Patricia Seybold
Group

Editor-in-Chief
Michael A. Goulde

INSIDE

OPEN
INFORMATION
SYSTEMS

Vol. 8, No. 7 « ISSN: 1058-4161 « July 1993

EDITORIAL

Page 2
Information Tools needto
be placed in the hands of
userorganizations, reliev-
ing them of the complexity
of the underlying techno-
logy. This may require
changing the way infor-
mationtechnologyis pack-
aged as products, the way
it is sold, and the way it is
managed.

ANALYSIS

Page 17

Visual DCE from Gradi-
ent attempts to make the
development of DCE-
based applications amuch
simpler and cost-effective
task. Although Windows-
based, it is not intended to
be limited to client devel-
opment. * The first release
of SunSoft’s Distributed
Objects Everywhere
(DOE) paves the way to
the evolution of Solaris
into an object-oriented de-
velopment and execution
environment. This release
of DOE is intended to help
developers get started on
the path to distributed ob-
jects.

SAP’s R/3
Software Suite

Architecturing Open, Integrated Software
for Distributed Enterprises

By Joshua M. Greenbaum

IN BRIEF: SAP is an application software company based in Germany
that has made the migration from mainframe to open systems. A
dominant supplier in its native country, SAP hopes to achieve a strong
position worldwide with R/3, its client/server suite of applications.
Based on a flexible, tiered architecture, R/3 illustrates many of the
challenges, as well as some solutions, facing companies migrating
from host-based architectures to distributed architectures based on
standards. The complexity of R/3 also illustrates both the value of and
the pitfalls in buying an integrated suite of applications from a single
vendor.

Report begins on page 3.

© 1993 by Patricia Seybold Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express written permission.

EDITORIAL: BY MICHAEL A. GOULDE

Information Tools

A Paradox-Solving Paradigm

THE STANDARD PARADIGM for the use
of information technology (IT) in business
is a department of technology experts and
managers who translate business
information requirements into software code
to be run on company-owned computers.
These experts investigate and make
decisions about which hardware, software,
and networking products the company
should purchase or lease. They have
knowledge that is broad and deep regarding
the technology that comprises products
under consideration.

A significant portion of IT budgets goes
into developing and maintaining internal
information technology expertise, even
though it is the information, not the
technology, that is relevant to the business.
Many IT departments function more like
internal systems integrators than they do
like departments of a pharmaceutical
company, an automobile manufacturer, or a
brokerage.

This paradigm grew out of the historic
complexity of the technology and a lack of
standards that made it difficult to assemble
complete solutions from components
supplied by multiple vendors. Single-vendor
solutions would be simpler, perhaps, but no
single vendor can consistently provide all
the solutions a customer requires.

User demand for open systems has been
partly a plea to be freed of the requirement
of being in the computer technology
business. Open systems promise to make
technology less of a concern for users. Open
systems—which focus on products that
implement commonly agreed upon
specifications—enable users to shop by
brand name, not by ingredient.

But open systems don’t go far enough
in distancing users from the complexity and
expense of technology and its integration.
They do not provide a sufficiently abstract
view of information technology, and they
still require extensive programming in
arcane languages and knowledge of
underlying formats and protocols in order to
build large distributed systems. Open
systems are “right” in that they provide a
choice of products based on standards, but

the products that deliver open systems
aren’t the right ones yet.

What users need is a new set of tools—
we'll call them “information tools”—that
allow them to build customized business
applications without having to know about
the underlying technology. Information
tools aren’t compilers or 4GLs, although
they might be produced by them. 3GLs and
4GLs might be considered to be analogous
to machine tools—tools used to build the
tools that users actually employ in their
work. The key to information tools is not
new technology, but a new way of thinking
about how vendors should be packaging
their products. Some products should be
sold as strategic tools and some as a
commodity infrastructure, invisible to
users.

Some visual programming tools are
headed in the right direction, but they are
limited in scope, remain dependent on
knowledge of underlying protocols, and
still require “Wizards” to manage the
systems on which the applications they
develop run. Even more important, the
developers of these tools haven’t changed
the way they think about the role the tools
should play. Most see their visual
programming tools as extensions of
traditional programming methodologies.

Information tools have to allow
companies to essentially get out of the
computer business, not by outsourcing, but
by focusing on information, not
technology.

The objective is to push the
responsibility on the vendors to hide the
technological complexity of their products
from the users of those products. Things
like system and network administration and
management have to be made push-button
simple. The industry is headed in the right
direction, with GUIs and visual
programming, but the basic paradigm shift
has not yet been made. Vendors have to
understand that they are selling low-
maintenance information appliances, not
high-maintenance works of technological
elegance. ©

OPEN

INFORMATION

SYSTEMS

Editor-in-Chief
Michael A. Goulde

MCI:
MGoulde

Internet:
mgoulde@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITH R. DAVIS
STANLEY H. DOLBERG
MITCHELL I. KRAMER
DAVID S. MARSHAK
RONNI T. MARSHAK
JOHN R. RYMER
ANDREW D. WOLFE, JR.

Copy Editors
ALBERT C. D’AMATO
MIRIAM F. D’AMATO

Art Director
LAURINDA P. O'CONNOR

Sales Director
PHYLLIS GUILIANO

Circulation Manager
DEBORAH A. HAY

Customer Relations Manager
DONALD K. BAILLARGEON

Patricia Seybold Group
148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Intemet: psocg @ mcimail.com
TELEX: 6503122583

Open Information Systems (ISSN
1058-4161) is published monthly for
$495 (US), $507 (Canada), and $519
(Foreign) per year by Patricia
Seybold Group, 148 State Street, Tth
Floor, Boston, MA 02109. Second-
class postage permit at Boston, MA
and additional mailing offices.
POSTMASTER: Send address
changes to Open Information Systems,
148 State Street, 7th Floor, Boston,
MA 02109.

2 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, calt (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

FEATURED REPORT: BY JOSHUA M. GREENBAUM

The Essential R/3

SAP’s R/3 Software Suite

Architecturing Open, Integrated Software for
Distributed Enterprises

The great dynamic of the information technology market in recent years has been the switch
from proprietary to open systems. Many vendors have stumbled in the attempt and few
software companies have made the switch as thoroughly or convincingly as SAP AG, a
highly successful mainframe software company based in Waldorf, Germany, that turned in
over 800 million deutsche marks, some $532 million, in revenues last year.

Those revenues were earned primarily from sales of SAP’s R/2 product, an integrated
software suite that runs in traditional mainframe environments. But, starting in 1992 in
Germany and at the beginning of 1993 in the United States, SAP has begun marketing the
open systems version of R/2, dubbed R/3.

Since that time, SAP has sold over 250 R/3 systems, not a bad start for a product that has
fewer than half its software components currently available. But, as SAP rolls out the
remaining portion of its giant open systems product through the end of 1994, the
expectations are that R/3 will prove to be quite successful in both the European and U.S.
markets.

To achieve that success, SAP still has a long row to hoe: The company must release its
remaining software modules in a timely fashion and replace its unwieldy, dumb-terminal
interface with one worthy of the graphical user interfaces R/3 hopes to serve. Also, SAP
must rely for its future success on a large number of third-party services and product
providers, managing both the relationships and the product support that such a widespread
offering entails. It won’t be easy, but then, building the complex and thorough architecture
described here hasn’t been easy either.

Applications Cover a
Spectrum of Operations

When R/3 is available in its entirety sometime next year, SAP will have one of the most
extensive collections of off-the-shelf Unix and open systems software on the market. There
are over seven million lines of code in the R/3 system, excluding the database, user
interface, and other elements external to the R/3 code base. And within these lines of code
lie literally dozens of individual applications, development tools, and connectivity products.

The applications are designed to automate virtually every part of a medium- to large-sized
business, with an emphasis on the manufacturing and industrial sectors. Accounting and
finance, production planning, materials and plant management, human resources and office
automation are just some of the functions covered by R/3. Support for third-party PC
productivity software is also built into the R/3 environment.

Behind these applications lies a large body of software development code, including SAP’s
proprietary ABAP/4 fourth-generation language (4GL), as well as systems management
software that allow for a high degree of customization and tuning for particular business
requirements.

OPEN INFORMATION SYSTEMS Vol. 8, No.7

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200 3

The Essential R/3

Highly Integrated, Yet
Open Environment

Repository-Based

Partnerships Are Key

But R/3 is more than just a collection of software applications, systems software, and
development tools. It is also a highly integrated environment that fully exploits the
philosophy of distributed, client/server computing. R/3 makes use of an impressively
orthodox open systems approach, all the more impressive because of SAP’s mainframe
roots. SAP has learned to make extensive use of de facto and de jure standards for interface,
database, and communications functions within R/3. The result is that the company has
produced a scalable, portable system that allows for considerable sharing of data between
software modules as well as with the outside world using a well-documented series of
internal and external communications protocols.

SAP has left little reason to doubt R/3’s openness: To date, the software supports six Unix
operating systems, six proprietary environments, three relational databases, and three major
user interfaces, as well as a host of de facto and de jure communications and interface
standards.

It is important for the developer or integrator that R/3 also makes extensive use of a data
repository that allows for consistency and control across this gigantic environment. All data
elements, with their descriptions and functionality, are contained in the Data Dictionary, as
well as help texts, screen descriptions, and mappings to the relational database that acts as a
physical and logical storage mechanism for R/3.

Backing up this plethora of technology are R/3’s partners. These partnerships—with systems
integrators, management consultants, third-party software developers, and hardware
vendors—exist in order to service R/3 users who wish to push the use of R/3 to its limits.
The complete product suite is extremely complex and highly functional, and, in its full
configuration, R/3 can require significant resources in addition to the software, consulting,
and training services that SAP provides.

SAP likes to point out that R/3 has also been designed to be installed and configured with
relatively little effort, and in SAP’s current R/3 customer list are a number of users who are
effectively using a “turnkey” version of R/3 that has required little or no custom
development or integration.

But a full-blown R/3 installation can also become an extremely complex project, involving
a complete re-engineering of business procedures and the installation of dozens of
applications supported by dozens of individual software tools. New products and skill sets
must also be brought into these user organizations. In its full manifestation, R/3 runs in
highly distributed, heterogeneous environments and can require the resources of third-party
relational databases and their associated tools as well.

This complexity brings with it the need for extraordinary consulting and development
resources, and, therefore, R/3 stands at the top of a large food chain of third-party partners.
The success of R/3 will, in turn, have an extraordinary impact on the ancillary products and
services that surround R/3. And those products and services in their own right will have an
impact on how R/3 is diffused into the larger open systems market.

Basic Architecture and Components

The basic architecture of R/3 is contained in the BASIS system (no relationship to the
Batelle/IDI product), which comprises the system software and services that underlie the
R/3 applications. BASIS can best be understood by looking at its different software layers,
from the applications on the outside to the data dictionary at the center.

The most important outer layer of the R/3 world for users is the applications themselves,
and, for the sake of clarity here, we will describe R/3 as though all the applications due to

4 important: This report contains the resufts of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call {617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Basic Architecture and Components

Availability of R/3
Modules

ABAP/4 Modules

be part of the R/3 family were currently available. Their actual availability will be staggered

over the next 18 months, as noted in Table 1.

Financial Accounting,
Product Planning, Sales
and Distribution, Office
and Communication,
Controlling, Fixed Assets
Management, Materials
Management, Human
Resources.

Purchasing, Inventory
Management, Warehouse
Management, Material
Requirements Planning,
Sales, Billing, Computer-
Aided Selling, General
Ledger, Cost Center
Accounting, Order and
Project Accounting,
Profitability/Market Segment
Analysis, Assets Accounting.

Version 1.0 Version 2.0 Release 2.1
Currently Available Available August 1993 Available January 1994
BASIS Component, New modules include: New modules include: Legal

Consolidation, Funds
Management, Activity Types
and Processes, Order and
Project Accounting, Product
Cost Accounting,
Profitability/Market Segment
Settlement, Project Center
Accounting, Investment
Controlling, Assets
Accounting, Technical Asset
Management, Costing, Work
Order Cycle, Preventive

Maintenance, Quality
Management, Basic Project
System Data, Planning and
Forecast, Project Integration,
Information System Projects,
Purchasing, Inventory
Management, Sales, Basic
Data in Production Planning,
Master Production Schedule,
Capacity Requirements
Planning, Production Activity
Control.

Table 1. The roll-out of the full suite of R/3 applications will occur over three releases. Full
availability will be achieved by the beginning of 1994. Customers select those applications
they require and add additional applications at will.

In addition to the R/3 applications, SAP supplies a host of system administration tools, data
query tools, and installation and development environments that also occupy this outer layer
of technology.

The layer below R/3’s applications and services is made up of collections of software
routines or modules written in ABAP/4, SAP’s fourth-generation language. The ABAP/4
modules control the underlying functions of the applications, from database and data
dictionary access to the processing of screens and reports. ABAP/4 is an interpreted
language very much like a structured 4GL, and its programs are interpreted at runtime.

The vast majority of the modules used in a given installation will have come with R/3 itself,
though users can develop their own using ABAP/4 and associated tools such as the
Enterprise Data Model discussed below.

Modules are grouped in module pools according to their relative functionality, with
individual applications and their processes linked to a given module pool or pools.
Internally, running an application then becomes a matter of sequentially stepping through a
series of modules contained in one or more pools. An application may not use every module
in a given pool, and it may access modules in several pools. In addition, a number of

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Important: This report contains the resutts of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 5

Basic Architecture and Components

Relational Databases
and R/3

R/3 Data Dictionary

different transactions can access the same module pool. Regardless, applications derive their
functionality by effectively traversing a sequence of individual modules according to the
specific functionality required.

The collections of modules that function as screens and report writers (as opposed to those
that supply the underlying logic to the application) fill the role of shells or templates for the
data underlying the applications. These data enter the modules and, hence, the applications
through one of six mechanisms:

e User keyboard input
e CPI-C protocol for program-to-program communications
e SAP SQL, a set of SQL-like extensions to ABAP/4, for most general database needs

¢ Native SQL when dealing with a specific relational database and its unique functions or
capabilities

e Remote Function Calls—a form of RPC—for data interchange between heterogeneous
systems

¢ Electronic Data Interchange (EDI)
These mechanisms will all be discussed in greater detail below.

The relational database component is the most important of these data sources, and it
constitutes the next key layer of the R/3 environment. It is in the database that the
applications data—for accounting, personnel, parts, factory management, and the like—are
stored. And, in turn, an application’s functionality is dependent largely on the speed and
accuracy of the database, particularly in the distributed, client/server environments in which
R/3 excels.

SAP has taken an open approach to the relational database component—the only major
software element other than operating systems and communications that SAP does not
supply itself. R/3 plans to support three different commercial databases: Oracle, Informix,
and Software AG’s (Reston, Virginia) Entire SQL/DB, although, at present, Oracle is the
only database used with R/3.

Software AG’s database, which is due out for R/3 later this year, is expected to have a most
favored database status, reflective not only of the product’s low cost and basic functionality
but also of the close working relationship between SAP and fellow German software vendor
Software AG. For the user who simply requires a runtime database to go with R/3, that
database will most likely be Entire SQL/DB. If, however, the user has a compelling need for
a particular database feature—such as the heterogeneity of the Oracle environment—that
choice can be made without prejudice. SAP has pledged to support as open a database
strategy as possible.

Sitting at the center of this layered software universe is the data dictionary, a repository that
stores the essential information about the data and structures within R/3. The information
stored in the data dictionary is accessible by a number of components of R/3, including
ABAP/4 programs, application modules, the Enterprise Data Model, the database interface,
and the help system.

The data dictionary’s fundamental purpose is to hold the descriptions of the fields contained
in tables, screens, and ABAP/4 programs, including formatting, data typing, and specific
functions relative to the field and its data. The main goal of this approach is to maintain

6 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call {617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

consistency within the R/3 environment, and its presence makes development and
customization a much easier and more consistent task.

The data dictionary—itself an SAP proprietary product—has a peculiar relationship to the
relational database component. While there is a theoretical one-to-one mapping of R/3 data
between the data dictionary and the database, in reality, the relational database exists more
as a storage and low-level data management tool for R/3. Genuine database logic exists
primarily in the data dictionary and the modules themselves.

For example, R/3 often works with several logical tables from the data dictionary at once,
effectively grouping them as a single object. This kind of mega-table can be difficult to map
in a relational database environment. R/3 solves the problem by maintaining these groups or
clusters of tables as discrete elements within the data dictionary and storing them as a single
large table in the relational database. Likewise, when a relational database is restricted to
using a lesser number of tables than R/3 requires, the system can group individual tables
into a large pool that is stored as a single table in the database.

SAP plans to offer some modifications to this database/data dictionary relationship in its
next version of R/3. If the user doesn’t need the logical efficiency of clustered tables or if
the database environment provides sufficient speed of execution to obviate the need for
clusters, then the data dictionary tables can be set up in perfect one-to-one correspondence
to the relational tables. This will allow greater consistency between the data dictionary
environment and the relational model of the user’s data.

The data dictionary can also be made to define its own data tables independently of the
database structure itself and then utilize these tables in application modules. This can be

. done using what R/3 calls views and matchcodes. A view can be considered as an ad hoc,
one-time subset of a database table or tables; a matchcode provides wildcard options that |
can specify a range of values and return an appropriately filtered table. Both are used by |
applications modules to work with or display specific elements of the database.

Contents of the Underneath the data dictionary layer lie the elements or objects contained within. The
Dictionary different types of information about R/3 contained in the data dictionary speak volumes
about the central role this particular software element plays in the R/3 world.

e Tables, their ficlds and relationships, are the larger elements that make up the Data
Dictionary. The tables in R/3’s dictionary are conceptually identical to relational tables.
They are two-dimensional matrices made up of individual fields, each of which, in turn,
is defined by its domain and data element.

e Domains are the technical mechanism by which the Data Dictionary supplies the rules
for the data stored in tables. Domains define the attributes of the data according to
format, length, data type, and other features.

e Data elements are where the Data Dictionary stores the business rules that define a
field. These rules essentially take a general purpose domain and define how it is to be
modified for a specific purpose within a given program. The effect is not unlike
inheritance in the object-oriented world: The data element of a given field gives
specific attributes to a generalized “class” defined by the domain to which it belongs.

Clusters and pooled tables are defined by the information stored in the Data Dictionary.

e Matchcode objects and Views are also stored actively in the Data Dictionary.

‘ e Help information is also stored in the Data Dictionary. Context-sensitive help
information can be accessed from the applications.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whale o in part is prohibited. For reprints call (617) 742-5200

Basic Architecture and Components

Having this active Data Dictionary gives the R/3 programs and programmers a centralized
source of the meta-data contained in the R/3 environment. The contents of the Data
Dictionary effectively define the state of the installation at a given user site, and, from the
information in this structure, R/3 is able to protect the consistency of its data and business
structures across every program in use.

Role of the Information Model

Roles of the Enterprise
Data, Function and
Organization Models

Two Ways to Use the
Information Model

The richness of the Data Dictionary and the openness of the R/3 environment are derived
from the use of an Information Model to describe the overall environment on which the
general R/3 system and any individual system are built. This model—which lends a
computer-aided software engineering approach to development under R/3—represents, in
conceptual as well as concrete terms, the totality of R/3 functionality, of which any
individual user’s installation becomes a subset.

The Information Model represents the cornerstone of R/3’s openness, both between its many
modules as well as in relation to the outside world. The Information Model’s blueprint of
R/3 allows the developer or integrator to see and understand the interrelations among the
different elements of R/3 in a multidimensional way. By understanding these relationships
and programming accordingly, the user can modify, add to, or simply replace any module or
software element in R/3 without losing its inherent data integrity and software integration.

The Information Model thus plays the role of both map and mapper: It defines R/3 as it
exists “off the shelf” as well as showing how to change R/3 without losing its essential
qualities of openness and integrity between different elements.

The Information Model maps the R/3 data world and its functionality using an entity
relationship approach. It is itself divided into an Enterprise Data Model, an Enterprise
Function Model, and an Organization Model.

The Enterprise Data Model defines the data, files, and other elements in an R/3 application,
while the Enterprise Function Model defines the business processes that relate to the Data
Model. The Organization Model contains the organizational descriptions and dynamics
contained within R/3. Descriptions listed in the Information Model of data, relationships,
and entities are stored in the Data Dictionary and are mapped directly to the Data
Dictionary’s domains, tables, and keys.

The Information Model is used in two ways. As a static tool, the model can be used by
developers to understand the relationships that underlie the Data Dictionary and to maintain
consistency with the overall R/3 Information Model when building a specific instantiation of
R/3. In essence, the Information Model serves as a larger road map of the R/3 system.

SAP also provides an Online Information Model tool that allows the Data Dictionary and
Information Model to be modified according to the needs of the individual user. Again, this
modification is undertaken with the express condition that the Data Dictionary and
Information Model maintain a close degree of consistency. The result is that R/3, when
installed, has a fundamental architecture underpinning its functionality that can be studied
and modified as the user needs.

8 Important: This report conlains the resutts of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Configuring R/3: Three-Level Client/Server Architecture

Configuring R/3: Three-Level Client/Server Architecture

Flexible Configurations

Platform Support:
Currently or
Announced

Three-Tier Architecture

Protocol Support

The Information Model and the Data Dictionary are essential elements in defining and
managing both the internal elements of the R/3 system and the means by which R/3 is
distributed across a wide variety of platforms and networks. The ability to be configured as
a distributed system and its support of open systems hardware and software are the most
important design features of R/3.

The physical layout of an R/3 system is distributed within a networked environment
according to what SAP calls its “three-layer” architecture. The essence of this approach is to
segment the three major functional components of R/3: the presentation element, the
applications services, and the database services. By adroit use of communications software,
the Data Dictionary, and the Dispatcher, this segmentation allows each component to be
physically located on a different system.

The beauty of this approach is precisely that it lends itself handily to a highly distributed,
heterogeneous environment. Users are theoretically able to configure R/3 in a variety of
forms depending on their needs: Presentation code can be on a local PC, workstation or
terminal, with applications code (the modules) on a departmental server and the database on
a much larger server down the hall or in the next state.

The three components can also be combined in different permutations: presentation and
applications on a workstation and the database on a server, or applications and database on a
single server, with presentation code running on the workstation or PC. A third alternative is
that all three can be run on a single machine. In every instance, the hardware can be mixed
and matched as the user sees fit within the large range of client and server systems and their
operating environments. (See Table 2.)

Hardware Operating Systems User Interface DBMS
HP 3000 and 9000, HP MPE/ix, HP UX, Motif, Windows 3.1, Oracle, Informix, HP
SNI, DEC VAX and SINIX (SNI), BS2000 Windows NT, 0S/2 Alibase, DB2,
Alpha, SUN, IBM (SNI), OpenVMS, Presentation Software AG Entire
RS/6000 Solaris, AlX, BOS (Bull), | Manager saL
Windows NT

Table 2. R/3 can run on a broad range of server and client configurations, which, combined
with its standards support, qualifies it as an open systems software product.

That’s the theoretical version. In reality, the distribution of resources is limited in part by
the underlying network services. In particular, SAP recognizes that current network
bandwidth requires the database and applications servers to be located on the same machine
or in a close, clustered configuration.

In order to distribute its functionality across three potentially discrete sites, R/3 isolates
three groups of code: the user interface, application logic, and database management. Each
of these elements can exist in a single, nondistributed system as well as in a variety of
combinations on separate systems. (See Illustration 1.)

Creating the distributed environment requires having a number of means for communicating
data elements, tables, and programs between applications and across platforms. To do this,
R/3 defines a large number of communications protocols that support distributed processing
within R/3. These elements are, in turn, controlled by the Dispatcher.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call {617) 742-5200. 9

Configuring R/3: Three-Level Client/Server Architecture

R/3’s Three-Tier
Architecture

Interfaces, Databases,
and Operating Systems

Database Changes Batch Processing

12 d

Read from DB and
update buffers

Object-oriented changes
(asynchronous)

Application Logic

Data Output Data input Data Output Data input
to Users f‘ from Users to Users " from Users

Hlustration 1. The architecture of R/3 has three tiers. Each can be distributed or located on
the same hardware platform.

e CPI-C: Part of IBM’s SAA as well as an X/Open specification, CPI-C is used when
applications and their modules require synchronized data communications. The CPI-C
protocol is built into ABAP/4 and is the basic form of interprogram communications.

¢ Remote Function Call: Essentially a superset of CPI-C, the Remote Function Call
(RFC) mechanism in R/3 acts like an RPC, allowing for communications between
heterogeneous elements in the R/3 architecture.

e Electronic Data Interchange: Electronic Data Interchange (EDI) is an important form of
communications for R/3, despite the fact that EDI standards are hardly uniform across
the industry. But, as befits an application suite targeted at large manufacturing
concerns, EDI interfaces are made available and are used in order to communicate
orders and other information between R/3 users and their external customers and
partners.

R/3 also accomplishes this physical distribution and heterogeneous support by defining two
sets of interfaces that mediate between the R/3 environment and the larger operating
environment that surrounds it. These are the presentation interface and the database and
operating system interface.

PRESENTATION INTERFACE. The presentation interface exists so that the use of Motif,
Windows 3.1 and Windows NT, or X-terminals remains independent of the rest of the R/3
environment. Guaranteeing this cross-platform functionality is the R/3 terminal process,
which isolates the specific functionality of a given windowing system from the rest of R/3.
This terminal process can reside on the workstation itself, although, in the case of an X-
terminal, it must exist as part of the application or database server.

DATABASE INTERFACE. Conceptually, the database interface isolates the mechanisms for
transporting and managing data between applications and the database. It also has the key

10 Important: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Operating System
Interface

task of mediating between the logical structures of the data dictionary and the physical
structures of the relational database itself.

The database interface handles data access through the use of SAP SQL, which is essentially
a library of standard SQL calls available within the ABAP/4 environment. The database
interface is responsible for translating SAP SQL into the native SQL of the database
installed in the system.

R/3 provides a second mechanism for database access that allows for native SQL to be
embedded within an ABAP/4 program. ABAP/4 then passes the SQL directly to the
database, bypassing the database interface completely.

SAP tends to promote the use of SAP SQL for obvious reasons: As part of the ABAP/4
environment, SAP SQL is independent of the underlying relational database and thus allows
database independence for the R/3 applications. And bypassing the database interface also
allows the application to bypass much of the data dictionary’s role, interfering with the
integration and consistency of R/3. But SAP also recognizes that users may want to access
specific functions within their relational databases that are not generally available within
SAP SQL. Thus, it is possible to call and execute native SQL routines within the ABAP/4
language.

Use of native SQL does entail some limitations. The notion of clustered and pooled tables is
dependent on the intervention of the Data Dictionary, where the information defining these
mega-tables is stored. The use of native SQL bypasses the Data Dictionary and thus,
bypasses these mega-tables. This fact is of little practical consequence from the
programming side, as long as the user or developer is willing to maintain database tables
outside the Data Dictionary environment. But the key role that the Data Dictivnary plays in
maintaining both the consistency and portability of R/3 would make using native SQL less
than advantageous unless there were a compelling reason to do so.

Finally, though no less importantly, R/3 also isolates the operating system from the internals
of the software, allowing for a high degree of operating system independence. With support
for a number of flavors of Unix, as well as OpenVMS, HP’s MPE/ix, and Windows NT, it is
important that the functionality of elements like the Dispatcher be kept as operating system-
neutral as possible.

Using R/3 Applications

A Not Very Graphical Ul

Running R/3 is similar to running most menu-driven, graphical applications suites. Users are
assigned logon IDs and passwords, as well as a client number that identifies the specific
company for which the suite of applications they will use are assigned. The client number
allows R/3 to be installed on one or more physical systems and to be used among several
companies or functional entities simultaneously.

Logging on brings up the main menu, which allows the user to select an application or enter
the System Menu to manage specific sessions, create user profiles, or otherwise run non-
application-specific services.

R/3 screens are graphical up to a point. Although the outside frames look like any Windows
or Motif-based application, the text in the interior of the screen is displayed in nonpropor-
tional, typewriter fonts. The contrast is almost shocking. The surrounding windows support
most of the standard widgets expected in graphical environments, while the text within the
window looks like a throwback to a dumb terminal, which indeed it is. R/3’s nonpropor-
tional fonts, which cannot be sized, were taken wholesale from R/2. The lack of true graphi-
cal user interface (GUI)-based fonts is a glaring omission in the marketability of R/3. Except

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200 1

Using R/3 Applications

The Dispatcher

that they cannot be sized, the R/2 fonts don’t lack functionality, but they definitely give the
impression either that R/3 is incomplete or that SAP lacks understanding of what the client-
side requirements are for open, client/server systems.

SAP has recognized this omission and has promised to upgrade the screens in Version 2.1,
which will be available next year.

Nonetheless, the screens perform their tasks well, if not elegantly. Functions within
individual windows or screens are selected by pointing and clicking on a series of menus or
by entering a transaction code that identifies the desired function on the command line at
the bottom of the menu. This command line is very much the refuge of the power user, and
its inclusion frees the user from the slow process of scrolling through series of menus to
arrive at a desired transaction or function.

From the operating system perspective, the functions performed in a given screen are treated
as a collection of parallel processes controlled and executed by the SAP Dispatcher.

The Dispatcher acts much like a transaction monitor, allocating resources as needed to per-
form specific transactions. The basic functioning of the Dispatcher mirrors processing in the
Unix world. Activating a function by one of the methods above signals the Dispatcher that
an internal transaction has been initiated that requires a work process—essentially a Unix
process—to be allocated to it. The Dispatcher’s role is to manage the allocation by using re-
sources available according to the distribution of the R/3 system. Once the specific transac-
tion has been accomplished, that Dispatcher frees the work process for a subsequent task.

Supporting Software for the R/3 Environment

System Administration
and Installation

Surrounding R/3 are a large number of software tools and other elements that allow for
customization, administration, tuning, and other functions above and beyond the actual
running of the R/3 applications. These include system administration tools, software
development tools, software for third-party applications integration, and installation tools.

R/3 supports three levels of system administration tools: Unix-based tools, database-specific
tools, and R/3-specific tools. Unix tools need little elaboration here, and database tools, such
as those provided with Oracle, are included as part of the database system when it is
purchased by the user, though they are not regularly included in the runtime database that is
installed with R/3.

The R/3 tools include SAP DBA, which assists in the update and maintenance of all
databases supported by R/3. There is also a Monitoring and Administration tool, which
includes a performance monitor that can display information on the status of work processes
within R/3. This tool also supports the administration of multiple users and services,
allowing for the allocation and distribution of resources.

The Collector is another administration tool that collects statistics on SAP’s use of Unix,
ABAP/4, and the database. The statistics garnered by the Collector include network use,
memory and paging, response time, database requests, and other performance and tuning
data.

SAP also provides software to assist in the installation of this complex environment, from a
knowledge-engineering program that helps develop the system configuration to a database
installation program that configures the database.

Another important tool for installation is SAPinst, a menu-driven program that creates the
R/3 environment and sets up the applications servers.

12 tmportant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Development under R/3: ABAP/4

The principal development tool for R/3 is ABAP/4, which, as stated in “ABAP/4 Modules”
above, is the same language used in the creation of modules and other elements of the R/3
environment.

ABAP/4 is well-suited to the needs of R/3 in a number of ways. Its interpreted nature sup-
ports prototyping and facilitates the development of multilingual applications. Its data types
and libraries are designed to support the data and text needs of R/3, and it provides a rich set
of operations within the framework of a fourth-generation programming environment. Data
input and output from most external devices can also be handled directly from the ABAP/4
language. (See Illustration 2.)

As noted above, ABAP/4 also contains a rich SQL environment and a set of communica-
tions interfaces built around the CPI-C protocol. The combination of these two elements al-
lows R/3 modules to contain the necessary programming functionality and logic for distrib-
uted computing.

Also assisting in ABAP/4’s distributed programming logic are two forms of subroutine:
functions modules and dialogue units. While functionally identical to a classic subroutine,
these have the added benefit of being callable from a remote system. Thus, function mod-
ules and dialogue units, like the program modules of which they are subsets, can be distrib-
uted across the R/3 three-level architecture as needed.

. Miscellaneous Tools

SAP also supplies a list of tools for developing applications using ABAP/4. In addition to
the function libraries that come with ABAP/4, R/3 also provides debuggers, editors, and
utilities that support the programming environment.

In addition, R/3 also comes with Screen Painter and Menu Painter software, which allow
developers to design application screens using a fully graphical environment. These two
components also aid in the development of custom applications or modifications of the R/3
suite.

Ad hoc data extraction and analysis are supported by ABAP/4 Query, an end-user-targeted
application that generates reports based on R/3 data.

The Data Dictionary also has a number of software tools that support its development and
maintenance, such as the Online Information Model tool. In addition, R/3 has a Data Dic-
tionary Information System that develops a series of reports on the status of the dictionary,
including lists of current applications, tables, fields, and data elements.

Integrating Third-Party One of SAP’s major goals is to give third-party applications a role in R/3. This recently be-

Software came more important when SAP and Microsoft Corporation (Redmond, Washington) en-
tered into an alliance that will see R/3 ported to Windows NT and will include the support
of Microsoft applications such as Excel and Access in the R/3 environment.

To this end, SAP has developed the Alice interface, which allows Windows-based applica-
tions to connect to the R/3 environment and share data with R/3 applications. This product
is due out by the third quarter of 1993, and it will be extended to support the Macintosh en-
vironment at a later date.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of praprietary research. Reproduction in whole or in part is prohibited. For reprints call (617) 742-5200. 13

Miscellaneous Tools

ABAP/4 Language | reporrrsioLoss
TABLES; TABNA
Syntax DATA: BEGIN OF TAB OCCURS 100,
COUNTRY LIKE TABNA-COUNTRY,
D LIKE TABNA-ID
NAME!1 LIKE TABNA-NAMEI,
SALES LIKE TABNA-SALES,
END OF TAB
COUNTRY_SUM LIKE TAB-SALES
PERCENT(S) TYPE P DECIMALS 2
SELECT * FROM TABNA
MOVE - CORRESPONDING TO TABNA TO TAB.
APPEND TAB
ENDSELECT
IF SY-SUBRC NE 0.
*D: TEXT-001: 'No entry available

*D: in table TABNA'
WRITE: TEXT-001
EXIT.
ENDIF
SORT TAB BY COUNTRY SALES DESCENDING
LOOP AT TAB
AT NEW COUNTRY
SUM.
COUNTRY_SUM - TAB-SALES
NEW-PAGE

WRITE: TEXT - 002
TAB - COUNTRY.
31 TEXT - 003
COUNTRY_SUM.
*D: TEXT - 002: 'Country :'
*D: TEXT - 003: 'Total Revenues :'
ULINE
ENDAT
IF COUNTRY_SUM EQO0.
PERCENT = 0.

ELSE.
PERCENT = TAB - SALES * 100/ COUNTRY_SUM
ENDIF.
WRITE: / TAB-COUNTRY,
TAB-ID,
TAB-NAME],
TAB-SALES,
60 PERCENT, '%'
END LOOP

Hllustration 2. Sample ABAP/4 code used to create a table, called Report R310L0O63, that
displays country of origin, company ID, company name, sales to that company, and
percentage of overall country sales represented by each customer within a given country. At
the top of the table, the total revenues for all customers within the reporting country are
displayed.

As noted above, third-party software can also be tightly integrated using the Enterprise Data
Model’s architecture.

14 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

The Challenge Faced by SAP and R/3

The Challenge Faced by SAP and R/3

R/3 and the Role of the
Integrator

R/3 Consulting
and Systems
Integration
Partners

When installed in all its complex, distributed glory, R/3 presents a huge challenge and
opportunity for the user as well as the systems integrator or consultant charged with
designing and installing the system. Installing R/3 can only have a limited impact on a user
organization, but, then, R/3 is not necessarily intended for the user seeking a minor
adjustment to his or her IT environment—unless that individual is already using R/2. Some
users are implementing small parts of R/3 in limited environments, but the efforts of SAP’s
huge engineering staff has been directed toward making R/3 a highly adaptive and adaptable
product.

Indeed, R/3 is at times so feature-rich as to be cloying, and, although the basic system can
be installed with little modification, optimal use can only come through a rather extensive
consulting and systems integration approach. Making full use of a comprehensive suite of
software like R/3 in a complex, distributed client/server environment can be a daunting task,
and one that a user can undertake only with the understanding that the installation of the
system will effect a radical change in the company’s business practices, even if they were
previously fully automated. If done well and planned for carefully, that adoption of R/3 can
make the difference between mere data processing and strategic information technology.

But it is important to note this “business re-engineering” issue when considering R/3.
Installing the full R/3 package without a major reworking of business procedures will only
result in a better automation of an inherently outmoded or even problematic system. It’s not
for the pleasure of their company that SAP has linked up with major management
consultants and systems integrators both in the United States and Europe. SAP recognizes
this issue and has sought the partners required to deal with it. And users should recognize
that the cost of hardware and software could quickly become a minor element in the
installation of R/3.

As implied by this complex environment, R/3 requires an extraordinary amount of
consulting and systems integration work when doing a custom installation requiring more
than just the installation of a “turnkey” R/3 system. For the most part, this is accomplished
by one of SAP’s many partners, ranging from Deloitte & Touche and Price Waterhouse in
the United States to CAP Gemini Sogeti in France. SAP has vowed to farm out some 80
percent of the integration and consulting work to its partners. (See Table 3.)

Andersen Consulting Price Waterhouse Deloitte & Touche
Coopers & Lybrand Ernst & Young KPMG

CAP Gemini Sogeti

Table 3. Ultimately, consulting partners will be key to the success of R/3 by engaging in the
re-engineering of customers’ business processes.

These partners are extremely active in the R/3 market. Deloitte & Touche, Price
Waterhouse, and CAP Gemini have set up R/3 expertise centers in order to promote the
development of this market. Their success is important to the success of R/3. Because SAP
is unwilling or unable to take up the bulk of the re-engineering and systems integration
effort, and end users will probably be unable or unwilling to handle it themselves, R/3 will
become very dependent on the service side of the market for its success.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints call {617) 742-5200 15

Is R/3 What the Market Wants?

Is R/3 What the Market Wants?

Competitive Architecture

Complex Service and
Support

Getting It to Market

SAP obviously did its homework in designing R/3, though its use of nonproportional, dumb-
terminal fonts is disappointing and suggests a technological pragmatism that defies common
marketing wisdom. Indeed, the company has been criticized by users expecting a more
graphical user interface, and SAP, in response, is working hard to upgrade its screens in a
future release.

Architecturally, R/3 is as close to what the market is looking for as any of its rivals’
products. Its support for standards and open systems is without reproach, and its three-level
architecture makes sense in this increasingly client/server world. Support for multiple
databases, interfaces, and hardware platforms is exactly what customers are expecting in
their software products today, and R/3 supports most of the major market leaders in each of
these categories.

The multivendor support matrix has its liabilities, however. Maintaining a complex software
product like R/3 that is dependent on so many non-R/3 products and standards will force
SAP to devote considerable resources to the support side of the business. As the product
matures and its customer base spreads, SAP will be forced to keep tabs on aging versions of
databases, operating systems, and interface software that its customers may not want to
upgrade. As companies like Oracle already know, that support matrix can present a daunting
task.

SAP’s reliance on third-party service partners is also a good strategy, even if it leaves SAP
out of a growing services revenue base. Consulting and systems integration can be
distracting enterprises for a software company; many companies certainly have had their
problems in growing that side of the business. But SAP may want to change its mind about
services at some point. The 80 percent of the consulting that SAP doesn’t want to do today
could eventually represent a significantly larger revenue source than the R/3 software alone.

SAP’s next tasks are to move its many applications modules into the market in a timely
fashion and to continue the practice of integrating third-party software, like Microsoft’s
Access database and Excel spreadsheet, into R/3. As the mid-1990s approach, R/3 may
become one of the premier packaged software products in the open systems market. From a
technological and marketing standpoint, there seems to be little to stop that from happening.

©

Next month’s Open Information Systems will address
The Future of Unix: Microkernels and More

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

16 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, call (617) 742-5200. OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Open Systems: Analysis, Issues, & Opinions

FOCUS: DEVELOPMENT TOOLS

OSF DCE: In Search of a Few Good
Tools

Four years and many megabucks into the cycle, the
Open Software Foundation (OSF, Cambridge,
Massachusetts) Distributed Computing Environment
(DCE) is visibly flirting with adoption in the
marketplace. DCE has survived industry politics,
uninspired marketing, overblown expectations, and
diffusion of responsibility among the main sponsors.
Yet, it persists as the closest thing to a standard for
developers who are committed to building distributed
applications for heterogeneous environments. X/Open
has incorporated DCE into its Distributed Computing
Profile (See Open Information Systems, Vol. 8, No. 3,
February 1993) and is trying to address the issue of
DCE cross-vendor, transport-level compatibility. IBM
(Armonk, New York) has come out of the blocks with a
DCE-based enterprise strategy and has backed it by
shipping DCE Core Services on both its AIX and OS/2
platforms. Digital Equipment Corporation (Maynard,
Massachustts) and Hewlett-Parkard (HP, Palo Alto,
California) have announced DCE Core Services
products, and even Microsoft Corporation (Redmond,
Washington) and Novell Corporation (Provo, Utah)
have made the “if and when” pledge to respond to
demand.

The DCE Tools Deficiency

Leaping into the Void: Gradient Technologies

While the timing remains uncertain, the likelihood of
acceptance in the marketplace just got a booster shot
from the same small company that already saved DCE

- from PC-client oblivion—Gradient Technologies

(Marlboro, Massachusetts). Gradient beat the long odds
once by successfully delivering a secure DCE client
based on Windows 3.1 with a product called PC-DCE.
Gradient might be playing a key role again by rushing
into the vacuum of DCE development tools with a
product called Visual DCE, a DCE development tool
based on Microsoft’s Visual Basic and Visual C++
products. Gradient rolled out a prototype of Visual DCE
at the May OSF Challenge '93 event in Boston and
demonstrated some examples of how Visual DCE has
been designed to dramatically reduce the complexity
and the coding involved in building DCE applications.

Targeting the Cobol Developer

Despite these indications of imminent acceptance, the
nagging lack of development tools plagues DCE.
Relatively few programmers can design and build a
distributed application working at the DCE application
programming interface (API) and remote procedure call
(RPC) Interface Definition Language (IDL)
programming level. And the tools vendors who could
solve that problem have been waiting on the sidelines
for a solid indication of a commercial opportunity,
watching to see where and when the investment should
be made. This uncertainty has made the timing of DCE
adoption hard to pin down.

The high-level goals for Visual DCE are to decrease
application development time and shift the requirement
for programmer skills toward skills that are mainstream
in the market. Visual DCE essentially provides a Visual
Basic and Visual C++ interface to DCE core services.
With Visual DCE, DCE bindings, interfaces, names,
and access control lists (ACLs) translate into Visual
Basic objects (called controls) with configurable
property sheets; IDL data types automatically translate
into Visual Basic data types. Gradient has extended
Visual Basic in order to take the complexity out of
working with the DCE and Windows APIs.

Visual DCE: An Object-Based View

The C language interface to DCE presents an awkward
and tedious development environment, including the
need to repetitively write procedure calls to perform
basic operations such as binding, name lookup, and
error-checking. The Gradient design for Visual DCE
characterizes the typical ways these procedures are
performed, groups them into classes with default
properties, and provides a relatively simple mechanism
to change the object properties at design time or
runtime. Visual DCE represents Windows controls as
classes with standard default properties and supports the

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200. 17

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

development of custom controls. The architecture of
Visual DCE is shown in Illustration A.

This code sample compares with 25 to 50 lines of DCE
API calls to accomplish the same actions, leveraged
further by the reusability of the Visual DCE objects

compared with the standard C language approach. An
entire page of RPC code to create an RPC binding is
replaced by just one selection from the Binding object
properties window. Directory and Security objects can
similarly be linked to a Binding object with Visual
DCE, again multiplying the savings in effort and time to

Visual DCE Architecture

Visual DCE Application

VB Wrapper Interface Binding Security the DCE developer. Visual Basic initializes and breaks
and RPC Stub vBx vex VBX down context automatically, saving the developer from
having to code special operations such as starting or
DCE.DLL VBRUN200.DLL terminating task-level operations. Also, Visual DCE
objects are automatically saved when the DCE program

Windows Kernel is saved.

The developer does not have to be aware of threads nor
provide for error-handling with Visual DCE. Exceptions
that result from an RPC operation are handled by the
Visual Basic exception handler, mapped to Visual Basic
error codes and with a default to the display of a
message box.

Visual DCE IDL Compiler

Hlustration A. The Visual DCE design encapsulates the
DCE layer and generates the calls to the DCE API from a
Dynamic Link Library. This modular product design
isolates Visual DCE from Windows 3.1 and supports future
use of the Windows NT RPC and possibly other
architectures.

Visual DCE enables the developer to sidestep the
complicated DCE API calls, such as the DCE RPC
binding routines. Instead, the developer can create and
then manipulate high-level “Binding” objects,
“Interface” objects, “Directory” objects, or *“Security”
objects. Interface objects are used to link Binding
objects with RPCs and can be defined through the
selection of RPC interface and operation from a listing
of available options. The Binding objects can be
defined based on the selection of time-out,
authentication, server name, string binding, or other
attributes. The Directory and Security objects can be
similarly defined, modified, and manipulated within
Visual DCE. Double-clicking on a Visual DCE icon
displayed on the Visual Basic tool bar pops up the
object properties window, which supports pull-down
menus for point-and-click selection of object attributes.

Developing with Visual DCE

With Visual DCE, as few as three simple assignment
statements are required to bind a client and a server, for
example:

As a key part of Visual DCE, Gradient offers an
Interface Compiler back end for the PC-DCE IDL
compiler that generates a Visual Basic interface module
from a standard IDL file containing the interface calling
parameters and the attributes of the client and the
server. The Visual DCE Interface Compiler handles
differences in pointers, strings, and structures, and
generates a Visual Basic version of the IDL constants,
type definitions, call declarations, and arguments for
use in the Visual Basic program. The Visual Basic
interface module is compiled and linked with the stub
module to create a Windows Dynamic Link Library
(DLL) that includes both the client and server stubs
generated by the IDL compiler and the additional code
necessary to marshal the Visual Basic data types for
remote procedure call execution. The RPC in the DLL
can be called directly from Visual Basic and can be
pasted as a template into an application.

Not Just for DCE Client Development

Statement Action

Interfacel.Action = RPC_Interface_Open Open the
interface

Binding]1.InterfaceID = Interfacel Link the interface
to the binding

Binding1.Action = RPC_Binding_Bind Activate the
binding

Contrary to expectation, Visual DCE is not aimed
exclusively at developing DCE client applications.
Although it is a Windows-based tool and the current
prototype does operate under PC-DCE, Visual DCE was
conceived for developing both the client and server
pieces of a DCE application. In fact, part of the broader
Gradient mission is to change the rules about how
Windows PCs fit into the DCE picture. Gradient
believes that developers are turning to Windows not
only for less expensive hardware and software, but also

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

because the range of choices and the support for
application development, system management, and
client/server functionality have become more than
acceptable. In a narrow context, Visual DCE offers
hope to today’s DCE developers that they can get there
from here without completely retooling their skill sets.
In the broader context, Visual DCE could foreshadow a
new dimension of the role of Windows in the DCE
framework.

Product Status and Availability

Visual DCE was in prototype form in June, and
Gradient is hoping to stave off the intense interest in the
product to allow for a full beta test before shipment by
the end of 1993. The version demonstrable in early June
runs on PC-DCE 1.0.1 and Visual Basic 2.0, and it can
be used to develop client-side applications. The product
reliably binds and communicates with multiple server
applications, such as the DCE “Market Minder” and
“greet” applications, which have been used for the past
couple of years to demonstrate the heterogeneous
distributed capability of DCE. The product runs with
very good performance on a garden-variety 486 clone
and offers quite reasonable ease of use for the non-C
programmer. — S. Dolberg

CORBA WATCH

SunSoft’s Project DOE:
The Shape of Solaris to Come

Toward Ubiquitous Distributed Objects

Sun Microsystems Incorporated (Mountain View, Cali-
fornia) has finally weighed in with a CORB A-compliant
distributed object computing product. The Project Dis-
tributed Objects Everywhere (DOE) Developer’s
Release is SunSoft’s first product to implement the Ob-
ject Management Group’s (Framingham, Massachu-
setts) Common Object Request Broker Architecture
(CORBA) interfaces for distributed object management
services. The Project DOE Developer’s Release is a
toolkit for defining distributed applications as objects
that can interact in flexible, powerful ways across LANs
and WANSs.

When the Object Management Group (OMG) defined
CORBA during 1991, SunSoft was a prime mover in the
effort. SunSoft, the operating systems software subsidi-
ary of Sun Microsystems, and its partner, Hewlett-
Packard Company (Palo Alto, California), were re-

sponsible for the Interface Definition Language (IDL)
adopted as the static client interface within CORBA.

Almost two years later, SunSoft announced its first
CORBA product. In the meantime, HyperDesk
Corporation (Westboro, Massachusetts) and Digital
Equipment Corporation (Maynard, Massachusetts) re-
leased products that implemented some of CORBA with
promises to fully abide by the OMG standard later. Why
did SunSoft require so much time to get to market?
(The same question is relevant also for HP, which has
yet to announce a CORBA product. But that’s another
story for another issue.)

The answer to this question can be found in SunSoft’s
evolving strategy for its CORBA-related technology.
SunSoft has now stabilized its ideas about how to put its
next generation of distributed object computing tech-
nology to work for customers. This was not true two
years ago.

SUNSOFT’S DISTRIBUTED OBJECT STRATEGY. Project DOE
is the heart of SunSoft’s next-generation computing
platform. SunSoft has formulated a strategy for the
software that balances an ambitious vision for future
Sun platforms with the need to give current users value
today.

SunSoft’s distributed object computing strategy has
three goals:

® Reduce the cost of building and maintaining complex
software. Project DOE is SunSoft’s foundation for re-
usable, component-based software for both existing
and new applications. Project DOE can be used to
“objectify” existing code as well as to create new
object-oriented code. In both cases, objects allow de-
velopers to reuse existing code in applications, to
distribute computing to take advantage of network re-
sources, and to integrate different pieces of code with
much greater ease than before. The result: Developers
can create complex software for a lower cost than
they can using conventional methods.

® Build enabling technology that makes distributed
applications easier and less expensive to build. Pro-
ject DOE will eventually become the next generation
of SunSoft’s Solaris operating system environment. It
will support a variety of underlying operating system
and distributed computing services, as well as appli-
cations and application development tools. SunSoft’s
measure of success will be whether or not these tools
reduce the effort and cost required to build distributed
applications.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Important: This réport contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200. 19

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

¢ Retain for SunSoft’s Solaris operating system a place
of prominence among computing environments. Pro-
ject DOE must succeed for SunSoft to turn back
Microsoft’s assault with Windows NT on the Solaris
customer base. SunSoft hopes to beat Windows NT in
the market by offering support for robust distributed
applications and support for distributed object com-
puting before Microsoft does and by conforming to
the Object Management Group’s standards before
Microsoft does. At the same time, SunSoft hopes to
hold onto its ability to ask premium prices for Solaris.

These are ambitious goals, and the technology required
for SunSoft to attain them must be powerful and
sophisticated. Interestingly enough, the DOE
Developer’s Release does not contain all the technology
SunSoft will need to achieve these goals, a fact that
SunSoft acknowledges. Rather, it contains enough for
SunSoft and key early customers to begin filling in the
outlines of Sun’s next-generation platform by drawing
on practical experience building applications.

What Is Project DOE?

Project DOE is both a strategy and a set of products.
The first product shipped under the Project DOE pro-
gram was ToolTalk. ToolTalk allows two independent
applications to interact using simple messages, as op-
posed to using calls to complex network APIs.

SunSoft’s inclusion of ToolTalk in Project DOE has
been the source of some confusion. ToolTalk is not a
CORBA implementation now and isn’t ever likely to
be. Rather, ToolTalk gives developers the rudimentary
features of an object request broker, if only because it
makes communications between independently created
pieces of software object-like in their simplicity.

The real Project DOE, however, is rooted in CORBA
and a larger environment based on it. Sun’s DOE plat-
form has much in common with its current Solaris
operating system. (Indeed, we can expect Sun to retain
the Solaris brand name for its distributed object tech-
nology in later releases.) Both platforms support dis-
tributed computing. Both are also based on 32-bit,
multitasking architectures. But Project DOE goes much
further than today’s Solaris to make distributed comput-
ing accessible to a wider range of developers.

The major components of the DOE platform are (see
Illustration A):

® SunOS 5.x and ONC+. This is a separable “support”
layer. SunOS 5.x is a multithreaded version of Unix
System V Release 4 that runs on SPARC RISC chips
and on Intel 486 and higher. ONC+ provides

networking support, including TCP/IP, and associated
services, including the Network Information System
Plus (NIS+) naming service, the transport-independ-
ent remote procedure call (TI-RPC), and security.

® The DOE Object System. The heart of the DOE Ob-
ject System is SunSoft’s CORBA-compliant object
request broker (ORB), the Distributed Object Man-
agement Facility (DOMF). SunSoft’s Project DOE
Developer’s Release supports both of CORBA'’s
client-side interfaces (the Static Invocation Interface
and the Dynamic Invocation Interface) as well as its
server-side interface, the Basic Object Adapter. This
layer of the DOE platform also contains basic serv-
ices to support DOMF.

® DOE Application Environment. The DOE Application
Environment contains higher-level services required
to build distributed applications. The services in-
cluded in the Project DOE Developer’s Release are:
naming, which governs how object names are mapped
to implementations; associations, which support the
linking of objects and embedding of objects within
other objects; event notification, which allows one
object to notify other objects of the occurrence of an
event; and properties, which allow developers to
attach descriptions to objects. Other services, includ-
ing transactions, will be shipped in later releases.

® DOE Applications. The DOE Applications are indis-
tinct at this juncture, and probably will remain so for
a year or more as SunSoft delivers production ver-
sions of the base platform. SunSoft’s initial ideas for
applications that it might ship as options with DOE
include systems management, multimedia, and
groupware. Third parties will deliver others.

The key differences between today’s Solaris and DOE
can be found in the ORB and the application services.
To build distributed applications using Solaris, develop-
ers have three choices, each of which simplifies dis-
tributed applications development in its own way. They
can program to Sockets, they can use RPCs to link
applications, or they can use ToolTalk.

DOE promises to simplify development still further.
One of the two keys to Sun’s DOE architecture is IDL,
which SunSoft will promote to developers as the main
facility to define DOE objects. Actually, developers use
IDL to define interfaces to object implementations. An
object implementation can be a binary executable, a
script, a database—whatever. All object implemen-
tations are accessible only through their interfaces. This
makes it possible to change the way an object is imple-
mented without breaking applications that use it. It also

Iimportant: This report contains the results of proprietary research. Reproduction in whole of in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

makes it possible for objects to be moved on a network
without breaking existing applications.

Project DOE's Architecture

Applications

DOE Application Framework

DOE Object Services

Distributed Object
Management Facility

SunOS 5.x

~3 ONC+ —1—

Illustration A. Project DOE outlines four major layers of
system software, beginning with a base of SunOS 5.x and
ONC+, and proceeding up through an object management
layer, a service layer, and, finally, a tools layer.

IDL may be DOE’s center of gravity, but SunSoft also
has implemented CORBA’s Dynamic Invocation Inter-
face in the Project DOE Developer’s Release. SunSoft
just doesn’t seem to believe that it and its customers
will gain as much benefit from use of the dynamic inter-
face as they will from using IDL. SunSoft believes the
immediate use of the dynamic interface is to allow de-
velopers to browse the objects that exist in an
environment.

The other keys to the DOE architecture are SunOS 5.x
and ONC+. SunOS gives SunSoft a threads service to
support interobject messaging. Every request from one
object to another invokes a new thread, not a full
process. ONC+ gives SunSoft an RPC mechanism to
use as the underlying transport mechanism for
interobject messages.

Architecture of DOE Developer’s Release

SunSoft’s Project DOE Developer’s Release is a first
step toward the realization of the full DOE environ-
ment. The toolkit includes the following:

e The Distributed Object Management Facility for
SunOS, which contains the CORBA Static Invocation

Interface (as realized in IDL), Dynamic Invocation
Interface (DII), and Basic Object Adapter

e A set of Object Services to support DOMEF. The
services are object-naming, associations, properties,
and events

e C and C++ language bindings

e Documentation, including the source code for four
applications and a videotape

o A four-day training class and support

The DOMF is the heart of the toolkit, and SunSoft has
also made available its C and C++ language bindings as
part of the offering.

The Object Services are perhaps the most interesting
part of the release. The services include some of those
that SunSoft and 20 other vendors have submitted to the
OMG in response to its Object Services Request for
Technology. The Joint Object Services Submission
(JOSS) appears headed for approval by acclamation,
since it has no real competitors.

The Project DOE Developer’s Release, then, appears to
have the first implementation of JOSS. SunSoft’s im-
plementation may need to be fine-tuned to
accommodate revisions called for during the OMG’s
review process, but the basic services should remain the
same.

JOSS introduces important new interfaces to CORBA,
the most important being object-naming. The JOSS in-
terface is based on federated naming as its underlying
model. That is, the interface does not force all CORBA
implementations to conform to any particular naming
scheme, but it manages naming across schemes. This is
vital to support interoperability of objects across object
request brokers.

JOSS also standardizes the interface to object storage
services, using an interface based on the work of the
Object Database Management Group, an ad hoc group
of database vendors in which SunSoft played a key fa-
cilitation role. SunSoft plans to make this interface
available in the next version of the Project DOE tech-
nology it releases.

DOE Applications

The Project DOE Developer’s Release may be at an
early stage of release, but it does work. SunSoft dem-
onstrated the software on the show floor at the Object
World trade show in San Francisco during mid-June.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7 Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, cal (617) 742-5200. 21

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

The demonstration application was DOE Cards, a sys-
tem that allowed users to trade a variety of cards with
one another to accumulate points. DOE Cards ran on
the show floor over wireless Ethernet for the three-day
conference, supporting thousands of trades and hun-
dreds of users.

DOE Cards was a whimsical demonstration of Sun-
Soft’s capabilities with DOE. The company believes
that initial users of its distributed object technology will
fall into three applications categories:

® Interconnecting Binary Applications. SunSoft has a
demonstration application that links Lotus 1-2-3
spreadsheets and a visualization package using DOE
technology. Any of these three packages can update
the other in real time. The spreadsheets and visuali-
zation package are each equipped with IDL inter-
faces, which define the objects each contains and the
messages other objects can use to invoke those ob-
jects. The result is like a Microsoft OLE application
that works over a network—LAN and/or WAN.

o Extending Existing Applications. In another demon-
stration project, SunSoft used DOE to add video-mes-
sage and speech-message objects to the Solaris Mail-
tool. In this case, SunSoft added an IDL interface to
its Mailtoo!l that allowed it to invoke the video or
speech objects. The result is added functionality
without rewriting of the Mailtool.

o Distributing Processing on a Network. In a third
demonstration, SunSoft used DOE technology to de-
fine calculation engines in a network as compute ob-
jects to support a wind-tunnel simulation. As the user
increases the velocity of the wind in the simulation,
the object driving the simulation invokes more of the
compute objects to support it.

Pricing, Packaging, and Availability

SunSoft has not revealed the costs of participating in
this early release program.

Conclusions about Project DOE

The Project DOE Developer’s Release is essentially a
pre-beta release of the DOE Object System. SunSoft
plans to distribute the toolkit to a selected set of cus-
tomers, produce a new revision based on their feedback,
and be ready for a general beta program during the
spring of 1994.

To participate in the pre-beta program, an organization
must have a project in hand. The training class will fo-
cus during the first day or so on defining the first-cut
IDL interfaces required to implement the participant’s
project, and then, during the final days, on refining
those interfaces.

VALUABLE ADDITION. SunSoft’s Project DOE technology
is a valuable addition to the emerging market in dis-
tributed object computing tools. SunSoft’s approach of-
fers users additional choices among CORBA products
in three primary areas.

® First, SunSoft stresses CORBA’s static interface as
the primary API for developers. In earlier CORBA
products, CORBA’s dynamic interface was stressed
as the preferred API. Each API is useful in its own
right. Some developers will prefer the strong type-
checking of the static interface over the flexibility of
the dynamic interface. In addition, SunSoft, in its
training, will help developers understand how they
can mimic the behavior of the dynamic interface us-
ing IDL.

e Second, SunSoft’s architecture for Project DOE may
enable greater distribution of distributed object man-
agement functionality than some of the earlier
CORBA implementations. SunSoft believes that as
much information as possible about each object in the
environment should be packed into its IDL interface.
Other approaches place information in central reposi-
tories residing on a single server. In some cases, the
centralized repository may not be the best option,
particularly in large applications.

® Third, SunSoft’s approach is closely aligned with the
OMG’s standards. SunSoft’s delivery of its Project
DOE technology was delayed in part by completion
of the three major CORBA interfaces. In its approach
to object services, SunSoft used the OMG’s Object
Services RFT process to effectively ensure that its
work would be standard. In the future, we expect
SunSoft’s fealty to the OMG to continue.

The downside of SunSoft’s Project DOE technology is
its strong link with Sun’s existing hardware/software
platform. SunSoft is forcing users to choose Solaris and
ONC+ if they want to obtain the Project DOE technol-
ogy. Many users will object. Indeed, Project DOE may
force SunSoft to broaden its platform coverage to in-
clude more than SPARC and Intel and more than
Solaris.

CAN DOE MEET MICROSOFT'S CHALLENGE? Jim Green is
the director of Project DOE at SunSoft. At Object
World, he looked like the most relieved man west of the
Mississippi. His team had delivered a product—at last.
But there’s still much work for Green and his team.

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprints, call (617) 742-5200.

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

The toolkit SunSoft is delivering is a preliminary prod-
uct. It is a vehicle for the company to learn enough to
understand how to package its advanced technology as
part of its mainstream Solaris operating environment.
SunSoft’s deliberate approach is prudent. Few users or
vendors claim to understand exactly how to put distrib-
uted object computing technology to widespread use
today.

However, SunSoft’s approach can’t be too deliberate.
The schedule for the completion of just the basic plat-
form takes SunSoft through the end of 1994. During this
time, SunSoft must figure out how to turn its reliance on
Solaris’s threads service and nested RPCs into benefits
for developers at large. For most business developers,
these facilities will be far too complex to be of
immediate benefit.

It will take SunSoft even longer to deliver an environ-
ment conforming to its complete vision. Unfortunately,
the complete vision is what many corporate developers
and all business users will want.

This is a crucial point in SunSoft’s ability to compete
with Microsoft, its stated strategic goal. Microsoft’s
genius is to deliver to the market just enough technol-
ogy to satisfy a set of end-user needs and then to build
toward a complete vision from that point. Microsoft’s
Object Linking and Embedding 2.0 (OLE 2.0) is an ex-
ample. OLE 2.0 provides the foundation for an eventual
distributed object computing system that Microsoft calls
“Cairo.” Today, OLE 2.0 supports only document link-
ing and embedding within a local environment. We
expect Microsoft to add distribution and support for
other types of applications (in addition to documents)
during the next three years.

Therefore, SunSoft hopes to compete with Microsoft, it
is going to have to demonstrate fairly soon some amaz-
ing end user capabilities. Focusing on supporting
developers only with toolkits and like products won’t be
enough. ~—J. Rymer

OPEN INFORMATION SYSTEMS Vol. 8, No. 7

Important: This report contains the results of proprietary research. Reproduction in whole o in part is prohibited. For reprints, call (617) 742-5200. 23

Patricia Seybold’s Computer Industry Reports Order Form

Please start my subscription to:

[] Workgroup Computing Report
(] Open Information Systems

"] Distributed Computing Monitor

a sample of:
Please send me information on:

Please send me [] Distributed Computing Monitor
[] Workgroup Computing Report

[] Consulting

12 issues per year
12 issues per year
12 issues per year

[] Open Information Systems
(] Paradigm Shift—Case Studies in Distributed Computing

(] In-Depth Research Reports

US.A. Canada Foreign
$385 $397 $409
$495 $507 $519
$495 $507 $519

[] Conferences

Total $ [] Mycheckfor$__ isenclosed. [_| Please bill me.
Name: Title:

Company Name: Dept.:

Address:

City, State, Zip code, Country:

Fax No.: Bus. Tel. No.:

Checks from Canada and elsewhere outside the United States should be made payable in U.S. dollars. You may transfer funds directly to our bank: Shawmut Bank of Boston,
State Street Branch, Boston, MA 02109, into the account of Patricia Seybold Group, account number 20-093-118-6. Please be sure to identify the name of the subscriber and
nature of the order if funds are transferred bank-to-bank.

[J Please charge my subscription to:

Card #:
Exp. Date:
Signature:

Mastercard/Visa/American Express
(circle one)

10-793

Send to: Patricia Seybold Group: 148 State Street, 7th Floor, Boston MA 02109; FAX: (617) 742-1028; Phone: (617) 742-5200; MCI Mail: PSOCG

1992 and 1993 Feature Reports from Patricia Seybold Group
To Order these Back Issues, Fax (617) 742-1028, or Call (617) 742-5200.

Office Computing Report I

Unix in the Office I

Distributed Computing Monitor'

Volume 15 issues—$40

O 10/92 Microsoft’s Workgroup Strategy—
Moving Group Functionality into
Windows

O 11/92 Visual Programming—Application
Design for End Users and Profes-
sional Developers

(O 12/92 The Notes Phenomenon—The Indus-
try Reacts to Lotus Notes

Volume 16 issues—$50
O 1/93 Microsoft Access—"‘Cirrus”

Database Project Gets down to
Earth

Workgroup Computing Report l

0 2/93 WordPerfect Information Systems
Environment—WordPerfect
Reveals Its Blueprint for

Workgroup Support

Lotus Notes Release 3—Extending
the Notes Paradigm

Can Windows NT Meet the
Challenge?—Microsoft’s Next

Generation Operating System Stirs
the industry

0 3/93

0 4/93

0 5/93 Action Technologies’ Workflow
Products—Coordinating the
Activities of People as They Work
Together

Implementing Groupware—Group-
ware May Be Hazardous to Your
Organization’s Status Quo!

Issues in Remote Computing—Note-
book PC Boom Raises Question:
How to Handle Detachable Comput-

ing

0 6/93

0O 7/93

Back Issue Total $

Volume 7 issues—$50
3 6/92 Digital’s DECworld Gems—Alpha
and Accessworks Shine

[Open Information Systems |

3 7/92 Integrating Applications in the
Real World—Evolution, Not
Revolution

Windows NT 3.1—Microsoft’s

Bid for Desktop Dominance

Oracle’s Version 7—Can It

Leapfrog the Competition?

O 10/92 Galaxy from Visix—Application
Portability Breakthrough?

O 11/92European Open Systems Architec-
tures—Europe’s Vendors Strike
out for Open Distributed Systems

O 12/92 The Unix Data Center—Fact or
Fiction?

Volume 8 issues—$50

O 1793 X/Open in the 1990s—Making
Open Systems Safe for Users
Highly Available Open Systems—
Expanding Today’s Definition
Sybase System 10—Can It Manage
Enterprise Data?

Unisys ASD Framework—Meeting
the Challenges of Software
Development in the 1990s

O 8/92

0 9192

0 2/93
0 3/93

0 4/93

O 5/93 Unix and PC Interoperability—
Toward the Utility Era of
Computing

Open Electronic Mail—Interoper-
ability through Standards

SAP’s R/3 Software Suite—
Architecturing Open, Integrated

Software for Distributed Enterprises
Back Issue Total $

O 6/93

0 7/93

Volume 7 issues—$50

0 10/92 Database Interoperability—A
Comprehensive Approach to
Database Access for the 1990s

3 11/92 Transarc Encina—Will Distributed
OLTP Systems Overrun the
Mainframe’s Last Stronghold?

0 12/92 Ul-Atlas Distributed Management—
Object-Oriented, Distributed
Management for the Unix System V
World

Volume 8 issues—$50

0 1/93 Component Software—A Market
Perspective on the Coming
Revolution on Solutions Develop-

ment

O 2/93 Switched Internets—The Coming
Gigabit Revolution in Enterprise

Networking
IBM’s System Object Model—

Cornerstone of an Open Distributed
Object Computing Environment

O 3/93

O 4/93 Encapsulating Databases—Practical
Uses of Object Technology to
Inprove the Value of Relational

Data

OMG’s CORBA 2.0—Industrial
Grade Standard for Distributed
Object Computing?

Enterprise System Management—

O 593
0 6/93

O 7/93 Detachable Computing—Vendors
and Users Scramble to Support

Occasionally Connected Computers

L)
L
Printed on
recycled paper.

Back Issue Total $

The Quest for Industrial Strength
Management for Distributed Systems .

