Patricia Seybold
Group

Editor-in-Chief
Michael A. Goulde

INSIDE

OPEN
INFORMATION
SYSTEMS

Vol. 7, No. 8 « ISSN: 1058-4161 * August 1992

EDITORIAL
Page 2

Open Systems and Sys-
tems Integration: Al-
though assembling custom
systems from standard
components, one of the
hallmarks of open sys-
tems, would seem to be
simple, it is a highly com-
plicated challenge. Users
are skeptical astowhether
systems integrators will
preserve the benefits of
open systems.

ANALYSIS

Page 20

Crossroad and Super-
NOVA are products that
help develop distributed
applications. Each uses a
different approach to de-
liver cross-platform inter-
operability and support for
existing applications.
e OSF’s Motif has been
upgraded in Release 1.2.
OSF’s GUI product intro-
duces new capabilities for
ease of use and ease of
development. But at what
cost to licensees? « Letter
tothe Editor: Evidence for
the argument that X termi-
nals make far superior X
Window devices than PCs.

Windows NT 3.1

Microsoft’s Bid for Desktop Dominance

By Michael A. Goulde

IN BRIEF: Now that the technologists have nearly completed their
work on Windows NT, Microsoftis revving up its marketing machine
for a frontal assault on the competition. Its new multithreaded,
multitasking, operating system has peer-to-peer networking built in,
and it supports symmetric multiprocessing designs. Promising ro-
bustness, security, integrity, and compatibility, Windows NT will
challenge Unix, NetWare, and OS/2 for dominance on both desktops
and servers. In addition to serving as the high-end implementation of
Microsoft’s palmtop to data center strategy, Windows NT is the focal
point for its open systems strategy. However, the definition of open
systems that Microsoft prefers is not one that will win it many friends
among proponents of POSIX standards. Report begins on page 3.

© 1992 by Patricia Seybold Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express written permission.

EDITORIAL: BY MICHAEL A. GOULDE

Open Systems and
Systems Integration

Building Custom Solutions from Standard Parts

SYSTEM INTEGRATORS have always
lived at the bleeding edge, blending
immature technologies together to deliver
working solutions to customers. For many,
open systems are at the bleeding edge, and
we see an increasing number of integrators
publicizing their capabilities to deliver
them.

When considering whether or not to use
a system integrator, users often fear that the
integrator will have to build customized
pieces and “glue” in order to make all of the
parts work together. Behind this fear are
concerns that the finished system will be
difficult or impossible to maintain and that a
costly and constraining dependency on the
integrator will develop. In the past,
integrators didn’t necessarily object to that
dependency, since it meant that a steady
revenue stream could be generated from
follow-on enhancements.

The open systems movement is
beginning to change this picture. To the
extent that standard interfaces exist between
various components of a new system,
individual pieces can be mixed and matched
to build customized solutions. The principle
isn’t really different from the way Leggo
blocks work. These plastic building blocks
adhere to an interface definition, and,
although they come in specific shapes and
sizes, they can be assembled into an infinite
variety of toys. In a similar fashion, an
infinite variety of applications can be built
with open systems products that comply

with standard interface definitions.

What does this mean for systems
integrators? It could be viewed as a threat,
since their specialty is to make irregularly
shaped blocks fit together in a workable
fashion. If open systems products comply
with standard interfaces, then anybody
should be able to assemble them. It is not
that easy, however, as applications and the
tools to build them become ever more
complex. The role of the system integrators
is now shifting more toward making what
should work actually do so and less toward
making the impossible possible. Com-
plexity, not incompatibility, is becoming
their bread and butter.

First, however, system integrators have
to adopt open business practices. This
means that they have to be willing to
support open systems standards and the
products that implement them, to build
solutions around open systems interfaces,
and to be equally willing to transfer the
knowledge and expertise necessary for
maintaining and upgrading these systems to
their customers. In some sense, open
systems integrators have to be willing to
leave their customers in the position of
having high-quality, maintainable systems
and never having to use their services
again. This new breed of open systems
integrators is emerging, and demand for
their services will continue to grow. Users
really can’t afford any other approach. ©

OPEN

INFORMATION

SYSTEMS

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITH R. DAVIS
ROSEMARY B. FOY
DAVID S. MARSHAK
RONNI T. MARSHAK
JOHN R. RYMER
ANDREW D. WOLFE, JR.

Art Director
LAURINDA P. O'CONNOR

Sales Director
PHYLLIS GUILIANO

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONALD K. BAILLARGEON

Patricia Seybold Group
148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Intemnet: psocg@mcimail.com
TELEX: 6503122583

Open Information Systems (ISSN
0890-4685) is published monthly for
$495 (US), $507 (Canada), and $519
(Foreign) per year by Patricia
Seybold Group, 148 State Street, 7th
Floor, Boston, MA 02109. Second-
class postage permit at Boston, MA
and additional mailing offices.

POSTMASTER: Send address

changes to Open Information Systems,

148 Sute Street, 7th Floor, Boston,
MA 02109.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, cail (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

¢

FEATURED REPORT: BY MICHAEL A. GOULDE

Windows NT 3.1

Microsoft’s Bid for Desktop Dominance

Microsoft’s Path to the Future

The Windows NT Professional Developer’s Conference held in early July was not merely a
meeting about a new product; it was a coming-out party for the technology that will become
the focal point of Microsoft’s strategy for the next decade. That strategy is to have a single,
scalable Windows architecture with different implementations for different platforms. If this
strategy sounds familiar, that is because it is patterned closely after the “single VAX
architecture—multiple implementations” strategy that brought Digital so much success in
the 1980s. The architecture that Microsoft is betting on is the Win32 application
programming interface (API) that will be implemented at the low end in Windows for DOS,
in the midrange in Windows for Workgroups, and at the high end in Windows NT.
Applications written to the Win32s API, a subset of the full API, are meant to be upwardly
compatible across all platforms.

The high-end implementation, Windows NT, is a fully preemptive, multitasking,
multithreaded, 32-bit operating system. It is contemporary in design, much like OSF/1 1.0
based on Camegie Mellon’s Mach 2.5, but not revolutionary. It has a microkemnel, like
Camnegie Mellon’s newest version of Mach, 3.0, but many of its services run in privileged
space rather than in user space. (Privileged space is where high priority operating system
code runs, while user space is under control of the kernel.) The advantage of services in user
space is that extending the system is easier. That can also be a great disadvantage when
consistency and compatibility are an issue. However, when compared to OS/2 2.0 and Unix
System V Release 4, Windows NT is highly modular, has implicit support for symmetric
multiprocessing, and relies on dynamically linked libraries (DLLs) to implement a great
deal of its functionality.

LAN Manager Takes on a New Role

NT could just as well stand for Network Technology. Unlike previous Microsoft operating
systems, Windows NT is designed to provide complete networking capabilities without
requiring any additional software. Theoretically, there is no limit to how many Windows NT
machines can participate in a network. Instead of having to install a LAN Manager package
on a server to enjoy file, print, and other network services, Windows NT machines get those
services from one another. In fact, the new LAN Manager for the Windows NT package is
just what its name implies: management capabilities for LANs over and above what is in
Windows NT. LAN Manager offers services to help configure and manage large networks
and network resources. It adds robustness to those services and additional security. LAN
Manager for Windows NT should probably have a different name, but the name was
retained to indicate the degree of compatibility that exists between old LAN Manager
server-based networks and Windows NT networks with LAN Manager services. This
compatibility exists in spite of the fact that LAN Manager for Windows NT shares no code
with LAN Manager for OS/2. On the other hand, Windows for Workgroups, based on
Windows 3.1 and interoperable with Windows NT, uses a lot of LAN Manager for OS/2
code.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Important: This report contains the results of proprietary research. Regroduction in whale or in part is prohibited. For reprints call (617) 742-5200. 3

Implementing the Windows Strategy

Implementing the Windows Strategy

Windows has been central to Bill Gates’s vision ever since Steve Jobs showed him a
Macintosh prototype. Gates’s, however, has always been a software vision. While control
over hardware design has allowed Apple to implement features that Windows hasn’t been
able to, like knowing when a floppy disk is inserted in a drive and ejecting floppies from a
drive under software control, the Microsoft software strategy has isolated it from the ups and
downs of the PC hardware business. In many ways, Windows NT further isolates Microsoft
from underlying hardware, expanding the range of platforms for which it can provide
system and application software.

The Goals behind the Design of Windows NT

Development of Windows NT began in earnest in 1988 as a follow-on to the portable OS/2

work that Microsoft had been doing with IBM, David Cutler, an engineer hired from Digital
Equipment Corporation after the portable VMS project he was working on was canceled,
convinced Microsoft that it needed to develop a much better design than portable OS/2 as it |
was shaping up at that time. This led to the company’s setting key design objectives in |
several areas, including portability, security, compatibility, extensibility, robustness, support |
for symmetric multiprocessing, connectivity, and internationalization.

Portability from iIntel to RISC. Portability across different processor architectures was seen
as critical. The ancestor of Windows NT was Portable OS/2, designed in the days when IBM
and Microsoft were close development partners. The original Portable OS/2 was primarily
targeted as a port to IBM’s Power Architecture. When Microsoft and IBM parted, the
emphasis for the new operating system shifted to being more than a port—it had to be
highly portable. At the time of Windows NT’s conception, RISC processors were on a much
steeper performance curve than Intel’s CISC processors. Since Unix operating systems have
always dominated RISC, Microsoft needed to have an operating system that could run on
RISC at least as well as it ran on the Intel architecture. Early development for Windows NT
was actually done on Intel’s 1860 RISC processor instead of Intel’s x86 in order to prevent
developers from falling prey to x86 instruction set contamination. Serious work on the 1860
ended when it became clear that it would not emerge as a popular general purpose
processor. Focus shifted to the MIPS R3000/R4000, in part because, if the R4000 had been
available on schedule, it would have offered significant performance advantages over the
next generation x86 processor and also because MIPS didn’t compete with Microsoft neither
in system software as Sun or IBM did, nor in object-oriented technology as did Hewlett-
Packard. Current Windows NT development work includes ports to the Intel 386/486, MIPS
R3000/R4000, and Digital’s Alpha processor architectures.

Security at the C2 Level. NT is designed from the kernel up to qualify for Department of
Defense C2 certification in its initial release. C2 specifies discretionary access controls on
all potentially sharable objects through the use of access control lists (ACLs). This
requirement is met in part through a new file system, NT File System (NTFS), which allows
permissions to be assigned to files. This capability does not exist either in the DOS FAT file
system or OS/2’s HPFS. The kernel is designed to provide the pieces necessary for security
at the B2 level, which specifies mandatory access controls. However, actual implementation
of B2 is much further down the road since B2 would cause problems with functions like
DDE and windowing. It is more likely that a third party would license and use the Windows
NT kemnel to build a B2 secure system than it is for Microsoft to do so—at least for the next
few years.

Compatibility with Existing Applications. The ability for the new operating system to run
DOS and existing Windows 3.1 applications unmodified was a key requirement. DOS on

4 Important: This report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call {617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

The Goals behind the Design of Windows NT

Intel was simply a matter of using the virtual machine capability of the 180386 and above.
On RISC architectures, the easiest way to support DOS was to license an emulator from
Insignia Solutions, Lid. (Wycombe, UK). Windows NT was also designed to support
character mode 16-bit OS/2 applications, but only on Intel platforms, not on RISC.
Microsoft claims that OS/2 is too dependent on features of the Intel architecture to make
trying to support those applications on MIPS or Alpha worthwhile. Limiting OS/2 to Intel
also happens to be a way for Microsoft to limit the appeal and spread of OS/2. It may also
help channel some OS/2 development to Windows NT. Presentation Manager support for
0S/2 applications is under development for 1993, but it is not planned for the first release.
LAN Manager compatibility is ensured, and both FAT and HPFS file systems are brought
forward with Windows NT.

Extensibility without Compromise. An important consideration was to allow extensions to
the operating system without requiring the addition of privileged code. This characteristic
allows Windows NT to support subsystems, like POSIX, 0S/2, and DOS, without their
conflicting with one another. This is in contrast to NetWare, in which all NetWare Loadable
Modules (NLMs) run in privileged mode. Windows NT does support certain privileged,
kemel-level extensions, however, for components like device drivers, installable file
systems, and installable network redirectors. This allows the operating system to be
enhanced without having to change the basic system. The mechanisms that support these
extensions prevent compromising the integrity of the system.

A Robust Environment. DOS and Windows have been notorious for their lack of robustness,
often due to applications overwriting the address spaces of one another. To help correct this,
every process that runs under Windows NT has its own separate address space. This helps
prevent poorly behaved applications from crashing the system. In addition, per user quotas
on system resources are used to help protect those resources from being monopolized. In
addition, all APIs return an error status, and exception-handling has been improved by
employing a structured approach.

Symmetric Multiprocessing for More Power. While uniprocessor designs have been
sufficient throughout the PC era, symmetric multiprocessing (SMP) designs will become
increasingly prevalent for high-end workstations as well as for servers. In recognition of
this, SMP support is built into the basic architecture of Windows NT. The same release will
support from 1 to 16 processors of like type in the same system. Each vendor of a
multiprocessor machine will supply its own Hardware Abstraction Layer (HAL) for its
system, which presents a consistent view of various hardware implementations to the
operating system kernel. Microsoft will provide a number of HALs on the Windows NT
distribution media, including the Compaq SystemPro (which is a master/slave
multiprocessor design), NCR 3450 and 3550, the Wyse 7000i, and multiprocessor machines
from ALR and ACER. The Windows NT model is fully symmetrical, with uniform memory
access. Performance scales in a linear fashion with additional processors, and the kemel
executes on any CPU. Contention for CPU resources is handled by a fine-grained locking
mechanism.

Connectivity without NetWare. Windows NT represents Microsoft’s big chance to neutralize
the dominance of Novell’s NetWare in the PC networking market. The need for network
operating systems (NOS) came about because DOS is network oblivious. NetWare
succeeded in gaining market dominance primarily because Microsoft did not directly market
its networking technology, MS-NET, but relied on licensed OEMs like 3Com and Digital to
promulgate it. In the meantime, Novell built a dealer channel that overwhelmed its
competition and established NetWare as a de facto standard NOS. Now, Windows NT
virtually eliminates the requirement for using a NOS by integrating network functionality
directly in the operating system while providing additional functional and management
enhancements with LAN Manager for Windows NT. In fact, it is in the area of networking
interoperability that Windows NT is most closely aligned with open systems standards. In

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Impartant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 5

The Goals behind the Design of Windows NT

addition to running its NetBIOS protocol over IBM’s NetBEUI transport, Windows NT also
supports TCP/IP, includes TCP/IP utilities and an OSF DCE-compatible remote procedure
call (RPC), and supports SNMP for network management. For interoperability with
proprietary systems, IBM 3270 capabilities will be supplied by third parties. NetWare client
support, announced by Novell, will still allow Windows NT machines to access NetWare
Servers.

Internationalization. Worldwide markets are important to Microsoft, third-party developers,
and their customers. Internationalization support makes Windows NT easy to localize. All
strings in the Executive are in Unicode, and the Win32 API supports Unicode strings as well
as ANSI code pages. All system resources are Unicode strings, and there is C run-time
support for Unicode strings as well as for ANSI code pages.

Windows NT Architecture

Everything is an Object

In the architecture of Windows NT, the NT Executive sits above the kernel layer but still
within privileged space. In that regard, it differs significantly from Carnegie Mellon’s Mach
3.0 kemel architecture, which places most of the functionality found in the NT Executive in
the Mach user space. The more code that resides in user space, the easier it is to extend the
system and add value to it. In Windows NT, there are formal interfaces between every
component of the Executive, facilitating enhancement and extension of the operating
system—but on Microsoft’s terms. This kind of modularity is lacking in most of Windows
NT’s competitors.

The components of the Executive include object management, memory management, the
1/O subsystem, interprocess communication, process structure, and security.

The object management component of the Executive exports the functions necessary to
support the APIs that are used to build user (application) visible objects, including
processes, threads, events, and files. Object handles are assigned on a per process basis, and
access validation for objects is provided by access control lists associated with each object.
Before any action takes place on an object, an access check is made.

The Unicode Standard

Early in 1988, a group with extensive experience in multilingual computing, agreeing that
there was no encoding methodology that possessed the elegance and simplicity of ASCII,
established the Unicode character encoding as a fixed-width, 16-bit encoding. This system
was intended to provide a sufficient number of unique codes for all the world’s scripts and
commonly used technical symbols while promoting efficient and flexible system design.

In January 1991, the Unicode Consortium was incorporated as Unicode, Incorporated, a
nonprofit organization chartered with maintaining and promoting the Unicode standard
worldwide. The consortium, working in conjunction with the International Standards
Organization (ISO), went on to merge Version 1.0 of the Unicode Standard with the 32-bit,
character-encoding standard that ISO was working on, ISO DIS 10646. A proposal for the
merger of the two standards was approved by ISO in 1991, and the final standard was
accepted in July 1992,

The framework for the actual encoding in ISO 10646 provides for the Unicode standard as a
2-byte subset of a canonical 4-byte international standard character encoding. Version 1.0 of
the Unicode standard is being revised in Version 1.1 to reflect the merger with ISO 10646.

Important: This report contains the resuits of proprietary ressarch. Reproduction in wholg or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 8

Windows NT Architecture

Memory Management

1/0 Subsystem Supports
Large Files and Disks

Windows NT provides a 32-bit memory environment, in which the 4GB that are addressable
are divided equally between 2GB available for user processes and 2GB available for kernel
processes. Memory is demand-paged, and multiple paging files are provided, which allows
faster paging, especially when the striped disk option is used. It is the memory management
subsystem that exports memory-mapped files that applications can read for additional speed.

The file address space in Windows NT is 64 bits long, which means that it can manage over
18,000 terabytes of disk storage. It provides services for drivers and the file system through
a layered model with clearly defined and specified interfaces. Those interfaces related to
device driver development are published in the Microsoft Device Driver kit. Others may be
made available in the future. The operating system uses an integrated single global cache,
which is integrated with memory management. This eliminates the need to set cache size,
since the operating systems takes care of that.

NT Kernel Architecture

Abstractions Ensure
Compatibility

Preemption, Scheduling
and Synchronization

Multithreading

. Operations

The kemnel is the lowest layer in the Windows NT Executive. It provides processor
architecture-specific support, but not platform-specific support. It exports the APIs that the
rest of the NT Executive and everything else in the operating system are built on. (See
Illustration 1.) However, those APIs are not exposed to developers, restricting access Lo
kemel services on the one hand while protecting system consistency on the other. The
kernel implements scheduling and context-switching, multiprocessor synchronization,
exception- and interrupt-handling, and low-level hardware functions. About 80 percent of
the kernel code is machine-independent and 20 percent, machine-dependent. Of the portion
that is machine-dependent, about 10 percent is written in assembler, primarily portions that
deal with processor privilege operations, which are different for each processor supported.

The combination of the kernel, device drivers, and HAL constitute NT’s interface to the
underlying hardware functionality. HAL is platform-specific code that isolates the NT
Executive from platform-specific implementations of functions like I/O devices, DMA
control, bus mapping, clocks/timers, cache control, interrupt dispatches, and access to the
privileged architecture. This means that hardware designers will have much greater freedom
to innovate without having to worry about hardware compatibility. While this may create a
new market for Windows NT machines, it might make DOS and possibly even Unix support
of these innovative designs more difficult. As long as the hardware is properly abstracted to
Windows NT, compatibility is not an issue.

The kemel architecture is non-pageable (can’t take page faults), non-preemptable (not
context switchable), but interruptible, e.g., when servicing interrupts. The Executive itself is
multithreaded. It exports abstractions in the form of dispatcher objects and control objects.
Dispatcher objects control scheduling and synchronization. They have “signal” state and are
waitable. (“Signal state” means that they wait until satisfied. “Not signaled” means that they
wait until signaled.) The types of dispatch objects include threads, mutual exclusion, events,
semaphores, times, and event pairs. Kemel objects, like naming and security, are
encapsulated in executive objects before they are exported to user space.

Control objects provide Executive and device driver control. They are passive and are used
by the Executive and by device drivers. They have no “signal” state and are not waitable.
They include processes, interrupts, device queues, profiles, asynchronous procedure calls,
and deferred procedure calls.

Windows NT is multithreaded, and threads are a central part of the system. Threads are
execution agents which register a context. They are always associated with a process and
run in that process’s’ address space. They may have processor affinity, which is a subset of

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 7

NT Kernel Architecture

processors in a multiprocessing environment on which the thread can run. Affinity is system
control. It is not under programmatic control because the API controlling it is not exposed.

Wi ndOWS NT DAEMONS SERVICES ENVIRONMENTS APPLICATIONS

System Structure I_,S:e C

curity WordPerled]
Session Lotus
Manager Notes
Windows NT Executive
VO Systems Security Local Object Virtual Process
File Systems
Object management/executive run time
. . 1
Device Drivers [Hardware Abstraction Layer 1 Kernel
Platform Interface
//®] DMA Bus Clocks Cache lnterrugt Privileged
devices control mapping | Aimers control dispatc architectur

Nlustration 1. The Windows NT system has a privileged layer, the NT Executive, services
built on the interfaces provided by the Executive, and protected environments, such as
Win32, and POSIX. At the lowest level of the Executive, the Device Driver Interface, HAL,
and the Kernel interface to the actual hardware. Privileged mode services, such as 1/0,
Security, Object, and IPC services use services from underlying layers and provide
interfaces that user-level services can access.

HAL Layer: The ACE Legacy

HAL isolates Windows NT from specific hardware features, allowing Microsoft to supply a
shrinkwrapped operating system on a wide range of systems. It provides a uniform model
for device drivers, allowing the same driver to work on systems with different I/O
subsystems. Most importantly, it permits vendors to make system-specific optimizations
without concern for compatibility issues. Hardware dependencies are isolated in specific
components of the operating system, including the HAL, the kernel, and the management of
virtual memory.

HALs will be supplied by Microsoft for all PC-compatible computers and some SMP
machines. Otherwise, computer manufacturers will write their own HALs. Writing the
complete HAL for the Wyse 7000i, a three-processor machine, took just a few weeks,
according to the developer. HALs are small independent routines, Simple, fast linkage is
supplied as each is loaded and bound by the operating system loader.

Among the features that are abstracted in the HAL are the system bus, or buses. This means
that vendors no longer have to be limited to ISA, EISA, or MicroChannel, at least from a
software perspective. The direct memory access controller (DMA) is abstracted, eliminating

8 Important: Tris report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

HAL Layer: The ACE Legacy

the need for the PC standard 8237 chip. Similarly, the interrupt controller is abstracted,
eliminating the 8259 chip that currently provides that function in PCs. System timers
(8254), system-specific cache coherency, cache-flushing (even systems without DMA
coherence are supported), and system-specific SMP support are all handled in the HAL.

SMP: The Economical Route to High Performance

SMP Support included—
No Extra Charge

The Kernel Is Not Fault-
Tolerant

Optimum Designs Yield
Optimum Performance

Symmetric multiprocessing (SMP) has become an accepted design center for yielding
optimum price/performance (See Unix in the Office, Vol. 7, No. 1). Microsoft designed
Windows NT from the ground up to support symmetric multiprocessing designs. The first
release will support up to 16 processors. Windows NT runs a single copy of all its code—it
is just a question of which processor runs any particular process at any given moment in
time. There is also just one copy of the operating system data structures residing in memory.
Not just processes are location-independent; any thread, including device drivers, can also
run on any processor. Mechanisms in the kernel, such as spin locks, provide for simple,
automatic load-balancing, thereby speeding up both the operating system and applications.

There are two kernels provided with the NT distribution, a uniprocessor kernel and a
multiprocessor kernel. The uniprocessor kemnel doesn’t contain the functions that support
multiple processors, such as the scheduler. Otherwise, the rest of the Executive is the same.
If the operating system is being installed on a multiple processor system, the proper kernel
is picked up during the installation. Applications and device drivers are not affected by the
type of kernel installed.

Device drivers, if written according to Microsoft’s guidelines, are MP ready. The key here is
that the driver may be running on any processor in the system at any given time and can’t be
assured of running on a particular processor.

Unlike some Unix implementations, Windows NT is not tolerant of processor failures. If a
processor dies, so does NT. A machine like the Wyse 7000i running Wyse's Unix can keep
running if one of its three processors fails. However, that same machine running Windows
NT would fail completely. While processors don’t often fail, this is a consideration in some
applications.

Several design parameters characterize multiprocessor designs that benefit most from
additional processors under Windows NT. Each processor must have identical views of
physical memory, each processor must have identical access to devices; hardware must keep
caches coherent, and hardware must provide atomic references. In addition, each processor
must be able to interrupt any other processor, must support a periodic timer interrupt, and
must support a profile interrupt. One restriction in designs is that processor architectures
cannot be mixed. This means that 386 and 486 processors can’t be mixed either, since there
are several 486-specific instructions.

Going beyond the minimum requirements, better multiprocessor designs will have write-
back secondary caches, fast internal buses, a fast path to memory, and will implement
Scatter/Gather DMA in hardware. The latter function is carried out in the HAL layer in PC
designs, which introduces additional overhead and impacts secondary cache designs.

There are several multiprocessor designs on the market today that do not meet these criteria
and are not truly symmetrical in their designs. However, there are many others that do.
Windows NT will drive more vendors to provide SMP machines once its acceptance is
determined.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 9

Win32 API: The Next de Facto Standard?

Win32 API: The Next de Facto Standard?

Win32s Provides a Path
to Windows NT

Conceptual
Architecture of
Win32s

Although DOS, 0S/2, and POSIX applications are supported in Windows NT, Win32 is the
strategic APIL. It is a 32-bit programming interface that provides all of the functionality of
the Windows 3.1 16-bit API, but it has been extended to 32 bits while adding additional
functionality, such as multithreading. Win32 can only run on 80386 and above machines or
comparable RISC architectures that support 32-bit addressing and paged virtual memory.
Windows programmers will find the Win32 API easier to program than the 16-bit Windows
API since they no longer have to deal with 64KB chunks of segmented memory.
Programmers will, however, have to discard their custom virtual memory schemes, because
virtual memory is handled by the operating system.

Win32 supports a higher degree of system integrity because it places different memory
objects in different pages of memory and allows an application to control access
permissions to memory objects. It also allows an application to map files into its address
space (memory mapping). This allows data within the file to be accessed directly from its
address space instead of requiring more complicated and less efficient I/O functions.

The migration path for applications from Windows 3.1 to Windows NT will be through the
Win32s API, which is a fully compatible subset of Win32. Developers can hedge against
Windows NT adoption by revising their 16-bit Windows applications to Win32s. Revised
applications will then run on both Windows 3.1 and Windows NT. They will not, however,
run on the current version of OS/2 2.0, and, unless IBM explicitly supports Win32s, they
never will.

Win32s provides 32-bit equivalents for 16-bit Windows 3.1 APIs. It is a subset because
there are APIs in the full Win32 API that have no equivalent in Windows 3.1. Programs
written for Win32s will run on Windows 3.1 but will require support from additional
libraries and from a DLL. (See Illustration 2.) However, they will run as native applications
on Windows NT without changes or additional support. Win32s supports all Windows 3.1
windowing and Graphic Device Interface (GDI) functions. OLE 1.0, DDE and DDEML,
TrueType, and common dialogues are also included in Win32s.

WIN32s application | | 16-bit Windows
application
Thunk
layer DLL
Win32s VXD |
WINDOWS 3.1

Illustration 2. A Win32s application has its 32-bit calls transferred to 16-bit calls by the
thunk layer DLL. Those calls then use the VXD libraries, which map to Windows 3.1. This
all happens concurrently and invisibly to regular 16-bit Windows applications.

Flat Memory Model. Win32s provides flat 32-bit addressing for Windows applications on
Windows 3.1. It requires a 386SX with 4MB of memory running in enhanced mode.
Applications are binary compatible with Windows NT and share the same EXE format, the
NT portable executable format. Win32s applications are source-compatible with Windows
NT on x86, MIPS R4000, and DEC Alpha. It bears repeating that programs written to the

10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

Win32s API are real Win32 applications but don’t use certain advanced features like
multithreading. The difficulty involved in converting a 16-bit Windows application to
Win32s will vary depending on the design and coding of the application. In addition to the
different memory model, the semantics of some of the APIs are different. In spite of porting
issues that may arise, we expect that native Windows NT applications will be in ample
supply in a short period of time, although many of these will be written to Win32s.

Win32s Slated for Fall Availability. The first Beta of Win32s will be released at the end of
summer 1992 and will be shipped with the September update of the Win32 SDK. The
September release will not have network support, NetBIOS, named pipes, console, Unicode,
Pen, Multimedia, or RPC support. This support will be included in the final release, which
will coincide with the retail release of Windows NT at the end of 1992. As MAPI and
ODBC evolve and are finalized, support for those interfaces will be included. However, a
subset of MAPI will probably be in the initial release. There are some features that are not
planned for the first release that many developers would be very interested in, including
memory-mapped files and support for mixing 16-bit and 32-bit DLLs.

Win32s will also be provided by various Windows 3.1 DOS toolkits, including those from
Microsoft and Borland. No special tools are required to build Win32-compatible
applications for Windows 3.1. There are neither a special build process nor unique link
libraries required for building Win32s applications. Both MS-DOS and Windows NT will
host Win32s development. The difference is that the Win32 SDK will provide Windows NT
platform support, while Microsoft Languages and those from others will provide the MS-
DOS/Windows 3.1 development platforms.

Getting Win32s on Windows 3.1. In order to run Win32s applications, users will have to
install approximately SO0KB of code contained in the Win32s VXD library and the Win32s
DLL to extend Windows 3.1 to support 32-bit operations. The actual working set of code is
about 200KB, in addition to the memory already required for Windows 3.1. The library and
DLL will be shipped by ISVs with their 32-bit applications. A setup program will determine
if they are already installed and will install them if necessary. Future versions of Windows
will contain these libraries and DLL.,

An Important Win32s Caveat. Win32s applications cannot load 16-bit DLLs. Developers
will have to either convert all DLLs to 32 bits or use a client/server structure within the
application. Under this model, the 32-bit program would use a 16-bit server application to
link with a 16-bit DLL. We believe this limitation will spur developers to move to 32-bit
code as fast as they can.

Extensibility without Changing the System

It is possible for NT to be extended with or without privileged code. The operating system
subsystems, like OS/2 and POSIX, are in non-privileged space. Extensions in privileged
space are under Microsoft’s control and include functions like device drivers, installable file
systems, and installable network redirectors. The latter are thought of as kernel-level
extensions that enhance the system without changing it. Microsoft will release APIs for
privileged operations gradually, as it learns to understand where it can do so without
jeopardizing control over system integrity and compatibility.

High-Level Abstractions

System services are exposed to applications as high-level abstractions in the form of APIs.
There are many services in the privileged space that are not exposed by a published API
which third parties could conceivably use to add value on top of Windows NT. For instance,

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Important: This repor! contains the results of proprietary ressarch. Reproduction in whoie or in part is prohibited. For reprints call (617) 742-5200. 1

High-Level Abstractions

a third party could port another file system or another operating system personality if the
necessary interfaces were available. In this way, Microsoft controls the services available to
applications, ensuring consistency, but, as a result, limits the opportunity for a third party
system software industry to grow up around NT the way it has around Unix.

NTFS Provides Advanced Features

NTFS Is Key to Many NT
Features

File System Structure

NTFS Addresses
Reliability Requirements

Additional Functionality

Recoverability Features

Windows NT is able to support multiple active registered file systems. They are loadable
just like any other driver. Support is provided for automatic volume mounting and
verification. In addition to FAT, HPFS, and NTFS, Windows NT also supports CD-ROM
file systems, named pipe file systems, mailslot file systems, and the LAN Manager
redirector. All file systems share a single global cache manager, and cache can expand to
include up to all available physical memory.

NTFS supports large disks and files, independent of hardware sector size. It uses 64 bits for
file sizes and offsets as opposed to the 32 bits of HPFS. File names are Unicode-based,
including volume and all other names. Unicode file names are stored on the disk. It supports
long file names while still autogenerating standard DOS FAT 8.3 names in instances when
MS-DOS cannot uniquely express an NTFS name. NTFS itself has a 255-character limit on
file names. The MS-DOS name is a fully functional alias that is stored in the same directory
structure index with the NTFS name.

Each file in the NTFS has a set of attributes, including its type, its data, and an optional
name. Each file is represented as a record in the master file table. The file record contains
standard information, such as the time stamp, link count, file name, volume version, volume
name, and volume information. Additional attribute types include multiple data attributes,
directory information, index allocation, extended attribute information, and security
descriptor information. Small files may contain their data right in their file record, while
large files contain pointers to the location of the data which are recorded as virtual cluster
numbers. Attributes may be resident in the file record or nonresident, in which case NTFS
allocates separate extents in the volume to contain them.

To address concerns about data integrity, NTFS has been designed to be fully recoverable,
to remove fatal single-sector failures, to hot-fix bad clusters, and to coordinate with a fault-
tolerant driver that will be supplied.

NTEFS has been designed to support multiple file servers, including NFS, AppleShare, and
others. It is designed to implement a typical corporate security model in the form of access
control lists. It also supports multiple concurrent data STREAMS, has an extensible design,
and will support storage quotas and the collection of accounting information.

NTFS is a recoverable file system which provides some of the advantages of both a Careful
Write and a Lazy Write policy. Volume consistency is guaranteed across crashes via
transaction-logging and recovery techniques. The advantage is that performance benefits of
Lazy Writing are maintained with very rapid crash recovery. The disadvantage is the
amount of overhead incurred for volume update operations. However, Microsoft estimates
that this overhead will be less than 10 percent.

NTFS logs each modifying Windows NT I/O request, treating it as an atomic transaction,
The transaction is committed on success and aborted on error. Redo/undo information is
logged for all NFS metadata updates, and the undo is used for error recovery. It uses a Lazy
Commit policy and treats all requests as either complete or not started at all. There are
periodic log file checkpoints that monitor the progress of cache manager lazy writes and
free up log file space. This is important to avoid Log File Full conditions, even though those
only result in retries with the message “Abort, Reque, Flush.”

12 Important: This report contzins Ihe results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

NTFS Provides Advanced Features

Data Protection

On restart after a crash, three passes are made, the first to determine what needs to be
updated, the second to update the status of cache to the state where it existed at the time of
the crash, and the final pass to abort incomplete transactions.

Span Sets = Logical
Volumes

Stripe Sets for
Performance

Mirror Sets Provide
Safety

Fault-Tolerance Driver

NT provides support for tape backup, disk management, fault tolerance, and uninterrupted
power supplies. Tape backup APIs and applications support all three NT files systems, FAT,
HPFS, and NTFS. A new Microsoft Logical Tape Format (MLTF) is used, which is being
made available to the industry as another Microsoft standard in order to promote
interchange among vendors. MLTF provides on-tape catalogues of files, making restoration
faster and easier. The tape APIs will make it easier for developers to write additional backup
applications.

Disk management features include span sets, usually known as volume sets; stripe sets;
stripe sets with parity; mirror sets; and “sticky” drive letters. Stripe sets with parity and
mirror sets are only included in LAN Manager for NT and not in the standard NT
configuration. Sticky drive letters are drive designations that stay with the volume when
other volumes are added to the system.

Span sets allow a partition to span several physical drives. A volume set can contain up to
eight unequally sized partitions across drives. Each span set is exposed to users and
applications as a single drive letter. They have only a marginal impact on performance and
are not bootable.

Stripe sets can be configured with or without parity. Without parity, between two and eight
equally sized partitions can be configured both across disks and/or across controllers.
Striping without parity can lead to improvements in read performance proportional to the
number of drive spindles in the set with no degradation on writes. Stripe sets are not
bootable.

LAN Manager for NT adds RAID 5 (stripe sets with parity) support using between three and
eight partitions with parity data spread across all of the partitions. RAID 5 can be
configured both across drives and across controllers. This means that a stripe set can consist
of a combination of SCSI, ESDI, and IDE drives. Read performance is the same as striping
without parity, but there is a significant penalty on writes. RAID 5 has a cost advantage over
mirror sets, however, while providing a high level of data integrity.

Using the enhancements offered by LAN Manager for Windows NT, any two partitions can
be mirrored with mirror sets. A mirror set has no primary or secondary member—both are
equal. Mirror sets can provide up to a two times performance improvement when reading
under heavy /O load, particularly when small bits of data are being transferred. Microsoft
estimates less than a three percent overhead for writes.

Mirror sets are bootable, and mirroring can be configured both across drives as well as
across controllers for duplexing.

The fault-tolerance driver, also provided with LAN Manager for Windows NT, only breaks
its relationships with a drive on complete device failures. It loads at boot time and attaches
all hard-drive partitions. Fault-tolerance information is maintained in the system registry as
it intercepts all disk I/O and writes it to the log.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Important: This report contains the results of propristary resaarch. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 13

Networking Inherent in the Design

Networking Inherent in the Design

Integrated LAN Manager
for Peers and Servers

Transport Architecture

Remote File Systems

Microsoft has virtually eliminated the need for a network operating system (NOS) with
Windows NT. Although this doesn’t mean that Novell customers will abandon NetWare, it
does mean that a separate NOS, such as NetWare, will become less important as Windows
for Workgroups (which has basic network file and print services built in), Windows NT
adoption ramps, and these peer-networked Windows machines become more prevalent on
corporate networks.

Networking capabilities are an integral part of the NT design. The base 1/O system includes
features needed by remote file systems and servers. It supports installable file systems and
provides a library of common file system functions and cache manager interfaces. It
provides security through access control lists. The architecture of Windows NT is open to
additional client-side providers, including third-party redirectors or requesters and transport
providers. This is accomplished through the transport device interface (TDI) and
STREAMS, and transparent support for network adapter drivers provided by NDIS.

A compatible superset of LAN Manager 2.x functionality is provided for in Windows NT,
even though the code implementing that functionality is all new. Every Windows NT
workstation has server and client capabilities. The list of integrated features that support or
facilitate networking includes:

SMP support

Disk fault-tolerance support

TCP/IP client utilities, including ftp, telnet, rsh, rexec, rcp
An extendable SNMP agent

A fast, local area NetBEUI and TCP/IP transports

NDIS 3.0 network interface card drivers

LAN Manager services, including file replication, alerter, etc.

Several new administrative tools are provided, many in basic Windows NT, and others in
LAN Manager for Windows NT. These include a server manager, user account manager,
network control panel, security editor, event/audit log viewer, and a user profile editor. All
of these have a graphical interface, addressing one of the most common complaints about
LAN Manager and, for that matter, NetWare.

The TDI is usable from both the kemel mode and from the user mode. It provides a
common transport interface for sockets and NetBIOS libraries to offer transparent access to
NetBEUI, XNS, TCP/IP, and DECnet transports. Windows NT provides a System V
STREAMS-compatible environment for protocol stacks through a kerel DLL. STREAMS-
based stacks are implemented as loadable drivers; therefore, other transports may be
furnished by third parties. Applications may be written to the WinSock API or to the
NetBIOS API.

Remote file systems appear to Windows NT applications and users as local file systems.
Because of the installable file system architecture, multiple local and remote file systems
can coexist concurrently, The Windows NT object-naming architecture allows the remote
file systems to be accessed directly without the physical path being specified. The multiple
provider router (MPR) provides a WinNet API for file manager services and a Provider
Interface for access by foreign file systems such as those provided by NetWare, VINES, or
LAN Manager. The provider is a DLL that implements WinNet functions. The necessary
DLLs for accessing remote file systems are recorded in the registry database and are
accessible to any application.

14 Important: This reoot contains the results of proprietary research. Reprouction in whole o in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

Transport
Architecture

Developing Distributed
Applications with RPCs

Application I Application
i NetBIOS DLL
User Mode WinSock DLL l
Base API
Kernel Mode WinSock NetBIOS
|'__‘edimcmr "sqw Driver Driver
TDI
S
R
NetBEUIR| XNS M £ || vcpip DECnet
A
M
S
NDIS

Hlustration 3. The Transport Driver Interface (TDI) provides a common transport interface
for Sockets and NetBIOS libraries to provide transparent access to NetBEUI, XNS, TCPIIP,
and DECnet transports. Other transports may be provided by third parties. The STREAMS
interface is compatible with that defined in SVR4 and is provided by a kernel DLL.

Windows NT continues support for the Universal Naming Convention (UNC). UNC is a
standard for ensuring consistent and unique naming of resources across a network. A
Multiple UNC Provider (MUP) driver, which controls the various providers, is loaded
during system boot. Each provider is implemented as a remote file system driver, registering
itself to the system by using control functions issued to the MUP. Provider preference
information is stored in the registry database in the same location as the MPR, again making
it available to applications.

UNC opens are directed to the MUP. Win32 functions translate the UNC name to the MUP
name. MUP then offers the name to all providers simultaneously by issuing “fsctl” I/O
requests to each. The provider then determines whether it owns the name and completes the
I/O request with success or failure. MUP tracks the higher-preference provider that claims
the name. Future requests to open a file with the same prefix are then routed directly to that
provider. Name ownership eventually times out if it is not accessed for a configurable
period of time. MUP is involved only in path-based operations, not handle-based operations.

An important benefit of Windows NT networking capabilities will be the development of
distributed applications. Microsoft is providing a remote procedure call (RPC) mechanism
to support this development. The Microsoft RPC is a network-independent interprocess call
for heterogeneous distributed applications. It is interoperable with the OSF DCE RPC, using
a portable interface definition language (IDL). An IDL compiler is provided, assuring
interoperability. Its API is equivalent to that of the OSF DCE RPC, although it is not the
same OSF code. It uses the familiar procedure call model and simplifies writing distributed
applications. The RPC provides transport, naming, and security for Windows Open Services
Architecture (WOSA) loadable service providers, using either named pipes, NetBIOS, or
TCP/IP transports.

The RPC will support DOS and Windows machines as clients but not as servers. This means
that they can initiate but cannot service a call. The required run-times for DOS and

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

Important: This report contains the results of proprietary ressarch. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200 15

Networking Inherent in the Design

Windows will eventually be packaged with those two products. In the interim, they are
included in the Software Development Kit and are freely distributable by ISVs. Windows
NT will provide run-time support in the form of a DLL for both client and server
applications which will be included in the final package.

Network Management Base on SNMP and NetView

Supports MIB1 and LAN
Manager

NetView Requires SNA
Services

One of Microsoft’s design goals was to make Windows NT manageable in enterprise
management systems. To accomplish this, the company focused on de facto standards,
SNMP and IBM’s NetView. Windows NT has an extendable agent Management
Information Base (MIB) interface with a DLL API optimized for the Windows NT
environment. This API hides the complexity of ASN.1 and SNMP from the programmer. A
Messenger API is provided that serves as a high-level, easy-to-use SNMP API. Windows
NT supports both MIB1 and the LAN Manager MIB. Microsoft has committed to support
other MIBs as they become standard, and the company also intends to track work being
done in SNMP security. Third parties can extend Microsoft’s core SNMP product through
the documented agent extension DLL API that will be published and available for review.

Microsoft will look to third parties (Digital Communications Associates of Alpharetta,
Georgia, is an obvious candidate) to provide SNA services for Windows NT. Support for
NetView services will depend on those underlying SNA services. Support will be provided
for user-defined generic NetView alerts for Windows NT events. This can be accomplished
without programming by the customer.

Support will also be provided for the NetView Run command. Windows NT service
interprets the content of the Run command packet, routing service requests to the
appropriate DLL.

Hermes Will Provide System Management

Functionality Targets for
Hermes

Designed to Be Scalable

Another Microsoft Open
Standard

Hermes is the code name for a set of system management tools for Microsoft’s system
products that will be released in 1993. Hermes provides improved manageability for
Microsoft computing environments. Its open architecture will provide a number of
significant areas for third-party enhancement.

Hermes is being designed to manage hardware and software inventory, software distribution
and installation, networked applications, Hermes jobs, and the system itself. All Microsoft
systems platforms are being targeted, including Windows NT, LAN Manager, MS-DOS, and
Windows 3.1. A key component of Hermes will be ease of use—all functionality will be
available to the user or administrator from an integrated, user-friendly GUI.

Hermes will support the distribution and installation of new software to any Windows
system anywhere on the network, track the hardware and software in use on the network,
manage networked applications, and meter applications running from Windows NT servers.
The administrator will be able to configure for central or remote operation.

The design of Hermes will make it possible to add network nodes without measurably
adding to administrative overhead. It is being developed in response to requirements fed to
Microsoft from its largest corporate customers. Among those requirements are for LAN
administrators to be able to view and manage the entire network, no matter how large, from
a single point.

Microsoft will publish APIs that will allow Hermes to interoperate with other management
systems (including IBM’s SystemView, OSF’s Distributed Management Environment—

16 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call {617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 8

Hermes Will Provide System Management

Interoperability Is Again
the Focus

DME—and possibly Tivoli’s WiZdom). It will support standard network transports and will
provide senders for standard LAN transports as well as for Remote Access Server (RAS)
and LU6.2. Each node in a Hermes-managed network will run codc to determine the
hardware and software inventory. A binary result file is written to a collection server.
Changes for all sites are stored in a central SQL database which an administrator can query
and use to generate reports.

Windows NT LAN Manager technology will be the basis for Hermes, and the NTFS will be
used to enforce security. Software distribution management capabilities from the server will
also be Windows NT-based.

Hermes provides another illustration of Microsoft’s strategy of interoperating with other de
facto standard systems rather than natively adopting their technology. In order to succeed
with this approach, Microsoft will have to go the extra mile by making a significant
investment in testing both standards compliance and interoperability with other products to
ensure that its implementations truly interoperate.

POSIX Support May Not Appeal to Unix Developers

Why Bother with POSIX?

The POSIX support provided on Windows NT is limited exclusively to the 1003.1 standard.
An X server from eXcursions will be made available for Windows NT from Digital and
others. X applications do not have access to OLE or DDE, and Win32 applications cannot
make POSIX calls. Features such as case-sensitive naming, additional time stamps, and hard
links are supported for POSIX compatibility, and symbolic links and sparse files will also be
supported in the future. Symbolic link support will be added when the POSIX specification
is completed. While access to advanced Windows NT features from the POSIX subsystem is
limited, it does include security and control of process threads. It is not possible for a
POSIX application to use the graphical API, and screen control or access is limited.

Access t0 Win32 functionality is possible through the IPC mechanisms and named pipes,
allowing POSIX applications to exchange data with Win32 applications. However, POSIX
doesn’t access the RPC mechanism or sockets, which makes it difficult to develop POSIX
applications that can interoperate with other POSIX systems. Sockets has to be accessed
through the Windows NT console interface. No support for SLIP or PPD is provided in NT’s
TCP/TP.

It is not Microsoft’s intention to provide a full XPG/3-compliant system with Windows NT
nor to encourage any serious development using the POSIX interface. The company makes
it clear that POSIX 1003.1 is there because it has to be there in order to qualify for federal
government bids. Microsoft is encouraging ISVs with character cell Unix applications to
port them first to Windows NT’s console interface. This eliminates dealing with the
complexity of GUI development, but does give access to the Win32 API. Character
applications running in the console can call graphical features, such as file and print
management.

Windows NT Follows Microsoft’s Definition of Open Systems

There is much debate about Microsoft’s definition of open systems and its open process.
How are they alike, and how are they different? Like the OSF, Microsoft has an open
process. Both organizations circulate draft specifications and invite comment from the
industry before finalizing them. Both publish their API specifications. Why, then, is the
OSF process generally considered to be open while Microsoft’s is not? Two factors are
operating. First, Microsoft views many open systems standards as being closely aligned with
Unix and, therefore, inconsistent with its technical direction and market strategy. The OSF,

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 important: This report contains the results of proprietary research. Reproduction in whole or in gart is prohibited. For reprints call (617) 742-5200 17

Windows NT Follows Microsoft’s Definition of Open Systems

while seeking to become unencumbered by USL licensing, still embraces open systems
standards based on Unix in its products when those standards are available or under
development. Second, the OSF distributes source code in addition to API specifications.
Microsoft does not generally license or distribute any source code. In rare instances, source
code has been licensed so that a third party could build a complementary product that
needed hooks into the Microsoft operating system, and the product was not of interest to
Microsoft.

Microsoft is much more interested in standards that support interoperability than in
becoming Unix compatible. Whether it is TCP/IP, SNMP, the DCE RPC, sockets, or
database access standards, if a standard supports bringing information from foreign systems
to Windows users, Microsoft will be inclined to support it.

Will Mach 3.0 Challenge Windows NT?

Mach Supports Multiple
Personalities

Who Will Bring Mach 3.0
to Market?

Many believe that the state-of-the-art in microkemel design is represented by Mach 3.0,
developed by Camegic Mellon University. The Mach design has been optimized for system
software support through:

Integrated virtual memory management and interprocess communication
Multiple threads of control

Support for transparent system trap callout

An object programming facility integrated with the Mach IPC mechanisms

Current ports of Mach 3.0 range from laptop computers to massively parallel systems such
as the Intel Hypercube. The Mach 3.0 kernel source code does not require any prerequisite
licenses from AT&T or Berkeley and can even be downloaded from CMU. Mach 3.0
isolates the Mach foundation from Unix interfaces, providing a more reliable and more
easily maintained system. With Mach 3.0, a task doesn’t have to be a Unix task; it is just an
entity managed directly by the kernel. Because of this isolation of the kernel from system
services, multiple operating system personalities can be supported. A Mach device interface
has been introduced and made accessible to applications. The IPC has evolved, and its
performance has increased; a new type of port has been created which allows transparent
distribution of messages across nodes.

In addition to the monolithic OSF/1 1.0 server, a number of other servers are under
development to run on top of Mach 3.0. These include a BSD 4.3 server for Intel 386
platforms, a Mac emulator, and servers for SVR4, BSD 4.4, and SPRITE. The Mach 3.0
kernel has the ability to support several of these operating system personalities at the same
time. However, like Windows NT, the different operating system servers do not interoperate
on the same system. The environment can be extended to address this with the coupling
between the environments, ranging from loose coupling, such as support of different types
of utilities to communicate data between environments, to a more tightly coupled scheme
that includes full sharing of resources and management of their concurrent access.

The biggest question surrounding Mach 3.0 is: What organization will provide
commercialized implementations that can be sold to customers? The OSF does not have the
resources necessary to do any more than coordinate the efforts of various researchers
working on Mach 3.0 extensions and refinements. It is possible that some OSF member may
assume a contractor role, building a commercial-quality Mach-based product and licensing
it either back to OSF or to other vendors. Who might be interested? Any Unix-oriented
company that is not particularly interested in doing business or continuing to do business
with USL is a safe bet.

18

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7,No. 8

Summary and Conclusions: Will Windows NT Succeed?

Will Windows NT
Succeed?

Applications Will Help

It is likely that, for the first year after its release, Windows NT will be closely evaluated by
customers and ISVs alike. Some may adopt it in its first release. Others may reject it out of
hand. History has shown that when Microsoft commits to a product direction, it sticks with
it for the long haul. Windows 1.0 shipped in 1985 but wasn’t a major success until 1989. It
is unlikely that the jury will be out on Windows NT for four years, but it is clear that
Microsoft will put whatever resources are necessary into its refinement to make it
acceptable to a significant number of customers.

Unlike the situation that existed with DOS and Windows, vendors with large distribution
organizations, like IBM and Hewlett-Packard, are not automatically falling in line to support
Windows NT. Vendors who realized that supporting DOS was important even if it wasn’t
central to their strategy, such as Apple and Sun, aren’t making any moves either. This
represents a key challenge to Microsoft because it probably won’t be able to sell Windows
NT through the same channels that it sold DOS and Windows. Windows NT is a complex
system and will require a level of support that dealers are unlikely to be able to provide.
Microsoft needs to develop a distribution channel for Windows NT with a higher level of
competency in supporting complex systems. This is not unlike the challenge Compaq faced
with the SystemPro.

The agreement between Digital Equipment and Microsoft is certainly aimed at developing
that channel (see Unix in the Office, Vol. 7, No. 5), but Digital cannot do the job alone.
Novell is not going to be interested in distributing Windows NT. It is unlikely that IBM will
throw its weight behind the product and equally unlikely that major Unix adherents, like HP
and Sun, will, either. Microsoft faces a real challenge.

Windows NT will siphon off a lot of resources from developers who are willing to gamble
on selling software to enough of the 10 to 15 million Windows users who will perceive
Windows NT as a natural upgrade to create a sizable applications market. Many of these
will be Unix developers who will see a market that is two orders of magnitude larger than
they currently sell into. Until now, many of these developers have not been able to port their
functionality over to Windows because of its limited capabilities. Although they are not
likely to abandon their Unix development, it is possible that their OS/2 development could
dry up completely. ©

Next month’s Open Information Systems will address
Oracle Version 7
For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

Important: This report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 19

Open Systems: Analysis, Issues, & Opinions

FOCUS: DEVELOPMENT TOOLS

Crossroad and SuperNOVA:
Sharpening the Focus on Rapid
Prototyping and Deployment

There is a gap between the vision of distributed object
management and the reality of the kinds of distributed
applications that can be built today. Attempting to
bridge that gap are Crossroad from Crossroad Systems
and SuperNOVA from Four Seasons Software. These
products offer practical help to the application devel-
oper chartered to develop distributed applications
within a standards-based framework.

Crossroad Offers Hope to the “Front-Line” Developer

Crossroad Systems (Boston, Massachusetts) recently
introduced Release 1.5 of Crossroad, its framework for
integrating Unix applications in networked environ-
ments. This release follows the initial introduction of
the product by less than a year. Application developers,
particularly in the technology-aggressive financial
services sector, have found that the Crossroad frame-
work fits well architecturally in cases where the devel-
opment task is to extend, integrate, or distribute existing
applications. Crossroad explicitly supports rapid proto-
typing of peer-enabled interaction among applications,
databases, and networks. Crossroad applications can
integrate diverse applications and data sources, and can
be used to manage and reconfigure the interapplication
process and data flows on the fly.

General Purpose Integration Focus. Compared with
products such as PowerBuilder from PowerSoft
(Burlington, Massachusetts), which focus on integrating
applications and data sources, Crossroad has more of a
general purpose orientation toward integration. Within
its graphical application development environment,
Crossroad focuses on support for building “integrating
applications”—applications that integrate other appli-
cations. Developers have used Crossroad for integrating
databases with analytical, presentation, and publishing
applications, and for integrating system and network
applications that do not use a database.

The Crossroad Architecture. The Crossroad develop-
ment environment consists of three subsystems: Cross-
Frame Graphical Interface Builder, CrossScript Appli-
cation Builder, and CrossLink Network Services
Builder (see Illustration 1).

CrossFrame Offers Standard GUI-Builder Functionality.
The CrossFrame Interface Builder offers developers
standard GUI-builder capability, supporting the full set
of Motif widgets. The CrossFrame GUI programming
environment is tightly integrated with the CrossScript
language and interpreter, supporting the development of
both a fully functional, Motif-compliant user interface
and the underlying application with just one program-
ming endeavor. Because Crossroad applications run in-
terpreted rather than compiled, the developer can build
and test the user interface and the application incremen-
tally, switching between Run and Edit modes. In-house
developers and consultants working on an iterative basis
with users do not have the opportunity up front to de-
vise an elegant design for integrating applications. The
incremental Crossroad approach can be a real boon for
them.

CrossScript Builds on Familiar Programming Concepts
and Features. The CrossScript Application Builder is
actually a language shell that layers on top of the C li-
braries that are native to the target platform. Developers
use CrossScript to program the behavior of CrossFrame
user interface objects and screens, and to build the un-
derlying application by determining the way CrossLink
interapplication communication agents are managed
and connected to the user interfaces. CrossScript also
supports lower-level programming when required to
handle complex interactions of specialized or “ill-be-
haved” applications. Though proprictary, CrossScript
combines features of C, C++, and the C-shell scripting
language, building on the open systems development
environments with which programmers are already
familiar.

The CrossLink Messaging APl Supports Peer
Interoperability. The CrossLink Network Services
Builder is used for programming the interapplication
communication mechanisms, the agents, that interact
with the applications and each other to create an inte-
grated environment. The CrossLink Agent concept is

Important: This report contains the resuits of proprietary research. Reproduction in whole or in part is prohibited. For reprints, cail (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

based loosely on the dictionary meaning of “one who
acts for or in the place of another under the other’s
authority.” The CrossLink Network Services Builder
includes a comprehensive library of C functions for de-
fining and exchanging messages between CrossLink
agents. Within the CrossLink programming environ-
ment, developers create agents that interface to existing
applications through the application’s native lexicon,
and, at the same time, use the standard Crossroad C-
based messaging API. The CrossLink libraries offer de-
velopers a rich environment for writing Crossroad API-
conformant interfaces to existing applications without
changing the application source code. The Crossroad
messaging system uses a TCP/IP-based interprocess
communication (IPC) design that ensures that the
developer need not be aware of where on the network
the called agent is running. The Crossroad messaging
API is fully documented, allowing developers to
incorporate external tools or to extend or enhance the
API 10 meet specialized needs.

Crossroad Offers Turnkey Agents. Crossroad offers op-
tional pre-built agents for Open Server from Sybase,
Lotus 1-2-3, and Unix E-mail. More pre-built agents are
being added based on the needs of the customer base,

which is currently concentrated in the financial services
industry.

Interpreter-Based for Rapid Prototyping. Crossroad’s
goal is to maximize the flexibility and configurability of
its integrating applications. In order to support this goal,
Crossroad applications are developed and run in the
interpreted mode. This approach is consistent with the
rapid prototyping/rapid deployment/configure-on-the-
fly philosophy that has attracted ‘“‘in-the-trenches”
developers to Crossroad. However, the fact that
Crossroad does not currently offer the option of
generating compiled C code is an obstacle to developers
who require control over their applications and insist on
the greater portability of applications that run as
compiled C code. A C-code generator is on the
Crossroad enhancement schedule for 1992.

Building Applications with Crossroad. Crossroad devel-
opers can work with high-level tools throughout the de-
velopment process. In the CrossFrame environment, de-
velopers work with the Motif look-and-feel to build
“frames” of Crossroad-enhanced and standard Motif
widgets by selecting objects such as buttons and list
boxes from menus and dragging and dropping the ob-

: CrossScript :
i Application Builder

Hlustration 1. The Crossroad environment supports configurable, dynamic relationships between integrated applications.
The Crossroad messaging system is generalized to use TCP/IP interprocess communication mechanisms to access applica-
tions that are local and remote. In some cases, a special type of Agent, the Management Agent, can be developed in
CrossLink and managed with scripts built with CrossScript to coordinate the interactions of application Agents, especially
for event-driven complex interactions between applications that use different data types or file formats.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 21

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

jects onto the workspace. The static layout becomes a
live application incrementally as the developer writes
CrossScript 4GL-style scripts that determine the behav-
ior and the resources of the user interface objects. The
scripting language is used to connect user interface ob-
jects with agents to configure or reconfigure the process
flows or data flows in the integrated system. In building
agents with CrossLink, developers can work with the C-
based function libraries, or program at a lower level for
specialized applications.

CrossScript programs facilitate the interactions of di-
verse agents by handling format or structure changes for
data to pass smoothly between applications such as da-
tabases, spreadsheets, and graphics programs. Because
CrossScript programs are interpreted, they can be
modified on the fly to dynamically reconfigure the
interactions among agents as new applications come on
line or have to be changed.

Is Crossroad Object Oriented? Crossroad operates on
some principles of object orientation, for example, the
way agents appear to encapsulate applications and ex-
port the application functionality. However, Crossroad
does not support core concepts of object orientation
such as object classes, attribute inheritance, or object
persistence, and it does not extend the configurability of
applications to the user level, as distributed object
management systems do.

Peer-Level vs. Client/Server Architecture. Even as cli-
ent/server enabling technologies and distributed appli-
cations begin to arrive in the marketplace, concern is
mounting about the overhead of server-based resource
management. Complex interactions of applications in
the network beg this question if all interactions have to
be maraged through a centralized server-based pro-
gram. The Crossroad architecture addresses this issue
through support for peer-level interactions between
CrossLink agents, interactions that do not require the
intervention of a supervisory software function. Peer-
level agent interactions are event-triggered and can be
completely automated. For example, a triggering event
could be the arrival of an electronic mail message from
a remote location into a file that is checked regularly for
changes by a phantom process. When the change is de-
tected in the monitored file, the phantom process sends
a “wake-up call” to an E-mail agent, which then sends a
message o a particular database agent, which, in turn,
converts the data to a format that can be loaded into a
database record, passes arguments to the database to
open it for input, and actually loads the new data into
the database. Upon completion of the database input,
the database agent sends a message to the E-mail agent
to confirm to the sending system that the data was re-
ceived and the central database has been updated. Other

variations on this theme might involve on-the-fly
graphing of data with a graphics program; loading data
into Frame for publishing; or reporting of system man-
agement events that trigger the automated re-balancing
of system or disk loads through special purpose, real-
time agents.

Pricing and Availability. Crossroad is priced at $7,500
per seat for the full development environment. It is
available on SPARC machines, IBM RS/6000, and HP
PA workstations. The run-time license is $500 per user
for all platforms. Turnkey agents range from $500 to
$5,000, depending on the agent.

SuperNOVA from Four Seasons Software

SuperNOVA from Four Seasons Software (Edison, New
Jersey) enables developers to build new applications
within a graphical programming environment that can
be deployed independent of back-end databases, GUISs,
and networks. SuperNOVA'’s functionality is primarily
oriented toward integrating new or existing data sources
into new applications that are developed with the Su-
perNOVA development environment and 4GL.

SuperNOVA Architecture. The SuperNOVA develop-
ment environment consists of a relational model data
dictionary, a 4GL editor for creating the application
logic, and a window editor for creating the user inter-
face. The SuperNOVA model builds applications as
objects, and functions are performed on those objects.
Applications do not run as compiled executables, but
instead are run as meta-code that is interpreted at run-
time by the SuperNOVA engine.

SuperNOVA Distribution Mechanism. SuperNOVA sup-
ports distributed processing transparently to the appli-
cation code through the distribution of the run-time Su-
perNOVA engine. When any of the objects in the appli-
cation has been configured to run distributed, the Su-
perNOVA engine must be configured with network in-
terface libraries and dispatch tables to direct the re-
quests for data to appropriate remote engines, and to
return the data to the requesting application. When an
application calls a function or database that is not run-
ning locally, the SuperNOVA engine refers to dispatch
tables configured by the developer that contain location
information for remote resources or data. The local Su-
perNOVA engine packages requests for data or services
through its network interface, which has been config-
ured with the appropriate libraries to support the net-
work protocols needed to communicate to the Super-
NOVA engine where the resource is running. The re-
mote SuperNOVA engine then returns the data or re-
sults to the local application. The remote resource could
be an existing application that has been modified to in-

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Val. 7, No. 8

OPEN SYSTEMS: ANALYSIS, ISSUES,

& OPINIONS

terface with the SuperNOVA engine, or one which has
been front-ended with a hand-coded C or a high-level
scripted program to which the SuperNOVA engine
talks.

GUI Independence. The SuperNOVA GUI selection
decision is made at run-time. Developers work with a
particular windowing system and look-and-feel during
development, but the user can choose to work with the
application in an alternate mode when starting an appli-
cation. Since the application code is not compiled, the
display of different GUIs is a parameter selection. Su-
perNOVA currently supports Windows 3.0, CRT termi-
nals, X Window, and SunView.

Portability Strategy: Standard Run-Time Engine API
with Platform-Specific Libraries and Drivers. Develop-
ers working with SuperNOVA may develop
applications in any of the supported operating environ-
ments, including DOS, several versions of Unix, or
VAX VMS, and deploy them on or across those plat-
forms. SuperNOVA applications can run in a
heterogeneous distributed environment without any
changes to the source code. An application runs as Su-
perNOVA meta-code, independent of the platform or
the location of other resources on which it depends. The
meta-code is built during the development process and
is stored in an internal database, and the SuperNOVA
engine interprets the meta-code at run-time. Super-
NOVA engines are configured and customized as
needed to run on specific platforms and to operate
locally or in a distributed manner.

The SuperNOVA run-time engine interfaces to local

host systems through a set of platform-specific device
drivers and libraries (see Illustration 2) that cover inter-
actions with operating systems, graphical user interfaces
and display devices, databases, and network protocols.
Supported run-time operating systems include DOS,
Unix (XENIX, AIX, Ulrix), and VAX VMS.
SuperNOVA user interface libraries include drivers for
the display hardware, the windowing environment, and
graphical presentation for character terminals,
workstations, and Windows PCs. The SuperNOVA
database interface interacts directly with the data
storage mechanism for the supported databases.
Supported file systems and databases include flat files,
C-ISAM, Informix, Ingres, Oracle, Sybase, HP Allbase,
and Teradata. Network protocols currently supported
are TCP/IP, StarLAN, and X.25. The latter two
protocols reflect the predominance of
telecommunications customers in the SuperNOVA base.

The Engine Is Extensible through a Toolkit. Four
Seasons offers a toolkit of function libraries along with
the SuperNOVA product. Developers can extend the
SuperNOVA functions through these C-based libraries,
or they can write new C code to create new SuperNO-
VA engine functions. Developers use the library toolkit
to enable existing C-based applications to call Super-
NOVA functions and to embed SuperNOVA calls in
existing applications. This extends the capability of
existing C-based applications with SuperNOVA
functions such as database access.

Prototyping with SuperNOVA. SuperNOVA supports
rapid prototyping of applications that have complex
data requirements. The prototype developer works with

T

e

A

SUPE

SuperNOVA Architecture

D

N

l Network Interface

I User Interface

Operating System
Interface

X Windows
MS Windows 3.0
Sunview
CAT Interface

Target Environment

Illust_ration 2. Portability of SuperNOVA applications is achieved through insulation of the application logic from the
speczﬁcs.of {he host systems. The logic remains unchanged whether the application runs as a standalone on a Unix system
or in a distributed manner on a network of PCs running Windows.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

23

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

form objects in the SuperNOVA development environ-
ment, employing flat files as the data source. When the
application has been debugged and worked through the
user-input cycle, the flat files can be replaced with live
links to multiple RDBMSs or other data sources simply
by changing the “datatype” parameter and by reconfig-
uring the SuperNOVA engines to operate over the net-
work as required to request and receive data from mul-
tiple data sources.

Transparent Multi-Source Data Access. SuperNOVA
supports simultaneous access of data from multiple data
sources and can be located in any combination of local
or remote in respect to the client system. For example, a
developer may be building a marketing application to
generate a request for a report projecting sales by prod-
uct by quarter, based on input from a market researcher.
The developer must integrate data from an acquired
subsidiary in one city which is in an Informix database
running on an IBM RS/6000 AIX system with data at
the parent company which is in flat files for pre-1985
sales information with data in an Oracle RDBMS which
is running on a VAX system for post-1985 sales data.
The developer creates an internal data dictionary that
includes location and access method information re-
quired to fulfill a request for data from within the appli-
cation. The SuperNOVA engine local to the application
handles the requests made to all three sources of data
simultaneously and returns data to the application,
which then builds the report. Neither the marketing
application nor the user would have any explicit aware-
ness that the report was built from a combination of re-
mote sources of data.

Pricing and Availability. SuperNOVA was first intro-
duced in 1988. Its current release is 3.0, priced at
$4,000 for a complete development license for a 386-
based workstation and $6,700 for a 486-based worksta-
tion. These prices include a database interface. Run-
time licenses are $900 for a 386 workstation and $1,500
for a 486-based workstation. These are sample prices
only, since SuperNOVA has a very complex pricing
scheme that covers 45 vendors and almost a hundred
platforms, including high-end VAXs. For example, on a
VAX 9000 Model 440, a distributed development
license is over $150,000.

Comparison of Crossroad and SuperNOVA

ing the process and data flows between a set of applica-
tions and data sources. SuperNOVA offers a set of data-
integration-specific features, such as an internal data
dictionary and data model, a multilevel referential in-
tegrity enforcement option, and data security options in
the form of fine-grained access control and encryption.
Through the robust messaging model of CrossLink
agents, Crossroad specializes in making Unix-based
applications work together, which is applicable to data
integration but doesn’t have a specific focus on integrat-
ing databases.

Crossroad tools can produce integration environments
that offer configurable relationships between the inte-
grated entities. Application integration with Super-
NOVA is between fixed static integration and configur-
able integration. (See Open Information Systems, Vol.
7, No. 7, for a discussion on levels of application inte-

gration.)

Summary and Conclusions

Demands placed on developers for fast turnaround of
development projects that directly serve the needs of
users are becoming increasingly intense. Developers
must look for ways to leverage existing application
functionality in meeting evolving user requirements.
With Crossroad and SuperNOVA, as with other tools in
this segment, developers can quickly prototype new
graphical applications that serve the practical business
needs of users. As users begin to deal with the slow
introduction of DCE-based applications and tools and
the even slower introduction of distributed object man-
agement development environments and applications,
they should give serious immediate consideration to de-
velopment frameworks such as Crossroad and Super-
NOVA. —S. Dolberg

FOCUS: GRAPHICAL USER INTERFACES

OSF Releases Motif 1.2: Filling out
and Speeding Up

Look-and-Feel the Enabling Technology for X Window

Crossroad and SuperNOVA both offer effective tools to
address the thomy problems of integrating existing
applications and databases in the distributed model. Su-
pertNOVA tools orient strongly to integrating new ap-
plications with diverse sources of data. Crossroad is ori-
ented more toward integrating existing applications and
data sources with each other, and dynamically manag-

When the X Window System was conceived in the mid-
1980s, its design goal was principally to be a portable
and networkable windowing system for bit-mapped
displays. Its developers positioned it as an underlying
graphical user interface (GUI) service rather than as a
user-level environment. Because of this, X provided no
end-user style nor functionality. Alternatively, it could
provide any kind of style or functionality. It is the look-

Important: This report contains the results of proprietary resgarch. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 7, No. 8

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

and-feel layer that adapts the technical capabilities of X
Window for the user at the display. This layer provides
a consistent set of display components—such as
window titles, text regions, and check boxes—that users
can learn and internalize as their tools for ac-
complishing work through the GUI. Motif, now released
in Version 1.2 by the Open Software Foundation
(Cambridge, Massachusetts), has the broadest industry
support as a GUI for X Window.

Motif Dominates X Window

Motif 1.2 Adds Helpful Interface Behaviors

When Apple pioneered the windowed GUI with its
Macintosh personal computer, it provided software
“toolboxes” for developers. With these, one could write
applications with standardized Macintosh components
and behaviors. Apple pressured developers to use the
toolbox instead of writing directly to the hardware, as
IBM PC developers often did. Because of this, Mac
software from different developers has a high degree of
consistency, making it easy for users of one Mac pro-
gram to learn another.

The X Window environment, however, had no such di-
rection when it started. Its developers at MIT imple-
mented basic look-and-feel libraries or “widget sets,”
but computer vendors could alter them or implement
their own. This played havoc with application develop-
ers. How could they develop X software that would run
on different vendors’ systems with their different dis-
play characteristics without rewriting the application for
each platform? End-user organizations were equally
dubious. How or why should they commit to X Window
as a GUI technology that was supposedly open, port-
able, and interoperable, but that looked and felt radi-
cally different on different vendors’ platforms?

The Open Software Foundation (OSF) stepped into the
breach with its first and most successful Request for
Technology (RFT) to date. It solicited specifications for
toolkits and GUI look-and-feel from the industry as a
whole, and settled on a submission bearing a strong re-
semblance to Microsoft Windows and to the OS/2 Pres-
entation Manager. Motif, as the product was called, was
an instant success. Adopted immediately by major sys-
tem vendors, Motif unified large segments of the Unix
industry and gave application vendors a single GUI to
which they could write their applications. Sun Mi-
crosystems was the apparent loser, after championing
the Unix System Laboratories OpenLook specification.
Sun continues to support and ship OpenLook, but many
customers have switched their Sun workstations to Mo-
tif implementations provided by third parties. In the rest
of the Unix market, Motif is taken for granted.

DRAG-AND-DROP. From its inception, Motif provided the
basic presentation and behavior necessary for the end-
user environment, but that is a far cry from saying it
implemented or supported comprehensive functionality.
One of the most widely discussed needs has been par-
tially answered in Motif 1.2’s drag-and-drop capability.
The idea is simple enough in the context of a single
application: You select text, a picture, or any object,
and you drag it over to a new placement in the docu-
ment. Equally important is the fact that the drag target
can act on the object appropriately. But the user also
needs this capability between applications, which raises
numerous technical issues. How does the receiving
application know that a foreign object is being dropped
into it? What is the communication mechanism? How
do the applications decide what type of data to ex-
change or what actions to take?

Motif’s solution to these problems was actually lever-
aged from new work by the X Consortium. The X ap-
proach dictates that the display server act as a clearing-
house mechanism between applications. Hence, the X
clipboard, which had supported cut-and-paste between
applications, was implemented through X server soft-
ware. Guidance for all such operations is contained in a
document called the Inter-Client Communication Con-
ventions Manual (ICCCM).

ICCCM revisions are just being completed to define
interapplication drag-and-drop, and Motif 1.2 has been
written to make use of the revisions. Now, it will be
necessary for applications to be revised as well. But the
new Motif drag-and-drop will not only support data
transfer, but it will also cause functions to be activated.
Dropping a file icon onto a mail application, for exam-
ple, could send that file as a letter. A spreadsheet range
could be dropped on a printer icon to print out that
range.

TEAR-OFF MENUS. While all of an application’s functions
are normally accessible through its pull-down menus,
functions or settings that the user employs very fre-
quently require some quicker, more convenient access.
“Accelerators,” or special key combinations, can be
provided, but only so many can be registered before the
end user loses track of them. An alternative is to allow a
pull-down menu to stay on the screcn after use, so that
its functions remain available to the user. Motif 1.2
implements this capability in “tear-off menus.” The user
can click on a menu to pull it down, then click on a per-
foration line to “tear it off” and place it elsewhere on
the screen. It stays there, allowing the user to invoke its
various functions, until it is explicitly closed.

OPEN INFORMATION SYSTEMS Vo!. 7, No. 8 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. 25

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

MORE CONVERGENCE WITH WINDOWS/PM STYLE. One of
the original thrusts of the Motif definition was com-
patibility with PC windowing systems. This makes GUI
skills transferable between Motif and Microsoft Win-
dows and the OS/2 Presentation Manager. Text input,
selection, and editing are now almost exactly as they
were under Windows/PM. Also, the handling of dialog
boxes has been augmented with support for cursor keys
as under Windows/PM. With these changes, the OSF
has also made Motif more “keyboard friendly.”

“MULTI-HEADED” DISPLAYS. The more GUI work one
performs, the more screen space one wants. Macintosh
users ran into this first, and Apple responded by imple-
menting a capability to add monitors to a Mac display.
X Window also supports such “multi-headed” displays,
but, until recently, it was difficult to use displays of dif-
ferent characteristics. Without custom C programming
to manipulate the X Window server, display character-
istics would be reduced to the least functional monitor
that was attached, e.g., a true-color monitor running
with grayscale would become grayscale. Motif 1.2 al-
lows monochrome, grayscale, and color screens to be
used in the same logical display without coercing them
to the least common denominator of functionality.

WINDOW MANAGER UPGRADES. OSF has made a number
of improvements to the Motif Window Manager
(mwm). First of all, it now handles non-rectangular
windows, such as circular “wall clocks.” The mwm 1.2
version also displays a full window image during
moves, instead of just outline bars, and it packs iconi-
fied windows more tightly to conserve display space.

Incremental Technical Improvements

SUPPORTS C++ AND FULL ANSI C. The Motif 1.2 widget
libraries have been revised from the least-common-de-
nominator style of the C programming language to em-
ploy full ANSI-standard C. This revision makes the
Moutif toolkit more reliable and easier to use correctly.
In addition, OSF provides a set of header files that can
be used on most platforms to invoke the Motif widgets
from the C++ programming language.

TOOLKIT ENHANCEMENT WITH BACKWARD COMPATIBILITY.
Toolkit enhancements in Motif 1.2 basically amount to
the implementation of an API to support drag-and-drop
functionality. This API allows applications to register in
the drag-and-drop system, either statically when they
are started up or dynamically as the user works with the
application. Dynamic drag/drop functionality allows
Motif 1.2 applications to customize drag/drop behaviors
on the fly, but at a perceptible cost in performance.

Other toolkit enhancements include the development of
APIs for some of the critical Motif widgets. Motif 1.2
has extended programmatic use of the Text, List, and
Label widgets by implementing APIs for them. Ordi-
narily, widgets are invoked through the X Window
event-loop/callback mechanism, rather than through an
explicit APL. And while Motif developers will still ordi-
narily use this latter mechanism, the new APIs will al-
low some additional flexibility in GUI development.

Software built with Motif 1.1 will recompile directly
against Motif 1.2—no source code modification is nec-
essary. In many cases, relinking against the Motif 1.2
libraries is all that is needed.

X11R5 SUPPORT. Release 5 of the X Window System,
Version 11, was released last year. This was called the
“performance release” of X11. Motif 1.2 retains com-
patibility with X11R4 display servers but includes re-
writes to exploit X11RS’s speedier execution and im-
proved internationalization capabilities.

PERFORMANCE IMPROVEMENTS. Motif 1.2 exploits
X11RS performance improvements in its widget set and
also in the Motif window manager. A key approach is
“event compression,” by which mwm optimizes its in-
teractions with the X display server. Instead of dealing
with each GUI event sequentially and responding to it,
Motif can detect a stream of events and “add them up”
to one or more compressed “net events.” Ordinarily,
Motif would respond twice as the user pulls the cursor
over an unused window—once as the cursor enters,
again as the cursor leaves, regardless of the user’s in-
tentions. Event compression code would recognize that
entering and leaving a window is, effectively, a null
event, and simply ignore both of them. This greatly
speeds refreshes and window manipulations.

INTERNATIONALIZATION EXTENDED. Motif 1.1 included
basic internationalization, but it awaited X11RS to re-
ally complete the facility. X11RS not only allows out-
put in multiple languages and character sets, but its
keyboard “input method” facility also allows on-the-fly
entry and editing in any language, even those using
multi-byte character encoding like Japanese Kanji.
“Locale” functionality now fully supports the ANSI C
definition, allowing input and output of certain infor-
mation according to local custom. For example, in
Europe, dates are customarily abbreviated
day.month.year, rather than month/day/year as they are
in the United States. Also, application messages and la-
bels can now be loaded from language- and locale-spe-
cific text files. The result is that the developer can con-
struct an application in which the same binary will sup-
port fully-localized interaction in English, French,
Japanese, or any other language.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprins, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

OSF Also Focuses on Management Issues

COMPLIANCE WITH STANDARDS. One perceives in Motif
1.2 OSF’s commitment to deliver technologies based on
standards. It adheres not only to X11RS and to ANSI C,
but it also boasts POSIX compliance and XPG3
branding.

VALIDATION AND QUALITY ASSURANCE PROGRAMS. Taking
a cue from the U.S. govemment’s Ada programming
language, the Unix community some years ago recog-
nized that some form of validation is necessary for
every standard. Hence, the rise of validation test suites
for Unix System V, POSIX, and the X/Open Portability
Guide. Since Motif is a standard as well (albeit de
facto), OSF has implemented an automated test suite to
verify conformance of each hosting of Motif. Comple-
menting this is a quality assurance suite that verifies the
robustness of each implementation.

STRONGER INTERNAL QA, T00. The OSF undertook many
internal quality initiatives in Motif 1.2 as well. It had an
outside organization perform quality assurance (QA)
testing to prepare for release, and it seeded numerous
“snapshot” licensees to get external comments on the
product. We feel these actions are laudable.

But What Is This Licensing Fee?

mentally changes the way that outside parties, espe-
cially those outside the OSF, will use Motf. The added
functionality, plus the total commitment of most ven-
dors to Motif, will most likely keep this change from
backfiring. However, as Unix System Labs enhances its
combined Motif and OpenLook Toolkit (MoOLIT),
third parties may find it a more attractive development
system and run-time to use than OSF’s.

Conclusions:
Motif Consolidating Its Hold on X Window

Many have commented on the redirection and re-
evaluation of the Open Software Foundation necessi-
tated by its rapprochement with its former arch rival,
the Unix System Laboratories (Summit, New Jersey).
One obvious goal in OSF’s redirection is building
toward financial self-sufficiency. Motif, as the OSF’s
only current commercial success, would naturally take a
key role. This has necessitated significant changes to
OSF’s business model, with the attendant result of some
market confusion. The OSF plans or hopes to gain con-
siderable additional outside revenue, instead of depend-
ing exclusively on its members and on its major spon-
sors—but without burning its bridges. It has raised un-
limited-redistribution source-code licensing fees for
Motif from a mere $2,000 to $15,000. However, most
current Motif customers will find that a $2,000 source
license, restricting licensee distribution of the product,
adequately meets their needs. QA suites, which had a
hefty price tag under Motif 1.1, are included gratis on
the Motif 1.2 distribution. While OSF obviously tried to
fine-tune its licensing approach, this alteration funda-

PUTTING THE POLISH ON. OSF/Motif Release 1.2 is not
new construction but good finish work. It plugs some
holes in the look-and-feel specification, and in mwm,
and it improves overall performance and
responsiveness. Although we are concemed about
OSF’s attempt to pull more money out of Motif with
this new version, we are nonetheless pleased with the
improvements in Motif 1.2.

WHERE ARE THE HUMAN FACTORS? OSF retains its over-
riding concern that Motif have maximal compatibility
with Windows and Presentation Manager. While Motif
1.2 certainly improved this compatibility, we are con-
cerned that the user has been left out of the user-inter-
face development process. We would like to see some
degree of substantial, independent scientific research
into GUI ergonomics that OSF and others could use to
turn usability claims into usability proofs.

THE BIG FISH IN THE POND. Motif has the pole position in
the Unix GUI market. Apart from Sun, no major vendor
supports OpenLook, the only alternative look-and-feel
specification for X Window. And while some figures
indicate that Sun desktops are at a par with those of the
Motif vendors, a lot of Motif implementations are
cropping up on Suns. But the problem isn’t Unix
infighting; the real problem is that Microsoft Windows
is shipping in huge quantities, completely out-muscling
Unix in the desktop market. Industry wags might
explain Microsoft’s next rev, Windows NT, as meaning
“not there.” But they could have said the same about
Windows two years ago, and now it’s the largest selling
GUI. So, while Motif might be the big fish in the Unix
pond, Microsoft Windows dominates the water supply.
Motif will not be the product to change that reality.

—A. Wolfe

OPEN INFORMATION SYSTEMS Vol. 7, No. 8 Impartant: This report contains the results of proprietary resserch. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 27

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Letter to the Editor

In the feature article “The X Window System” (Unix in
the Office, Vol. 7, No. 4.), Andrew D, Wolfe touches on
the debate over the merits of PCs and X terminals.
While he makes a number of thoughtful assessments, he
fails to mention specific cost and performance issues
which make the PC-based X server decidedly right for
some organizations and equally wrong for others.

For compute-intensive environments that require dedi-
cated X devices, the hidden cost of a PC solution may
make it a less viable option than an X terminal network,
not to mention that the PC alternative might fall short
on performance.

To illustrate, users need to consider three criteria when
analyzing the relative points of PCs vs. X terminals:

o The performance quality of the PC-installed base
o The existence and quality of the PC network
o The type of display devices in use

Since a PC must be at least a 386/20MHz machine to
function reasonably with an X server, companies with
less powerful systems must upgrade. Likewise, to work
as an X server, PCs must be networked with a TCP/IP
LAN, like PC NFS or PC-TCP.

However, one also must remember that TCP/IP network
software for PCs is less robust than X terminal network
software and much harder to install. PCs running X
Window are extremely dependent on the network soft-
ware and may not be able to simultaneously access
more than a few windows. As new variables are intro-
duced on the PC network, such as new memory cards,
there is also a risk that incompatibilities with existing
hardware and software will be introduced.

Companies lacking adequate networking capabilities for
PCs but wanting to turn PCs into dedicated X devices,
may have to invest up to $1,250 per seat, considering
the cost of the network card, the TCP/IP software, and
the X server software.

Mr. Wolfe also did not mention that most installed PCs
lack the graphics capability to display multiple X win-
dows. The vast majority of installed PCs rarely exceed
EGA or VGA with 16 colors and 640 x 480 resolution.
Even with a high resolution, 256-color VGA card in-
stalled in the PC, the performance may not be adequate
for X Window operations. Depending on the card and
the monitor, an accelerated graphics package upgrade
can cost up to $1,500.

In short, to use PCs as X terminals may cost more than
$6,000 per seat, for a total bundle consisting of the 386-
based PC, an accelerated graphics card with 256 colors,
a high-resolution 14-inch monitor, a network card, net-
work software, and an X server for the PC. Even after
users address their hardware needs, PC X-terminal
emulation software is not guaranteed to run all X pro-
grams. In fact, users may even have to change their ex-
isting software to solve a problem.

Dan Fullerton
Business Development Manager
Tektronix Network Displays Division

Editor's reply: At the Association for Image and Infor-
mation Management (AIIM) Conference in June, I ran
into two developers who were debating the question of
whether they should write their applications for X or for
MS Windows. One of the developers had come to the
conference convinced that X was the right approach,
but, after seeing so many exhibits on the show floor with
MS Windows front ends, he decided that was the way to
g0. The other developer had come to the conference
convinced that MS Windows was the right approach,
but, after seeing the cost of the hardware required to
get adequate performance and too many “General
Protection Fault” messages, he decided that X Window
terminals were the better choice. When these two met at
a reception, each was astounded that the other had
reached the opposite conclusion from his own! A more
serious issue for open systems than X terminals vs. PC
X servers may be the X Window System vs. Win32 battle
that will be heating up over the next two years.

28

Important: This report contains the results of propriefary ressarch. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 7, No. 8

