Patricia Seybold
Group

Editor-in-Chief
Michael A. Goulde

INSIDE

OPEN
INFORMATION

Guide to Unix and Other Open Systems

Vol. 7, No. 7 « ISSN: 1058-4161 * July 1992

EDITORIAL
Page 2

Changing of the guard.
The announcement of
John Young’sretirement
from Hewlett-Packard
was anticipated and
happened in a low key
Jashion. That same day,
the announcement that
Ken Olsen was retiring
from Digital hit like an
atomic bomb. What do
these changes at two of
the largest system ven-
dors portend?

ANALYSIS
Page 26

Neuron Data has begun
shipping Release 2.0 of
Open Interface. It keeps
pace with the evolution
of the GUIs it supports
and strengthens its ap-
peal to developers who
want simplicity and
choice at the same time.

Integrating Applications
in the Real World

Evolution, Not Revolution

By Stanley H. Dolberg

IN BRIEF: Businesses are challenged with selecting next generation
architectures and technologies with which they will build tomorrow’s
distributed applications. Their success or failure in meeting this
challenge may determine the competitive fate of the organization.
While frameworks, standards, technologies, and products are emerg-
ing that will support the development of true open information
systems, the risks of early adoption are holding many cautious buyers
atbay. Understanding the state of the art and the options available will
help move many users from a wait-and-see mode to getting pilot
projects off the ground.

Report begins on page 3.

© 1992 by Patricia Seybold Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.
Reproduction in whole or in part is prohibited without express written permission.

EDITORIAL: BY MICHAEL A GOULDE

Changing of the Guard

New Leadership at HP and Digital

The processes were as different as the cul-
wures of the two companies. On July 16,
Hewlett-Packard announced in a press re-
lease that, on October 31, 1992, John
Young, age 60, would be succeeded as
president and CEO by Lew Platt, an HP ex-
ecutive vice president and head of the
Computer Systems Organization. On the
same day, the word got to newspaper re-
porters that Kenneth Olsen had resigned as
CEO of Digital Equipment Corporation ef-
fective October 1 and that the company’s
founder would be replaced by Robert
Palmer, head of manufacturing and the
manager responsible for the Alpha project.
Word of Olsen’s resignation had reached the
outside world after having spread across
Digital’s corporate network. Digital em-
ployees were visibly upset, and it seemed
that the entire company was frozen in its
tracks.

The challenges faced by Platt and
Palmer are as different as the circumstances
surrounding their rises to power. Plau
merely has to stay the course and make sure
that his charges continue to execute a plan
that has been in place for number of years.
Palmer, on the other hand, will have to
scramble to find a plan to rescue Digital
from turmoil and confusion. He has to re-
duce costs without eviscerating Digital’s
product development, support, or selling
functions. He has to find a better way to ra-
tionalize a product line built on four proces-
sor architectures, a half-dozen operating
systems, and a Byzantine array of software
applications.

Palmer is in a much better position than
Platt to leave his mark on the company. He
can make radical changes in organization,
products, and directions, and those changes
would be accepted as appropriate actions by
a new leader. Under Palmer’s leadership,
we expect Digital to place more focus on
Alpha as the strategic platform for Digital’s

customers and to encourage them to move
from the VAX at an accelerated pace. We
also expect Digital to emphasize Intel-based
machines that aren’t PCs. At the risk of an-
gering some customers, MIPS hardware will
probably be dropped as soon as Alpha sys-
tems can be delivered as replacements. The
balancing act between Ultrix and OSF/1
will probably end with OSF/1 emerging as
Digital’s single Unix offering. Taking a
page out of HP’s playbook, Palmer might
even create two separate but equal hardware
lines, one supporting OpenVMS and the
other supporting Unix.

Why should he take these actions? First
of all, Digital needs to streamline its prod-
uct line, partly for the sake of its customers,
but mostly for the sake of a sales force that
is too often criticized for not knowing the
company’s products well enough. Complex
products are hard to sell. Products that don’t
comprise a rational strategy are impossible
to sell. Second, Palmer should eliminate
dead-end products because he can. Olsen
couldn’t disown his children, but Palmer
has no such ties.

Platt is a manager in the mold of John
Young. While Young was at the controls of
HP, he guided the company along with an
almost invisible hand. Many people didn’t
even recognize him at the announcement of
HP NewWave in 1987, Platt is also likely to
use a light touch.

Olsen, however, ruled with a heavy
hand. His spontaneous appearances in the
development labs came to be dreaded inter-
ruptions. Palmer is known for quick action.
Olsen took forever to make decisions.

We will barely notice the change at HP
when Platt takes over, but the changes
forthcoming at Digital will be explosive.
Sometimes things have to get worse before
they can get better. ©

OPEN
INFORMATION
SYSTEMS

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITHR. DAVIS
ROSEMARY B. FOY
DAVID S. MARSHAK
RONNIT. MARSHAK
JOHN R. RYMER
ANDREW D. WOLFE, JR.

News Editor
DAVID S. MARSHAK

Art Director
LAURINDA P. O’CONNOR

Sales Director
PHYLLIS GIULLIANO

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONALD K. BAILLARGEON

Patricia Seybold Group
148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200
Fax: (617) 742-1028

MCI: PSOCG

Internet: psocg@mcimail.com
TELEX: 6503122583

Open Information Systems (ISSN
0890-4685) is published monthly for
$495 (US), $507 (Canada), and $519
(Foreign) per year by Patricia
Seybold's Office Computing Group,
148 State Street, 7th Floor, Boston,
MA 02109. Second-class postage
permit at Boston, MA and additional
mailing offices.

POSTMASTER: Send address
changes to Open Information System,
148 State Street, 7th Floor, Boston,
MA 02109.

2 Important: This report contains the results of proprietary research. Reproduction in whole or in partis prohibited. For reprints, cail (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7

‘ FEATURED REPORT: BY STANLEY H DOLBERG

Integrating Applications
in the Real World:

Evolution, Not Revolution

The Real-World IT Architecture Problem

The Challenges Faced by
Users

Rapid Technology Cycles
Detour Integration

The Lure of Open
Distributed Computing

In the real world of commercial information systems, four broad challenges test the
ingenuity of users:

« Defining the business requirements that information technology must serve into the
future

« Designing the next-generation architecture and applications to meet those business
requirements

» Selecting information technologies with which to build that next generation of
applications

< Fitting existing applications and technologies into that next-generation architecture

Success or failure in meeting these challenges can determine the competitive fate of an
organization or business. The high stakes involved have pushed some users into aggressive
technology plays, while others hedge.

Dramatic cycles of technological innovation in hardware, communications, and software
engineering in the computer industry have led futurists to describe an era of infinite,
inexpensive MIPS, natural person/machine interactions, and unlimited access to data and
applications. In these futuristic scenarios, technology enables a seamless relationship
between computers and people, work and play, hardware and software, telecommunications
and entertainment. But, in the near term, rapid technology cycles actually slow the
availability of functionally integrated applications. Short horizons of technology
obsolescence discourage users from building integrated environments because it is safer to
wait for the dust to settle. A difficult dilemma stares users down: whether to wait for the
better future, or to commit to building badly needed applications now.

At one time, all the computer memory in the world measured less than 64KB, and all the
computer software in the world ran in that physical address space. From this lean legacy, the
commercial computer industry developed around the inflexible, centralized, off-line
mainframe which ran under the one program, one user model. One program, one user soon
evolved to many programs, many users in the breakthrough era of the online interactive
minicomputer.

One problem with minicomputers was that all those application programs had unique user
interfaces, file formats, and data structures. Computers from different vendors could not
share applications, applications running on the same computer could not share data, users
could not easily access host applications or data on other systems, and the per-seat
economics of time-sharing systems almost guaranteed compromised performance. The age
of personal computing dawned and gave rise to individual prerogative. The tension between

OPEN INFORMATION SYSTEMS Vol. 7,No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part s prohibited. For reprints, call (617) 742-5200. 3

The Real-World IT Architecture Problem

The Good News / Bad
News of New Models

Complexity, Uncertainty,
and a Dearth of Tools

Strategic Plans Collide
with Tactical Realities

The Bottom Line: Users
Want to Integrate
Existing Applications into
the Distributed Model

personal computing and integrated computing spawned the current vision of open
distributed computing, in which users exercise freedom of choice in determining the
personal application environment but still have access 10 applications and data in an open
systems framework.

The confluence of new ideas and technologies for enabling heterogeneous distributed
computing has galvanized user expectations that hardware, operating systems, networks,
database management systems, development tools, and user interfaces should be selectable,
and that designing and implementing an open, flexible, but integrated application
environment should be reasonably easy.

Low-cost computing platforms and flexible computing models have attracted users to open
systems. Promising new paradigms like object orientation and industry-consensus
distributed computing technologies have provided powerful incentives for users daring to try
to overcome uncertainty and pursue the apparent economic and functional benefits of open
distributed computing, often on an enterprise scale.

The good news is that agreement has been reached on fundamental object-oriented
distributed computing components within the Object Management Group (OMG), and
industry consensus has been declared on Distributed Computing Environment (DCE) and
Distributed Management Environment (DME) from the Open Software Foundation (OSF).
Additional good news is that these models will facilitate the development and deployment
of open distributed applications. The bad news is that, to really play in this world, new
applications have to be developed or existing applications have to be fundamentally rebuilt.

General agreement on the benefits of distributed computing contrasts sharply with the
confusing voices instructing users on how to design and implement distributed systems.
Some of the underlying technologies necessary to develop and deploy distributed systems
have been available. However, the task of building, managing, and maintaining distributed
systems has been too complex to undertake under real-world financial constraints. Uncertain
progress in the standardization process for enabling technologies and the lack of
development tools has narrowed the group of users interested in distributed computing to
risk-taking early adopters. And for the early adopters, what comes next? Early adopters of
distributed computing will be likely to develop symbiotic relationships with vendors, acting
as an outboard product development/quality assurance function. The early adopters will feed
the sorely needed real-world requirements into the Release 2.0 and 3.0 tools that will
broaden the market and entice the next wave of more risk-averse application builders to
work in the distributed model.

In the real world, where users and applications meet to do useful work, the seamless future
looks attractive. Unfortunately, it’s not entirely clear how to get there from here. While
vendors relentlessly cycle hardware and software offerings paced to technology evolution,
users cycle application software paced to the needs of the organization. Most users have
“legacy” systems and applications chugging alongside advanced client/server development
projects, illustrating this asynchronous response to rapid technology change. Many users
have struggled to develop a strategic information architecture and plan, but few have the
means at hand to integrate existing applications and systems into that strategic plan.

Application developers working in the distributed model are often asked to integrate
existing applications with new paradigms and technologies in order to leverage the value of
extensive investments in data and skills, or at least to take a comfortable first step into the
unknown. Including existing applications and data sources in an evolving information
architecture can constrain the pace and the manner of implementation of new technologies
and paradigms. As users grapple with these challenges, the flow of new technologies
continues. The economic friction point at which users should integrate existing applications
1S a moving target.

Important: This report contains the results of proprietary research. Reproduction in whole o in partis prohibited. For reprints, call (617 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 7

Interoperability and Application Integration

Users Take Control In the late 1980s, the computer industry user community substantially wrested control from
the vendors. This shift in power derived from a broad set of causes, among them user
demands for standards compliance, open systems, and effective means to rationalize and
integrate the systems already in place.

Standards Enable Users now understand that standards are the building blocks of interoperability. The ability
Interoperability; to interoperate is a necessary but insufficient basis for distributed computing. Standards are
Interoperability Enables the building blocks of interoperability, and interoperability, tools, and distributed computing
Integration infrastructures are the building blocks of modern integrated applications.

The drive from users for standardization of system platforms in every dimension, from the
OS interface (POSIX) to data access language (ANSI/ISO SQL) to network and system
management (OSI, DME), has pushed vendors into providing support for a common body of
third-party application software that can be flexibly designed into integrated enterprise
information systems.

Levels and Dimensions of Application Integration

The hierarchy of application integration consists of four levels, shown in Illustration 1,
extending from base-level consolidation on the desktop to the ideal of dynamic, event-
driven, peer-level application relationships in the network.

App|icati0n Level
I n teg ratl O n 4 Dynamic Peer-Level Integration
HlerarChy 3 Configurable Integration
2 Fixed Static Integration
! Consolidation

Hllustration 1. A hierarchy of application integration beginning with the simplest form,
consolidation, and evolving to full peer-to-peer integration.

Consolidation. Consolidation describes the collection of applications “under one roof” for
the user, but does not imply functional integration between the applications.

Fixed Static Integration. Fixed static integration describes the minicomputer integrated
office systems (IOS) systems, the current generation of PC-based office suites, or the
custom integration of multiple applications for a vertical market. Relationships between
applications are tightly prescribed and difficult to modify.

Configurable Integration. Configurable integration means that the linkages between the
applications can be reconfigured through developer intervention. Configurable integration
includes the ability to integrate additional applications as needs change or as application
functionality must be extended.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 5

Levels and Dimensions of Application Integration

Dynamic Peer-Level Integration. Dynamic peer-level integration is the ultimate goal. To
achieve this, the applications and the relationships between them must be defined with a
highly generalized model, such as object orientation. At this level, intelligent transactions
occur in the network between applications, transparent to the user, delivering data or
services to the user desktop. The relationships between applications are completely event
driven, offering the ability to enhance the functionality to the desktop without changes to
user application code, yet offering the user the experience of a tightly-woven integrated
application environment.

Dimensi_ons of The level of integration that is achieved depends on how the dimensions of integration,
Integration shown in Illustration 2, are managed.

Dimensions of
Integration P

Entity Mix

AN

uoilesfiaw| diweukq \

Desktop Integration

Application Integration

SCOPE Data Integration

uonelbalul aels

Tools Integration

Network Integration

W
S
«*

Platform Integration

Illustration 2. Integration has three dimensions encompassing scope, entity mix, and entity
relationships. The degree of integration achieved depends on how well these three
dimensions are managed.

The Dialectic of Integration: Integration, Dis-Integration, Synthesis

Users Seek Virtual As personal and corporate computing environments have become increasingly complex, the
Integration: Tightly need to simplify the user view of information systems has grown dramatically. The goals of
Wired Functions, No integration have circled this issue with mission statements such as “offering consistent
Strings Attached operating methodologies,” “increasing ease-of-use,” “improving accessibility of resources,”

and “simplifying presentation to the user.” But integration has generally implied a rigid
fastening of component parts in a proprictary fashion—not an attractive proposition in the
current climate. Ultimately, users will seek the functional equivalent of tightly wired
proprietary integration, but with no strings attached. This motivation drives the dialectic of
integration toward synthesis of applications for the user. Unfortunately, the process of -
achieving application synthesis passes through a painful state of application dis-integration,
which is where we are today.

Operating Systems Meeting the goals for application synthesis will depend substantially on the breadth and
Become Software depth of vendor system offerings as they evolve from tuned proprietary environments to
Integration Platforms: more loosely integrated platforms of hardware and software from many sources. Bundled
Enableware system software has grown from an operating system into an increasingly functional

software integration platform.

Software integration platforms generally include operating system, network transports,
database management, base development tools, system management tools, distributed file

6 {mportant: This regort contains the results of proprietary research. Reproduction in whole or in part is pronibited. For reprints, cail (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

. The Dialectic of Integration: Integration, Dis-Integration, Synthesis

systems, and graphical user interface support. The growth from system software to
“enableware” implies explicit support for standard technology components of distributed
systems such as distributed file systems, TCP/IP networking, Motif and/or OpenLook
graphical user interface presentation, and future support for comprehensive frameworks
such as DCE, DME, and distributed object management systems.

The Evolving Concept of Integration

The Integrated Office
System: A Brief History
of Static Integration

Vertical Integration

Personal Computers and
the Era of Dis-Integration

Integrating the computing environment surfaced as an issue with the advent of interactive,
multiprogramming minicomputers. Users could run as many programs locally as they could
master from the command line, such as word processors, electronic mail, and data extract
programs customized for proprietary file management systems and databases. Users could
even, with considerable effort, run programs or access data on remote systems. The pieces
were all there, but there was no integration in the user application environment.

From this minicomputer cauldron came the first generation of I0Ss, such as Data General’s
CEO and Digital Equipment Corporation’s All-In-1. Minicomputer-based 10Ss brought
several previously unrelated command-line-driven, character-oriented office applications
together behind a multilevel menu system, all based on a common host-based filing system.
Just as character-based applications can be masked behind a graphical encapsulator, these
first-generation, horizontal, integrated applications masked the command line with
relatively intuitive character-based menu systems. However, the underlying applications
were unrelated, were written in low-level languages, and did not conform to standard text or
document formats. But, pulled together with copious amounts of low-level glue code and
operating under a common user interface, IOSs defined the benchmark for integration. The
user working environment took on sharp, though ultimately limited, definition. Freed from
the arcane command line, the average user could create or edit documents, develop
spreadsheet models, or send messages or files using electronic mail.

Paralleling the advent of integrated horizontal software, the early “best of breed” vertical
applications such as general ledger and hospital patient records systems took to the
integration road. By integrating other financial-oriented or hospital-record-oriented
applications into suites of applications, vendors began to address the user problem
associated with incompatible applications running on incompatible computers storing
redundant data in incompatible formats about a common set of accounts or group of
patients.

When personal computer software began to offer faster, better-featured applications than the
10Ss, the era of dis-integration began. Vendors attempted to redevelop I0Ss to operate as
the integration mechanism for all the applications in enterprise. But the static relationships
among application entities in the IOS were an inherent weakness that kept these systems
from adapting to the personal computing phenomenon. After generally unsuccessful
attempts to compete head-on with best-of-breed PC applications, I0Ss incorporated the PC
within the IOS environment through a programmatic precursor of client/server computing.

IOSs evolved to accept personal computer-generated documents, spreadsheets, and data
through proprietary integration efforts with the leading personal computer software
packages such as Lotus 1-2-3, WordPerfect, and dBase, ultimately leading to back-end
servers that provided generalized filing, mailing, printing, and networking services to
personal computer clients.

Aster*x from Applix persists in this vein. Aster*x offers a Unix-based, office-oriented,
compound document framework with which users can integrate applications using a
proprietary scripting language called Extensible Language Facility (ELF). Integration with

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report contains the resuts of proprietary research. Reproduction in whole or in part is pronibited. For reprints, call (617) 742-5200 7

The Evolving Concept of Integration

Networked Personal
Computers: Beginning
the Long Road Back

personal computer applications is provided by filters that provide bidirectional translation
services between Aster*x and de facto PC software formats.

The local area network (LAN) industry proposed a different framework for integration based
on the personal computer as the application engine. Novell, 3Com, and Banyan offer models
that base the user’s working environment on user-selected personal computer-based
applications, while offering centralized services for file storage, backup, printing, electronic

mail, and wide-area communications gateways. These models constitute the first generation
of PC-based distributed systems.

PC LAN network operating systems (NOSs) integrated the organization in fundamental
ways, but their infrastructure has not provided adequate access to business applications.
Other than supporting terminal emulation, NOSs by themselves offer little in the way of
integrating user environments into the core business information systems. LAN users also
confront problems with integrating diverse applications on the desktop and among
incompatible desktops. Individual PC software vendors addressed the issue with the
equivalent of PC-based I0Ss. Starting with the Macintosh clipboard and extending to the
Object Linking and Embedding (OLE) model from Microsoft, personal computing
environments have steadily evolved toward more flexible user-directed desktop application
synthesis.

Integrating Applications the Old-Fashioned Way: Working with Core Technologies

Locking into Component
Technology

Hand-Coding with Low-
level Tools

Working with Higher-
Level APIs Is the Better
Way

Table 1 lists and describes many of the core integration-enabling technologies that offer
pieces of base capability required to build an integrated, networked system of heterogeneous
applications under a graphical user interface. Unfortunately, attempting to build a complex
integrated environment with these basic technologies presents some complex problems.
Each technology requires programming in a different low-level language or primitive
interface. Hand-coded “glue” programs are required at every point where two or more
applications need to interoperate. And, perhaps most daunting, working at the lower levels
requires that permanent decisions be made at development time about the software
“components” in the system, which, once again, sacrifices flexibility at run-time.

Hand-coding with third-generation C language and remote procedure calls (RPCs), as shown
in Illustration 3, allows well-defined, “application-intimate™ connections to be programmed
between applications. Details of the network protocols and services required to enact the
interapplication call are handled by the RPC, but the RPC code “stubs” that establish and
manage the interapplication communication are compiled into the client and server
application programs, creating a coherent and integrated, albeit inflexible, system.

Incorporating the ever-broadening range of de jure and de facto standard technologies and
products poses a serious challenge to the battle-hardened professional integrator as well as
to the earnest in-house application developer/integrator. The search for a better way has
spawned new paradigms, technologies, and products, some of which are radical and some,
merely evolutionary. The key attribute of effective frameworks for heterogeneous
integration is programming interface abstraction. APIs serve to abstract the libraries that
actually handle underlying diversity in network protocols, SQL and non-SQL data access
languages, user interface toolkits, and operating system interfaces. This abstraction is
essential to building distributed systems without locking either the application or the
developer into lower-level components.

8 Important: This renor contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 7

Underlying
Application
Integration
Technologies

. Working with Core Technologies

X Window

The MIT-developed standard for networking of graphical applications. X11 Release 5 has
widespread industry support for cross-platiorm distribution of graphics across networks. X
Window consists of a base library of drawing routines (XIib) and a base toolkit of widgets (Xtk)
based on Xlib. (See Unix in the Office, April 1992.)

TCP/IP and other
Network
Protocols

The de facto standard protocol for Unix-based local area networking. TCPAP is widely
supported as the basis for interoperability across Unix and proprietary platforms. LU6.2 from
[BM, DECnet, IPX/SPX NetWare protocol, and others are also used.

SaL

ANSI and ISO standard for access to relational database systems. The SQL standard has
suffered from incompatible implementations across vendors. Standards bodies continue work
on consolidating details and advanced features to leverage the near-consensus on SQL into a
basis for reliable interoperability across vendors.

OLE: DDE, DLL

Microsoft’s Object Linking and Embedding (OLE) model of integrating applications offers a
single-user capability for ad hoc integration of applications operating under Windows and the
Macintosh. 0S/2 support may follow. OLE uses Microsoft's Dynamic Data Exchange (DDE)
protocol to establish ad hoc links between applications. Applications interoperate as client and
server through the OLE API that is implemented in Dynamic Link Libraries (DLLs).

X.400

Consultative Committee for International Telephone and Telegraphy (CCITT) standard mail and
messaging protocol compliant with ISO/0S! seven-layer communication standard.

X.500

CCITT ISO/0SI-compliant standard messaging protocol that includes user directory capability.

DCE, ONC

Alternative, RPC-based distributed computing development and deployment frameworks.
Distributed Computing Environment (DCE) is from OSF, and Open Network Computing {ONC)
is from SunSoft. Both include RPC development and run-time environment, distributed file
system, naming services, time synchronization, and network security.

DME

OSF Distributed Management Environment, based on DCE, will offer a framework for the
development and integration of system and network management applications for distributed
computing environments.

Motif/OpenLook

Alternative Unix system graphical window management and look-and-feel systems. Both are
built on the X Window System. Motif comes from the Open Software Foundation and offers
window management and a style guide. Openlook is offered by Sun Microsystems and
includes some desktop management features.

ORBs

Object Request Brokers (ORBs) are the core building blocks in the object-oriented distributed
computing model. ORBs handle requests for service and locate and manage the delivery of
requests and the results of requests to and from distributed objects. The Object Management
Group (OMG) Common Object Request Broker Architecture (CORBA) defines the base
standard for ORB operation.

Product APls

Application programming interfaces (AP!s) offer programmers a documented set of libraries
that simplify interactions with the application, e.g. Sybase Open Server.

RPCs

RPCs provide a low-level programming interface with which applications running remotely can
call procedures from each other in defined client/server relationships. The programming
environment for RPCs is similar to C. With RPCs, applications can be integrated based on
specific client/server dependencies that are compiled into the source code of both the server
and client applications. RPCs are being enhanced and extended to provide transparency of
caliing across heterogeneous networks. RPCs play a key enabling role in OSF's DCE and in
object-oriented distributed computing frameworks such as DOMF and DOMS.

IPCs

Interprocess communication (IPC) facilities provide mechanisms for processes to share
information, typically in the form of messages, semaphores, or shared memory. [PCs can
occur locally or remotely through TCP/IP.

Table 1.

OPEN INFORMATION SYSTEMS Vol. 7,No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

Working with Core Technologies

RPC Model for
Integrating
Distributed

Applications

Client

T T

Client
Stub

RPC RPC
Run-Time Run-Time

Illustration 3. RPCs alone provide a low-level programming interface and network protocol
with which applications can be integrated based on specific client/server dependencies that
are compiled into the applications that are integrated with this mechanism. RPCs also play
a key enabling role in the broader scheme of OSF’'s DCE and object-oriented distributed
computing frameworks, such as the HyperDesk DOMS.

Niche Tools Make Core Technologies Workable

GUI Builders Offer
Methodology Integration,
Cross-Platform
Consistency, and
Portability

The availability of comprehensive tools for integrating applications in distributed
environments has severely lagged demand. Niche products have flowed into this void to
solve pieces of the larger problem. Niche tools build on one or more underlying
technologies for integrating distributed systems to provide increased functionality, or at
least to provide a higher-level programming environment to facilitate the development
process. They can offer a degree of control over the core technologies enabling a developer
to address the broad scope of an integration effort by assembling a customized development
environment.

Graphical user interface (GUI) builder systems are widely used to develop the portion of an
application with which the user interacts. They address the productivity problems inherent
in working with the low-level drawing routines and skeletal widget sets available with the X
Window’s and Microsoft Window’s drawing libraries and toolkits, and the “higher-level”
Motif and OpenLook toolkits. GUI builders sometimes add compilers, interpreters, scripting
languages, and alternative libraries of drawing routines and higher-order widgets to these
core technologies in order to enhance the speed and ease of development for GUI front ends.

GUI builders can enable the integration of applications, at least at an enhanced level of
desktop consolidation. If used within a context of specified style conventions, GUI builders
can provide common “drivability” across a range of applications which can then be arrayed
and accessed on a common desktop environment.

GUI Code Becomes Integral to the Application. Standalone GUI builders generate user
interface source code that becomes integrated with application source code through
“callbacks” or source code modules that link user interface events (mouse-clicks on a
button) with functions in the underlying application. GUI callbacks are coded using C or
some other programming methodology within or external to the GUI builder tool and are
ultimately compiled into a single executable program. With this development approach, a
single executable process performs all interactions with the user, data, and display device. In

10 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

. Niche Tools Make Core Technologies Workable

order to change the user interface, source code changes must be made with the GUI builder,
and the cycle of coding callbacks, recompiling, and relinking the application is repeated.

GUI builders range from tools that build static screens with buttons, sliders, list boxes, and
pop-up or pull-down menus, sometimes grouped as interactive design tools (IDTs), to tools
that offer features that assist the broader development process, sometimes grouped as user
interface management systems (UIMSs). UIMSs offer such features as optional proprietary
high-level scripting languages; a range of code generation modes; proprictary
“convenience” widget libraries; and flexible, interpreter-based, callback development
environments that facilitate testing and debugging the user interface with the live
application.

GUI Cross-Platform Portability. Cross-platform portability of applications built with GUI
builders determines the ability to deploy the application in a mixed vendor environment and
to provide continuity across platforms. Cross-platform portability of GUI-based applications
can be ensured through the careful use of standard libraries, such as UIL for OSF/Motif or
C, instead of the more comprehensive but proprietary convenience libraries offered by most
of the GUI builder products.

GUI Cross-Windowing System Flexibility Helps Integrate for the User. Cross-windowing
portability can be as important as cross-platform portability, but for different reasons.
Consistency across windowing systems can provide an integrated user view of the
environment, providing consolidation of desktop applications. While popular GUI builders
such as UIM/X from Visual Edge (Quebec, Canada) and Builder Xcessory from Integrated
Computer Solutions (Cambridge, Massachusetts) concentrate on building Motif-based user

. interfaces, other GUI builder systems and more comprehensive development environments
such as Uniface from Uniface Corporation (Alameda, California) and Galaxy from Visix
(Reston, Virginia) support cross-windowing deployment. Portable GUI builder systems,
such as Neuron Data Open Interface from Neuron Data, Incorporated (Palo Alto, California)
and XVT from XVT Software (Boulder, Colorado) have abstracted the assortment of
graphical user interface programming interfaces (OSF/Motif, OpenLook, Microsoft
Windows, Presentation Manager, and Macintosh) to a common API. The product API maps
to the native libraries for each windowing system and look-and-feel at the time of
compilation, supporting the cross-platform delivery of a single development effort.
Illustration 4 outlines Open Interface’s architecture.

Cross-Windowing Issues: When the goal of base-level application consolidation requires the integration of existing

Display, Conversion, applications, the ability to display and to work with non-native applications in the desktop

Graphical Encapsulation of choice becomes a critical success factor. VisionWare Limited (Leeds, England) offers
products that support cross-windowing display, conversion, and graphical encapsulation of
Unix-based applications into the MS Windows world. One such product, XVision, supports
the display of the OSF/Motif or OpenLook host-controlled X client in an MS Windows
environment. Optionally, XVision can use MS Windows as a window manager to control
local MS Windows applications and remote X Window clients. XVision allows data to be
cut and pasted between the local MS Windows applications and the X-based applications,
and DOS and Unix applications can also be hot-linked through the MS Windows DDE
facility. VisionWare’s PC-Connect product supports the display and manipulation of
character-based Unix applications within the MS Windows environment, also supporting
dynamic connections between applications. VisionWare also recently announced plans to
partner with Alex Technologies (London, England) to deliver a product called Alex for
Windows that will support the delivery of host-based character applications on the MS
Windows desktop running completely in a Windows-compliant mode.

OPEN INFORMATION SYSTEMS Vol. 7,No. 7 important: This report contains the resufts of proprietary research. Reproduction in whole or in part s prohibited. For reprints, call (617) 742-5200. 1

Niche Tools Make Core Technologies Workahle

N e U rO n Data O pe n | Open Editor I I Custom Applications

Interface’s Toolki

Architecture [Foxt Button] [Browser J[_tcon
I Table JI Text Edit]rMenu I

Virtual Graphics Machine I

Xlib MS Windows Presentation Manager Macintosh

UNIX DOS O0S/2 VMS MacOS

Illustration 4. Portable GUI builder systems, such as Neuron Data’s Open Interface, have
abstracted the assortment of graphical user interface programming interfaces (OSF/Motif,
OpenLook, Microsoft Windows, Presentation Manager, and Macintosh) to a common APl
that maps the product-unique API libraries to the native libraries for each windowing
system and look-and-feel at compile time, supporting cross-platform delivery. This system
requires support for the development environment on each target platform.

|

\

|

|
Another approach that helps to consolidate applications on the desktop is taken by
DeskTerm from IXI (Cambridge, England). DeskTerm includes a DeskTerm protocol that
translates character sequences to graphical, windowed events. DeskTerm offers two ways to
operate Unix-based character applications within a standard windowing system—either by

|

|

modifying the source code to directly access the DeskTerm protocol or leaving the
application unchanged and using the DeskTerm SoftOption scripting language to describe
the character sequences to the DeskTerm protocol. DeskTerm supports delivery of the Unix
character application with either an X Window-based OSF/Motif style presentation or an
MS Windows 3.0 presentation, helping the user consolidate applications under a common
environment and providing a base-level of integration.

PC Desktop Integration: Desktop integration in the PC world means two things: the fully integrated Macintosh

OLE environment and the Windows Object Linking and Embedding (OLE) API. In its current
form, the OLE model of integrating applications offers a single-user-oriented capability for
integrating applications operating under Windows and the Mac OS, and, perhaps in the
future, OS/2. Object-linking supports the creation of “hot links” between applications that
incorporate the same data to ensure consistency of that data if it is changed, and object
embedding allows the user to create and edit compound documents with the experience of
working from a single integrated application.

OLE operates on top of Microsoft’s Dynamic Data Exchange protocol (DDE) to provide
integration on the Microsoft Windows desktop. OLE uses the DDE protocol to establish ad
hoc links between applications. Applications interoperate as clients and servers through the
OLE API that is implemented through a client and a server Dynamic Link Library (DLL).
With OLE, objects (data) from “foreign” applications can be embedded in unrelated
applications that cannot edit the embedded objects. Selecting the embedded object actually
launches the underlying application to enable the editing and updating of the embedded
object. The recently finalized OLE 2.0 specification from Microsoft will support editing in
place. Alternately, the two applications can be linked so that changes in the data file of the
OLE server application result in corresponding changes in the OLE client data file. OLE is
shown in Illustration 5.

12 Important: This report contains the results of proprietary research. Reproduction in whole or in partis prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vo!. 7, No. 7

Desktop
Integration with
OLE

Desktop Management
Systems Offer Baseline
Application Integration:
Consolidating
Applications and
Resources

I
=

N\
Publisher Spreadsheet
OLE API OLE API
| Clientlib p—— Server Lib
ﬂ WINDOWS KERNEL r}
DDE Messaging

Hlustration 5. The Object Linking and Embedding (OLE) model of integrating applications
offers a single-user capability for ad hoc integration of applications operating under
Windows and the Mac. OLE uses the DDE protocol to establish ad hoc links between
applications or to embed objects from those applications in a document. Applications
interoperate as client and server through the OLE API that is implemented through client
and server DLLs.

The base level of integration for the user is the simple consolidation of multiple applications
on the desktop under a common look-and-feel provided by the windowing system. Desktop
management systems run as applications on top of industry-standard windowing managers,
offering the user an intuitive metaphor for the computer system as a set of personal office
resources such as desk, drawers, files, file folders, and office accessories and equipment.
Desktop management systems offer a simplified view of the operating environment, the
available resources, and the actions that can be performed on those resources, such as drag-
and-drop manipulation of files for printing, faxing, mailing, or launching.

Desktop Management Systems Can Deploy across Look-and-Feel. Desktop management
systems in the Unix environment build on the X Window technology. But on top of X
Window, the desktop management systems vary from full commitment to one look-and-feel,
such as the X.Desktop system from IXI Limited, which specializes in OSF/Motif, to the
abstracted approach of the Looking Glass system from Visix Software, which can switch its
desktop presentation dynamically between OSF/Motif and OpenLook.

Desktops Can Launch Custom Integration Applications. Desktop management systems can
also serve as the context for user access to iconic representations of hand-built cross-
application integration programs that involve remote data or applications. For example, an
application developer supporting a marketing department might write an application with
embedded SQL statements that uses variables inserted by the user on a form to access sales
information stored in a database about certain products over specified time periods. The
icon that represents the application can be selected and used to launch the application in the
same way that other applications are manipulated. However, today’s desktop management
systems do not provide a robust development environment for building these applications.
Certain vendor-unique desktop management systems, such as OpenWindows from SunSoft
(Mountain View, California), are tightly integrated with a more complete set of tools for

OPEN INFORMATION SYSTEMS Vol. 7,No. 7 impartant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibites. For reprints, call (617) 742-5200 13

Niche Tools Make Core Technologies Workable

Messaging Systems:
Simplitying
Interapplication
Communication

Data Integration Tools

building integrated networked applications that exploit the specific platform and desktop
management system.

Message-passing interprocess communication offers a generalized, flexible mechanism
through which distributed applications can interoperate in a variety of ways. Messaging
systems offer practical means for programming networked interapplication communication
by addressing the problems of finding the location of target applications on the network,
performing the network protocol handshakes required to navigate the network, and
managing the sending and receiving of messages between applications.

Messaging Systems Shield the Developer from Network Details. Messaging systems
abstract a proprietary API to a set of C function libraries. From this interface, the
application developer can, depending on the messaging system model, be shielded not only
from the underlying network protocols but also from having to know where the called
processes are located, or even with which processes the communication occurs. Message
Express from Horizon Strategies (Needham, Massachuseits), Softbench Broadcast Message
Server from Hewlett-Packard, and the SunSoft ToolTalk component of the OpenWindows
development environment all offer messaging system functionality.

Messaging Connects the Parties: Conversation Is the Key to Integration. Messaging
systems provide directory services, some of which are object oriented, that provide efficient
ways to locate target applications and data. Messages can be used to transact anything from
SQL statements to a request for analysis of values submitted to a simulation program.
Messaging systems effectively address one important dimension of the application
integration puzzle—transparent interapplication communication across networks. But
messaging systems by themselves are not a development framework designed to build
integrated user applications. Like the telephone network, messaging systems connect the
parties but do not help them negotiate the contract.

Messaging APl Requires New Applications or Encapsulation. Messaging systems require
that the applications be newly developed or redeveloped with the product-specific
messaging API in order for the application to offer an interface that can interoperate over
the messaging system. As one example, Illustration 6 shows how the ToolTalk API works as
a messaging system. The HP Broadcast Message Server, recently unbundled from its
Softbench CASE product, offers a specific paradigm for encapsulating existing applications
with the Encapsulator Description Language (EDL) or, in a future release, with C and C++.

Encapsulating existing applications offers programmatic access either to the full set or to a
subset of the application’s functions. To date, messaging systems are currently used mostly
by ISVs seeking to integrate a set of proprietary CASE or CAD tools into a distributed
framework.

Data integration tools, such as Powerbuilder from Powersoft (Burlington, Massachusetts),
hide the incompatibilities among SQL implementations and support the development of
client/server applications. These applications can call database server resources without
specific knowledge of the database SQL syntax or the networking protocols required to
make the connections. However, data integration tools do not provide a general
methodology for integrating diverse applications, and they operate in the messy world of
inconsistent data types, SQL implementations, client/server protocols, error codes, data
dictionaries, and distribution methods. They are valuable because they form-fit an interface
to the SQL DBMSs that presents a simplified, consistent API to the applications developer.

14 Important: This reporl contains the resuils of proprietary research. Reproduction in whole o in partis prohibited. For reprints, call (617) 742-6200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

ToolTalk Message
Flow

Application Application Application Application
Data Data

ToolTalk Library ToolTalk Library
Message TT Message
Session
Session 1 I
Message
Sesslon 2

Illustration 6. To interoperate on a messaging system, applications must present a
programmatic interface based on the messaging API. ToolTalk either distributes broadcast
messages 1o applications based on the registered requirements of the applications or
handles requests for service by matching the request attributes to the capabilities of
registered applications.

‘ Integration Development Tools Issues

High-Level Code-Free vs.
Low-Level Code-
Intensive Development

Niche tools solve some of the problems of building integrated, distributed systems but leave
unanswered a variety of questions and issues that need to be considered when working either
with them or with more comprehensive frameworks. Developing distributed applications
will challenge users for some time to come. However, implementing distributed applications
that deliver integrated functionality will pose additional difficulty. Developers today should
be targeting at least the level of application integration we have described as configurable
integration. Issues that have to be considered include whether the tool being used is a high-
or low-level tool, the maturity of the technology, the extensibility of the integration
architecture, and whether development is dependent on specific tools or technologies. The
ideal integration framework would offer programming abstractions across the entire
potential scope of application integration, unlimited extensibility, and open interfaces for
incorporating third-party tools as they become available. Unfortunately, there are real-world
issues to consider in differentiating among niche tools and more comprehensive
frameworks.

Integrating diverse applications requires managed connections between applications, across
operating environments, and across networks. “Code-free” programming environments offer
the highest level of simplification and abstraction for developers integrating applications.
Visual programming tools, sometimes labeled fifth-generation languages (SGLs), range in
functionality from GUI builders with extensive list box selections to true object-oriented
environments that offer flow-charting techniques for building integrated applications from
properly designed objects.

While it is a great benefit to the application developer to have powerful tools that hide
layers of complexity, it's virtually impossible in the real world to develop a complete
application through a completely code-free process without at least some lower-level
programming. For example, lower-level programming is required to hook GUI callbacks
into underlying applications. To integrate existing applications into object-oriented

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report contains the results of proprietary research. Reproduction in whale or in part is prohibited. For reprints, call (617) 742-5200 15

Integration Development Tools Issues

Mature Technologies,
Emerging Technologies:
Keeping Options Open

Scalability: Is There Life
after Prototyping?

Extensibility: Integrating
the Unexpected

The Developer’s
Dilemma: Platform
Dependence vs. Tool
Dependence

environments, lower-level programming is used to build the encapsulation code that
mediates between the application command syntax and the interface to the object broker.
While 4GLs can call 3GL routines directly, code-free object-oriented tools incorporate 3GL
routines as encapsulated objects, requiring at least some C++ or C-based “glue code.”

Users want to reduce their application development backlogs, but they also want those
applications to be developed while platforms, operating systems, networks, and databases
are changing. Working at lower levels of programming to integrate applications with mature
open technologies yields low risk, low productivity, and most likely low flexibility.
Working in emerging technologies implies “bleeding edge” experiences usually associated
with research labs. The trade-off between working in lower-level programming
environments with standardized technologies and working in emerging higher-level
environments with proprietary technologies begs some basic questions about the interplay of
applications and organizational change. There is a middle ground where proprietary higher-
level application programming interfaces overlay mature technologies. '

Prototyping is a critical part of the development process for graphical, networked
applications. Rapid prototyping tools support the constructive involvement of users before
large investments in system design and programming have been made. Prototyping tools
typically include graphical screen design tools, along with a high-level language and
interpreter to allow incremental development of the interface and sample application. In
some cases, tools have been designed that support not only rapid prototyping but also the
generation of a scalable, production-quality application. Crossroad from Crossroad Systems
(Boston, Massachusetts), Sammi from Kinesix Software (Houston, Texas), and SuperNova
from Four Seasons Software (Edison, New Jersey) offer development environments that
support rapid prototyping that flows relatively seamlessly into the implementation of
production quality applications.

Murphy’s law states clearly that no matter how coherent the plan, the unexpected will occur.
For example, at one point in time, four applications will be identified that must be
integrated for the stock trader’s floor, but, six months later, two or three additional
applications will appear out of nowhere which have to be included. The extensibility of the
integrated environment will depend on how generalized a model is employed to plug
together the component pieces.

Application developers want to build portable applications, complete projects on time, and
bring them in under budget. Working with generic low-level programming tools offers a
high degree of application source code portability but sacrifices programmer productivity.
In order to achieve independence from system vendor platforms, developers have shifted
from 4GL tools tied to proprietary relational database management system (RDBMS)
systems to 4GL tools that are independent of RDBMS vendors. Different types of
independence are important:

o Hardware and operating system independence for applications built with 4GL systems
depends on the 4GL vendor porting to a broad array of workstation and server
platforms. The 4GL-based application can be compiled and run on any platform
supported by the 4GL vendor.

+ Network protocol independence can be achieved through use of RPCs or messaging
systems that offer a common API for access to diverse networks, at least as diverse as
those supported by the product. The Uniface and SuperNova 4GL environments, for
example, offer network independence by including client/server facilities that hide the
underlying transport required to reach a server resource.

» Interface independence allows applications to be integrated for the user in the user’s
environment, which is a critical element in effective integration. Neuron Data offers

16 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints. call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

interface independence by mapping its common API at compile-time to low-level
drawing routines native to each look-and-feel, for example Xlib for OSF Motif. The
Visix Looking Glass desktop management system and Galaxy application development
environment provide run-time selectable look-and-feel by mapping the common user
interface API to the characteristics of the selected look-and-feel under a real-time user
interface management facility.

« Database independence has been elusive because of the slow progress in the definition
and adoption of the SQL2 proposal. However, products such as Uniface, PowerBuilder,
and SuperNova provide application development environments that support the building
of data-intensive applications without requiring specific knowledge of the data source
by the developer or by the application.

Frameworks for Integrating Applications with Open Systems Technology

Working through the
Frameworks: Beyond
Core and Niche
Technologies

Integrating Applications
with the Distributed
Computing Environment
(DCE)

Lying beyond the proposition of accomplishing integration by working with core
technologies or niche technologies is the world of integration frameworks. Comprehensive
integration frameworks build on enabling core technologies and niche technologies to
support efficient development of complex, heterogeneous applications.

Although no single development framework covers all of the bases, comprehensive tool
frameworks are evolving that will meet the need for the highest levels of integration. A
number of development frameworks and tools are available that offer a variety of
architectures, development methodologies, and underlying technologies that support the
development and deployment of distributed, integrated applications.

The OSF’s DCE supports the development and deployment of large-scale client/server
applications. DCE assembles a standard platform of enableware, namely time
synchronization services, authentication and security services, distributed file system
services, and remote procedure call run-times (see Illustration 7) that the developer can
assume will be found on platforms supporting DCE when applications need them to
cooperate.

DCE RPC Stubs Are Compiled into Clients and Servers. DCE does not include a full
application development environment, but it does include development tools that support
the distribution of applications using the DCE RPC. The DCE RPC development tools
consist of the C-like IDL, used to create the RPC client and server interfaces, and the IDL
compiler, which generates header files, and object code client and server stubs for each
remote procedure call interface. Header files and stubs must be compiled into the server and
client application source code to enable distributed applications under DCE. The component
applications in a DCE-integrated application environment are developed and their
interactions configured by the developer at compile time. The DCE structure is shown in
Iustration 7.

Applications must be newly developed or fundamentally rebuilt to be distributed and
integrated using DCE. Existing applications that cannot be rebuilt or were not explicitly
designed to be distributed with DCE can still be incorporated as servers behind hand-built
programs that “talk DCE RPC Runtime” to the requester and act as users of the existing
database or application. In order for DCE-based applications to operate across different
platforms, each system vendor must support the new technology in DCE implemented on its
platform in a consistent fashion.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 17

Frameworks for Integrating Apps. with Open Systems Technology

DCE RPC Runtime
Library Structure

Integration with the
Distributed Object Mode!

Integrating Applications
in the Object Model with
HyperDesk

Application Code

v

RPC Stub

Runtime Interface

Communication Naming Authentication
Service Service Service

Illustration 7. The DEC RPC Runtime architecture illustrates the integral nature of the RPC
to the compiled client and server application code. DCE represents a comprehensive
standards-based environment for building and implementing distributed systems that
operate as an integrated environment. Implementing DCE requires that new applications be
built or existing applications be extensively modified to enable deployment within this
distributed model.

« its soul, its whatness leaps to us from the vestment of its appearance... the object
achieves its epiphany.” —James Joyce

Complex Standards Must Be Set. The phenomenon described by James Joyce cuts to the
essence of the distributed object vision shown in Illustration 8. Under the distributed object
model, application integration becomes completely run-time user-configurable from the
available applications and data sources in the network. The distributed object model enables
this ideal state because all objects in this framework, including users, applications, devices,
and networks are self-describing, well-behaved, cleanly interfaced, and accessible through
secure and well-managed methodology. The distributed object ideal state describes an
abstract, generalized model that could remove all obstacles to seamless, user-transparent,
real-time, integrated computing. However, before users experience the epiphany of
application synthesis, many complex standards must be set.

CORBA Is Step One. The Common Object Request Broker Architecture (CORBA) defined
by the OMG represents a key foundation for the framework of standards that must be
established for the realization of the object-oriented vision. Product implementations (or
instantiations in OO-speak) of the distributed object model include the HD-DOMS from
HyperDesk (Westboro, Massachusetts), the Distributed Object Management Facility
(DOMF) from Sun Microsystems and Hewlett-Packard, and Application Control
Architecture Services (ACAS) from Digital Equipment Corporation.

The HyperDesk HD-DOMS offers a distributed object-oriented framework for developing
and implementing distributed applications. As a primary participant in the OMG CORBA
specification process, HyperDesk currently conforms its HD-DOMS ORB to the OMG
CORBA specification, except for the Static Invocation Interface, which will be supported
later in 1992,

HD-DOMS Weaves Object Orientation with Distributed Computing. HD-DOMS combines
object concepts with distributed computing concepts to produce a comprehensive
environment for integrating users, applications, devices, networks, and data into a flexible,
configurable fabric.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 7

Distributed Object
Vision

Synchroworks from
Oberon

Analytic
Program

Custome!
Database, Data
Feed

Hlustration 8. The distributed object-oriented model describes a state where all applications
and data sources in the network exist as granular modules (objects) that are self-contained,
self-describing resources that can be configured to operate as an integrated working
environment tailored to the needs of the user.

Objects Facilitate Building a Distributed, Integrated Environment. Under HD-DOMS, all
applications and data function as objects, interoperating with other objects through the
services of local or centralized ORBs. Client and server applications are written largely
outside of the HD-DOMS framework, except for the programming of the object interface.
The HD-DOMS API-conformant object interface to the application is written using the
Implementation and Interface Definition Language (IIDL). With IIDL, developers define
object interfaces and object implementations. An object interface consists of information
about the relationships of the object to other objects, the actions the object can perform, and
the attributes of the object. The object implementations describe the different ways the
object can occur. Object interfaces and object implementations are installed and stored in
the HD-DOMS Interface Repository and Implementation Repository in the object database.
HD-DOMS insulates the developer from the details of diverse network, operating system,
data management, and user interface issues.

When objects (applications) issue requests, the requests are mediated by the ORB, which
applies services such as naming and authentication to the requests, ensuring that messages
are passed between the correct parties, as shown in Illustration 9.

Existing Applications Can Be Incorporated with HD-DOMS. As with DCE, applications must
be newly developed or substantially rebuilt to be fully integrated in the HD-DOMS model.
Existing applications can be incorporated unchanged into a HD-DOMS framework as partial
participants through a process called encapsulation. Developers encapsulate an application
by writing a program in C or a shell scripting language on top of which the HD-DOMS
client API is layered. Encapsulated applications can be called to perform operations by other
client applications with HD-DOMS, but they cannot call on other applications themselves.
Source code modifications to existing applications are required using any language that can
call C programs to achieve what HyperDesk terms a foundation upgrade, which allows
existing applications to be integrated more fully into the HD-DOMS user environment.

Visual Programming + Distributed Objects. The Synchroworks product from Oberon
Software (Cambridge, Massachusetts) is currently in late Beta-test and is expected to ship in
fall 1992. Synchroworks incorporates an object-oriented architecture with a visual
programming paradigm. Synchroworks offers the user the ability to configure the user
environment from the available resources in the object database through a visual program
editor. The Synchroworks visual programming methodology uses building blocks that

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200

Frameworks for Integrating Apps. with Open Systems Technology .

represent interfaces to applications, input and output objects such as report or dialog boxes,
and devices such as printers and fax machines. Application building blocks are supplied
with Synchroworks, created as user interface objects within the visual editor or the class
editor, or are built with C++ by the developer and are accessed from the Synchroworks
object database during application development. (See Open Information Systems, June 1992,
for more information on Synchroworks.)

HyperDesk
Application

Integration Adtrntcaton ingimonan
Architecture

Object Database

ORB Engine

A
v

ORB Engine

v

ORB-API

v

ORB-AP!

ORB-API

Clien

Application

WP
Spreadsheet
Graphics
E-mail

Distributed

“{Object Exerciser| Client Application

Financials

Business Applications
tabases :

File Systems Exerciser |

Illustration 9. The HyperDesk HD-DOMS architecture diagram illustrates how existing
applications integrate with new applications in an object-oriented distributed computing
framework. In what HyperDesk terms “Level 1" integration, unmodified existing
applications are first “wrapped” with a program written in high-level scripting language
that maps the input/output environment of the application to a simple scripted shell. The
application can then be registered as a resource in the interface repository and the
implementation repository. Unless the existing application source code is modified to be
able to make ORB calls, the application can only service requests from other clients in the
framework.

Crossroad Systems Application Integration Framework

Supporting Rapid The Crossroad application integration framework from Crossroad Systems is an application

Prototyping and development environment that provides support for rapid prototyping of peer-level

Production Development networked interactions between applications. The Crossroad high-level programming tools
target application developers who need to build integrated application environments
consisting of new, existing, and third-party applications or data sources. Crossroad offers a
general purpose integration framework based on Agent programs that are writien to
interface to applications by using the application’s native functionality. Agents
communicate with each other on the network through message-oriented interprocess
communication. The Crossroad C-based message-passing architecture is generalized to use a
TCP/IP IPC mechanism to ensure the location transparency of Agents running locally or
remotely.

Sammi: A Graphical User User Interface Code Is Isolated from Back-End Applications. Sammi from Kinesix
Environment Corporation provides an environment for the networked integration of applications under a

20 Important; This reporl contains the results of proprietary research. Reproduction in whote or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

. Crossroad Systems Application Integration Framework

Sammi
Application
Integration
Architecture

Galaxy Application
Environment

Motif- and X Window-based front end. The Sammi architecture isolates the development
and operation of user interface code from application code and databases.

Sammi Runtime Manages Flow Between Clients and Servers. Applications and sources of
data are integrated within this framework through the Sammi Runtime Environment, which
mediates between the user interface and the back-end applications and data sources that are
written or modified to conform to the Sammi API. The Sammi Runtime Environment
launches RPCs, on either an event-driven or a polled basis, which connect the user
transparently to the applications and data as required by the client system. The Sammi
Runtime Environment peer-to-peer configuration can also service back-end applications in
real-time environments, or allow the server application to drive the display, as in a training
system. (See Ilustration 10.)

Sammi
Format Editor
Format File
Application or
Database #1
Environment
X tookit and .
Motif Widgets g;;?;éﬁ;o;xzor
X Window
UNIX 05 Application or
Database #N

Nlustration 10. The Sammi architecture decouples the user interface code from the
underlying application and data sources, and insulates the developer from the details of the
network protocols through the use of the Sun ONC RPC. Modifications to the user interface
do not require code changes in the server applications.

Rapid Prototyping Supported with Dummy Data Links. Sammi supports interactive
development allowing the user interface to execute interpretively in the Sammi Runtime
Environment without real data links. After the behavior of the user interface has been tested
and debugged, the dummy data links can be replaced with references, called Format Keys,
to the actual logical servers in the network. Logical servers are applications and databases
that conform to the Sammi API and may reside anywhere on the network. The Sammi
Runtime can process compound requests that require the division of a logical server request
into multiple RPCs targeting multiple and different types of applications and data sources.

The Sammi development environment separates the development of the user interface from
the development of the applications accessed over the network. Existing applications must
be front-ended with hand-coded programs that know how to pass arguments to the
application and get data in and out, and also use the Sammi API.

Supports Run-Time User Selection of Look and Feel. Galaxy, from Visix Software, is an
object-oriented application development environment for building portable, distributed
applications that are integrated for the user under run-time selectable windowing and look-
and-feel systems. Galaxy represents a multi-year development commitment by Visix to
deliver a comprehensive development environment for portable applications. Early versions

OPEN INFORMATION SYSTEMS Vol. 7,N0. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 21

Crossroad Systems Application Integration Framework

RDBMS-Independent
Fourth-Generation
Languages (4GLS)

Uniface from Uniface
Corporation

of the Galaxy product were used to develop the Looking Glass line of desktop management
products.

Distributed Application Services Incorporates External Applications. The Galaxy API offers
powerful abstractions for interfacing to operating systems, networks, and windowing
systems. The Galaxy Distributed Application Services (DAS) Server is a multithreaded,
RPC-based, interapplication communication mechanism that supports the integration of
applications running locally or over the network. The services offered by Galaxy-built
applications or non-Galaxy applications can be registered with the DAS Server and can be
accessed dynamically by other applications on an event-driven basis. Non-Galaxy
applications can be integrated into a Galaxy environment through the addition of hand-
coded programs that front-end the application to implement the Galaxy API. Users can
access hypertext-based help for all applications integrated using Galaxy through the
extensible Help Server.

Built on Abstracted Interfaces to System Resources. The Galaxy architecture offers
generalized mechanisms for handling dozens of functions both within and between
applications, ranging from the File System Manager to the Cursor Manager. Galaxy includes
a robust GUI builder that supports delivery of the application in a choice of look-and-feel
including OSF/Motif, OpenLook, and Common User Access (CUA) for Windows or
Presentation Manager.

Fourth-generation languages (4GLs) designed for open distributed systems development can
provide much of the high-level application development environment needed to build
integrated, distributed applications that can even include existing applications.

The Uniface 4GL, for example, provides a forms-based application development
methodology that insulates the developer from the details of specific user interfaces,
network protocols, and data access language uniquenesses of RDBMSs and file management
systems. (See Unix in the Office, July 1991, for more details on Uniface.)

Three-Schema Architecture Provides Database Independence. With Uniface, DBMS
independence is achieved through the use of the Uniface Information and Design Facility
(IDF) development environment, which implements the ANSI/ISO-compliant, three-schema
architecture, for the development of database-intensive applications (conceptual schema,
external schema, and internal schema). This architecture separates the definition of the
logical relationships of data and other objects (conceptual schema) in the application from
the way particular databases manage the data (internal schema) and from the way the
application interacts with the user (external schema).

Conceptual Schema Simplify and Control the Development Process. Once the application
conceptual schema are defined, the developer works within a forms-based environment to
create the external schema, which automatically build on the logical relationships defined in
the conceptual schema. This architecture, combined with the Uniface Polyserver
comunications manager, supports the operational integration of multiple databases and
multiple applications while insulating the developer from the details of networking,
databases, and user interfaces.

GUI Support in Latest Release. The latest release of Uniface supports the development of
GUI front ends for applications. Developers writing in the Uniface 4GL can produce
Windows, Motif, Presentation Manager, or OpenLook applications from a common code
base. Developers write to the Universal Presentation Interface included as a part of Release
5.2 and deploy on any platform for which Uniface supplies a driver. The developer has the
choice of sacrificing portability and using GUI-specific features, or staying within common
features and writing a portable application. Character terminals are supported with the same
code.

22 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

SuperNova from Four
Seasons Software

Wizdom Framework from
Tivoli: Networked
Systems Management
and Control

Object-Oriented Development Concepts. The SuperNova 4GL from Four Seasons Software
offers developers independence across the RDBMSs, GUIs, and networks supported by
SuperNova. The SuperNova development environment consists of a relational model data
dictionary, a 4GL editor for creating the application logic, and the window editor for
creating the user interface. The SuperNova model builds applications as objects along with
the functions performed on those objects. Applications do not run as compiled executables,
but instead are run as meta code that is interpreted at run-time by the SuperNova engine.

Distributed Processing Supported through the Distributed SuperNova Engine. SuperNova
supports distributed processing through the distribution of the run-time SuperNova engine to
multiple network nodes. When an application calls a function that is not running locally, the
engine refers to the local dispatch table configured by the developer, which contains
location information for network resources. The local SuperNova engine then packages the
request through its network interface to communicate with the proper remote SuperNova
engine, and then returns the results to the requester application. The remote resource could
be an existing application that has been modified to interface to the SuperNova engine or an
application or database that has been front-ended with a hand-coded C or high-level scripted
program.

Cross-GUI Deployment Supported at Run-Time. GUI independence operates at run-time.
Developers work with a particular windowing system and look-and-feel during
development, but the user can choose to work with the application in a different mode when
starting an application. SuperNova currently supports Windows 3.0 and OSF/Motif.

Rapid Prototyping Supported with Referential Integrity. SuperNova supports rapid
prototyping through the development of the application with flat files as the data source,
which can then be replaced with live links to multiple RDBMSs and other data sources
through a “data type” parameter change.

Network and systems management for distributed systems represents a special instance of
the challenge of application integration. Users have developed or acquired many
applications to manage distributed application environments. Common management
applications address the automation of software distribution and installation, user
administration, printer administration, and backup and restore, among others. The Wizdom
framework from Tivoli Systems offers an object-oriented framework for the integration and
operation of systems management applications. Wizdom has been adopted as a core element
in the Distributed Management Environment (DME) from OSF, the Atlas architecture from
Unix International, and by numerous system vendors in the open systems segment.
Developers received the first release of Wizdom in May 1992.

Special Case of Distributed Object Management System. The Wizdom framework is
essentially a special case of a distributed object management system. The Wizdom
Application Development Environment (ADE) includes the documentation of the Wizdom
API, the libraries, and fully distributed debugging tools.

Integrating Existing Applications under Wizdom. While there are few existing commercial
management applications for distributed systems, early users of Wizdom have integrated
existing user-built management applications for managing relatively small numbers of
systems under the common interface. Integration of existing programs is accomplished by
encapsulating the existing programs with a Wizdom API-conformant interface. At one site,
the administrator of a four-vendor mix of hundreds of Unix workstations, PCs, and back-end
file servers used the Wizdom framework to consolidate dozens of shell scripts developed to
automate various tasks across the network. Due to the special purpose nature of Wizdom,
even existing applications can effectively leverage the efficiencies of operating under the
common management interface.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7 important: This report cantains the resutts of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 23

Crossroad Systems Application Integration Framework

Wizdom
Architecture

Leveraging Existing Management Applications. Interoperability of heterogeneous
management applications develops naturally under Wizdom due to the inheritance feature
that operates when Wizdom objects are subclassed to build new applications. For example, a
printing service can be distributed to and managed for classes of users and classes of
systems automatically by using the core object services for object naming and location.

Application Object

Illustration 11 shows the Wizdom architecture.

Desktop Services Common Management
Services
- > T
v Core Object Services v

Object Execution
Object Concurrency

Object Request Broker
Dynamic Object Invocation

Object Naming/Location Obiject Lifecycle
Object Interface Object Persistence
Object Inheritance Object Security

Illustration 11. The Wizdom framework provides an object-oriented framework specifically
designed for the integration of distributed systems and network management applications.
As with other advanced frameworks, existing applications can be incorporated 1o some
degree into this framework, but the main focus for Wizdom is on the standardization of
presentation, use, and interoperation of management and control applications for
distributed environments.

Security in Networked Applications

Hitting a Moving Target

Security is a relative term and a moving target. The phrase “secure distributed systems”
remains a contradiction in some sectors. Increasing concern over virus contamination and
hacker intrusion keeps raising the bar on security. The MIT Project Athena developed the
Kerberos model for authentication, verification of data integrity, encryption, and access
control over the network. Kerberos has become a basic element in network security schemes
included in the OSF DCE, the HyperDesk HD-DOMS framework, the Wizdom framework
from Tivoli, and even Microsoft’s new Windows NT operating system.

There are other approaches that work within the more tactical application integration
frameworks. For example, the Crossroad application integration systems from Crossroad
Systems rely for security on the mechanisms inherent in the applications and the application
platforms with which Crossroad Agents interact. Crossroad Agents actually export the
security functions of the applications they “represent” in receiving and passing messages to
other Agents in the network. In another vein, SuperNova provides for access controls
enforced by its run-time engine.

24 Important: This report contains the results of proprietary research. Reproduction in whole or in part s prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 7

Summary and Conclusions

The arrival of broad-scale distributed computing is near. Development tools and frameworks
to support the designers, programmers, and implementors have begun to take shape. The
movement to the distributed model will be evolutionary, and, for some time to come, will
include legacy applications. Development environments that support this evolution have
entered the market, pulled by user willingness to trade dependence on innovative tools for
highly functional, integrated application environments. The distributed object model
provides the most promising paradigm for the future, but the extended time frame for
delivery of the standardized distributed object infrastructure will create a large opportunity
for less revolutionary approaches to putting the pieces together for the user.

The key to long-term success in these endeavors is making certain that “distributed
enterprise computing” does not appear to the user as “dis-integrated enterprise computing.”

Next month's Open Information Systems will address
Microsoft Windows NT Operating System.

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

OPEN INFORMATION SYSTEMS Vol. 7,No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 25

Open Systems: Analysis, Issues, & Opinions

TOOL FOCUS: NEURON DATA

Will Open Interface 2.0 Nullify the
GUI Wars?

Development of the Virtual Toolkit Approach

March 1991, which covered the first release of Open
Interface.) This product helped get developers past the
toil of GUI programming and the turmoil of choosing a
GUI platform and onto the business of delivering GUI
applications to users.

Amplifying the “Kitchen-Sink” Approach

The promise of graphical user interfaces (GUIs) for
Unix was to give novice users all the power of Unix but
to hide the complexities. Unfortunately, when
developers encountered the voluminous libraries of the
X Window System and its minimal—at best—interface
templates, the graphical revolution went into slow
motion, Developing X-based programs was a grueling
process. When standardized look-and-feel specifications
and common widget libraries, such as OSF/Motif and
OpenLook, arrived on the scene, the situation improved
somewhat. But twiddling C source code to design and
edit graphical objects has been a handicap for X
Window programming compared to the ease of writing
to the more abstract interfaces of the Macintosh and
Microsoft Windows. Developers began to address this
problem, and GUI-builder programs appeared in the X
Window community, some of which rolled over as
publicly available products. In these environments,
programmers could paint the display layout of a GUI on
the screen, have the C code generated for them, and
then plug in regular software subroutines underneath, X
Window development productivity improved markedly
with the availability of these tools. (See “Integrating
Applications in the Real World,” this issue.)

However, the market for GUI applications has remained
fragmented, not only between the X Window look-and-
feel camps, OSF/Motif and OpenLook, but also between
them and the much larger Macintosh and Windows
markets. Neuron Data (Palo Alto, California) was one
of the few vendors that recognized that GUI portability
among all these platforms could be both possible and
profitable, for itself as well as for developers. This was
the impetus behind Open Interface, a Neuron Data
product that allows developers to design graphical
interfaces which run unmodified on OSF/Motif,
Microsoft Windows 3.x, Apple Macintosh, OpenLook,
and OS/2 Presentation Manager platforms. (See “GUI
Portability at Last,” Unix in the Office Vol. 6, No. 3,

SUPPORTING ALL FUNCTIONS ON ALL PLATFORMS. When
you look at the various GUI platforms, it quickly
becomes apparent not only that they differ in
appearance but also that each has many unique
functions. OpenLook has its pushpin, Apple has its
menu bar, Microsoft Windows has its “Task List”
dialogue, and so forth. Even functions that look similar
are often implemented in very different fashions, such
as rubber-band vs. sticky drop-down menus. To build a
virtual GUI toolkit supporting all of the GUI specs is a
pretty complicated affair. Other cross-platform GUI
builders have implemented a subset of the universe of
widgets comprising those found across all supported
GUIs. But, instead of this approach, Open Interface has
implemented a toolkit that is a functional superset of all
the widget collections. That is, every function of every
GUI look-and-feel is supported on all Open Interface
platforms. The resulting set of GUI widgets is very
large, potentially overwhelming developers, but Neuron
Data has opted for richness in order to have the same
virtual toolkit on all supported environments without
sacrificing functionality.

The Open Interface widget set is not simply a
concatenation of all the others. It is a consolidation in
which corresponding widgets—such as different pull-
down menus—are merged into one representation. Open
Interface implements each of the application-level
widgets with distinct presentations for each of the target
look-and-feel specs. All of these implementations are
available on all target platforms and can be selected and
changed on all platforms even while the application is
running. Neuron Data often demonstrates this by
running an application under Windows with Macintosh
look-and-feel and on a Macintosh with a Windows
look-and-feel. Many skeptics might dismiss such
capabilities as frivolous, but they would be surprised, as
were we, to hear of two large corporate users of Open
Interface that were running the same look-and-feel—in

Important: This report contains the results of proprietary research. Reprod uction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7,No. 7

‘ OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

one case Motif, in the other Presentation Manager—on
all their platforms, including Macintosh.

OBJECT-ORIENTED STRUCTURE HELPS INTEGRATION. Good
GUIs have a simplicity that masks their tremendous
complexity at the code level. The intricacy and
interrelationships of pull-down menus, text regions, and
scrollbars can be an organizational nightmare. The X
Window System and most GUI builders address the
difficulty with a form of object-oriented programming,
such as sharing type definitions among widget sets and
packaging widgets within other widgets. Neuron Data
goes further than most in supporting this development
paradigm. The first step is encapsulating the data and
functions into objects. Open Interface generates fully
structured C code and uses C “typedef” definitions,
header files, and macro definitions to enforce widget
encapsulation. This prevents hand-written implemen-
tation software from corrupting the widgets’ internal
data. Open Interface also supports inheritance, but it
doesn’t allow a widget to inherit capabilities from more
than one parent widget type—that is, it doesn’t have
multiple inheritance, but it does have basic
polymorphism. By using the inheritance mechanism,
the developer can build custom widgets that share
common characteristics and can thus be integrated more
easily into an application framework.

USING EXISTING TEXT-BASED SOURCE MANAGEMENT
TOOLS. All GUI components, such as message files and
resource files, that are developed under Open Interface
are stored as text, not just C source code. Neuron Data
uses ANSI C as its target language, since it is most
directly portable and widely implemented. Unfor-
tunately, the C language is not completely amenable to
object orientation, which gives rise to the limitations in
Neuron Data’s object approach. When C++ standards
are finalized, we expect Neuron Data to move quickly
in that direction. The message files and other GUI
resources that are stored in text form can be managed
under a version control facility like SCCS or RCS along
with the C source code. For use at run-time, Open
Interface includes a resource compiler that builds
resource files into a more efficiently-used binary
format.

INTERNATIONALIZED TEXT CAPABILITY. In most software,
the text labels, questions, and messages seen on the
screen are fixed. The developer has programmed the
messages directly into the source code. Consequently, it
is difficult to make the software usable for those who
speak other languages. Neuron Data addresses this
problem by supporting the definition of message
libraries. All text that an application presents to the user
can be compiled into a file. Using a special filter
program, the developer or integrator can generate

different versions of the file with messages in different
languages. While it might be preferable to have an
“internationalization editor,” allowing GUI entry of
foreign-language messages right next to their developer-
language versions, Open Interface’s approach is
adequate. The internationalization mechanism supports
non-roman character sets like Cyrillic and includes
multi-byte sets like Japanese Kanji. Unfortunately, text
can only be written left-to-right today, which excludes
the right-to-left Semitic languages like Hebrew and
Arabic. Apart from this, however, Open Interface’s
internationalization is comprehensive and serves
multilingual application projects admirably.

AP! ALLOWS EXTENSIONS, PORTABLE WIDGETS ... While
support for standard widgets is necessary for GUI
programming, it is not sufficient. Specific
applications—such as cash flows, network management,
or customer information—should have distinct widgets
as a part of the GUI. Ordinarily, the application
developer would have to implement these capabilities
using the drawing primitives of the native windowing
system on each target platform—largely bypassing the
user interface toolkit. This represents a severe
compromise to application portability. To address the
need for widget extension, Neuron Data has developed
a portability layer—implemented as an API—which is
identical on all targets. This layer, called the Virtual
Graphics Machine (VGM), consists primarily of
drawing primitives, plus some windowing functions.

Understandably, the VGM is not a superset of all
platform-specific drawing tools. However, it does allow
the developer to build existing GUI widgets into new
types of widgets. To build the examples mentioned
above, a bar-graph widget could illustrate cash flows, a
line-drawing widget with some sort of routing indicators
could show network topology, and customer
information could show maintenance schedules along a
time line. The payoff of this approach is near-complete
GUI portability. Not only will Open Interface support
the developer in creating new widgets, but also the new
widgets are inherently portable across all supported
platforms.

...BUT REQUIRES A SPECIAL RUN-TIME. Open Interface
applications run on a special run-time library. Neuron
Data’s software is considerably more optimized than
standard Motif and OpenLook widget libraries. Almost
all Open Interface widgets are actually *“‘gadgets”—to
use the X terminology—because they are not built using
the window primitives of X. Neuron Data took this
route to cut out the high overhead of X Window
primitives, and it has added programming workarounds
to flesh out standard widget functionality. The result is
performance that matches and often surpasses that of

OPEN INFORMATION SYSTEMS Vol. 7,No. 7

Important: This report contains the results of proprietary research. Reproduction in whole or in part is pronibited. For reprints call (617) 742-5200. 27

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

the standard widget libraries. Applications running
under X, moreover, are smaller than native applications,
and library sizes are smaller.

The downside of Open Interface’s powerful run-time is
that it adds more layers to GUI software and supersedes
standard GUI implementations. An application can
behave differently from standard look-and-feel
specifications, which is particularly bothersome when it
runs side-by-side with native applications. Worse, it
must be licensed for each machine on which it is run,
adding to the cost. And while X hostings of Open
Interface applications tend to be smaller and faster than
ordinary Motif and OpenLook applications, the
wholesale replacement of look-and-feel code makes
applications running on the Macintosh larger than
native applications.

Neuron Data packages its run-time library in shared-
library form whenever the platform supports shared
libraries. This includes most Unix hostings, VMS,
Windows 3.x, and OS/2. This approach reduces
application size on these particular platforms. While
shared libraries are often a hassle to administer from
the standpoint of shared memory parameters and file
configuration, they can significantly improve memory
and disk space management by reducing application
size.

Enhancements in Open Interface 2.0

NEW WIDGETS AMPLIFY GUI COMPONENTS. Neuron Data
has taken some of the initiative in developing GUI
functionality beyond what is provided in the standard
GUI toolkits. These basic widget sets include primitive
interface components, such as buttons and text fields, as
well as higher-level components, such as pull-down
menus and scrolling lists. Open Interface 2.0 gives
developers additional functionality in grouping and
organizing existing widgets. Version 2.0 includes an
enhancement of its “List Box” widgets, which
implement various forms of row-column organization of
data and can be used to build spreadsheet programs.
The enhancements allow the display attributes of a List
Box cell or range of cells to be changed from the
attributes of the rest of the List Box. The List Box also
allows more sophisticated input handling; about all it
doesn’t do now is clone the 1-2-3 macro language for
you. A new Scrollable Panel extends a panel widget
beyond the dimensions of its enclosing window. The
extended area is accessed by using scroll bars. This is
onec of those “why didn’t someone do that before?”
capabilities. A “Choice Box” widget set allows
selection of an item from a list—but not just a list of
text strings. The Choice Box can allow selection of
icons for things like drawing tools or text attributes. It’s

a natural for implementing tool palettes. Other widgets
from Open Interface 1.0 have been enhanced in a
similar fashion.

UPDATES TRACK SUPPORTED PLATFORMS. Since the first
release of Open Interface, some of its supported
platforms have had software upgrades. Open Interface
2.0 includes enhancements to adapt to the release of
Microsoft Windows 3.1 and IBM OS/2 Version 2.0.
Windows support now includes Win32 and TrueType
font-rendering. Open Interface can also build software
for 32-bit-mode OS/2 operation. Unfortunately, it has
been scooped by the recent release of OSF/Motif 1.2;
customers needing Motif 1.2 compliance will need to
wait for the next release or a software patch. Tear-off
menus and drag-and-drop will have to wait until the
next release of Open Interface.

POSTSCRIPT TOOLS GIVE WYSIWYG PRINTING TO UNIX
APPS. High-resolution printing of text and graphics was
the enabling technology for desktop publishing, but the
Unix community is largely left out. The PostScript
imaging mechanism pioneered on Macintosh and
embraced by DOS and Windows has not been
standardized under Unix, which has resulted in few
PostScript-aware Unix applications. Part of the
difficulty is the fundamental difference between X
Window imaging, which is bit-mapped, and PostScript,
which is a higher-level abstraction. Under PostScript, if
you draw a one-inch by one-inch square, it comes out
that way on any printer. But under X, if you draw a
100-pixel by 100-pixel box, it can be displayed in
practically any size and shape. Open Interface 2.0
supports a PostScript printing capability that is
transparent to the application. By changing a switch,
VGM rendering commands that would ordinarily drive
a screen display are changed to generate a PostScript
file. This relieves developers of having to generate their
own PostScript printer files.

OPEN EDITOR NOW EDITS CUSTOM WIDGETS. Under Open
Interface 1.0, developers could create new widgets but
could not edit or adapt them with the tool’s Open
Editor. Since sizing and customization are part of the
way GUI builders earn their keep, this inability to
modify custom widgets was a serious deficiency in the
product. Open Interface 2.0 has augmented the Open
Editor so that custom widgets can be placed, sized,
reshaped, colored, and otherwise modified just like
those supplied by Neuron Data.

STRENGTHENED CODE MANAGEMENT. No matter how
powerful the GUI builder, it won’t write your entire
application for you. Open Interface, like its competitors,
still requires coding the application logic in C. All of
these tools generate stub code into which the developer

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-6200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7

. OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

writes the implementation of the various functions.
Once the stub has been fleshed out into a full source
file, other GUI builders can’t handle it any more. And if
the developer has to change the GUI, the stub code must
be regenerated and source text from the prior
implementation must be pasted in and adapted. Open
Interface 2.0 keeps these program texts in the
development loop. GUI alterations are propagated to
implementation code without damaging the handwritten
portions of software. This eases maintenance of GUI
definitions and implementation code. Added to its
textual representation of GUI resources, these features
give Open Interface superior project management
capabilities.

Cheaper on the Desktop, Too. One nontechnical change
is a significant reduction in run-time license fees. Run-
times have been lowered from $250 to $95 for the PC
and Mac, and from $500 to $190 on other systems. We
feel that this makes Open Interface a much more
realistic choice, especially for developers. The previous
pricing structure simply couldn’t be handled by ISVs
trying to sell shrinkwrapped applications, even with
bulk or bundling licenses. This reduction in run-time
fees makes it feasible to use Open Interface for
commercially sold applications.

Who’s Committing to Open Interface?

NUMEROUS LICENSES—MOSTLY LARGE END-USER
ORGANIZATIONS. Neuron Data has piled up the
impressive figure of 100,000 run-times since its first
release in June 1991. Most of these licenses have gone
to large corporations for in-house application
development. Neuron Data’s customer list reads like the
Fortune 1000, which is, in fact, a primary target market
for Open Interface. For these companies, multiple
desktop platforms are a fact of life, and Open Interface
promises to bring some unity and order without
compromising functionality. Unfortunately, a lot of the
business in that market boils down to client/server
database applications running on PCs and using some
sort of mainframe data storage. However, several solid
graphical database application builders have already
staked out this market with GUI builder products. We
suspect Open Interface will find limits to penetration
except where there is already a significant number of
Unix workstations. Indeed, customers cited by Neuron
Data are largely in the engineering or financial
industries, which do have significant Unix workstation
penetration.

WHERE ARE THE APPLICATIONS? While Open Interface
promises a brave new world, it will be off-the-shelf
applications that deliver it. Such applications, however,
remain rare, and Neuron Data can’t give out the names

of unannounced products or their developers. A product
like Open Interface should really be paying off in
several applications already. But where are they? In our
view, many of the ISVs have largely gone ahead with
their own GUI efforts, which may not be compatible
with Open Interface. Of course, the aforementioned
qualms about portability and the perennially cash-
starved nature of the Unix software market might also
explain vendors shying away. But what we suspect is
that a not-invented-here attitude prevails. Developers
may simply not want to be dependent on another
software company.

SOME ISVS AT WORK. Unfortunately, participation of
independent software vendors in the Open Interface
revolution is rather sparse. Neuron Data’s biggest
success so far is ARC-VIEW, from Environmental
Systems Research Institute (ESRI) in Redlands,
California. ESRI is one of the leading providers of
Geographical Information Systems, and it believes
Open Interface helped ARC-VIEW get to market much
faster than it would have otherwise. American
Management Systems is also developing products with
Open Interface. Two aren't exactly a flood, but these are
good, solid companies. Open Interface is moving well
in Japan, however, a key payoff of its multi-language,
multi-alphabet internationalization.

INTEGRATORS: KEY TO BROADER MARKET PENETRATION?
The capabilities of Open Interface were really seized by
system integrators. Customers like Anderson Consulting
and EDS constitute a testimonial to Open Interface.
Consultants and integrators don’t take the time for
setting corporate policies or for building from scratch.
To have custom applications come out identically on
multiple platforms with a short development time may
catch the interest of large purchasers and developers
more than a laundry list of features. The upscale
integrators are, in our view, the acid test of Open
Interface.

Conclusions

Fills Some Important Gaps in X

Like Consistency. One of the serious defects in the
common X Window programming model is that it is an
amalgam of components operating at different levels.
Even using a GUI builder, the developer may have to
code to the look-and-feel toolkit, the basic X Window
toolkit, the Xlib interfacc—even to socket-level
functions—in the same application. In contrast, the
Open Interface toolkit is completely self-contained.
There are few rcal reasons, if any, to go outside the
toolkit. Open Interface provides the comprehensive and

OPEN INFORMATION SYSTEMS Vol. 7, No. 7

Important: This reporl contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 29

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

consistent interface that none of the Unix/X Window
vendors provide.

And Profitability. Another minor benefit Open Interface
brings to X Window is the possibility that ISVs will
make decent money. If a vendor can deliver on
Windows and Macintosh, it could earn enough money
to support on-going development that would pay off on
X-based systems as well. The Windows/Macintosh
market is as much as two orders of magnitude larger
than the Unix desktop market. Open Interface allows
Unix vendors to bring their products into this
considerably more lucrative arena. We hope they have
enough breadth of vision to make use of it. Or is it just
pragmatism they require?

POWERFUL DEVELOPMENT AND ORGANIZATIONAL
FRAMEWORK. The principal lessons that Open Interface
and other GUI builders embody are that programs are
built from more than source code and that each
component should be built with an appropriate tool. The
dreary chore, inevitable in early X Window develop-
ment, of constructing pixel coordinates and bit-map
data in source code, is not only time-consuming but
inappropriate to the data being devised. Bit maps aren’t
numbers; they’re images. Pull-down menus aren’t null-
terminated arrays of strings; they’re pull-down menus.
Text messages aren’t character arrays; they’re mes-
sages. By supporting the partitioning of applications
into distinct types of components, Open Interface is not
only speeding development, it is also improving soft-
ware organization.

PORTABILITY AND COMPLIANCE A QUESTION MARK.
Notwithstanding its strengths and its flexibility, a
product like Open Interface sometimes goes against the
grain in the Unix market. Portability is such an innate
concern that programmers often shy away from third-
party software libraries like those in Open Interface—
after all, it doesn’t run on AT&T 3B2s. (What? You
don’t even remember the 3B2?) Perhaps more to the
point, since its implementation omits standard run-times
for look-and-feel specs, it could fall out of compliance
with those specs. However, we feel such concerns are
really immaterial. End users are little affected by minor
deviations in look-and-feel and often want the best of

all worlds anyway. And scrupulous developers should
think about the piles of Windows PCs and Macintoshes
they can support by “compromising” their portability.

HOW FAST CAN DEVELOPERS ABSORB AND MASTER IT?
Neuron Data has clearly driven toward a portable GUI
model that embodies heavy emphasis on high-level
abstraction. It also embodies broad and varied
functionality lifted from its supported platforms. Both
characteristics will create a steep learning curve for the
rank-and-file developer in creating applications. Simply
navigating a widget set can be a daunting experience,
even in single look-and-feel GUI builders. Under-
standing in entirety all of Open Interface’s libraries
could be a very long process. The abstraction of Open
Interface’s add-on widgets, however, poses a different
problem. The power in these widgets is veiled under an
API that is deceptively simple but extremely, though
subtly, rich. Neuron Data found that its Open Interface
1.0 customers didn’t perceive all of the functionality
they were getting, so Release 2.0 has substantial
amounts of example software bundled in. Nonetheless,
we feel it will take some time for developers to really
leverage the capabilities of Open Interface.

IMPORTANT PIECE OF FUTURE PROGRAMMING. Open
Interface goes a step beyond current programming tools.
Not only does it build GUIs for multiple platforms—
and very disparate ones, at that—it also structures
applications to grow into new computing environments,
like the workgroup-centered initiatives at Apple and
Microsoft, and the distributed Unix environments like
ONC and DCE. It brings GUI programming out of the
text editor and lifts it above the GUI wars to where it
should be: delivering functionality and usability to the
end user. Open Interface 2.0 brings the promise of its
first release closer to completion. GUI extensions are
more thoroughly supported, the add-on widget set has
been enlarged and enhanced, and niceties like
PostScript printing are fleshing out the end-user
capabilities available under the product. In our view,
Open Interface is not only a valuable product, but it also
could become the key to preserving the Unix beachhead
on the desktop market. —A. Wolfe

30

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 7

Vital
Information

Complete
Details

When
You
Need it

New
Format!

©060
o

©00

Special Research Reports

From Patricia Seybold Group

Patricia Seybold’s Special Research Reports give you the detail
and depth of books and the timeliness of magazines.

Unix Relational Database Management 1992/93
Vendor Strategies, DBMSs and Applications Development Tools

By Judith R. Davis Full Report Available Spring, 1993 $595
Quarterly Updates of Comparison Matrix $595
Report and Quarterly Comparison Matrices $795
One Comparison Matrix of Your Choice $200

The third version of this well-respected and popular report continues to cover the
marketing strategies of the major Unix relational database vendors: Ask/Ingres,
Informix, Oracle, Sybase, Progress, and rising contender Borland/Interbase. Now for the
first time, Patricia Seybold Group gives readers the ability to receive the information in
this report in a more flexible and timely manner to suit a variety of research needs.
Because the product comparison matrix has proved to be invaluable to readers consis-
tently following this market, we are offering the chart as a separate or bundled product.
Readers can still receive the chart in the full report, or they can buy the chart separately in
quarterly updates.

The Full Report. This includes an in-depth analysis of corporate strategy, product
strategy, and positioning for each vendor, a review of product architecture for both the
database engine and the application development environment, and a product comparison
matrix.

Product Comparison Matrix. The report has always included an additional section which
is an exhaustive comparison matrix of the features, functions, and architectural character-
istics of each product. The matrix includes such categories as file structure, database
parameters, user interface capabilities, data types, indexing, forms, architecture type,
SQL statements, report writers, application development tools, and more.

The Report, the Matrix, or Both. Readers can now follow the progress of the database
products as the vendors make enhancements, via quarterly updates of the report’s
detailed matrix. The first chart update is ready this June, with one to follow each quarter.
Other readers may choose to wait until the spring of 1993, to read the report in its entirety.
Choose the option that aligns with your database research requirements.

« Receive the product comparison matrix section of the report separately, four times
per year as we update the chart to reflect vendor product updates, OR

+ Receive a matrix update each quarter and the final report in the Spring of 1993, OR
» Receive only the final report in the Spring of 1993, which includes the final matrix

For More Information, Fax (617) 742-1028 or Call (617) 742-5200.

Patricia Seybold’s Computer Industry Reports

M ORDER FORM
U.S.A. Canada Foreign

Please start my subscription to:

(] Patricia Seybold’s Office Computing Report 12 issues per year $385 $397 $409
(] Patricia Seybold’s Unix in the Office 12 issues per year $495 $507 $519
(] Patricia Seybold’s Network Monitor 12 issues per year $495 $507 $519
(] Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution 6 issues & tapes per year $395 $407 $419
(] Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution 6 issues per year $295 $307 $319

(] Network Monitor (] Office Computing Report
U] Unix in the Office [Paradigm Shift—Patricia Seybold’s Guide to the Information Revolution

(] Consulting (] Special Reports] Conferences

Please send me
a sample of:

Please send me information on:

] My check for $ is enclosed. [] Please bill me. [] Please charge my subscription to:

Name: Title: Mastercard/Visa/American Express
ame: itle: (circle one)

Company Name: Dept.: Card #:

Address: Exp. Date:

City, State, Zip code, Country: Signature:

Fax No.: Bus. Tel. No.:

Checks from Canada and elsewhere outside the United States should be made payable in U.S. dollars. You may transfer funds directly to our bank: Shawmut Bank of Boston,
State Street Branch, Boston, MA 02109, into the account of Patricia Seybold's Office Computing Group, account number 20-093-118-6. Please be sure to identify the name of
the subscriber and nature of the order if funds are transferred bank-to-bank.

Send to: Patricia Seybold’s Office Computing Group: 148 State Street, Boston MA 02109; FAX: 1-617-742-1028; MCI Mail: PSOCG

To order by phone: call (617) 742-5200

108-792

Topics covered in Patricia Seybold’s Computer Industry Reports in 1991 & 1992:
Back Issues are available, call (617) 742-5200 for more information.

Office Computing Report I

1991—Volume 14

Date Title

10 Oct. Positioning Windows Word Proces-
sors—Looking Beyond a Set of Fea-
tures

11 Nov. Keyfile—Bringing Imaging and
Workflow to the Desktop

12 Dec. IBM/Lotus Relationship—Building
a Platform for Communicating
Applications

1992—Volume 15

The Groupware Phencmenon—Does

It Focus on the Proper Issues?

2 Feb. Digital’s TeamLinks—A Renewed
Focus on the Client Desktop

3 Mar. Requirements for Workflow—What
Should We Expect from the Vendors?

4 Apr. Desktop Multimedia—Moving
beyond the Chicken and the Egg

5 May Borland International—A Database-
Centric, Object-Oriented Approach to
Desktop Integration

6 June Apple’s Macintosh—Can It Become
“the Cadillac of Collaboration”?

7 July BusinessIntelligence—A Framework
for Data Analysis Applications

1 Jan.

G Printed on recycled paper.

UNIX in the Office I

Network Monitor I

1991—Volume 6

Date Title

10 Oct. OSF's ANDF—The Key to
Shrinkwrapped Software?

11 Nov. The SQL Standard—Can It Take Us
Where We Want to Go?

12 Dec. Positioning Desktop Options—
How Does Unix Fit in the Client

Environment?
1992—Volume 7
1 Jan. Downsizing with Open Systems—
Can Unix Symmetric Multiprocess-
ing Systems Meet MIS Require-
ments?
2 Feb. System V.4 and OSF/I—Matching

up in the Marketplace

3 Mar. Europe’s Harness Project—Inte-
grated Technology for an Open, Ob-
ject-Oriented, Distributed Applica-
tions Platform

4 Apr. The X Window System—Where is
Its Future?

5 May HP’'s Master Plan—Winning Is Ev-
erything in Palo Alto

6 June Digital’s DECworld Gems—Alpha
and Accessworks Shine

L Open Information Systems

7 July Integrating Applications in the Real
World—Evolution, Not Revolution

1991—Volume 6

Date Titl

10 Oct. OSF DME: The Final Selections—
OSF Chooses an Object-Oriented
Management Platform

11 Nov. ANSA—A Model for Distributed
Computing

12 Dec. PowerBuilder—Graphical, Client/
Server Database Applications Tool

1992—Volume 7

Securing the Distributed Environ-

ment—A Question of Trust

HyperDesk DOMS—A Dynamic

Distributed Object Management and

Applications Development System

3 Mar. Smart Hubs—Establishing a Man-
ageable Internet Foundation for Dis-
tributed Computing

4 Apr. Message Express—A Message Plat-
form for Cooperative Processing

5 May Novell NetWare 4.0—Building to-
ward an Enterprise Distributed Ob-
ject Computing Environment

6 June Distributed Printing—Major New
Approaches Begin to Relieve One of
Distributed Computing’s Most Frus-
trating Problems

[Distributed Computing Monitor

2 Feb.

7 July The New E-Mail APIs—Finally,
Real Progress toward Mail-Enabled
Applications

