Patricia Seybold’s
Office Computing
Group

Editor-in-Chief
Judith S. Hurwitz

INSIDE

EDITORIAL
Page 2

OSF: The Product
Company: To com-
pete against other
software companies,
OSF will have to
learn how to market
its products.

ANALYSIS
Page 14

Unix Systems Labo-
ratories joins ACE
» Sequent: the sys-
tems integrator °
Tivoli’s Wizdom:
object oriented sys-
tems management,

a key component of
OSF’s DME.

UNIX
IN THE

Guide to Open Systems

Vol. 6, No. 10 « ISSN: 1058-4161 « October 1991

OSF’s ANDF

The Key to Shrinkwrapped Software?

By Judith S. Hurwitz

INBRIEF: OSF’s ANDF could prove to be a significant technology for
helping achieve shrinkwrapped open software in the future. We
predict that this technology will take about three years to become
widely understood and implemented by system and compiler ven-
dors. We believe that the technology is well designed and will isolate
hardware and operating system dependencies from application soft-
ware.

Report begins on page 3.

© 1991 by Patricia Seybold’s Office Computing Group, 148 State Street, 7th Floor, Boston, Massachusetts 02109, Telephone (617) 742-5200.

Reproduction in whole or in part is prohibited without express written permission.

EDITORIAL: BY JUDITH S. HURWITZ

OSF: The Product

Company

Can It Learn to Compete?

When I first heard that the Open Software
Foundation (OSF) was going to select a net-
work management infrastructure, I sus-
pected that it would be an overwhelming
undertaking. After all, user requirements for
network management in a distributed com-
puting environment are complex. The out-
come of the DME proposal was both an ex-
cellent choice of technologies and an illus-
tration of sophisticated thinking by the
selection team.

When I spoke with the selection team
members, I was impressed. Even before
evaluating any technology, they spoke to
members of past evaluation teams and
incorporated the suggestions into their own
evaluation process.

LEARNING FROM EXPERIENCE. The OSF
team learned a lesson from the DCE team’s
experience: It did not approach the DME
request expecting to discover a single tech-
nology that would meet all the
requirements. Thus, the team took on the
challenge of looking at component
technologies not necessarily as they were
presented, but as they could be utilized.
Therefore, pieces of technology developed
for one purpose suddenly fit neatly into
another slot.

THE SYSTEMS INTEGRATION CHALLENGE.
But the work of DME is only beginning.
Having identified the component
technology that can do the job, OSF must
now begin the long and difficult task of
systems integration. It is no wonder that, at
the announcement of the DME selection,
OSF spent most of its time announcing
availability of DCE source code. The fact
that DCE is now available is a notable

achievement. What is even more en-
couraging is that we will begin to see prod-
ucts based on the DCE technology come to
market from companies such as Transarc
and Groupe Bull.

BUT CAN OSF MARKET? with Motif and
DCE completed and DME in the starting
gate, OSF’s challenges will begin to shift.
OSF has proven that it can discern user
requirements and build complex solutions
from available technology. Now, it must
prove its worth as a product and marketing
company, a much harder challenge.
Technologies like DCE and DME will have
to compete on the open market with
products from companies like Sun
Microsystems and Microsoft, which un-
derstand pricing and marketing. OSF’s
dilemma is that it was never set up to
market its own technology. That job was
supposed to be assumed by its member
companies. However, even if member
companies ar¢ dedicated to using OSF
technology, they are much more likely to
push their value-added on top of products
like Motif or DCE than to push the
underpinnings. After all, why would a
company want to promote the fact that its
technology is the same as that of its com-
petitors?

The reality is that, in the long run, OSF
will not be able to sit back and wait for IBM
or Digital to push as hard for OSF technol-
ogy as Microsoft pushes its own products.
OSF will have to learn—perhaps the hard
way—to be a product-driven competitor. It
is ironic that, in the end, OSF’s rival is not
Unix International after all. ©

UNIX
IN THE
OFFICE

Editor-in-Chief
Judith S. Hurwitz

MCI:
JHurwitz
Internet:

jhurwitz@mcimail.com

Publisher
PATRICIA B. SEYBOLD

Analysts and Editors
JUDITH R. DAVIS
DAVID S. MARSHAK
RONNIT. MARSHAK
JOHN R. RYMER

Art Director
LAURINDA P. O'CONNOR

Sales Director
RICHARD ALLSBROOK JR.

Circulation Manager
DEBORAH A. HAY

Customer Service Manager
DONALD K. BAILLARGEON

Patricia Seybold’s

Office Computing Group

148 State Street, 7th Floor,
Boston, Massachusetts 02109

Telephone: (617) 742-5200 or
(800) 826-2424

Fax: (617) 742-1028

MCI: PSOCG

Intemet: psocg@mcimail.com
TELEX: 6503122583

Unix in the Office (ISSN 0890-4685)
is published monthly for $495 (US),
$507 (Canada), and $519 (Foreign)
per year by Patricia Seybold’s Office
Computing Group, 148 State Street,
7th Floor, Boston, MA 02109.
Second-class postage permit at
Boston, MA and additional mailing
offices.

POSTMASTER: Send address
changes to Unix in the Office,

148 State Street, 7th Floor, Boston,
MA 02109.

2 Impartant: This repor contains the results of proprietary research. Reproduction-in whole or in part is prohibited. For reprint information, call (617) 742-5200.

UNIXIN THE OFFICE Vol. 6, No. 10

. Prediction: ANDF Will Be

FEATURED REPORT: BY JUDITH S. HURWIT/Z

OSF’s ANDF

The Key to Shrinkwrapped Software?

Shrinkwrapped Software in a Heterogeneous World

Successful in Three
Years

Can One Architecture
Dominate?

If the world were perfect, there would be only one computer language that met the needs of
all application developers, one operating system, and one scalable architecture. It would be
possible for software developers to ship source code without fear of losing control of their
software. The potential monetary power of mass market was realized for independent
software vendors (ISVs) with the advent of the original Intel PC and DOS. But the dream of
having shrinkwrapped applications in the Unix world is far from a reality. Ironically, what
made Unix popular among developers was the fact that, because it was not tied to a binary,
developers could manipulate the operating system to add the functionality needed for
specialized markets. As the price point for high-powered RISC workstations continues to
tumble to the $3-t0-4,000 mark, vendors are finding that Unix-based RISC workstations will
compete directly with PCs. Therefore, vendors selling these systems are eagerly looking for
the magic formula that will turn on the applications spigot. This report will look at a
technology from the Open Software Foundation called Architecture Neutral Distribution
Format (ANDF), which is intended to help provide shrinkwrapped software for a
multiplatform and multi-operating system environment.

Based on our analysis of the technology, we predict that within three years ANDF will
emerge as a legitimate methodology for creating portable applications. Why three years?
We believe that systems vendors will have to take the lead and provide support, education,
and training to ISVs so that this new technology implementation becomes well-understood
and well-trusted as underlying technology.

Over the past five years, the workstation and server vendors have begun vying for a new-
generation mass market for their technology. The stakes are incredibly high if one or more
platform dominates. In the past year, the industry has begun to consolidate around six
primary platforms: MIPS, SPARC, Motorola, Intel, Hewlett-Packard’s HP/PA, and IBM’s
RS/6000. Proponents of each of these platforms are looking for the magic key to unlock the
mass market potential. For example, Sun Microsystems is attempting to populate the world
with SPARC-based systems by licensing the hardware specification and widely licensing its
operating system. Sun’s recently announced Solaris, a packaging of Unix with networking
and tools, is a follow-on to this strategy. The ACE Initiative, which focuses on the MIPS
RISC processor, has the same goal. Likewise, IBM and Apple’s attempt to gain momentum
with IBM RS/6000 and Apple’s software is an attempt to win the coveted role of the leading
merchant chip-based platform. All of these approaches are, at least in part, based on the
notion of an Applications Binary Interface (ABI), so that the operating system is tied to the
hardware binaries. Although there will be higher-level programming interfaces, they will
not take the place of the operating system tied to the hardware. If we expected that one of
these architectures would dominate, the problem of developing applications that could hit a
mass market would be simplified. But it is becoming increasingly evident that a variety of
hardware architectures will survive and thrive. Therefore, since each platform will have its
own binary interface, it remains difficult for developers to port their software from one
platform to another. Even if there were one binary interface, each version of Unix is
sufficiently different to require that developers spend an incredible amount of time porting
code. One ISV we spoke with mentioned that 70 percent of the company’s development
time is spent in porting—not developing.

UNIX IN THE OFFICE Vol. 6, No. 10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, cail (617) 742-6200 3

Shrinkwrapped Software in a Heterogeneous World

Users are driven toward the concept of open systems because they want to have freedom of
choice. It is ironic that this freedom is hampered by software portability problems. Users
who want to purchase their platform of choice (either because of price or support) are
frustrated that a particular application might not be readily available on the selected
platform. A single organization might have as many as five or six different types of
hardware and versions of the operating system. If that user wishes to implement the same
application across all these boxes, then he or she will need a different version of the
application for each platform. It makes the job of administration of a heterogeneous
environment more difficult. In a distributed heterogeneous environment, users will
increasingly wish to use a license server to distribute an application across a network to all
users. If a different version of the application is needed for each platform, distribution of
software becomes cumbersome. If users continue to be frustrated because the applications
are not ported to their platforms, they will turn away from an open systems approach to
purchasing technology.

The Single Compiler One way that the industry has tried to solve the shrinkwrap software dilemma is to find a

Dream single language compiler that the industry could agree upon for all platforms and all
applications. But there is no simple answer to this problem. Over the past 20 years,
developers have invented new compilers aimed at solving industry-specific problems (i.e.,
Cobol for business and Fortran for scientific programming). Hardware architectures have
been invented with the specific aim of finding new ways of solving performance issues.
Operating systems have been developed or enhanced to provide elegant solutions that
leapfrog the competition. Every few years, some computer scientist comes up with a new
plan to make these differences less important to applications developers. Many attempts
have been made, for example, to produce compilers that will meet the needs of every
application in every area. The development of PL/1 was intended to be a general purpose
language for both business and scientific applications. It soon became apparent that it was
too complex for most programmers to deal with. Ada was initiated by the U.S. government
as the mandated language to meet the needs of all embedded applications development.
Probably the most successful language in terms of portability has been the C language. If
developers adhere to the ANSI C specification, then applications portability is much easier.
Even with the use of C, ISVs still have to account for differences in the operating system
and the underlying hardware platform.

The ANDF Premise: The latest organization to try to tackle this problem is the Open Software Foundation (OSF).
Isolating Software from OSF was founded as a revolt against the attempt by AT&T and Sun Microsystems to control
Hardware the future of the Unix operating system and to provide a binary interface to that system.

Therefore, it was not surprising that OSF should look for an answer to the binary interface
between the hardware and the operating system. In April 1989 (less than a year after its
formation), OSF announced that it would propose an alternative to a binary format which it
called Architectural Neutral Distribution Format. In many ways this was the most
controversial of all of OSF’s requests for technology (RFTs). This problem has been
researched for more than 20 years, and no workable solution has come to light. In addition,
there is considerable skepticism within the industry regarding a neutral format as a practical
solution. In essence, OSF began a fishing expedition to see if this long-wished-for goal of
isolating applications from the underlying support structure could be realized. Needless to
say, the ANDF requirements are very difficult to achieve. (See Illustration 1.) Is ANDF a
concept whose time has come, or is it a Tower of Babel? Is it another attempt to find the one
solution to all problems that is bound to end in failure? In this report, we will present the
concepts behind the winner of the ANDF selection process. We will explain how it works
and predict its viability.

4 Important: n's report contains the results of proprietary research. Reproduction in whote or in par is prohibited. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 6, No. 10

Key Role of Posix and
XPG

Components of ANDF

When OSF sent out a call for technology, it asked for the following requirements:

Hardware independence. ANDF requires that the technology defer machine-dependent
features (i.e., storage allocation, alignment, and size).

Protection of the developer’s source code and proprietary information.
Minimal performance degradation of an application.

Extensibility to other programming languages (ANSI C is part of the original
requirement).

Consistent application behavior on all platforms.

Support for hardware-specific features (i.¢., user interface, networking features,
operating system interfaces).

The ability to distribute data files along with application programs.

Debugger and library support.

Auvailability of test suites.

Portability of producer source code from one hardware architecture to another.

Backward compatibility of future installers with previous versions of the ANDF
specification.

Ilustration 1. The following is a list of the ANDF Requirements

Before we explain exactly how ANDF works, it is important to explain the relationship
among, the IEEE Posix standard, and the X/Open Portability Guide Level 3 (XPG3). To
exist in the ANDF world, an’ application must first be written to an operating system that
conforms with the Posix and XPG3 application programming interfaces. OSF recognizes
that some areas are not yet specified in either Posix or XPG. For these cases, OSF will
provide a portability guide for ISVs. If ISVs write to these APIs and to the forthcoming
ANDEF portability guide, then their applications should be portable to a variety of hardware
and conforming operating system environments. The first implementation of ANDF will
require conformance with 1003.1 Posix and ANSI C X3.159-1989. ANDF does provide a
mechanism to encapsulate dependencies on functionality not in these specifications.
Therefore, even if ANDF never achieves its final goal of a shrinkwrap standard, it may
impress upon the industry how much can be gained by conforming to standard APIs.

ANDF technology is based on a language compiler. Every compiler consists of two
components: a producer and an installer. The producer is code that creates ANDF from the
application; the installer is the mechanism that binds the code to hardware and operating
system, thus creating object code. In a traditional compiler, which translates high-level
source language into binary objects, these two components are merged into one system. In
ANDF, the producer and installer are separated. Therefore, the idea behind ANDF is (o
decouple hardware and operating systems dependencies from the application code. The
benefits of such a concept are straightforward. An application developer could write an
application without worrying about which platform it would run on. A differentiator of the

UNIX IN THE OFFICE Vol. 6, No. 10

Important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200 5

Shrinkwrapped Software in a Heterogeneous World

selected ANDF compiler is a special facility called a token. A token is similar to a macro in
a programming language. Its purpose is to help isolate hardware dependencies.

The Organization behind Originally, 24 organizations submitted technology for the ANDF RFT in April 1989. Of

ANDF these, 15 submissions made the initial cut. By May 1990, OSF’s evaluation team had
whittled the choices down to 4, which were all based on the concept of a compiler
intermediate language (IL). Unlike a conventional compiler, which produces object code
that links application code with the operating system and underlying hardware, a compiler
intermediate language produces an intermediate representation of the application that is not
operating system or hardware specific. But, as with a conventional compiler, the source
code is sufficiently changed so that it is no longer readable by humans. Three of the
submissions were based on modifying existing intermediate representations to fit the RFT
requirements. These submissions were from Hewlett-Packard in partnership with the
University of Virginia; Peritus International (now Lucid, Incorporated), and Siemens
Nixdorf Information Systems. A fourth submission, by the Royal Signals and Radar
Establishment (now called the Defense Research Agency, or DRA), proposed a different
approach. Unlike the other submitters, the DRA, a U.K. government research institute, had
been researching applications portability for more than five years. Therefore, its submission
was based on original research that was substantially different than the rest.

The TDF Specification The specification proposed by DRA was based on the first five years of a long-term research
project that coincidentally aimed at solving the problem outlined in the OSF RFT. TDF, the
name of this intermediate language, wasn’t designed with a particular language syntax in
mind. Rather, it researched the task a language was designed to accomplish and tried to
generalize that job. Therefore, the TDF design was intended to support whatever any
language needs to do. At the same time, it was designed so that these concepts could be
applied to existing languages. If new languages or concepts are added, then the specification
can be extended to accommodate additional features.

A Structured Approach DRA tried to develop a compiler intermediate language with the design goal of making it
independent of the underlying hardware or compiler. DRA’s long-term goal with the TDF
technology is to allow it to be used with ANSI C, C++, Fortran 77, Cobol, Pascal, Ada,
Modula2, Common Lisp, and Standard ML. The initial implementation of TDF that DRA
submitted to OSF includes C. Other languages, such as Cobol and Fortran, could be
supported but haven’t yet been implemented. Therefore, the specification met many of the
requirements in the proposal. Unlike the other intermediate language representations, TDF,
which is also a binary bit stream, allows for more structured control over bits and bytes. It is
based on a tree-structured and hierarchical data organization. This design makes it possible
to have more granular control over the way data is stored and manipulated. In a
conventional intermediate representation, information is stored as a binary stream of bits
and bytes. In a tree structure, it is possible to have modules that can be moved around and
manipulated based on each branch in the tree structure have an identifier.

TDF’s data structure provides an abstract syntax for programs. In other words, it includes
enough information to allow efficient machine code to be generated from it for a wide
variety of computer architectures. A TDF data structure representing program is encoded
into a linear stream of bits. This encoding is decoded at installation time. The arrangement
of information makes it easier to understand how to optimize the code.

The Role of the Producer Within ANDF, the producer is the principal tool used by the application developer. For
ANSI C, OSF will develop the specification for the producer which it will license to either a
system vendor or a compiler vendor (that might add value). OSF will provide a reference
implementation that vendors can work with. A producer is very much like a compiler front
end. It performs syntax- and semantic-checking of the language and generates an

6 Important: This report contains the results of propriefary research. Reproduction in whole or in part is prohibiled. For reprint information, call (617) 742-5200. UNIX IN THE OFFICE Vol. 6, No. 10

The Differences
Between C and
ANDF

intermediate representation of the source. The ANDF code is then distributed to end users.
Through the installation process, the producer code is linked with the hardware and
operating system.

The producer is invoked the same way as a compiler, giving command line options and
names of source files to process. The producer analyzes the source to verify that it conforms
to the syntax and semantic constraints of the language. ANDF modules are generated that
represent the original application. The producer never makes target-dependent assumptions.
However, the design is flexible enough so that a producer can generate ANDF from source
that is explicitly target specific.

C Code:
#include <stddef.h>
main () (
size_t i;

i= 0;

The following ANDF is generated:
var_no_init ((false, true),
tag(4),
INTEGER (apply_token (token (0), (token(1))),
assign (impossible,
obtain_tag (tag (4)),
change_var (apply_token (token (0), (token (1))),
make_int(token (3),0))))
Where:
token(0) is “convert”
token (1) is “size_t”

token (3) is “signed_int”

Hlustration 2 The differences between how code appears when written in the C language
and when written with ANDF. Notice that, in the ANDF version, a named token is used
instead of initializing the integer to the number 0. The rationale for the ANDF version is
that it simplifies high-level optimizations.

UNIXIN THE OFFICE Vol. 6, No. 10

important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200 7

Shrinkwrapped Software in a Heterogeneous World

The Role of the Installer The installer is produced by the system vendor for a given CPU architecture. Therefore,
responsibility for the installer resides with the organization that controlls the operating
systems and associated applications environment. Taking a particular application from the
producer onto a user’s hardware requires an installer. The installer will complete the
compilation process and create executable binaries that the user can run directly on the
platform. The installer performs the same function as the back end of a compiler, including
storage allocation, code generation and optimization, and that of a linker, binding ANDF
code to native libraries.

By separating these two compiler components (the producer and the installer), the
application, when processed by the producer, is isolated from the platform-specific
components that are implemented within each installer. The only exception occurs if the
operating system has been enhanced and the installer has likewise been enhanced to support
these features.

The process of uniting the producer code with the installer happens when the user initiates
the installation process. Another component of ANDF, called an installation manager,
controls this process. The installation manager will map the token to the libraries of token
definitions and can resolve any duplicate token names. It has the capability to prompt the
user to set up the application based on his specific environment. The user may be asked, for
example, to identify printers, graphical interfaces, even languages (i.e., English, Kanji). By
the end of the installation process, an executable binary file is created.

The Power of the Token As discussed above, TDF is a compiler intermediate language—an intermediary between the
binary code and the source code. Other intermediate languages have been developed. Some
of the better known include p-code (developed at the University of California) and U code
(developed at Berkeley). Ada provides a standard intermediate representation called Diana.
The reasons for implementing an intermediate language vary greatly. In the case of ANDF,
the compiler intermediate language was used to allow the producer to be free of hardware or
operating system dependencies. In the case of TDF, the token encapsulates the hardware
dependencies, thus isolating the application code from the target-dependent code.

The use of tokens is what makes TDF different from other intermediate compiler languages.
A token can defer a hardware-specific call until installation. Second, a token understands
the rules of the language, and can, therefore, enforce semantic rules. It is much more
powerful than a macro. In a programming language a user might use a macro to represent a
long string of code that might be stored in a library or other file. A macro is usually resolved
when the application is compiled. A token, on the other hand, is resolved in the installation
process. Each token has a unique name or tag that is a variable. Therefore, a programmer
could wait before assigning a value that might depend on the underlying architecture. A tag
identifies the token. One resulting benefit for ISVs is that they can ship a smaller piece of
code to customers. A tag naming a token can be assigned by the system or by an application
developer. A developer might use a token in a number of interesting ways.

An Example of the Use of Let’s take a simple example. A developer may have English and French versions of help

a Token messages for an application. Under a typical scenario, the developer would compile separate
versions of that application for French and for English speakers. With the token, a different
approach is possible. The developer could create a token (we’ll call this Token 152) that
represents the help messages. So, in the application, no help messages appear, only a
reference to something called Token 152. In a separate library, the developer writes two
modules: the French help messages and the English help messages. This library is shipped
with the application and is used by the installer. When a user begins to install the
application, he will be prompted for the language he wants his messages to appear in. The
installation manager will translate Token 152 into the right version of the help message.

8 Impartant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call {617) 742-5200. UNIX IN THE OFFICE Vol. 6, No. 10

A Complex Migration

O0SF’s Core Deliverables

Here’'s another example using C. In C, you don’t know if the Char type is signed or
unsigned. Therefore, the installer has to handle this. With ANDF, the types can be
substituted at the target during installation. In this way, the token won’'t know its
characteristic until install time.

In essence, a token will allow an application developer to delay making a decision that will
have operating system or hardware dependencies. For example, one hardware platform may
have a special way of handling floating point operations. The application writer can use a
token in place of platform-specific code. At installation time, the token is resolved based on
the operating system and hardware variations. In reality, any function that a system can
perform can be represented as a named or tagged token. An application developer as well as
a system provider can use tokens to create special cases. In some respects, one can think of
tokens as a way of defining objects. At the producer end, the application can use a container
object called a token. The system does not care what is contained in that object. When
information is applied to that object or token at installation time, the object inherits the
behavior of the system it is now linked to.

If an ISV decided to use ANDF to build an application, he would do the following: The
application builder (the developer) constructs the ANDF distribution package from ANDF
object modules, native code modules, datafiles, and installation procedures. The ANDF
application package is distributed to users this way. The user then purchases a version of the
application in ANDF and runs the ANDF installer to put the application onto a platform.
The installer completes the processing that is necessary to turn the original source code into
an executable binary. The installer calls the native linker to combine binary objects and
native libraries. Linking may also be deferred to run-time, as is commonly done with ABIs
and shared libraries.

ANDEF technology is a complex undertaking. There are many issues that will come into play
before the success or failure of ANDF is known. It includes some unfamiliar concepts, such
as tokens, and it will take developers and system vendors time to understand how to use
them and take advantage of their power and potential. We suspect that even if ANDF itself
doesn’t become a well-accepted answer to the shrinkwrapped software dilemma, the concept
of encapsulating specific pieces of code into tokens may become a viable future compiler
concept.

Even after the industry begins to understand what ANDF could potentially do for ISVs, it
will take time for a developer to trust this new way of distributing software. Why should an
ISV trust that a new technology will magically make much of the drudgery of porting an
application from platform to platform disappear? Will the ISV be willing to support
customers who have obtained the application through an ANDF compilation? How do you
trace the source of an error? Clearly, OSF will have to prove that ANDF works.

In order to gain the trust of the ISV community, OSF will have to provide a variety of tools
including debuggers and verification test suites. OSF promises to offer the following
producer tools:

» The ANDF Technical Specification.
+ An ANSI C Producer, which converts C language source code into ANDF language.

» An ANDF-to-ANDF Linker, which links ANDF modules prior to distribution and
removes external references where possible.

UNIX IN THE OFFICE Vol. 6, No. 10

tmportant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200 9

Shrinkwrapped Software in a Heterogeneous World

Portable Target-speaific
A MethOd Of application source code
source code

ANDF producer
ANDF optimizer

ANDF linker

Development and
Distribution

Installation Installation

Installaton
Installer | parameter

?‘y:;?eﬂ;\ Installation
les

manager

Installer &glameter Installer : l;’laemeter
e

Svst ; System .
Preton |installation R?Sf" Installation

files manager

RISC Svstem === | | Other Systems —

Hliustration 3. This illustrates the way ANDF works. An application is separated into its
target independent components and its target dependent parts. It is then run through the
ANDF producer. ANDF intermediate code is created, then optimized, if desired, and finally
linked. At the back end, there is an installer for each hardware platform that combines the
application code with the platform-specific code. At installation, token definitions are
resolved.

» An ANDF-to-ANDF Optimizer.
» An Installation Manager.
« An ANDF Librarian, which creates an ANDF library prior to distribution.

« Three reference installers for SCO Open Desktop for the Intel 386, MIPS with the
Ultrix operating system, and VAX with the Ultrix operating system. DRA, which
developed the technology, will contribute two ports: one for SPARC running
SunOS§, and another for the Motorola 68000 running HP/UX. Each of these installers
will include support for Debuggers.

In addition, OSF intends to encourage third-party vendors to provide additional tools, such
as portability checkers and other application development tools. It will look to third parties
for additional language support, including C++, Cobol, and Fortran.

Underpinnings for ANDF Before ANDF becomes accepted, it will have to be tied to underlying technology. Most
notably, it will have to be tied into DCE and DME. DCE will provide the networking

important: This reporl contains the resulls of proprietary research_Reproduction in whole of in partis prohibiled. For reprint information, call (617) 742-5200 UNIX IN THE OFFICE Vol. 6, No. 10
pA

ANDF Means New
Programming
Techniques

Performance Issues

Alternatives to ANDF

underpinnings, while DME will provide the mechanism needed to distribute ANDF code.
For example, the license server component will be an important mechanism for distributing
applications across a heterogeneous network. Indeed, a technology such as ANDF is not
intended to work in isolation.

In order for ANDF to succeed, programmers and applications developers will have to make
dramatic changes in the way code is developed. Some of these changes in technique are
already beginning to happen. Developers have learned the hard way that, to survive in a
world filled with multiple operating systems, users interfaces, and hardware platforms, they
have to write modular code. They are beginning to learn the benefits of writing to the Posix
specification. The joys of portable C code are becoming well known in programming
circles. But ANDF means even more changes for developers. They will have to take more
dramatic steps in separating out any operating system or hardware dependencies from their
code. Learning to use the powerful token technology will be a challenge.

One of the key requirements of the ANDF RFT is that the addition of ANDF technology not
noticeably impact performance. The target range for performance degradation in the RFT
was no more than 5 percent. Current estimates with the TDF technology are as low as 3
percent. DRA believes that, through the effective use of tokens, this technology could prove
to perform better than conventional compilers. The one area where ANDF adds time is in
the installation process. Because a considerable amount of translation of target dependencics
happens during installation, it may take longer than conventional installation techniques.

There are other ways that can be used to achieve applications portability. Each method has
its pluses and minuses. Some of the techniques include:

e Source Code. Source Code is human readable and is the easiest way to move an
application from platform to platform. The main problem with source code is that it
affords no protection to the software developer.

» Application Binary Interface (ABI). An ABI defines the interface to the operating
environment, instruction set, and binary software conventions. The benefit is that an
application can run without recompilation on any system in the hardware family that is
running the same operating system. While an ABI can be an effective strategy within
one architecture, it is problematic for developers who wish to move their applications to
another platform. The concept of the ABI may be strengthened by combining an ABI
with ANDF. In this way, developers would write to an ABI within one architecture and
move between architectures using ANDF, The developer writes the ANDF application,
while the underlying installer can support the specific ABI. ANDF enforces the ABI’s
programming interface.

+ CD-ROM. Being able to distribute applications via CD-ROM makes sense. Some in the
industry have suggested that a developer would put multiple implementations of
applications on one CD-ROM to help solve the application distribution challenge.
However, this does not change the need for developers to recode components of their
applications for different hardware and operating system platforms.

UNIXIN THE OFFICE Vol. 6, No. 10

Impartant: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, cai®{617) 742-5200. 1"

Shrinkwrapped Software in a Heterogeneous World

Comparison
between
Traditional and
ANDF
Development
Environments

Conclusion

I Assembly Language l | Portable Source J I Target Specific Sourcel

¥)
(_Asember) C Compler)4—(System Headers |
v

}

Binary Bina Bina ,
Object Objenéf Objerr:f Libraries
\(— J/
L Executable I
Data Fil 1
ola e Application Buider
Install Procedure
2

[Application Package I

I S

l User Interaction l—-——»(Instaliation Manager)
¥

l Installed Application l

The way applications are developed with traditional techniques is very different from the
way they are developed with ANDF concepts and technology.

ANDF is compelling technology. It offers the potential for application developers to more
easily port their applications to a wide variety of platforms with minimal effort. Machine
dependencies are moved from within the application to token definitions. The most
important aspect of ANDF is the fact that it proves that portability is not impossible. It
should pique interest among system and application providers in studying and testing this
technology. In reality, the most difficult aspect of ANDF may not be a technical hurdle but
one of confidence. System vendors will have to implement installers for their platforms,
they will have to work with key software developers to help them experiment with this
technology, and they will have to test and verify the quality of an application ported through
ANDF. Therefore, they will have to assume the initial responsibility of providing support to
customers. If ISVs are to trust such a new concept, they need verification that they will not
lose business if something unexpected results from an ANDF-based port. But, like all bold
moves, ANDF deserves a chance to prove that this concept could revolutionize the way
software is written and ported.

12 important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200.

UNIX IN THE OFFICE Vol. 6, No. 10

Compa”SOn [Assembly Language] [Portable Source ' l Target Specific Source
between (Assetwbler) cial Sysfem ptduc:
Traditional and 1
ANDF gg‘)?e’\ét | ANDF Portabie Objectl | [AINDF Target Specific Object
Development
Environments | —rz o e

(continued) I
[Install Procedure J__._.> Application Builder)
v

I ANDF Application Package l

Installation Manager i
User Interaction l—-b Installation I
Instalier Parameter Table

’ ’ Linker Libraries I

l Installed Application |

We expect that ANDF will not enjoy a quick adoption curve. Rather, it will be a slow,
cautious experiment. There may be some unanticipated stumbling blocks. All scenarios have
not yet been tested. Until there is more data and more experience, the industry will reserve
judgment. Therefore, it is important that system vendors take the lead. At the same time,
users who have suffered because the software they need is often not available must actively
encourage experimentation with ANDF. If ANDF does turn out to be the solution to
applications portability, then the small risk will generate significant results. ©

Next month’s Unix in the Office will address:
The SQL Standard.

For reprint information on articles appearing in this issue,
please contact Donald Baillargeon at (617) 742-5200, extension 117.

UNIX IN THE OFFICE Vol. 6, No. 10 Important: This report contains the resuits of progrietary research. Reproduction in whole or in parl is prohibited. For reprint information, call (617) 742-5200. 13

Open Systems: Analysis, Issues, & Opinions

UNIX SYSTEMS LABORATORIES

Unix Systems Labs Flexes Its
Muscle

Just as AT&T and NCR are beginning to get used to
their new marriage, their offspring, Unix Systems Labo-
ratories (USL), is working hard to forge its own path
through life. Now that it is no longer protected under
the vast AT&T umbrella, USL is trying hard to look and
act like a competitor. One of the first signs of a new
USL was its recent announcement to join the ACE
Initiative. Why should USL join with an organization
that has pledged to implement OSF/1 and Microsoft’s
NT operating system? Simple. It may be better to get a
nice slice of the pie than to be left with an empty plate.
USL was taking a lot of heat from MIPS OEMs that
were determined to use System V.4.

A Good Move

derstand that the Digital/SCO work on the combined
Ultrix and OSF/1 operating system is progressing
slowly. One bright spot in the initiative was the
inclusion of Silicon Graphics 3-D IRIS GL graphics
engine.

With USL entering the group, the picture may begin to
change. If Unix System V.4 can be modularized as USL
is promising (the so-called System V Light) so that a
typical user can have a fully configured system that
needs only 4MB, Unix may be well positioned. Another
encouraging sign is USL’s agreement with Novell,
which promises to become a primary distributor of
System V.4 as part of the ACE initiative. Because
Novell is a part owner in USL now, it has a lot to gain
by seeing some success in this frenzied marketplace.

Conclusion

Perception is always at least 85 percent of reality (I
could round it off to 90 percent, but 85 sounds more
scientific). Therefore, even though at this juncture ISVs
will be choosing among three different operating
systems to write to, there is a growing perception that
the Unix wars may be ending. Perhaps, in the future,
these organizations under the auspices of ACE will
actually find a way to have a common software layer
that isolates the ISV from the differences in these
operating systems. But I believe that dream will be
realized in the future. Ironically, it may be that ANDF,
the technology discussed in this month’s feature, might
be at least part of the problem created by ACE.

ACE seems to be gaining some momentum at a very in-
teresting time in the industry. With Microsoft and IBM
embroiled in a bitter war of words and deeds, it is not
surprising that smaller competitors find themselves
strangely on the same side. Ironically, the IBM/Apple
plan to bring out a new joint technology was in part a
reaction to Microsoft’s participation in ACE. Now,
USL’s endorsement of ACE with the strong hint that it
will be all right to work at some level with OSF’s
operating system technology may be the most important
consequence of all this warfare. —J. Hurwitz

SEQUENT COMPUTER SYSTEMS

Sequent: Approaching Systems
The Ramifications of USL and ACE

Integration

When the ACE initiative was formed, I was skeptical. I
wondered whether anything concrete could come out of
a group that seemed to want to provide a piece of the
action for anyone not called IBM or Apple. There were
two operating systems, two user interfaces, and several
I/O interfaces. MIPS promised that users would be
shielded from the differences. But initial reports suggest
that users may have to recompile each piece of code re-
peatedly to move it from one version to another. We un-

It is quite easy to lump all hot-box vendors together. It
is also easy to think of them as simply another
generation of fast-box vendors concermed only with
turning inventory and little with software. But one
vendor I recently met with made me realize that the hot-
box industry is changing. These second-tier vendors are
now in direct competition with companies like IBM,
Digital, and Hewlett-Packard. Therefore, to survive,

Important: This report contains the results of propriefary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200.

UNIX N THE OFFICE Vol. 6, No. 10

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

they must move upscale in their attention to the details
of systems integration and software. An example of a
box vendor that seems to understand this new set of
requirements is Sequent Computer Systems. Despite
some notable achievements, Sequent has gotten most
attention lately for its poor financial showing. The
sudden downturn was caused by the failure of one of its
key OEM customers, Unisys, failing to purchase as
many boxes as it had originally promised. Management
had planned around those inflated numbers. This was an
unfortunate occurrence, especially given Sequent’s
interesting technology and approach. Sequent hopes
that it can distinguish itself in this complex and
competitive hardware market by focusing its attention
on three areas: implementation of parallelization, object
technology, and systems integration.

Approach to Parallelization

Sequent’s claim to fame has been its ability to create a
sophisticated Unix kernel in conjunction with AT&T’s
System V. that allowed it to develop tightly coupled,
symmetrical multiprocessing systems. Sequent has used
its understanding of multiprocessing and load-balancing
to elevate itself into a position where it could be a pre-
mier database engine. Quietly, Sequent has been work-
ing with its key database partners, such as Oracle, to
improve performance by parallelizing certain tasks so
that the entire database would run faster under the
Sequent engine. Typically, Sequent turns these tricks of
the trade over to the database provider. Thus, Sequent
would not be at the mercy of each new iteration of the
database. However, Sequent will have as much as a
two-year head start on the competition.

Approach to Object Technology

with them. But, over time, Sequent has come to realize
that the real opportunity for integration was not between
a server and the host but between PC LANs and hosts. It
discovered that 95 percent of PC LAN-to-host
communication was via terminal emulation. Not exactly
state-of-the-art client/server processing. Therefore,
Sequent’s approach has been to begin doing systems
integration at a layer above the hardware. Its most
recent target has been the Novell LAN environment.
Sequent recently signed an agreement with Novell
where it will implement a parallelized version of
Portable NetWare. Running as many tasks in parallel on
Portable NetWare, which Sequent made possible by
multithreading the Novell kemel, greatly enhances
performance. This should benefit both Sequent and
Novell. Poor performance has long plagued Portable
NetWare. Again, as it has done with its parallelization
work with database vendors, Sequent will not own the
code. Instead, it will tumn it over to Novell, but with a
head start in marketing this souped-up version on its
own servers. Sequent doesn’t stop there. It has also
implemented a parallelized version of IBM peer-to-peer
protocol, LU6.2, so that communication between the
LAN and host can be more efficient. The advantage of
parallelized communications combined with a more
efficient LAN operating system means that users can
rapidly access host-based information without resorting
to slow terminal emulation.

Conclusion

In a move that seems atypical for a box-maker, Sequent
formed the Object Technology Partnership with some
object-oriented technology vendors such as ParcPlace
Systems, Reusable Solutions, Tigre Object Systems, and
Versant Object Technology. Their goal is to ensure that
this new breed of applications development tools will
be ported in large numbers to Sequent’s SMP
platforms. We usually don’t expect second-tier players
like Sequent to take such a lead in object technology.

Systems Integration

But what impressed me the most was Sequent’s work in
the systems integration arena. Clearly, management has
done its homework. Initially, when Sequent got into the
server business, it focused on interoperability with the
corporate mainframe. Its boxes found their way into de-
partments running key applications that were not typi-
cally found on mainframes but needed to communicate

Sequent seems to have an understanding of the raw
power needed to compete as well as the sophistication
to begin implementing parallelized hardware and, more
importantly, parallelized software. Not an insignificant
achievement. However, for Sequent to make its way in
an increasingly competitive world, it will have to con-
vince users and ISVs that it is more than another box
maker out for the fastest MIPS in the world. It will have
to begin to act like a systems integrator. Sequent will
also have to overcome its image as a financially
troubled player. Sequent seems to have the talent in
place and its focus on the right technology trends for
success.

—J. Hurwitz

UNIX IN THE OFFICE Vol. 6, No. 10

important: This report contains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, cait (617) 742-5200 15

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

NETWORK/SYSTEMS MANAGEMENT WATCH

Tivoli Wizdom: Object-Oriented
Systems Management

Tivoli’s Wizard Distributed Object Management
(Wizdom) system is at the heart of the OSF DME. That
fact may not result in a lick of sales revenue for Tivoli,
but it is important independent corroboration of the
company’s technology. Wizdom is a sophisticated,
object-oriented approach to sysiems management
applications that appears destined to play a major role
in distributed management.

Wizdom is a systems management service platform and
applications set. It is based on a client-server architec-
ture, with distributed servers. The first release, sched-
uled for availability in December 1991, will run on Sun-
TCP/IP networks. Tivoli chose Unix as its initial
platform because it believes Unix users have the
greatest distributed systems management problems.
From our experience, this is a reasonable assumption—
many Novell users are just thinking about implementing
the kinds of distributed environments that are typical of
Sun installations. However, Tivoli plans to add support
for other platforms in subsequent releases of Wizdom.

WHAT IS SYSTEMS MANAGEMENT? Tivoli defines sys-
tems management as encompassing three types of re-
sources. They are:

+ Physical resources
» Logical resources
+ Collections

Physical Resources. Physical resources are the major
elements of the environment, including printers, servers,
workstations, gateways, and users. The primary man-
agement functions relevant to physical resources are al-
location and control.

Logical Resources. Logical resources are the services
and applications built atop the physical resources,
including file services, print services, mail systems, and
applications. the primary management function relevant
to logical resources is the enforcement of policies on
their usage.

Collections. Collections define the major organizational
structures in a distributed environment, ranging from
user groups to groups of servers and other devices to
“management domains,” or network segments. The pri-

mary management functions relevant to collections are
monitoring and reporting.

ADMINISTRATION/MANAGEMENT USERS. One of the
major problems Tivoli is seeking to solve with Wizdom
is system administrator burnout. System administrators
are responsible for too many administrative and
management tasks to be effective as networks grow
larger. And today’s low-level tools make most of these
tasks labor intensive. Tivoli designed Wizdom to allow
administration and management tasks to be divided
among three users within the typical corporate structure:

 System administrators
+ End users
+ MIS departments

System Administrators. For system administrators,
Wizdom provides a way to automate routine tasks (such
as changing user account configurations), to delegate
tasks to others, and to spend more time on the definition
and enforcement of policies.

End Users. When system administrators delegate func-
tions, they will often delegate to end users. Wizdom's
user interface and applications paradigms are designed
to make administrative tasks, such as changing
passwords and resetting printers, accessible to end
users.

MIS. For MIS, Wizdom is crafted to support the
creation of custom management applications, to
conform with major management standards such as
CMIP and SNMP, and to be secure. Authentication and
authorization are built into the Wizdom framework.

WHAT IS WIZDOM? Wizdom implements a distributed
object management framework to shield applications
and applications developers from the details of system
internals. For this reason, Wizdom is a management
platform in its own right. Tivoli layers its infrastructure
on top of the systems management facilities provided
by vendors such as Sun and Digital—seeking to provide
a common applications interface to them. Even among
Unix implementations, there are many differences in
base management facilities. many different systems
management platforms.

Tivoli believes that a common underlying service
structure will enable users to at last get away from the
discontinuity problems created by today’s discrete and
unconnected management applications. The company’s
primary interest is in applications, not platforms. (See
Illustration A.)

Impartant: This report conlains the results of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200

UNIX IN THE OFFICE Vol. 6, No. 10

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Wizdom’s Architecture

Wizdom comprises three components:

» An object-oriented messaging framework
+ Core applications
« Direct manipulation graphical interface

Wizdom is based on an object-oriented approach to
management applications. In Wizdom, everything is an
object, including the display characteristics of the
object. These are objects in the sense that object-
oriented programming products define objects—bundles
of data, attributes, and program code that can be
invoked to perform tasks by sending them a request
message.

Wizdom allows new objects to be created using existing
objects in two ways. First, new objects can be defined
from collections of objects. Second, objects can inherit
methods from other objects.

In the same way, applications can send messages to ob-
jects asking them to return information about
themselves. A security management application, for
example, might ask an object representing a group of
users to return the names of all of its users classified as
“super users.” (See Illustration B.)

Wizdom'’s Structure

Component Explanation

Uniform look, feel, and
behavior.
Easy to customize/extend

Wizdom GUI Framework

C_rpenrs)

Wizdom
Messaging Framework

Object messaging services.
Remote method invocation.

Operating System/

ling Multiple operating systems.
Communication Protocols

Multiple management protocols.

Tivoli's Object-Oriented Approach

Management
Application

Request Message

Invoke method X ...
Return data X ...
Other ...

User Object

Attributes

User ID
Password
Group ID
Others ...

Methods

Add User
Change User
Delete User

Others ...

Hiustration A. Tivoli's Wizdom implements an object-ori-
ented messaging framework on top of existing systems and
network management services and protocols.

Hlustration B. Tivoli's Wizdom allows elements in a dis-
tributed environment to be defined as objects capable of
performing their own operations, or methods. An
application directs objects to perform methods by sending
them a request message. In the above example, an
application could send a particular user object a method
directing the object to change its network address.

Wizdom applications operate on objects representing all
of the major resources, policies, and other elements in a
distributed environment. An application may, for exam-
ple, send a message to an object asking that object to
perform a particular operation. An application might
direct a user object to change its network address to a
new address.

Object Management Framework. Wizdom’s Object
Framework is a messaging, dispatching, and synchro-
nization facility that ensures that request messages from
applications are delivered to the proper object and that
the response is returned to the client. The framcwork
includes a dispatching service, a persistent store for ob-
jects, and an object manager to manage interactions be-
tween objects and the messaging framework. Wizdom
allows new objects to be added to an existing environ-
ment without recompiling existing objects.

UNIX IN THE OFFICE Vol. 6, No. 10

Important: This report contains the resuits of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

The framework appears to be similar in nature to the
Object Management Group’s (OMG’s) Common Object
Request Broker Architecture (CORBA) messaging stan-
dard. If anything, Wizdom’s framework is more
complete than CORBA’s. Wizdom integrates security
into message dispatching, for example, while CORBA
does not. The Wizdom framework integrates the
authorization and authentication services of OSF’s
Distributed Computing Environment. The two
distributed object management approaches appear
destined to evolve toward greater and greater
commonality.

Graphical User Interface Framework. The Wizdom GUI
framework is based on a set of libraries that are in-
dependent of all look-and-feel standards. In a heteroge-
neous distributed environment, this is the only realistic
approach Tivoli can take. In its first release, Wizdom’s
GUI framework will provide interpreters for OpenLook,
OSF Motif, and X Windows. Tivoli plans to add other
interpreters in later releases.

Tivoli’s GUI allows users to manipulate a distributed
environment by directly manipulating icons and other
graphical display elements. To create a new user ac-
count, for example, an administrator can drag and drop
an icon representing a user on an icon representing a
host. This action stimulates a dialogue that results in the
definition of the new account. System administrators
can delegate certain tasks by creating a new
management domain and defining its permissions to
include only the delegated tasks.

Applications Development Facilities. Despite its roots
in object-oriented programming concepts, Wizdom does
not force administrators to learn object-oriented pro-
gramming to use the environment. Wizdom will provide
a toolkit that includes classes, message templates, and
other applications building blocks. Wizdom toolkits are
libraries for a variety of languages.

Wizdom supports the definition of system elements as
objects using a variety of programming tools. In the
first release, system administration specialists can use
awk scripts, shell scripts, and C programs to define
objects and their methods. Tivoli can add other
language options over time by simply providing
libraries that provide access to the Tivoli framework.

Wizdom also includes a scripting tool for the graphical
user interface.

Management Applications. Tivoli plans to ship the first
release of Wizdom with several core applications. At
press time, the final packaging for the first release
wasn’t settled. However, we expect Wizdom to ship

with applications for user management (adding users,
browsing the properties of user objects, moving users on
existing networks, etc.), security and privilege
management (setting security attributes on objects,
changing user access privileges, etc.), and applications
management (license verification, usage statistics, etc.).

MIGRATION SHOULD BE SMOOTH. Wizdom appears to
be capable of sliding into existing environments without
disrupting them. Most of the configuration required to
set up a Wizdom system is completed automatically
upon installation of the product. Wizdom reads existing
configuration, password, and other files to create
objects representing the major elements in a network.

In addition, because Wizdom can accommodate many
languages—including scripting languages—to create
objects, users can encapsulate their custom management
scripts to work in Wizdom.

Wizdom appears also to be positioned for integration
with other management applications, particularly
network management products. Wizdom will operate
beside network management platforms, such as SunNet
Manager, and their applications. Wizdom applications
should be able to interact with management applications
written to a management platform API. The primary
means for this interaction will be for a Wizdom object
to invoke an agent in the service of SNMP, CMIP, or
other protocols to obtain information or transmit
instructions.

Pricing and Packaging

At press time, Tivoli had not yet determined how it will
package and price the Wizdom technology. It appears
likely, however, that Tivoli will sell Wizdom as a base
environment with simple applications for functions such
as user account management, with optional applications
for functions such as security management.

The only thing Tivoli will reveal about its pricing plans
is that they will be designed to make the base
framework easy for users to acquire. The company’s
target customers are users with Unix networks of
between 20 and 100 nodes.

Conclusions about Wizdom

Wizdom is impressive technology. Conceptually, we
like the object-oriented approach of network
management upon which it is based. The object
approach is better able to cope with the inevitable
complexity of a distributed environment than the
protocol-based approach is. This is vital.

Important: This report contains the resulls of proprietary research. Reproduction in whole or in part is prohibited. For reprint information, call (617) 742-5200

UNIX IN THE OFFICE Voi. 6, No. 10

OPEN SYSTEMS: ANALYSIS, ISSUES, & OPINIONS

Tivoli also has obviously spent a lot of time creating
software that will be small and unobtrusive. The
company estimates that its protocols are one-tenth the
size of the protocols in OSF’s Distributed Computing
Environment. The Wizdom framework is implemented
as a series of coordinated Unix daemons.

Tivoli’s participation in DME is not without risk. Our
biggest concern is that the DME integration process will
distract Tivoli from rolling out support for additional
platforms. Sun is a good place to start, but there’s a
whole wide world of non-Sun sites out there. We hope
Tivoli can move rapidly to Novell and Windows
environments after establishing its beachhead in Unix.
At the same time, we’d also like to see Tivoli address

Tivoli is a small, vendor-capital-financed company.
Therefore, many users will be initially reluctant to make
big commitments to it. However, Tivoli’s central
position in OSF’s DME will probably help ensure that
its APIs will be adopted by other vendors. Any vendor
that adopts the DME package will be supporting
Tivoli’s API. Thus, users can get started building
applications to Wizdom today with a reasonable
assurance that the APIs will be long-lived.

IBM and Digital host environments.

Special Research Reports from the Office Computing Group
Unix OLTP

Architectures, Vendor Strategies, and Issues

This report highlights:
» OLTP Characteristics. What is OLTP? Is “Classic OLTP” the only valid definition of OLTP? Where does
“OLTP Light” fit in? And does Unix-based OLTP meet any of these definitions?

» Comparative Architectures. How are the designs of classic OLTP systems, fault-tolerant OLTP systems, and
Unix-based OLTP systems similar? Where do they differ?

« Standards. The holy Grail of Unix and Unix-based OLTP is standards. What are these standards? Who
creates them? Why are they important? Where are they leading the industry?

* Vendors. Who are the critical vendors in this industry? What are their design philosophies? What really exists
for sale right now? What do users think?

A Kinder, Gentler Unix
Graphical Interface Strategies and Implementations

This special report features:

+ Usability Criteria. A comprehensive list of GUI features with descriptions of their relative importance to the
varying needs of different buyers.

+ Reviews. Comprehensive reviews of the leading products from both hardware and software vendors.
+ The Unix Factor. Considering Unix as the basis of open systems and its opportunity for taking the desktop.

+« Look and Feel. A discussion of the issues of Look and Feel and other conventions—which are standards, and
which are straitjackets?

Unix Relational Database Management
Vendor Strategies, DBMSs, and Applications Development Tools Price: $595

This Special Report explores the product and marketing strategies of Informix, Ingres, Oracle, Sybase, Progress, and
Unify. It takes the reader on a hands-on tour of the end-user and application development facilities of each product.

For more information: Call 1-800-826-2424 or 617-742-5200.

Price: $395

Price: $495

—J. R. Rymer

UNIX IN THE OFFICE Vol. 6, No. 10

Important: This report contains the resulls of proprietary research. Reproduction in whele or in part is prohibited. For reprint information, call (617) 742-5200

19

Patricia Seybold’s Computer Industry Reports

Topics covered in Patricia Seybold’s Computer Industry Reports in 1991:
Back Issues are available, call (617) 742-5200 for more information.

Office Computing Report I UNIX in the Office I

Network Monitor I

1991—Volume 14 1991—Volume 6 1991—Volume 6
Date Title # Date Title # Date Title
3 Mar. Object-Oriented Development—A 3 Mar. Ingres—A Database Vendorin Tran- 3 Mar. Digital NAS—Services for the Dis-
New Foundation for Software in the sition tributed Computing Environment
*90s 4 Apr. Open CASE—Toward an Open Sys- 4 Apr. SunOpenNetwork Computing—Re-
4 Apr. Xerox DocuTeam—A Compelling tems Infrastructure sponding to the Challenge
Reasonto Take a New Look at Xerox 5 May Clarity’s Rapport—The Designing 5 May PeerLogic PIPES Platform—
5 May The Battle for LAN-Based of an Integrating Application Building Distributed Applications
E-Mail—Lotus, Microsoft, and 6 June Uniface—Developing Database- 6 June Ellipse—LAN-Based OLTP Plat-
WordPerfect Go Head to Head Independent Applications form
6 June IBM OS/2 2.0—The Quest for the 7 July Can Digital Become an Open Soft- 7 July IBM/Distributed Systems—Big
Desk ware Company? Blue’s Emerging Client/Server Ar-
7 July End-User Information Systems—An 8 Aug. Interbase Software—Extending the chitecture
EIS for the Rest of Us Relational Model toHandleComplex 8 Aug. Name Services—Converging on a
8 Aug. The Windows Office—Evaluating Data Two-Tier Model
Microsoft Windows as the De Facto 9 Sept. Uniplex’s New Vision—A Prag- 9 Sept. Common Object Request Broker—
Desktop Office Environment matic Approach to the Open Office OMG’s New Standard for Distrib-
9 Sept. Unraveling the NewWave Confu- uted Object Management

sion—Differentiating the NewWave
Environment from the NewWave Of-
fice from Microsoft Windows

ORDER FORM

Please start my subscription to:

U.S.A. Canada Foreign

(] Patricia Seybold’ s Office Computing Report 12 issues per year $385 $397 $409
(] Patricia Seybold’ s Unix in the Office 12 issues per year $495 $507 $519
{"] Patricia Seybold’s Network Monitor 12 issues per year $495 $507 $519
[1 Paradigm Shift—Patricia Seybold’s Guide 1o the Information Revolution 10 issues & tapes per year $395 $407 $419
U] Paradigm Shift—Patricia Seybold’s Guide 1o the Information Revolution 10 issues per year $295 $307 $319

U] Network Monitor
(] Unix in the Office

[J Consulting

() Office Computing Report
(] Paradigm Shift—Patricia Seybold' s Guide to the Information Revolution

[Special Reports [] Conferences

Please send me
a sample of:

Please send me information on:

(] My check for $ is enclosed. (] Please bill me. [] Please charge my subscription to:

Name: Title: Mastercard/Visa/American Express
ame: 1tle: (circle one)

Company Name: Dept.: Card #:

Address: Exp. Date:

City, State, Zip code: Signature:

Country: Bus. Tel. No.:

Checks from Canada and elsewhere outside the United States should be made payable in U.S. dollars. You may transfer funds directly to our bank: Shawmut Bank of Boston,
State Street Branch, Boston, MA 02109, into the account of Patricia Seybold’s Office Computing Group, account number 20-093-118-6. Please be sure to identify the name of
the subscriber and nature of the order if funds are transferred bank-to-bank.

Send to: Patricia Seybold’s Office Computing Group: 148 State Street, Boston MA 02109; FAX: 1-617-742-1028; MCI Mail: PSOCG
To order by phone: call (617) 742-5200 TU-1091

STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION. 1A. Title of Publication: Patricia Seybold’s Unix in the Office. 1B. Publication no.: 08949921. 2. Date
of filing: October 1, 1991. 3. Frequency of issue: Monthly. 3A. No. of Issues published annually: 12. 3B. Annual subscription price: $495.00. 4. Complete mailing address of
known office of publication: 148 State St., 7th Floor, Boston, MA 02109. S. Complete mailing address of the headquarters of general business offices of the publisher: 148 State
St., 7th Floor, Boston, MA 02109. 6. Publisher: Patricia B. Seybold, 148 State St., 7th Floor, Boston, MA 02109. Edltor: Judith S. Hurwitz, 148 State St., 7th Floor, Boston MA
02109. Managing Editor: Ronni T. Marshak, 148 State St., 7th Floor, Boston MA 02109. 7. Owner: Patricia B. Seybold, 148 State St., 7th Floor, Boston MA, 02109, 8. Known
bondholder, mortgagees, and other security holders owning or holding 1 percent or more of total bonds, mortgages, or securities: Nonec. 9. For completion by nonprofit
organizations authorized to mail at special rates: Not applicable. 10. Extent and Nature of Circulation:A. Total no. copies printed Average 12 Mos. 1600 Single Issue 1200 B.
Paid Circulation 1. Sales through dealers and carriers, street vendors and counter sales Average 12 Mos. None Single Issue None 2. Mail Subscriptions Average 12 Mos. 1200 Single
Issue 950 C. Total Paid and or Requested Circulation Average 12 Mos. 1200 Single Issue 950 D. Free distribution by mail, carrier or other means samples, complimentary, and other
free copies Average 12 Mos. 50 Single Issue 50 E. Total Distribution Average 12 Mos. 1250 Single Issue 1000 F. Copies not Distributed 1. Office use, left over, unaccounted, spoiled
after printing Average 12 Mos. 350 Single Issue 200 2. Returns from news agents Average 12 Mos. None Single Issue None G. Total Average 12 Mos. 1600 Single Issue 1200 I certify
that the statements made by me above are correct and complete. (signed) Patricia B. Seybold Publisher

a Printed on recycled paper. I

