Patricia Seybold
Group

Editor-in-Chief
Michael A. Goulde

INSIDE

OPEN
INFORMATION
SYSTEMS

Vol. 7, No. 10 « ISSN: 1058-4161 ¢ October 1992

EDITORIAL

Page 2
Flexibility: The Hallmark
of Open Information Sys-
tems. To be successful
competing inthe 90s, com-
panieswill have to employ
strategies that emphasize
[lexibility in manufactur-
ing and distribution. Do-
ing so will require equally
[flexibile information sys-
tems. This flexibility will
have to come from systems
that are open.

ANALYSIS

Page 18

NeXT has begun shipping
Release 3.0 of its object-
oriented operating system,
NeXTSTEP. To compete
againstthe alternatives, its
superb interface and de-
velopment environment
will have to offset the lim-
ited number of shrink-
wrapped applications it
currently offers. IDI in-
troduces a new docXform
that adds SGML tagging
and component-level doc-
ument management 1o its
list of capabilities.

Galaxy from Visix

Application Portability Breakthrough?

By Stanley Dohlberg -

IN BRIEF: Application developers face the daunting challenge of
building applications for deployment in a world of heterogeneous
architectures, operating systems, networks, and user interfaces. Play-
ing it safe by oversimplifying the options can leave an ISV choking
on the dust of the opposition, or it can position an end-user company
ata competitive disadvantage. Galaxy, from Visix Software, Incorpo-
rated, could simplify the developer’s dilemma and move choices
about how to deploy applications to where the decision belongs—
with the user. Report begins on page 3.

© 1992 by Patricia Seybold Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express written permission.



EDITORIAL: BY MICHAEL A. GOULDE

-Flexibility

The Hallmark of Open Information Systems

IN OUR NEVER-ENDING pursuit of in-
teroperability, portability, and manageabil-
ity, we often overlook the less obvious but
perhaps more valuable benefit of open sys-
tems: flexibility. Flexibility derives from
modular architectures that use standard in-
terface definitions to describe how the
various pieces of a system work together.
Flexibility means that components, both
hardware and software, can be quickly and
easily mixed, matched, and configured by
using products that adhere to standards.
Flexibility also means that applications can
be developed rapidly and deployed across a
variety of architectures.

The importance of flexibility in today’s
business environment was recently high-
lighted by Thomas Stewart in his Fortune
article, “Brace for Japan’s Hot New Strat-
egy” (Fortune Magazine, September 21,
1992, p. 63). Stewart points out that, while
many U.S. companies have finally caught
up to Japanese competitors on quality, they
are now missing the boat when it comes to
understanding the importance of flexibility,
He says the value of flexibility is that a
company which quickly understands and
reacts to changes in the market, is able to
use the same production facilities to build a
variety of products, can reduce the cost and
latency of switching a line from one product
to another, and can maintain healthy mar-
gins with short production runs will have a
distinct competitive advantage.

For example, Toshiba, responding to
market pressures, now generally builds lap-
tops in lots of 20 and can make money on
lots as small as 10. It has a network that
links office, engineering, and factory opera-
tions and provides “just in time” informa-
tion as well as just in time manufacturing.
Since laptop computer product life cycles
are measured in months, it is critically im-
portant to get faster feedback from the mar-
ketplace so that sales and distribution can be
as flexible as manufacturing. Flexibility can
also save money by matching production to
demand.

The article also cites Kao Corporation,

Japan’s largest soap and cosmetics com-
pany, which is known for its flexible distri-
bution system driven by an information
system that allows Kao to deliver goods
within 24 hours to any of 280,000 outlets,
even though the average order is just seven
items. The mission of Kao’s information
system is to maximize the entire com-
pany’s ability to quickly respond to de-
mand. It does this by collecting a massive
amount of data from the marketplace and
distributing it to employees in all areas of
the company. A single information system
links everything: sales, shipping, manu-
facturing, production, purchasing, ac-
counting, R&D, marketing, hundreds of
cash registers, and thousands of salesmen’s
hand-held computers. Brand managers see
daily sales, stock, and production figures
and make adjustments to a competitor’s
moves within a day. The system virtually
eliminates the lag between an event in the
market and the arrival of the news at Kao.

Flexibility is the essence of a cus-
tomer-driven approach, requiring that all
areas of a company work in concert at be-
ing responsive to a specific customer’s re-
quirements, as opposed to developing
products for a statistical profile of broad
market segments. Individual customers be-
come a market segment unto themselves,
and the companies that can rapidly deliver
on this almost unlimited variety of re-
quirements will be the ones which are able
to be the most flexible. They will also be
the most successful.

The flexibility that companies like
Kao, Toshiba, General Electric, and Mo-
torola are striving to achieve can only be
accomplished with an information infra-
structure that is easy to adapt, change, and
extend. Open systems are technically ap-
pealing because of their promised simplic-
ity. But, from a business perspective, the
appeal of open systenis is that they are
ideally suited for supporting the new eco-
nomics, which says that the organization
should strive not for economy of scale, but
for economy of scope. ©

OPEN

INFORMATION

SYSTEMS

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITHR. DAVIS
DAVID S. MARSHAK
RONNIT. MARSHAK
JOHN R. RYMER
ANDREW D. WOLFE, JR.

News Editor
DAVID S. MARSHAK

Art Director
LAURINDA P. O'CONNOR

Sales Director
PHYLLIS GUILIANO

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONAILD K. BAILLARGEON

Patricia Seybold Group
148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Internet: psocg@mcimail.com
TELEX: 6503122583

Open Information Systems (ISSN
0890-4685) is published monthly for
$495 (US), $507 (Canada). and $519
(Foreign) per year by Patricia
Seybold Group, 148 State Street, 7th
Floor, Boston, MA 02109. Second-
class postage permit at Boston, MA
and additional mailing offices.

POSTMASTER: Send address
changes to Open Information Systems,
148 State Street, 7th Floor, Boston,
MA 02109.

2 Important: This report contains the results of proprietary research. Reproduction in whote or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




FEATURED REPORT: BY STANLEYDOHLBERG

Galaxy from Visix

Application Portability Breakthrough?

The Holy Grail of Portabhility

Developers Are Weighed
Down by Platform
Proliferation

Application Developers
ant to Build

Applications, Not

Portability Tools

Application portability—the Holy Grail of the open systems movement—goes to the heart
of the open systems proposition. As achievable as portability is for single user applications,
it is elusive for complex applications. As platform price/performance continues to improve
at a steady rate, users want to move applications to the “platform du jour.” But today’s
distributed, graphical applications are too closely tied to the specifics of operating systems,
file systems, distributed computing mechanisms, and graphical user interfaces to allow easy
porting. Besides, advanced distributed computing “enableware” lies at the heart of many
system vendors’ value-added to otherwise commodity product lines, working against
portability and raising the specter of proprictary lock-in.

Even though most ISVs and in-house application developers have become expert at isolating
platform-dependent code, many are choking on the proliferation of new system platforms.
Microsoft alone has discussed a major new system software plan in each of the past three
years. With Windows NT still over six months from first release, Microsoft is already
publicly discussing its successor, an object-oriented operating system code named “Cairo.”
IBM and Apple are working on Pink for delivery three years from now. And, of course,
versions of Unix continue to proliferate and compete with incompatible application
programming interfaces (APIs).

In order to survive in this difficult environment, many application developers end up
investing valuable resources in building and maintaining their own complex and expensive
porting tool environments. Understandably, they would prefer to focus on building best-of-
breed applications in their market segments.

Visix Software Proposes Galaxy as the Answer

Specialization as the
Industry Matures

This difficult environment invites a solution. Visix Software, Incorporated, of Reston,
Virginia, has accepted the invitation with a platform for the development of portable,
distributed applications called Galaxy. Visix is best known for its Looking Glass desktop
managers for the Unix operating system. But, while Visix was publicly slugging it out for
market share in that commodity market, it was quietly putting significant development
resources into solving the complex application development and portability problem by
building Galaxy.

Visix calls Galaxy an “application environment” because it is designed as a complete
development and run-time environment that insulates developers from the uniqueness of
operating systems, networks, user interfaces and file systems. Visix is convinced that
portability across diverse operating environments, even for complex, graphical, distributed
applications, can be accomplished—if the application development environment is
comprehensive and extensible and if the API is functionally rich and clean. Interestingly,
this is not a case of a company deciding after the fact to market its tools. The Galaxy
environment was the original conception, and the Looking Glass product line was the first
set of products built on early versions of Galaxy. Some of the attributes of Looking Glass,
such as run-time-selectable look-and-feel, high performance, and rapid cross-platform

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints call (617) 742-5200. 3



Visix Software Proposes Galaxy as the Answer

An API Cast in the
Multiplatform Crucible

Mac Admirers in Unix
Clothing

The Galaxy Mission

porting, demonstrate benefits derived from having been built even on early versions of
Galaxy.

Development of Galaxy began six years ago, three years before the 1989 spin-off of Visix
from American Management Systems. For the last three years, the Visix enginecring staff
has been broadening and deepening the Galaxy API. The Galaxy architects garnered
valuable practical experience from the Visix experience as an ISV whose first products were
merchandised through a gaggle of system vendors and across machine architectures and
operating systems. The Visix development team experienced firsthand some of the pains of
porting and maintaining multiple versions in multiple national languages across multiple
platforms, and they used this experience to shape the depth and breadth of the Galaxy APIL.

The management at Visix has been inspired by the success of the Macintosh in many ways.
Nearly two-thirds of the development staff consider themselves former or current Macintosh
application developers, and a peek into virtually every developer’s office reveals a current
Macintosh system right next to a PC-clone and any one of several Unix workstations. Visix
management believes that the Macintosh’s high level of success is substantially due to the
completeness and functionality of the Mac Developer’s Toolbox. The reasoning is that the
Mac Toolbox offers application developers a very good development environment with
well-defined, well-supported methods for application presentation and behavior. The fact
that most developers could do what they needed within the supported methods naturally led
to cross-application and cross-vendor “drivability” compliance. Developers could choose to
work outside the preferred methods of the Mac Toolbox, but those who did were penalized
twice. The first penalty was increased cost and longer time-to-market due to having to hand-
code at low levels. The second penalty was even costlier. As critical mass developed around
adherence to convention on the Macintosh desktop, deviant applications were often rejected
by the consumer. The lessons from this parable have guided the philosophy behind Galaxy
in its own lengthy path to the market.

The Galaxy mission has three key elements:

e Build and deliver a high performance, cross-platform operating environment that
insulates the application developer from the excessive, and growing, number of options
in the run-time environment. The first part of the mission is accomplished by delivering
a comprehensive, platform-independent AP

e Institutionalize distributed computing by designing the Galaxy API to make it possible
to build distributed applications or nondistributed applications with the same basic
techniques. The second part of the mission is addressed through a set of object-oriented
class managers and standard components that comprise the API and that service the
application at run-time.

e Deliver to developers a set of integrated tools and functionality that enables building
complex applications with little or no costly handwork that might compromise
application portability. The third part of the mission is accomplished through the
breadth and depth of the API and by offering a comprehensive set of tools, along with
the ability to incorporate additional tools with the documented “software backplane”
interface.

The overriding principle of this effort is that Galaxy should enable developers working on
complex distributed applications to experience the equivalent of working with the Mac
Toolbox on single-user applications. Galaxy offers broad areas of functionality and is very
complete, particularly in the graphics area. Some of the most sophisticated graphics features

4 Important: 1~is report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 10




The Galaxy Mission

Beyond GUI Builders

are based on the needs of CAD developers looking for a Windows product that could be
used to expand the market. Visix acknowledges that most developers will not use more than
40-50 percent of the total functionality and that the industry-wide acceptance would hinge
on the cross-market capacity of the APL

Visix has put the bulk of its resources behind the Galaxy mission—well over 75 percent of
its engineering staff is dedicated to building the Galaxy environment and working closely
with the early adopters.

A critical part of the portability problem has been associated with graphical user interfaces,
hence the market interest in a range of hosting and porting tools that present applications to
users in their choice of look-and-feel. With Galaxy, Visix took the development of a
portable user interface as the starting point for addressing the overall application portability
problem. Early Galaxy customers evaluated portable GUI builders before selecting Galaxy,
and each found that the depth and breadth of the Galaxy API far exceeded the goals, no less
the deliverables, of other potential portability enablers, particularly for platform
dependencies related to client/server application development. In Galaxy, the user interface
development and run-time functionality is estimated to be less than 20 percent of the total
functionality contained in the 1.5 million lines of Galaxy code, yet the user interface builder
and run-time capability are on par with market leaders.

Galaxy Support for Distributed Computing

Galaxy Applications Are
Architecturally
Distributed

DAS Directory System

In designing Galaxy, Visix took the approach of tackling a very large problem by defining a
set of programming interfaces for the complete set of functions needed to solve the problem.
Visix then selectively went beyond simply providing programming interfaces to providing
full-depth functionality under those interfaces. In effect, this approach takes responsibility
for characterizing the entire application environment, even though it does not provide the
entire environment.

The Galaxy environment offers inherent support for distributed applications through the
client/server architecture of the API and the run-time environment. The Galaxy Distributed
Application Services (DAS) server is designed to be able to interface to the array of
established and emerging communications protocols, messaging systems, and distributed
object management systems, along with offering its own interappiication communication
and directory services. To deepen the support for distributed computing, Visix plans a
variety of means for supporting interoperation with a broad set of interapplication
communication mechanisms, such as Dynamic Data Exchange (DDE), Object Linking and
Embedding (OLE), ToolTalk, and Distributed Computing Environment (DCE).

The DAS server enables Galaxy applications to communicate with each other in peer-to-
peer or client/server relationships, as well as with non-Galaxy applications. (See Illustration
1.) The DAS server uses a registration-oriented approach to match the attributes of service
requests with the attributes of registered services. Applications register their available
services and their operations with the DAS server. Services are then requested by operation,
not by service name. When an operation is requested, the DAS server locates and directly
connects the application to the most appropriate service based on the requested operations.
Galaxy defines a service location and naming scheme that is unique to the Galaxy
environment. The interfaces to this scheme are fully documented and can be replaced with
the X.500 directory services of DCE when X.500 achieves a position as a standard in the
marketplace or by the Object Management Group’s (OMG) Object Request Broker. In the
current state of the market, no network-wide registration mechanism is dominant, so the
Galaxy DAS provides a registration facility. In fact, Visix would prefer to rely on a standard
such as the OMG Common Object Request Broker Architecture (CORBA) model when it is
accepted in the marketplace.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200 5



Galaxy Support for Distributed Computing

Com

Galaxy
ponent

Overview

Galaxy Interoperation
with External Distributed
Computing Mechanisms

CORBA and DCE
Compliance and
Interoperability

The Galaxy API

Color
Image
Editor

User
intetlace
Buitder

Help
Writer/
Compiler

Programmable| §
Text 1
Editor

Help

o Project
erver

Browser

{ - 1 Mt N
; : Exicnsible | aaie——
Local Galaxy oz ’},m,y Resource F!l'glg/ | ——
. OS. Libraries Progammer’s Files ile(s) o
Libraries € " Relerence Index er
- 1 Appllc%ﬂons
[ ﬂ,_,”l ,f — [ an.
- T Services
P ViVl
Compiler/
Linker
) S —— Distributed
= Help Application
___________ —_ Server crvicos
Sarver
Applicalien ?
ppl Z? T“
Galaxy e e H
Runtime

lllustration 1. The Galaxy environment defines a broad set of functional components
addressing the application development process, the distribution of application function
between clients and servers as well as peer-to-peer, and the integration of diverse
applications over the network.

Interoperation with applications built on distribution mechanisms—such as OSF’s DCE,
SunSoft’s ToolTalk or HP’s SoftBench messaging systems, OMG’s CORBA, and
Microsoft’s OLE model—will require the addition of drivers or additional protocols to the
set of protocols already supported in the lowest layer of the DAS. DAS, as currently
defined, operates as a general mechanism that will locate services, establish connections, get
attributes, and request that the services perform needed operations. The enhancements to the
DAS might also be made at higher layers, depending on the model of the external service,
possibly including special purpose Galaxy APIs to front-end the external services with
Galaxy code that supports the registration of the operations offered by applications running
externally to the Galaxy environment. Interestingly, Visix management sees DAS
interoperation with OLE as the first priority of the many possibilities.

Through DAS, Galaxy could interface to DCE-based applications by supporting access to
Galaxy-based applications from DCE-based applications and by supporting access to DCE-
based server applications through support for the DCE Distributed file system in the file
system abstraction provided by Galaxy’s Operating System interface. Visix has been active
with OMG since the early days and is well-informed about the technical breakthroughs
being achieved there. ORBs can exist as external applications to the DAS services.
Internally, the Galaxy environment has been built in compliance with relevant OMG
specifications.

The API and libraries that implement the API are at the heart of Galaxy. The functionality
of the API falls into three major groupings:

¢ Network Interface, which hides network and messaging protocols, directory services,
distribution mechanisms, and global help

¢ Operating System interface, which masks variety in file systems, memory management,
sound, timers, and event management

6 Important: Th's report contains the results of proprietary ressarch. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




The Galaxy API

File System Abstraction
Increases Programmer
Flexibility

Standard Components:
High-Level Objects Pre-
Built with Galaxy API

Selected Function Class
Managers

e Window System interface, which provides a single view of the multiplicity of ways that
color, cursors, drawing, fonts, imaging, printing, geometry, and windows are managed

The Galaxy File System Manager, like all of the Galaxy Function Managers, provides the
developer with an idealized programming interface that supports cross-platform
deployment. The Galaxy File System abstraction actually increases the functionality of
some of the platforms by, for example, removing the restriction that Windows and Unix
place on simultaneous open files. The Galaxy File System Manager has no limit on open
files, and it provides expanded functionality to the application through a file-swapping
mechanism that operates almost like virtual memory. The Galaxy File System Manager
allows the developer to write an application with unlimited open files, and Galaxy then
keeps track of and manages the actual opening and closing of files required to operate
within the limits of the system platform, without involving the application.

The Galaxy API includes interfaces to a set of standard components, which consists of a set
of Standard Choosers and Standard Items. These standard components are essentially
“superwidgets” that are so commonly used that Visix took the trouble to provide them to
increase developer productivity. As with all the user interface components, the standard
components are actually object classes, not widgets, so they can be subclassed and modified
to suit particular needs.

The Standard Choosers, which include a Color Chooser, Command Chooser (see Illustration
2), File Chooser, and Font Chooser, offer the developer a consistent Galaxy-compliant
means of presenting these common functions to the user. The Standard Items include the
Ruler Item and the Palette Item, among others. The detailed elements of the Standard
Components adjust to the active look-and-feel of the client, ensuring that buttons, list boxes,
and other visual elements are always compliant with the user’s environment.

The set of Galaxy Class Managers is exceptionally broad (see Illustration 3). Each Function
Class Manager is itself a true object-oriented class and incorporates features that can
dramatically improve developer productivity and application flexibility. Two examples are:

e The Spring Manager, which provides a high-level visual interface for designing the
layout of windows using the concept of springs and struts. With the Spring Manager,
the developer can completely avoid the difficulty of programming how the user
interface objects change when windows are resized or reimplemented under a different
look-and-feel. The Spring Manager also provides a feature called “natural sizing,”
which can automatically resize an entire window based on the minimum size required
to contain its contents. It can also resize individual objects based on the text string
labels, which has particular benefit in managing internationalization issues related to
local language conversion.

e The Command Manager, which supports the separation of application code from user
interface code by providing a set of objects that implement the actions of the
application in conjunction with the Galaxy Class Manager attribute binding mechanism.
Every action-oriented user interface command generates a command to the Command
Manager, which sends the command to the application for action. The Class Manager
attribute binding mechanism handles the translation from command object references to
specific application methods that are required to implement the actions of the
application. This powerful Class Manager, in conjunction with the Command Chooser
standard component, greatly simplifies the development of the user interface to the
application command set and supports customization of the interface by users. The
Command Manager also allows the application to be driven externally through DAS,
since messages to the Command Manager can come from any source, not just interface
selections.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is proibited. For reprints call (617) 742-5200. 7



The Galaxy API

The Galaxy
Command
Chooser

The Galaxy Sound Model

The Galaxy Imaging and
Color Model

SN

Eile Yype View

Commands: Synthetics:. "
Find -5 | Option  Selection .
Find Again E

Find Definition
Find Next Impossible

Find Selection |
Find Text !

Find Text In Project

Based on: Find Text

~— Description:

Document

First Occurence
Flush Ali Clipboards
EnrneNavi : 7

Keystroke: : e~ Menu:
|ouH : FH Fue

#H j o Assign [

¥ R ) ; e 7 \

Illustration 2. The Galaxy Command Chooser offers “superwidget” functionality to the
application developer. The developer loads the commands into the Command Manaager,
brings up the Command Chooser, and interactively defines the keystroke shortcuts for the
commands. The Command Chooser is accessible to the user to support modification of the
command interface.

As part of Galaxy’s goal to far exceed today’s mainstream platforms, the company offers
industrial-strength support for sound input and output through a sound abstraction layer in
the API. Galaxy supports a broad range of sampling rates and encoding schemes, and it even
monitors output to ensure that it meets the output device specifications. The Galaxy audio
driver operates multithreaded within Galaxy.

The Galaxy color model is 48 bits deep, to ensure that the limiting factor is in all cases the
device or the application program, not Galaxy. When an application asks for a color
rendering of an image, the Galaxy color and imaging models are smart enough to select the
closest match from a 24-bit, 16 million color chart, but they also support dithering, either in
color or in gray scale on less capable or noncolor displays. Galaxy currently supports several
color models and will be adding support for Pantone colors in 1992,

The Galaxy drawing model is based on Display PostScript technology. Display PostScript
offers the highest level of correspondence possible between display images and printed
images without involving the developer in the details of image resolution. The Display
Postscript imaging model is implemented in Galaxy through API calls, not PostScript calls.
The Galaxy Display PostScript capability was built from the ground-up based on the
published specifications for PostScript, and it has been demonstrated to deliver WYSIWYG
rendering that is among the best on the market. The Galaxy rendering capability has the
intelligence to work with fonts on the local machine to find a match between the requested
font and the fonts available, based either on a default priority scheme or one that has been
dictated by the developer. Galaxy is designed to leverage the functionality on the host
machine. Thus, if Adobe Type Manager is installed, it will use that to draw and scale fonts;
if not, it will bit-map them.

8 Important: Tn s repcet contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




Galaxy Managers’
Functional
Classification

Internationalization:
Another Dimension of
Portability

The Galaxy API: Clean
Inside and Out

Galaxy Managers
Functional Classification

B-tree {nstallation

Class Name

Command Number

Date Preterence
Debugging Regular Expressions
Dictionarv Resource

Exception String

Graphical User Interface Managers l

Button Look & Feel

Confirmation Menu

Container Menu bar

Control Notification

Dialogue Spring

Domain Standard Choosers

List Standard Items

Text
Window System Abstraction Managers l
Color Drawinyg Font Print
Cursor Plane Geometry Window
‘Operating Svstem Abstraction Managers

Event File System Memory
Scrap Sound Timer

[Dismbu(cd Computing Managers |

Application Communication
Client Help

Illustration 3. This functional manager grouping illustrates how the class managers relate to
the three major system platform abstractions (operating system, network, and windowing),
and the granularity of support for building look-and-feel-independent applications with
Galaxy.

Galaxy has been designed to facilitate all aspects of portability, including deployment of the
application in local languages. Internationalization capability is built into Galaxy through
the internal wide-character representation based on the ISO 10646 standard character
format. Galaxy functions internally handle the translation from the internal character set to
the characters appropriate to the application—for example, 8-bit for ASCII, 16-bit for
Unicode, and 32-bit for Kanji—without involving the application.

Visix actually built all of the Galaxy development tools by working with the same
documented Galaxy API that any Galaxy developer would have access to. This commitment
was made and adhered to in order to ensure that developers could extend any functions and
tools that need to be customized to the purpose at hand through documented procedures for
subclassing and extending the Galaxy product.

Application programs written in the Galaxy environment have direct access to all of the
portable Galaxy API calls. In fact, Visix has committed to using only fully exposed and
documented API calls between architectural components in the Galaxy environment.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 9



The Galaxy API

C++ API Offers
Developers Common
Methodology to Develop
and Extend

Hiding the Data
Structures Is Key to
Longevity and
Extensibility

The Galaxy API is written in C, but it is very object oriented. For example, even initializing
a button generates calls strictly to specific class methods. For developers working in C,
extensions can be made in C; for developers working in C++, Visix will offer a C++ version
of the API in the fourth quarter of 1992. The C++-based API will offer a class hierarchy
based on C++ mechanisms. Visix is offering the alternative C++ API because those
customers working in C++ want to be able to apply C++ concepts and operators o
extending Galaxy.

A significant challenge to Visix’s success with the Galaxy product is getting developers to
work within the portability and extensibility boundaries of the API. Toward that end, the
Galaxy programming environment offers no direct exposure of the data structures
underlying user interface objects nor of Galaxy components. Instead, developers use
documented function calls to get and set values for all objects, such as buttons. This
restriction is key to avoiding the downside of developers using direct references to internal
data structures and compromising the portability of the application, and to the forward
compatibility that Visix is committed to providing in future releases of Galaxy.

Galaxy Architectural Issues

Multilayered Abstraction:
Toward Developer Utopia

Galaxy: Master of the
Look-and-Feel Universe

Developers Write to the
Ideal Interface, Galaxy
Handles the Mundane

The layered Galaxy architecture builds on the three major API abstractions discussed above,
which present the application and internal Galaxy functions with ideal interfaces to the
network, operating system, and windowing services available on various system platforms.
(See Illustration 4.) This architecture enables developers to write portable applications with
high levels of functionality without the constraints inherent in any one platform. In fact,
Visix believes it has not only achieved platform independence but has actually crafted a
more capable development environment than is available with any of the native toolboxes.
Within the layered Galaxy architecture, the application can call layered functions or the
major system abstractions directly. When applications call layered functions, calls between
internal Galaxy functions use documented API calls to ensure that the application developer
can decide how to best get the functionality required. While the application cannot operate
beyond the limits of the features of a particular platform, the developer is not limited by the
characteristics of a target platform when writing the application.

Galaxy transcends the GUI wars with an API that offers the developer one abstraction from
which Motif, OpenLook, Windows/CUA, or Macintosh look-and-feel can be derived. Unless
custom objects are created within the application, the application and the developer have no
awareness of the look-and-feel under which the application is presented to the user. Galaxy
not only translates from one look-and-feel to another, but also manages compliance by
transforming the windows and moving user interface objects to comply with locations on the
screen per the style guides for each look-and-feel.

An important architectural goal for Galaxy is o far exceed the functional needs of existing
applications and mainstream devices in order to offer room for incorporating new
technologies easily in the future. Visix believes that, by fully supporting the advanced
capabilities future applications will require, applications developed with Galaxy will be
suited to the needs of the next-generation mainstream user. For example, the Galaxy
imaging model is based on the assumption of infinite resolution, unlimited colors, and
scalable fonts in the target printer and display. The developer works with the imaging and
color interface without concern for the particular limitations of today’s printers and displays.
Galaxy handles matching the output of the application to the highest capability of the output
devices on the fly, using a variety of techniques, without explicit knowledge about the
device on the part of the application.

10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 10




Galaxy Architectural Issues

Galaxy
Architecture

The Galaxy Porting

' Challenge

Application Portability Is
Strongly Encouraged

Application

Application Command
Dispatcher

i Standard !
Compgnents

L. Galaxy API

User Interface Classes

GaIT' SIW i i Resource Manager

Service
Abstraction
Layer

Distributed Application Operating System Window System
Services Interface Interface

Network Services Operating System Window System

Software System

Illustration 4. The Galaxy Architecture exposes all of the interfaces directly to the
application or offers layered interfaces to facilitate development. All calls between
components are made with published API calls.

A major issue for buyers of Galaxy is the ability of Visix to meet the commitment to
continually superset the functionality of the commercially important platforms and
technologies as the marketplace evolves. This issue is fundamental to the acceptance of
Galaxy. The Galaxy architecture directly addresses this critical issue by designing multiple
layers of abstraction into each of the major “nonportable” interfaces to native system
services. Two layers, the porting layer and the compatibility layer, insulate the portable
layers from the uniqueness of each platform, lessening the downstream porting efforts to
new and different systems. Both the porting and the compatibility layers are considered off-
limits to developers, because writing applications that use this code would compromise
portability. The porting layer operates closest to the particular platform and sets a sequence
of flags that either implement or disable native operating system services. The compatibility
layer runs above the porting layer, and it ensures that full POSIX and ANSI compatibility is
available, in case the native platform does not offer full POSIX or ANSI C compliance.

For example, the Distributed Application Services Server (DAS) is built of three layers. The
Distributed Services Registry is the top layer; the vremote layer, which implements remote
operation, is in the middle; and the vcomm layer, which is the only layer that must be ported
to each system platform to accommodate variations in implementation of connection-
oriented or connectionless communications protocols, is on the bottom.

In the interests of steering developers toward portability, not only have the interfaces to all
library components been scrubbed of any details about their internal implementation, but
some additional limitations have been placed on developers. These limitations have been
conceived to avoid the problem of developing applications with assumptions about native
functionality that, in fact, are not genecrally available. For example, developers cannot
subclass the file system to modify it for memory-mapped file I/O because many OSs do not
support it. However, although Galaxy does not preclude the developer from using memory-
mapped /O, developers are made aware that this will negatively impact an application’s
portability.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. "



Galaxy Architectural Issues

Galaxy Class Hierarchy Is The Galaxy class hierarchy of function managers has been designed to meet what the

“Real World”

Performance

Multithreading Support

Galaxy team considers “real world” requirements for significant distinctions among classes.
As a result of this philosophical constraint, the class hierarchy may not be as deep as
theoretical class hierarchics, but it has been designed to be readily visualized, understood,
and used effectively by the average C programmer. (See Illustration 5.)

All of the managers in the Galaxy API, except for the Memory Manager, are actually Class
Managers within Galaxy, offering full subclassing and extensibility based on inheritance of
the class attributes and methods. The Memory Manager could not be classed or subclassed
because the overall Class Manager needs memory management in order to function.

The architectural approach in Galaxy is to isolate work in the workstation client and to stay
off the network in order to get the fastest performance possible. For example, the
Communications Manager function in the DAS always selects the fastest interprocess
communication mechanism available, including using shared memory for local operations,
if shared memory is supported in the operating system.

IMPROVING GRAPHICS PERFORMANCE. To achieve high graphics performance, Galaxy
drawing routines are implemented at the lowest level possible to replace the functionality of
the graphical toolboxes underlying the look-and-feels replaced by Galaxy, including:

e  GDI primitives level for the MS Windows
¢  QuickDraw level for the Macintosh
e  Xlib level for Unix environments

Galaxy graphics are quite lean and efficient. One carly developer calculated that compiling
all the look-and-fecls into an application for all target platforms would enlarge the
application by only 40 KB,

GALAXY IMPLEMENTS SLOT-BASED CLONING SUBCLASSING. Galaxy supports a subclassing
methodology called slot-based cloning. The slot-based cloning methodology subclasses
objects through the duplication of pointers to class data or to reentrant code. This approach
compares with other methods of subclassing objects which require the replication of all the
class data as part of creating the subclass. This design decision is one of many made in the
Galaxy program to try to offer high levels of functionality with high performance, which is
certainly an issue of concern with a highly layered and modular architecture. In fact, the
slot-based cloning methodology implemented when the developer subclasses a Galaxy
object or class manager is implemented throughout the Galaxy internals. The Galaxy team is
required to write reentrant code for all Galaxy components, and this constraint is rigorously
enforced within the Galaxy development effort.

Galaxy internally supports fully asynchronous communications with virtually unlimited
multiple outstanding threads. For example, in theory, an application could batch 1,000
vectors and have error messages returned asynchronously by having the vcomm layer of the
DAS launch as many RPCs as necded to service the number of threads being managed by
Galaxy. The multithreaded capability of Galaxy operates whether or not threads are
supported in the host platform.

12 Impartant: Ths regor contains the results of proprietary research. Reprod uction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 10




Galaxy Class
Hierarchy

t Scroll Bar

List ftem ( Palette

Toggle Slider i (Opllon Menu

Text hem [ Spring View

Control ' Menu Bar—! Text View | | Oomaln View IIT.IS\ Vlele Rule‘l

Color Chooser
File Chooser
Font Chooser

Group

Notice !

‘ Container

_ Bution
F‘onmm Dialog v Exclusive Group
Command Chooser —_— —
R Menu
Dialog } Plnned Menu Menu item
lj——-] Toggle item
Separator ftem

Dlalog Hem
Box ltem
Window l Label tem Sub-menu item
I Push-pin item
r Attributed Object

[ Domain View Observer l l Spring Domain Observerl

Application '

Postscript Printer

Color Postscript Printer

Spnng Domain

T Text Text Obsetver el e e
uem Text TelemwObserver [ Domain l D°’“°'"°°5°"’°’]

Postscript2 Printer

Lo

Ptinter l

Sclcclor Command
Function Commandl

Object Command Spring Domain A"angerl

|
List View Qbserver I Domaln View Event I

Synthetic Command I

Spring Arranger
Dialog Arranger

Command

e

Ilustration 5. The Galaxy Class Hierarchy illustrates the parentage of the class hierarchy
implemented in the Galaxy system. This object-oriented scheme facilitates extending the
features of Galaxy by supporting the subclassing of existing function managers as the basis
for creating new class managers tailored to the needs of an organization or specialized
application.

The Galaxy Tool Environment

Galaxy Tools Are
Integrated Tools over a
Software Backplane

Galaxy SupBorts High- or
Low-Level Programming

The tools provided with Galaxy include the Programmable Text Editor, User Interface
Builder/Resource Editor, Color Image Editor, Help Writer/Compiler, and Project Browser
(see Illustration 1). These provide a nearly complete toolset for the development of complex
applications, and they are integrated through the Galaxy “software backplane,” which
supports smooth switching between tools to maximize developer productivity. The Galaxy
software backplane specification has been documented and is being made available to
developers who want to incorporate additional tools into the builder environment.

Galaxy tools support working in high and low levels. Developers can work with the high-
level tools or can access lower-level graphics functions as needed to build the graphics part
of the applications. When the programmer needs to get to make calls specific to the
windowing system, such as X11, Windows, or Macintosh, he or she is referred to a
document that addresses how to write nonportable code. Visix believes that, if the
programmer is knowingly going to build a nonportable application, there are ways to
minimize the damage, and procedural recommendations have been documented for the
programmer.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10

Important: This report contains the resuits of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 13



The Galaxy Tool Environment

Debugger Support
Included

Galaxy Programmable
Text Editor

Galaxy Project Browser:
Project Management and
Integration Utility

The Galaxy User
Interface Builder

The Galaxy Resource
Manager

The Galaxy development environment includes debugger support. In addition to the tools
provided with Galaxy, all that many developers will require is an ANSI C compiler, though
some users have supplemented the Galaxy tools with advanced object-oriented compilers
such as Energize from Lucid, Incorporated (Menlo Park, California), which supports the
development and debugging of complex applications.

Application developers may choose to use any available text editor to develop an
application in the Galaxy environment. However, the Programmable Text Editor included in
Galaxy has been engineered with features that make it particularly useful to the professional
developer. For example, the Editor stores images and fonts separately from the source text.
This feature supports the mixing of images, drawings, and various font styles with source
code, at the discretion of the programmer. Also, the Editor may be used to invoke the
Galaxy online programmer’s reference for detailed assistance in working with the Galaxy
API. Because it is connected via the software backplane to the User Interface Builder, the
Editor can also be used to edit resource files and user interface objects referenced in the
application source code. The functionality of the Galaxy Text Editor is so rich that one early
developer believes it could be used to build a powerful word processor in a few weeks.

The Galaxy Project Browser tool will play a key role in providing a variety of views of the
entire application, including components developed with third-party tools integrated through
the Galaxy software backplane. The Project Browser can provide the developer with a
variety of useful graphical views of the component pieces of the application, including the
help files, source files, and resource files. The Browser keeps track of projects that inform
the compiler what functions have changed; thus, only source code that has changed is
recompiled. The Project Browser operates like a project data dictionary, enforcing basic
integrity attributes.

The Galaxy User Interface Builder tool includes a resource editor that can be used to create
or modify all types of resources. Extensibility is key to Galaxy. A developer can create new
user interface objects without having to work with source code and low-level toolkit
functionality that would be required with Motif or Openl.ook because the user interface
objects are actually object classes, not widgets. The programmer can subclass existing
classes, override methods, and extend the class system. For example, the developer can pick
the List class, subclass it and change its methods, and link it with libraries to build a new
class, such as a class of ticker tapes for Wall Street. Some very complex objects are
included in the object classes, such as a class of layered drawing objects that are rich
enough to support the efficient development of a GIS system.

Galaxy includes the standard collection of widgets for each supported look-and-feel, and it
includes the tools for developing within the prescribed style guides. Galaxy even includes
some widgets for MS Windows that are not in the Windows SDK but are used by Microsoft
and desired by developers, such as icon bars,

The Galaxy Resource Manager is actually a B-tree database built on top of the File System
Manager. The most outstanding aspect of the Resource Editor is the Spring and Strut feature
that minimizes the work associated with relocating or resizing user interface objects. With
conventional tools, developers are sometimes reluctant to create new dialog boxes because
of the need to deal with complex resizing code. Springs and struts not only locate the object
in the window with respect to the window but also provide for auto-resizing based on the
size attributes of the contents of the object. This feature first appeared in the Looking Glass
Advantage product, and, with additional refinements, it plays a key role in tackling the
difficult problems inhcrent in taking applications cross-interface. The spring-and-strut
methodology for building graphical user interfaces controls the relationships between user
interface objects and the edges of the window, and the relationships among the user
interface objects. Spring-and-strut location and relationship tools offer a very advanced

14 Impartant: Tris report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 OPEN INFORMATION SYSTEMS Vol. 7, No. 10




visual description metaphor that ensures that the objects on the screen always maintain a
useful location on the screen and with each other.

The Galaxy Run-Time Environment

Galaxy’s Client/Server
Implementation

The Galaxy run-time environment consists of three major components: the Help Scrver, the
Distributed Application Services Server, and the Galaxy/CS User Interface Server, which
will ship in 1993 as an add-on product.

Applications built in the Galaxy environment can be implemented in client/server mode by
simply compiling with a different set of libraries. The Galaxy client/server (Galaxy C/S)
stub libraries bound in with client applications (in the X Window sense of clients) generate
RPC calls to the Galaxy User Interface Server (in the X Window sense of server), which
manages access by multiple client applications to the user display.

The client/server dimension of Galaxy has particularly interesting potential because, with
the PostScript imaging model, Galaxy can build “smart” servers (in the X Window sense)
which could support low bandwidth X Window implementations that would offer high-
performance, off-network imaging at the workstation. In the Galaxy modcl, the workstation-
based server has knowledge of the resource files available to the application, enabling high
performance as compared with the X11 model, which is an event-driven environment that
sends information about user interface events with x and y coordinates that create hundreds
of event calls to Xlib. The Galaxy client/server capability is planned to ship in the first half
of 1993.

One of the most interesting components in Galaxy is the Galaxy Help System. The Galaxy
Help System offers context-specific hypertext help capability to Galaxy and non-Galaxy
applications. The Help Server offers the feature-rich graphics and text features of Galaxy,
including font styles and sizes, hot links, and images. It even is designed to offer a less-
intrusive version of Macintosh Balloon Help, called “live help,” that automatically changes
the context of a live help window to reflect the current context of the cursor. Galaxy
includes translators for Microsoft RTF format help documents and Unix man (on-line
command manual) pages. The translators can be run in real-time as needed to display help
to the local environment.

Galaxy Marketing and Business Issues

Galaxy Launch Plan:
Build Credibility, Build
Credibility, Build
Credibility

The Galaxy launch plan is dependent on a ground swell of adoption in the target markets
where application developers need to develop complex, graphical applications independent
of operating system, network, file systems, and graphical user interfaces. Thus far, the
launch of the product has occurred at a low level of visibility and with minimal information
released through the normal channels of press and analysts. Visix has been operating with
near-total emphasis on cultivating the early adopter ranks, on the assumption that a rich
scatter diagram of diverse influential buyers will position Galaxy better than any claims or
statements the company could make. In order to build the foundation of credibility to
support a significant proposal from a small software company, the Visix marketing plan for
Galaxy is to let the technical buyers within credible companies provide a groundswell of
adoption by clearly staking their future plans on the Galaxy product. The adoption of
Galaxy is clearly a significant bet-the-company strategy. In making the commitment to
focus on developing applications instead of portability toolkits, adopters of Galaxy judge
Visix as ready, willing, and able to continue to extend and maintain Galaxy as the interfaces
to the underlying platforms evolve.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 15



Galaxy Marketing and Business Issues

Early Commitment Is
Significant

Channel Strategy for

Galaxy

Galaxy Delivery Progress
Report

Galaxy Pricing: A Bold
Stroke

On the other hand, Visix has been trying to pique interest in Galaxy through the Unix trade
press since last August. The approach has used intentionally cryptic advertising that links
the name Galaxy with the tagline, “Galaxy Application Environment—Light Years Ahead.”

Early adoption of Galaxy attests to the urgent need in the application devclopment
community for a light at the end of the tunnel for portability of complex applications. But it
also says much about what Visix has achieved with Galaxy. Naturally, the early adopters of
Galaxy are technically deep developers. The evaluation process conducted by the early
adopters typically included detailed, in-depth architectural reviews that revealed a breadth
and depth to Galaxy that eased the concerns about the ability of Visix to develop and extend
the product as the marketplace evolves. The Galaxy launch, thus far, has been energized by
strong word-of-mouth support from the technical community and concentrated somewhat in
the “bleeding edge,” early adopter end-user group on Wall Street. The most significant carly
contract for Galaxy is a multimillion-dollar deal inked in mid-September with Legent
Corporation of Vienna, Virginia. Legent, a $600-million heavyweight in mainframe system
management applications, aims to enter the 0OS/2, Unix, and MS Windows arenas with
applications written with Galaxy. Legent apparently plans to use Galaxy primarily for new
application development, but it will probably port some existing management applications
to the Galaxy environment as well.

The channel strategy for Galaxy is initially focused exclusively on direct sales in order to
develop proof-of-concept and to establish the highest-level value proposal possible across a
range of user needs. In the future, indirect delivery could play an important role if the
marketplace demands that system platforms offer some special support for Galaxy
mechanisms, such as the DAS services. Merchandising to or through the industry consortia
is not on the marketing plan at this time. The conviction runs deep at Visix that the direct
developer-to-developer sell will more effectively establish the value of Galaxy than working
through third-party forums or associations. We agree with this judgment.

Visix has been delivering Beta and near-production-quality Galaxy code since February
1992 to an increasing sample of ISVs and end users. These early customers are porting
existing applications, integrating tools through the Galaxy software backplane, and
developing their next-generation applications for cross-platform delivery.

The release was upgraded to production-quality, controlled release in early summer. The
full API has shipped to all of the controlled release customers. The technical evaluators and
users of the early Galaxy software have uniformly found that the speed of response to
problems and the turnaround on new features has exceeded expectations. Visix has even
attracted an established training and consulting company to prepare an extensive training
curriculum to assist programmers in learning and deploying Galaxy.

We expect to see the formal release of the Galaxy product in the fourth quarter of 1992,
when the full set of tools will ship. The interest among qualified buyers has been extremely
strong, and the company currently has devoted five salespeople and a senior sales manager
to the early sales activity, in addition to the developers intensively supporting the controlled
release customers.

The published quantity price for Galaxy is $9,600 for a full development copy that includes
the tools, the full API libraries, and the full set of documentation. Interestingly, Visix has
made a bold stroke in pricing Galaxy by not charging for run-time copies. This strategy
should help remove most ISV business objections and increase early penetration into the
market.

16

Important: This report contains the results of proprietary research, Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 10




Obstacles to Galaxy
Adoption

The four biggest obstacles facing Visix in positioning Galaxy will be:

1. Politics—The unwillingness of the industry to concede that this fundamental layer of
portability could not emerge from the many POSIX, IEEE, and X/Open committees that
have been trying to define a set of interfaces for portable and distributed software.
Unfortunately for the standards process, the richness of system software environments
has grown dramatically while the standards processes have plodded, creating a
usefulness gap that most in the industry concede.

2. Homebrew Commitments—The commitments already made to homebrew portability
mechanisms, particularly by ISVs.

3. Competition—The competition today comes in two forms, portable GUI builders such
as XVT from XVT Software and Neuron Data Open Interface from Neuron Data, and
the nonportable but highly functional graphical development environment, NextStep
from NeXT.

4. Skepticism—How can a small company solve this intractable problem and keep the
commitment to extend and enhance the API and the class hierarchy to keep pace with
changes in technology?

Summary and Conclusions

Next month's Open Information
Systems will address

Open Systems Strategies

of the European Vendors

For reprint information on articles
appearing in this issue, please
contact Donald Baillargeon at
(617) 742-5200, extension 117,

The industry has failed to offer developers of graphical distributed applications a viable
model which addresses the multiplicity of interfaces and standards required for commercial
success. The Galaxy mission statement is to liberate the developer from having to cope with
a broad and changing landscape of interfaces to operating systems/ file systems, networks,
and graphical user interfaces in the application development process and in the deployment
process across networked systems. In liberating application developers from non-value-
added drudgery, Galaxy allows developers to focus on excelling within their disciplines and
broadens the range of platforms for distribution. Galaxy is significant because of its wide
range of functionality; it frees the developer from most of the tasks of achieving portability.

Visix, with Galaxy, has brought forth a comprehensive architecture that could enable
developers to build on any platform and deploy on any platform by recompiling and re-
linking to the Galaxy libraries with the native compiler. The use of object-oriented concepts
has enabled a consistent level of abstraction to be applied to the OS interface, file system
interface, and network interface. The Galaxy product looks particularly timely in this period
of new operating systems and next-generation operating system proposals.

There is widespread FUD about which current or future applications will run on which
current or future operating systems in hosted or non-hosted mode, with or without
performance penalties. Galaxy cuts to the heart of this problem by offering ISVs and users a
means to finesse the major system software variants already on the table and an architecture
that appears to be extensible to cover future proposals for GUISs, networks, file systems, and
OSs through a comprehensive class hierarchy and extensible object-oriented interface
abstractions, The road to ubiquity for Galaxy might be steep, but Visix is known for
technological vision and excellent engineering. The challenges lie in marketing,
distribution, and, fittingly in a presidential election year, in industry politics. The success of
Galaxy could be of great benefit to application developers and users. ©

OPEN INFORMATION SYSTEMS Vol. 7, No. 10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 17



Open Systems:

Analysis, Issues, & Opinions

FOCUS: NEXT COMPUTER

NeXTSTEP 3.0:

NeXT Goes Cross-Platform

NeXT Computer, Inc. has begun shipping NeXTSTEP
3.0 for its Motorola 680x0-based NeXTstations, and
Beta releases will be available for Intel-based 486 and
above personal computers beginning in the fourth
quarter of 1992, General availability is expected in the
first quarter of 1993, NeXTSTEP 3.0 represents a new
direction in both strategy and technology for NeXT. It
is a shift away from a proprietary hardware focus and a
shift toward supplying a portable operating system.

With its entry into the Intel market, NeXT will now
compete head on with the new generation of desktop
operating systems, which includes Unix-based SunSoft
Solaris 2.0, SCO OpenDesktop 2.0, USL Unix SVR4.2,
and Microsoft’s Windows NT. A tough set of competi-
tors by any measure. NeXT's chances for success de-
pend on users being willing to gain development pro-
ductivity at the expense of application portability. Al-
though NeXT plans to add on POSIX libraries next
year, its primary goal in doing so is to meet FIPS pro-
curement specifications, rather than to attract POSIX
applications to its platform.

PORTABILITY VERSUS INTERGPERABILITY. Although based
on a Mach kemel, NeXT is often criticized for being
proprietary, since NeXTSTEP applications only run on
the NeXTSTEP operating system. Applications written
for other operating systems can be accessed by NeXT
users through an X Window server that is available for
NeXTSTEP, but other systems cannot run NeXTSTEP
applications. NeXT emphasizes interoperability over
portability, however, believing that the productivity ad-
vantage of the NeXTSTEP interface and development
environments outweighs the sacrifice in application
portability.

The lack of cross-platform portability has limited the
number of applications that have been ported to NeXT-
STEP. Because of its small installed base of about
50,000 machines and its unique programming inter-
faces, Independent Software Vendors (ISVs) have been

slow to make the investment necessary to rewrite their
applications. The resulting narrow range of 350 produc-
tivity applications from which to choose, compared
with many thousands for other platforms, has been a
barrier to wider adoption of the NeXT workstation. This
chicken-and-egg syndrome will continue to plague
NeXT, but the company hopes that bringing NeXT-
STEP to Intel PCs will make it a more attractive plat-
form for ISV development.

NeXTSTEP 3.0 Is a Shift in Focus

Apart from many feature enhancements in NeXTSTEP
3.0, the most significant aspect of this release is that
portions of it have been rewritten in C from assembler,
so it can be more easily ported to platforms other than
the original Motorola 68K architecture. The first
platform to be announced was Intel, but there is no
reason to expect that NeXT will stop there.

By uncoupling its software from its hardware, NeXT
gives buyers a choice of hardware vendors and access to
a wider selection of hardware options. In this regard, its
strategy is not unlike Sun’s strategy with Solaris for In-
tel. However, unlike Sun and SPARC, NeXT has no
vested interest in any particular processor architecture.
In fact, the process of porting from the 68K to Intel
forced NeXT to solve most of the problems it would
face should it choose to take its operating system to
another platform.

NeXTSTEP 3.0 Enhancements

NEW OBJECT KITS One of the keys to developer produc-
tivity in the NeXTSTEP environment is its object-
oriented design approach. In addition to its object
oriented application construction tool, Interface Builder,
NeXTSTEP 3.0 contains four new object kits, which
greatly facilitate application development. They are:

e Database Kit (DBKit). The DBKit provides objects
necessary to build database applications, such as
various controls, query tools, data display tools, and
data types. It provides a consistent interface to SQL
databases through “snap in” adapters for specific
databases. Adapters for Sybase and Oracle are in-
cluded, and other adapters will be made available.

Important: Tnis report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

The Sybase adapter is based on Sybase’s DBIib,
and the Oracle adapter includes Oracle SQL*Net
and Call Level Interface. Adapters are being devel-
oped by third parties for Informix, Ingres, DB2, and
Teradata. An SQL Access Group (SAG)-compliant
driver will be able to provide access, using the
same interface, to all SAG-supported databases.

e 3D Graphics Kit (3DKit). The 3DKit enables de-
velopers to add three-dimensional graphics to new
or existing NeXTSTEP applications. It is based on
Pixar's RenderMan standard, and it includes both
Interactive and PhotoRealistic RenderMan.

e  PhoneKit. The PhoneKit supplies objects that sup-
port applications using both ISDN and regular tele-
phone service for either voice or data transmission.
Objects are provided that handle pickup, dialing,
information transfer, and hang-up. It offers teleph-
ony hardware independence and provides for inte-
gration into NeXTSTEP applications.

o IndexingKit. The IndexingKit gives a developer
tools that can be used to facilitate storing, indexing,
and retrieving either text or record-based informa-
tion in any application. It contains the BeTree
classes and includes some objects from Release 2.0
that have been put into the kit along with new
objects.

INTEGRATED APPLESHARE AND NETWARE CLIENT. NeXT-
STEP 3.0 now includes Novell NetWare client software
fully integrated into the operating system. This is the re-
sult of a cooperative development effort between NeXT
and Novell, and it is the first bundling of NetWare cli-
ent software on a Unix-based platform.

NetWare client includes IPX protocols that enable
NeXTSTEP users to turn their workstations into clients
for NetWare servers. NeXTSTEP workstations can
share files, printers, and other network services that are
available on any NetWare server, including NetWare
2.2 and NetWare 3.11. One of the major benefits of this
capability for users is the ability to access the Oracle
Server for NetWare, which is becoming widely installed
as a workgroup database server.

The set of NetWare APIs included will allow NeXT-
STEP developers to build applications using NetWare
services with the same interface used to build network
applications using NFS and AppleShare. The Ap-
pleShare client capabilities included will give NeXT-
STEP users access to AppleShare networks at the same
time as other networks they are using. In addition,
NeXT machines can now read Macintosh CD ROMs
and Macintosh SCSI hard drives.

OBJECTS ARE NOW DISTRIBUTED. Previous versions of
NeXTSTEP supported messaging between objects
within a single NeXTSTEP application. Release 3.0 in-
troduces Distributed Objects, which extends the same
messaging model to include messaging between objects
in different applications and across different computers
on a network. This makes possible the creation of Ob-
ject Links, a multimedia, hyperlinking system allowing
dynamic sharing of information across applications.

OTHER ENHANCEMENTS. Release 3.0 introduces Display
PostScript Level 2, including support for calibrated
color output. Also included are imaging filters for faster
printing and pattern support, and the Pantone color-
matching system. Internationalization enhancements in
NeXTSTEP allow users to set their systems for English,
Spanish, French, German, Italian, Swedish, and Japa-
nese. (Japanese is a separate product.) Unicode support
will be included in a future release.

Object Links is new to Release 3.0, and it is similar in
concept to Microsoft’s DDE and Apple’s Publish and
Subscribe. It allows Release 3.0-compliant applications
to share information through hot links.

Unveiling a Server Strategy

NeXT is a workstation company and makes no pretense
that its machines should be used as servers. To fulfill
that role, NeXT has entered into agreements with Data
General (Westboro, Mass.), Auspex Systems (Santa
Clara, Calif.), Solbourne Computer (Longmont, Colo.),
Pyramid Technology (San Jose, Calif.), and the Tera-
data (El Segundo, Calif.) subsidiary of NCR. Through a
variety of marketing and sales arrangements, NeXT
customers will have a range of servers available to them
for everything from file sharing to transaction
processing.

An important component of NeXT’s client/server strat-
egy is the porting of its Netlnfo network information
tool to these vendors’ platforms. NetInfo is a service
consisting of protocols, library routines, application
programs, and data that allows sharing of administrative
information between computers on a network. Applica-
tions include UserManager, PrintManager, Host-
Manager, NFS Manager, and NetInfoManager. They
allow network administrators to administer systems
from any point on the network. When a new node is
connected, Netlnfo provides automatic configuration of
the new machine. With NetIlnfo on these new servers,
the server acts just like another node on the NeXT
network. Unfortunately, at the moment, NeXT has no
plans to providle DME compatibility for Netlnfo,
although that would seem logical.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 19



OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Meeting the Intel PC Challenge

Why would NeXT port its environment to Intel PC plat-
forms? With an installed base of 100 million that is
growing by many million each year, even a smail per-
centage of that market is significant. More importantly,
customers are far more likely to adopt NeXTSTEP if
NeXT can reduce its image of being proprietary.

Porting to Intel PCs is no small feat. NeXTSTEP was
designed with the Motorola 68K architecture as a cen-
tral design point. However, since NeXTSTEP is based
on the Mach microkernel, the amount of processor-spe-
cific code that had to be overhauled was relatively
small. With most services running in nonprivileged user
space, the porting task was much easier than it would
have been had the NeXTSTEP architecture been more
monolithic.

DEVICE DRIVER CHALLENGE. One of the challenges in
developing system software for PCs is providing device
drivers for the thousands of devices that can be
configured on any PC. Driver development is costly,
and, without support for a broad range of devices, the
appeal for the operating system declines. Remember
when OS/2 1.0 first shipped without a reasonable set of
printer drivers? Microsoft has dealt with this problem in
Windows by developing generic drivers for network
interface cards, printers, and displays that have standard
interface specifications which Microsoft publishes.

NeXT has tackled this problem in typical fashion. It has
developed a DriverKit that is based on a new driver
architecture. The architecture is object oriented, with
several subclasses for each device type. At the highest
level is a kernel data structure, below that is an object
that knows how to talk to a class of devices, then a
subclass for more specific category of devices, then a
specific type of device, and then the code that is product
specific. For example, a developer writing a driver for a
network interface card can use the I/O class, the
Network I/O subclass, and the Ethernet object in that
subclass of the DriverKit. The only specific code that
has to be written is for the particular ethemet card.

These classes consist of source code that is portable
across all of the platforms that NeXT will support, as
long as no processor specific structures are required. In
the Ethernet example, the Ethernet object has to be
written specifically for each processor, since byte
ordcring and buffer sizes vary.

This object-oriented architecture allows NeXT to build
highly sophisticated drivers, including an SCSI driver
that supports removable media. It also allows new types
of device objects to be added very easily as subclasses,

such as ISDN and token ring adapters. NeXT has been
using the DriverKit internally to build its SCSI driver
and others for the devices it will support in the standard
distribution. It is making the DriverKit available to third
parties, along with full documentation and sample code,
so that drivers will be available when NeXTSTEP 486
Intel ships next year.

DISTRIBUTION CHALLENGE. Introducing a shrinkwrapped
operating system for Intel PCs will present a major dis-
tribution challenge for NeXT. It will continue to con-
centrate on its direct sales efforts to land large multiple
sales. Allowing customers the flexibility of selecting
their preferred hardware supplier will help overcome
many customers’ past objections.

NeXT is also looking at OEM distribution possibilities
but doesn’t expect any initially. It would prefer to deal
with the large, more stable companies with high-quality
products, and those which have a systems perspective to
their business rather than a “box seller” mentality. In
the interim, it will be working closely with the hardware
vendors to ensure compatibility and optimization of
NeXTSTEP 486.

Making NeXTSTEP 486 a success will depend on gen-
erating demand, and normal PC channels will not be
capable of this. NeXT would prefer to deal with value-
added resellers (VARs) that are capable of supporting
the hardware, networking, and software environment
and that have value to add with their applications.

NeXTSTEP Continues to Gain Acceptance

NeXT continues to score successes in winning large ac-
counts. Among the latest companies to select NeXT-
STEP is Chrysler Financial (Southfield, Mich.), which
will use 2,500 copics of NeXTSTEP 486 for a cli-
ent/server retail auto financing application in over a
hundred branches. Mobil Sales and Supply Corporation
(Fairfax, Va.) will use 400 NeXTstations as traders’
workstations, along with an energy trading system de-
veloped by a third-party developer, mc< (Westport,
Conn.). McCaw Cellular Communications - (Kirkland,
Wash.) will employ several thousand NeXTstations
over the next three to five years to deploy an
application developed internally in a fraction of the
time it would have taken in other environments.

The benefits of NeXTSTEP as an application develop-
ment environment have been recognized for some time.
The latest evidence comes from the Swiss Bank Corpo-
ration (London, U.K.), which estimated 50 - 100 per-
cent productivity gains after switching to NeXTSTEP,
as measured by function point analysis. With the intro-
duction of NeXTSTEP 486, customers will be able to

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

deploy those applications on 486-class personal com-
puters from virtually any supplier, overcoming one of
the large obstacles to widespread NeXTSTEP adoption.

Conclusions

actually convert plain old textual documents into SQML
documents.

Component Level Document Management Product

NeXT has made a bold strategic move in its decision to
work with other platforms. The quality of its implemen-
tation will go a long way in determining the success of
this strategy. However, users will continue to be disap-
pointed by the narrow range of shrinkwrapped applica-
tion choices that run natively on NeXTSTEP. On the
other hand, the NeXTSTEP development environment
may attract creative new applications that more than
offset the unavailability of other, more widely accepted
applications. NeXT customers tend to be strong propo-
nents for NeXTSTEP. The challenge NeXT faces is to
sell interoperability along with ease of use, innovative
applications, and rapid development to offset not having
portability or the big applications. —M. Goulde

FOCUS: DOCUMENT MANAGEMENT

IDI Provides a Structured Database
Model for Document Management

Treating Documents as Databases

For years now, we have been bemoaning the fact that
you can’t collaboratively work on documents using a
database model. Let me elaborate. In a database table,
only a single record is locked when it is being edited.
All the rest of the records in that table are available for
updating by other users. In a document, we have always
believed that only the component that is being edited
(say, a paragraph or section) should be locked from
editing by others. The problem was that, in order to en-
sure that sort of component security, you needed to di-
vide the document into the equivalent of records. And
how do you take an unstructured stream of text bytes
and impose a record-like structure? The most promising
technology for doing just that is Standard Generalized
Markup Language (SGML), fast becoming the standard
for defining the structure of a document by tagging the
different components within the contents. Once each
piece of text is tagged, it can be identified as a separate
object within the context of the entire document.

There are currently a variety of SGML editors and tools
that will parse (verify that thec document follows a valid
structure) SGML documents, and new tools that will

Information Dimensions Incorporated (IDI), makers of
BasisPlus, a popular Unix and VMS-based document
management system, has just announced a product that
allows users to work on a document in just the way
we’ve been waiting for. The Document Transformation
(docXform) product includes technology for autotag-
ging non-SGML documents into the SGML structure
and for managing those documents at the component
level. This means that you can check out, spell check,
scarch, format convert, edit, etc., by component, such as
chapter title, introduction, normal paragraph, etc. The
product runs on Unix and VMS.

IDI has acquired two technologies that underlie the ncw
product:

e FastTAG from Avalanche Development (Boulder,
Colorado). FastTAG analyzes documents and infers
structural information, autotagging the contents with
SGML codes.

¢ Document parsing technology from Exoterica Corpo-
ration (Ottawa, Canada). The Exoterica technology
includes a standard SGML parser that validates the
autotagging done by FastTAG to make sure it con-
forms to the document type definition—an SGML
equivalent to a data dictionary (DTD). IDI has also li-
censed Omnimark, Exoterica’s fourth-generation text-
programming language.

After a document has gone through the Avalanche and
Exoterica technologies, IDI’s docXform will take each
SGML-tagged component and map it into the BasisPlus
database.

This technology works with any scanned image, SGML
document, or any word processing document (including
PostScript files). At present, complex hierarchical
documents, such as technical documentation
publications, cannot be processed.

Benefits of Component Level Document Management

PRECISE SEARCHING. In an unstructured document, the
best you can do is search for words or phrases. If key-
words have been identified in a document header, you
have a more precise search, but this is still a very work-
intensive, manual process of specifying the keywords
for each document. With a component model, you can

OPEN INFORMATION SYSTEMS Vol. 7, No. 10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 21



OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

limit searches to specific portions of documents. For
example, you could choose to search only the summa-
ries and introductions of a selected group of documents,
based on the assumption that the significant topics cov-
ercd in the body of the documents would be mentioned
in one of these two components. This narrows the
amount of text you need to search and thus improves
performance. Another example might be that of
searching through hundreds of resumes, trying to find
someone who is familiar with current state regulations.
In a traditional search, you could find all the resumes
that mention the word “State,” but that would also in-
clude people who live on State Street or who claimed
skills on state-of-the-art word processors. With compo-
nent scarching, you could limit your search to
employment history sections.

CONCURRENT COLLABORATIVE EDITING. Component docu-
ment management supports the editing model we men-
tioned earlicr. When you check out a specific compo-
nent to edit, it is locked, but the other components of
the document are still available for editing. Even more,
if someone else requests that entire document or sec-
tions that include the locked component, he or she can
acccess that portion. The locked component is read-only,
but the individual can see the context of the entire
document. This is very important. If I am working on an
exccutive summary section, I need to be able to see the
main contents of the document, even if I'm not able to
edit it.

DECREASED NETWORK TRAFFIC. Since you can pull up a
single component to edit, rather than an entire docu-
ment, you reduce the amount of traffic on the network.

SOFT VERSION CONTROL. The system can tell which
components have been changed from version to version.
Therefore, the system saves only the deltas for each
version. This saves storage space and also allows the

system to keep even more accurate historical informa-
tion by maintaining an audit trail on each component.

Working across Documents

An effective document database model not only needs
to understand the logical structure of a single document,
it must also understand the relationship of like compo-
nent types across documents and across databases of
documents. DocXform allows precise searches across
documents, creating virtual documents out of the com-
ponents chosen.

NEXT GENERATION PRODUCT. In spring '93, IDI will in-
troduce the next evolution of its component document
management product line, docXapi, a programmer
toolkit that allows you to create hypertext virtual docu-
ments from componentized documents. The system will
also create a virtual table of contents for the pieces it
has put together. The toolkit supports development of
graphical front ends, using tools like Visual Basic, Hy-
percard, Motif, etc. The target market for docXapi is
graphical desktop environments. In addition, docXapi
will support more complex cross-document, cross-data-
base table precise searching, '

Conclusion

It is probably apparent that we are pleased to see this
technology become available. The ability to add struc-
ture with a minimum of pain to what was previously
unstructurcd gives users new control over the informa-
tion in their organizations, most of which is in standard
office documents. The possibilities for integrating text
components with other data types in database applica-
tions are endless. And, finally, we can simultaneously
edit the same documents without clobbering each
other’s work! —R. Marshak

22

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 10




On Your Mark, Get Set,

. Go! ... to %%\JbO,d G/‘

Take off with the

Boston Marathon runners
and cross the finish line
better prepared to deploy
Enter Marathon Week and Cross-Participate open distributed computing

in 3 Simultaneous Forums! throughout your organization.

o Distributed Object Computing Technology Forum—How
Can I Use Distributed Object Computing Technology Today
to Build Mission-Critical Applications?

» Open Systems Forum—Whar Can I Do with Open Systems

Today? What Lies Ahead? April 18 - April 23, 1993
o Seybold Executive Forum—Design a Real Business Copley Marriott,
Solution That Implements Open Distributed Systems Boston, Massachusetts

As the technology boundaries begin to merge, so must our Forums. For the first time,
Patricia Seybold Group will hiold its three annual conferences all in the same week at
the same hotel. Our goals are:

» To allow participants to focus on the topics that best meet their business needs.
Participants may cross over to attend any sessions of interest.

*  Toenlarge the group of people with whom you can meet and share experiences.
* To explore how distributed object computing enables open systems.

» To allow participants to enhance their conference learning through business
case-focused, hands-on applications of technology.

In addition to the three conferences, participants can visit the evening Technology
. Showcase, where leading vendors will demonstrate real business solutions.

For more information, call Deb Hay at (800) 826-2424




B ORDER FORM

Patricia Seybold’s Computer Industry Reports

Please send me information on:

Please start my subscription to:
[ Patricia Seybold’s Office Computing Report

(] Patricia Seyboid’s Open Information Systems

[] Patricia Seybold’s Distributed Computing Monitor
(] Paradigm Shifi—Patricia Seybold’s Guide to the Information Revolution 6 issues & tapes per year
[] Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution 6 issues per year

Please send me {_] Distributed Computing Monitor
a sample of:

[] Consulting

12 issues per year
12 issues per year
12 issues per year

US.A. Canada Foreign

$385 $397 3409
$495 $507 $519
$495 $507 3519
$395 $407 $419
$295 $307 $319

[ Open Information Systems
(J Office Computing Report [ Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution

(] Special Reports ] Conferences

[(J My check for § is enclosed. (] Please bill me.
Name: Title:

Company Name: Dept.:

Address:

City, State, Zip code, Country:

Fax No.: Bus. Tel. No.:

Signature:

(] Please charge my subscription to:

Mastercard/Visa/American Express
(circle one)

Card #:
Exp. Date:

Checks from Canada and elsewhere outside the United States should be made payable in U.S. dollars. You may transfer funds directly to our bank: Shawrnut Bank of Boston,
State Street Branch, Boston, MA 02109, into the account of Patricia Seybold Group, account number 20-093-118-6. Please be sure to identify the name of the subscriber and
pature of the order if funds are transferred bank-to-bank.

I
I
|
I
I
I
I
I
I
I
|
I
I
I
I
I
I
|
I

Send to: Patricia Seybold Group: 148 State Street, Boston MA 02109; FAX: 1-617-742-1028; MCI Mail: PSOCG

To order by phone: call (617) 742-5200

101-1092

Topics covered in Patricia Seybold’s Computer Industry Reports in 1991 & 1992:

Back Issues are available, call (617) 742-5200 for more information.

# Date
12 Dec.

2 Feb.
3 Mar.
4 Apr.

5 May

6 June
7 July

8 Aug.
9 Sept.

10 Oct.

”o

LI

Office Computing Report I I_- UNIX in the Office J

Network Monitor

1991—Volume 14
Title
IBM/Lotus Relationship—Building
a Platform for Communicating
Applications

1992—Volume 15

. The Groupware Phenomenon—Does

It Focus on the Proper Issues?
Digital’'s TeamLinks—A Renewed
Focus on the Client Desktop
Requirements for Workflow—What
Should We Expect from the Vendors?
Desktop Multimedia—Moving
beyond the Chicken and the Egg
Borland International—A Database-
Centric, Object-Oriented Approach to
Desktop Integration

Apple’s Macintosh—Can It Become
“the Cadillac of Collaboration™?
Business Intelligence—A Framework
for Data Analysis Applications

The Quest for Common Mail APIs—
Clearing up the Confusion
BeyondMail for Windows—Epito-
mizing the Mail-Enabled Application
Microsoft’s Workgroup Strategy—
Moving Group Functionality into
Windows

Printed on recycled paper.

1991—Volume 6
# Date Title

12 Dec. Positioning Desktop Options—
How Does Unix Fit in the Client
Environment?

1992—Volume 7
Downsizing with Open Systems—
Can Unix Symmetric Multiprocess-
ing Systems Meet MIS Require-
ments?
System V.4 and OSF/1—Matching
up in the Marketplace
. Europe’s Harness Project—Inte-
grated Technology for an Open, Ob-
ject-Oriented, Distributed Applica-
tions Platform
The X Window System—Where is
Its Future?
5 May HP’s Master Plan—Winning Is Ev-
erything in Palo Alto
6 June Digital’s DECworld Gems—Alpha
and Accessworks Shine

1 Jan.

2 Feb.

4 Apr.

| Open Information Systems |

7 July Integrating Applications in the Real
World—Evolution, Not Revolution

8 Aug. Windows NT 3.1—Microsoft’s Bid
for Desktop Dominance

9 Sept. Oracle’s Version 7—Can It
Leapfrog the Competition?

10 Oct. Galaxy from Visix—Application
Portability Breakthrough?

1992—Volume 7
# Date Title

ment—A Question of Trust

2 Feb. HyperDesk DOMS—A Dynamic Dis-
tributed Object Management and Ap-

plications Development System

3 Mar. Smart Hubs—Establishing a Manage-
able Internet Foundation for Distrib-

uted Computing

4 Apr. Message Express—A Message Plat-

form for Cooperative Processing

5 May Novell NetWare 4.0—Building to-
ward an Enterprise Distributed Object

Computing Environment

6 June Distributed Printing—Major New
Approaches Begin to Relieve One of
Distributed Computing’s Most Frus-

trating Problems

| Distributed Computing Monitor

7 July The New E-Mail APIs—Finally,
Real Progress toward Mail-Enabled
Applications

8 Aug. Distributed Object Computing—The

Merger of Distributed Computing
and Object-Orientation into a New
Architecture

9 Sept. Gradient DCE for PCs—PC-DCE
Spurs OSF to Make PCs Peers to
Unix and Other More Powerful
Platforms

10 Oct. Database Interoperability—A
Comprehensive Approach to
Database Access for the 1990s

1 Jan. Securing the Distributed Environ-




