; this allows for larger grains of mobility and for
more efficient implementation of local invocations. A major prerequi-
site for such mechanisms has been the tight integration of the Emerald
language and system. The Amber system [Cha89a] is a follow-on pro-
ject and implements a distributed version of C++ with comparable
facilities. Most important, it supports both inter-node and intra-node
parallelism to implement applications on a combination of tightly and
loosely coupled multiprocessors. While the use of an existing language
makes the approach very attractive, this also complicates the imple-
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mentation of mobility features and requires significant restrictions con-
cerning the use of memory pointers within mobile objects. There have
also been several distributed extensions to the Smalltalk system, for
example [Ben87a, Cor90a]. These approaches enable Smalltalk objects
to move between workstations and to be invoked transparently.

The approaches summarized above only support transient objects and
do not incorporate persistent storage. As opposed to that, the Hermes
system [Bla89a] supports persistent mobile objects. A subset of the
system nodes serve as storesites, i.e. as persistent object repositories.
Objects can move freely between nodes with volatile memory and can
also checkpoint their state and log state changes at a selected storesite.
An object can be reassigned to a different storesite dynamically. Spe-
cial protocols to locate objects using storesites and to manage objects in
persistent storage are part of the approach. Likewise, the Comandos
system [Kra90a, Ber90a] also supports persistent objects and object
mobility. A new language named Guide is introduced to implement
application programs and is integrated with the runtime system. A
specific feature of Comandos is the support of object clusters with
dynamic cluster management facilities [Kra90a). This way, coherent
units of local execution can be configured at runtime. A proposal to
support a highly available distributed object repository is outlined in
[Lis90a]. In addition to basic object distribution facilities, object repli-
cation and flexible language integration is supported by the described
design.

We have borrowed basic ideas from many of these approaches to sup-
port object mobility and to locate objects in a distributed environment.
We provide major extensions by introducing a location algorithm
which combines different distributed runtime mechanisms. Moreover,
we provide additional features that address access to system objects.
We also provide a concrete application service which takes advantage
of our basic system.

3. Managing Objects in Distributed Repositories

3.1. System Architecture

This section first introduces the overall architecture of our approach. It
presents the object mobility features and the mechanisms to locate
mobile objects. Finally, our implementation is outlined.

Our basic system architecture consists of a set of object repositories
and workstations which are interconnected via a network.” An object is
basically a collection of data and associated operations. The physical
network topology is transparent at our level of discussion; that is, we
assume a logically fully interconnected network where each node is
reachable from any other. Access to a remote object, however, is
assumed to be about two orders of magnitude more expensive than
local access in terms of response time. Figure 1 shows an example
topology with a number of interconnected repositories and worksta-
tions, and stored objects with logical interobject references. Worksta-
tions can fetch and cache copies of objects stored in repositories and
can store updated copies back in the repository later. The cache man-
agement is based on conventional pessimistic locking; an investigation

1 The repository structure is only supported by the IBM environment; our current UNIX implementation only consists of workstations.
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Figure 1: Example of a distributed repository/workstation topology

of alternative optimistic cache management policies is beyond the
scope of the paper.

All objects are typed, i.e. each object belongs to a specific object class.
The class information is partially shared and is available to both reposi-
tories and workstations. Operations on objects are executed on cached
copies within workstations; caching is performed transparently on
demand by mechanisms on top of our approach. Objects can be
accessed and fetched in a location independent way; a prerequisite is
that the invoker has a valid reference to the object. Each object has a
globally unique identifier which never changes; it is generated by con-
catenating the identifier of the node where it is created with a number
which is unique within the scope of that node. Objects can refer to
each other locally and remotely using these identifiers. In addition,
objects can dynamically move between repositories in order to increase
locality of reference. Details of migrating and locating an object are
discussed below. To summarize the functionality, the signatures of the
most basic interface operations are briefly explained in Figure 2 using a
simple notation (<operation> (<parameter_types>) -> <return_type>).
We assume several predefined types for operation parameters which
are passed by reference. In particular, Location is a descriptor for a
node object, Object is the superclass of all objects, Status holds opera-
tion status indications, Class is a descriptor for an object class, Opera-
tion is a descriptor for an operation to be performed on an object of a
particular class, ObjectName is simply a string, and ParameterSet and
AttributeSet are data structures holding tags and values of parameters
or attributes, respectively. Beside the conventional operations to cre-
ate and invoke objects, we offer operations to locate, move, and copy
an object remotely. In addition, there are operations to fetch objects
into a workstation cache and to flush them back to a repository. Move,
Ferch, Flush, and Invoke can also be applied to a set of objects at once.

Moreover, an operation to resolve object names and attributes returning
an object identifier is supported (FindObject). Names and attributes to
be resolved can be abbreviated by using wildcards in order to perform
a fuzzy search. As a consequence, the operation can also return a set of
objects which match the query. The invocation-related operations are
hidden by additional mechanisms on top of our approach by a remote
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Locate (Object) -> Location // locates a given object
Move (Object, lLocation) =-> Status // moves an object 10 a new location
Copy (Object, Location) -> Object // creates a copy of an object and moves it

Create (Class,ParameterSet) -> Object // creates a new object with initialization parameters
Delete (Object) -> Status // deletes an object

Fetch (Object) -> Status // fetches a copy of an object to the local site

Flush (Object) -> Status // writes the copy back to the original

Invoke (Object, Operation, ParameterSet) -> Status
|/ invokes an object operation location independently
FindObject (ObjectName, AttributeSet) -> Object
// retrieves an object reference from the name service
/I based on the given name and anributes

Figure 2: Interface operations for basic object management

invocation manager. The other operations are exposed to applications
via an application programming interface.

The described architecture is suitable for a variety of decentralized
applications, for example of the office automation area. It supports
persistent data management which is crucial for most real applications
like forms processing or distributed decision making. As opposed to
centralized or distributed databases, the approach emphasizes site
autonomy by requiring only a limited sharing of class information.
This way, a high degree of flexibility and efficiency can be achieved
for a wide class of applications, especially if most processing is done
locally. However, there is still the need to access limited amounts of
data on remote nodes and to move objects from time to time.

In the following, we outline a number of alternatives to manage objects
within the described environment and motivate our concrete design
decisions.

3.2. Locating and Migrating Objects

As described above, objects are referenced via globally unique
identifiers. However, to make object access location independent and
efficient in a mobile environment, additional mechanisms are required.

Our basic approach to refer to remote objects is to introduce proxy
objects. A proxy translates a unique object identifier into an internal
location hint and possibly a location dependent identifier. This way, a
local object can query the appropriate local proxy to gain access to a
referenced remote object. Several alternatives are possible concerning
the creation of proxies and concerning the update of their location
information and are discussed below.

Access to a moved object

When an object moves from site A to site B, it must still be accessible
via references from site A and from other remote sites. This access can
be done via a broadcast request to all sites; eventually, node B will
respond if it is available. However, this solution is very inefficient in
large networks and can introduce significant overheads even in small
local area networks. Therefore, a proxy must be installed at node A
which refers to node B. We further distinguish between two internal
solutions (see Figure 3). If objects are referred to locally via an object
table, the appropriate table entry holds the physical address of the
object. When the object moves, the address can then be directly
replaced by the proxy information or by a pointer to it (alternative a in
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Figure 3: Installation of a proxy for a moving object

the figure). The physical storage used by the object at site A can be
reused for other data. If objects are referred to by direct memory
addresses, the proxy information must be inserted at that address (alter-
native b in the figure).

References to the moved object from an other remote site, C, will be
based on a proxy at that site pointing to the location A." It is not neces-
sary to modify them as C can access the object by contacting site A
which will forward the request to B based on B’s proxy. We call this
mechanism forward addressing without immediate location update. It
improves the performance of a migration but makes further remote
access more expensive. However, the location hint can at least be
updated after the next access by returning current location information
to C. The scheme makes access also less reliable: there may exist a
whole chain of proxies after a set of migrations. If one node holding a
proxy is unavailable, the object will not be accessibie (except by using
broadcast).

An alternative is forward addressing with immediate update. With
this scheme, A will inform C about the new location of the object, i.e.
B, immediately and C can adjust its proxy accordingly. However, this
requires additional messages during the migration phase. It also
requires backward pointers from an object to all proxies which cur-
rently exist for it. Both may not be feasible in large environments with
frequently referenced objects. However, the performance and avail-
ability problems of following multiple proxies is avoided by this
scheme. In summary, the immediate update improves object access but
makes mobility and the maintenance of object references more expen-
sive.

A third and more promising alternative is a combination of both: usu-
ally, forward addresses without immediate update are used. In addi-
tion, a moving object can optionally register its new location at its cre-
ating node and/or at a global name service. At these nodes, special
proxies are maintained for it which are subject to immediate update.
Access to the creating node is enabled as it is included in each object
identifier (see Section 3.1) and is therefore known to all referencing
objects.

t The object can also be accessed by contacting its creating node which is included in its object identifier as discussed below.
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Figure 4: Combined solution for remote proxy management

An object is located by following forward addresses as long as proxy
chains do not exceed a maximum length and as long as all intermediate
nodes are available. Otherwise, the creating node and/or the name ser-
vice are contacted and may yield the object’s current location if it has
been registered there. Depending on the estimated cost of accessing
the creating node or the name service, the maximum size of a proxy
chain to be followed can be adjusted (typical biases are expected to be
below 10). We adopt this combined solution but provide the option of
not informing the name service or the creating node in order to fine-
tune an application. The combined solution is summarized in Figure 4,
a proxy for the migrated object is installed at node A and the creating
node and the name service are informed about the migration. They
update the special proxies which then point to the new location, i.e. to
node B.

In order to improve performance, location hints can also be cached
directly within object references or within an attached intermediate
data structure. This way, a referencing object can directly forward an
invocation without having to examine the proxy. Moreover, such aug-
mented references can be exported to other nodes easily without the
need to install associated proxies there (see below). However, proxies
are still required: the location hint within a reference may be com-
pletely outdated if the reference has not been used for a long time.

Finally, there may already exist a proxy for the moved object at the
destination node. It is simply deleted and replaced by the actual object
data. The internal implementation again depends on the local object
access mechanism, i.e. whether a table indirection is used or not (see
above).
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Figure 5: New binding of imported references to local system objects

Management of Imported References

In a mobile environment, the other fundamental question that arises is
how to manage object references which are imported at a given node.
Such reference import takes place at a site A if an object containing
references moves to A, if an invocation passes reference parameters to
A, or if an invocation returns references to A. There are again various
solutions: if the imported references contain location hints, no proxies
have 1o be installed for them immediately. The location hint can be
used for the first access to a referenced object; after that, a proxy can
be installed lazily in order to make further accesses more efficient.
Even if no explicit location hint is available within references, the cre-
ating node within the object identifier can still be used as an implicit
hint. Such a solution may even be recommended if it is not possible to
identify all references originating from a moving object (e.g. if typed
layout information is not available for the different fields within the
object’s data structure).

Alternatively, proxies can be installed immediately for all imported ref-
erences. If a proxy or even the original object already exists at the
given node, no additional installation is necessary, of course. This pol-
icy makes further access more efficient and reliable but makes migra-
tions more expensive with respect to implementation and runtime per-
formance. We selected this policy for its conceptual clarity and rela-
tive simplicity. However, it will be worth to investigate a combination
of both approaches, too: proxies could be installed for all references
imported via invocations but not for references originating from moved
objects. The basic motivation is that object references passed as
parameters are much more likely to be used for immediate further invo-
cations. These references have to be marked explicitly with a special
attribute.
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const Bias = 5;
AddressType* Locate (Location* node, Object* object, int pathlength)
{ AddressType* address;
if (Local (object)) return Address (object); // object is local

if (pathlength < Bias) { /! try forward address lookup
if (LocationHint (object) != Null) { /{ @ proxy was found
address = Locate (LocationHint (object), object, pathlength+l);
if (address != Null) return address; // remote lookup was successful
}
}

address = Locate (CreatingNode (object), object, 0);
if (address != Null) return address; //lookup at creating node was successful

address = Locate (NameService (), object, 0);
return address; //finally: return result of name service lookup
}
// Initial invocation:
objectAddress = Locate (thisNode, object, 0);

Figure 6: Basic algorithm to locate objects

Access to system objects

Another option is to rebind imported references locally instead of
maintaining a pointer to the original object. This solution seems espe-
cially important for a variety of system objects which represent local
devices like a terminal, a printer or a system queue, for example: it may
be desirable to do input/output based on local devices instead of redi-
recting it to a remote site. System objects are assigned known logical
names and references to system objects are marked explicitly. When
such a reference is imported, the appropriate system object is searched
locally based on the logical name and its object identifier replaces the
identifier of the previous system object. The replacement can be per-
formed immediately or lazily depending on the policy described above.
The mechanism is illustrated in Figure 5: an object moved from node A
to node B and had a system reference pointing to a terminal object at
node A. The reference is bound to a different terminal object at node B
via a logical name.

Summary: Algorithm to locate objects

As a summary, the basic algorithm to locate objects is given in Figure
6. It is given as the C function Locate. We assume several predefined
types as described in Section 3.1. AddressType is a descriptor for an
object’s location and its location-dependent storage address at this
location. Several macros are used: Local(Object) tests whether an
object is local to the invoker’s location by examining its object table
entry, Address(Object) returns the address descriptor of an object if it
is local, LocationHint(Object) returns an existing proxy for a remote
object, CreatingNode(Object) extracts the creating node out of an
object identifier, and NameService() returns a global reference to the
name service.

If the location lookup is successful, the function Locate finally returns
a location dependent address of an object, i.e. its current location and
memory address. Its formal parameters are initially instantiated with
the location of the caller, the identifier of the object to be located, and
an initial zero search path length. The function first checks the local
object table and returns the local object address if successful. Other-
wise, the object table is checked for a proxy containing a location hint.
If successful, Locate is invoked recursively at the node indicated by the
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hint.! If no proxy is available or the forwarding chain is longer than a
given bias, we try to locate the object at its creating node. Our final
attempt to locate it is to inquire the name service. The mechanism can
be optimized by doing several inquiries in parallel and by employing a
more flexible asynchronous message communication service.

Control of mobility and migration of object groups

The above discussion presented basic mechanisms and alternatives to
manage mobile objects. In addition, we basically support some
defaults to control mobility and also movement of logically or physi-
cally related groups of objects.

Objects can be marked as highly mobile or as relatively fixed. This
information is given at the class level and can be overwritten at the
instance level. If a reference to a highly mobile object is exported via
an invocation, the object is moved together with the invocation imme-
diately. This way, further access to an object at the destination site will
be local and therefore more efficient. Relatively fixed objects are only
moved on demand as their migration costs are assumed to be
significant.

In addition, object references can be marked as being strong; if an
object moves, all objects referenced this way move together with it as
they are assumed to form a coherent unit [Bla87a). A stronger version
of such units is supported by issuing a migration request to a logical
group of objects (given by a collection of object references). In both
cases, the required amount of physical communication can be
significantly reduced by internally concatenating all coresiding objects
which are moved.

In order to enable larger grains of mobility, we have developed basic
concepts for physical object groups similar to [Hab90a]. In particular,
a mobile object is not necessarily only a collection of flat data but can
also contain complex nested structures internally. However, no direct
references from other objects into such a cluster are allowed. This
way, references within the cluster can be implemented as relative
pointers and no table indirections are necessary (see Figure 7). Access
to internal objects can then be implemented more efficiently than
access to enclosing mobile objects. When internal access is performed,
the base address of the enclosing object is added to each relative
pointer. When a cluster is moving, internal pointers do not have to be
adjusted as they are relative. We do not intend to support the transfor-
mation of cluster-internal objects to mobile objects as outlined in
[Hab%0a].

Finally, we suspend migration requests for an object if it is currently
accessed and cancel them after timeout. That is, we do not consider the
migration of activated objects as for example in [Jul88a] due to its
severe implementation problems. Moreover, objects can be explicitly
fixed at their current location; in this case, a migration request is simply
rejected. The migration procedure itself consists of transforming an
object or a group of objects into a flat form, shipping it to the destina-
tion site, reinstalling it, performing the described proxy management,
and acknowledging the migration at the source site. We do not go into
further details of this procedure as related implementation problems
have been described by other authors in depth [Jul88a].

+ For simplicity of presentation, we assume the existence of an underlying RPC service. In reality, we optimize the described mecha-
nism by employing a TCP/IP message passing service.
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3.3. Implementation

An implementation of our approach is being performed at our univer-
sity. It is based on former experiences gathered with a similar environ-
ment named Object Manager during a post-doc stay at the IBM Tho-
mas J. Watson Research Center, Yorktown Heights, New York. This
system was based on an existing OODB prototype named DEPOT
which provides a client/server object repository model. One or several
0S/2 clients can access a DEPOT database on an MVS or VM/CMS host
or 0S/2 system in order to retrieve and store back objects using an
extended C interface. The database is built on top of relational data-
bases (DB2 and SQL/DS).

Our extended effort is now focusing on a C+-based UNIX implementa-
tion of distributed object management. This support system has been
implemented as a C++ class library under UNIX (Ultrix) on DECStations
5000 and 3100. For low-level network communication, it uses TCP/IP
sockets. Concurrent object invocations within an operating system pro-
cess are implemented by a modified version of the AT&T C+ threads

package.

All distribution-related object management operations are defined
within a specific class DObject and are inherited by application-
specific classes. In addition to remote invocation, basic operations for
migration of non-activated objects between nodes and for related locat-
ing, fixing and unfixing purposes are supported:
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Figure 8: Implementation structure per node

class DObject { // ... instance variables
public: DObject (LogicalNode*); {/ constructor to create at node
“DObject (); // destructor
LogicalNode *locate (); /! to locate the object
boolean move (LogicalNode*); //to move the object
void fix (); // to fix the object (avoid move)
void unfix (); }: // to release the object

Recent performance measurements show numbers in the range of 100
milliseconds to retrieve an object from a server database to a client
workstation.

Figure 8 shows an outline of our implementation structure per node. It
is based on a port-oriented message communication mechanism and on
lightweight processes sharing an address space. A port handler process
is passively waiting at a remote receive port and is processing all
incoming messages. Depending on their contents, the handler process
passes them to an invocation, migration, or cache handler module.
These modules can also be directly invoked via a local interface. If
invoked via the receive port handler, the modules spawn lightweight
handler processes to perform local requests. The port handler is then
able to listen to the receive port again. In order to process local
requests, the object table is accessed to retrieve objects or proxies in
persistent memory. Remote requests are passed to the appropriate node
via the remote sendport. They can result from local applications, e.g. if
they perform remote object invocations, or from previous incoming
remote requests, e.g. if an object is searched along a forwarding chain.

Several possible optimizations to this basic structure are possible. The
lightweight processes spawned by the handler modules can be pre-
allocated. That is, a limited number of processes is permanently exist-
ing and is only increased on demand. Local invocations can bypass our
special modules and can operate directly on the object table. They
would then only fall back to handler modules if they make remote
invocations necessary. Other optimizations concern the message pass-
ing between nodes. Most important, messages along forwarding chains
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are sent asynchronously; a response is only sent from the final destina-
tion to the original source. Communication during migration is syn-
chronous, i.e. after a moved object has been installed at its destination,
a response message is sent back to the handler at its source. Response
messages are associated with request messages based on unique mes-
sage identifiers.

The selected implementation structure enables flexible interfacing with
the local system components. The handler modules make distribution
almost transparent. However, an application can still control object
locations explicitly.

4. Application Service: Distributed Office Procedures

As an example application of our system, we designed a service to
specify and manage distrit:uted office procedures [Sch91la]. It has
some basic ideas in common with other systems like [Art90a]. The ser-
vice has partially been implemented within a joint IBM project.

In particular, our approach provides a declarative notation to specify a
conditional sequence of processing steps which are required to perform
a structured office task. A concrete example is the processing of a
travel expense form (see Figure 9). In this example, an employee fills
out a request form at his personal workstation and attaches an itinerary
description and some other required documents. All these data are rep-
resented as mobile objects. The employee then creates an office proce-
dure object of the appropriate predefined type. The header section of
the object contains type information, its owner, its create time, and
some other data. It also has a routing specification which specifies the
processing steps (services) which are to be applied to its data. The
employee can instantiate the specified services with concrete
servers/office workers or can rely on a dynamic, system-controlled ser-

Company
Repository

WS

Travel Account
Office Repository

Department
/ Repository
Manager
Repository ws
Office Procedure Object \
Fixed Data Dynamic Data
Header Routing Slots Slots
Spec
AN NN NN
Request Travel
Form Sched Personal
Employee = WS
E ” y

Figure 9: Example of a distributed office procedure
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vice binding. References to the attached data objects are inserted in a
number of predefined fixed data slots. Additional slots can be defined
in order to hold references to dynamically created data.

The office procedure object is then forwarded to the respective servers.
It is therefore physically moved to their repositories. The attached data
are either moved with the object or are accessed remotely. First, the
object is moved to the manager’s repository; the manager accesses it
there from his workstation in order to approve the form. Then it is
migrated to the travel account office repository and then the account
office calculates the amount to be refunded to the employee. Addi-
tional repositories may be involved: the manager may request data
objects from the department repository in order to analyze the previous
travel record of the employee. Likewise, the travel account office may
access the company repository to get additional address and employ-
ment information about the employee. In both cases, copies of the
required data objects are moved to the travel account office repository
or to the manager repository, respectively.

The declarative office procedure specification language of our
approach consists of a notation to describe the server environment, i.e.
to specify server types and instances, a notation to specify, instantiate
and modify the data slots of an office procedure, and a notation to
describe the routing of the office procedure object as a graph with ser-
vice nodes, interconnection edges, and attached routing conditions. In
addition, several other features are supported, for example, timeout
control of service execution or different means to specify service bind-
ing. In particular, the binding can be completely static or completely
dynamic or it can be basically dynamic but guided by static binding
hints and by server evaluation functions. The associated runtime sup-
port consists of an initiation phase (office procedure setup, attachment
of data objects, and specification of binding hints), a major execution
phase (dynamic office procedure routing and service execution), and a
termination phase (notification of success or failure, distribution and
persistent storage of result data). In addition, supervisor commands
can be issued via a remote command interface, for example to query
the current state and location of an office procedure, to suspend and
resume its execution, to inspect and modify its attached data objects,
and to setup a facility to monitor its execution continuously.

While server interfaces can be implemented by objects which are usu-
ally fixed at their location, office procedures and attached data are
mapped to highly mobile objects which move between the different
service sites. In addition, we perform location independent remote
object access to servers, via the remote command interface, and for
data objects which are not moved together with the office procedure.

5. Conclusion

The paper described the design and implementation of a mobile object
environment. We presented several different mechanisms to support
the required facilities, especially an extended forward addressing pol-
icy with several specific technical aspects. We also validated the appli-
cability of our approach by designing an application-level office proce-
dure service on top of it.

Future work will focus on the development of concepts to integrate the
approach with different underlying communication facilities. Namely,
we are porting the UNIX implementation onto the OSF Distributed
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Computing Environment using Threads, RPC, and the Cell Directory
Service. In addition, we would like to achieve better insight into the
usability and performance of our extended forward addressing mecha-
nisms. Moreover, the cooperative office application field will be inves-
tigated further.
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Abstract

Knowing that the “Network is the Computer” implies distribution of
data on many storage devices throughout a network, the system. Peo-
ple responsible for the information processing architecture, i.e., the dis-
tributed data center, must be capable for managing these stored infor-
mation elements and storage locations. This requires complex designs
and operations. The advantage of open distributed systems must not be
lost because of problems associated with managing them.

To resolve these problems, highly automated solutions for unattended
operations, ease of use and setup, hiding of unnecessary complexity,
etc., is currently under development by HP’s System Management
Division (SMD). The Automated Storage Management (ASM) project
will address the full complexity of networked environments we
encounter today. A comprehensive Approach.

Introduction

The networked environments we see today, and those we expect and
envision to serve with an automated storage management solution con-
sist of several servers linked together with a variety of desktop clients.
These servers, typically HP 9000 (UNIX), or HP 3000 (MPE) mini com-
puters serve Terminals, PC’s, and Workstations. The network being
the system, to manage it is characterized by a possible co-existence of
three important network operating systems (NOS):

° UNIX networks on TCP/IP offering OSF’s Distributed Computing
Environment (DCE) services

'y Novel’s Netware
) Lan Manager

Since these are portable versions of Netware and Lan Manager, we
expect all three operating environments to coexist in the same network.
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Such an environment implies a large number and variety of storage
locations and organizations to serve, hence increasing the environment
complexity.

The source of information objects are from:

° Personal Computer Clients (DOS)

° Workstation clients (UX)

° Personal Computer Servers (Netware, LM)

. Mini Computer Servers (UX and MPE)

These information objects, for storage management purposes, may be
organised as follows:

. Disks, volumes, raw device contents
° Files, directories of files
° Data bases

To implement Storage Management, the following operations are
required:

° Backup and recovery/restore
. Archival and retrieval
. Storage space management

From the above sources, the kinds of information objects and the kinds
of operations, there are three dozen combinations that a comprehensive
storage management solution must address. Although, not all of these
combinations make sense, e.g., to archive disks for historical or legal
purposes is certainly not meaningful, and data bases will almost always
be backed up from servers and not from desktop clients, a considerably
long list of storage management solutions need to be developed for dis-
tributed environments:

Disk Backup/Recovery for:

. DOS PC’s, MAC’s and Workstations

) UN*X Servers with portable Netware and portable LAN Manager
(LM/X)

MPE Servers with portable Netware and portable LAN Manager
(LM/iX)

Native Netware (INTEL-PC) Servers

LAN Manager Server on 0S/2 PC’s

Data Base Backup/Recovery for:

° UN*X Servers
. MPE Servers
° INTEL PC Servers

If data bases are to be backed up from servers, the different Data Base
Management System (DBMS) suppliers must be taken into account as
they require different support for their special flavour of backup pro-
cesses.

File Backup/Restore from and to:

° DOS PC’s, MAC’s and Workstations
'y UN*X File Servers
'y Novell Netware File Servers
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. LAN Manager File Servers
° MPE Servers

Assuming that all three major network operating environments coexist
on the same network, file backup and restore must be able to handle the
different file name conventions of DOS, MAC, Netware, 0S/2, UN*X,
NFS, DCE/DFS and some proprietary environments.

Archival and Retrieval

For some environments, both archival and retrieval may be required.
Archival differs from backup as it’s purpose is not to safeguard a copy,
but to retain historical copies of files for legal and other purposes, €.g.,
version maintenance.

Data base archival is a required storage management task, and can be
offered as an integrated solution consisting file archival and procedures
offered by the major DBMS suppliers, e.g., ORACLE, INFORMIX,
INGRES, SYBASE, DB2, ALLBASE, ADABAS, etc. (Most DBMS have
utilities to unload/export data base tables to the file system of their host
server and to reload/import them). Archiving is then achieved by mov-
ing these files into archive together with appropriate attributes to
retrieve them later.

Storage Management

The purposes of storage space management is to monitor usage levels
of disks and to free up space, by rolling out stored information objects
that are infrequently accessed or are already old and obsolete. Storage
space management maybe considered for all disks in the system:

. DOS PC’s, MAC’s workstations (i.e., all clients)
° UN*X, MPE Servers
° PC Servers (Netware, 0S/2)

Some scientific and technical applications use huge amounts of data,
organised in file systems too big to be always locally present. Storage
space management may serve these environments offering high perfor-
mance, automatic, roll out/roll in processes to integrate data from fast
local disks to networked storage servers, and to removable high density
media in autochangers, and to migrate them back transparently if
accessed.

The Storage Management Process Model

Managing systems/networks must focus on people who perform the
management role, the methods and tools they use to perform that role,
and the processes that describe how people perform their management
role using the methods and tools at hand. This applies to system man-
agement in general and to storage management in particular.

Technology changes like distributed or client-server computing not
only introduce more services, possibilities, capabilities and advantages
over traditional centralized mainframes, but also introduce more com-
plexity. Processes to manage these distributed computing environ-
ments must reduce this complexity through automation.
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In the case of storage management, the key trend identified is to shift
the focus from different stored information objects and their manage-
ment tasks, e.g., backup, recover, archive and retrieve, to the people
who manage them. Only the automnation of tasks and entire processes
people perform, will cope with the challenge to keep pace with the
changes in information processing environments.

To manage the backup, recovery, archival and retrieval of such differ-
ent objects as disks files and databases, together with control over stor-
age space available across an entire network, cannot be done any more
by the selective and individual usage of single tools and methods. It
needs a bundle of processes to assure safeguarding and archiving of
valuable information. Ideally, we think of finding a way to free up the
people from carrying out the processes to let them only manage the
process of storage management.

The solution is not to build tools people can use to manage stored infor-
mation objects efficiently, but to actually remove the people from the
process as much as possible. Human reaction and interaction speed is
limited, as are human abilities to cope with situations of even increas-
ing complexity like data bases, file systems and storage locations scat-
tered throughout the network. What needs to be automated are pro-
cesses that are large complex collections of tasks performed by people
today.

Backup a data base from one server in the network to a special backup
and storage server that offers all suitable peripheral devices and media,
requires a long sequence of task to be carried out, to be understood and
mastered. [t requires the knowledge of specific DBMS’s on line backup
procedures, the way and format of the data to be backed up, how they
need to be transported to the backup up server, and where they will be
placed on what media.

Recovery is even more complicated. Such management processes need
improvements in the people, in the tools and methods and the pro-
cesses. Most solutions today only enable storage management for
some of the different purposes, and fall short of what customers need
as they do not deal with the processes that people actually have to per-
form.

For the definition of advanced storage management solutions, we there-
fore need a solution maturity framework, and a target level of maturity
we want to achieve for the next generation of storage management
solutions. Todays solutions are characterized by the fact that all
knowledge on the processes has to be in the heads of the people man-
aging the system. These solutions only offer tools to automate single
steps and tasks. To explain, we may call this an “initial” level of matu-
rity, followed by a level called “repeatable”, and another level
described as “definable”

Initial

A variety of single step solutions address partial needs only. An
absence of consistent, comprehensive and integrated set of methods
and tools impede the creation of reliable policies, procedures and pro-
cesses, to safeguard and archive valuable information.

Methods and tools for storage management are known and tools for all
specific purposes may be available, but none of them are integrated or
based on a consistent architecture or framework. Operations are car-
ried out on an individual, ad hoc basis. There is no common or cen-
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trally available knowledge in case there is loss of information and
requires recovery.

Repeatable

Solutions offer a set of fairly comprehensive tools and methods. These
tools can be put together and configured to carry out a variety or
sequence of tasks.

But the configuration and operation of such sequences still requires an
expert to design and set up the processes desired. Very often these
tasks are performed by a specialized person or a guru who knows about
the “what”, “when” and “how” of the processes. He is the person
everybody knows they need to call just in case a complicated recovery
has to be carried out. Processes depending on persons bear the risk of
loosing the experience and expertise with changes of either environ-
ment/technology or with personnel/organizational changes. A shift
from centralizing computing environments already implies such a shift
in paradigm, resulting in demand for new processes to manage the
backup, archival and storage space available in networked systems. Of
course, this change does introduce greater complexity together with
tremendous advantages of having computing power everywhere on a
network. But these complexities aggravate the problems of manage-
ment of such systems. SMD’s ASM project is therefore targeted to
achieve the next level of management solution maturity.

Definable

As size and complexity of distributed data processing environments
grow continuously, so does an increase in the risks of managing them
by repeatable processes only. Too rapid a change, complexity and
variety have to be learned and mastered by too many experts. One can
always increase management resources and improve processes, but
beyond a certain level of complexity, help can only be expected by
another level of automation. The “definable” level of solution maturity
will allow policies to be carried out automatically and independently
from personally owned knowledge.

If solutions are policy controlled, the policies will be available, docu-
mented and independent of specific experts. They may be inspected,
changed and adapted. The defined solution is people independent, con-
sist of documented policies that record process characteristics, steps
and tasks that can be passed over to people, and either are executed
manually or by pre-programmed reactions, operations and administra-
tive measures. Hence, it achieves a higher degree of automation and
decreases the complexity seen by people managing the system. The
definable policy level of management solutions enhance management
by managing the processes.

For design of storage management solutions we need a general man-
agement process architecture that enables definable level of solutions.
We see a four stage architecture for storage management purposes and
processes: operation, execution, administration, change of policy and
planning.
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An Architecture of Storage Management

An architecture for the definable solutions of self-managed systems
consists of three process loops on three operational levels. The lowest
level for execution of storage management operations offer storage ser-
vices together with transportation and transformation of stored infor-
mation objects from and to storage management clients. These ser-
vices operate on the distributed system and record results from the
operations. The results gathered are measurements fed into the next
higher level, i.e., operational and then administrational levels. For the
operational level, the operations executed and events recorded from a
loop to control the correct execution of the operations. The record loop
is associated with the administrational level to keep track of the state
changes and the history of operations. The third loop is between the
administrational and operational levels. Application strategies get poli-
cies and schedules set by administrators and put them into the adminis-
trational services. From these administrational services, the application
strategies are feedback records, to be offered as reports. The adminis-
trational services execute the policies regarding what to do when,
through schedules applied to the application operations.

Both the application strategies and application operations, come in dif-
ferent flavours, e.g. database backup and archival or file backup and
archival, and their inverse operations, restore and retrieval. The appli-
cation operations may monitor and report events and certain states to
local operators, if there is no way to continue operations without
human intervention. But usually, the application operations execute
automatically, and only report results to the administrational services
and application strategies, thus executing all processes automatically,
controlled by policies and schedules that are set up as application
strategies by administration. This is the criterion that applies to the
definable level. One might argue that in the case of restore/recover or
retrieval operations, there will always be a need for an operator, but
such need depends on the nature of the event that requires a
restore/recover/retrieval. In many cases these operations may be car-
ried out and triggered automatically.

Besides the strategic and operational components of the storage man-
agement architecture, services for storage, transportation, transforma-
tion and administration have been mentioned. All these services are
common to the case set of storage management functions.

Backup, archival and administration of available storage space use
copying or moving mechanisms to get stored information objects from
storage clients to storage servers and to place them on the available
hierarchy of storage devices. Regardless of application, such trans-
portation can be achieved on LAN or local BUS data channels, by gen-
erally available methods for file transfer and networked file manage-
ment (e.g., NFS, DFS, Netware Lan Manager, FIP, FTAM). The admin-
istrational components will have to record the names, locations
(sources and destinations) owners, etc., and provide these information
attributes to storage management applications. To execute copying and
moving, a good architecture should provide separate command and
data channels.

On the command channel, management applications would talk to local
agent processes for the transport execution. A remote management
application may thus activate local managers, that in turn, use local
agents. The communication of remote activation of operations, and the
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feedback of events signalling correct or unsuccessful operations, would
be carried out using standard management protocols.

Transportation is not the only class of function required for central
operational core. Usually all information objects that will be entered
into storage management undergo some transformation or translation.
Desk files and database tables will be transformed into a standard
object, consisting of a header and a bit stream to be stored on disk or
other devices. One may choose some standard formats for that, and
conversions between them, e.g., tar, cpio, etc. Very often, encryptions,
compressions or import/export transformation for databases may be
asked for. Since there will be different file systems that coexisting on
the netware, it will be required to translate between the different file
name specifications of UN*X, DFS, Novell, Mac, DOS, HPFS, etc. The
administration service mentioned before, is a database driven applica-
tion, using a relational data base service either centrally or distributed.
This database will serve as the repository for:

° Clients and users, their contracts, rights and obligations.

° Contracts on what to do when, i.e. policies, worklists and sched-
ules.

Histories of executed operations (e.g. backup sessions) to pro-
vide information on what was executed and the results achieved.

Information objects, their identifications, names, sizes, time and
date stamps, and more attributes as required, e.g., archival.

The transformation and transportation services, together with the
administrational component, require one more server to store the man-
aged information, objects on devices and media. The storage server
and or services has to handle all devices and media. A storage
medium, either a fixed or a removable disk, that allows a file system to
maintain its format, e.g., of UN*X, will be adequate.

The storage service has the knowledge about different media, their
locations, and the placement of objects on the media. Is the service or
the server used to access the backed-up or archived objects. The stor-
age services maintain the information regarding differences between
diverse media and their access mechanisms, transparent for other ser-
vices for transportation. A storage server need not be in central loca-
tion. The set of all computers in the network that offer devices suitable
for backup and archival on different media is the storage server.

Integration

When proper integration is achieved, the end is more than the sum of
its components. This is due to synergy.

For a comprehensive, cohesive, and consistent set of storage manage-
ment solution, we want to achieve a means of using the same operation
for the same purposes.

File backup and archiving only differ by additional file attributes
required to store an object or retrieve it. Archiving usually adds an
additional time mark to differentiate between different versions.

Data base archival and file archival differ additionally in that, data base
tables are unloaded or reloaded prior to archiving or after retrieval to or
from a file system.

System backups and recoveries using raw device images are drie
pretty much the same way many data bases are handled. Recovery of a
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database is not the same as system recovery. After restoring the disk
image, data base recovery also needs recovery of transactions that are
recorded in log files being archived. Such applications always differ
from each other because of their different purpose. But many building
blocks are of the same nature for common mechanisms, and so is the
handling of stored information objects to transport, transform, store and
recall them from devices and media. This serves in an integrated way
for all solutions. But integration is more, as it focuses on how people,
processes, applications and the pieces of the system work together.

Within an organization people perform the tasks of system manage-
ment and storage management. This must be planned and integrated
with the processes storage management applications offer. These
applications are reached using a Ul (user interface) that offers a com-
mon and consistent way of interconnecting the people executing man-
agement processes using programmed solutions. The purpose of Ul
integration is to provide a close, spatial location of the information and
tool available to the end user under a common presentation and
behaviour. Integration is one of four dimensions:

. Ul

° Data

° Process
° Network

Data integration comes as a common data base for backup, archival,
storage space control and media management.

Process integration is the ability to automatically coordinate tasks and
group them into processes the user would otherwise have to do himself.
For example, most DBMS’s offer functions for the task to unload tables
from a data base for archiving, but the archiving itself has to be carried
out by some system vendor supplied function. Process integration must
be assured to have mechanisms at hand to implement entire process
sequences. This can be achieved through means of simple event driven
actions to sophisticated object orientated exchange and message mech-
anisms.

Network, or the system itself is the last dimension of integration, that
allows control over distributed storage management solutions. The
ultimate integration point is single point management, e.g., having the
means 1o access all solution parts from any one desktop system on the
network. This single point console could offer the integrated Ul
(preferably graphical), with access to tasks, processes, data and all
capabilities to monitor what happens during the execution of manage-
ment processes.
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Abstract

A multicomputer is a collection of a large number of distributed, inde-
pendent processors connected by a high-speed network. Software sys-
tems for high-performance, scalable multicomputers have been evolv-
ing far less rapidly than hardware systems. As a result, multicomputers
continue to be viewed as an anomaly and not as a cornerstone of main-
stream computing environments.

In this paper I discuss several requirements for multicomputer software
systems. These requirements include a parallel programming environ-
ment which allows programmers to balance programmability and
efficiency, application-level networking protocols, and replicable dis-
tributed operating system services running on a portable microkernel.

1. Introduction

A multicomputer is a collection of a large number of distributed, inde-
pendent processors connected by a high-speed network. In contrast, a
multiprocessor generally consists of a small number of processors shar-
ing a common physical memory. Multicomputers offer the promise of
greater performance, scalability and cost effectiveness than uniproces-
sors and shared-memory multiprocessors.

Software systems for high-performance, scalable multicomputers have
been evolving far less rapidly than their counterpart hardware systems.
As a result, the improvements in processor speed, and networking
bandwidth and latency have not yet been matched by improvements in
system usability and scalability. In other words, while it’s possible to
build, or buy a teraop multicomputer, effective utilization of that
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machine remains a significant problem. Although there have been

- some successes in constructing specialized parallel applications, and
running coarse-grained multiprogrammed loads, multicomputers con-
tinue to be viewed as an anomaly, and not as a comerstone of main-
stream computing environments.

A multicomputer cannot be treated entirely as a parallel processor
because processors do not share a common memory, and may not even
share a common architecture. On the other hand, it should not be
treated entirely as a distributed system because processors need not be
considered wholly autonomous, arbitrarily dissimilar, and randomly
dispersed. Moreover, many multicomputer networks, such as the Para-
gon 2D-mesh [Rat92a], the CM-S fat-tree [Ric92a], and even ATM-
based LANs [Rid89a], can be assumed to be nearly 100% reliable, both
in message delivery and ordering. These characteristics of multicom-
puters — neither an entirely parallel system nor an entirely distributed
one, introduce new constraints and requirements for the software that
will be used to manage them.

Effective multicomputing imposes three requirements on software sys-
tems. These are:

) A parallel programming environment that allows the programmer
to balance programmability and efficiency.

Low-overhead software paths between the applications and the
network.

A set of operating system services distributed across many nodes
in the multicomputer layered on top of a portable microkernel.

In the rest of this paper, I discuss each of these requirements for multi-
computer software systems. I use the term “software systems” rather
than “operating systems” to imply a scope broader than that implied by
just the latter. Effective multicomputing is not simply an operating sys-
tems problem, restricted to virtual memory management and communi-
cation protocols, but is instead an entire systems problem, ranging from
the operating system kernel layer (local resource management) to the
network (communications management) to the parallel-distributed pro-
gramming environment (applications management) available on the
system.

2. The Parallel Programming Environment

Parallel processing is the raison d’étre of multicomputers. Conse-
quently, its requirements should serve as the driving force of all multi-
computer system software. In other words, a highly parallelizable, net-
work transparent, fault tolerant ioctl interface is not going to make
the task of parallel programming on multicomputer any easier.

The absence of a coherent, logically centralized shared memory is what
makes a multicomputer both attractive and hard to deal with. The lack
of a global shared memory enables a distributed memory multicom-
puter to scale with little cost, making it an attractive computing base.
In contrast, the few large-scale truly shared memory multiprocessors
such as Tera and the KSR machine {Bel92a] have a substantially higher
“per-node” cost and have not yet demonstrated themselves to cost-
effective. On the other hand, it is the largely absence of a single shared
memory that makes a multicomputer difficult to program.
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2.1. Memory Consistency Models

In recent years, the architecture and operating systems communities
have been experimenting with an array of memory consistency models
which provide memory semantics that are less stringent than those intu-
itively expected from a memory system. These models are intended to
reduce the overhead of providing a consistent distributed shared mem-
ory. Intuitively, programmers expect a memory system to be sequen-
tially consistent [Lam79a). In such a system, all processors perceive
all memory accesses in exactly the same order. Trivially, a uniproces-
sor is sequentially consistent. A small-scale shared memory multipro-
cessor with strict memory buffering (reads do not bypass writes) is also
sequentially consistent. Although it matches the programmer’s base
expectation of memory system behavior, sequentially consistent sys-
tems incur far greater communications overhead than is generally
needed by a shared memory parallel program.

Memory access performed by a parallel program car be divided into
two classes: regular accesses and synchronizing accesses. Regular
accesses are those that are performed on a program’s data structures.
Synchronizing accesses are thosc that are used to schedule regular
accesses, and are performed on locks and semaphores. In a distributed
shared memory system, synchronizing accesses can be used to control
the behavior of the memory system, as well as processors, in order to
reduce the overhead of ensuring a consistent shared memory. Simply
put: a synchronizing access by a processor is a signal to the memory
system that previous updates performed by that processor should
become visible to other processors in the network. Until the synchro-
nizing access occurs, other processors should be unable to access the
data for which the synchronization is occurring (presumably that being
written) anyway, so any transmission of new values is unnecessary.

There are a large class of memory consistency models which expioit
synchronizing accesses. These include: weak consistency [Dub86a],
release consistency {Gha90a], and entry consistency [Ber91a]. Each
model requires progressively more information from the program with
respect to synchronizing accesses, and each, in order, provides a nar-
rower range of guarantees about the consistency of memory with
respect to such accesses. In essence, as the consistency model is weak-
ened, the programmer must provide more information to the memory
system describing the type and scope of a synchronizing access. In
return, the memory system can reduce the amount of communication it
performs to provide the level of consistency guaranteed by the model.

A parallel programming environment for a multicomputer should have
the following attributes with respect to the memory consistency model:

. Support for a distributed shared memory that can support a
range of memory consistency models. The “best” consistency
model for a parallel program depends on the network, processor
speed, and a program’s sharing patterns. It makes no sense to
dictate a highly-efficient but semantically restrictive model
which makes writing a parallel program difficult when the pro-
gram itself would function just as efficiently under a less strict
model. For example, a two-processor producer/consumer pro-
gram is naturally pipelined, and would not be any better served
by a memory system which delays operations until synchroniza-
tion time — a simple asynchronous pipeline is sufficient. On the
other hand, it also makes nu sense to deny the programmer
influence over the communication patterns through the use of a
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sequentially consistent memory model simply to maintain an
aura of transparency.

Support for converting “dusty-deck” parallel programs written
in C or Fortran that are based on a strongly consistent memory
model into programs that can use a weaker consistency model.
A programming environment must provide a graceful migration
path by which dusty-deck programs written for a strongly consis-
tent shared memory multiprocessor can be ported to a weakly
consistent distributed shared memory. Without this ability, it can
be a substantial task to convert a shared memory parallel pro-
gram written to use one consistency model into one that uses
another.

Support for isolating and monitoring memory “hot spots” during
the execution of a parallel program. By identifying which mem-
ory accesses result in the greatest degree of consistency over-
head, the programmer can restructure the code which accesses
those hot spots to rely on a less consistent (and less
communications-intensive) memory model.

These attributes allow a parallel programmer to begin with a sequen-
tially consistent parallel program and algorithm and to then selectively
modify the program to use a weakly consistent memory model where
such use would improve performance.

2.2. A Consistent Operating System Interface

From the perspective of the program developer, a paralle! program con-
sists of two disjoint sets of code: that which the programmer writes to
compute a solution to some problem, and that which has been written
by somebody else to connect the program to the outside world.
Although not entirely accurate, programmers generally consider this
latter set of code to be “the operating system.”

Whether or not the code is truly the operating system, or is simply a set
of standard libraries linked into the program, code not written by the
parallel programmer must present reasonable semantics in the context
of a multicomputer application. Some examples of unreasonable
semantics are:

° A standard 1/0 library which does not properly interleave /O to
the same descriptor simply because the I/O was performed from
different processors.

A dynamic memory allocator which does maintain consistency
of address space utilization across processors.

A file system interface which does not permit a file descriptor
returned by a single “open” call to be used on any processor
except the one on which the open occurred.

These unreasonable semantics can arise when the parallel processing
runtime system fails to provide completely a single-system image. In
essence, a parallel program expects consistency semantics along two
axes: memory, which is how the program communicates with itself,
and the system interface, which is how the program communicates with
the outside world. Failure to provide reasonable consistency semantics
along either axis can result in a software system which is difficult to
program.

To address this difficulty, the operating system, the runtime, or both
must cooperate with an application to present the image of a single
underlying operating system.
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3. Low-Overhead Paths to the Network

A multicomputer is communications-intensive. A parallel program
running on multiple nodes communicates with itself, and even a
sequential program communicates heavily with services distributed
throughout the multicomputer and with other services distributed
throughout the network. High communication throughput and low
latency are therefore critical to the effectiveness of the multicomputer.

3.1. Communication Protocols as Application-Level Libraries

While protocols such as UDP and TCP should be considered an operat-
ing system service, they are a service in much the same vein as the
UNIX standard /O (stdio) service. They export one I/O interface to
clients and import a second 1/O interface from the operating system.
1/0 is buffered and formatted in the client address space to improve
performance by reducing the frequency of operating system calls.
When buffering results in a page-sized I/O transfer, it can also elimi-
nate a copy operation. Similar benefits can be achieved by implement-
ing communication protocols as application-level libraries.

A communication protoco! implemented in the the client’s address
space makes the following possible:

° There is a minimal latency path from one endpoint of the proto-
col to the network interface. Procedure calls, rather than system
calls or cross-address space remote procedure calls, are used to
invoke protocol services.

Needless copy operations, even for small packets, can be elimi-
nated. By-reference parameters can truly be by-reference.

Protocol implementations can be tuned for performance on a
per-application basis. Options such as buffer size, window size,
time-out length, etc. can all be manipulated by the application
since the protocol’s algorithms and data structures are all directly
accessible.

This approach is a departure from current practices where the protocol
implementations reside in the operating system kernel or in a dedicated
process. The key to this new approach is to separate the protocol’s
implementation from the operating system’s, and to provide a comple-
mentary interface between them that allows the two to coexist. Fur-
ther, the interface between the operating system and the protocol must
be designed so that it presents a cohesive interface to applications,
which can transparently take advantage of the new protocol’s structure
as though it were implemented in the operating system. For example,
the UNIX socket interface, because it is accessible through UNIX file
descriptors, affects many other interfaces such as ioctl and select, and
these interfaces must behave as though they were tightly coupled with
the protocol code.

3.2. A Mapped Communications Interface

With communication protocols running in application-level libraries,
the only barrier between an application and the network is the device
driver to the network interface. In order to achieve minimal latency for
network access, it is necessary to map the network interface directly
into applications’ address spaces. In this way, applications can com-
municate with the network as though it were an extended memory sys-
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tem, sending and receiving packets through direct memory accesses to
1/0O space.

4. The Multicomputer Operating System

An operating system for a multicomputer must satisfy many of the
same requirements as a large scale distributed file system [Sat85a]. It
must be scalable, reliable, secure, and have predictable performance.
The solutions appropriate to large-scale distributed file systems are
therefore also appropriate to general purpose multicomputer operating
systems:

) The semantics of the operating system interface must not diverge
too greatly from a standard which has become acceptable in sin-
gle node systems. For the short term, at least, this means it must
provide a UNIX interface. As other multitasking interfaces begin
to take hold in the marketplace, other interfaces may become
acceptable.

There must be no single point of failure for the entire system,
although individual applications may fail due to the failure of
one server or another. In other words, while it may be the case
that one or more programs may fail to complete due to a compo-
nent failure, it must never be the case that all programs fail to
complete.

Services must be replicable with fine granularity. Replicated ser-
vices increase scalability and performance, and improve fault-
tolerance. For example, an NFS-style directory and file manage-
ment mechanism, whereby directories and files are one-to-one
with servers, is inappropriate for a multicomputer. Many parallel
programs are l/O intensive (scatter a multi-megabyte data set
across many processors, process, gather a multi-megabyte result
data set) and have higher bandwidth requirements than can be
delivered by a single file server.

Trusted services must run on trusted, secure, nodes. In a multi-
computer configured out of a network of workstations, for exam-
ple, it makes little sense to run a global authentication service on
a machine in an employee’s office. While this requirement
seems obvious, arbitrary process migration mechanisms could
result in a failure to abide by it.

Clients should cache results to reduce network and server loads.
While this requirement clearly applies to file system reads and
writes, it can also be applied to other operating system accesses.
For example, client nodes can keep files “open” longer than they
really ought to be.

Clients should use a pipelined interface to mask network and
server latencies. While pipelining (write-behind) is relevant to
file system writes, it can also be used for other operations which
affect system state, but for which the outcome is not immediately
required, such as opens and (pre-fetching) reads [Gib92a).

Services should support an arbitrary call-back mechanism to
relay changes in service state. Hauser [Hau92a] suggests the use
of client-specific cache-invalidation facilities to allow arbitrary
client-side caching. This facility should be generalized in the
server interfaces so that clients can specify arbitrary pieces of
operating system state, such as number of nodes in the system,
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4.1. Kernel Facilities

number of files in a directory, etc, which, if changed, result in
client notification.

These requirements demand a “multiserver” architecture, in which a
flat operating system interface, such as UNIX, is implemented by a col-
lection of servers running on different nodes. Necessary services
include process management, processor management, namespace man-
agement, filing, authentication, tty management, bidirectional pipes,
device management, and a blackboard mechanism to allow these dif-
ferent services to share state in an anonymous fashion. Some of these
services, such as namespace management, should be fault-tolerant to
survive node failures. Others, such as process management, need only
be replicated to ensure availability (that is, if one process manager
fails, others can still be accessed, although the state maintained in the
failed manager might be lost).

With network protocols implemented at user-level, and the remaining
high-level operating system services distributed throughout the net-
work, one question remains: what sort of kernel should be running on
every node? One answer is to use a minimalist, custom-built trap-
handler which simply vectors requests for system operations off to a
controlling processor. This approach is attractive in that the trap-
handler consumes few processor resources, which is important for
memory-impoverished systems. Unfortunately, the approach refiects
the position that the nodes in a multicomputer are not first-class pro-
cessing elements, and therefore do not need many of the kinds of
processor-local services such as multiprogramming and virtual memory
that are usefu] in more conventional operating systems.

The custom-built approach also fails to take advantage of an emerging
generation of commodity microkernel technology such as Amoeba
[Mul90a], Chorus [Roz88a], Mach [Acc86a)] and Microsoft’s NT oper-
ating system. These systems provide a portable microkerne! base that
exports an abstract machine interface which deals with critical services
such as scheduling, protected interprocess communication, and virtual
memory management. By using one of these systems for a kernel base,
a multicomputer system can easily track new functionality and perfor-
mance improvements which occur to support other, non-multicomputer
systems. Moreover, by standardizing on a microkernel platform, rather
than the privileged interface dictated by a specific processor, multicom-
puter operating systems can be more readily adapted to new processor
architectures.

5. Satisfying the Requirements

At CMU, we are working to satisfy these requirements for multicom-
puter system software. In the Midway project [Ber91a], we are build-
ing a distributed shared memory parallel programming environment
which supports a range of memory consistency models, and provides a
graceful migration path away from sequentially consistent programs.
In the context of the Mach project, we are building a suite of IP-based
protocols which execute as application-level libraries, yet which also
provide UNIX socket semantics. At the device level, we have already
demonstrated the effectiveness of mapped network interfaces [For91a).
We are now concentrating on implementing a software interface to
ATM networks which allows the interface card to be mapped simulta-
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neously into multiple non-privileged applications. Finally, we are con-
tinuing our development efforts on the CMU multiserver, which is a
collection of low-level operating system services such as those
described in Section 4 running on top of the Mach 3.0 microkemel
[Jul91a]. These services can be composed to implement a higher-level
systems interface such as UNIX.
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Abstract

ISIS is a toolkit for building applications consisting of cooperating pro-
cesses in a distributed system. Group management and group commu-
nication are two basic building blocks provided by ISIS. This approach
has proven very successful, and ISIS’ large user community is putting
very high demands on these mechanisms. To accommodate these
demands a complete redesign of the system, called HORUS, is being
done to build a simpler and faster system that scales well. Of particular
concern is the support and management of hundreds of thousands or
more process groups. This paper describes a key component of HORUS
known as light-weight process groups that addresses this scaling issue.

1. Introduction

With the advent of millions of PCs becoming powerful networked
workstations, the support for distributed programming is sadly lagging.
Many local area networks are becoming large due to the cheap price of
personal computers. In such environments, failures within the network
are quite commonplace. Users treat a networked PC much like a
stand-alone machine, turning the machine off and rebooting when an
application program fails. This behavior can quickly lead to chaos for
the remaining networked computers that may depend on the machine
for a source of input or service. By the very nature of such networks
we are then forced to consider fault-tolerance not as a luxury for the
few, but as a necessity required by all.

The ISIS toolkit is a collection of algorithms and tools that can be used
to build fault-tolerant distributed applications in an environment such
as the above. A description of ISIS can be found in [Bir91a]. In this
paper we describe a fundamental element of a new system called
HORUS' being built at Comnell. HORUS has evolved from ISIS after
much experience with building practical fault-tolerant distributed sys-
tems.

This res.arch was supported under DA:XPA/NASA grant NAG-2-593 and by grants from IBM, HP, Siemens, GTE, and Hitachi.

+ In Egyptian mythology, HORUS is the son of ISIS.
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This work was motivated by a trend in the use of ISIS process groups
that has emerged over the last eight years. The process group paradigm
has become tremendously popular with ISIS applications programmers;
almost every major application written using ISIS makes extensive use
of process groups. In their original design, process groups were
intended as a coarse grain transport mechanism for communicating
with multiple processes. Process groups were used to represent a repli-
cated service. However, the paradigm has proven popular for more
fine grain uses. Over the last few years applications written using ISIS
have used process groups to represent objects rather than services.
This trend has impacted the original design in several ways and has
lead us to focus our attention on providing light-weight process

groups.

The architecture of HORUS was influenced by microkernel design con-
cepts, in which several light-weight mechanisms are provided in user
space. The most obvious of these is the light-weight process or thread
abstraction. Another well-known, older abstraction is memory alloca-
tion. These abstractions not only allow easier resource management by
sharing most of a core environment, but also provide a portable inter-
face across different environments.

The basic idea behind the light-weight process group (LWG) abstrac-
tion is that many LWGs will be mapped to a single core group (or set of
core groups) as implemented by the kernel of HORUS. Thus, these
LWGs will share the same security environment (much like threads
share the same address space), and the same failure model, while their
messages will be multiplexed over a single core group transport. The
benefit of this approach is that membership changes to the core group
automatically affect large numbers of LWGs, amortizing the cost of
maintaining membership information over what the application consid-
ers a large number of independent groups. The ISIS system lacks such
a facility, forcing many application programmers to develop equivalent
mechanisms.

We have built a prototype of LWGs on top of ISIS V3.0.6 and the initial
results show significant improvements in performance. In particular,
the LWG subsystem allows LWGs to share the same failure detection
protocol execution thereby resulting in faster reaction to member fail-
ures and reduced network load. Execution times for typical group
operations are also improved: the initial prototype has a speed-up factor
of 9 for the group create operation (the resulting speed is about 30 ms),
and even higher speed-ups for group joins and leaves.

To motivate the problem, we present several examples of how fine
grain process groups help solve problems present in distributed applica-
tions. We then briefly present the architecture of the HORUS system
with particular attention to the light-weight group subsystem. We fol-
low this with a discussion of the key aspects of light-weight process
groups and present the basic portions of an interface to our subsystem.
We conclude with some initial performance results.

2. Trends in the use of Process Groups

In this section we look at the use of ISIS process groups in three major
applications written on top of the ISIS system. By looking at these and
other applications we gained insight into how to improve the perfor-
mance and functionality of process groups.

324
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The Deceit File System

The ISIS Transaction Tool

Our first example of a practical fault-tolerant distributed application is
the Deceit file system [Sie92a]. Deceit is an NFS-compatible file sys-
tem that replicates its exported file system across a collection of
servers. The system provides flexible support for fault-tolerance. A set
of parameters attached to each file controls the replication level, and
update semantics of that file. As the system is used, file replicas
migrate to form working sets on the servers that are currently receiving
requests. Deceit’s file system therefore exists as a whole across all of
the servers yet no one server need contain the whole file system. A key
aspect of Deceit is its ability to maintain one-copy serializability in the
event of server failures and distributed requests and updates. To man-
age the inherent complexity of achieving such a property, Deceit uses
an ISIS process group to represent the replicas of a file; each member of
the group actively maintains a replica of the file. This set of servers
changes dynamically as replicas migrate and as servers crash and
recover.

Logically, an update to a file need only be multicast to the collection of
servers maintaining replicas of that file using the ISIS process group as
the transport mechanism. The initial design of this system was built in
the obvious way; a single process group was associated with each file’s
set of replicas. It became quite apparent however that this was not the
correct approach for using ISIS process groups; the system suffered
greatly from performance problems. Too many process groups that
were created (one for each file in the file system) and the algorithms
that provide the ordering semantics of group communication were
greatly affected by this (we will discuss this later).

A few observations about the collection of process groups lead us to
the design decisions that contribute to the good performance of today’s
Deceit and to the foundation of light-weight process groups. First,
good fault-tolerance was obtained with a relatively small collection of
file servers. Three to five servers provide good availability, reliability,
and performance. Second, even though many (thousands of) process
groups were desired, the number of unique process groups, in terms of
their membership, was quite small. By using a single process group for
the collection of files that had the same replica set, the number of pro-
cess groups was dramatically reduced with a corresponding improve-
ment in performance. In this new design, when replicas migrated they
needed to change process groups, by orchestrating the change through
a coordinator in the group. Deceit was able to use the inexpensive
CBCAST protocol [Bir91b] while maintaining the consistency of the
file’s replicas.

The 1SIS Toolkit includes a tool for distributed transactions. A transac-
tion is represented by a process group comprising all the servers which
have an interest in the outcome of the transaction (the participants).
The implementation of the tool in ISIS is very straightforward. Reliable
group multicast is used to implement the commit protocol, and group
monitoring facilities are used to detect the failure of transaction partici-
pants and to trigger a transaction abort. To ensure that the state of a
transaction persists even when all participants fail, transaction state is
logged to disk, and transaction outcomes are logged to the transaction
recovery manager, itself implemented by a process group.
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While the semantics of ISIS process groups and reliable multicast

- greatly simplified the implementation of the transaction tool, perfor-

mance was poor. The transaction tool needed only anonymous groups,
but ISIS required every group to have a name. The transaction tool
generates a known-to-be-unique name derived from the transaction
identifier. ISIS incurs unnecessary costs verifying the name’s unique-
ness by multicasting to the ISIS servers on the network when the group
is created, and searching for the name during subsequent join opera-
tions. This deficiency is fixed in HORUS, which directly supports
anonymous groups and leaves naming to an external service.

More serious than group naming was the cost of a group join. The crit-
ical path of a transaction included one group join for every participant
and a single group deletion at transaction end. A join involves syn-
chronizing all the current members of the group, and possibly the
authentication of the new member. One common scenario in the use of
the transaction tool is for a client to issue a series of transactions to the
same set of servers. After each transaction the group is torn down only
to be built again by the following transaction. This creates unnecessary
work when the group transport could be saved.

META [Wo0091a, Mar91a] is a system for distributed management. It
provides a mechanism for instrumenting programs with sensors and
actuators and allows creating sophisticated reactive control systems in
a distributed network. META makes use of ISIS for its group communi-
cation and fault-tolerance. Process groups in META are used both to
maintain aggregates and as a convenient naming mechanism. Aggre-
gates are used to represent a collection of machines that satisfy some
property (e.g., a set of machines with a light load). This collection is
maintained (determined) by a set of replicas which detect changes in
the aggregate set. An ISIS process group is used to manage this replica
set. Aggregates are a fundamental piece of META and are intended for
heavy use by META applications, and consequently, META shows simi-
lar characteristics to Deceit: a relatively small set of replicas can be
responsible for a large number of coincident process groups. Like the
initial design of Deceit, the failure of a replica can trigger a flood of
distributed agreement protocol invocations.

3. Analysis of Performance Problems

In general we have found that good performance can be obtained from
group communication in ISIS provided that the programmer has a solid
knowledge of the protocol semantics and knows the details of the
implementation well enough to make optimizations. Each of the
authors in the above systems are sophisticated ISIS programmers that
took the semantics of the ISIS communication system and knowledge of
the internal protocols into account when designing their software. In
general one cannot expect typical applications programmers to be (or
want to be!) as knowledgeable about ISIS as these authors. It is this
that has motivated us to consider light-weight process groups as a nec-
essary piece of the HORUS system. LWGs should allow applications
programmers to use the process group paradigm in a manner which fits
the logical structure of their application and which yields good perfor-
mance.
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We now look at why the original process group mechanism in ISIS per-
formed poorly for these applications. The performance problems are
mainly a result of the process group algorithms being too closely cou-
pled with the interface provided to the applications builder. Three
major performance problems illustrate this point.

Failure detection

ISIS provides a strong guarantee of consistency for group membership
changes. A group’s membership history can be characterized by a total
order on the join and leave/failure events on the group. Each group
member observes the membership in an order consistent with this his-
tory. In addition, ISIS provides the strong guarantee of failure atomic-
ity; messages are delivered in the same view of the group’s member-
ship at all of its destinations. This allows the recipients to make
efficient local decisions about the global state of the system without the
need for extra communication. [Ric91a] and [Bir91b] present the
semantics of 1SIS process groups and group communication.

Figure 1 shows an example of communication with and without failure
atomicity. Failure atomicity and serialized membership greatly impact
the performance of process groups when failures occur. Consider the
fault-tolerant NFS file server described above if it made a naive use of
process groups (by creating one process group per file). At some point
during the normal operation there might be a thousand or more process
groups representing the files actively in use that are being maintained
on three servers. If one of these servers should fail, 1SIS would trigger
the invocation of a failure recovery protocol on each of these one thou-
sand groups, forcing failure atomicity on the outstanding messages,
delivering them in consistent views across their recipients. Each of
these protocols would force an expensive flush of the group’s commu-

Time

Ch s \ > Gl Ui
]

Figure 1: Diagrams (a) and (b) show four processes, A-D, joined to
a single process group, denoted by the encompassing oval. C
crashes at around the same time that A sends a message to the
group. (a) shows multicast communication that does not respect
failure atomicity; B and D receive the message in different views of
the group. The multicast in (b) respects failure atomicity.

Technical - OpenForum *92 - Utrechs, 23-27 November 327




Light-Weight Process Groups

nication. Unfortunately this would have the disastrous impact of flood-
ing the network with protocol messages, which can lead to very bad
congestion and the ultimate “failure” of other processes in the system,
causing a “domino” effect.

Overlapping Groups

ISIS provides strong causality guarantees for group communication.
This guarantee applies to communication that spans groups. This is an
important property of the ISIS system because it allows for less con-
strictive communication and allows groups to be used flexibly.
[Bir91b] discusses the ramifications of this property on the algorithms
that must implement it. Currently the ISIS system uses a conservative
protocol. In order to send a message m to a group G, G must be the
only “active” group. A group is active for a process p if there is some
message m’ to G' that has been transmitted by p or delivered to p and
which p considers unstable. A process considers a message stable if it
learns that the message has been received at all of its destinations. If
there is more than one group active for a process, it must block the
transmission of a message m until it all other groups become inactive
(i.e. until their messages become stable). This delay may require wait-
ing for the receipt of acknowledgements from all members of a previ-
ous multicast, and potentially for stability information from other
groups. In Figure 2(a), C must delay its multicast to B and D until it

®)

Figure 2: Diagram (a) shows two process groups (represented by
ovals) and the messages sent by the system during when communi-
cation switches from group {A,B,C} to group {B,C,D}. The solid
arrows represent the application multicasts, the dashed arrows rep-
resent low-level acknowledgements, and the dotted arrows repre-
sent messages containing message stability information. Diagram
(b) shows the message traffic for the same pair of application multi-
casts, but with the two groups merged into one. The arced arrows
represent delayed messages, in (a) by the sender, and in (b} by the
receiver.
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Named groups

learns that the causally preceding message from A has been stably
received. This delay is denoted by the arc. An application that contin-
uously alternates communication between two groups by sending mes-
sages asynchronously, will in fact see no advantage to the asyn-
chronous call, since each communication context switch will essen-
tially force synchrony on the previous message send.

Previous implementations of ISIS have incorporated the naming service
into the same server process that manages the group membership proto-
cols. This process, historically known as protos (for protocol server),
resides on every ISIS site. (For scaling reasons ISIS V3.0 allows for
remote connections that are less fault-tolerant and do not run the proto-
col server directly but instead connect to a “mother” ISIS site.) The
implementation of the name service ensures one-copy consistency of
the name space mappings among all of the protos processes. This has a
great impact on the cost of creating a named group as indicated in the
transaction tool discussion above.

4. Overall Design

The following observations about the common uses of process groups
guided us in our design to combat these problems. We have found that
many applications use

° Many process groups.

° Heavily overlapping groups.

) Both small groups and large groups.
. Unnamed groups.

With the number of groups far exceeding the number of processes in
the system, high overlap and coincidence of groups is unavoidable.
We observed that by combining overlapping process groups so that
they share a single “core” process group, we could obtain several dis-
tinct advantages. A careful look at the performance problems shown
above revealed that for the common case of identical overlapping
groups, the protocols being exercised were largely unnecessary. Con-
sider the failure reaction protocol: if a single core process group were
used instead of a thousand identical groups, only a single flush would
be necessary to ensure failure atomicity and instantiate the new group
view. Similarly, using only a few core groups can reduce transmission
delays (for obtaining stability) and thus increase truly asynchronous
message sends. Much of the state maintained by the ISIS transport sys-
tem to maintain causality and other ordering semantics can be shared
by these light-weight groups, reducing the resource requirements of the
system.

Thus there is much to be gained by separating the protocols underlying
the process group implementation from the interface provided to the
applications programmer. As was the solution in the above distributed
systems examples, we manage a large collection of light-weight pro-
cess groups by mapping them onto relatively small sets of “core” pro-
cess groups. These core groups are the groups provided by the VSync
(for virtually synchronous) kernel in Figure 3.

Experience with ISIS has identified the major components of the system
and has allowed us to reorganize the system in a more layered and
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Name
Service

User
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Figure 3: The HORUS Architecture

modular fashion in order to take advantage of the microkernel architec-
tures being offered by modern operating systems. Figure 3 shows the
design of our new architecture. The lowest layer of HORUS called
MUTS (MUlticast Transport Service) [Ren92a, Ren92b], provides a
portable abstraction of the underlying operating system to the higher
layers. The operating system specific code is isolated in configuration
dependent source files within MUTS. This foundation allows for easy
porting of the system to operating systems such as Mach, Chorus, and
Amoeba. A key component of MUTS is the abstraction it provides of a
multicast transport service. MUTS isolates the higher layers from the
details of the interprocess communication mechanism to a collection of
groups, yet provides important feedback information to the higher lay-
ers so that they may deal with communication failures in a consistent,
well-defined manner. Above MUTS, the VSync kernel provides order-
ing semantics on multicasts, and provides the basic process group
abstraction with strong semantics on the ordering of group events with
respect to multicasts. These two layers define the portion of the archi-
tecture that is appropriate to put in the system space of an operating
system. While this is not necessary, it will probably yield more
efficient communication. The layers above this are most appropriately
placed in a user space library. This is where the light-weight process
group subsystem lives. The subsystem provides an interface to applica-
tions through this library and is used by many of the other tools within
the library itself. The library also contains tools for managing repli-
cated data and distributed computations.

5. Design Issues

In this section we examine a number of the issues which we faced dur-
ing the design of the LWG subsystem. We wanted a flexible, efficient,
portable, and simple interface to the subsystem. The interface had to
allow for tight control of the light-weight to core group mapping for
use as a research tool and by sophisticated users, yet also allow the sub-
system itself to manage this mapping in an intelligent way for ordinary
users of the system. Efficiency was paramount; to be useful, the sys-
tzm had to optimize the critical path. In the next few sections we dis-
cuss the major issues in designing the LWG subsystem.
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Mapping LWGs to Core Groups

To address the goals of flexibility and simplicity we introduced the
notion of core group sets which can be managed by the subsystem or
the user. A core group set is a collection of ISIS process groups which
are used as the communication transports for light-weight groups.
Light-weight groups are allocated out of a core group set and are
always mapped to exactly one core group in the set. By providing rou-
tines that manipulate these sets along with options in the LWG inter-
face, we allow for tight control of the mapping between a light-weight
group and its core group. Core group sets can also be managed com-
pletely by the LWG subsystem. In this case the subsystem will add and
change core groups in the set dynamically as the mapping needs of the
LWGs change over time.

Core group sets allow us to address several issues at once. First, they
provide flexibility. By providing support for multiple sets, varying lev-
els of mapping control may be used within the same application. This
allows different mapping policies to be enforced for different types of
objects. For example, one policy might mandate that the membership
of a light-weight group exactly match the membership of its core
group, while another might allow LWG members to be a subset of the
members of the core group. These policies will have different impacts
on the performance of the system. Second, by providing policies for
self-management together with a default core set, the system provides
much of the functionality of light-weight groups with a simple inter-
face. Third, by constraining LWGs to map only to those core groups
within their core group set, we improve the efficiency of self-
management policies by reducing the search space for core groups.

In Figure 4 we show a mapping of 3 different light-weight groups onto
a common core group. It is important to note that the membership of
the core group need not match the membership of the light-weight
group exactly; it can be larger. However, there are tradeoffs with such
mappings. If hardware multicast is not available, the cost of sending a
multicast message may be greater due to the increased number of recip-
ients. In Figure 2(b) we see that processes A and D receive extra mes-
sages which the light-weight group subsystem will need to filter out.
However, these extra messages must be weighed against the acknowl-

Light-weight Process Groups

A B C A C D B D E

te

Core Process Group

Figure 4: A mapping of three light-weight groups onto a common core group
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Added Functionality

edgement and stability information messages sent in diagram (a). If
hardware multicast is in use, the extra members do not add to the cost
of sending a message, but the extra members themselves still pay a cost
for handling the receipt of the message. On the other hand, supporting
“subset mappings” yields a number of advantages. First, the number of
core groups that are needed is reduced since they can encompass more
light-weight groups. This reduces the amount of state that is needed to
support causality, reduces the number of communication context
switches that occur, and reduces the size of the space that must be
searched when creating a new mapping for a LWG. Second, with fewer
core groups, better use can be made of Ethernet multicast addresses.
This can be a critical performance factor since most Ethernet devices
support a fairly limited number of multicast addresses before they go
into “software” mode. Third, the cost of adding a member already in
the core group to the LWG is cheaper since much of the state of the
member has already been set up by the core group.

Over time core groups will have a number of different LWGs mapped
to them and at some point a core group may have no LWGs that map to
it. To avoid consuming too much memory, such core groups have to be
garbage collected periodically. This collection could occur at the
instant the set of mapped LWGs becomes empty, but leaving the core
group around for some grace period can be advantageous in the event
that a subsequent LWG mapping appears soon. In the transaction tool
this would do well on the common scenario where a client issues a
series of transactions to the same set of servers, if the grace period is
longer than the time between transactions. Thus we could exploit tem-
poral, as well as spatial, locality of transactions.

Under high load conditions the LWG subsystem can be faced with a
potentially large search problem. Upon the creation of a LWG with an
initial set of members, it must map this group to an existing core group,
if possible. Determining the best mapping can, without using good
search techniques, lead to a linear search of the core group set, which
in the worst case can be quite expensive (for n processes, there are
potentially 2" ~ 1 unique core groups). In practice such a large num-
ber of core groups never exists since the presence of subset mappings
eliminates the need for many of these groups. In any case, the LWG
subsystem manages this search by using a hash index scheme keyed on
the membership of the group. This enables the search to quickly nar-
row in on a core group containing the right members.

Rewriting ISIS gives us the opportunity to consider providing different
forms of group semantics. ISIS provides a broad range of ordering
semantics for its communication (MBCAST, FBCAST, CBCAST,
ABCAST, and GBCAST) [Gro91a], yet only one set of semantics is pro-
vided for the process group mechanism. While it can rightfully be
argued that too many choices only leads to the confusion of the pro-
grammer, it is nonetheless interesting to consider the use of this subsys-
tem as tool for research into a spectrum of process group semantics.
An example clearly establishes the validity of this argument. We have
observed that while many applications benefit greatly from the strong
semantics of ISIS process groups, there are nonetheless a number of
applications for which these semantics are too strong and which would
benefit from the performance improvements obtained by using weaker
semantics. Consider a collection of sensor processes responsible for
periodically sensing the temperature of a room and reporting on these
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Function Arguments Result Description
Iwg_create initial members lwg Create light-weight group.
lwg_add members - Add members to a group.
lwg_remove members - Remove members.
lwg_destroy lwg - Destroy group.
lwg_send Iwg, msg send_id Post message to a group.
lwg_receive lwg msg, recv_id | Wait for next message.
lwg_reply recv_id, reply msg | - Send a reply.
lwg_get_next_reply | send_id msg Wait for next reply.
lwg_discard_replies | send_id - No more replies wanted.

Figure 5: The light-weight group interface

values to a collection of reader processes. For fault-tolerance multiple
sensors are used, and the reader processes collect the sensor data to
determine an average for the room’s temperature. Here an ISIS process
group may be used as the group communication transport. The sensor
processes would, on initialization, join the group and start broadcasting
data. Notice, however, that the sensors themselves use the group for
sending only; they do not need to obtain state from other members and
are not concerned about the order in which they join the group. In this
situation ISIS would completely order the joins when in fact this is not
needed.

Large Numbers of Process Groups

Just as light-weight threads share their state within the address space of
their encompassing process, light-weight groups share their causality
context and group data structures within their core group. The reduced
memory resource needs combined with the sharing of the core group
protocols for failure detection and causality allow HORUS to efficiently
support many more light-weight process groups than core groups.

6. Interface

Figure 5 shows the interface to the light-weight group subsystem. This
interface provides asynchronous results to enable the application to
take advantage of pipelining to improve its efficiency and yet retain a
simple model of execution.

7. Initial Performance Results

As a proof of concept, we built a prototype of the light-weight group
subsystem on top of ISIS V3.0.6. Doing so allowed us to proceed with
our research testing in paralle] with the building of the HORUS system,
which is being built bottom up. The lowest layers of HORUS are
almost now complete and the building of the light-weight group sub-
system on top of HORUS is just beginning. Building the prototype on
top of ISIS V3.0.6 allows us to make measurements of the impact of the
LWG subsystem on the performance of the system. Happily, the proto-
type showed significant improvements in performance and the results
supported our initial suspicions.
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Initial measurements of the performance of our light-weight process
group subsystem are encouraging. The following measurements were
taken on Sun 4¢c/60 Sparc 1+ workstations running Sun OS 4.1.1 using
ISIS V3.0.6.

Our measurements of the cost of obtaining message stability confirmed
our initial expectations. Switching communication from one core
group to another core group costs the application approximately one
synchronous multicast. For applications that change contexts fre-
quently with respect to message sends, this overhead can be significant.
For example, a process that repeatedly switches between to coincident
core groups runs roughly twice as long as the equivalent program send-
ing to only one core group. Asynchronously CBCASTing 400 byte
messages to 4 members (3 remote, 1 local) costs 18.0ms per multicast
in the strictly alternating case, and only 10.4ms in the single group
streaming case. For 2 members (1 remote, 1 local), the cost of alternat-
ing CBCASTs is 10ms, for streaming it is 3.2ms. The tuning of the
transport layer plays an important factor in the cost of obtaining stabil-
ity. For efficiency the transport layer will attempt to determine if the
sending application is in a streaming or “interactive” mode. In the for-
mer, the transport layer will delay acknowledgements in order to send
as few ack messages as possible, in the latter case the transport layer is
aggressive about sending acks, so that the cost of the context switch is
as small as possible.

To measure the effect of light-weight groups on reducing the costs of a
join, we compared creating bursts of 100 LWGs vs. core groups. The
prototype LWG subsystem makes use of a group view manager which
replaces the role of “protos” for managing views and group names. We
ran these tests with the creating process both local and remote to the
view manager. In the local case, a LWG create took 45 ms compared to
60ms. In the remote case, a LWG create took 29 ms compared to
200 ms for the core group. Contention for the processor may partially
explain why the LWG create with the local view manager is more
expensive than the remote case, but this is still curious. These results
are preliminary and only serve as proof of concept. The LWG subsys-
tem on HORUS will not use a group view manager and will use a sepa-
rate name service for named groups.

We measured the time of a light-weight group leave event for both the
local and remote view manager cases. Under both situations the cost of
a light-weight group leave was 9 ms. The cost of a core group leave for
the remote case was 197 ms, and for the local leave it was 80 ms.

8. Conclusion

It is interesting to draw analogies with the evolution of some other
common system paradigms. Memory allocation is an excellent exam-
ple. Before the advent of standard library routines like malloc, pro-
grammers were forced to implement their own memory allocator rou-
tines which usually had the effect of reducing the portability of their
software, since their memory allocators were often OS and machine
specific. Today, malloc is widely available, and the mechanisms by
which memory is allocated are hardly a concern to most programmers.
Much like malloc, light-weight process groups abstract away the details
of the implementation, yet provide added functionality and improved
performance.
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Similarly, threads have become an attractive mechanism for improving
the performance of processes. Threads reduce the heavy-weight con-
text switching of processes by sharing an address space among the
threads of control. The sharing of resources seems to be a common
theme to providing light-weight mechanisms. We are encouraged by
the initial results of our prototype and are actively incorporating these
ideas into HORUS.

Currently, we are actively experimenting with prototype and are build-
ing the light-weight process subsystem and user-level libraries on top
of the VSync kernel in HORUS. We hope to have a release of this sys-
tem available by the end of 1992.
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Abstract

This paper presents a Group Communication Service suitable for stan-
dard workstations. The communication service is designed to take
advantage of the technology offered by modern standard Local Area
Networks and offers a very versatile multi-primitive interface to its
users. The authors focus on the design and implementation of the com-
munication service, and of the software modules necessary to exploit
specific network and operating system properties. Additionally perfor-
mance results are given and evaluated in the context of comparable
systems.

1. Introduction

Increasing use of distributed systems, with the corresponding decen-
tralization of activities, stimulates the need for structuring those activi-
ties around groups of participants, for reasons of consistency, user-
friendliness, performance and dependability. The concept appears
intuitively in all flavors of distributed actions: when participants coop-
erate in an activity (e.g. management of a partioned database, shared
document processing or distributed process control), compete for a
given activity (e.g. distributed use of a resource), or execute a repli-
cated activity for performance or fault-tolerance reasons (e.g. repli-
cated database server, replicated actuator).

The group paradigm is widely accepted as being an excellent method
of structuring these distributed activities. From the pioneering projects

+ lnstituto de Engenharia de Sistemas ¢ Computadores, R. Alves Redol, 9 - 6° ~ 1000 Lisboa — Portugal, Tel.+351-1-3100281. This
work has been supported in part by INICT, through Programa Ciéncia.
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in the past [Bir91a, Coo85a, Che85a], a large number of research pro-

- jects in areas related with group structuring and reliable group commu-
nication have emerged [Bir91b, Cri9%a, Gar89a, Her89a, Pet89a,
Pow91a]. The Distributed Systems and Industrial Automation group at
INESC has contributed to the evolution of the group paradigm by focus-
ing on the development of highly responsive group communication and
management protocols [Ver92a].

To support the development of systems and applications that rely on
distributed paradigms, we have developed a Group Communication
Service. Originally designed and developed as part of the Delta-4
ESPRIT project [Pow91a], an effort has been undertaken to make the
same service available for standard workstations. The results of this
effort have yielded a group communication module suitable for integra-
tion in UNIX kernels. Prototype implementations have been made for
the SunOS 4.1.1 and the Mach 2.5 kernels.

In this paper we discuss the global design and implementation of the
Group Communication Service and related modules. The next section
describes our approach to group communication in general, followed
by a section on the actual design of the service. The different modules
that found the basis of the service are each described in separate sec-
tions after the section on design. Section 10 will deal with the formal
specification and verification of the protocols. In Sections 11 and 12
we present the performance of our protocols and evaluate these results
by comparing them to other group communication systems.

2. The Group Communication Service

The need for support of group activity is based on the assumption,
shown correct by a number of real examples, that in a distributed archi-
tecture processes frequently get together to achieve a common goal.
The set of such processes can be called a group. A communication
service can be said to support groups when it provides services that
facilitate the design and the execution of distributed software running
on such a group of distributed processes in cooperation, competition or
replication [Ver92a].

The Group Communication Service described in this paper is based on
three essential services [Rod92a]:

° The first services required in a group communication service are,
naturally, the group membership services. Powerful support for
groups is given to allow the dynamic creation - and
reconfiguration — of process groups. During the lifetime of a
group, processes may join or leave the group and the communi-
cations service provides primitives to perform these operations.
The failure of a group member is also detected and an indication
of the event is provided to the remaining members.

The second goal of the group communication service is to pro-
vide efficient and versatile support for exchange of information
between group members. To start with, a multicast communica-
tion service avoids the need to explicitly perform point-to-point
transfers to execute a multicast operation. The service accepts a
list of addresses, what we call a selective address, as a valid des-
tination address for a multicast message and — transparently —

t Delta-4, ended in December 1991, was a CEC Esprit I consortium, formed by Ferranti-CSL (GB), Bull (F), Credit Agricole (F), IEI
(1), UTB (D), INESC (P), LAAS (F), LGI (F), MARI (GB), NCSR (GB), Renault (F), SEMA (F), Un. of Newcastle (GB), designing an
open, dependable, distributed architecture.
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Consistent Group View
Each change to group membership is indicated by a message obeying total order, to all correct
group participants within a known and bounded time T ,.
Addressing

Selective addressing: The recipients of any message are identified by a pair (g,s!), where g is a
group identification and s/ is a selective address (a list of physical addresses).

Logical addressing: For each group g there is a mapping between g and an address A ;, such
that A ; allows all correct members of g to be addressed without the knowledge by the sender of
their number or physical identification.

Validity
Non-triviality: Any message delivered, was sent by a correct participant.

Accessibility: Any message delivered, was delivered to a participant correct and accessible for
that message.

Delivery: Any message is delivered, unless the sender fails, or some participant(s) is(are) inac-
cessible.

Synchronism

The time between any service invocation and the (eventual) subsequent indication at any recipi-
ent (T,), as well as the time between any two such (eventual) indications (T';), are:
— Loose synchronism: AT, and AT, may be not negligible, in relation to max T,.
— Tight synchronism: AT, and AT; are negligible, in relation to max T,
Agreement

Unanimity: Any message delivered 10 a participant, is delivered to all correct addressed partici-
pants.

At-least-N: Any message delivered to a recipient, is delivered to at least N correct recipients.

At-least-To: Given a subset P4, of the recipients, any message delivered to a recipient, is de-
livered to all correct recipients in P 44y,

Best-effort-N: Any message delivered to a recipient, is delivered to at least N correct recipients,
in absence of sender failure.

Best-effort-To: Given a subset P, of the recipients, any message delivered to a recipient, is
delivered to all correct recipients in P 544, in absence of sender failure.

Order

Total order: Any two messages delivered to any correct recipients, are delivered in the same
order to those recipients.

Causal order: Any two messages, delivered to any correct participants of any group, are deliv-
ered in their “precedes” order.

FIFO order: If any two messages from the same participant, are delivered to any correct recipi-
ent, they are delivered in the order they were sent.

Table 1: Group communication properties

delivers the message to the intended recipients. Additionally, a
logical address can be associated with a multicast group, allow-
ing all group members to be addressed through a logical name.
This frees the programmer from having to deal explicitly with
selective address lists. Note that a logical name can be seen as a
pre-defined address list, containing the addresses of all group
members, and being constantly updated upon every group
change.

The third goal of the gro.p communication service is to provide
an execution environment that applies algorithms to ensure a
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given set of desirable properties.! These properties are summa-
rized in Table 1. Validity and synchronism properties (Px4, Px5,
Px6 and Px7) are desirable in most communication systems.
They usually state that the user can trust the system in the sense
that messages are not corrupted, arbitrarily lost or spontaneously
generated. Synchronism properties assure that the service is pro-
vided within known time bounds. Timely behavior of the proto-
col is of major relevance in real-time systems. Agreement prop-
erties describe when, and to whom, a multicast message must be
delivered. The strongest property in this set is unanimity (Px8).
Unanimity states that a message, if delivered to a correct partici-
pant, will be delivered to all other correct participants despite the
occurrence of faults. This may be stronger than usually required.
For instance, queries to replicated servers need only reach one of
the replicas, since all responses would be the same. Quorum-
based protocols are another example where unanimity is not
required. This raised the need to provide different agreement
properties (Px9 and Px10). Finally, order properties specify
which ordering disciplines the protocol should impose on the
messages exchanged between group members. The stronger
property, total order (Px11) assures that the messages are deliv-
ered in the same order to different participants. Causal (Px12)
and FIFO (Px13) are different, less costly, ordering disciplines
that can provide better performance for those applications not
requiring total order.

Clearly, all these different requirements cannot be provided in an
efficient manner by a single communication primitive. That is why the
Group Communication Service provides several qualities of service
[Rod91a]:

Best-Effort. Acknowledged datagrams with retries to reach a
certain quorum. Quorum can be set by either a number of mem-
bers or a subset of addressees.

Reliable. Acknowledged datagrams with retries and Quorum
specification like in Best-effort but with guarantee of delivering
even if the sender fails.

Causal. Reliable quality of service respecting the “happened
before” order.

Atomic. Datagrams delivered to all members (including the
sender) or none with total order within the group.

Tight. Total order datagrams within a group with queue re-
ordering for priority handling of messages and approximate same
time delivery.

Delta. Support for total order of messages based on global time
(achieved by synchronized virtual clocks).

The design of the Group Communication Service was driven by a num-
ber of goals:

Exploitation of technology offered by the network infrastructure.

Offer a versatile set of primitives that can satisfy all application
requirements regarding group communication.

t For a more detailed study the reader is referred to [Ver89a].
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Figure 1: Modules in the Group Communication Service

Highly responsive behavior of all primitives.

[ Entry points at all layers are accessible by the user of the service.

Another goal was to design the Group Communication System as a
highly portable software system suitable for integration in several dif-
ferent operating environments. User level programming environments
are getting more and more standardized, and it is becoming easier to
develop software that is portable at this level. At the operating system
level the situation is the contrary, manufactures are moving away from
the original base (often BSD UNIX) making it more difficult to built
portable kernel modules. We have gone through considerable effort to
design our Group Communication Service in such a way that the core
part of the system is highly portable, and is surrounded by a number of
well defined modules that implement the environment dependencies.

The following modules are part of the Group Communication Service
(see also Figure 1):

. Local Support Environment — Offers an environment indepen-
dent interface to system specific functions, such as memory allo-
cation, timers, buffer management and event handling [Fon90a].

Abstract Network — This modules implements all network prop-
erties common to networks that need to support group communi-
cation [Ruf91a]. It handles address management, the sending of
messages, filtering of incoming messages, and supplies support
for algorithms that are based on properties like bounded execu-
tion time.

xAMp — The core protocol kernel, implementing the Qualities of
Service described in Section 2 [Rod92a].

MGS - The Multicast Group of Stations protocol. This is a low
level processor group membership protocol designed to support
membership and addressing techniques [Rod92b].

SYNC The Clock Synchronization Service. Algorithms are
implemented to achieve synchronized virtual clocks, creating a
global time base [Rod91b].

Dialog This is the interface module to make the system work
with each of the three standard UNIX communication interfaces
socket, streams and device driver.
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Each of these modules is described in detail in the following sections.
In nearly all sections we provide some implementation details. These
details are related to the SunOS and MACH 2.5 ports. Ports to other
environments have also been made but are out of the scope of this
paper as the are not considered as “standard workstations”.

4. Local Support Environment

4.1. Buffer Management

The Group Communication Service is designed to be environment
independent, resulting in a highly portable protocol core that has no
dependencies to a particular operating environment and a well
described interface that covers all possible environment specific inter-
actions. Minimal porting efforts are needed to bring the service to
another environment.

To be able to shield the protocols from all environment dependencies a
Local Support Environment (LSE) has been developed [Fon90a). This
LSE is not only a product of theoretical design, but it reflects our expe-
riences with porting the Group Communication Service to different
platforms. Especially in the areas of timer and buffer management the
design of the LSE modules have undergone substantial changes through
the years, to arrive at a point where they have become generic pack-
ages, usable by designers of any protocol, offering more functionality
then the underlying operating system provides.

In addition to the modules that implement the interface to the environ-
ment dependent system parts, a number of generic data structure han-
dling routines have been integrated into the LSE, adding easy to use
pools, lists, etc to the protocol development environment. There is an
overhead in making these data structure handling routines generic, but
during the design phase it shortens the prototyping path. If during
profiling it turns out that the generic manipulation introduces a substan-
tial performance penalty, dedicated implementations of the data struc-
ture handling routines are built.

When porting to a different operating system environment, the depen-
dent parts of the LSE need to be re-implemented to match the new envi-
ronment. The environment dependent modules include:

How to construct and manipulate messages is of extreme importance
when designing high-performance protocols [Bir84a, Che88a, Hut89a,
Dru92a, Sch89a, Ber89a). Former research pointed out that operations
on message buffers are often bottlenecks in the performance of net-
work software. Especially the copy operations are to be avoided.

Although an effort has been made to design the LSE buffer manage-
ment as efficient as possible, the avoid to copy rule dominates the
design, resulting in that the operating system specific buffer manage-
ment scheme is left intact as much as possible.

In the UNIX kernel and the MACH macrokernel versions this resulted in
using the LSE buffer management as a frontend to operations on
mbuf’s. The only need for copying is from user to kernel space and
from kernel to device space. These are, given the current structure of
UNIX, the minimum number of operations that you have to apply. The
new mbuf scheme in SunOS 4.1.1, which makes it possible to add pri-
vate manipulation functions to arbitrary sized mbuf’s, looks promising
for designing dedicated buffer management. But for the time being it is
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inadequate because the network devices will still use the old scheme
for assigning frames to buffers. To convert to the new style mbuf’s an
extra copy operation is needed.

The LSE buffer management is implemented as a regular mbuf chain in
which the first mbuf has data size zero (0) and contains only adminis-
trative data for buffer manipulation. When passing the mbuf chain to
standard kernel routines, these routines will discard this first mbuf.

The user of the buffer management is presented a contiguous buffer in
which read and write operations can be done at any desired location
and headers and tails can be added and removed without caring about
the mbuf representation.

4.2. Memory Management

4.3. Timer Management

This module presents an interface to allocating and releasing pieces of
memory. The routines in this module are merely function calls to the
system routines that perform memory allocation. No direct translation
can be made because often the malloc and free calls have different
semantics when used in different environments. The SunOS kernel
version of free for example expects the number of released bytes to be
given as an parameter, while most higher level versions of this routine
can be satisfied with just an address of the memory block. Some clever
tricks have to be used if one wants to keep the interface as efficient as
possible. In the UNIX kernel the memory is taken of the kernel heap,
which turns out to be out an expensive operation. This justified the
design of a local memory management package that would overcome
all these difficulties, but adding this type of complexity does not out-
weigh the advantage. When designing the protocols care has been
taken only to use dynamic allocation in startup phases and when there
is not critical impact on protocol performance.

A module with standard timer operations is based on operations on a
delta list of timers using the kemel #imeout function to fire a timer
interrupt function.

Timers can be created, destroyed, started and stopped. Two types of
timers are available:

] A-synchronous timers which execute a registered function at the
moment they expire.

Synchronous timers which will send 2 timeout message to a mes-
sage queue once they expire.

Using synchronous timers can enhance the simplicity of the protocol
code as there is no need for complex interrupt handling of timer trig-
gered routines. Concurrency is locked out of the design of the protocol
state machines to simplify the state transition mechanisms.

4.4. Debug and Logging Management

This module offers convenient routines for printing warnings, errors
and debug statements. It also provides interface for time measurement
to enable intra-kernel performance management.

When operating normally or with a small number of debug messages
the system makes use of the syslog facility or writes directly to the con-
sole device. When the number of debug messages is expected to
become high, the messages can be send to a special xamp-debug device
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that handles the messages very efficiently. Extreme care has to be
taken when writing verbose debug messages to the console of a SUN
workstation, as this console is so slow that it can effectively block the
execution of protocols when printing for longer periods, making the
protocol deaf and dumb for unacceptable periods.

4.5. Generic Data Structures

As described earlier the LSE also has a small set of generic data struc-
ture handling routines:

. Pools A pool of a certain type of data structures can be created,
data units can be requested and returned to the pool, (re-) initial-
ization routines can be specified to be called each time a data unit
is returned to the pool.

° Queues A collection of generic single and double linked lists
routines.

° Plists A list of data structures that reside in a pool linked by a
list.

5. Abstract Network

At the basic to the design of the Group Communication Service is the
strategy to take advantage of Local Area Network (LAN) technology,
using different types of LANs like 8804-4 token-bus [ISO85a], 8802-5
token ring [ISO85b]}, FDDI [X3T86a] and Ethernet [ISO85c). Although
these LANs are quite different in their use of technology, one can deter-
mine a general set of properties that are to be offered by every LAN
[Ver91a). The Abstract Network is used to hide the LAN specific
details from the protocol environment [Ruf91a], exporting a number of
helpful (Table 2) properties that are used to implement the properties of
the group communication protocols. These abstract network properties
are partially provided by the LAN technology and is complemented by
additional software.

The properties Pnl and Pn2 guarantee detection of erroneous delivery
by the LAN in case of the broadcast/multicast case. Properties Pn4 and

Pnl  Broadcast: Destinations receiving an uncorrupted frame transmission, receive
the same frame.

Pn2  Error detection: Destinations detect any corruption by the network in a locally
received frame.

Pn3  Bounded omission degree: In a network with N nodes, in a known interval, cor-
responding to (k+1) series of unordered transmissions, such that each of the N
access points transmits one frame per series, all transmissions are indicated in
all destination access points, in at least one series.

Pnd  Full duplex: Indication, at a destination access point, of frame reception, during
transmission by the local source access point, may be provided, on request.

PnS  Network order: Any two frames indicated in two different destination access
y
points, are indicated in the same order.

Pné  Bounded transmission delay: Every frame queued at a source access point, is
transmitted by the network within a bounded delay.

Table 2: Network Properties
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PnS are the foundation for the ordering properties of the group commu-
nication protocols. Pn3 and Pn6 define the behavior in the time
domain, Pn3 denotes a bounded omission degree, based on failure
detection and fault treatment, Pn6 depends on the particular network,
its sizing, parameterizing and loading conditions. The Abstract Net-
work, in a sense, extends the concept of LLC,' the LAN independent
sublayer of the IEEE, and later 1SO 802 standard [1SO85d].

5.1. Abstract Network Primitives

The user of the abstract network service has a number of primitives
available for interaction with the network [Ruf91b].

) Data Request primitives. These primitives request the transmis-
sion of a frame.

¢ Group request — multicast this frame to all members of a
given group.

¢ Selective request — multicast this frame to a given subset
of the members of a group.

¢  Individual request — send the frame to a specified station.

° Data Receive primitives — Indications of data from the network,
or confirmations from the network interface if a given data
request has been served or not.

° Network Management primitives — These primitives provide
interaction with manageable objects in the abstract network like
addresses, network sizing, load control, traffic monitoring, proto-
col characterization. All objects can be read, some can be set to
new or predefined values.

° Station Management primitives — a number of primitives manipu-
late the stations presence on the network and the management of
the multicast address space it will receive frames on.

¢ Stations can be inserted or removed from the network.
The routines initialize or shutdown the internal abstract
network protocols and control the presence of the station
on the network.

¢  Groups can be opened and closed. This is the manage-
ment of the multicast address space using either hardware
or software selection.

¢ Selective addresses can be set or removed. These are the
identifiers used as the station selective address, used in
subset addressing.

¢ Fault injection mechanisms like making the station deaf
or dumb 1o introduce faults for protocol testing.

° Notification primitives for flow control, network failure detection
and station management.

5.2. Abstract Network Implementation

+ Logical Link Control sublayer.

The Abstract Network presents the user with an interface to the real
network network, through use of the primitives from the previous sec-
tion. But not all network controller give the designer the same set of
mechanisms to implement the Abstract Network, often additional soft-
ware is needed to implement all properties of the Network correctly.

Technical - OpenForum “92 - Utrecht, 23-27 November 345




Fast Group Communication for Standard Workstations

Implementations have been made for token-bus, token-ring and Ether-
net, an experimental implementation for FDDI is in progress.

The abstract network is implemented independent from the xAMp pro-
tocol suite. Within SunOS the only abstract network implemented are
of the Ethernet type (and LAN class, see [Ver92a]). Within each sta-
tion a number of abstract networks instances is available to which a
higher level protocol can connect, either directly from within the kernel
or from user space through a device driver interface. This way the
abstract network is not only available for the group communication ser-
vice for can be used for other types of protocol development as well.

Binding of a protocol to an abstract network is done dynamically, and
after this binding the abstract network instance is initialized to use a
specified network interface (corresponding to its type, only Ethernet in
the SunOS case) and to use a specified network type identifier (the pro-
tocol field in the Ethernet frame header).

An important aspect of the abstract network is the management of the
multicast address space [Vog91a, Vog92a]. To all extend one should
avoid using broadcast or all-multicast modes of the network controller,
as one looses the advantage of hardware multicast address filtering. If
this can not be avoided there are two possible schemes;

) All stations receive all messages from all other stations partici-
pating in the conversation, and address filtering is done by soft-
ware.

) Messages are send using multiple point-to-point messages.
In both cases the real advantages of hardware muiticast are nullified.

Per network interface a module handles the multicast address manage-
ment for all abstract networks connected to that interface. For the Eth-
ernet case there is a mapping between group identifiers and the multi-
cast address, in contrast with the token-bus implementation made for
the SPART/UE real-time environment where the selective address is
part of the hardware address filtering scheme.

In the Ethernet version the selective address filtering is done by soft-
ware. It are simple, inexpensive bit masking manipulations. Although
the selective address for a particular abstract network can be altered, it
is implicitly connected to the selective address assigned by the MGS to
this station.

For each interface a number of statistics are kept to be able to identify
load, sizing, error rate etc. This information is used to compute round
trip estimates, omission timeouts, transmission delays, etc.

6. The Group Communication Protocol

The core of the Group Communication Service is the eXtended Atomic
Multicast Protocol (xAMp) [Rod92a], which offers a number of quali-
ties of service as described in Section 2 [Rod91a). The selection of
these QOS’s was driven by user requirements put by diverse classes of
distributed applications. These requirements arisen from the literature
and largely from the needs of the group replication and membership
protocols of Delta-4 architecture.

In the following Sections we describe the basic transmission procedurc
and its use by a number of the qualities of service.
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// tr -w —resp (m, ord, send, P,,n,, M,)

/I “m” is a message to be sent. (D () is the set of recipients).
/! “ord” is a boolean specifying if network order is relevant.
/| “send” allows the first transmission to be skipped.

// P, is a set of processors from which a response is expected.
// n, is the number of responses expected.

// (usuallyn, = #P, ; P, =D ,,)

/Il M, is a bag of responses

retries .= Q;
do // while
if(retries = 0 | ord) then
P,:=P,;n,:=n,; M, :=0;
fi
if(retries > 0 |send) then send(m); fi
timeout 1= 0, start a timer; // wait responses
while (n,, >0 & - timeout) do
when response (r,,) received from p & p € P, do
add(r,) oM,;n, := n,-1;
remove p from P,; od
when timer expires do
timeout := 1; od

-t
OWOoONWAsWN=O

NN B = i b e b e e e
N—= OV WN_WN=

od
retries := retries +1;
while(rerries < MAX & n,, > 0)

if(n,, > 0) then check membership fi

Figure 2: Transmission with response (tr-w-resp) procedure

6.1. The Transmission with Response Procedure

Basic to the xAMp is the use of the abstract network service which
offers an unreliable multicast service. In absence of faults the broad-
cast (Pnl), full duplex (Pn4) and network order (PnS) properties of the
abstract network provide message delivery at all connected stations in
the same order. However, although errors can be considered rare in
LANSs, the occasional loss of messages — or omissions — cannot be pre-
vented. Thus, the communication service must be able to recover from
such errors. In the xAMp, omission errors are detected and recovered
using a transmission with response procedure: it uses acknowledgments
to confirm the reception of the message and detects omission errors
based on the bounded omission degree property of the abstract net-
work."

The tr-w-resp procedure? is depicted in Figure 2. It consists of a loop,
where the data message is sent over the network and responses are
awaited for. The procedure waits during a pre-defined time interval for
the responses (1.15), which are then inserted in a response bag (1.17)
and exits when the desired number of responses is collected. If some
responses are missing, the response bag is re-initialized (1.12) and the
message re-transmitted. The main loop finishes when all the intended

+ The detailed technique, as well as its advantages over other approaches such as diffusion based masking is discussed in detail in
[V.91a).

$ Itis a modified version of the procedure given in [Ver90a).
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responses are received or when a pre-defined retry value is reached
(1.23).

To preserve network order, the procedure re-transmits the message
until it is acknowledged by all recipients in a same transmission. When
order is not required, the procedure can be optimized by keeping
responses in the bag from one re-transmission to the other (response
messages are inserted only once in the response bag). For some omis-
sion patterns, this would allow the bag to be filled faster. To activate
this mode, the flag ord must be set to false. Finally, the boolean vari-
able send allows the user to specify that the message should be sent
over the network on the first cycle of the procedure. This parameter is
useful to allow another processors to collect responses — and execute
the procedure — on behalf of the sender without immediately re-
transmitting the message. In later sections we explain how this feature
is used to provide some of xAMp qualities of service.

Several transmissions with response can be executing simultaneously,
on the same or on different machines. We assume that messages can
be uniquely identified. Different re-transmissions of the same message
can also be distinguished. It is thus possible to route any response to
the appropriate fr-w-resp instantiation (also called an emitter-
machine).t To make a protocol tolerant to sender crashes, several
emitter-machines may be activated concurrently, at recipients sites, for
a same message transmission (in this case, responses must be also
broadcasted). See atLeast agreement for an example.

6.2. BestEffort and atLeast Qualities of Service

A number of distributed applications do not need communication prim-
itives that provide very strong order and agreement primitives, but do
want to use the efficient dissemination of messages to a group of sta-
tions. To give support for this type of application demands the xAMp
offers the bestEffort and atLeast primitives.

BestEffort is used to simply send a message to a group of stations. The
user can specify the number of responses needed (n,), or which named
subset of addressees (P,) needs to acknowledge the message. If the
number of requested responses is zero the service is equivalent to an
unreliable multicast service.

The bestEffort quality of service is not able to assure delivery in case
of sender failure. In order to provide assured delivery, in the presence
of sender failures, we make every recipient responsible for the termina-
tion of the protocol. In consequence, tr-w-resp is invoked both at the
sender and at the recipients, as depicted in the figure (1.7). However, to
avoid superfluous re-transmissions of the data message, recipients skip
the first step of the tr-w-resp procedure, using the send boolean param-
eter). In the no fault case, the data message will be acknowledged by
all intended recipients, these acknowledgments will be seen by the all
the participants and no retransmission takes place.* As with bestEffort
several variants on agreement are possible by choosing the set of sta-
tions that need to respond (P,) or the number of responses (n,) needed.

t Since several emitter-machines can run in parallel, the protocol implementation is able to execute several user requests at the same
time. However, since a node usually has limited resources (memory and cpu), the implementation may restrict the number of simulta-
neous transmissions, for instance keeping a fixed size pool of emitter machines. Some qualities of service may impose additional re-
strictions on parallelism.

} This algorithm can be improved to avoid multiple retransmissions when a single omission occurs, by making the recipients use
slightly different timeout values, and making the protocol refraining from re-sending when a retransmission from other participant is
detected before the timeout expires.
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If the number of responses needed is smaller then the set of addressed
stations (n, s #D,,)), the primitive will assure that at least that num-
ber of the addressees receive the frame even if the sender fails. This is
satisfactory to implement quorum based protocols.

In the case where the number of responses required is equal to the
number of members of the group, the primitive is also called reliable
multicast. Reliable multicast is used as the base of two other qualities
of service: causal and delta.

6.3. The Atomic Quality of Service

The atomic quality of service, in relation to the other qualities of ser-
vice previously described, introduces the assurance of total order. This
can be achieved exploiting the properties of the abstract network: in
fact messages are naturally ordered as they cross the LAN medium
(abstract network property Pn5). To preserve network order, a mecha-
nism must be implemented to ensure that the messages are delivered to
the user respecting the order they have crossed the network and, when
a message crosses the network several times, that a unique re-
transmission is used to establish this order. This requires extra work
both at the sender and at the recipient sides, as described below.

In each recipient, is maintained a reception queue, where messages are
inserted by the order they cross the network. Since at the moment of
reception, a recipient as no way to know if the message was also
received by the other recipients, the message cannot be delivered
immediately to the user. Instead, it is stamped as unaccepted and kept
in the queue until there is an assurance that it was inserted in the same
relative position in all recipient’s queues. If meanwhile, a re-
transmission is received, the message is moved to the end of the queue.
On its side, the sender invokes tr-w-resp activating the “ord” flag, thus
requiring the re-transmission of the message until all recipients
acknowledge the same retry. When a successful re-transmission is
detected, the sender issues an accept frame, committing the message.
When the accept frame is received, the recipients mark the associated
message as accepled and deliver it as soon as it reaches the top of the
queue.

If a receiver is not able to process the message' due to lack of resources
like buffer space or scheduling guarantees it notifies the sender by
returning a not-ok acknowledgement to the sender. The sender reacts
on the receipt of such a negative acknowledgement by issuing a reject
instead of an accept message. Upon receipt of the reject all recipients
discard the corresponding data message.

The atomic service consists of a two-phase accept protocol (see Figure
3) that resembles a commit protocol where the sender coordinates the
protocol: In the dissemination phase the data message is sent to all
recipients, who have to respond if they will be able to process the mes-
sage. In the second phase (decision phase) the sender decides to send
either an accept or a reject message. To increase performance the
accept message is sent using a negative acknowledgement scheme: If a
recipient has not received a decision message due to an omission, it
will detect this through a timeout mechanism and send a Request-
Decision frame. Using this scheme a second round of acknowledge-
ments is avoided increasing the performance. In the scenario where
there is an omission of an accept m=ssage, termination of the protocol

+ More related work on inaccessibility can be found in [Ruf92a, Ruf92b).
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Figure 3: Structure of the multi-phase Atomic Multicast protocol

is delayed but due to the low error rate expected in local area networks,
throughput is significantly improved.

Since in the two-phase accept the sender coordinates the protocol,
some exception mechanism must be implemented to overcome its fail-
ure. In the atomic quality of service, protocol execution is carried on,
in the event of sender failure, by a termination protocol. This termina-
tion protocol is executed by an atomic monitor function. There is no
permanent monitor activity however — so to speak, a monitor only
exists when needed. The monitor impersonates the failed sender but
never re-transmits a data message on its behalf. It just collects infor-
mation about the state of the transmission and disseminates an decision
(reject or accept) accordingly [Ver90b].

7. Clock Synchronization

A number of classes of distributed applications require access to a glo-
bal time base, for implementation of coordinated decentralized actions
in the time domain, sensoring, performance measurement or times-
tamping of events.

It is possible to provide such a timebase by using a centralized time ser-
vice, resident in a single node of the system. This solution is not fault-
tolerant, exhibits poor performance if clocks need to be frequently
read, and errors are introduced due to variation of transmission delays.
The common solution for the clock synchronization problem lies on
using the processor hardware clock to create a virtual clock at each
node, which is locally read. All virtual clocks are synchronized by a
clock synchronization algorithm. Surveys of existing clock synchro-
nization algorithms can be found in [Sch87a, Ram90a, Kop89a]. Of
the available software algorithms the convergence-non-averaging algo-
rithms are attractive because they use the convergence function both to
generate the re-synchronization event and to adjust virtual clocks.

Technical ~ OpenForum 92 - Utrecht, 23-27 November




Fast Group Communication for Standard Workstations

However, the existing algorithms of this class have a major disadvan-
tage: the precision of their convergence function is limited by the maxi-
mum message transmission delay in the system.

Verissimo and Rodrigues [Ver92b] have developed an algorithm which
overcomes the limitation caused by the uncertain message delays, by
using the properties of broadcast networks. The algorithm is imple-
mented within the Group Communication Service using dedicated ser-
vices available to the xAMp protocol suite [Rod91b].

The global time is available to the user through library functions that
read the virtual clock value.

8. Processor Management

To provide efficient management of stations, a low-level processor
membership protocol [Rod92b] is developed that deals with availability
information on the nodes in the network. This information is not static:
during the lifetime of the system, stations will join, leave and, possibly,
fail. The protocol runs directly on top of the LAN (Abstract Network)
to achieve improved performance and to offer a service that can be
used by other protocol layers.

The processor membership has two major goals:

o It keeps a complete, and updated, list of a selected group of sta-
tions, participating in the multicast traffic (target systems typi-
cally include up to 32 nodes). This group is called the Multicast
Group of Stations or simply MGS. The MGS protocol assures
that the membership view is updated consistently in the presence
of joins, leaves and failures. Changes in the MGS membership
are indicated to the protocol users.

It implements a mapping function that translates unique node
identifiers into  short-addresses. To enable run-time
reconfiguration, the mapping is not statically pre-defined and
new stations are able to, at any time, obtain a short-address. This
mapping is universal and stable, meaning that, in all stations, the
same short-address corresponds to the same station and that cor-
respondence remains unchanged during the lifetime of the sys-
tem.

The use of short addresses, as also exploited in Autonet [Sch90a], is to
provide fast address manipulation based on bitmasking. These opera-
tions provide a significant performance improvement and, when the
maximum number of multicast stations is small, allows the recognition
of selective addresses to be implemented in hardware, by the chipset of
the underlying network."

8.1. Protocol Service

Our group membership protocol provides the mapping function
referred above by maintaining a table with information about all sta-
tions participating in the multicast traffic. For efficiency and fault-
tolerance, the table is replicated at every group member. The table
includes an array of state entries, each entry storing information about a
given member of the group: an entry contains, at least, the node unique
identifier and a boolean stating if the node is alive. Additionally, the

+ For instance, the MC68824 token-bus controuer has a group address mask which can be set to filter messages in function of a bit
value.
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Figure 4: Interaction between several modules

entry may store user related data. The short-address associated with
each MGS member is stored implicitly: it corresponds to the index of
the associated entry in the table.

A station may be connected to the network without participating in the
group membership protocol. In order to join the MGS group it must
execute a MgsJoin operation. The join operation requires exchange of
messages with the other MGS members to acquire the state table, insert
itself and obtain a short-address. Upon an insertion in the MGS, a sta-
tion is informed of any change in the MGS membership by an
MgsChange indication. A station may leave the MGS by executing an
MgsLeave operation. The MGS membership is checked at every exe-
cution of a Join or Leave or when a specific MgsCheck operation is
explicitly invoked. The MgsCheck can be called periodically or upon
the detection of an event that raises suspicion about the failure of a
MGS member.

When a station joins the MGS, it acquires a short-address which will
remain associated with that station. Even if the station fails or leaves
the MGS group, the short-address remains assigned to the station, such
that the remaining stations can refer to it by the associated short-
address. If the station recovers and executes a new join, it obtains its
old short address. A dedicated operation, MgsDelete is used to remove
a station from the MGS table and to release the associated short-
address. Since there is a local copy of the MGS table available at every
station, translation between unique identifiers and short-address is a
purely local operation.

Once the MGS protocol has inserted the station into the group it makes
use of the xAMp primitives to assure the detection of failed stations.
The MGS protocol joins an xAMp group that includes all available sta-
tions, within this group keep-alive message are sent to trigger the
Group Monitor in case of failure of a station. The Group Monitor will
automatically call the MGS protocol primitives to assure a consistent
view of the available stations.

9. Dialog

One of the goals in the design of the UNIX kernel version of the Group
Support Service was that the service should be available through the
standard UNIX network interfaces like streams and sockets. Although
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the structure of both BSD and System V style network protocols didn’t
match the structure of the xAMp protocol core we wanted to make an
effort of offering the service through these interfaces. The interface
between the xAMp and the socket and streams endpoint environment is
named Dialog.

The xAMp is structured as a state machine with an input channel on
which messages from user, network and synchronous timers arrive and
a collection of routines that are called as result of changes in the state
machine, resulting in confirmation and indication messages to the user,
interaction with the abstract network, including sending of messages,
and manipulation of timers (see Figure 4).

The xAMp runs as light weight process (thread) in the kernel, sleeping
on the input queue channel. If a message is placed in the input queue a
wakeup of the xAMp thread is generated. If the xAMp outputs mes-
sages to the user it calls a routine from a predefined collection of dia-
log routines. These routines handle the two types of user messages
generated by the xAMp:

. Confirmation: The requested operation has completed. A
confirmation can be positive or negative regarding the result of
the operation.

Indication: data output is produced for the user, this could be a
new group or processor view, a time synchronization message or
data received for a group member.

The user can specify through control operations which types of
confirmations and indications he does want to receive.

Confirmations are necessary as the caller is not blocked in the submit-
ting routine until the operation is successful. For the socket version
this requires some additional mechanisms in the dialog module to
maintain the blocking semantics of the send and write system calls.

The Dialog module for the streams version was expected to link up
better with the xAMp, as streams are also model after a submit/
confirmation/indication model. Already in the prototype phase it
became noticeable that using streams in SunOS is a very expensive
method of designing network software, it added almost a 80 msec over-
head for interaction with the abstract network driver. This scale of
delay was unacceptable for our goals, and we stopped with the devel-
opment of the streams driver.

As an alternative to the streams environment we built a Dialog inter-
face to a regular UNIX device driver that has the same user semantics
as a streams driver. This implementation turned out to have good per-
formance with low overhead, as all message handling is tuned for this
specific environment.

The driver, as well as the socket code, supports all UNIX type opera-
tions like select, signals, non-blocking read, etc.

10. Formal Specification and Verification

There is now a general agreement that protocols must be validated. We
have chosen to do a formal design specification (as opposed to simula-
tion) because this will give you insight in possible errors in your proto-
col design. As an approach to formal verification we decided to use
mode! checking instead of deductive proof methods for the same rea-
son: it is of great help for the detection of errors. In order to apply
these techniques, one needs the description of a complete system con-
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sisting of a fixed number of communicating entities and their interac-
tion environment. Such a complete system is called a scenario Practi-
cally, validation comes down to the construction of a certain number of
critical scenarios and their formal verification by using a tool.

For the verification of AMp we have used the verification tool Xesar
[Ric87a, Gra89a]. This tool evaluates properties given by formulas of
temporal logic on a model generated from a scenario to be verified.
The model represents the complete state graph obtained automatically
from a scenario written in Estelle/R, a variant of Estelle (communica-
tion is modeled by rendez-vous). The basis for the verification is the
complete Estelle/R design specification of the AMp. Since a closed
system (for each message, the sender and the receiver must be
described) is needed for the verification, a description of the environ-
ment is also needed, i.e. the modeling of the adjacent protocol layers:
the network layer and the user layer.

The work on the verification of the AMp has been very successful, a
number of possible errors has been found, and the results of the
verification have given us great confidence in the correctness of the
protocol [Bap90a].

The implementation was also subject to a validation effort: a fault
injection campaign is in course, with the aim of forecasting faults and
assisting in its removal, with the help of a specialized tool [Arl90a].

11. Performance Measurement

Throughout this paper we have stated that achieving a responsive ser-
vice was one of the main goals to achieve. In this section we will
describe some of the performance measurements we have executed.
The next section will focus on comparing these results with those of
comparable systems.

The measurements have been performed in two different operating sys-
tem environments:

) SunOS 4.1.1 - running on SPARCstations I, IPC’s and SLC’s

) Mach2.5 - running on 33Mhz i486 machines of Taiwanese ori-
gin.

The environments differ most in the implementation of the Abstract
Network. We did not have the source code for the SunOS operating
system available and used the ether_family mechanism to insert are
protocols in the de-multiplexing process. For the Mach2.5 port we
were able to implement the Abstract Network exactly as we designed,
having access to all functionality of the lowest layers.

Measurements were done by using the special performance device
driver, which allows us to make timestamps at different stages of the
frame manipulation process, collecting these timestamps afterwards.

The main application of the Group Communication Service is in the
area of responsive and real-time systems. In this context we are more
interested in the timely execution of the primitives and in the excep-
tions in the execution times. We recognize the importance of through-
put of large batches of messages, but the protocols are tuned towards
single message handling and guaranteed timely termination of the pro-
tocols.

The first set of measurements are to determine the latency caused by
the Abstract Network and the physical transport over the network. Rel-
evant is the size of the buffer used. The number of stations used is not
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Figure 5: Performance of the reliable quality of service

of any influence as all message are transmitted using hardware multi-
cast.

When selecting only the i486 machines the latency dropped
significantly with 30 to 35%, this is caused by the more optimal
abstract network implementation.

The variance of the large buffer transfers is larger because of the colli-
sions on the network. When we repeated the tests on an isolated Ether-
net and the variance approaches that of the smaller buffers.

The second series of tests involved measurements of the bestEffort,
atLeast and reliable primitives. As these primitives involve exchanges
of acknowledgements the number of stations plays a role in the perfor-
mance of the protocols. Two points of measurement are taken:

1. The moment the data is indicated to the user.

2. The moment the sender is confirmed of the termination of the
protocol.

All three primitives are not concerned with ordering properties and
indicate the data as soon at it arrives at the Group Communication Ser-
vice. The protocols terminate after the requested number of the
specified subset of group members have acknowledged the message
(see Figure 5).

Abstract network roundtrip time (msec)

frame size (bytes) | 1486 & SPARC stations | 486 stations

1 1.04 0.78
100 1.13 0.82
200 1.27 0.87
500 1.32 0.93

1000 1.39 1.01
1450 1.48 1.12

Table 3: Abstract network latency
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Group membership primitives

# stations 0 1 2 3 4

join 25 132141 49| 56
leave 12 120 24| 26| 29

Table 4: group join performance

In case of the causal ordered primitive, there is a small overhead for
handling of the ordering protocol which resides on top of the reliable
primitive. But we have noticed that in the case when all related mes-
sages already have been received the overhead is in the order of 170
microseconds.

The atomic primitive is a two-phase accept protocol (see Figure 3)
that confirms the user about the result of the operating after the dissem-
ination phase and indicates the data after the decision phase (see Fig-
ure 6).

As the last results we want to report on the performance of the group
membership primitives. In Table 4 the costs of joining and leaving a
group is presented.

12. Performance Comparison

From all published research in the area of group communication we
will discuss our results in comparison with the results of ISIS, Amoeba,
and Consul/Psync. We have chosen these three systems because they
all represent a different main stream in group communication.

The I5IS [Bir91b] toolkit offers a versatile set of communication primi-
tives combined with higher level implementations of distributed algo-
rithms. The ISIS protocols run in user space using the standard com-
munication channels. The authors have put the emphasis on throughput
sacrificing some of the responsive behavior. As the toolkit relies on the

XAMp: Alomic QOS

‘indication’ ——
‘coofirmation’ ~--

execution time (ms)

4.5
4
35

Figure 6: Performance of the atomic quality of service
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standard Internet protocols to transport their messages they are not
bound by the scope of a Local Area Network, but do have to deal with
the sometimes unpredictable behavior of the UDP/TCP/IP layers. Obvi-
ously these transport methods make the toolkit very portable but a
significant performance penalty is paid to achieve this.

The ISIS CBCAST primitive is comparable with the reliable/causal
primitive offered by the xAMp protocol suite. The ABCAST can be
compared with the atomic two phase accept protocol described earlier,
although ABCAST is not able to distinguish inaccessibility from com-
munication or processor failure. Although the complexity of the proto-
cols is comparable the performance of the xAMp primitives is much
better, a 0 bytes CBCAST (6 stations) takes about 17.8 msec, while the
xAMp causal primitive takes 2.96 msec (confirmation). For 1K packet
the costs are 21.1 and 3.9 msec respectively.

The performance analyses given in [Bir91c] show that more than 75%
of the measured latency in the ISIS system is caused by the operating
system layers. Our Group Communication Service gains in perfor-
mance by locating its service as close to the network as possible,
bypassing as much system layers as possible. Another reason for the
improved performance is the use of hardware multicast by the abstract
network, minimizing the message traffic. At Cornell a total redesign of
ISIS is in progress which will result in a system that will approach the
perform of the xAMp primitives.

In Amoeba [Tan90a, Ren88a] the group communication service offers
only one primitive: total order within a group [Kaa89a]. The protocol
uses sequencer sites to regulate the order of the messages. The proto-
cols simpleness results in very high performance but lacks the ability to
be used in more complex environments with different application
requirements. Some of the major criticisms are the inability of the pro-
tocol to support overlapping groups and the lack of timely omission
detection. Recently the protocol has been adjusted to make use of the
Fast Local Internet Protocol (FLIP) [Kaa92a] which provides reliable
multicasting. Ongoing research at the Vrije Universiteit is focused on
extending the current protocols.

When comparing performance figures it is clear that the complexness
of our service makes it not competitive with the less versatile service of
Amoeba. On a lightly loaded Ethernet the Amoeba protocol makes an
atomic broadcast to 10 station within 1.5 msec. There are no acknowl-
edgements involved, and there is little overhead from the network
interface modules.

Consul [Mis92a] is a communication substrate for building fault-
tolerant systems, the system relies heavily on the services offered by
Psync, a group communication protocol designed to preserve causality
based on the use of a context graph. The systems are build within the
x-kernel [Hut90a), a protocol development environment from the Uni-
versity of Arizona. The performance of this dedicated environment is
almost comparable to our implementation, both causal and total order
service have a latency that is 0.5 to 1.5 msec higher than the xAMp
protocols. We believe the slightly worse performance of the total order
service can be related to the fact that this service is build on top of the
causal order primitive.

Technical - OpenForum “92 - Utrecht, 23-27 November




Fast Group Communication for Standard Workstations

13. Lessons Learned

Some conclusion from the practical side are:

. Having multiple qualities of service helps the builder of dis-
tributed applications to minimize communication cost.

) Exploiting network properties makes building of group commu-
nication easier and more responsive.

) Integration inside the operating system has yielded good per-
forming service.

) Integration into a operating system without having access to the
source code should be avoided.

. Implementing responsive protocols using SunOS streams is not
possible.

o Using formal verification techniques has improved the
confidence in the correctness of the protocols.

) The different addressing modes have improved the usefulness of
the service.

° The short addresses have improved the address manipulation
enormously but do not scale well.

) Portability is possible even within between operating system
code if at design time an effort has been made to locate system
dependencies.

The experiences with the design of the group support service form the
basis of a report on requirements for building group support systems,
see [Vog92al.

14. Future Directions

Our current research continues to focus on integration of the group
concept in different areas of distributed computing. Our main goal is to
achieve a high performance group service that can be used in real-time
and responsive systems. We will also focus on how to build responsive
group support for large scale distributed systems, especially in the area
of CSCW. Another main line is the development of group management
protocols [Ver92a].

In the Navigators project we are focusing on a total redesign of the
xAMp protocol suite to to incorporate new ideas on responsive sys-
tems, dedicated support by micro-kernels, low-level high-performance
transport mechanisms, multi-level failure detectors, etc. In the same
environment we try to incorporate internetworking support for group
communication at MAN and WAN scale [Vog91b].

Our new environment is being developed for the Mach 3.0 microkernel
and a prototype is planned for the end of 1992. Also cooperation
between newly designed ISIS modules and Navigators protocols are
foreseen.

Formal verification and specification techniques will be more inte-
grated into the design process as they have shown in our case to
improve the quality of the protocols built.
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15. Summary

In this paper we have presented the implementation of a Group Com-
munication Service aimed at achieving high-performance to support
distributed applications that have responsive requirements. Scalability
has been traded for timely protocol execution of the protocols.

The main concepts are described as well as the actual implementation,
and design decisions have been motivated. For more details on specific
parts of the service the reader is referred to [Ver90b, Rod92a].

We have described the performance of our protocols and compared
these to three other popular group communication services. When
looking at the performance figures is becomes clear that the different
protocols that form the core of our service can compete with any other
know group communication system in both performance and quality of
the offered services.
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Abstract

Unlike many other operating systems, Amoeba is a distributed operat-
ing system that provides group communication (i.e., one-to-many com-
munication). We will discuss design issues for group communication,
Amoeba’s group system calls, and the protocols to implement group
communication. To demonstrate that group communication is an use-
ful abstraction, we will describe a design and implementation of a
fault-tolerant directory service. We discuss two versions of the direc-
tory service: one with Non-Volatile RAM (NVRAM) and one without
NVRAM. We will give performance figures for both implementations.

1. Introduction

Most current distributed operating systems provide only Remote Proce-
dure Call (RPC) [Bir84a]. The idea is to hide the message passing, and
make the communication look like an ordinary procedure call (see Fig-
ure 1). The sender, called the client, calls a stub routine on its own
machine that builds a message containing the name of the procedure to
be called and all the parameters. It then passes this message to the
driver for transmission over the network. When it arrives, the remote
driver gives it to a stub, which unpacks the message and makes an ordi-
nary procedure call to the server. The reply from server to client fol-
lows the reverse path.

Although RPC is a very useful communication paradigm, many applica-
tions need something more. RPC is inherently point-to-point communi-
cation, but what often is needed is 1-to-n communication. Consider,
for example, a parallel application. Typically in a parallel application a

Client machine

Server machine

Client Stub

i Network > Driver Stub

Figure 1: Remote procedure call from a client to a server
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number of processes cooperate to compute a single result. If one of the
processes finds a partial result (e.g., a better bound in a parallel
branch-and-bound program) it is often necessary that this partial result
is communicated immediately to the other processes, so that they do
not waste cycles on computing something that is not interesting any-
more, given the new partial result. What is needed here is a way to
send a message from 1 process to n processes. This abstraction is
called group communication.

Now consider a second application: a fault-tolerant storage service. A
reliable storage service can be built by replicating data on multiple pro-
cessors each with their own disk. If a piece of data needs to be
changed, the service either has to send the new data to all processes or
invalidate all other copies of the changed data. If only point-to-point
communication were available, then the process would have to send
n - 1 reliable point-to-point messages. In most systems this will cost
at least 2(n - 1) messages (one packet for the actual message and one
packet for the acknowledgement). If the message sent by the server
has to be fragmented into multiple network packets, then the cost will
be even higher. This method is slow, inefficient, and wasteful of net-
work bandwidth.

In addition to being expensive, building distributed applications using
only point-to-point communication is often difficult. If, for example,
two servers in the reliable storage service receive a request to update
the same data, they need a way to order the updates, otherwise the data
may become inconsistent. The problem is illustrated in Figure 2. The
copies of variable x become inconsistent because the messages from
Server 1 and Server 2 are not ordered. What is needed is that all
point-to-point messages sent by one server precede all point-to-point
messages sent by the other server.

Many network designers have realized that group communication is an
important tool for building distributed applications; broadcast commu-
nication is provided by many networks, including LANs, geosyn-

Server 1 Server 2

X

1

Server 1 Server 2

X X

2 3

Server 1 Server 2

x

2

Figure 2: Inconsistency due to lack of message ordering
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chronous satellites, and cellular radio systems [Tan89a]. Several com-
monly used LANSs, such as Ethernet and some rings, even provide mul-
ticast communication. Using multicast communication, messages can
be sent exactly to the group of processes that are interested in receiving
them. Future networks, like Gigabit LANS, are also likely to implement
broadcasting and/or multicasting to support high-performance applica-
tions such as multimedia [Kun92a].

The protocol presented in this paper for group communication uses the
hardware multicast capability of a network, if one exists. Otherwise, it
uses broadcast messages or point-to-point messages, depending on the
size of the group and the availability of broadcast communication.
Thus, Amoeba makes the hardware support for group communication
available to application programs.

The outline of the rest of the paper is as follows. In Section 2, we will
discuss design issues in group communication. In Section 3, we will
discuss the Amoeba group system calls. In Section 4, we will give an
overview of the protocols that implement group communication. In
Section 5, we will describe the design and implementation of a dis-
tributed application using group communication: a fault-tolerant direc-
tory service. In Section 6, we will give performance figures for two
implementations of the directory service. In Section 7, we will draw
some conclusions.

2. Design Issues in Group Communication

Few existing operating systems provide application programs with sup-
port for group communication. To understand the differences between
these existing systems, six design criteria are of interest: addressing,
reliability, ordering, delivery semantics, response semantics, and group
structure (see Figure 3). We will discuss each one in turn.

Four methods of addressing messages to a group exist. The simplest
one is to require the sender to explicitly specify all the destinations to
which the message should be delivered. A second method is to use a
single address for the whole group. This method saves bandwidth and
also allows a process to send a message without knowing which pro-
cesses are members of the group. Two less common addressing meth-
ods are source addressing [Gue85a}, and functional addressing
[Hug88a). Using source addressing, a process accepts a message if the
source is a member of the group. Using functional addressing, a pro-
cess accepts a message if a user-defined function on the message evalu-
ates to true. The disadvantage of the latter two methods is that they are
hard to implement with current network interfaces.

Issue

Description

Addressing
Reliability
Ordering

Delivery semantics
Response semantics
Group structure

Addressing method for a group (e.g., list of members)
Reliable or unreliable communication

Order among messages (e.g., global ordering)

How many processes must receive the message successfully
How to respond to a broadcast message

Semantics of a group (e.g., dynamic versus static)

Figure 3: The main design issues for group communication

Technical - OpenForum “92 - Utrecht, 23-27 November




Group Communication in Amoeba and its Applications

The second design criterion, reliability, deals with recovery from com-

* munication failures, such as buffer overflows and garbled packets.

Because reliability is more difficult to implement for group communi-
cation than for point-to-point communication, a number of existing
operating systems provide unreliable group communication, whereas
almost all operating systems provide reliable point-to-point communi-
cation, for example, in the form of RPC.

Another important design decision in group communication is the
ordering of messages sent to a group. Roughly, there are 3 possible
orderings: no ordering, causal ordering, and global ordering [Bir91a].
The first ordering is easy to understand and implement, but unfortu-
nately makes programming harder. The causal ordering guarantees
that all messages that are related are ordered. More specifically: if a
member after receiving message A sends a message B, it is guaranteed
that all members will receive A before B. In the global ordering, all
messages are ordered. The last method is stronger than the second and
makes programming easier, but is harder to implement.

To illustrate the difference between causal and global ordering, con-
sider a service that stores records for client processes. Furthermore,
assume that the service replicates the records on each server to increase
availability and reliability and that it guarantees that all replicas are
consistent. If a client may only update its own records, then it is
sufficient if all messages from the same client will be ordered. Thus, in
this case a causal ordering can be used. If a client, however, may
update any of the records, then a global ordering on the updates is
needed to ensure consistency among the replicas. To see this, assume
that two clients, Cy and C5 resp., send an update for record X at the
same time. As these two updates will be globally ordered, all servers
either (1) receive first the update from C; and then the update from C,
or (2) receive first the update from C;, and then the update from Csubl.
In either case, the replicas will stay consistent, because every server
applies the updates in the same order. If in this case causal ordering
would have been used, it might have happened that the servers applied
the updates in reverse order, resulting in inconsistent replicas.

The fourth item in the table, delivery semantics relates to when a mes-
sage is considered delivered successfully to a group. There are 3
choices: k-delivery, quorum delivery, and atomic delivery. With k-
delivery, a broadcast is successful when k processes have received the
message for some constant k. With quorum delivery, a broadcast is
defined as being successful when a majority of the current membership
has received it. With atomic delivery either all processes receive it or
none do. Atomic delivery is the ideal semantics, but is harder to imple-
ment if processors can fail.

Item five, response semantics deals with what the sending process
expects from the receiving processes [Hug89a]. There are four broad
categories of what the sender can expect: no responses, a single
response, many responses, and all responses. Operating systems that
integrate group communication and RPC completely support all four
choices [Che85a].

The last design decision specific to group communication is group
structure. Groups can be either closed or open [Lia%0a]. In a closed
group, only members can send messages to the group. In an open
group, nonmembers may also send messages to the group. In addition,
groups can be static or dynamic. In static groups processes cannot
leave or join a group, but remain a member of the group for the lifetime
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of the process. Dynamic groups may have a varying number of mem-
bers over time.

To make these design decisions more concrete, we briefly discuss two
systems that support group communication. Both systems support open
dynamic groups, but differ in their semantics for reliability and order-
ing. In the V system [Che85a), groups are identified with a group
identifier. If two processes concurrently broadcast two messages, A
and B, respectively, some of the members may receive A first and oth-
ers may receive B first. No guarantees about ordering are given. Relia-
bility in the V system means that at least one of the members must have
replied. A more reliable primitive can be built by waiting for a reply
from all members. However, this is a very inefficient way of doing
reliable broadcasting. For a completely reliable broadcast, n packets
are needed (1 for the actual message and n — 1 for the acknowledge-
ments).

In the Isis system [Bir87a], messages are sent to a group identifier or to
a list of addresses. When sending a message, a user specifies how
many replies are expected. Messages can be globally ordered. Relia-
bility in Isis means that either all or no members of a group will receive
a message, even in the face of processor failures. Because these
semantics are hard to implement efficiently, Isis also provides primi-
tives that give weaker semantics, but better performance. It is up to the
programmer to decide which primitive is required.

3. Group Communication in Amoeba

Amoeba is a distributed operating system based on the client/server
model [Tan90a, Mul90a). Services in Amoeba are addressed by ports,
which are large random numbers. When a service is started, it gener-
ates a new port and registers the port with the directory service. A
client can Jook up the port using the directory service and ask its own
kernel to send a message to the given port. The kernel will map the
port on a network address. lf multiple servers listen to the same port,
only one (arbitrary) server will get the message.

Ports are also used to identify groups. When a group is created, a user
specifies a port. Other processes can use this port, for example, to join
the group or to send a message to the group. Thus, in Amoeba all enti-
ties, processes and groups, are addressed in a uniform way.

Groups in Amoeba are closed. A process that is not a member and that
wishes to communicate with a group can use RPC (or it can join the
group). The reason for doing so is that a client need not be aware
whether a service consists of multiple servers which perhaps broadcast
messages to communicate with one another, or a single server. Also, a
service should not have to know whether the client consists of a single
process or a group of processes. This design decision is in the spirit of
the client-server paradigm: a client knows what operations are allowed,
but should not know how these operations are implemented by the ser-
vice.

The primitives to manage groups and to communicate within a group
are given in Figure 4. We will discuss the most important one: Send-
ToGroup. This primitive guarantees that hdr and buf will be delivered
to all members, even in the face of unreliable communication and finite
buffers. Furthermore, when the resilience degree of the group is r (as
specified in CreateGroup), the protocol guarautees that even in the
event of a simultaneous crash of up to r members, it will either deliver
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the message to all remaining members or to none. Choosing a large
value for r provides a high degree of fault tolerance, but extracts a
penalty in performance. The tradeoff chosen is up to the user.

In addition to reliability, the protocol guarantees that messages are
delivered in the same order to all members. Thus, if two members (on
two different machines), simultaneously broadcast two messages, A
and B, the protocol guarantees that either

1. All members receive A first and then B, or
2. All members receive B first and then A.

Random mixtures, where some members get A first and others get B
first, are guaranteed not to occur. Application programs can count on
it.

Figure 5 lists the design issues and the choices for Amoeba. To sum-
marize, the group primitives provide an abstraction that enables pro-
grammers to design applications consisting of one or more processes
running on different machines. It is a simple, but powerful, abstraction.
All members of a group see all events in the same order. Even the
events of a new member joining the group, a member leaving the
group, and recovery from a crashed member are globally ordered. If,
for example, one process calls JoinGroup and a member calls Send-
ToGroup, either all members first receive the join and then the broad-
cast or all members first receive the broadcast and then the join. In the
first case the process that called JoinGroup will also receive the broad-

Function(parameters) — result Description

CreateGroup(port, resilience, Create a group. A process specifies
max_group, nr_buf, max_msg) — | how many member failures must be

gd tolerated without loss of any mes-
sage.

JoinGroup(hdr) — gd Join a specified group.

LeaveGroup(gd, hdr) Leave a group. The last member

leaving causes the group to vanish.

SendToGroup(gd, hdr, buf, Atomically send a message to all
bufsize) the members of the group. All mes-
sages are globally ordered.

ReceiveFromGroup(gd, &hdr, Block until 2 message arrives.
&buf, bufsize, &more) — size | More tells if the system has buf-
fered any other messages.

ResetGroup(gd, hdr, Recover from processor failure. If
nr_members) —» group_size the newly reset group has at least
nr_member members, it succeeds.

GetInfoGroup(gd, &state) Return state information about the
group, such as the number of group
members and the caller’s member
id.

ForwardRequest(gd, member_id) Forward a request for the group to
another group member.

Figure 4: Primitives to manage a group and to communicate within a group

370 Technical - OpenForum “92 - Utrecht, 23-27 November




Group Communication in Amoeba and its Applications

cast message. In the second case, it will not receive the broadcast mes-
sage. A mixture of these two orderings is guaranteed not to happen.
This property makes reasoning about a distributed application much
easier. Furthermore, the group interface gives support for building
fault tolerant applications by choosing an appropriate resilience degree.

4. Implementation of Group Communication

The protocol to be described runs inside the kernel and is accessible
through the primitives described in the previous section. It assumes
that unreliable message passing between processes is possible; frag-
mentation, reassembly, and routing of messages are done at lower lay-
ers in the kernel [Kaa91a]. The protocol performs best on a network
that supports hardware multicast. Lower layers, however, treat multi-
cast as an optimization of sending point-to-point messages; if multicast
is not available, then point-to-point communication will be used. Even
if only point-to-point communication is available, the protocol is in
most cases still more efficient than performing n RPCs. (In a mesh
interconnection network, for example, the routing protocol will only
use In n instead of n messages.)

Each kernel running a group member maintains information about the
group (or groups) to which the member belongs. It stores, for example,
the size of the group and information about the other members in the
group. Any group member can, at any instant, decide to broadcast a
message to its group. It is the job of the kernel and the protocol to
achieve reliable broadcasting, even in the face of unreliable communi-
cation, lost packets, finite buffers, and node failures. We assume, how-
ever, that Byzantine failures (in which a kernel sends malicious or con-
tradictory messages) do not occur.

Without loss of generality, we assume for the remainder of this section
that the system contains one group, with each member running on a
separate processor. All machines run exactly the same kernel and
application software. However, when the application starts up, the
machine on which the group is created is made the sequencer. If the
sequencer machine subsequently crashes, the remaining members elect
a new one. The sequencer machine is in no way special — it has the
same hardware and runs the same kernel as all the other machines. The
only difference is that it is currently performing the sequencer function.

Issue Choice

Addressing Group identifier (port)

Reliable communication;

Reliability fault tolerance if specified

Ordering Global ordering

Delivery semantics | All or none

Response semantics | None (RPC is available)

Group structure Closed and dynamic

Figure 5: Important design issues of F. igﬁre 3 and the choices made for Amoeba
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Basic Protocol

A brief description of the protocol is as follows (a complete description
and comparison with other protocols is given in [Kaa92a]). When a
group member calls SendToGroup to send a message, M, it hands the
message to its kernel and is blocked. The kernel encapsulates M in an
ordinary point-to-point message and sends it to the sequencer. When
the sequencer receives M, it allocates the next sequence number, s, and
broadcasts a packet containing M and s. Thus all broadcasts are issued
from the same node, the sequencer. Assuming that no packets are lost,
it is easy to see that if two members concurrently want to broadcast,
one of them will reach the sequencer first and its message will be
broadcast first. Only when that broadcast has been completed will the
other broadcast be started. Thus, the sequencer provides a global time
ordering. In this way, we can easily guarantee the indivisibility of
broadcasting per group.

When the kernel that sent M, itself receives the message from the net-
work, it knows that its broadcast has been successful. It unblocks the
member that called SendToGroup.

Although most modern networks are highly reliable, they are not per-
fect, so the protocol must deal with errors. Suppose some node misses
a broadcast packet, either due to a communication failure or lack of
buffer space when the packet arrived. When the following broadcast
packet eventually arrives, the kernel will immediately notice a gap in
the sequence numbers. If it was expecting s next, and it receives s + 1
instead, it knows it has missed one.

The kernel then sends a special point-to-point message to the sequencer
asking it for a copy of the missing message (or messages, if several
have been missed). To be able to reply to such requests, the sequencer
stores broadcast messages in the history buffer. The sequencer sends
the missing messages to the process requesting them as point-to-point
messages. The other kernels also keep a history buffer, to be able to
recover from sequencer failures and to buffer messages when there is
no outstanding ReceiveFromGroup call.

As a practical matter, a kernel has only a finite amount of space in its
history buffer, so it cannot store broadcast messages indefinitely. How-
ever, if it could somehow discover that all members have received
broadcasts up to and including m, it could then purge the first m broad-
cast messages from the history buffer.

The protocol has several ways of letting a kernel discover this informa-
tion. For one thing, each point-to-point message to the sequencer (e.g.,
a broadcast request), contains, in a header field, the sequence number
of the last broadcast received by the sender of the message (i.e., a pig-
gybacked acknowledgement). This information is also included in the
message from the sequencer to the other kernels. In this way, a kernel
can maintain a table, indexed by member number, showing that mem-
ber i has received all broadcast messages up to T; (and perhaps more).
At any instant, a kernel can compute the lowest value in this table, and
safely discard all broadcast messages up to and including that value.
For example, if the values of this table are 8, 7, 9, 8, 6, and 8, the ker-
nel knows that everyone has received broadcasts O through 6, so they
can safely be deleted from the history buffer. If a node does not do any
broadcasting for a while, the sequencer will not have an up-to-date idea
of which broadcasts it has received. To provide this information, nodes
that have been quiet for a certain interval, At, send the sequencer a spe-
cial packet acknowledging all received broadcasts. The sequencer can
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also request this information when it runs out of space in its history
buffer.

PB Method and BB Method

There is a subtle design point in the protocol; there are actually two
ways to do a broadcast. In the method we have just described, the
sender sends a point-to-point message to the sequencer, which then
broadcasts it. We call this the PB method (Point-to-point followed by a
Broadcast). In the BB method, the sender broadcasts the message.
When the sequencer sees the broadcast, it broadcasts a special accept
message containing the newly assigned sequence number. A broadcast
message is only “official” when the accept message has been sent.

These methods are logically equivalent, but they have different perfor-
mance characteristics. In the PB method, each message appears on the
network twice: once to the sequencer and once from the sequencer.
Thus a message of length n bytes consumes 2n bytes of network band-
width. However, only the second message is broadcast, so each user
machine is interrupted only once (for the second message).

In the BB method, the full message appears only once on the network,
plus a very short accept message from the sequencer. Thus, only about
n bytes of bandwidth are consumed. On the other hand, every machine
is interrupted twice, once for the message and once for the accepr.
Thus the PB method wastes bandwidth to reduce interrupts and the BB
method minimizes bandwidth usage at the cost of more interrupts. The
protocol switches dynamically between the PB method and BB method.

Processor Failures

The protocol described so far recovers from communication failures,
but does not guarantee that all surviving members receive all messages
that have been sent before a member crashed. For example, suppose a
process sends a message to the sequencer, which broadcasts it. The
sender receives the broadcast and delivers it to the application, which
interacts with the external world. Now assume all other processes miss
the broadcast, and the sender and sequencer both crash. Now, the
effects of the message are visible but none of the other members will
receive it. This is a dangerous situation that can lead to all kinds of dis-
asters, because the “all-or-none” semantics have been violated.

To avoid this situation, CreateGroup has a parameter r, the resilience
degree that specifies the resiliency. This means that the SendToGroup
primitive does not return control to the application until the kernel
knows that at least r other kernels have received the message. To
achieve this, a kemnel sends the message to the sequencer point-to-point
(PB method) or broadcasts the message to the group (BB method). The
sequencer allocates the next sequence number, but does not officially
accept the message yet. Instead, it buffers the message and broadcasts
the request for broadcasting to the group. On receiving such a request
with a sequence number, the r lowest-numbered kernels buffer the
message in their history and send acknowledgement messages t0 the
sequencer. After receiving these acknowledgments, the sequencer
broadcasts the accept message. That way, no matter which r machines
crash, there will be at least one left containing the full history, so
everyone else can be brought up to date after the recovery. Thus, an
increase in fauit tolerance is paid for by a decrease in performance.
The tradeoff chosen is up to the user.

Technical - OpenForum 92 - Utrecht, 23-27 November




Group Communication in Amoeba and its Applications

5. An Application of Group Communication: a Fault-tolerant
Directory Service

The group communication primitives have been used in parallel appli-
cations [Bal90a, Tan92a], and in a fault-tolerant implementation of the
Orca programming language [Kaa92b]. In this section, we discuss a
fault-tolerant design and implementation of Amoeba’s directory ser-
vice. The directory service exemplifies distributed services that pro-
vide high reliability and availability by replicating data.

The directory service is a vital service in the Amoeba distributed oper-
ating system [Ren89a]. It provides among other things a mapping from
ASCII names to capabilities. In its simplest form a directory is basi-
cally a table with 2 columns: one storing the ASCII string and one stor-
ing the corresponding capability. Capabilities in Amoeba identify an
object (e.g., a file). The set of capabilities a user possesses determines
which objects it can access and which not. The directory service
allows the users to store these capabilities under ASCII names to make
life easier for them.

The previous design and implementation of the directory service is
based on RPC [Ren89a). The RPC directory service is duplicated and
recovers therefore only from one processor failure. Furthermore, it
cannot tolerate network partitions. We will now discuss the design and
implementation of a directory service based on group communication.
A comparison of the two directory services can be found in [Kaa92c].

The group directory service is triplicated (though four or more replicas
are also possible, without changing the protocol) and uses active repli-
cation. Also, it allows network partitions. To keep the copies consis-
tent, it uses a modified version of read-one write-all policy, called
accessible copies [Abb85a]. Recovery is based on the protocol
described by Skeen [Ske85a]. The main purpose of this section is to
describe a fault-tolerant service based on group communication. Other
projects have implemented similar services [Mar88a, Sat90a, His90a,

Mis89a, Blo87a, Lis91a].

The organization of the group directory service is depicted in Figure 6.
The directory service is currently built out of three directory servers,
three Bullet file servers [Ren89b], and three disk servers. A Bullet
server and a disk server share one disk. Each directory server stores a
copy of a directory.

The directory servers form a group with a resilience degree, r, of 2.
This means that if SendToGroup returns successfully, it is guaranteed,
even if two processors fail, that the message still will be delivered to
the third one. Furthermore, it is guaranteed even in the presence of
communication and processor failures that each server will receive all
messages in the same order. The strong semantics of SendToGroup
make the implementation of the group directory service simple.

The service stores the administrative data on a raw disk partition of n
fixed-length blocks. Block 0 contains information needed during
recovery (see below). Blocks 1ton - 1 contain a table of capabilities,
indexed by object number. The capability in the object table points to a
Bullet file that stores the directory, random number for access protec-
tion, and the sequence number of the last change.
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Default Operation

Each server in the directory service consists of several threads: multiple
server threads and one group thread. The server threads are waiting for
requests from a clients. The group thread is waiting for an internal
message sent to the group. There can be multiple server threads, but
there is only one group thread. A server thread that receives a request
and initiates a directory operation is called the initiator.

The initiator first checks if the current group has a majority (i.e., at
least two of the three servers must be up). If not, the request is refused,;
otherwise the request is processed. The reason why even a read request
requires a majority is because the network might become partitioned.
Consider the following situation. Two servers and a client are on one
side of the network partition and the client deletes the directory foo.
This update will be performed, because the two servers have a major-
ity. Now assume that the two servers crash and that the network parti-
tion is repaired. If the client asks the remaining server to list the direc-
tory foo, it would get the contents of a directory that it had successfully
deleted earlier. Therefore, read requests are refused if the group of
servers does not have a majority. (There is an escape for system
administrators in case two servers lose their data forever due to, for
example, a head crash.)

Read operations can be handled by any server without the need for
communication between the servers. When a read request is received,
the initiator checks if the kernel has any messages buffered using Get-
InfoGroup. If so, it blocks to give the group thread a chance to process
the buffered messages; before performing a read operation, the initiator
has to be sure that it has performed all preceding write operations. If a
client, for example, deletes a directory and then tries to read it back, it
has to receive an error, even if the client requests were processed at dif-
ferent directory servers. As messages are sent using r = 2, it is
sufficient to see if there are any messages buffered on arrival of the

Bullet Bullet
2 3

Directory service group

Figure 6: Organization of the service (a) Administrative data; (b) Directories; (c) Files
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Recovery Protocol

read request. Once these buffered messages are processed, the initiator
can perform the read request.

Write operations require communication among the servers. First, the
initiator generates a new capability, because all the servers must use the
same capability when creating a new directory. Otherwise, some
servers may consider a directory capability invalid, whereas others
consider it valid. The initiator broadcasts the request to the group using
the primitive SendToGroup and blocks until the group thread received
and executed the request. Once it is unblocked, it sends the result of
the request back to the client.

The group thread is continuously waiting for a message sent to the
group (i.e., it is blocked in ReceiveFromGroup). If ReceiveFromGroup
returns, the group thread first checks if the call to ReceiveFromGroup
returned successfully. If not, one of the servers must have crashed. In
this case, it rebuilds the group by calling ResetGroup, updates its com-
mit block, and calls ReceiveFromGroup again. If it does not succeed in
building a group with a majority of the members of the original group,
the server enters recovery mode.

If ReceiveFromGroup returns successfully, the server creates the new
directories on its Bullet server, updates its cache, updates its object
table, and writes the changed entry in the object table to its disk. As
soon as one server writes the new entry to disk, the operation is com-
mitted. If no server fails, each server will receive all requests and ser-
vice all requests in the same order and therefore all the copies of the
directories stay consistent. There might be a small delay, but eventu-
ally each server will receive all messages.

When the client’s RPC returns successfully, the user knows that one
new copy of the directory is stored on disk and that at least two other
servers have received the request and stored the new directory on disk,
too, or will do so shortly. If one server fails, the client can still access
its directories.

Let us analyze the cost of a directory operation in terms of communica-
tion cost and disk operations. Read operations do not involve commu-
nication or disk operations (if the requested directory is in the cache).
Write operations require one group message sent with r = 2, a Bullet
operation to store the new directory, and one disk operation to store the
changed entry in the object table.

Block 0, the commit block, contains information that is needed during
recovery and is shown in Figure 7. It contains the configuration vector.
The configuration vector is a bit vector, indexed by server number. If
server 2, for example, is down, bit 2 in the vector is set to 0.

During recovery, the sequence number is computed by taking the maxi-
mum of all the sequence numbers stored with the directory files and the
sequence number stored in the commit block. At first sight it may seem
strange that a sequence number is also stored in the commit block, but
this is needed for the following case. When a directory is deleted, the
Bullet file containing the sequence number is deleted, but the server

1 up?

2up?

3 up?

Sequence number Recovering?

Figure 7: Layout of the commit block
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must store somewhere that it performed an update. The sequence num-
ber in the commit block is used for this case. It is only updated when a
directory is deleted.

The recovering field is needed to keep track if a server crashed during
recovery. If this field is set, the server knows that it crashed during
recovery. In this case, it sets the sequence number to zero, because its
state is inconsistent. It may have recent versions of some directories
and old versions of other directories. The sequence number is set to
zero to ensure that other servers will not try to update their directories
from a server whose state is inconsistent.

A server starts executing the recovery protocol when it is a member of
a group that forms a minority or when it comes up after having been
down. Two conditions have to be met to recover:

1.  The new group must have a majority to avoid inconsistencies
during network partitions;

The new group must contain the set of servers that possibly per-
formed the latest update.

It is the latter requirement that makes recovery of the group service
complicated. During recovery the servers need an algorithm to deter-
mine which servers failed last.

Such an algorithm exists; it is due to Skeen [Ske85a] and it works as
follows. Each server keeps a mourned set of servers that crashed
before it. When a server starts recovering, it sets the new group to only
itself. Then, it exchanges with all other alive servers its mourned set.
Each time it receives a new mourned set, it adds the servers in the
received mourned set to its own mourned set. Furthermore, it puts the
server with whom it exchanged the mourned set in the new group. The
algorithm terminates when all servers minus the mourned set are a sub-
set of the new group.

The complete recovery protocol is as follows. When a server enters
recovery mode, it first tries to join the group. If this fails, it assumes
that the group is not created yet and it creates the group. If after a cer-
tain waiting period, an insufficient number of members joined the
group, it leaves the group and starts all over again. It may have hap-
pened that two servers recreated the group (e.g., two servers on each
side of the network partition) and that they both cannot acquire a
majority of the members.

Once a server has created or joined a group that contains a majority of
all directory servers, it executes Skeen’s algorithm to determine the set
of servers that crashed last, the last set. If this set is not a subset of the
new group, the server starts all over again, waiting for servers from the
last set to join the group. If the last set is a subset of the new group, the
new group has the most recent version of the directories. The server
determines who in the group has them and gets them. Once it is up-to-
date, it writes the new configuration to disk and enters normal opera-
tion.

The recovery protocol can be improved. Skeen’s algorithm assumes
that network partitions do not occur. To make his algorithm work for
our assumption, we forced the servers that have a minority to fail.
Now the recovery protocol will fail in certain cases in which it is actu-
ally possible to recover. Consider the following sequence of events.
Server 1, 2, and 3 are up; server 3 ctashes; server 1 and 2 form a new
group; server 2 crashes. Now as we want to tolerate network partitions
correctly, we forced server 1 to fail. However, this is too strict. If
server 1 stays alive and server 3 is restarted, server 1 and 3 can form a
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new group, because server 1 must have performed all the updates that
server 2 could have performed. The rule in general is that two servers
can recover, if the server that did not fail has a higher sequence num-
ber, as in this case it is certain that the new member has not formed a
group with the (now) unavailable member in the meantime. We will
incorporate this improvement in our directory service in the near
future.

6. Performance of the Directory Service

The directory service has been used in an experimental environment
for several months. It runs on machines comparable to a Sun3/60 con-
nected by 10 Mbit/s Ethernet. The Bullet servers run on Sun3/60s and
are equipped with Wren IV SCSI disks.

We have measured the performance of three kinds of operations. The
results are shown in Figure 8. The first experiment measures the time
to append a new (name, capability) pair to a directory and delete it sub-
sequently (e.g., appending and deleting a name for a temporary file).
The second experiment measures the time to create a 4-byte file, regis-
ter its capability with the directory service, look up the name, read the
file back from the file service, and delete the name from the directory
service. This corresponds with the use of a temporary file that is the
output of the first phase of a compiler and then is used as an input file
for the second phase. Thus, the first experiment measures only the
directory service, while the second experiment measures both the
directory and file service. The third experiment measures the perfor-
mance of the directory server for read operations.

For comparison reasons, we ran the same experiments using Sun NFS;
the results are listed in the second column. The measurements were
run on Sun0S4.1.1 and the file used was located in /usr/tmp/. NFS
does not provide any fault tolerance or consistency (e.g., if another
client has cached the directory, this copy will not be updated consis-
tently when the original is changed). Compared to NFS, providing high
reliability and availability costs a factor of 2.1 in performance for the
“append-delete” test and 1.9 in performance for the “tmp file” test.

The dominant cost in providing a fault-tolerant directory service is the
cost for doing the disk operations. Therefore, we have implemented a
third version of the directory service, which does not perform any disk
operations in the critical path. Instead of directly storing modified
directories on disk, this implementation stores the modifications to a
directory in a 24Kbyte Non Volatile RAM (NVRAM). When the server
is idle, it applies the modifications logged in NVRAM to the directories
stored on disk. Because NVRAM is a reliable medium, this implemen-
tation provides the same degree of fault tolerance as the other imple-
mentations, while the performance is much better. A similar optimiza-
tion has been used in [Dan87a, Lis91a, Har92a].

Sun Group

Operation Group | Nps | 4NVRAM

Append-delete 184 87 27
Tmp file 215 111 52
Directory lookup 5 6 5

Figure 8: Performance of 3 kinds of directory operations (times in msec)
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Using NVRAM, some sequences of directory operations do not require
any disk operations at all. Consider the use of /tmp. A file written in
/tmp is often deleted shortly after it is used. If the append operation is
still logged in NVRAM when the delete is performed, then both the
append and the delete modifications to /tmp can be removed from
NVRAM without executing any disk operations at all.

We have implemented and measured a version of the directory service
that uses NVRAM. Using group communication and NVRAM, the per-
formance improvements for the experiments are enormous (see third
column in Figure 8). This implementation is 6.8 and 4.1 times more
efficient than the pure group implementation. The implementation
based on NVRAM is even faster than Sun NFS, which provides less
fault tolerance and has a lower availability.

7. Conclusion

Six design issues are important in group communication: addressing,
reliability, ordering, delivery semantics, response semantics, and group
structure. We have described the choices that have been made for
Amoeba. Amoeba groups are addressed by a port and provide reliable
globally-ordered communication. Furthermore, users can trade perfor-
mance for fault tolerance.

To implement group communication, Amoeba uses a centralized nega-
tive acknowledgement protocol. The global ordering is enforced by a
centralized machine, called the sequencer. Instead of acknowledging
every messages, members of the group piggyback the sequence number
for the latest received messages on messages sent to the sequencer.
The result is two simple and efficient protocols: the PB and BB proto-
cols. If no failures occur, both protocols need on average only slightly
more than two messages per reliable globally-ordered group message.

To illustrate the usage of group communication, we discussed the
design and implementation of Amoeba’s directory service. To achieve
high availability and high reliability, the directory service replicates
directories on three machines, each with their own disk. The replicas
of a directory are kept consistent using group communication. We
described two implementations of the directory service: one using
NVRAM and one without NVRAM. NVRAM is used to avoid disk oper-
ations in the critical path.
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