Patricia Seybold’s
Office Computing
Group

Editor-in-Chief
Michael A. Goulde

INSIDE
EDITORIAL

Page 2

Unix and Open Systems.
The industry that grew up
around Unix has become
closely identified with the
open systems movement.
Now that vendors of pro-
prietary operating systems
are able to offer products
that comply with POSIX
standards derived from
Unix System V, that move-
ment no longer belongs
soley to Unix. Beliefs about
open systems will have to
be re-examined, just as will
beliefs about Unix.

ANALYSIS

Page 17

Microsoft has begun to re-
veal parts of its open sys-
tems architecture. Mi-
crosoft has its own defini-
tion of open systems, one
which users might find at-
tractive, if not politically
correct » AlphaWindows, a
consensus standard for
character-basedwindowing
may help inthe migration of
existing applications to net-
worked graphical environ-
ments » SunSoft hopes to
break the logjam in client/
server development with
its ONC RPC Application
ToolKit.

UNIX
IN THE

Guide to Open Systems

Vol. 7, No. 3 « ISSN: 1058-4161 « March 1992

Europe’s Harness
Project

Integrated Technology for an Open, Object-
Oriented, Distributed Applications Platform

By Joshua Greenbaum

IN BRIEF: Perhaps the greatest role open systems can play in the 1990s is
promoting the growth of distributed systems, and, without a doubt, the
greatest role object-oriented technology can play is in the simplification of
complex programming tasks. Putting the two together is the goal of a
European project, Harness. This is an object-oriented software develop-
ment environment for complex distributed applications that shields the
developer from hardware and operating system fundamentals and the
conflicting communications and internetworking protocols they entail.

It’s an ambitious goal, nothing less than the Holy Grail of open systems,
and Harness’ stellar cast of European hardware and software partners are
determined to have a working prototype by the end of the year. The
technological foundations of Harness are sound and the project is well-
defined and well-underway. But Harness has a lot of ground to cover in a
short time, and there is no dearth of competing standards and forthcoming
technology that may offer commercially viable alternatives for much of the
environment the project expects to define. Report begins on page 3.

© 1992 by Patricia Seybold’s Office Computing Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express writien permission.

EDITORIAL: BY MICHAEL A. GOULDE

Unix and Open Systems

Are They Two Directions or Just Two Perspectives?

FOR 20 YEARS, Unix held a unique posi-
tion as the one portable, source-licensable
operating system that was commercially vi-
able. Its widespread availability supported
advanced academic research in operating
system and nectworking theory. As interest
spread to commercial settings, Unix allowed
new computer companies with new
architectures to spring up almost overnight,
creating new markets and filling important
gaps in the marketplace. Unix served as the
foundation for the emergence of an entire
culture and, ultimately, for the open systems
movement.

Today, the unique position held by
Unix is being challenged from two direc-
tions. Microsoft’s Windows/NT is challeng-
ing its property of portability, and emerging
POSIX standards are challenging its posi-
tion as the only basis for open systems.

Unix Systems Laboratories doesn’t
have sole ownership of Unix. We don’t
mean that it doesn’t own the Unix technol-
ogy, which, of course, it does, but that, to a
large extent, Unix is owned by the pro-
grammers and engineers who have built
careers on Unix. They have developed
applications, extensions, utilities, file sys-
tems, networking capabilities, and even en-
tire computer companies around it. For
thecm, the emerging threats to Unix run
much deeper than a simple technical or
markeling challenge. They are threats to the
professional identity and even the self-es-
teem of these individuals.

This situation is not unlike one that ex-
isted in the field of psychiatry 25 years ago
when some renegade psychologists suggest-
ed that B. F. Skinner’s theories of operant
conditioning were superior to Freud’s psy-
choanalytic theories when it came to treat-
ing psychiatric symptoms. These so-called
behaviorists were virtually ostracized from
the ficld when they suggested that human
behavior could be modified by rearranging
the environmental contingencies of rein-
forcement that determined the relative prob-
ability of adaptive and maladaptive behav-
iors. Emotions, they reasoned, weren’t the
cause of behavior, but were intellectual and

physiological reactions to environmental
contingencies. “Heresy,” said the psycho-
analysts, who perceived their years of
training, personal psychoanalysis, and pa-
tient care as devalued by these new theories.

The analogous situation today is that
the Unix traditionalists say that open sys-
tems are based on the Unix operating sys-
tem and its interfaces, while the revisionists
say that open systems are based on standard
interface definitions that should not be de-
pendent on where Unix is headed and that
can be implemented by a variety of underly-
ing technologies. Just as the belief system of
the psychoanalysts was challenged by the
behaviorists, so too is the belief system of
the Unix community being challenged by
this new breed. What should we call them?
Are they the open systems community? The
POSIX community? The standard interface
community?

This is an important question that needs
to be resolved if users are to have a clear
path to fulfilling their requirements. Unix
and non-Unix technologies have to be
placed in proper perspective. Unix and its
derivatives carry assumptions about the way
systems and networks should work that may
or may not be “right.”

In the past, the focus of this newsletter
has been Unix, its evolution, the applica-
tions that run on it, the vendors who market
it, and the organizations that influence it.
We are now questioning whether Unix in
the Office needs to look at broader issues,
and we are looking to its readers to tell us.
Your completing and returning the enclosed
survey will help us decide what the focus of
this newsletter should be and what it should
contain. Please take the time to fill out the
survey and fax or mail it back to us.

Incidentally, as a result of empirical re-
search that showed behavioral therapy to be
more effective than psychoanalysis in
certain types of disorders, behaviorism has
moved into the mainstream of mental
health. Classical Freudian psychoanalysis
has not disappeared. It plays a different role
today, and many analysts have accom-
modated Skinner’s ideas in their practice. ©

UNIX
IN THE
OFFICE

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITHR. DAVIS
ROSEMARY B. FOY
DAVID S. MARSHAK
RONNIT. MARSHAK
JOHNR. RYMER
ANDREW D. WOLFE, JR.

News Editor
DAVID S. MARSHAK

Art Director
LAURINDA P. O'CONNOR

Sales Director
RICHARD ALLSBROOK JR.

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONALD K. BAILLARGEON

Patricia Seybold’s

Office Computing Group

148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Intemet: psocg@mcimail.com
TELEX: 6503122583

Unix in the Office (ISSN 0890-4685)
is published monthly for $495 (US),
$507 (Canada), and $519 (Foreign)
per year by Patricia Seybold's Office
Computing Group, 148 State Street,
7th Floor, Boston, MA 02109.
Second-class postage permit at
Boston, MA and additional mailing
offices.

POSTMASTER: Send address
changes to Unix in the Office, 148
State Street, 7th Floor, Boston, MA
02109.

Unix is a registered trademark of ‘

UNIX Systems Laboratories, Inc.

2 Impartant: This report contains the results of proprietary research. Reprocuction in whole or in part is prohibited. For reprint information, call (617) 742-5200.

UNIX IN THE OFFICE Vol. 7, No. 3

FEATURED REPORT: BY JOSHUA GREENBAUM

Harness Overview

Europe’s Harness Project

Integrated Technology for an Open, Object-Oriented,
Distributed Applications Platform

Integration Is Harness
Focal Point

Prototype Is Harness
Research Goal

The Hamess project lies at the center of a series of concentric circles of European eco-
nomic, technological, and political ambition. On the outermost rim is the European Com-
munity (EC), whose ambitious charter, as yet unfilled, is to unite the vastly different coun-
tries, economies, and cultures of Europe into a single political and economic entity. Within
the EC lies the Commission of the European Communities, the administrative and policy-
making body that is chartered with fulfilling the EC’s mandate. Inside the next circle is Di-
rectorate-General XIII, which is responsible for Telecommunications, Information Indus-
tries, and Innovation—the technological heart of much that the EC stands for. Finally,
within DG-XTII is the European Strategic Programme for Research and Development in In-
formation Technology, better known by the acronym ESPRIT. One of the largest govern-
ment-run pure and applied research programs on the planet, ESPRIT consumes approxi-
mately $1,000 per minute and consists of over 1,000 R&D teams, organized into a loose
consortium of corporate sponsors and academic researchers whose task is to perform applied
and pure research in microelectronics, information processing, business systems, computer-
integrated manufacturing, and other technology-driven subjects.

While Harness is one of over 100 research projects within ESPRIT’s Advanced Business
and Home Systems group, it is very much at the core of ESPRIT’s and the EC’s hopes for
European leadership in distributed systems. Integration is the watchword at Harness: The
consortium itself is involved in little fundamental research, drawing the lion’s share of its
technological and applied software base from numerous on-going ESPRIT projects and out-
side standards, such as the Open Software Foundation’s (OSF’s) Distributed Computing
Environment (DCE) and IEEE POSIX. Its work has a broad scope, its goals are ambitious—
working prototypes are due in by the end of the year, commercial products are expected in
1994—and the potential impact is enormous. If it fulfills its goals, Harness stands to influ-
ence a European open systems market that, in many ways, is ahead of that in the United
States. As a result, Harness could also influence the U.S. market, which is itself proceeding
towards distributed applications technology, albeit without a central, unifying, Harness-like
body to guide it.

Influence does not translate into commercial product development in the language of ES-
PRIT, however. It is important to note that Harness is restricted to research by ESPRIT’s
guidelines, though such research can extend into the so-called industrial prototype phase,
equivalent to an alpha test stage. While its goals clearly state that Harness will concern itself
with developing such an industrial prototype, the actual productization must be done by the
private sector.

Overall Scope and Objectives

Harness started in December 1990 and will end in May 1993, with a total effort projected at
74 person-years and total funding at 10.5 million European Currency Units (ECUs), or ap-
proximately $12 million. Half of Harness’s funding comes directly from the coffers of ES-
PRIT, and the other half comes from the research organizations themselves.

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. 3

Overall Scope and Objectives

Harness Players and
Project Goals

Targets Multiple
Audiences

Distributed Object Model

Hamness has 16 member companies drawn from the cream of Europe’s Information Tech-
nology (IT) industry. Led by Cap Gemini Innovation, the R&D arm of French software and
services giant Cap Gemini Sogeti, Harness includes researchers from:

« British Telecommunications plc

+ BullSA

« Siemens Nixdorf, Inc.

¢ Bell Northern Research Europe

¢ Grupo APD SA, a Spanish software and integration house

+ Volmac Nederland BV, a Dutch software and services company

» Architecture Projects Management Ltd, a U.K.-based company that is currently com-
mercializing a major software component of Harness

« KAPSCH, an Austrian data communications developer whose specialization in the IBM
world plays a key role in the project

Besides its commercial partners, Harness also draws on considerable academic and research
expertise from organizations including:

INESC, a research and development lab in Lisbon

Datamont S.p.A, the research arm of the Italian industrial concern Ferruzzi Group
ENST, the French National College for Systems and Telecommunications
INRIA, a French national research and development lab

Communications Networks Research Group, a Greek research house

Trinity College, Dublin, a hotbed of European object-oriented research

The University of Antwerp

The basic design of Harness calls for providing an object-oriented applications development
environment for supporting wide area and local area networking of heterogeneous plat-
forms, including proprietary as well as open systems. Its designers expect Harness to be
used in applications including office automation, corporate information systems, govern-
ment administration, engineering, and scientific research. However, the platform is neither
intended for the exacting needs of the real-time market (except in a limited fashion) nor is it
intended to satisfy the security requirements of the military or defense establishment.

The targeted user for Hamness is the applications programmer. Facilities and services are
provided for the system administrator and systems programmer, particularly for the distri-
bution of resources, tuning and error recovery. Hamess’s support for large, distributed sys-
tems running on wide area networks makes its targeted user environment major corporations
and government agencies.

While the fundamental design calls for an object-oriented, open environment (with Unix-
like operating systems considered as an important, though not exclusive, criterion), legacy
technologies figure prominently in Harness’s specifications. The project’s goals are not lim-
ited to providing a platform for developing new object-oriented applications. There is a con-
scious effort to allow for a wide range of existing applications, written in procedural code,
to be encapsulated within the Harness object model and distributed within the Harness
system.

4 Important: This report contains the resuits of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call {617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

Integration of
Technologies and
Standards

Moving from Design to
Implementation

Technology integration is at the heart of Harness’s work. In addition to drawing on the work
of several existing or recently completed ESPRIT projects, DCE, and POSIX, the project is
also tracking standards from ISO, IEEE, CCITT, the Object Management Group (OMG),
and X/Open. Harness plans to make itself open to a range of existing technical specifica-
tions including remote procedure calls, object and procedural languages, communications
protocols, and interface specifications. Higher-level services, such as database, user inter-
face, and the applications themselves, will be kept independent of the underlying Haress
base. Likewise, the base operating environment is largely immaterial to Hamness; as long as
the environment is POSIX compliant, Hammess plans to be able to function within its
domain.

Remote procedure call (RPC) specifications included in Harness are Hewlett-Packard’s
NCS, Netwise’s RPC, and the OSI RPC. Distributed services to be supported include Sun’s
ONC and the ANSA specification from the ISA/ANSA ESPRIT project. Object-messaging
and transfer technology, similar to the OMG’s Object Request Broker (ORB), will come
from ISA/ANSA as well. Hamess’s developers are considering, though not necessarily
promising, to support the OMG’s ORB.

As it approaches the final year of the project, the Harness team is beginning to move from
the drawing board into the prototype phase. Until now, very little Harness code has actually
been written, though there is a considerable body of working code available from the exist-
ing ESPRIT projects and other open systems technology sources. The Harness team will
wind up its work by May 1993,

The timing of implementation is more than just the caprice of a bureaucratic mind. Tech-
nology like DCE is still not widely distributed, or even well-known, within the applications
community. Many of the POSIX standards are still in a state of flux, and object-oriented
services and data models are still on drawing boards both in Europe and the United States.
The project leadership is convinced that, by the time Harness winds up its work, its base
technologies will be better known in the market and the skill required for development will
begin to emerge. This, as will be explained later, may prove to be a two-edged sword for
Harness.

Technological Underpinnings of Harness

Object Management and
Language Foundations

Several key technologies are being integrated into the final working Harness software plat-
form. Several are basic foundations for the project, including COMANDOS, the COMAN-
DOS VMI, and ISA/ASNA.

COMANDOS. Construction and Management of Distributed Open Systems, or COMANDQOS,
is an on-going ESPRIT project that began in 1986 with the intention of showing the feasi-
bility of using an object-oriented approach to distributed applications development.

The basic components of COMANDOS include:

* An object-typing model, which allows the use of and interaction among most truly ob-
ject-oriented languages

* A virtual machine, which provides the basic mechanisms for masking the differences
among underlying systems architectures from the object-oriented language

The major programming languages of Hamness include C++ and Eiffel, an object-oriented
language developed by Interactive Software Engineering of Goleta, California, as well as
the COMANDOS Object-Oriented Language. The COMANDOS project specifies tools for

UNIX IN THE OFFICE Vol. 7, No. 3

important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. 5

Technological Underpinnings of Harness

ANSAware Supports
Distributed Functionality

OSF DCE Services Also
Supported

both object program development and distribution management. Its target operating envi-
ronments are the OSF Mach kemel, the Chorus microkernel, and generic Unix.

VIRTUAL MACHINE INTERFACE. The virtual machine and its interface, known as the COMAN-
DOS VMI, are key elements of the ESPRIT project that will find their way into the Harness
environment. The virtual machine handles persistent object storage, controls distributed
computations, and manages transactions and network communications. The VMI contains
language-specific run-time environments that handle calls from the program to lower levels
of the operating environment and vice versa.

While COMANDOS is a good framework for the Harness project, it lacks two important
features: support for object environments that are not based on object-oriented languages
(i.e., encapsulated procedure programs) and support for the wide area networks targeted by
Harness. Adding these two features will be Harness’s major enhancements to the COMAN-
DOS work.

COMANDOS will continue its development work independently of Harness, and its re-
search and development phase will terminate at the end of 1992.

The Integrated Systems Architecture for the ODP (Open Distributed Processing) project,
also known as ISA/JANSA, was started as a feasibility project intended to provide a
technological understanding of distributed systems. While the project is still on-going, the
results of the initial phase are available under the product name ANSAware, which is sold in
source code form by Hamess partner Architecture Projects Management, Ltd.

ANSAware, which is a set of software and tools for the development of distributed systems,
is a major piece of Harness’s distributed functionality, the other being the OSF Distributed
Computing Environment specification. ANSAware is also based on object-oriented tech-
niques and provides an interface definition language that allows applications to interoperate
across a distributed environment.

The main additions to ANSAware that Harness has undertaken include support for pure ob-
ject-oriented languages and persistent object storage as supported by the COMANDOS envi-
ronment.

OSF’s DCE provides many of the same services as ANSAware, though the two differ pri-
marily as to how their object trader or broker mechanisms are presented. Harness’s support
of DCE is partly fueled by the acknowledgement that DCE has garnered widespread support
as a workable, although complex, technology. It’s important to note that most of the major
developers of Hamess are also OSF members; thus, there is an imperative to make good on
each company’s investment in OSF.

Harness will incorporate the distributed functionality provided by DCE, though the project
plans to make the environment more of an applications programmer tool than a systems
programmer tool.

S0S, Delta-4, and DOMAINS Components

Three other ESPRIT projects figure in Harness, though to a lesser degree than the projects
mentioned above.

$0S. SOS was a demonstration project undertaken by French Harness member INRIA to
prove the feasibility of developing large, distributed systems using object-oriented technol-
ogy. In addition to proving the point that a language like C++ is appropriate for a project

Important: This report contains the results of proprietary research. Reproduction in whole or in partis prohibiled. For reprint information, cal (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

SOS, Delta-4, and DOMAINS Components

like Harness, SOS has contributed technology that supports object migration and has pro-
vided Harness with a toolkit of objects that handle communications and other protocols.

Delta-4. Another distributed systems project, Delta-4, will make major contributions to
Harness in the areas of clock or timing services, security, communications, and fault toler-
ance.

DOMAINS. DOMAINS is an on-going ESPRIT project that will bring Harness important ex-
pertise in the field of managing open distributed systems.

The Harness Architecture: Four Conceptual Layers

Harness Structural
Architecture

Top Layer: Object-
Oriented Environment

How will all this existing technology integrate into a single Harness platform? The basic
Harness model can be described architecturally as consisting of four conceptual layers built
on top of a POSIX-compatible operating system (see Illustration 1).

\\\x\w SR
Applxcanon

0-O Environment

\ OOE Kernel R}
TUSEEEREE IR

[Platform Kernel lntedaoe]

Platform Kemel | Threads Binding RPC
Memory and Storage management

Process management

Hamess Interface Reference

[PosIX inteface |

l Operating System I

[Interworking Interface |

I

Hlustration 1.

The top layer, the object-oriented environment (OOE) provides an interface that supports
object language programs running on the Harness platform. This layer is the major contri-
bution of the COMANDOS project, and, as such, its interface specification is virtually iden-
tical to the COMANDOS VMI, with additions that encapsulate procedural programs and
support wide area networks.

The OOE provides a number of facilities to support object environments, including object
and transaction management as well as the control of distributed computations and
networking.

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, calt (617) 742-5200. 7

The Harness Architecture: Four Conceptual Layers

Second Layer: Platform
Kernel Interface

Third Layer: Harness
Interface Reference

Bottom Layer: Operating
System Interface

Potential for a Fifth
Layer

Harness in Operation

Below the OOE sits the platform kemel interface (PKI), which acts as a generic interface to
the distributed environment, whether that is DCE or ANSAware. Calls to the PKI are made
either from object programs via the OOE or directly, in the case of encapsulated procedural
programs. Procedural programs may also call the PKI in a more elegant manner either by
embedding distributed program calls or by using an interface definition language that is still
being defined. The intended result is to allow a Cobol or other procedural program to inter-
face with the PKI in an object-oriented manner.

Driving the PKI is a specification called the Harness Interface Reference (HIR). This is the
mechanism by which the PKI handles—invisibly to the programmer—interactions between
remote applications. Harness is able to provide access to remote procedure calls and threads
by using HIRs. The HIR will allow Harness to specify both DCE and ANSAware initially,
and will allow for the support of other distributed systems, including, potentially, the dis-
tributed specifications of SAA.

The base, or the lowest level within the Harness specification, is the operating system inter-
face, called OS in the acronym-heavy jargon of Harness. This last layer is based on POSIX
and will make POSIX calls to the operating environment resident on the hardware platform
or platforms in which Harness applications run.

The Harness specification also recognizes the potential need for a fourth interface at the
bottom of the pile--an interworking interface, or IW, that would define standard communi-
cations down to the cable level. The main reason for this specification is to guarantee
against the incompatibility of otherwise similar communications protocols. For systems that
differ in their underlying communications technology, the interworking interface would
provide 2 mechanism for arbitrating these differences and controlling the interaction among
transport protocols. This is qualified as being an option, and will not necessarily be required
of all systems. Harness recognizes that most applications will be able to address all their
communications needs through the upper three levels.

Calling the Environment

Distribution of Tasks
Across the Network

Using this conceptual model as a guideline, the basic operation of the Harness model holds
few mysteries for those familiar with the concept of a layered, distributed computing
system.

In the ideal Harness environment, applications, whether object oriented or procedural, enter
the Harness environment by one of two ways: either exclusively through the OOE, in the
case of pure object programs, or by calling elements of the OOE, PKI, and/or OS directly.
This second method will be used by less-disciplined object programs and procedure lan-
guage programs, the latter by making procedure calls to each of the interfaces, using an in-
terface definition language. Harness’s designers would prefer to see programmers who are
developing object-based programs maintain an orthodox development methodology and re-
strict object programs to dealing exclusively with the OOE. But Harness recognizes that a
less-than-ideal programming world exists, and that many application programmers may
want to control specific systems services in a more direct manner. Therefore, Harness al-
lows all programs to make calls directly to the OOE, PKI, or OS levels. Regardless of how a
call is made, the interface at each level acts as a virtual environment that masks the distri-
bution of lower-level services required by the application.

The distribution of tasks across the network is the responsibility of the PKI. PKI both man-
ages the distribution of applications and provides its own virtual environment, which, in
turn, makes systems calls compliant with specific RPC syntaxes. Those calls then execute
through the operating system interface across the network as one would expect of a dis-

8 Impartant: This report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

Harness in Operation

The HIR Brokers
Object Requests

tributed system, functioning across the network using whatever RPC syntax is available. In
this way, the PKI offers a transparent interface to the writer of distributed applications.

The HIR functions as the invisible traffic cop of the Harness model, ensuring that applica-
tions can call the resources they need anywhere within the distributed environment while
hiding the underlying mechanism from the programmer. Because of the need to mediate the
services of disparate distribution technologies such as those provided by DCE and AN-
SAware, HIR was developed as a separate and unique specification that can traverse the
range of platforms supported by Harness. For the programmer, the HIR is an abstraction. He
or she merely calls a pointer that, in turn, navigates the network in search of the service
provided.

Harness depends on the HIR in particular because the promise of a truly distributed system
requires the ability to move services around a network dynamically, taking advantage of
available resources in what amounts to ad hoc resource allocation. As such, HIR acts as a
relative address mechanism: The programmer calls a service, automatically tagged by Har-
ness with an HIR which allows the PKI to find the service and generate the correct remote
procedure call.

The HIR specification is designed to deal with a considerable amount of exception-handling
in order to track movable servers and to access alternate resources if a given server is un-
available. Therefore, in addition to a relative address, the HIR is also able to specify where
to go if resources are unavailable, and the specification allows for multiple HIRs for redun-
dancy and fault tolerance. Likewise, the HIR specification can provide a single client with
access to multiple servers in the event that a given service is distributed.

. Applications and Services Supported

APPLICATION MODULES. The rich set of specifications in Harness is intended to support three
basic types of applications, each of which can traverse one or more layers of the platform as
it performs its tasks. The first comprises the applications modules (AM), which, as their
name indicates, constitute the object-oriented and procedural applications, mostly end-user
oriented, that live at the top of the Harness three-level model. For example, an application
module might find and access spreadsheet cells or check mail messages for selected senders.

GENERIC SERVICES. Harness also defines what it calls Generic Services (GS), which are ad-
junct applications that act primarily as extensions of or supplements to AM programs like
the spreadsheet cell access service described above. The GS category includes services such
as database access systems, system management programs, X.500 and X.400 services, X
Window, and software tools. These GS applications can be either local or remote to the AM,
and can themselves be distributed from platform to platform.

PLATFORM KERNEL GENERIC SERVICES. Platform Kernel Generic services (PKG), can also re-
side locally or remotely. The archetype PKG is the trader or object broker, which may be a
generic technology like the OMG’s ORB but must nonetheless be tied in closely with the
specifics of one or more of the layers in the Harness model. As such, PKGs are allowed to
have special access to interface routines and internals that would be masked by a GS or AM
program.

The Interaction of AMs, GSs, and PKGs

The basis of the Harness environment is formed by the interaction of AMs, GSs, and PKGs.
A standard interaction model that is essential to their activity defines the interfaces that they
must have in order to work within Harness. The designers of Hamess have spent consider-
able effort refining this specification, which requires that both object and procedural pro-

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report comains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. g

The Interaction of AMs, GSs, and PKGs

Architecture in Operation

Application
Interaction Model

able effort refining this specification, which requires that both object and procedural pro-
grams adhere to it in order to remain compatible with one another. The basic terminology
used to define the interaction model allows for requester and recipient objects, which map
quite well to the client/server world. Asynchronous, synchronous, and deferred synchronous
requests are all supported.

Conceptually, the location of a particular module on the network is largely irrelevant as
long as the interfaces are well-defined and uniform, although, by their nature, PKGs must be
resident on the platform for which they are designed.

From the perspective of the software modules themselves, communications and interopera-
tions simply entail making calls to the appropriate module or modules in a manner conform-
ing to the interface specification, which serves to hide Harness’s multi-layer architecture
from the application.

A practical way of looking at this interaction is to consider Illustration 2. AM 2 is the main
application, while AM 1, GS 1, and GS 2 are local applications whose relative (and specific)
locations are already known to AM 2. The main application also requires the services of
nonlocal applications AM 3 and AM 4, known only by a relative address. PKG 1 is, in this
case, the trader or broker application, local to the platform on which AM 2 resides, that
mediates the network navigation for local applications.

S BED RED RED
= JEN JED JED

Hlustration 2.

The sequence of events that constitutes the execution of AM 2 is shown in the accompany-
ing table. AM 3 and AM 4 make themselves known to PKG 1, the trader, which generates a
pointer, or HIR, for each application. A sequence of requests and replies from the main
application to its local services and its local application is generated. Then AM 2 looks for a
nonlocal application, turning to the trader in order to process the HIR call and interconnect
with AM 3. Following a request from AM 2, AM 3 itself turns to the trader in order to find
AM 4, whose reply cascades through the network back to AM 2. The execution is then
complete.

Practically speaking, any of the programs in the example could be written in a procedural or
an object-oriented language. The interactions, in the form of requests or replies, are hidden
under the veil of interface specifications that, for the procedural language, look like proce-
dure calls, while, for the object language, they look like objects or pseudo-objects.

10

Impartant: This report contains the results of proprietary research. Reproduction in whole or in partis prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

Interaction
Scenario Example

request | AM 310 PKG 1 | registration with “Trader” module

request | AM 410 PKG 1 | registration with “Trader” module

request | AM 5to PKG 1 | registration with “Trader” module

request | AM2toGS 1 request to a known GS module

reply GS1toAM2 result from GS 1

request | AM2t0o AM1 | request to a known application module

request | AM1toGS 1 request to a known GS module

reply GS1twwAMI1 result from GS 1

reply AM 110 AM?2 | Result from AM 1

request | AM 2 to PKG 1 | request name of service provider from “Trader”
reply PKG 110 AM2 | name of AM 3 returned

request | AM2to AM3 | request to the newly known application moduie
request | AM 310 PKG 1 | request name of service provider from “Trader”
reply PKG 1to AM 3 | name of AM 4 returned

request | AM3to AM4 | request to the newly known application module
reply AM 4 to AM3 | result from AM 4

reply AM 310 AM2 | result finally returned to AM 2

Putting Harness to Use

End Users Ultimately
Benefit

System Administrators
Have Full Access

Heaviest Users Will Be
Programmers

Harness anticipates three types of users, each with differing needs and therefore differing
access to the system. Their interaction with Hamess is portrayed in Illustration 3.

End users are the ultimate beneficiaries of Harness, but their access to the system will be
primarily through the use of application modules. Few, if any, underlying services will be
available or even necessary to the majority of end users.

System administrators, who will bear the responsibility for establishing the Harness envi-
ronment, allocating resources, and tuning the system, will have access to the full range of
services. The system administrator will thus be able to manage the configuration and secu-
rity of the system, as well as design new applications that will fall within the scope of GS
and PKG programs.

Although the system administrator has greatest access to Harness, the application program-
mer is envisioned as the primary user of the system. However, the applications program-
mer’s access to services will be controlled through specified interfaces, as befitting a system
that attempts to enforce a level of discipline on applications in order to ensure portability
and interoperability. Therefore, the programmer is required to be familiar with a supported
language and a set of development toolkits, and will have to be aware of the availability of
system resources and their relative addresses. An appropriate user interface technology will
also be part of the programmer’s repertoire. Significantly, knowledge of remote procedure
call specifics will not be required, nor will the differences in operating systems, network
communications, and hardware specifics be part of the programmer’s toolkit.

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200.

Putting Harness to Use

General Scheme
for the use of
Harness

Choice of Programming
Environments

MMI Applleaﬂon Service
Customizad | +— or Tool -— or Tool \
that Manages
| or User by User User Data
User's
Windowl
om"ﬂ Own

Data
The HARNESS Platform

I

User

L

Hlustration 3.

Behind-the-Scenes Services. Most other services will be hidden from applications pro-
grammers, if they so wish, though programmers are free to break the rules. The interface
language that links program modules will function without direct programmer manipulation,
as will the internals of the HIR.

For other services, for example database access, the programmer is required to be expert in
the database system without needing to know the specifics of accessing remote servers; ac-
cess is expected to be encapsulated in the Harness design.

So, while the programmer will be relieved from having to deal with the programmatic
complexity of Harness, a well-designed application will have to be made with the Harness
model very much in mind.

Designers always describe an ideal programming environment for their systems, and good
designers always allow for the fact that programmers often shy away from following even
the best of rules.

Such is the case with Harness, which will specify the use of modified versions of C++. One
such version, called C**, has been developed by Hamess partner Trinity College as part of
the COMANDOS project. The other is EC++, from Harness partner INESC. Both are
cleaned up, extended versions of C++ that are designed to restrict or discipline the C++ user
to following orthodox object-oriented programming practices. Harness designers are particu-
larly concerned with the ability within C++ to violate standard encapsulation practices, as
well as the ability to directly manipulate pointers and other program internals that are out-
side the pale of acceptable object-oriented programming techniques.

In the real world, however, C++ will be used, and Harness’s designers anticipate that ven-
dors will offer C++ compilers complete with the appropriate libraries for accessing Harness
facilities and services. Since Eiffel is used in the COMANDOS project, it will probably be
made available under Harness. Provisions for other object-oriented languages, such as
Smalltalk and Ada, are not included in the Harness specification, though the system is de-
signed in such a way as to allow additional languages as needed.

User Interface Work Remains

One of the unfinished aspects of Harness is in the user interface. The objective is to have an
intermediary user interface system that would specify a set of criteria for user/application
interaction and act as a mediator between the application front end, the (non-Harness) user

12 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

User Interface Work Remains

UIMS Separates
Interface and Logic

interface system, and the Harness platform. The rationale behind such a system, called the
User Interface Management System (UIMS), or Man-Machine Interface (MMI), is to pro-
vide a uniform look-and-feel as well as compatibility with commercial windowing systems
such as X Window, Windows 3.x, Presentation Manager, Motif, and OpenLook, all of
which Hamness expects to support.

The UIMS or MMI stipulates that applications be written so that data manipulation is kept
programmatically separate from the part of the program that performs presentation and in-
teraction functions. Code for this latter functionality would be responsible for interfacing
with the UIMS, providing relatively easy changes in the interaction and presentation without
changing the program internals.

This UIMS specification is recognized by Harness as more of a pipe dream than a reality,
and, assuming that no such UIMS system can be found or developed, Harness has specified
criteria for an applications programming interface that allows for UIMS-like support for the
applications programmer.

Distributed Applications Programming Requires Discipline

Reprogramming Existing
Applications

Redesigning Legacy
Applications

Decisions Have to Be
Made

The wealth of technological support for distributed systems provided by Harness places the
onus on the programmer to take into account a new set of disciplines when programming in
this environment. This means that more will be required of programmers than the simple
mastery of the Harness APIs. Understanding the theoretical workings of distributed systems
will be a necessary first step before well-disciplined programs can be written.

An example is dealing with the possibility of a system failure somewhere in the network.
The potential for adjunct applications and services to be distributed virtually anywhere an
HIR can find them means that programmers have to account for the special cases that arise
when an application requests another application or service on a system that is unavailable.
While the HIR mechanism will attempt to redirect the request to a new or replacement
server, the application must be able to elegantly recover from the very real possibility that
no replacement will be available. This will require error-checking discipline on the part of
the applications programmer, who must provide the appropriate exit routines in the case of a
failure at some node in the system. This may become particularly burdensome for the pro-
grammer who is migrating legacy applications into the Harness system.

On the technical side, programming existing applications to run in Harness requires little
more than programmer discipline and a knowledge of the principles of object programming
and the Harness platform. Harness has made compatibility with existing applications a ma-
jor criterion, and considerable technical detail in the specifications is devoted to this.

On the practical side, making a legacy application run efficiently in a distributed environ-
ment like Harness may require considerable reworking of program internals, particularly
with respect to the architectural separation of a previously monolithic program into a dis-
tributed application. The requirement for error-checking in the case of nonexistent resources
is particularly acute in these older programs.

Of course, there is no requirement to redistribute legacy applications, and indeed the pro-
grammer can merely encapsulate programmatic routines and entry points to be part of a dis-
tributed environment, even if the entire functionality remains local to a single machine.

Although Harness will provide the environment to support existing, legacy applications, the
developer will have to weigh the value of a full-scale migration or rewrite into the Harness
environment. How those decisions will be made is left up to the developer—Harness merely
provides the tools to make it possible.

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in partis prohibited. For reprint information, call (617) 742-5200. 13

Harness Project Plans for 1992

Harness Project Plans for 1992

Bringing ANSA and DCE
Together

Current plans for Harness call for the development of two working prototypes by the end of
1992, one based on ANSAware, the other based on DCE. This appears to be a political
compromise more than a technical one. Although the decision to develop both prototypes
has been made, and interoperability is a cherished goal of the Harness project, there is ad-
mittedly still a lot of work to be done to see if and how the two environments will be made
to work together.

The main problem between the two environments exists at the all-important trader level.
ANSA and DCE specify different traders and different naming conventions, making them,
in the main, incompatible. One of the Hamess partners is looking into supporting the DCE
RPC mechanism under ANSAware, and plans to have the same OOE on both systems makes
compatibility a functional possibility. But the consortium has a long way to go before a so-
lution is available.

Obviously, deployment by the end of the year depends on more than just the integration of
the technology Harness inherited from other ESPRIT projects. OSF’s DCE, which had fallen
behind its original development schedule, needs to be not only fully functional and avail-
able, but also well-known to the development community that would be expected to put its
precepts into practice on a Hamess platform. The implementation of the POSIX standard
into working operating systems is also just beginning, and experience in their use and de-
ployment is limited at this time.

Factors Affecting Harness’s Outcome and Impact

Ambitious Task—
Aggressive Time Frame

Integrating and
Supporting Evolving
Technologies

Harness, while well-thought-out, well-intentioned, and well-designed, suffers from a num-
ber of limitations, some of which are technical, some market-driven, and some political.
None is fatal or even life-threatening, and most are more the result of factors outside the
control of Harness than of some oversight or neglect on the part of the design team. But the
potential problems must be considered within the broader context of the commercial viabil-
ity of Harness.

While Harness is based on years of solid research and development across Europe and the
United States, its ambitious goals belie the monumental task that lies before it. Technology
integration on the scale Hamess is now undertaking is a difficult task, particularly in an
open systems world that, by necessity, must often place compatibility, not technical excel-
lence, at the fore. The track records of the OSF and the OMG may be considered as models
for this type of effort: Delays are more the norm than the exception, and compromise must
be constantly weighed against expediency. While there is every reason to think that Harness
will be able to accomplish its task, the gaps in technology that Harness must fill are not in-
significant, and it may very well follow the usual pattern in open systems development and
experience delays either in technical development or eventual productization.

Also militating against Harness is the fact that much of the technology it wishes to integrate
is not frozen but fluid, and is still undergoing change. COMANDOS and ISA/ANSA are on-
going projects that will not close until the end of the year, and the technology now being
used from these projects within Harness is a snapshot of work taken in 1991. In particular,
the relation between today’s Harness and tomorrow’s COMANDOS, while close, is not
written in stone.

Other specifications outside of ESPRIT and the open systems movement, like IBM’s SAA,
can neither be ignored nor planned for, and yet Harness must account for the SAA world if

14 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

{
i
\
i
o

Factors Affecting Harness’s Outcome and Impact

Immaturity of Object
Standards

Commitment and
Competition

The Open Systems
Paradox

Are Transparent
Distributed Open
Systems Feasible?

Security Issues Pose

. Challenge

it is to fulfill its promise of being both open and accessible to the huge body of proprietary
and legacy (hence, IBM) systems.

Of critical importance is the fact that the entire object-oriented world is still very much in
its infancy. The OMG, after some delay, has an object request broker and is now working on
an object model and other baseline object technologies. And, despite the unprecedented
unanimity within the U.S. computer industry regarding the ORB specification, Harness will
most likely stick to its own and primarily support ANSAware. The object projects now un-
derway jointly between Apple and IBM and between Sun and HP are also potentially signif-
icant sources of important fundamental research and industry standards that will not figure
in the Harness project.

The OSF and OMG examples are also important with regard to eventual product develop-
ment. While member companies such as Cap, Bull, and Siemens Nixdorf have been heavy
participants in Harness and Harness-related development, and while Harness was undertaken
in part to bring the results of pure research into the commercial world, there are no firm
commitments from any participants regarding product plans. Meanwhile, the market churns
ahead outside the Harness world, and the possibility exists that alternatives to Harness may
crop up that could threaten its adoption. At that point, one must question whether any of the
Harness companies would be so Euro-centric in its strategic thinking that it would choose a
distributed applications platform that had little hope of becoming a worldwide standard.

This points to a fundamental flaw in the development of open systems technology that,
while not the fault of Harness, nonetheless may make its future success as a widely-adopted
standard difficult to achieve. Because the program is so broad in scope and was initiated be-
fore many of the efforts that are now contributing technology, the designers have had to
work with early snapshots of technology and code from many different sources as they have
become available. And, while the developers of Harness are moving relatively swiftly to ac-
complish their task, the component technologies of Harness are independently evolving at
the same time.

These facts produce the classic open systems paradox, which weighs heavily on the Harness
project. On the one hand, Harness cannot afford to delay its implementation to include the
newest technology and standards from various corners of the open and not-so open systems
world because doing so would jeopardize vendor support. On the other hand, if it moves
ahead and has product that is deliverable by May 1993 as planned, new technologies or
standards may appear by then that are more attractive than those which Harness has selected
for inclusion.

Even if Harness should make its debut on time and fully formed, the notion of transparently
distributed open systems platforms exists largely in the abstract. While much can be done in
a laboratory setting to simulate the real world, the monumental integration task now under-
way will only be complete when real-world applications are applied to Harness’s theoretical
base. The Harness team is well aware of this fact. To Harness’s credit, several working
systems have been spawned from the ESPRIT program that provide examples of subsets of
Harness’s functionality. One example is a large distributed astrophysical database used in
the United States by NASA and developed using ANSAware. Harness can also draw on the
experience of a distributed banking project called Bank *92 when looking for working ex-
amples of the kinds of systems it is developing. But, as Harness continues towards an ex-
pected working prototype by December, it is unlikely that it will remain immune from the
vagaries endemic to charting new territory.

Finally, there is the issue of security, a problem that troubles not just Harness but every dis-
tributed open systems effort. On a purely technical level, Harness’s specification will pro-
vide the necessary hooks to support a secure system, but no such system will be included in
the working prototypes. Harness will base its security technology on DCE and other offer-

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200. 15

Factors Affecting Harness’s Outcome and Impact

Conclusion

ings but will be dependent on the underlying platform, which, in the case of Unix, implies
that system security may be less than robust. In general, security issues are particularly
problematic for distributed systems, where the physical distribution of resources makes it
virtually impossible to put up a “cordon sanitaire” around the kind of WAN that Harness
envisions serving. To date, the Hamness developers acknowledge that the state of the practice
does not provide for an acceptable security system beyond what Unix and POSIX envision.
Obviously, Harness will in no way restrict security provisions for database and applications
software, but the underlying Harness system will not be as secure as even its designers
would like. This is an issue that is critical to the success of Hamness-like systems, and its
resolution rests well beyond the scope of the Harness project.

Can Harness Attract
Support?

Harness in the
Marketplace

Hamess is good technology, well-designed and worthy of taking its place as a model for
distributed systems. And its operative goal of working from an existing technology base,
even when forced to make hard choices that may seem politically motivated and fixed at a
less-than-ideal point in technological development, is probably the best way to develop open
systems today.

As with any specification that hopes to be a standard one day, the future of Harness will live
and die by the rate at which it is adopted. And its adoption will be very much a measure of
its timeliness in a market that has many competing notions of how such an object-oriented,
open and distributed software platform should look.

Adoption as a standard, however, doesn’t have to be restricted to its member partners and
other, strictly European, open systems vendors. Therein lies a measure of hope for IIarness
as an international, not just European, standard. While ESPRIT has a measure of fortress-
Europe mentality, in that its goals are European technology for European companies, the
EC’s definition of a European company is broad enough to include most major U.S. open
systems vendors. IBM, Digital Equipment, HP, and Sun, among others, are sufficiently Eu-
ropean to partake of the fruits of Harness, should they so desire.

It remains to be seen what will happen once Harness ventures out into the marketplace.
While Hamness has specified an extensive set of conformance criteria for systems based on
the specification—a move that is unusual in the research-oriented ESPRIT world—the one
aspect of an eventual product that Harness can’t and won’t mention is marketing. And yet
marketing is ultimately the point on which the success of the project will turn. ©

Next month’s Unix in the Office will address
The X Window System Today

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

16 Important; This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

Open Systems: Analysis, Issues, & Opinions

FOCUS: MICROSOFT CORPORATION

Microsoft Takes the Offensive in
Open Systems

Open Systems as Defined by Microsoft

The advertisement in the Wall Street Journal and
Business Week was headlined: “If everybody says they
have open systems, how can you tell who really does?”
The ad went on to say, “... we believe an open operating
system sets a consistent standard for everybody,” and
“which gives you and your company freedom of choice
in finding the best way to fulfill your personal
computing needs.” In other words, Microsoft is
committed to open systems as it defines them.

In the Microsoft model, an open system has published
APIs and fosters the development of third-party
applications and enhancements. Microsoft develops
those APIs, getting input from developers in the
process. While this definition of open systems deviates
from most commonly held definitions, in principle, it is
not that different from Sun’s definition. Particularly not
if Microsoft starts licensing source code for NT the way
it licenses source code for LAN Manager. While hard-
liners will scoff, more pragmatic users, particularly
those making significant commitments to Microsoft
applications, are likely to embrace this notion of
proprietary openness.

Windows Open Services Architecture (WOSA)

At a recent industry conference, some light was shed on
Jjust how Microsoft will implement its definition of open
systems in the form of the Windows Open Services
Architecture (WOSA). WOSA addresses the need to
improve the way Windows-based systems tie into larger
corporate computing environments. The architecture is
the culmination of work underway at Microsoft to
address the need to connect Windows-based
workstations to helcrogeneous environments within the
enterprise in a seamless, standard fashion,

The goal of WOSA is to make it easy to connect
Windows with enterprise-wide computing environments

while hiding the complexity from the developer as well
as from the user. Through WOSA, Microsoft wants to
be able to provide an open environment for the
development and use of Windows-based applications
along with access to enterprise information resources.

LAYERED APIs. WOSA is designed to provide a formal
isolation layer between Windows-based applications
and a variety of connectivity services in order to work
with a variety of heterogeneous environments. It will
provide ISVs and corporate developers with an open set
of APIs to write to in order to access a range of back-
end services. An application using these APIs will be
able to interoperatc with multiple ecnvironments
concurrently. A facility Microsoft calls the Service
Provider Interface (SPI), allows a wide range of service
providers to write implementations for their specific
environments. By supporting this interface at the back
end, any Windows application can access the service
without modification.

WOSA SERVICES. The Windows Open Services
Architecture includes services for data access,
messaging, distributed file and print services, systems
management, and host connectivity. Microsoft is
working in conjunction with other leading computer
industry companies to deliver specific customer
solutions under the WOS A umbrella.

EDA/SQL Extends the Reach of ODBC Applications

One of the first announcements of joint development
that addresses WOSA connectivity was made with
Information Builders, Incorporated (IBI). The two
companies will jointly develop a Microsoft Open
Database Connectivity (ODBC) driver for IBI’s
enterprisc data access/structured query language
(EDA/SQL) client/server software. This driver will
allow developers to write applications for Windows and
other platforms using ODBC to access all data sources
available to EDA/SQL, which currently number more
than 50 relational and nonrelational sources, including
data managed by IBM’s Information Warchouse.

The prerelease Software Developer’s Kit for ODBC
currently available will be replaced with a final version
during the first half of 1992. The ODBC driver for

UNIX IN THE OFFICE Vol. 7, No. 3

Impartant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, cal! (617) 742-5200 17

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

EDA/SQL will be available in 1992. It will be provided
by both Microsoft and IBI at no additional charge as a
part of the EDA/Link communications component for
Windows and other platforms.

How Real Is WOSA?

Is WOSA a ploy or a central part of the Microsoft
strategy? Bill Gates claims that WOSA is real today in
the current Windows product, that it already has a
strong set of services, and that it will continue to evolve
for the corporate customer. The IBI announcement is
significant, because even if EDA/SQL doesn’t achieve
broad market acceptance, it provides both proof of
concept and a method for customers to achieve the
functional benefits of open systems, although the
method is not ideologically pure. With WOSA,
Microsoft will be able to capitalize on the discrepancy
between the promise of open systems and the
availability of sufficient standards and products.

A Sun-like strategy with a PC implementation could
give Microsoft just enough credibility with those open
systems proponents who prefer to have something they
can implement in the near term to something that will
lake years of debate to achieve. De facto standards have
a habit of working their way into formal standards, a
fact that is not lost on Microsoft. —M. Goulde

FOCUS: STANDARDS

The AlphaWindow Standard: A
Solution Looking for a Problem?

When the X Window system was developed, it was in
response to a specific challenge facing the MIT Project
Athena. That problem was to provide access from
various workstations to applications running on
heterogeneous systems across a network. Now, the
Display Industry Association (DIA), which was created
in January 1991, has released a specification for
windowing on character-based terminals. The key
questions is, “Does this capability address a real
problem, or is it a way for makers of character terminals
to face competition from X terminals and low-cost
PCs?”

Character Terminals Still Prevail

Character terminals remain the most prevalent deskiop
devices attached to systems of all sizes of Unix systems
for onc simple reason: They are the cheapest devices
available. In fact, 75 percent of today’s Unix softwarc

packages are character based, and 90 percent of Unix
software developers take requirements of character
terminals into consideration when developing software.
Windowing character applications without change to
their source has been possible for some time using
software products that run on standard terminals, but
these put a load on the host. Terminal vendors have also
developed proprietary windowing terminals, but these
have been unsuccessful due to the lack of standards for
software developers.

DIA Addressed the Need for a Specification

The DIA stepped in to fill the void. It compriscs
hardware, software, and communications companies
with an interest in the character terminal market. This
composition reflects the components required,
specifically terminal firmware, window management,
and host-based expansion cards enabling AlphaWindow
terminals to be supported.

The specification provides a standard way for software
to interact with and drive terminal firmware so that a
windowed environment can be delivered while
minimizing the additional load on the host. This
functionality can be exploited by providers of window
manager software, while applications need no
modification. The AlphaWindow emulates a graphical
user interface including typical windowing functions,
decoration, and mouse support.

The specification also allows developers to exploit the
functionality either directly or through a toolkit
interface, allowing applications to exploit a mouse,
push buttons, dialog boxes, etc.

Components of the AlphaWindows Specification

DISPLAY SERVER. The Display Server resides in the
terminal and is responsible for all window-clipping and
per-window finite-state maintenance. Although most
vendors will implement the Display Server in firmware,
there is no reason that it could not be wrilten as a
software function for a programmable terminal.

Window Manager. The AlphaWindow manager would
normally run on the host, although this is nol
mandatory. It is the window manager that determines
the “feel” of the terminal, enabling it to mimic Motif or
OpenLook. There is no reason why the window
manager could not be implementcd on some
intermediate platform, such as an intelligent multiport
display controller.

18 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, calt (617) 742-5200. UNIX IN THE OFFICE Vol. 7, No. 3

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Varying Levels of AlphaWindow Capability

AlphaWindow Terminal Characteristics

An AlphaWindow terminal can support four groups of
function. The first is mandatory, the others optional,
allowing terminal vendors to differentiate their products
in price and features.

GROUP 1. Group 1 represents entry-level functionality,
with support for features such as opening and closing
windows, cutting and pasting between windows,
creating and deleting borders, changing window size,
etc.

GROUP 2. Group 2 defines mouse support, enabling a
local mouse to work with the AlphaWindows terminal.

GROUP 3. Group 3 defines window decoration, such as
borders, scrollbars, icons, and push buttons, and it
enables AlphaWindows to more closely emulate a
graphical interface.

GROUP 4. Group 4 defines the communication protocol
between the host and the AlphaWindow terminal. The
illustration demonstrates the appearance of a Group 3
terminal with the JSB MultiView Mascot’s window
manager.

BELGIUM
ENGLAND

An AlphaWindow terminal has to be designed
specifically to support the specification. It runs a small
piece of code called the display server. While display
servers may differ in appearance, allowing the vendor to
determine the “look,” the window manager running on
the host determines the “feel,” or behavior.

The specification allows vendors to determine the
underlying emulation, the number of sessions
supported, the keyboard layout, and the type of pointing
device provided. A vendor can also offer various screen
sizes, resolutions, fonts, and color support to
differentiate its products.

AlphaWindows and Software Support

The DIA will provide a specification to software
developers enabling them to develop applications to
directly exploit the AlphaWindows terminal. Toolkit
vendors will be encouraged to interface to the standard
through an AlphaWindow interface library.

The specification is built on top of existing terminal
characteristics, which means that applications written
for specific devices, like the VT220 or Wyse 60, will
continue to run on AlphaWindow terminals.

Hlustration. Overlapping windows on a Group 4 compliant AlphaWindow color terminal from Microvitec.

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibi

For reprint information, call (617) 742-5200. 19

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

A Specification Is Not a Standard

The DIA recognizes that its specification is just that—it
is not a standard. It does hope, however, to see its
specification adopted as standard if it can achieve
widespread support among vendors and users.

The specification will only become a standard if it
addresses a need in the marketplace. The list price for a
monochrome AlphaWindow terminal will be in the
$650-t0-$800 range, significantly below that of an X
terminal.

Finding Value in AlphaWindows

However, it is not the hardware savings that are likely
to create interest in AlphaWindows. The ability to
window and run multiple applications concurrently
without modification is likely to appeal to cost-
conscious companies as a stcp along the migration path
to open distributed systems. The investment made in
training users in how to use a windowing system with
their familiar applications will be easy to carry forward
to newly developed GUI applications.

In addition, as users who have been limited to full-
screen character applications become familiar with the
characteristics of a windowed environment, they will
become valuable participants in the process of
designing new GUI applications. The result should be
applications that are better suited to the needs of those
who will be using them. This may be the ultimate
benefit of AlphaWindows to users. —M. Goulde

VENDOR FOCUS: SUN MICROSYSTEMS

these licensees have built client/server applications
using older RPC development tools. The complexity of
writing to varying network interfaces has been one of
the constraints in the development of open, client/server
applications.

TI RPC Implementation History

The earlier RPC implementation used the sockets
interface, but TI RPC uses Transport Layer Interface
(TLI) because it is protocol independent, provides a
well-defined layered model, has better negotiating
primitives, and because TLI is part of SVR4. TI RPC
was designed to shield the developer from having to
know about specific transports, and the new Application
Toolkit further simplifies the development process.

Moving ONC’s RPC to TLI was achieved by re-
implementing the naming and binding interface to the
RPC library in a transport-independent way. The RPC
protocol itself was already transport independent and
required no change. Applications that already use the
RPC library will be compatible with the new TI RPC
without modification. Extensions to the original ONC
RPC are included in the toolkit to handle synchronous
and asynchronous connections, and callback. The
toolkit also includes a debugging mode.

Solaris: Foundation for New Technology

SunSoft Releases Tools for
Transport Independent RPC

Sun’s software subsidiary, SunSoft, has announced the
availability of the ONC RPC Application Toolkit for
developers to use in building distributed applications for
Sun’s Open Network Computing (ONC) distributed
computing environment. (See sidebar for a description
of ONC.) The toolkit will provide developers with a
higher-level access to the Transport Independent RPC
(TTRPC) and give them the ability to more easily create
applications that can access multiple network transports,
including TCP/IP, OSI, and even NetWare’s IPX/SPX.

The toolkit is based on the ONC TI RPC and includes
thec ONC Edition RPC Tool from NetWise. There are
nearly 1.8 million ONC licenses, but relatively few of

SunSoft is using the migration to Solaris 2.0 as an
opportunity to upgrade many components of ONC. The
full set of ONC services will be included as a part of
Solaris 2.0 on both the SPARC and the Intel platform.
In addition, ONC source is available for licensing by
other vendors and will be implemented on a variety of
non-Solaris platforms.

SunSoft will continue to provide the older RPCgen
facilities as long as customers are interested, but the
superiority of the new toolkit will likely reduce
RPCgen’s importance.

Toolkit Components

The RPC Application Toolkit includes a source code
generator based upon NetWise’s RPC Tool technology,
and the Transport Independent RPC (TI RPC)
technology developed by AT&T and Sun for Systecm
V.4. The RPC Toolkit generates C code automatically,
which handles client/server communications. It also
provides for compiling and testing on the target system.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call {617) 742-5200.

UNIX IN THE OFFICE Vol. 7,No. 3

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

ONC Services in Solaris 2.0

~The TI RPC toolkit will provide sorely needed

assistance to developers building distributed application
services using ONC services. ONC includes many
components, several of which have become de facto
standards in the industry. These components include:

Remote Procedure Call (RPC).RPC is a set of operating
system-independent operations for executing procedures
on remote systems over a network. It provides a logical
client/server communications structure that handles low
level interprocess communication details transparently.

eXternal Data Representation (XDR). XDR is an
architecture-independent method of representing data,
resolving differences in'data byte ordering and data type
size, representation, and alignment. Applications that
use XDR may exchange data across heterogeneous
hardware systems without having to explicitly make
data transformations.

Network File System (NFS). NFS is a distributed file
system that provides transparent access to remote file
systems on a network. It ensures that files that have
been made available to the network appear local to a
user's machine, Enhancements to NFS have been made
in Solaris 2.0 to improve security by using Kerberos
authentication and to improve performance through
multithreading support.

Network Information Service Plus (NIS+). NIS+ was
introduced with Solaris 2.0. It works with ONC and is a
hierarchical enterprise naming service for the
management of dynamically changing network
environments. It stores system information such as host
names, network addresses, and user names. It provides a
central point for logging changes to the network, such
as adding, removing, or relocating resources. NIS+ is
compatible with the existing NIS, which was formerly
known as Yellow Pages (YP).

Lock Manager (LM). LM supports file- and record-
locking across the network, allowing users and
applications to coordinate and control concurrent access
to information.

Remote Execution Service (REX). REX is used to
execute user commands or programs on remote systems.

NETdisk. Diskless workstations can boot across a
network from servers that support the ONC/NETdisk
protocols.

Automounter. Automatically mounting and unmounting
remote directories. on an as-needed basis is a service
provided by Automounter. This capability provides both
increased transparency and increased availability of
NFS file systems. Automounter supports replication of
frequently read and infrequently written files, such as
system binaries, by allowing the remote mount points to
be specified as a set of servers rather than a single
server. This places a copy of the file on each server for

read purposes.

PC NFS Daemon. The PC NFS Daemon is a small
program that runs on an ONC server, off-loading the
burden from DOS PCs of having to handle
authentication and print-spooling services.

TLI. While not a part of ONC, Transport Layer Interface
(TLI) provides a communications layer that makes the
RPC protocol independent, allowing RPC programs to
run across multiple network transports. The enhanced
RPC written to the TLI is known as Transport
Independent RPC (TIRPC).

UNIX IN THE OFFICE Vol. 7, No. 3

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint inf

ion, call {617) 742-5200. 21

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

TI RPC in Operation

It is important not to confuse TI RPC with SunSoft’s
Tooltalk. TI RPC is a network facility that runs a
procedure on another system and returns a result to the
calling application. Tooltalk operates at another level of
abstraction. It allows applications to connect with other
applications and exchange data interactively without
previous knowledge of one another. Tooltalk, therefore,
supports interapplication communications that are more
ad hoc and conversational than an RPC.

Functioning at an even higher level of abstraction is the
Distributed Object Management Facility (DOMF) that
Sun is working on with Hewlett-Packard. The TI RPC
operates at an underlying level, providing basic services
required by the DOMF, but a programmer using DOMF
would never have to use TI RPC directly.

Toolkit and Source Licenses Immediately Available

SunSoft announced immediate availability of the toolkit
on Solaris 1.0 It will be available with Solaris 2.0, and

applications developed under Solaris 1.0 will be source
compatible with the 2.0 implementation. Source
licenses are available, and it is anticipated that many
ONC licensees will make the toolkit available on their
platforms.

Third parties, including Novell, Banyan, Borland,
Lotus, Oracle, Sybase, and Informix endorsed the ONC
RPC Application Toolkit for developing distributed
applications.

Tools like the Application Toolkit are designed to help
ensconce the ONC RPC in the installed base as the
dominant client/server mechanism before OSF’s DCE
can take hold. Although the NCS RPC included as a
part of the DCE has been available from HP/Apollo,
Digital, and other licensees for some time, its real
impact won’t be felt until DCE is widely installed and
used. —M. Goulde

SPECIAL RESEARCH REPORTS

From Patricia Seybold’s Office Computing Group

e Object Orientation 1991: Toward Commercial Reality $495
e Lotus Notes: A Platform for Group Information Management Applications $295
¢ Text Management: An Office User’s Introduction $395
o Systems Integrators: A Market Survey $349
e AKinder, Gentler Unix: Graphical Interface Strategies and Implementations $495
o Unix OLTP: Architectures, Vendor Strategies, and Issues $395
o Novell’s NetWare: Strategy, Architectures, and Products for the *90s $495
e Sun vs. OSF in Distributed Computing: Architectures, Products, and Issues $395
o Enterprise Network and System Management: Architectures, Strategies, and Issues $495
.

Applications Development Tools

For more information:

Call (800) 826-2424 or (617) 742-5200

Unix Relational Database Management: Vendor Strategies, DBMSs, &

$595

2

Important; This report contains the results of proprietary research. Reproduction in whole or in partis prohibiteg. For reprint information, call (617) 742-5200.

UNIX IN THE OFFICE Vol. 7, No. 3

Fax 617 7421028 ()

q The Fourth Annual

®.4 Executive UniForum Symposium
v Migrating to Infegrated Open Systems: Tools, Tactics, and Tradeoffs

May 5 -7, 1992

Four Seasons Biltmore Resort Hotel Santa Barbara, California
Registration Fee: $1095
Sponsored by

Patricia Seybold’s Office Computing Group, UniForum, X/Open

The 1992 Executive UniForum will go beyond basic concepts and abstract issues. It will zero in on the
issues and challenges of actually building and delivering business applications that leverage the best that
open systems have to offer. Executive UniForum is designed to meet the needs of decision makers and
managers responsible for developing and implementing information technology strategies for their
organizations.

Updated Conference Agenda

Day 1 Morning General Sessions AAA Day 2 Morning General Sessions AAA
Business Cases and Investment Planning Issues Deployment and Migration Planning Issues
. The Business Case for Open Systems Managing Distributed Open Systems
Matching Information Technology to Business Strategy Next Generation Operating Systems
ng.tom:rs' Experience with Open Systems: Do They Cutting Through the Noise: How | Bought an Open System
eliver?

A Afternoon Breakout Sessions

Track I Building Solutions
Open Systems Foundations for Workgroup Applications
Frameworks for Building Client/Server Solutions

Planning an Enterprise Open Systems Architecture
A Afternoon Breakout Sessions
Track I: Building Solutions

Aternatives fo Enterprise Development X/0pen Workshop: Building XPG3- and XPG4- Compliant
How Vendors Implement OLTP Applications on Applicafions
LOdWUS RDBMSIS ' oL ol A Afternoon Breakout Sessions
ow Users are Implementing plications on . .
Today's RDBMSs Track ll: Management & Planning

Managing Open Systems Development Projects
Managing Applications Development for Portability
Planning Security for Distributed Open Systems

User Requirements for Open Systems Day 3 Morning General Sessions AAA

Prolog: X /Open “Xtra ‘91 - The Bottom Ling” Looking Ahead

Open Systems ROBMS Development Object-Oriented Development: Ready for Prime Time?
‘ Standards in Computing: Where Are They Going?

A Afternoon Breakout Sessions
Track Il: Management & Planning
The New EIS—Employee Information Systems

Information Access: Any Place, Any Time, Any Way

For More Information: Fax (617) 742-1028 Call (617) 742-5200 or (800) 826-2424

Patricia Seybold’s Computer Industry Reports

ORDER FORM

Please start my subscription to:

Patricia Seybold’ s Unix in the Office
Patricia Seybold’s Network Monitor

0
U
0

U] Network Monitor
(] Unix in the Office

Please send me
a sample of:

Please send me information on:

[] Patricia Seybold’ s Office Computing Report

12 issues per year
12 issues per year
12 issues per year

L] Office Computing Report
("] Paradigm Shift—Patricia Seybold' s Guide to the Information Revolution

(J Consulting

Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution 6 issues & tapes per year
(] Paradigm Shifi—Patricia Seybold’s Guide to the Information Revolution 6 issues per year

U.S.A. Canada Foreign

$385 $397 $409
$495 $507 $519
$495 $507 $519
$395 $407 $419
$295 $307 $319

(] Special Reports [] Conferences

[] Please charge my subscription to:

Mastercard/Visa/American Express

] My check for $ is enclosed. [] Please bill me.

Name: Title: (circle one)
Company Name: Dept.: Card #:
Address: Exp. Date:
City, State, Zip code, Country: Signature:

Fax No.: Bus. Tel. No.:

Checks from Canada and elsewhere outside the United States should be made payable in U.S. dollars. You may transfer funds directly to our bank: Shawmut Bank of Boston,
State Street Branch, Boston, MA 02109, into the account of Patricia Seybold’s Office Computing Group, account number 20-093-118-6. Please be sure to identify the name of
the subscriber and nature of the order if funds are transferred bank-to-bank.

Send to: Patricia Seybold’s Office Computing Group: 148 State Street, Boston MA 02109; FAX: 1-617-742-1028; MCI Mail: PSOCG
To order by phone: call (617) 742-5200

IU-392

Topics covered in Patricia Seybold’s Computer Industry Reports in 1991 & 1992:
Back Issues are available, call (617) 742-5200 for more information.

Office Computing Report I

1991—Volume 14

Date Title
4 Apr. Xerox DocuTeam—A Compelling

Reason to Take a New Look at Xerox
5 May The Battle for LAN-Based
E-Mail—Lotus, Microsoft, and
WordPerfect Go Head to Head
IBM 0S/2 2.0—The Quest for the
Desk
End-User Information Systems—An
EIS for the Rest of Us
The Windows Office—Evaluating
Microsoft Windows as the De Facto
Desktop Office Environment
Unraveling the NewWave Confu-
sion—Differentiating the NewWave
Environment from the NewWave Of-
fice from Microsoft Windows
Positioning Windows Word Proces-
sors—Looking Beyond a Set of Fea-
tures
Keyfile—Bringing Imaging and
Workflow to the Desktop
IBM/Lotus Relationship—Building
a Platform for Communicating
Applications

1992—Volume 15
The Groupware Phenomenon—Does
It Focus on the Proper Issues?
Digital’s TeamLinks-—A Renewed
Focus on the Client Desktop

6 June
7 July

8 Aug.

9 Sept.

10 Oct.

11 Nov.

12 Dec.

1 Jan.

2 Feb.

Date

4 Apr.
5 May
6 June
7 July

8 Aug.

9 Sept.
10 Oct.
11 Nov.

12 Dec.

1 Jan.

2 Feb.

UNIX in the Office
1991—Volume 6
Title

Open CASE—Toward an Open Sys-
tems Infrastructure

Clarity’s Rapport—The Designing
of an Integrating Application
Uniface—Developing Database-
Independent Applications

Can Digital Become an Open Soft-
ware Company?

Interbase Software—Extending the
Relational Model to Handle Complex
Data

Uniplex’s New Vision—A Prag-
matic Approach to the Open Office
OSF’s ANDF—The Key to
Shrinkwrapped Software?

The SQL Standard—Can It Take Us
Where We Want to Go?
Positioning Desktop Options—
How Does Unix Fit in the Client
Environment?

1992—Volume 7
Downsizing with Open Systems—
Can Unix Symmetric Multiprocess-
ing Systems Meet MIS Require-
ments?
System V.4 and OSF/1—Matching
up in the Marketplace

Network Monitor I .

Date
4 Apr.

5 May
6 June

7 July

8 Aug.

9 Sept.

10 Oct.

11 Nov.

12 Dec.

2 Feb.

1991—Volume 6
Title
SunOpen Network Computing—Re-
sponding to the Challenge
PeerLogic PIPES Platform—
Building Distributed Applications
Ellipse—LAN-Based OLTP Plat-
form
IBM/Distributed Systems—Big
Blue’s Emerging Client/Server Ar-
chitecture
Name Services—Converging on a
Two-Tier Model
Common Object Request Broker—
OMG’s New Standard for Distrib-
uted Object Management
OSF DME: The Final Selections—
OSF Chooses an Object-Oriented
Management Platform
ANSA—A Model for Distributed
Computing
PowerBuilder—Graphical, Client/
Server Database Applications Tool

1992—Volume 7

. Securing the Distributed Environ-

ment—A Question of Trust
HyperDesk DOMS—A Dynamic
Distributed Object Management and
Applications Development System

”~
& 3 Printed on recycled paper.

