Patricia Seybold
Group

Editor-in-Chief
Michael A. Goulde

INSIDE

OPEN i 0 3 MAJ 13

Guide to Unix and Other Open Systems
Vol. 8, No. 4 « ISSN: 1058-4161 « April 1993

EDITORIAL

Page 2
Accelerating the Stan-
dards Process: One of
the great frustrations in
open systems has been
the lengthy standards
process required to en-
sure vendor neutrality.
Are standards-by-fiat
going to be an improve-
ment?

ANALYSIS

Page 24

COSE, an effort on the
part of six leading Unix
vendors to agree on a
common platform, has
to be a starting point—
not an end point. *
Uniplex evolves to re-
main relevantin today’s
environment. Iis new
release, onGO,is a
graphical environment
with mail-enabled
workflow. * Siemens
Nixdorf seeks to deliver
on its open systems
promises.

Unisys ASD

Framework

Meeting the Challenges of Software
Development in the 1990s

By John R. Rymer

IN BRIEF: The popularity of rightsizing and outsourcing in corporate
information systems is bad news for corporate software development
staffs. The message is that business managers have not only lost their
patience with late, over-budget, and inadequate software, but that they
are also making serious changes. To meet these new demands,
corporate developers must reduce the cost of software development
while increasing its speed, develop software that can be changed,
closely link software development to business planning, and migrate
from host-based development platforms to Unix servers and distrib-
uted platforms. ASD Framework, Unisys’s strategic CASE environ-
ment, seeks to meet these goals without forcing developers through
wrenching change, and, at the same time, borrows key concepts from
object-oriented software development. Over time, the Framework
will help current corporate developers migrate to full object-oriented
development while adhering to open-systems standards. Thus, ASD
Framework illustrates the future direction that productive CASE
technology can and should take. Report begins on page 3.

© 1993 by Patricia Seybold Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express written permission.

EDITORIAL: BY MICHAEL A. GOULDE

Accelerating the
Standards Process

Is COSE on the Right Track?

THE GROUP OF SIX vendors developing
the Common Open Software Environment
(COSE) is taking a novel approach to
developing vendor-neutral specifications.
Discussed in more detail on page 24, COSE
will be a specification written by a small
group of self-selected vendors, which,
although not under the control of any one
vendor, is not open to general industry input
either. No users or application software
developers are involved. The COSE
approach may be valid when contrasted to
other methods for establishing specifications
that would, we hope, become standards.

One is the Microsoft method: Develop a
draft specification and circulate it for
comment among a small, select group.
Weigh the group’s feedback against your
strategic objectives, and use or don’t use it to
develop a final specification. The process
isn’t really open, since it isn’t open to all, but
it isn’t completely closed either, since
Microsoft does solicit outside input. What it
certainly isn’t is vendor neutral.

Another is the consensus method:
Develop a specification through an extensive
series of meetings of special interest groups
(SIGs) and technical review committees
which discuss the relative merits of
requirements, proposals, drafts, and
amendments. Continue this process until
specifications are ready for circulation and
comment by any interested party. After
review and comment, additional revisions
are made and commented upon. Balloting
often occurs at various stages in the process.
The result is a consensus on the part of as
many parties as may be interested that the
final specification is a satisfactory
compromise,

The COSE process is different from
both of these processes. Although it is not
being initiated by a single vendor, it is not
open to all interested parties, either. At
present, we don’t know to what extent
consensus among the six parties will be

sought, let alone what efforts will be made
to seek input, not to mention consensus
from other interested parties in the industry.

The six COSE vendors claim 70
percent market share for desktop Unix.
Should the industry abandon the consensus
model for evolving specifications in favor
of a market share model?

The benefits of the COSE model are the
same as those that Microsoft claims justify
its process for developing specifications.
Consensus processes are too slow to keep
pace with technology and the need to get
technology to market. So, by sacrificing
consensus in favor of a more autocratic
model, specifications can be developed
faster, and products based on those
specifications can be delivered to customers
in a more timely manner.

Customers get caught in the middle of
the single vendor, multivendor, and vendor-
neutral approaches. The single-vendor
approach is pragmatic, practical, and
painless. But it carries the traditional risk of
vendor lock-in and limited choice. The
multivendor approach has moderate risk of
lock-in or limited choice. The vendor-
neutral approach has the least risk of lock-in
and the maximum choice, but it is also the
least efficient, practical, or pragmatic.

Perhaps there is a middle ground. What
both the Microsoft and multivendor models
offer is an accelerated process for
developing specifications where none exists.
If a multivendor group developed the basis
for a specification, then circulated its work
throughout the industry, and used the
resulting feedback as the basis for a final
specification, then its work should result in
broader industry support. The next step
would be the same as what COSE has done:
Submit the specification to X/Open to be
considered for adoption into the Common
Application Environment. This final step is
one that even Microsoft should consider. €

OPEN

INFORMATION

SYSTEMS

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITH R. DAVIS
DAVID S. MARSHAK
RONNIT. MARSHAK
JOHN R. RYMER
ANDREW D. WOLFE, JR.

News Editor
DAVID S. MARSHAK

Art Director
LAURINDA P. O’CONNOR

Sales Director
PHYLLIS GUILIANO

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONALD K. BAILLARGEON

Patricia Seybold Group
148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Internet: psocg @ mcimail.com
TELEX: 6503122583

Open Information Systems (ISSN
1058-4161) is published monthly for
$495 (US), $507 (Canada), and $519
(Foreign) per year by Patricia
Seybold Group, 148 State Street, 7th
Floor, Boston, MA 02109. Second-
class postage permit at Boston, MA
and additional mailing offices.
POSTMASTER: Send address
changes to Open Information
Systems, 148 State Street, 7th Floor,
Boston, MA 02109.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohbited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

FEATURED REPORT: BY JOHN R. RYMER

Unisys ASD Framework

Meeting the Challenges of Software Development in
the 1990s

Introduction: The Software Crisis

The Crisis in Corporate
Software Development

Corporate Software
Development Addresses
the Challenge

Corporate software development is in crisis. Corporate development shops can’t reliably build
the right information systems within useful time frames and at a reasonable cost to support
business objectives. The software they do build is too difficult and expensive to modify as
business requirements change. The sign of this breakdown is the fact that software mainte-
nance accounts for upwards of 70 percent of most corporate MIS budgets. There’s little hope
in sight for a reduction.

MANAGEMENT IS SKEPTICAL. Corporate managers are growing increasingly skeptical about the
payback from large, in-house software development staffs. In many corporations, corporate
management is mandating that new software be developed on low-cost workstation and/or
LAN platforms rather than on more expensive mainframes or minicomputers. This tactic,
known as rightsizing, often also results in directives to move existing host-based applications
to LANS to reduce their ongoing costs.

OUTSOURCING HIDES THE PROBLEM. In other corporations, management is actively farming out
custom software development to service companies. This tactic has come to be called out-
sourcing. Often, corporate managers employ both rightsizing and outsourcing to reduce the
overall costs of building and maintaining business information systems because they are dis-
satisfied with their internal MIS organizations.

THE BOTTOM LINE IS THE BOTTOM LINE. The growing popularity of rightsizing and outsourcing
is bad news for corporate development shops. The strategic goal of both rightsizing and out-
sourcing is to reduce the costs of creating and maintaining information systems. Corporate
management clearly has come to believe that the costs of information systems are too high—
no matter how strategically important information is to their businesses.

This posture is a significant change for corporate software developers. For the first time in the
history of the computer industry, corporate managers across the board are subjecting infor-
mation systems to the same scrutiny as their other investments to support business objectives.

How has corporate software development arrived at this sorry state of affairs? Users have
been investing an enormous amount of time and money in new software development tech-
niques and technologies during the last decade. Chief among these have been computer-aided
software engineering (CASE) tools that seek to improve the quality and maintainability of
software. However, corporations have also invested in advanced technologies, such as object-
oriented software development tools and expert systems, in an attempt to solve their devel-
opment problems.

On the face of it, these investments have generated only paltry dividends. CASE tools and
integrated environments have failed to produce the expected breakthroughs in the quality and
cost of custom software. Expert systems have long since ceased to be a focus of corporate
software development, and object-oriented tools are too new and unproved in mainstream
development to be judged.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Impartant: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, calf (617) 742-5200. 3

Introduction: The Software Crisis

How to Beat the
Software Crisis?

And so, despite a great deal of effort, the software development crisis has worsened, not im-
proved. Why? The primary reason is that no single new tool or technique can fix the struc-
tural problems of software development. Most attempts to solve the software crisis attack the
problem piecemeal, when a comprehensive technology and management strategy is what’s
required.

In order to turn the situation around, corporate software development shops must fundamen-
tally change the way they design, build, and deliver software. The cost of software develop-
ment must be reduced at the same time that the speed of development is increased. Software
must be developed that can be changed. Development must be closely linked to the business
planning process. And software development must migrate from host-based development
platforms to Unix servers and PC LAN servers.

Four General Requirements for Success

Link Software
Development to Business
Requirements

The most important change in current software development practices is to make business
managers real participants in development. Software developers must throw software devel-
opment open to scrutiny by business managers to regain their trust. Managers should be able
to look at any project in any stage and be able to independently judge whether or not it is on
track to satisfy their business needs.

MAINTAIN FOCUS. Current efforts to involve business managers are too circumscribed. Devel-
opers solicit the views and requirements of managers and end users through joint-develop-
ment planning sessions. After these initial sessions, developers may show managers proto-
types from time to time, but the process of development remains a mystery to the business
managers who, ironically, fund it. Moreover, as the typical implementation project proceeds
further and further from the initial requirements session, it becomes a less and less accurate
representation of those requirements and the high-level design that proceeded from them. All
too often, by the time the software is finished, it is out of step with the original design and
with the changing business requirements.

ACCOUNTABILITY AND COOPERATION. Rapid prototyping, the current rage in the industry, is
only a partial response to this problem. What's really needed is an accountable, cooperative
approach to requirements gathering, functional specifications, application design, implemen-
tation, and maintenance that includes, but is not limited to, prototyping. To satisfy this re-
quirement, developers must be able to represent their understanding of requirements, their
designs, and even their code in terms that business managers can understand. The best way to
do this is for developers and managers to identify the unique concepts that define their com-
ponents and operations, and then to encapsulate these definitions in software objects. Then
developers and managers will have a common language to discuss applications—the names
and functions of the objects.

ONGOING DESIGN REVIEW. The ideal CASE environment, in this regard, will allow managers to
critique requirements specifications and high-level designs for applications, and developers to
generate code from the high-level designs. Moreover, the ideal tool will also accurately repre-
sent changes to the design that result from inevitable low-level coding decisions made in the
interest of efficiency and other factors. In this way, managers would always be able to review
the current designs of an application. In CASE terminology, this is known as traceability
between design and code.

MULTILINGUAL DEVELOPMENT. In addition to breaking down the wall between design and code,
the ideal CASE environment will also remove the walls between the different languages used
to build an application. For example, the environment would allow developers working with
4GLs to manipulate low-level data structures created by programmers working in C. The 4GL

4 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Four General Requirements for Success

Reduce the Cost of
Development

Make Software That Can
Be Changed to Reflect
New Conditions

Migrate from Current to
New Technologies

programmers would not have to leave the comfort of their language environment to work
with these structures, even though they were created using a different language.

Productivity is the primary focus of CASE and other attempts to improve software develop-
ment tools and techniques. Yet, most CASE users say that the primary benefit of this technol-
ogy has been to improve the individual programmer’s ability to generate lots of lines of code.
Current CASE tools have been much less successful at promoting and supporting code
modularity and reuse. To skeptics, code reuse is the Holy Grail of software development.
They are wrong. Reuse is attainable, but it requires communications between developers and
ironclad testing procedures that are not typical today.

Code reuse is the most promising method available today to reduce the cost of software while
meeting new challenges of quality and functionality. Reuse promises to save both time and
money—time in that developers won’t have to reinvent existing pieces of functionality when
they build an application, and, for the same reason, money. Reuse also saves money on test-
ing and integration of software modules.

The key to reuse is not new technology (although some new tools would certainly help to
automate reuse). Rather, reuse can be achieved by development organizations that institute
disciplined development processes and quality-control policies and procedures, including unit
and integration testing. These steps will help to create the atmosphere of accountability and
trust required before developers will reuse the work of other developers.

Markets change, and businesses that hope to operate profitably within those markets must
also change if they hope to thrive. Unfortunately, the software that supports a business is
often an impediment to healthy change. Most custom software is designed not to change, but
to represent the state of the business at a point in time a year or two earlier than today.

To support change, software designs must be modular, and modules must have three essential
characteristics. First, they must be self-defining. Second, they must be self-advertising so that
they can tell other modules what they are and which functions they can perform. Third, mod-
ules must be intelligent enough to field general requests for services. Modules that require
prior knowledge of their implementations will not support change without substantial modifi-
cation of themselves and other modules.

The most promising general solution to the crisis in software development is object-oriented
technology. Object-oriented software development offers corporations a foundation for creat-
ing intelligent software modules that can change over time without compromising their ability
to interact with other modules. Current implementations of object-oriented concepts are not
perfect, but it is important to distinguish the conceptual foundation from the available prod-
ucts that seek to deliver the foundation.

Object-oriented development techniques and tools require a shift away from current knowl-
edge about software design and implementation to new ideas. The shift is inevitable for the
reasons outlined above, but the change won’t take place overnight. Rather, corporate devel-
opment shops will take years to move from their current base of procedural development
technology to object-oriented development technology. The need to extend the life of current
investments in data and information technology is also a conservative force in this migration.

An important requirement of any comprehensive CASE framework/environment is to aid this
migration. To the extent that they are specific to a single language, development methodol-
ogy, or application model, software development frameworks and environments make the
transition between procedural languages and object-oriented languages that much more diffi-
cult. The ideal situation is for the development environment to be open (based on vendor-
neutral standards) and flexible enough to bridge today’s requirements and tomorrow’s. This

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of praprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 5

Four General Requirements for Success

means bridging procedural languages and object-oriented languages, for example. However,
it also means bridging centralized applications architectures (based on monolithic relational
databases, for example) and distributed architectures such as client-server and distributed
peers.

Object-Oriented Programming Meets the Challenge

Reduces Complexity and
Provides Reuse

Corporate Pioneers at the
Frontier

Object-oriented software operating in a distributed computing environment is the future to-
ward which we are moving. Object-oriented software development supports two important
user goals. First, it can reduce the complexity of building software for distributed, heteroge-
neous environments by encapsulating intelligence about the logical components of those envi-
ronments within objects. This makes it possible for developers to make more effective use of
distributed environments than is possible today.

Second, objects provide a reasonable basis for reusable software components. Reusable com-
ponents promise to speed development by eliminating the need to code all elements of every
application from scratch. In addition, however, objects promise to raise the overall quality of
software by placing pretested components into the hands of developers.

A modest number of corporate software development shops are making this transition today
by shifting their software development to object-oriented development environments rooted
primarily in either SmallTalk or C++. These shops are the leading edge in corporate software
development, and they are demonstrating the benefits of object-oriented development despite
a lack of a complete set of tools. Most object-oriented development environments today
require hand-coding with rather low-level languages. Tools that generate these low-level
languages from high-level specifications will accelerate the movement to the object-oriented
approach to systems development.

The majority of corporations are not yet prepared to make the substantial change in their cur-
rent tools and practices that object-oriented development requires. These shops will need
interim solutions to help them move from procedural software development—principally with
Cobol—to object-oriented design and implementation. The ideal interim solutions will help
users change their practices using procedural tools in object-oriented ways, eventually paving
the way for a full shift to object-oriented software development.

Unisys ASD Framework Offers an Alternative

A Practical Software
Engineering Platform

Unisys Advanced Solution Development (ASD) Framework is one of the few alternatives
available to corporate developers today. Fortunately, it is a good alternative. ASD Framework
gives developers a mature set of procedural tools that support more productive approaches to
software development by borrowing key concepts from object orientation. Make no mis-
take—ASD Framework is not an object-oriented development environment. It is 4GL based,
but it delivers the modularity and separation of application specifications from implementa-
tion that are available in object-oriented environments. Over time, ASD Framework will in-
corporate object-oriented languages, paving the way for users to make the shift to completely
object-oriented development, including inheritance of specifications to create new modules
from existing ones.

ASD Framework is both Unisys’s strategic CASE product line and its development architec-
ture. ASD Framework is a platform that places an existing suite of development tools into a
unifying context. (See Illustration 1.) Those tools are:

6 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Unisys ASD Framework Offers an Alternative

A Set of Related
Tools

How ASD Framework Is
Different from Other
CASE Frameworks

e Business Planning Workbench (BPW), which is a tool for defining business requirements
and mapping them to information systems at a high level. BPW comes in DOS and MS
Windows versions.

e Designer Workbench, which is a tool that provides modern graphical user interfaces to
existing applications built with Unisys’s existing 3GL and 4GL tools. The environment
works without requiring modifications to existing applications. Designer Workbench is
an MS Windows-based tool.

e The Mapper System, which is a fourth-generation language for creating user front ends
and environments in a network environment spanning mainframes, midrange processors
and Unix servers, and PCs.

e LINC II and Ally, which are designed to create transaction-oriented applications. LINC
II'’s unique value is its ability to generate the database and network structures required to
support an application from a high-level application specification. LINC II runs on
Unisys’s A Series and 2200 mainframes, as well as its U Series Unix processors. Ally
runs on the U Series and several other Unix boxes and is designed to create Unix-based,
database-independent applications. Ally supports the X/Open Company Limited Dis-
tributed Transaction Processing (DTP) model.

4 Other
The Mapper
System
Designer
Workbench
Business
Planning Ally
Workbench
Linc Design| :
Assistant |
i Linc ll

CASE Tools }—— __rﬂ

Hlustration 1. ASD Framework is a platform that places a set of existing tools into a unified
context. This illustration shows which phases of development each ASD tool is designed to
address, along with the direction connections between tools that exist today. Dotted lines in-
dicate near-term extensions of the ASD tools’ capabilities.

ASD Framework is different from most other CASE frameworks. Users can’t go out and buy
ASD Framework as such. Rather, it is a Unisys internal architecture designed to ensure the
integration of the various Unisys tools and the ability of all of the tools to support new tech-
nologies over time. To satisfy these requirements, Unisys plans to incorporate support for a
wide variety of standard interfaces and protocols within ASD Framework.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200 7

Unisys ASD Framework Offers an Alternative

A STRONG FOUNDATION. Thus, ASD Framework is really a set of tools with a strong founda-
tion. Most other CASE frameworks also offer developers tools and APIs to repositories, data
integration, and other useful services. Most CASE environments offered by major vendors are
skeletons of these proprietary APIs waiting to be fleshed out with third-party development
tools. Vendors espousing the API approach to CASE frameworks are seeking to establish a
set of long-lived standards that lock customers into their technical direction for the foresee-
able future.

A DIFFERENT APPROACH. Unisys’s approach is different. So far, Unisys has been uninterested
in creating its own proprietary APIs for such services as repository and data exchange be-
tween disparate tools. Rather, Unisys plans to support as many CASE APIs and messaging
protocols as possible and to interoperate with all major competing systems. Unisys has a
genuine commitment to neutral standards.

PRACTICAL STRATEGY. Unisys’s CASE strategy is practical. The company has quality software
development tools in its product catalogue, but, historically, it has sold these tools only to its
hardware customers. Now, Unisys wants to make its CASE tools product line independent of
its hardware business. To do so, it must reach out to users that don’t have Unisys hardware
and don’t know of Unisys’s strengths as a vendor of software development tools. Unisys has
to give software developers at large a reason to care about ASD Framework.

PRAGMATIC FOCUS. Unisys is tackling this challenge by focusing on a particular type of de-
veloper and by seeking to solve problems today rather than promising solutions tomorrow.
The target customer for Unisys is the mainstream corporate developer working in Cobol.
ASD Framework gives these developers a high-level environment that can carry them into
development on Unix servers and distributed computing platforms without a wrenching
change.

NOT TARGETING OBJECT-ORIENTED DEVELOPERS. Unisys is specifically not seeking to appeal
with its current product line to leading edge developers who have already made the switch to
C++ or SmallTalk. For now, Unisys will let other vendors service these developers. Unisys’s
goal is to provide developers with tools that permit them to specify applications at a high
level and then generate C++ (among other languages) to implement the applications. This
strategy will also enable Unisys to support transparent access to existing business data.

Unisys’s focus on solving problems now is evident in its promotion within ASD Framework
of its tools, rather than a set of APIs. Over time, Unisys is promising to build up the technical
underpinnings of its tools to provide greater functionality, greater integration, and support for
a greater number of tools, methodologies, and programming styles.

The Guiding Principles of ASD Framework

ASD Framework is both a conceptual framework to help users understand Unisys’s direction
and priorities with its development tools and an architecture for those tools. The framework is
depicted in Ilustration 2. The concepts supporting ASD Framework are expressed in a set of
principles. The architecture is expressed in a set of common components for Unisys’s current
development tools and an architectural direction for future versions of those tools.

The difference in Unisys’s strategy is evident in its four guiding principles:

e Support rapid application development. This means support for prototyping and for im-
proved programmer productivity using high-level tools.

e Support transition to new technology by hiding implementation details beneath an ex-
tensible, high-level development environment. Among the new implementation tech-

8 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

The Guiding Principles of ASD Framework

ASD Framework

Commitment to High-
Level, Language-Neutral
Development

nologies Unisys plans to support within ASD Framework are object-oriented program-
ming languages and distributed computing facilities, such as remote procedure calls.

e Support as many interfaces as possible to enable integration and interoperability with
competing environments, as well as integration of third-party tools with ASD Frame-
work.

o Closely link business requirements analysis and planning with the software development
process.

Business
Analysis

Solutions
Planning

3GL Support

OLTP Support
Business Intelligence
Re-engineering/Modernization

Tools and Services

Intertool Comms.

Repository

User Interface

Integration Platform

Business Focus Openness High Productivity Migration to New

Principles

Hlustration 2. ASD Framework has three conceptual layers and a variety of individual com-
ponents. The keys to the future architecture of Unisys development tools, however, are the
forthcoming Unisys Repository, a common user interface to multiple tools, and a future inter-
tool messaging service.

The last of these principles is the key to Unisys’s CASE strategy, which builds on ideas from
fourth-generation languages that are still valid today (but often forgotten). The breakthrough
of 4GLs was that developers could build systems faster and with greater accuracy by using
high-level concepts about systems rather than low-level structures for programming.

Defining applications using high-level concepts is a hallmark of ASD Framework. But Unisys
takes the concept an important step beyond 4GLs. Rather than linking high-level development
to a particular language, as 4GLs do, Unisys supports the creation of a variety of language
implementations from high-level specifications. The result is an important bridge between
today’s procedural languages and new languages, including object-oriented programming
languages. As long as the system’s high-level specifications are available, Unisys will be able
to generate a variety of implementations from them.

This strategy has had an interesting result for Unisys. Whereas most other framework ven-
dors—IBM, Hewlett-Packard, and CenterLine Software, for example—are focused on provid-
ing integrated programming environments for C or Cobol or C++, Unisys is not. Unisys has
programming environments already in its LINC II, The Mapper System, and Ally products,
but its focus is on allowing systems to be specified in a language-independent fashion, allow-
ing developers to generate code in a variety of languages from them. Thus, Unisys isn’t com-
peting with language-environment vendors. Instead, it is building a framework that will
surround and coexist.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results ol proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. 9

The Guiding Principles of ASD Framework

Architectural Details,
Today and in the Future

ASD Framework is more than a set of principles. It is also a strategy that dictates an architec-
ture for software development tools—both in the short term and in the indefinite future.

The architecture seems unremarkable in Unisys’s depiction of ASD Framework (Illustration
2). There is a repository, which is a database of information about the code that comprises
applications; a unified user interface; and inter-tool communications services. Every major
CASE vendor has these elements in its architecture for the future. However, each of the
Unisys environments—LINC II, The Mapper System, and Ally—conform to this general
architecture today.

SEPARATE TOOLS—COMMON FUTURE. Each of Unisys’s tools has its own repository, user inter-
face, and development integration facility. Unisys does not yet have a common framework of
these services that spans its applications. The plan is to first build interconnections between
the individual tools and then migrate to a common layer beneath all of them. The beauty of
this approach is that it delivers functionality today, and it will deliver increased interoperabil-
ity in the near term and a single powerful platform in the future without forcing users through
jarring technology transitions.

MAKE OR BUY TOOL INTEGRATION? In addition, the ASD Framework architecture is different in
an important way from most other CASE architectures. Of the three major components in the
architecture, Unisys is furthest from implementing a development tool integration system
(such as SunSoft’s ToolTalk and HP’s Broadcast Message Service). Unisys is currently
studying how to implement this functionality, and may, in fact, buy it rather than build it.

FOCUS ON RICH REPOSITORY. Unisys’s primary focus is on designing a repository that will
support rich multitool data-sharing—a much more robust level of integration than that sup-
ported by inter-tool messaging. Unisys needs to define an information model for its repository
that can envelop a wide variety of data models, not just a few chosen in order to achieve its
goal. The company has an object-oriented model it believes will accomplish this goal and is
currently testing it with partners.

COMMON USER INTERFACE. Unisys is close to completing a common user interface to its tools.
This interface will be the Designer Workbench, a Windows-based tool for building applica-
tion code using graphical aids. Designer Workbench has been available for a year, but not for
every Unisys platform. Unisys plans to make it the primary development interface regardless
of underlying language. So far, the company has delivered on this promise for The Mapper
System and Ally. LINC will be next. This strategy will allow Unisys to slide new
implementation technologies under a consistent interface. Unisys plans to enhance Designer
Workbench over time to add new semantics to support this strategy.

Unisys’s priorities in the evolution of ASD Framework promise that the company will have
powerful integration facilities before its competitors. Getting the information model for the
repository right is the hard problem in building a CASE framework. Building a mechanism
for tools to exchange requests for service and responses is an easier problem to solve. But,
without a common data model, tools can only send one another messages; they really can’t
effectively share information.

Does ASD Framework Meet the Four General Requirements?

We have found no development environment that meets all of the four requirements outlined
in the previous section. Many object-oriented tools come close but falter on the issue of mi-
gration. Most procedural development environments fall short in every area. Unisys ASD
Framework meets most of the requirements today and promises to keep providing improve-
ments over time. Detailed discussions of each tool follow in other sections. The following is a
summary:

10 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Does ASD Framework Meet the Four General Requirements?

Linking Software
Development to Business
Requirements

Reduce the Cost of
Development

Making Software That
Can Be Changed

Migrate from Current
Environments to New
Ones

ASD Framework is strong on linking software development to business requirements. Using
Business Planning Workbench, Designer Workbench, and LINC I, it is possible to begin an
application by defining high-level business requirements and then proceed right to code gen-
eration on LINC II-supported platforms.

Indeed, Unisys has a unique commitment to helping managers outline their strategic business
imperatives in terms that software designers and developers can understand. Unisys has not
yet built the “upstream” connection between code and design, but this is an obvious en-
hancement of future versions of its products.

With ASD Framework, developers have available to them all of the productivity advantages
of high-level programming environments. Each of the ASD Framework tools offers develop-
ers greater power for each line of code than 3GLs do.

In addition, with LINC II, Unisys has begun to support reuse of software modules across
applications. The support isn’t complete, however. Unisys has no facility to catalog or ex-
haustively test modules. But the basis for reuse is there, and this is impressive.

Unisys fares well on making software that can be changed. With LINC II, The Mapper Sys-
tem, and Ally, developers create software by specifying an application’s functionality and
then generating the code required to implement it. In the case of LINC II, the generated code
is Cobol native to the target environment. In the case of Ally and The Mapper System, the
code is the language of those environments. Because the application is defined at a high level,
though, developers can change the application by changing the specifications and then regen-
erating the application.

ASD Framework is explicitly designed to support the migration from today’s most commonly
used development tools to new development technologies and techniques. Unisys plans to
support this requirement by increasing the number of languages it can generate from its high-
level specification languages. The Unisys Repository will be key to supporting this approach.

Is ASD Framework Really Open?

Is ASD Framework really open? To answer this question, Unisys must deal with two issues.
First, will Unisys provide its own tools on non-Unisys platforms? Second, will Unisys allow
integration of third-party development tools with ASD Framework, and, if so, how?

MULTIPLATFORM IMPLEMENTATIONS. Unisys has demonstrated its commitment to multiplat-
form ports of its development tools. The Mapper System is already available on Sun
SPARCstations, OS/2, and Microsoft Windows. During November 1992, Unisys announced
availability of The Mapper System for IBM’s RS/6000 and Intel platforms under SCO Unix.

Unisys has also announced that it is porting LINC II to Unix System V Release 4, making it
available on a wide variety of Unix platforms (not just the Unisys U Series).

THIRD-PARTY TOOLS INTEGRATION. Unisys believes the ultimate purpose of a repository-based
CASE framework is to support tools from many vendors. A repository allows each tool to
present an appropriate view of the same underlying information about software. As Unisys
implements de facto and de jure API standards in ASD Framework, it will provide third-party
vendors with the basis for integration with ASD Framework’s underlying repository and in-
ter-tool communications facilities.

However, integration via APIs is a future direction, not a current reality. For the present,
Unisys itself plans to integrate popular tools with ASD Framework. It will rely on its own
gateways between third-party tools and ASD Framework tools to accomplish this integration.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 1

Is ASD Framework Really Open?

Unisys will select third-party tools for integration based on customer demand. For example,
Unisys is interested in integrating PowerSoft Corporation’s PowerBuilder with ASD Frame-
work because of PowerBuilder’s popularity with Unisys customers.

Business Planning Workbench

Strategic Planning Meets The first step in application development is an analysis of user requirements and business

IT Planning imperatives. These factors inevitably determine whether or not an application development
project adds value to the business. Unlike most CASE frameworks, Unisys’s ASD Frame-
work includes a tool to aid in the process of requirements gathering and analysis.

Business Planning Workbench (BPW) is a tool to help ensure that a corporation’s information
technology investment plans are in tune with its strategic business goals. BPW is a special-
ized database for gathering and organizing business requirements information and then using
this information to plot an effective and efficient information technology strategy.

In most corporations, business, or strategic, planning is segregated from technology planning.
The result is predictable: Many information technology solutions do not support very well the
attainment of strategic goals. The ideal approach is for strategic business planning and the
design of information systems to proceed in lock step.

But how? A number of strategic consulting firms have bridged the gap by building informa-
tion technology planning into their methodologies. However, users of these methodologies
generate documents describing the corporate goals and the organizational and technology
steps needed to achieve them. Planning documents do not meet the need to analyze and up-
date strategic and information technology plans on an ongoing basis. This is the need BPW
seeks to meet.

BPW has been available in a DOS version in Europe only. Beginning in 1993, Unisys is
making available a new Windows version of the tool in addition to the older DOS version in
Europe, along with associated consulting services. We expect BPW to be made available in
the United States soon as well.

What Is Business Unisys created BPW with Coopers & Lybrand’s U.K. partnership. Coopers & Lybrand/U.K.
Planning Workbench? needed a PC tool to automate its Summit-$ strategic planning methodology. Unisys needed a

tool within its ASD Framework that addressed business requirements analysis and planning—
the first steps in successful software design.

What emerged from the partnership is a database tool that automates Summit-S out of the box
but can also be easily tailored to implement any other strategic planning methodology.
(Unisys is not wedded to Summit-S.) The primary function of BPW is to collect information
from high-level executives and front-line managers about the strategic goals of the business,
the distinct functions (procedures and operations), and the opportunities and barriers to suc-
cess in a database.

This information typically is collected during interviews with executives and managers. The
resulting database contains a model of the business. BPW can capture all information about
all aspects of the business, bringing to light assumptions and priorities that might otherwise
never have been made explicit. The model can be updated as needed to reflect new business
conditions, or to make corrections. Managers can generate views of the model to run simula-
tions without corrupting the integrity of the underlying database. BPW supports both table
views and diagrammatic views of its information. (See Illustration 3.)

Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

BPW BaSIC MOde Organizational
of Operation har

Business Business

Requirements Policies
Database Process
Models
Current
Technology Systems Plan

Business Planning Workbench
\
\

Export to CASE

Hlustration 3. The basic mode of operation for Business Planning Workbench is to input in-
formation about business goals and existing systems into a database, which can then be used
to generate analytical reports. In addition, BPW can export a basic requirements specifica-
tion to either Unisys’ LINC Il environment or the Systems Engineer design package from

LBMS Incorporated.
BPW'’s Categories of Summit-S segments strategic and information systems planning into major categories:
Planning Information

* Business Strategy, which defines the high-level goals of the business

¢ Business Objectives, which define the basic goals of the business

e Opportunities, which define unaddressed customer needs or voids in markets
e Deliverables, which define products and other “output” to customers

¢ Functions, which define actions

¢ Organization, which defines the structure of the corporation

|
|
e Business Architecture, which defines the relationships among strategy goals, functions,
deliverables, opportunities, and barriers

e Critical Success Factors, which define management’s view of the most important factors
in a successful business strategy

e Programs and Projects, which group Functions into applications-development units

¢ Goal Information Technology Architectures, which present technology architectures in a
map-like format, with full definitions of every element

At each stage, managers define the names and nature of elements, from business goals to de-
partments and divisions, along with their benefits and relationships to other elements. For ex-
ample, if a business strategy is to automate the corporation’s warehouses, the definition of
that strategy would include expected benefits.

‘ Analyzing the BPW The BPW database stores information about each goal, subgoal, operation, procedure, and so
Model forth—including the relationship of one element to another. For example, a strategic goal

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 13

Business Planning Workbench

Relationships Support
Analysis of Plans

Integration of BPW and
Other ASD Framework
Components

Designer Workbench

might be to increase profitability. A subgoal for this goal might be to reduce overhead costs.
A function might be the billing of customers. Users define the relationships among these
items.

The BPW database supports analysis of business strategies and plans in two major ways. The
first is to explore the relationships between elements in the model of the business. For exam-
ple, if the model identifies a Deliverable called Get Product Out On Time as being crucial to
success, a user can easily see which Functions are required to achieve that Deliverable. This
might lead to a decision to accelerate an application-development project designed to deliver
those crucial functions.

The second way BPW supports analysis is by correlating information in very flexible ways.
For example, managers might correlate organizational units by function to determine if there
is any functional overlap between departments. Having collected this information, BPW al-
lows managers to analyze the relationships between goals, strategies, and even systems. Man-
agers can use BPW to create any number of scenarios to test their assumptions or try out dif-
ferent plans.

BPW users can generate a number of scenarios and reports from the underlying database. By
focusing on the Functions defined in the database, managers can begin to create a rational
approach to information systems planning. In addition, over time, BPW gives managers a way
to continually track the effectiveness of their technology investments in meeting business
goals.

At the current stage of its development, BPW is available to users of Unisys’s tools (and the
CASE environments of other vendors as well) as the first step in describing a strategic plan
that is connected to information technology plans. By focusing on Functions defined within
BPW, managers can target their investments in information technology on high-payoff appli-
cations.

The ideal situation would be to push a button in BPW to generate a high-level functional
specification for an application. However, BPW does not yet do this. What Unisys does sup-
port is importing a BPW functional description into either Unisys’s LINC II environment or
to Systems Engineer from LBMS Incorporated, which, in turn, generates a requirements
specification for the application.

Users also cannot use LINC II specifications to populate a BPW database. To do so would
support re-engineering projects nicely, and also ensure that, when inevitable changes are
made to an application during coding, the impact of those changes on functional requirements
would be immediately accessible to managers.

An obvious future direction for Unisys is to support greater integration with LINC II and its
other tools.

Common ASD GUI: Tool
for Development
of Front Ends

Unisys’s tool for building user environments is Designer Workbench, a Windows-based tool
for creating application front ends. The product operates in a way that is consistent with other
graphical tools on the market. This mode of operation is often called spatial programming
because it allows developers to work by arranging graphical elements on a screen, rather than
by writing lines of code. Designer Workbench’s Forms Designer, the main component of the
product, allows developers to design an on-screen form by painting the form on the screen
and defining its fields in place.

14 important: This report contains the results of proprietary research, Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200 OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Designer Workbench

Beyond Generic
Graphical Front End
Features

Development Priorities
for Designer Workbench

In addition, Designer Workbench outputs fully functional Windows applications that will
work alongside other Windows applications. In other words, Designer Workbench is not a
closed environment.

Designer Workbench is Unisys’s common high-end graphical environment for all of the ASD
Framework tools. Designer Workbench is currently available for The Mapper System. Ver-
sions of Designer Workbench for other ASD Framework tools can be expected in the future.

Although Designer Workbench in many ways typifies graphical front-end development tools,
it also has some unique aspects. For example, it has features that permit development of
touch-screen interfaces. Touch screens are a helpful interface for applications that allow ex-
ecutives to browse through data online (executive information systems). Since many execu-
tives don’t type, touch screens are a vital alternative interface.

Designer Workbench also supports the full range of image-presentation, graphics, and font
display features available under Microsoft Windows.

In addition, Designer Workbench also gives developers an important application-maintenance
feature. Developers can store a master copy of the specification for their user screens on a
host or server. When developers need to change screens to incorporate new features, satisfy
user requests for changes, and so forth, they can update the master copy of the specification.
The next time each user seeks to use the applications that use the changed screens, Designer
Workbench will download the new specification and update the user’s local copy of the
screen to conform to it.

Unisys has four key development priorities for Designer Workbench: support for more plat-
forms, expansion of its functionality in host integration, the addition of a multiuser repository
for the tool, and support for development of full client logic at the workstation.

First, Unisys wants to support Designer Workbench on a variety of platforms. Designer
Workbench is currently a Windows tool, and Unisys is working on ports to other client plat-
forms as well.

Second, Unisys sees a great opportunity in the use of Designer Workbench to modernize
legacy applications with graphical front ends without requiring modifications to the underly-
ing code. Unisys plans to add to Designer Workbench a “screen-scraping” facility that allows
developers to easily map new graphical displays to old, character-based screens. Screen-
scraping is a technique available today with the use of discrete tools, but Unisys plans to fold
this function into its graphical development environment.

Third, Designer Workbench is a single-user tool in its current versions. It does not support
coordinated work by teams of developers using the same repository information. In the corpo-
rate environments that Unisys is targeting, support for multiple developers is important.
Unisys intends to provide multideveloper support by adding a multiuser repository to De-
signer Workbench in a future release.

Fourth, Unisys plans to gradually expand the extent to which of an application can be built
using Designer Workbench. Today, Designer Workbench addresses mainly the construction
of user interfaces—no mean feat. Over time, Unisys plans to add features that permit the
construction of application logic through the high-level tool as well.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the resuits of proprietary research. Reproduction in whole o in part is prohibited. For reprints, call (617) 742-5200 15

The Mapper System

The Mapper System

The Mapper System: A
4GL Grows Up

Critical Success Factors
for Front-End
Development Tools

General Purpose
Application-Creation
Environment

Multidatabase Access

The Mapper System is one of the original fourth-generation languages. During its long his-
tory, it has changed dramatically to meet new needs. This ability to change is a strength of the
underlying language and architecture of The Mapper System.

The primary purpose of The Mapper System is to assist developers in creating rich end-user
computing environments and applications. The Mapper System is a tool, then, for defining
the “front-end” applications that users employ to access data stored in “back ends,” such as
LINC II production systems and relational databases. The Mapper System applications access
and integrate a variety of data from disparate sources without requiring knowledge of the
underlying access semantics. Having obtained data, Mapper applications can then also pro-
vide users with the means to model and manipulate those data.

The secondary purpose of The Mapper System is to provide sophisticated end users with an
easy-to-use programming tool that allows them to build their own database query and report-
ing applications.

Developers (or sophisticated end users) can work with The Mapper System via two routes.
First, they can write Mapper code. Second, they can use Designer Workbench for The Map-
per System (based on Microsoft Windows) or The Mapper System’s own Forms Designer.
Both Designer Workbench and Forms Designer allow the developer to define the user inter-
face for the application using high-level drawing spatial programming tools. Under the cov-
ers, both Designer Workbench and Forms Designer generate the Mapper code needed to im-
plement the application.

Not all development environments designed to create the end user’s view of information sys-
tems are created equal. Many are special-purpose tools designed to build only one type of
application. Others are restricted only to one platform. The best tools meet four criteria,
which we call the critical success factors of a front-end tool. The Mapper System meets all of
these criteria today. The four criteria are:

Ability to create any and all types of front-end applications
Ability to access to multiple databases and back-end systems
Support for multimedia

Support for multiple platforms

The Mapper System is a general purpose development environment, not a tool aimed at creat-
ing only one type of user front end. Thus, developers can use The Mapper System to build
decision-support applications in which the most important functions are modeling and simu-
lation routines. However, they can just as easily use The Mapper System to create the online
graphical “briefing books” associated with Executive Information Systems (EISs). In
addition, the most recent versions of The Mapper System support creation of multimedia
applications, including real-time video displays within more conventional forms-based
applications.

The first versions of The Mapper System were dependent on an internal database (like most
4GLs). However, Unisys has long since made The Mapper System a tool that is independent
of its sources of data. The Mapper System retains it own database, but it can also access a
number of other sources.

The key to this ability is The Mapper System’s data-access features. The Mapper System has
an interface to access LINC Il data. It also has a generic interface for accessing relational
databases, called The Mapper System Relational Interface (MRI). Using MRI, developers can
define the data sets required by a user within The Mapper System’s internal database. The

16 Important: This report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Multimedia Facilities

Support for Multiple
Platforms

LINC Il

data required to fill these data sets may be acquired from a number of back-end databases.
MRI, then, generates the query syntax required to obtain the data from each back-end data
source.

Over time, Unisys will have to modify The Mapper System to add a “standard” interface for
multidatabase access. This shouldn’t be a problem for Unisys. The SQL Access Group
(SAG), Microsoft, Borland International, and IBM are all defining different interfaces to
multiple back-end data sources, each hoping to establish an industry standard. With MRI,
Unisys has a solution to the problem of multidatabase access today and an architecture that
will allow it to migrate to one or more “standard” interfaces in the future.

The original 4GLs were designed to make it easier for developers to code character-based
user interfaces. Not all of these products have made the transition to graphical user interfaces,
such as Microsoft Windows. The Mapper System has. The latest version of The Mapper Sys-
tem supports all of the media types available under Microsoft Windows and Unix, including
voice and video. Developers face no dead ends when it comes to media support in The Map-
per Systems.

The Mapper System has been available on Unisys’s four major platforms for a long time.
During late 1992, Unisys announced its availability on the IBM RS/6000 and Intel platforms
under SCO Unix. Other ports will follow during 1993.

LINC Il Advanced
Procedural Environment

Building Blocks: Ispecs
and Events

LINC II is a procedural development environment that uses some object-oriented concepts to
increase developer productivity and flexibility as well as to improve the maintainability of
applications code. The object-oriented concepts LINC II uses include: modularity of code,
creation of self-defining modules, separation of an application’s specification from its imple-
mentation, and the close coupling of data with business rules.

Using LINC II, developers build applications by defining information specifications (ispecs)
and the business rules of the application. Ispecs are the basic elements of a LINC II applica-
tion. An ispec is not an object; it is an independent module. LINC II supports two basic is-
pecs, standard ispecs and events, and two variations of standard ispecs.

A LINC II application is really a matrix of ispecs and events, or transactions. The Designer
Workbench permits a developer to easily view the ispecs and events in an application, includ-
ing their interrelationships.

ISPECS. A standard ispec is a data structure with a single key. Standard ispecs define the fixed
concepts in an application—concepts such as plant locations, vendors, and customers. The
actual locations and vendors the user deals with may change, but the definition of what a ven-
dor is and what role it plays in an application are not likely to change. The two variations on
the standard ispec are memo, which has multiple keys, and table, which is a standard ispec
that is automatically loaded into memory by the application to improve performance.

EVENTS. An event defines a transaction between standard ispecs. Thus, an event will define
what a customer does in a business transaction but not the information that defines what a
customer is.

BUSINESS RULES. An application’s logic is expressed in business rules. Developers associate
business rules with a particular ispec. For example, an ispec representing a data entry screen
layout defines the data associated with that screen and the code blocks that define rules gov-
erning those data (such as validation routines). The result of this structure is to give mainte-

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 17

LINC Il

Why Ispecs Are
Important

Major Benefits of LINC
I’'s Modular Approach

“Living” Design
Specifications

nance programmers easy access to all relevant information about the general structure of an
application as well as the structure of each element and transaction within an application.

ISPEC DEFINITION. Developers can define ispecs either by using the Link Definition Language
(LDL), a 4GL based on Cobol syntax, or by using Designer Workbench and its graphical
tools. Developers define the application logic (the business rules) using LDL only. LINC II
generates ispecs based on the developer’s Designer Workbench specifications. (In addition,
ispecs are modifiable using LDL).

All ispecs and events are stored in LINC II's repository. Access to them is governed subject
to security permissions. For example, the software development manager can make certain
ispecs read-only to the majority of developers, limiting full access to selected members of the
development staff.

LINC II builds an application from an abstract specification. Thus, the design for an applica-
tion is separate from that application’s implementation in Cobol. This is an important design
principle. Typically, in the creation of an application, developers begin with a design, usually
sketched out on paper. When developers begin to implement their design for the application
by writing code in a programming language, they usually make design changes. However, the
original design specification is rarely, if ever, modified to reflect these changes. Thus, most
organizations can only understand the design of their applications by reading low-level code
to discern its inherent design. The result is code that is difficult to maintain and change.

LINC II's approach to software development yields two important benefits that are not com-
monly available from other procedural software development environments. The first of these
benefits is a reduced maintenance burden. The specification of each ispec and its relationship
to other ispecs are always available to developers. This means that developers who are as-
signed to update an existing application can very quickly analyze that application’s structure
and purpose. The result is less time spent understanding the application code and more time
spent on the maintenance job.

In addition, by working at the level of design specifications to build and modify applications,
developers are assured of always maintaining a current design specification for an application.
By exposing the design of an application, developers can more easily verify for business
managers and users that their applications are accomplishing the business’s objectives.

The second major benefit is the ability to change existing software without breaking it. By
defining an application’s elements and actions in abstract specifications, LINC II gives devel-
opers the opportunity to change and update their code with great flexibility. LINC II allows a
developer to change any of the ispecs within an application (subject to access controls) to add
new features or modify existing ones. For example, a developer can easily add a field to a
data entry form ispec with the confidence that the change will not have unintended conse-
quences for other applications that use the ispec. LINC II tracks the usage of ispecs in appli-
cations, and so it can propagate a change in one ispec to all uses of that ispec in all applica-
tions. The developer then must regenerate the application on the target platform to implement
the change.

LINC Design Assistant also gives developers the ability to test a changed ispec before
committing it to the data dictionary.

LINC II is unique among CASE environments in its close integration of a tool for specifying
applications and the low-level structures that implement those applications. Most CASE envi-
ronments allow users to use design specification tools to outline an application’s architecture.
Very few tools, however, generate implementations from high-level specifications. LINC II

18 Important: This report contains the resuits of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Native Environments, Not
Runtimes

LINC Design Assistant:
Upper CASE Tool

The LINC Design
Assistant Process

Upper CASE Migration

Development Priorities
for LINC 1l

does. It generates the database schema, data structures, and programs required to implement
the database, network, and the application functionality on multiple native platforms.

This integration yields a vital benefit for corporate developers. It allows developers to specify
information systems using a high-level design tool—the LINC Design Assistant—and then
maintain the resulting applications using the same high-level tool. The result is that design
specifications in LINC II are living elements, not just throwaway documentation for the early
stages of an application’s development.

LINC II generates native implementations, not a runtime environment that is hosted on a tar-
get environment. The environments supported are Unisys A Series mainframes (Cobol, DMS
II databases), Unisys Series 2200 mainframes (Cobol, the 2200’s relational DBMS), and
Unisys U Series (MicroFocus Cobol, Oracle Version 6 relational DBMSs). LINC II generates
the required network code for only the A Series and Series 2200 environments, however.

Unisys also provides a facility for integrating new LINC II systems with preexisting Cobol
programs.

A crucial step in an application development project is the creation of a high-level design for
the application. It is at this stage that software architects lay out the functional modules, data
structures, database schema, and user interface for the application. Unisys’s LINC Design
Assistant is a tool for aiding this process.

Developers define the elements and events within their applications by manipulating shapes
and arrows on the screen and associating business rules (procedures) with those elements.

Developers begin a Design Assistant session by defining the functional area in which they are
working. Typical functional areas include accounting, human resources, and marketing. The
next step is to define an activity within the functional area. For example, an activity within
accounting would be budgeting. The next step is to define the data and events within that ac-
tivity.

The next step is to define the business rules for the object. The rules are not created using
LINC Design Assistant, but, rather, with the language of the underlying implementation envi-
ronment—LINC II. The last step is to paint the screens associated with each object. This set
of functions accelerates the creation of user interfaces.

LINC Design Assistant is an interpreted environment based on a single-user repository of
information. Developers generate application specifications for code generation from the
repository. However, developers can work within the LINC-interpreted environment without
committing changes to the repository. This allows for prototyping and testing of new struc-
tures before they are committed to the repository for use. (Further, the LINC Interactive Test
Environment—LITE—allows developers to test their modules interactively without generat-
ing code to implement them.)

LINC II allows users to import design specifications created using third-party tools. Unisys
supports, through the LINC CASE Interface (LCI), importation of specification files from
structured design tools from LBMS, Intersolv, IEW/ADW, and Gamma. LINC II automati-
cally translates these specifications into its own format. Users can then use Unisys’s Design
Assistant to optimize these translations or to modify them to reflect changed business
requirements.

Unisys’s top priorities for LINC II are: support for third-party Unix platforms, multidatabase
applications, compliance with the Distributed Transaction Processing interfaces defined by
X/Open Company Limited, and an improved SQL implementation.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200 19

Ally—Unix-Oriented Development Environment

Ally—Unix-0Oriented Development Environment

Multidatabase,
Distributed OLTP
Development

Complete Distributed
Transaction Applications

Development Priorities
for Ally

Like LINC II, Ally’s purpose is to create transaction-oriented production applications. Ally,
however, is designed as an environment for application creation and execution strictly in
Unix-oriented distributed environments supporting one or more varieties of relational data-
base products.

Developers can use Ally to create client/server transaction processing applications involving,
for example, Oracle and Informix databases. The Ally runtime, when used in conjunction
with Unix Systems Laboratories’ Tuxedo transaction manager, supports the integration of
data from both of those databases within a single application.

Ally is a high-level tool, not a third-generation programming language. Developers work by
selecting commands and functions from menus in a character-based environment. Ally in-
cludes, however, a Pascal-like language to give developers total control over an application’s
logic and flow of control.

Developers can use Ally to define complete transaction-processing applications in OLTP
environments. Developers use the tool to define clients and servers, parameters for service
requests, database schema (including data fields), and primary and foreign keys, as well as
views, restrictions on fields, and so forth.

In addition, Ally generates calls to Tuxedo from specifications, shielding developers from
Tuxedo’s native C language interface. This feature is supported for both client and server
requests. Having created an application specification, a developer then generates the applica-
tions code required for the application directly from Ally. The Ally runtime environment en-
sures applications portability across multiple versions of Unix.

Unisys has two major development priorities for Ally: adding GUI features and providing
Windows and Motif presentation drivers.

Ally has a character-based menuing user interface. For many users, this interface is outdated.
Unisys will provide a Motif-based interface for Ally during 1993 to satisfy this user need.
Additionally, in 1993, Ally will add support for XA-compliant databases with new Ally serv-
ers based on open SQL access.

Future Directions for ASD Framework

Cross-Tool, Enterprise-
Scale Repository

ASD Framework is based on proven technology and tools, not new concepts. A test of the
product line will be its ability to evolve during the future to accommodate the latest trends in
software development. Unisys has a plan to support this evolution. The major components of
this plan are an enterprise-scale repository, expanded support for distributed computing, and
support for object-oriented development within ASD. Framework.

At the heart of each of the ASD Framework tools today is a repository that stores information
about the specifications for software, including relationships between components. Today,
these repositories are discrete entities specific to each tool. During the next year, Unisys will
begin to roll out new repository technology that can span all of the ASD Framework tools.

The first step in this roll-out will be support for information exchanges among the discrete
repositories using proprietary import/export facilities. Next, Unisys will introduce a new re-
pository based on its object-oriented model for all of its tools on the PC and Unix platforms.
The switch to the new repository will be invisible to the user. The last step of the roll-out will
be to offer the new repository on Unisys’s mainframe platforms and to support a single logi-

20 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Future Directions for ASD Framework

Object-Oriented
Information Model

Distributed,
Multiplatform Database
Foundation

Repository APl Support

Object-Oriented
Development and Other
Advanced Technologies

cal view of data in repositories on multiple platforms. The schedule calls for the entire pro-
gram to be completed by 1997. The distinguishing characteristics of the Unisys Repository
are an object-oriented information model and distributed database technology.

The purposes of the Unisys Repository are to support data-sharing among tools and to support
integration between tools. This approach would allow a high-level graphical tool to access
information (objects) created using a different tool—a low-level language, for instance. The
result is support for collaboration on software creation by users of different tools and support
for reuse of existing components in new applications.

Object orientation is important when it comes to repositories because an object-oriented
model is inherently flexible and extensible. Unisys has not taken the approach of defining the
attributes of what it believes to be relevant tools and then calling that its repository informa-
tion model. The model is general; it does not reflect the capabilities (and limitations) of exist-
ing tools. Rather, it represents a general model of all tools as they are today and might be
tomorrow. Because it is object-oriented, the model is extensible to new capabilities. Unisys
uses this base model to create views that are tailored to the particular storage models of vari-
ous development tools. Individual tools vendors do not, then, have to modify their storage
models to work with the Unisys Repository. They can just change the view of the model to
suit their purposes. Unisys plans to publish its repository information model sometime during
1993.

Unisys is going with a distributed database underpinning for its repository as a way of sup-
porting large-scale use of the technology. Monolithic repositories won’t scale well as de-
mands increase, but distributed structures will. Unisys plans to support distribution across
mainframes, midrange Unix servers, and PCs, giving users flexibility in their choices of re-
pository platforms. Unisys’s distribution architecture utilizes both transaction control and
replication to coordinate information stored in distributed databases.

Unisys does not plan to publish its own APIs for repository services. It will use the IRDS 2
APIs coming out of the National Institutes of Standards and Technology (NIST) for the
Unisys Repository. During 1993, the company plans to implement a version of IRDS 2 in ad-
vance of the formal adoption of that standard sometime in 1994 or 1995, and then make
modifications as needed to comply with the final standard. Unisys also plans to implement the
PCTE APIs for repository services being developed in Europe. Unisys will publish its reposi-
tory model, which is the information third-party developers need to build views of the reposi-
tory to fit their tools.

Finally, Unisys plans to implement support for IBM’s AD/Cycle APIs to allow interconnec-
tion with IBM’s repository. Unisys will also support import/export, using the CDIF format to
interchange data with other repositories.

The new repository is the key to Unisys’s ability to gracefully support new technologies
within ASD Framework. The repository is the place where all sorts of information models can
be represented in a way that makes them accessible to multiple tools. Thus, the new reposi-
tory technology will allow Unisys customers to continue to use high-level tools to specify
applications, but generate the code to implement those applications in languages besides
Cobol or C.

Unisys plans to support advanced languages, such as C++ and SmallTalk, only when it can be
sure that, in doing so, it will be able to preserve the high-level view of development it has
achieved with Designer Workbench. The same is true of any other new coding technologies.
Unisys will treat them as low-level technology to be generated, not as replacements for its
high-level specification tools.

OPEN INFORMAT!ON SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 21

Future Directions for ASD Framework

Distributed Applications

Development

Unisys does not promote ASD Framework as a solution for building distributed applications,
although it could. The ASD Framework tools currently allow distribution of function, as

Current Support
for Distributed
Applications

shown 1n Illustration 4.

Presentation Database Application
Logic
Designer Workbench .
The Mapper System . . .
LINCII . . .
Al]y . . .

Hlustration 4. The current versions of ASD Framework tools support a fair amount of distri-
bution in applications implementation. This chart segments applications into three parts:
presentation, database, and logic. It then identifies which of these elements each of the ASD
Framework tools can distribute.

Unisys does support distributed applications through a variety of mechanisms, although none
of them is very standard. The reason Unisys doesn’t promote ASD Framework as an envi-
ronment for creating distributed applications is that it hasn’t yet implemented distributed
computing standards into its base software. However, the company has already demonstrated
its commitment to standards in its existing networking products. The company has very
complete support for both the SNA and OSI protocol suites. Distributed computing standards
are a natural evolution for these products.

The standards that Unisys expects to implement in future versions of its tools are:

e The ONC+ Transport Independent (TI) RPC, OSF RPC, and ISO ROSE RPC
e OSI's Remote Data Access (RDA) protocol

¢ X/Open’'s Distributed Transaction Processing (DTP) interfaces, including XA, TM-TM,
and AP-TM

e The Object Management Group’s Common Object Request Broker Architecture
(CORBA) interface

The result of these efforts will be to add standard interfaces to tools that already support dis-
tributed applications.

Conclusions

Does ASD Framework
Meet the Four General
CASE Requirements?

We haven’t found any development environments that meet all four of the requirements out-
lined in the introduction to this report, though many object-oriented tools come close. Object-
oriented development provides a means to establish a common language to foster communi-
cations between business managers and software developers. Object-oriented tools also are
explicitly designed to support reuse of code to improve productivity.

However, object-oriented tools don’t yet support change in the software very well. Most ob-
ject-oriented environments are built on source-level technology. When software has to be
changed, these environments require recompilations to update all affected applications. Some
vendors allow multiple applications to share the use of single objects, eliminating the need to
recompile code. But, particularly in C++ products, recompilation is the general requirement.

22 Impertant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Conclusions

In addition, few vendors have figured out how to allow users to refactor the underlying class
structures for object-oriented applications.

Object-oriented development environments also falter on the issue of how today’s corporate
developers will migrate to new ways of designing and building applications. In general, ob-
ject-oriented development environments require developers to learn new (and strange) lan-
guages. The vendors of object-oriented environments are just beginning to offer high-level
graphical tools—analogous to 4GLs—that shield developers from the underlying languages.

Most of the CASE environments that use procedural technology fall short of meeting every
criterion outlined above. They don’t solve the problem of management-developer communi-
cation, they don’t offer support for reuse, and they don’t address change very well. Unisys
ASD Framework is rooted in procedural technology, but ASD Framework is different in its
approach from other CASE products. The Patricia Seybold Group sees ASD Framework as
being much more in tune with meeting users’ real needs in software development. Unisys has
done a better job than the other procedural CASE vendors in meeting the four requirements
that we believe are important in solving the corporate software crisis. Unisys ASD Frame-
work doesn’t completely satisfy all of them, but it does a good job on most. Moreover,
Unisys’s strategy promises to provide advances during 1993 and beyond.

Next month’s Open Information Systems will address
PC and Unix Integration

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. 23

Open Systems: Analysis, Issues, & Opinions

FOCUS: STANDARDS

Common Open Software
Environment: Not a Monopoly—Not a
Consortium

Six Unix vendors have banded together to agree on a
specification for a common desktop environment, with
the hope of establishing a precedent for future efforts
designed to accelerate the inclusion of de facto standards
in open systems standards.

The three leading vendors of RISC-based Unix systems
and workstations—Sun Microsystems, Hewlett-Packard,
and IBM—have teamed with three suppliers of Unix
software technology—USL, Univel, and Santa Cruz Op-
eration—to define APIs for a common desktop environ-
ment. They have also agreed to adopt (sell) common
networking products and to endorse standards in the ar-
eas of graphics, multimedia, object management, and
systems management. If nothing else, these agreements
signal an end to the Motif versus Openlook war and the
end to Sun’s resistance to directly providing the Open
Software Foundation’s Distributed Computing Environ-
ment (OSF’s DCE).

In Anticipation of Windows NT

long characterized Unix vendors when they consider
agreement on specifications and standards. If anything,
the Common Open Software Environment (COSE) an-
nouncement signals a willingness to compete on the ba-
sis of who has the better implementation, not on who has
the better specification.

Components of the Agreement

The parties involved did not directly position their an-
nouncement as a defensive move against Microsoft and
Windows NT. However, there is no doubt that the threat
to Unix posed by Microsoft’s new operating system,
both on the desktop and on servers, helped overcome the
host of past obstacles that have stood in the way of
reaching agreement on a single consistent Unix desktop
environment and programming interface. While this
move is unlikely to immediately blunt the impact of
Windows NT on the desktop, it lays the foundation for
Unix to be in a better position to respond should Win-
dows NT fall short of its pre-release hype.

The agreement also signals a recognition on the part of
the Unix industry that it must present a consistent, uni-
fied environment for users and ISVs. It was refreshing to
see this group finally overcome the inertia that has for so

The six vendors agreed to four objectives:

¢ Develop a specification for a common desktop envi-
ronment which will contain a consistent set of APIs
that will eventually be supported on all the vendors’
Unix systems.

e Adopt a common set of networking products, either
developed internally, licensed from one another, or
developed outside, and place them on their price
lists. Included are ONC+ and DCE.

e Endorse specifications for standards and technolo-
gies in the areas of graphics, multimedia, and object
technology.

¢ Establish a working group in systems management
and administration to work toward a goal of defin-
ing a framework and associated tools to support in-
teroperability and management of distributed sys-
tems. The vendors will also address the need for
systems management standards.

In order to accomplish these objectives, the six vendors
will have to work closely together over the next few
years. Opening up their process to additional companies
before their work is submitted to standards bodies is not
a high priority. We expect, however, that Unix Interna-
tional members will be given the opportunity to have in-
put, out of courtesy if nothing else.

Specification for the Desktop Environment

The COSE specification will provide for a common
desktop environment that will have a consistent look and
feel across all compliant implementations. There will be
a single API for software developers to use in writing
applications that can then be ported across all of the sup-

24 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

ported platforms. The goals are to have applications and
data that are portable across the network, to support in-
teroperability across platforms, and to have a user inter-
face that is recognizable as Unix. The group plans to
complete the specification for this environment by June
1993, There will be a developer’s conference sponsored
by all of the participants in the fall of 1993. The integra-
tion will be performed by the four developing partners,
IBM, Hewlett-Packard, USL, and Sun, in the first half of
1994. A reference implementation which will be openly
licensable will be produced by at least one of the
partners.

Desktop Components. The desktop environment will be
a specification that codifies the integration of elements
from HP’s Visual User Environment (VUE), IBM’s
Common User Access (CUA) model and Workplace
Shell, features from Sun’s OpenLook and DeskSet pro-
ductivity tools, USL’s SVR4.2 Desktop Manager, and
OSF’s Motif toolkit and window manager. SunSoft’s
ToolTalk interapplication communication mechanism
will be included with extensions from HP for encapsula-
tion. There is no telling at this point what this will look
like. (It’s too bad Apple didn’t bite at the opportunity it
had last year to have Macintosh be the common look and
feel for Unix.)

Deskiop Functionality. When the integration work is
completed, the result will be a desktop environment that
will support applications at the source-code level, sup-
port interoperability across platforms, and have a com-
mon look and feel across platforms. The idea is for users
to be able to look at any of the vendors’ desktops and
say, “Oh, that’s Unix.” The common desktop will
support:

¢ Electronic mail, group calendaring, text editing,
audio, and other productivity tools

e Task and window management along with online
help

e Procedural and object-oriented application integra-
tion with drag-and-drop, linking, embedding, and
data interchange capabilities

e Dialogue and forms-building with icon editing

o Graphical object and file management

e Security features including start-up, login, locking,
and authentication

e Installation automation and configuration at runtime

In developing the specification, the group will have to
determine whether every platform should look identical,
including whether each should have identical icons, and
whether icons should have uniform location at startup,
common default colors, and common styles.

Making It through X/Open. The completed specification
will be submitted to X/Open to be considered for inclu-
sion in X/Open’s XPG. (See Open Information Systems,
Vol. 8, No. 2, for more information on the XPG.)
X/Open has a process, known as Fast Track, that allows
completed specifications to be submitted to it for review.
After technical review, the specification can be approved
by a three-quarters majority vote of the Board. Or, as
was the case of the OSF DCE Fast Track submission,
some part of the specification may be returned for
revision.

In addition to the COSE desktop environment specifica-
tion, the Motif specification will be submitted by OSF
for X/Open consideration, and Novell/Univel will submit
the NetWare Unix client specification as well.

The Fast Track process could result in integration of
these specifications into XPG in as little as three months
after submission. However, there is no guarantee that
X/Open will accept the COSE specification in its entirety
or without modification. On the other hand, the COSE
vendors could go ahead and implement their specifica-
tion, ignoring any modifications coming out of X/Open.
That is extremely unlikely, however.

One thing is certain: Even though the six vendors in-
volved in the COSE specification represent over 70 per-
cent of the Unix market, X/Open will not be railroaded
into approving it. X/Open is bound by ISO 9000 quality
assurance requirements to follow its specified proce-
dures, and those procedures will be applied to COSE just
as they would to any other specification.

Product Roll-Out. Specifications are meaningless with-
out products. Most likely it will be mid-1994 by the time
a specification has been approved by X/Open, compli-
ance tests developed, and a branding program put into
place. The reference technology will be released by all
four development partners in 1994, which means that
compliant products will most likely not be on the market
until early 1995. Although vendors will claim compli-
ance much earlier than that, true compliance cannot be
claimed until a compliance test is passed, and that cannot
happen until after a reference technology is completed.
Microsoft will be preparing to release the object-oriented
Cairo version of Windows NT in 1995, which is shaping
up to be a very interesting year.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 25

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

The Free Market Approach to Networking

No attempt was made by the six vendors to settle the is-
sue of different approaches to distributed computing the
way they resolved the Motif versus OpenLook battle.
The COSE vendors will support efforts to reference, sell,
and deliver ONC+, NetWare client, and DCE technol-
ogy. In other words, none will put up roadblocks to keep
customers from having supported products in these
areas. Although these technologies are not part of the
desktop environment specification, they do have pub-
lished API specifications, making implementation
straightforward. All six vendors made specific commit-
ments to work to assure interoperability of each of their
versions of these technologies.

The various vendors can be expected to make an-
nouncements on availability within the next few months.
It will be important to see just how each prices and sup-
ports the various technologies. If customers are truly
going to feel free to chose ONC+ or DCE for their dis-
tributed computing framework, then they have to feel
that all the vendors will support either approach without
prejudice and will price each technology comparably.

Commitment to Graphics Libraries

The IMA expects to receive responses to its RFT by May
1, 1993, and to publish “Recommended Practices* by the
third quarter of 1993.

More Than Meets the Eye in Object Management

The commitment was made by each vendor to provide
support for standard graphics libraries/specifications in
its products, including Xlib/X for basic 2D pixel graph-
ics, PEXIib/PEX for 2D and 3D vector graphics, and
XIENb/XIE for advanced imaging. The companies will
share validation and test suites for compliance with these
libraries and ensure that their programming documenta-
tion is consistent as well.

This is another area where the software developers’ task
of ensuring that their applications run on the various
vendors’ platforms will be made easier and more cost
effective.

Support for Multimedia Standards

Although the six vendors pledged to work together to
accelerate the development and delivery of interoperable
object-based technology, this area bears close watching
because of the differences in approaches taken by the
companies. They all expressed support for the Object
Management Group (OMG) and committed to provide
Common Object Request Broker Architecture-
(CORBA) compliant implementations in future products.
However, current CORBA-compliant products do not
interoperate particularly well, so much work is needed in
this area.

In addition, the companies pledged to establish common
style guidelines for developers, to specify a common set
of core object-related capabilities for object construction
and development (and hopefully storage), and to work
through standards organizations to develop testing and
certification methodologies.

If the group is to meet the challenge of Microsoft’s Cairo
for object-oriented systems, it will have to step quickly.
Cairo developer training is likely to begin in 1994, with
product rolling out in the form of a second major release
of Windows NT in late 1995. The gauntlet is thrown
down.

Systems Management

The six companies agreed to work to define an infra-
structure for multimedia called Distributed Multimedia
Services (DMS) and multimedia access and collabora-
tion tools for the user called the Desktop Integrated Me-
dia Environment (DIME). The specifications that are
developed will be combined and submitted in response
to the Interactive Multimedia Association’s (IMA) Re-
quest for Technology (RFT) for Multimedia System
Services. That RFT calls for a robust set of requirements
to establish a foundation upon which multimedia appli-
cation and title developers can rely for predictable and
consistent results across a wide variety of platforms and
networked environments.

The best the companies could do in the area of systems
management is to agree to create a working group to de-
fine a framework and associated tools. The working
group is expected to present a road map and detailed
plans by the third quarter of 1993. The areas the working
group will consider include:

e User and group management, including security

¢ Software installation and distributed management

e Software license management

e Storage management (backup/restore)

¢ Print spooling and management

e Distributed file system management

Considering the difficulty the OSF has had in moving

ahead with Distributed Management Environment
(DME) because of vendor bickering and the Not In-

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

vented Here (NIH) syndrome, this work group has no
easy task. Among the vendors, there are at least three vi-
able alternative approaches, any one of which could be-
come a reasonable framework for systems management.
Which will win out is too uncertain to warrant a predic-
tion. What we can predict are some very lively working
group meetings.

Where Does COSE Fit In?

The discussions that took place around this agreement
have been going on for over a year. Some discussions
were between different pairs of the six parties. Others
involved more participants. It is safe to assume that
Hewlett-Packard and USL were prime movers, since
Unix is so key to both their strategies. The last entrant,
believed by some to have agreed less than a week before
the announcement, was Sun. After all, Scott McNealy,
Sun’s CEOQ, had been steadfast in his rejection of Motif
and adherance to OpenlLook as Sun’s permanent
direction for GUI.

It is unclear exactly how many of the various pieces of
technology that the agreement purports to bring together
will fit. For example, HP’s VUE and IBM’s Workplace
Shell seem to be redundant, rather than complementary.
It is also unclear which elements from each will be
brought into the final specification. What is clear,
however, is that something will come out of the process
and whatever that is will be supported by the six
vendors.

Specification Versus Technology. The work being done
to develop a specification that will be unencumbered by
licensing means that any technology can be used to im-
plement the specification. It is not limited to SVR4.2,
Solaris, or any of the other vendor’s products. This
means that vendors who are not direct participants in the
effort are free to support the specification with their
products. And, since the specification is not limited to
Unix, non-Unix technologies could support the specifi-
cation. Although we do not expect Microsoft to rush out
and make Windows NT-compliant, there is nothing to
prevent it from licensing another company to take the
Windows NT technology and develop a compliant
variant.

Neither is Digital Equipment excluded from supplying a
compliant product, particularly since its current Unix of-
fering supports many of the components included in the
specification. However, Digital may want X/Open to
consider the specifications of certain of Digital’s tech-
nologies, like Application Control Services (ACS), for
inclusion as part of the specification. Why Digital wasn’t
included is anybody’s guess. Speculation and excuses
range from excluding Digital because of its relationship

with Microsoft to the idea that nobody at Digital could
make a decision quickly enough to be included in the
announcement. Of course, that doesn’t account for why
Digital wasn’t included months ago. But then, we un-
derstand that Sun didn’t buy into the deal until a week
before the announcement. Of course, if Sun didn’t buy
in, there probably wouldn’t even have been an
announcement.

Market Impact

The desktop specification, when it is finalized and in-
cluded in the XPG, will be a great boon to developers
and, ultimately, to customers. Some estimate that ISVs
will save a total of $1 billion in redundant development
costs incurred in porting to/from OpenLook and Motif.
Companies like Lotus, WordPerfect, and even Borland,
now will have a much larger market to support Unix
application development. However, this environment
will not succeed in stemming the Windows NT tide un-
less it works better, offers more functionality, and is no-
ticeably better than the Microsoft offering. Being
consistent could also mean being consistently inferior.
—M. Goulde

UNIPLEX INTEGRATION SYSTEMS

Bringing Open Office Systems into
the '90s

Switching from Office Focus to Mail-Enabled Focus

Uniplex is very clear in its mission: It plans to continue
its market leadership in open systems with the intro-
duction of modular software components that deliver
mail-enabled applications for enterprise-wide computing.
And this could be an achievable goal for Uniplex
Integration Systems, the leading, and practically the only
remaining viable, vendor of office systems for the Unix
market. Uniplex has continued to make money while
competitors like Quadratron and Data General (office
applications—not hardware) disappeared, and companies
like Applix refocused their product lines away from in-
tegrated suites of office applications.

But, though Uniplex had an impressive suite of products
for the 1980s, the handwriting has been on the wall for
some time now. The company has finally announced its
new approach and products, first revealed as the Nou-
veau strategy in the September 1991 issue of Unix in the
Office (September, 1991, Vol. 6, No. 9). It has taken all
this time to announce the onGO product line, which is
now shipping.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. 27

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Before we discuss the onGO products, let’s look at the
existing Uniplex product line.

EXISTING SUITE OF OFFICE APPLICATIONS. Uniplex has
been selling a suite of integrated office applications for
almost a decade. The current products on the market in-
clude Uniplex Mail and Uniplex Business Software. The
latter product consists of:

¢ Uniplex I+ (word processing, spreadsheet, relational
database, business graphics, and a screen- and menu-
builder)

o Advanced Office: System (includes II+, electronic
mail, time management—calendaring and scheduling,
a personal organizer, card index, and report writer)

e Advanced Graphics System (advanced presentation
graphics package and a presentation editor)

¢ Uniplex Datalink (menued SQL front end to the most
popular relational databases on the market)

¢ Uniplex Windows (X Window-based shell)

e Uniplex DOS (support for DOS clients for word proc-
essing and spreadsheet)

SEPARATING OUT THE MAIL. The key difference in the
bundling of the existing product line is that Uniplex Mail
is now available separately from the office product. The
mail application can work with any editor of choice, and
it includes the calendar/scheduler. Uniplex Mail (sans of-
fice) has proven to be very popular on the SCO,
RS/6000, and AViiON platforms. The current product is
what might be called quasi-GUI—it has a GUI face, but
reverts to character mode at all but the main-screen level.
Uniplex plans to continue selling Uniplex Mail as its
character-based offering to those installations that
haven’t yet migrated to GUI environments or for those
still in transition.

ENTERING THE GUI WORLD WITH onGO. onGO is Uniplex’s
true GUI product. The onGo suite demonstrates a
modular software component approach. onGO Mail does
not feature the same format as Uniplex Mail, but the
company is shipping a transparent mail gateway with
both products to facilitate transparent mail routing in a
mixed installation of the two products.

However, by next summer, onGO will offer a character-
based client, allowing a single mail system throughout
an organization. The advantage to this will be a single
enterprise-wide directory service. Currently, Uniplex
Mail requires its own directory, which is more cumber-
some to manage than is onGO’s directory service.

MODULARITY IS THE GOAL. Uniplex’s goal is to provide a
group of modular products that can be customized by
each site to the way the people really work, supporting
group and/or enterprise preferences (though not a tre-
mendous amount of individual customization is sup-
ported). The company calls this ability to customize
workflow.

MAIL-ENABLED WORKFLOW. It is interesting that Uniplex
is touting its mail-enabled focus as the basis for work-
flow, rather than promoting a database-enabled work-
flow model. Uniplex was one of the first integrated of-
fice systems that recognized from the beginning the
strategic value of including relational database manage-
ment system (RDBMS) capabilities as part of a basic
office suite, including its own RDBMS (an Informix
look-alike), and eventually offered a menu-based inter-
face into any popular RDBMS. Sure enough, all
“workflow”-related information in onGO, such as in-
formation from the calendar, alarms, triggers, and the
actual data being sent around, is stored in the RDBMS of
choice at the customer site. The mail-enablement is how
the information gets routed to users. Uniplex considers
this a vital requirement for ad hoc workflows. And we
agree. The most robust workflow products will take ad-
vantage of both the underlying mail systems and corpo-
rate databases.

The onGO Product Line

STRATEGIC CATEGORIES OF SOFTWARE. This brings us to
onGO, a modular suite of software components that
provide an open infrastructure for scalable enterprise
groupware applications. Whew, what a mouthful!

Basically, the strategic directions—major categories—of
onGO were articulated in our report on Nouveau in Unix
in the Office, September 1991. Let me present them here
again:

e Business Communications: X.400 mail with routing
and directory management

e Document Preparation: a WYSIWYG compound
document editor and architecture

e Document Management: management of compound
documents and multilevel security

¢ Information Access: database links, DDE support, and
intelligent filtering

o Software Integration Tools (formerly active integra-
tion management): an end-user-oriented macro pro-
gramming language

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

A LAYERED PHILOSOPHY. Uniplex offers a layered dia-
gram of the office framework for the 90s that demon-
strates the philosophy of the onGO product line. (See
Illustration A.)

Underlying Platforms. The bottom layer in this frame-
work is the platform. Right now, only Unix is supported.
The most likely candidate for the next platform release
will be NT. Uniplex includes OS/2 and Taligent on the
chart, but the company, like everyone else, is waiting
until these become market requirements.

Enterprise-Wide Messaging. The next layer up is an en-
terprise-wide messaging system, which Uniplex believes
is a strategic, fundamental layer for any enterprise
automation solution. In onGO, this is a standards-based
mail layer with a native X.400 architecture. The mail
system can be executed over any other transport, such as
TCP/IP, not just over native X.400. This is a boon for
internetwork communications because it doesn’t require
the overhead of X.400 mail.

Mail-Enabled Applications. Mail-enabled applications
are next. Currently, the Uniplex-provided applications
include some filtering, routing, calendaring, events-trig-
gering, and alarms. These applications can be considered
services to the mail system and to personal productivity
and/or custom software. Uniplex will provide published
APIs to these applications for VARs, systems
integrators, and customers. Uniplex is planning to pro-
vide a higher-level graphical toolkit for business users

building workflow applications at this layer.

Personal Productivity Tools. Productivity tools should
be able to take advantage of mail-enabled applications
(or services). In the Uniplex framework, users are free to
choose whichever word processor, spreadsheet, etc., that
they want to use—though onGO does include a com-
pound document editor and graphics tools.

Deskiop User Interface. The top level of the office
framework reflects the concept of allowing users a
choice of desktop interface. Currently, X-Window, na-
tive Motif, and MS Windows are supported. Uniplex is
looking at supporting OpenLook, character Unix, Pres-
entation Manager, and, possibly, the Mac.

TECHNOLOGY FEATURES. The following represent the
primary technology features of the onGO product:

e Support for Standards. Currently, onGO supports
X.400, X/Open XPG, POSIX, APP, ANSI C, Motif,
and Windows. Future support and connectivity is
planned for X.500, XAPIA, VIM, and MAPL
(Uniplex will adopt the XAPIA version of MAPI. If
that turns out to be insufficient for customer demands,
the company plans to provide a facility that will allow
MAPI clients to hook into onGO mail services. The
company does point out that, out of the box, onGO
will have X.400 connectivity and can communicate
with MAPI via the protocol.)

onGO Extensible Architecture

* not in current release

Desktop User Interfaces

X-Window Motif OpenLook* Character* MS Windows os/2* Mac*
Productivity Tools

Spreadsheets” Word Processors Graphics Databases
Mail-Enabled Applications

Filtering Routing Calendaring Events
Enterprise-Wide Messaging System

X.400 SMTP Sendmail Uniplex V7 Profs

Hlustration A. This diagram demonstrates the future directions of onGO. The current offering just begins to address the open

environment that Uniplex envisions.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200

29

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

e Inherent Scalability. The design of the onGO mail
engine will accommodate upward and downward
scalability. You can, for example, run SMTP with the
mail engine; you don’t have to use the X.400 MTA to
move mail around, which isn’t practical for small
groups.

e Heterogeneous Computing Environment. Right now,
heterogeneity means X-Window, Motif, and MS
Windows desktops and multiple Unix servers. At first
ship this spring, onGO will run on the IBM RS/6000
and on the DG AViiON platform. This summer, the
company will add support for the HP 9000, SCO Open
Desktop/Unix, and Sun Solaris. Fall will see the
addition of support for the DEC Alpha/OSF/1 and
UnixWare (Univel). Supported clients at first ship are
native X-Window and Motif. MS Windows support
will not come until this summer, as will character Unix
support. Support for NT, OS/2, and Mac desktops has
not yet been scheduled.

e Native Client/Server Architecture.

¢ Incorporated Object Technologies. Besides writing a
goodly portion of onGO in C++, Uniplex is promoting
the object paradigm in its user interface and within its
applications. The company is working on a
relationship with Hyperdesk to leverage DCE. Though
no specific time frame was given, the company states
that this is definitely on the agenda for a subsequent
release.

Product Suites

Uniplex is marketing two different onGO product suites,
both of which were scheduled to ship at the end of
March 1993:

¢ onGO office
¢ onGO Write/Paint/Draw

onGO OFFICE. The following are the fundamental com-
ponents of onGO Office:

Mail Manager:

¢ Native X.400 universal mail
* Filtering

¢ Routing

¢ Directory management

Directory Manager:
¢ Administrative tools and enterprise-wide address book

e Public and local directories and distribution lists
¢ Soundex search

¢ Database resident
Calendar Manager:

e Schedules over LAN and WAN environments
¢ Resource scheduling

¢ Comprehensive scheduling

¢ Alarms and events management

Universal Office Server:

e Management and administration of office communi-
cations

e Mail administration, routing messages, monitoring
traffic—can handle upwards of 100,000 people on an
enterprise-wide network

¢ Directory synchronization
¢ Calendar data database resident

onGO Office is priced at $70 per user for 100 users.

ONGO WRITE/PAINT/DRAW. The second onGO suite in-
cludes a comprehensive document publishing system
that combines WYSIWYG word processing with page
layout facilities, a full-featured paint package, and a full-
featured draw package. Write/Paint/Draw is available
separately or with onGO. This product will initially be
available only on the Unix platforms under OSF/Motif.

One of the advantages of this product is its multieditor
architecture, which allows you to add additional multi-
media editors (image, voice, math, etc.).

onGO Write/Paint/Draw is priced at $298 per user for
100 users.

Future Directions for onGO

Though there are currently only the two onGO modules,
more are forthcoming. Uniplex plans to include the
following components in future releases of the products:

® Document Management. Uniplex is working in part-
nership with an established industry player (whose
name has not yet been revealed) on integrating the
document management facility transparently into
Uniplex’s core technology.

e Information Access. Uniplex plans to add additional
database links, OLE support, and active data filter-
ing—for example, the ability to connect to external
data sources and create rules and triggers based on
data events. This is how the company plans to inte-

30 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 4

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

grate workflow capabilities into onGO. Uniplex’s
philosophy of workflow is to provide people with
tools that mirror the way they work. The company has
an established history of building tightly integrated
applications; in the new model, the applications aren’t
originally built to be tightly integrated, but Uniplex
will provide the glue and data flow within and
throughout its own and third-party applications to
ensure that applications can share data, rules, filters,
etc.

o Toolkits. As mentioned earlier, the company plans to
provide graphically-oriented programming tools,
APIs, and a cross-application macro facility for the
onGO environment. Many APIs are already available,
but these are low-level, programming APIs. Uniplex
wants to offer higher-level tools that are easier to use,
aimed at the business user who wants to develop appli-
cations.

Conclusions

WordPerfect must learn to scale up with service and
support while Uniplex learns to scale down to the
desktop. — R. Marshak

FOCUS: VENDOR STRATEGIES

ADVANTAGE IN THE ENTERPRISE MARKET. The difference
between the onGO strategy and the strategies of the
traditional desktop office applications providers
(Microsoft, Lotus, etc.) is full commitment to Unix cli-
ents and servers and to character clients as equal citizens
to MS Windows clients. Uniplex’s experience in the
Unix market gives the company an advantage: It doesn’t
have to learn how to scale up from the desktop because it
already knows. However, at issue is how well does
Uniplex know the way to provide the services at the
desktop level? The company is used to dealing with
workgroups of up to thousands of users—something the
desktop competitors are still ramping up to do. But
Uniplex has no history in supporting desktop-level users,
who require a different style of service and support than
do traditional Unix system administrators.

A MODULAR APPROACH TO OFFICE. Uniplex is actually still
addressing the same areas that it addressed with the
office products: providing database access, mail,
scheduling, word processing, spreadsheet, etc. But now
it is providing these pieces in a modular fashion—you
don’t need to use it all or buy it all from Uniplex. There
is also a change in focus from providing productivity
tools to providing an environment and enabling services.
onGO is newly written in a combination of C and C++ to
take advantage of object technologies. It also assumes
using personal applications of choice and multiple
clients of choice with complete transparency from one to
the other. In the Unix marketplace, there really aren’t
any other competitors that are still offering this breadth
of service for workgroup computing. WordPerfect is the
closest to providing this level of workgroup support, but
that company has the opposite problem from Uniplex.

Siemens-Nixdorf: Is Opening up
Enough?

Germany’s Siemens-Nixdorf Informationssysteme AG
(SNI) has launched a spring marketing push that
highlights new products and new strategies designed to
strengthen the company’s position in the open systems
market. From “opening* its proprietary operating system
to pairing up with Pyramid Computer for database and
transaction processing solutions, SNI's new offerings
will allow its product package to look stronger and more
coherent to open systems customers. But it’s a two-
edged sword, and, for SNI, as with all vendors moving
toward a standards-based, fully interoperable world, the
imperative is to go beyond “me-too* products and come
up with unique qualifications that allow customers to
distinguish one commodity-based offering from another.
In that regard, SNI still has some work to do.

While SNI does have strong offerings for vertical
markets like banking and government, its most
promising value-added offering has been nipped in the
bud. Plans for a full-service, soup-to-nuts systems
integration offshoot (See Open Information Systems,
Vol. 7, No. 11) have been greatly scaled back, with SNI
preferring not to alienate existing and prospective
integration partners. It’s an unfortunate retreat from a
promising market that is becoming synonymous with
open systems.

Opening Proprietary Systems

On the product front, SNI is at least putting in place a
convincing open systems strategy. One of the highlights
of the spring drive is the plan to open up SNI's
proprietary BS2000 operating environment to the open
systems world. But all in good time; SNI is phasing
compatibility in slowly, with POSIX and XPG4
compliance not scheduled until sometime in 1995.

The first step is to make BS2000 look more open on the
front end and stretch lower-level interoperability and
file-sharing capabilities on the back end. Much of this
capability is now in place—support for NFS has been
around for a while—and SNI announced recently a two-
product package, called FHS Doors and Dialog Builder,
that puts a widget-based graphical interface on top of

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200 31

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

existing BS2000 applications. The redesigned front end
can then be run on Windows, Motif, and generic Unix
boxes.

Step two—sometime in 1994—is to add support for
OSF’s Distributed Computing Environment in BS2000,
allowing a mixed Sinix/BS2000 environment to
distribute data and processing between the two systems.
And step three, due in 1995, is to bring BS2000 into
compliance with POSIX and XPG4.

The Pyramid Connection

While SNI is extending BS2000 toward being an open
system, it’s also putting its efforts into that slice of the
Unix market that has made the deepest inroads into the
proprietary mainframe market: symmetrical
multiprocessing Unix systems. And, for high-end SMP,
SNI has recently signaled a much closer relationship
with Pyramid, whose technology already figures
prominently in SNI's RM600 database machine.

The relationship—based on a 7 percent holding and a
board seat brought over from the Nixdorf acquisition—
will get tighter as SNI takes over sales, marketing and
support for Pyramid systems in Germany this spring.
And the two have promised closer technological
cooperation on SMP systems as well. All this in spite
of—or perhaps because of—the fact that ICL has a
worldwide reseller agreement with Pyramid, and Olivetti
touts the Pyramid systems it sells as the Olivetti database
system of choice.

Why is SNI paying all this attention to “open” BS2000
and Pyramid? The simple answer is that the company is
reading the market well. Mainframes still have a role to
play among SNI's customers, many of whom might be
convinced to use an existing environment for the move
to open systems if the technology were right. SNI claims
it has been very successful in hanging on to proprietary
customers—as well as customers needing to upgrade to a
Unix System V.4 environment—when they move to
open systems and/or Unix. “Open* BS2000 will help the

-company keep these mainframes installed and in use at

existing customer sites.

Including Mainframes in Open Systems Direction

systems— but it is significant. Despite the promise of
mainframe-like Unix systems such as Pyramid, the
ability of BS2000 to handle large numbers of users, very
large data files, and very high-speed transactions still
gives it a technological leg-up, though at a cost.

And this new role for the BS2000 does little to diminish
SNI's emphasis on the Pyramid line. Pyramid, along
with the Tuxedo transaction processing monitor and
databases like Oracle7, is stealing a lot of mind share
when it comes to transaction processing and Unix. While
still fresh, this TP market is heating up in Europe, as the
close embrace of fellow Europeans ICL Ltd. and C. Ing.
Olivetti & Co. SpA with Pyramid testifies. SNI does well
to try to leverage its unique relationship with Pyramid
against its rivals.

Overall, the key to success in the market lies not in doing
what everyone else is doing, but in doing much more.
For now, SNI seems to be concentrating its efforts on
reaching existing customers with migration and
compatibility strategies and touting value-add in terms of
vertical market strategies and office automation solutions
that are similar to those sold by its competitors. More
and more aspects of SNI's hardware market—PCs,
Sinix, and even Pyramid servers—are becoming
commodities, and its Open Systems Direction, while
exemplary, is hardly unique in itseif.

Abandoning Systems Integration to the Competition

SNI also has serious plans to keep its mainframes within
the scope of its Open Systems Direction distributed
computing architecture, playing a new role as the
“superserver” for its client/server Unix and PC systems.
Using the mainframe in this capacity is not new-——IBM
has similar plans for MVS as a superserver for RS/6000

On the systems integration front, SNI may be making a
major mistake, despite vice chairman Horst Nasko’s
assertion that if the electric power generator division of
parent company Siemens AG doesn’t sell power, he
shouldn’t sell systems integration. The reply to the
former is clearly government regulation, not market
opportunity. As to the latter, it's a question of
shortsightedness. Over in France, Groupe Bull, already
the fourth largest integrator in Europe, is adding a
facilities management group to its impressive service
offerings. IBM Europe is also struggling to get its
integration service revenues up, and ICL is making
moves in this regard as well. SNI seems to stand alone in
restricting its once broad integration ambitions to a pre-
sales consulting activity.

SNI's present course should stand the company well in
its bid to become profitable after cutting its losses in half
last year to 500 million DM, or more than $300 million.
But the answer to the question of what vehicles SNI will
use to move to a forward position in the market is still up
in the air. —J. Greenbaum

32

Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 4

