
Abs
_ Add
Arcsin

Arctan
Arg —

Blockproc
Blocksread
Case
Changerec

Changerec6
Changevar
Check
Checkvar

Close
Cos
Entier

Exor_

Exp
Extend
External

&

Extract

Field

-Getposition
Getshare
Getshareé
Getzone

Getzoneé

In-

Increase

Inrec
Inrec6
Intable
Inver

Ln
Logand ©

Logor
Long _
Message

Mod -
Monitor

Open
Out
Outchar

Outinteger
Outrec
Outrecé
Outtext
Outvar

- Overflows

Random

Read

Readal|

Readchar

Readstring
Real
Repeatchar
Round
Setposition

-Setshare

Setshareé

AligolG

Setzone

Setzone6
Sgn

Shi ft

Sign
Sin

Sinh
Sart
Stderror

String
Swoprec
-Swoprecé
System
Systime

Tableindex
Tofrom
Underflows

_ Write

Zone

A000
ATAMIAT | Ls

RCSL NO: 31-D522

ALGOL 6
USER’S MANUAL

1st edition ,

end printing

Edited by

Hans Dinsen Hansen

A/S REGNECENTRALEN

ISBN 87 7557 018 1

CONTENTS 1

1. INTRODUCTICN te 4 pages

References

2, BASIC SYMBOLS, IDENTIFIERS, NUMERALS, AND STRINGS 6 pages

2e001e Character set and coding
2. Source text

ede Source files
4. Space and New Line

Letters

Delimiters

Identifiers

Numbers

Strings
Quantities, kinds and scope
Values and types

e
°

e
e

°

e

C
O
N

A
N

F
W

O
O
O

M
P
O
N
M
N
M
N
N
N
N
N
N

ND

P
M

3, EXPRESSIONS eee 9 pages
Variables and fields

Function designators
Arithmetic expressions
Boolean expressions
Designational expressions
String expressicis
Zone expressions

°
e

e
°

e

e
°

.-
}

e
e

W
E
I
N

WO
N

Kt

Gy

LO

e

T
O
W

F
O

=

h., STATEMENTS 3 pages
4.2. Assignment statements
4.6. For statements

oT. Procedure statements

5. DECLARATIONS ; : 7 pages
ole Type declarations

ole Array declarations

olbe Procedure declarations

oe Zone declarations

36. Zone array declarations
ele Field declarations S

I
U

N
T
T

U
T

B PUT/OQUTPUT SYSTEM : 19 pages

Documents

Internal process

Backing storage

Typewriter
Paper tape reader
Paper tape punch

Line printer
Card reader

Magnetic tape

Devices without documents

High level zone procedures

Buffering and checking
Multishare input/output ;

Algorithms for multishare input/output
Standard error reactions
Block procedure

Primitive level, OS
Commnication with dccuments

Document driver

Operating system

e °

° o°

o
0

@€

©
©

©
8@

e
e

l
e
l

e
e

©
9

D
O
N

A
N

F
u

th

=

°

© e
CE
R

EE

FE

P
U
N

UN

UN

UY

ON

RD

b
e
t

ek

et

a
et

ek

ek

e
o

F
w
W
w
N
 =

ee
e
c

e

e e °

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

O
N

e
W
h

°

CONTENTS 2

7. SYSTEM CONTROL, ETC, 1 page

8. THE ALGOL SYSTEM ; 4. pages
8.1. Translation os
8626 Assembly, index, spill
8.3. Execution

9. ALPHABETIC LIST OF NEW ELEMENTS 86 pages

Qole Abs
9626 Add.
Gere Aresin
Dole Arctan

90d Arg
9.66 Blockproc
Delo Blocksread
9.8. Case
9 So Changerec
9.10, Changerec6
911.6 Changevar

9012. Check
9.15. #Checkvar
9.14. Close

9.156 Cos
9.16, Entier
DelTe Exor
9.18. Exp
90196 Extend

9.20. Extemal
9e210 Extract

9,22, Field
9.25. Getposition
9,24, Getshare
9.25. Getshare6
9.26, Getzone
9627 Getzoned
9.28. In
9.29. Increase
9.30. Inrec

9.31. Inrec6
9.32. Intable

9.53. Invar
9.34. In
9.35. Logand
9.36, lLogor

9.37. Long
9,38. Message

9.39. Mcd
9.40. Monitor
9.41. Open

ho. Ovr

43, OQutchar
hh, Ovtinteger
45. Outrec
46, Outrec6
47, Guttext
48, Outvar
ho, Overflows

e
e

°
e

°

°
e

e
e

e
e

a

e

a

OV

OV

OD

OD

OD

ON

ON

OD
N

O
N
N
T

VI

UT

NT

0
UT

T
T

0

°
°

e
e

e
e

e
e

e
e

e
e

e
e

e
°

e
e

°

O
N

O
I

E
O
U

mM

|
O
O
)

O
A
D

F
o
!

YO

|
Oo

e

CONTENTS 3

Random

Read

Readall
Readchar
Readstring
Real

Repeatchar

Round

Setposition
Setshare

Setshare6
Setzone

Setzone6
Sgn
Shift
Sign
Sin
Sinh
Sqrt

Stderror

String

Swoprec

Swoprec6
System
Systime
Tableindex

Tofrom

Underflows

write
Zone

APPENDIX A, Execution times in microseconds

APPENDIX B, File Processor commands

APPENDIX C, Error messages

Index

3 pages

6 pages

6 pages

4. pages

New algol facilities 1/5

1) freely placed comments

2) message at end medium

3) improved error messages at error in source

4) file numbers on sources

5) listing of bossline nunbers

6) listing of selected parts of the source text by means of list.on
list.off

7) listing of source names and dates

8) possibility for dynamic change of list situation as well as selection

of a copysource, by means of a new delimiter algol

I. Changes in call, new modificators
> Om pee me ge om om One om Om Om On On OO ON OE OSS Om OD Om me Oe on om oe Oe Oe Oe Oe oe oe oe Oe oe om oe oe oe

yes

possline. (no

on }
list.\off

®

copy.{<copysources>}

II. Changes in the source text

new compound, conmmentstring: <* anything *>

new delimiter: algol eee 3

x) as described in RCSL Nc: 31-D366 by Tove Ann Aris

New algol facilities 2/5

ad 1

ad 2

ad 9

ad 4

ad 5

ad 6

commentstring <* anything *> may be placed whereever space is al-
lowed, except in fat comma, Syntactically it is treated like space.

The string must not contain <* . Error messages as for text string.

In case the text is not listed, and the algol call does not specify

message.no, a message is given for end medium.

Error messages for source errors are improved to the following pos-

sibilities:

error at source: <name> unknown

error at source: <name> not textfile

error at source: <name>.<integer> not magtape

error at source: <name> illegal kind

error at source: <name> connect error

error at source: <name> connect error

error at source: <name> not text

error at source: <name> hard error

device status <name>

<cause>

Files in an entry may be specified by <name>.<integer> so that only

one entry must be inserted in the catalog. <name> must be an entry

which contains the name of the magnetic tape in question. <integer>

must not be 0. The resulting filenumber will be the file number in

the catalog entry plus <integer>. File 7, 8, 9 and 10 are chosen as

follows:

t=set mto mt123456 0 7
pealgol t tol t.2 t.3

the call parameter bossline.yes implies that listing or messages be-

sides the linenumber will state the boss linenumber. Standard is

possline nO.

The are three degrees of listing:

1) if list.yes is specified the total source text is listed

2) if list.no is specified nothing whatever is listed.

NOTE; If as well list.no as list.yes is specified in the call, only

the last specified is valid.

New algol facilities 3/5

ad 8

3) if list.yes and list.no are not specified in the call, it is
possible to list selected parts of the source text.

This is governed as described below by:

fps mode listing.yes

list.on

list .off

Change of list situation.

If list.on is specified in the parameter list, algol will list the
source text of all the sources following this parameter, until a

possible parameter list.off is specified.

If list.off is specified in the parameter list, algol will omit li-
sting of the following sources, until a possible parameter list.on

is specified.

If the call specifies a source before a list parameter, the source

will be listed only in case fps mode listing is yes.

Source names are listed unless the call specifies message.ono. Date
and clock is listed only when the source is selected, i.e. not at

unstack, see example.
4

4
algol { <modifiers} [e-f<convacuree>}

° <integer> °

<modifier> <:= Hist.fon
oft

If a list parameter is not followed by a copysource, it means that

the listmode of the actual source is changed. If a listparameter is

followed by a copysource, the list parameter relates only to the

copysource.

If no listparameter is specified for the copysource, the copysource

will be listed in case the actual source is listed.

New algol facilities 4/5

An integer parameter is matched with the call in which the parame-

ters are numbered 1,2,... A listparameter in front of copy.<in-
teger> will be blind since the list mode specified in the call will

be valid.

Further the Gelimiter algol is treated as message, i.e. it is li-
sted unless the parameter message.no is specified, and the delimi-

ter must follow either begin or semicolon,
minated by semicolon.

EXAMPLE,

prog=algol list.on copy.t1.t2 list.off copy.t3 tO bossline.yes

copysource 1
copycource 2

copysource 3

tO:

source 1 = tO

= t1

= te
Z = 63

begin

comment O$

algol list.on3

comment 13

algol list.offs

comment 23

algol copy. 1<*t1*>$
comment 3$

algol list.on copy.ts
comment 4s
algol copy.2<*t2%>$
algol copy. 3<*t3*>$3
comment 53
end

comment copysource noo13

comment copysource no.23

comment copysource no.3$

comment copysource ts

listed
not listed
not listed, but message
Listed
listed
not listed
not listed, but message
not listed
not listed, but message
not listed
not listed, but message
not listed, but message
not listed
not listed

listed

listed

not listed

listed

further it must be ter-

New facilities in algol

prog=algol list.on copy.t1.t2 list.off copy.t4 tO bossline.yes

tO 2401.75 14.36
10 1 begin

1. line 30 % algol list.ons
k comment 13

50 5 algol list.offs
line 70 7 algol copye1<*t1*>3

t1 2401.75 14.33
10 7 comment copysource no.13

20 8

to

line 90 9 algol list.on copy. ts
th 2401.75 14.33

10 9 comment copysource ts
20 10

tO
line 110 11 algol copy.2<*t2%>3

2 2401.75 14.33
10 11 comment copysource no.23

20 12

+0
line 120 12 algol copy. 3<*t3%>3

+3 2401.75 14.33
line 20 13. end medium

+O
algol end 9

5/5

INTRODUCTION 1-1

le Introduction

This is ‘a revision of. the Algol 5 User's ‘Menuel, transforming it in-

to a manual of Algol 6.
_ The present editor of the Algol manual wishes to express his admira-

tion of the high standard set by his predecessor, Sgren Lauesen,: therefore
large parts and, as far as possible, ‘the. style of description were taken

over directly from Sgren. Lauesen's manual, The present editor was not al-
ways able to follow the style set in the Algol 5 manual. .In some rare

cases he could not restrain his urge to make things in his own way.

1.1. Format of the manual
the manual consists of 3 rather different parts: a:

Chapters 2 to 5 follow section by. section the Algol 60 report (ref.
3) and give changes. in syntax. and, semantics relative to the reference.
Certain of these sections are new in. that they have no counterpart in Al-
gol 60, others’ only contain changes to Algol 60. It should be obvious from

the context which is which, |

Chapters 6, 7, and 8 serve as. - introduction to the input/output sy-
stem, to the facilities for programming of operating systems, and to the

coupling of the Algol system to the surroundings. ~
Chapter 9 and appendices A, B, and C are the parts used in daily pro-

gramming. Chapter 9 is therefore an alphabetic list of all standard iden-

tifiers and operators, provided with realistic examples.

102. Changes relative to Algol 60
T. The representation of the language is changed to enable a good use of

the ISO alphabet.
2, Anew quantity 'zone' is introduced. Zones are the basis for introduc-

tion of a general input/output system, where the user can work on a

high level with automatic buffering and error recovery, but where he

also may interfere with the administration or work on the most basic

level. He may even program operating systems (batch processing, real

time, time sharing, etc.) in algol.
4, Procedures may be translated alone, in this way new, Algol-coded,

standard procedures may be produced.

4, Field varisbles, beeing pointers to 'fields' in arrays or zones are

‘Introduced. Fields are subsets of arrays and zones, and they do not

have to be of the same type as the type of the array.

5. Case expressions and case statements, first suggested by C.A.R. Hoare,

are admitted.
6. Operators for working on parts of operands are introduced (pattern

operators) «
7. A new type, long, is introduced. Longs possess integral values, but

their range is extended relative to the range of integers.

8, Some details, left undefined by the Algol 60 report, are defined: owns

are initially 0 or false, the controlled value at exit from a for-

statement is defined.
9, Errorful programs may be executed until the bad spots are touched.

These changes aim at converting algol froma sophisticated plaything

to a more realistic tool for software production.

1=2 INTRODUCTION -

1050 Use of the manual
This is not a text, but a user's manual. It is therefore expected

that the reader has been introduced to Algol in some other way.
If you are familiar with Algol, but not with Algol 6, you may start

reading until section 2.5 to lear the external representation of Algol 6
program, Next, read section 3.1.6 with subsections to become familiar with
the internal representation of numbers. Third, read the introduction to
chapter 6. Fourth skim chapter 9 and try to get an impression of the pro-
cedures and operators you can utilize. Appendix B explains how you call
the compiler and execute the translated program.

Keep away from chapters 3 to 5 unless you are femiliar with the Algol
60 report (ref. 3), and keep away from 6.3 to 8 unless you want to explore
the multiprogramming system and the peripheral devices.

1.4. Acknowledgements
The system 1s based on the Algol 5 compiler. It was designed by Jarn

Jensen, Bo Tveden Jgrgensen, Sgren Lauesen, and Jérgen Zachariassen.. The

re-programming of the compiler was made by Jgrn Jensen, Bo Tveden Jgrgen-
sen, and Jgrgen Zachariassen, Hans Rischel and the editor participated in
performing certain of the necessary changes in the standard procedures.

The editor wishes to thank Nils Andersen, The Institute of Datalogy,
for provoking this revision of the manual, and at the same time pointing

out some important spots needing re-consideration. He also wants to thank
Sgren Lauesen, E. Johansson, and Kirsten Andersen for their great help -

each one in his line --.during the work with this new edition.

A/S Regnecentralen, August 1974

Hens Dinsen Hansen.

INTRODUCTION 1-5

References:

Ref

Ref.

Ref.

Ref.

Ref,

Ref,

Ref.

Ref.

Ref,

Ref.

13

2%
3

P, Brinch Hansen: Multiprogramming System.

RCSL 55-D140, A/S Regnecentralen, Copenhagen.

Sgren Lauesen: File Processor, Users Manual.
RCSL 55-D21, A/S Regnecentralen, Copenhagen.

J.W. Backus, et.al., Revised Report on the Algorithmic Language

Algol 60 (ed. Peter Naur), Regnecentralen, Copenhagen (1962):
Gorm. ACM 6 no. 1 (1963), pp 1-17.

P, Brinch Hansen: RC 4000 Reference Manual.
RCSL 55+D1, A/S Regnecentralen, Copenhagen.

P, Lindblad Andersen: Monitor 3,

RCSL 31-D300, A/S Regnecentralen, Copenhagen.

Hans Rischel: Utility programs, Part 1:32
RCSL 31-D106, 31-D233, 31-D320, A/S Regneeentralen, Copenhagen.

Sgren Lauesen: Boss 2, Users Manual.
RCSL 31-D310, A/S Regnecentralen, Copenhagen.

Kirsten Mossin: External processes.

RCSL 31-D37, A/S Regnecentralen, Copenhagen.

Jens Hald and Allan Wessel: RC 4000 Fortran.
RCSL 31-D103, A/S Regnecentralen, Copenhagen.

Tom Sandvang: Code procedures and the run time organisation of

algol programs.
RCSL 31-D199, A/S Regnecentralen, Copenhagen.

:

. veowytiseers Tt be, : a : :

7 . >
- > .

: \

: . - ,

,

BASIC SYMBOLS 2-1

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS

2.0.1. Character set and coding
The source text to the algol compiler must be represented in the ISO

7-bit character code. At run time, the program may choose any alphabet,
but the ISO 7-bit code is offered as a standard. It is possible in a
simple way to use paper tapes in flexowriter code as source and data, be-

seuse the monitor may convert the code to ISQ 7-bit code (see ref. 1 and
2)

The table below shows for each character of the ISQ 77-bit alphabet:

the internal value (V), the graphic representation or the name of the
character (G), the character class as source to the translator (S), and
the character class as data read with the standard alphabet (D).

VG Ss DI v G@ Ss Di} v Gs D vGs D

O NUL blind 0| 32 SP basic 7| 64 @ graphic 7} 96 * graphic 7

1 SOH illegal 7] 33 ! basic 7| 65 A basic 6} 97 a basic 6
2 STX illegal 7| 34 " graphic 7] 66 B basic 61 98 b basic 6

3 ETX illegal 7135 £€ graphic 7] 67 C basic 64 99 e¢ basic 6

HOT illegal 7] 36 $ graphic 7| 68 D basic 6]100 d basic 6
5 ENQ illegal 7| 37 % graphic 7| 69 E basic 61/101 e basic 6

6 ACK illegal 7] 38 & basic 7| 70 F basic 6| 102 ff basic 6
7 BEL illegal 7] 39 ° basic 5171 G basic 6| 103 g basic 6

8 BS illegal 7| 40 (basic 7| 72 H basic 6] 104 h basic 6

9 HT illegal 7] 41) ~~ basic 7| 73 I basic 6| 105 i basic 6

10 NL basic 8| 42 * basic 71 74 J basic 6]106 j basic 6
11 VE illegal 7] 43 + basic 3] 75 K basic 6{|107 k basic 6

12 FF basic 8} 44 , basic 71 76 L basic 6{ 108 1 basic 6

13 CR blind Oo| 45 - basic 3| 77 M basic 61109 m basic 6

14h SO illegal 7| 46 . basic 4} 78 N basic 6/110 n basic 6

15 SI illegal 7/47 / basic 7/79 O basic 6]111 © basic 6

16 DLE illegal 7| 48 0 basic 2} 80 P basic 6| 112 p basic 6

17 DCl illegal 7]| 49 1 Dbasic 21 81 Q basic 6} 113 q basic 6

18 DC2 illegal 7|50 2 _ basic 21 82 R basic 61114 r basic 6

19 DCS illegal 7/51 3 basic 2| 84 S pbasic 61115 s basic 6

20 DCh illegal 7|52 4 basic 2; 84 T basic 61] 116 +t basic 6

21 NAK illegal 7/53 5 basic 2} 85 U basic 61117 wu basic 6

22 SYN illegal 7/54 6 basic 2! 86 V basic 6/118 v_ basic 6

23 ETB illegal 7/55 7 basic 21 87 W basic 6] 119 w basic 6

oh CAN illegal 7|'56 8 basic 2] 88 X basic 6] 120 x basic 6

25 EM basic 8157 9. basic 2} 89 Y basic 6] 121 y basic 6

26 SUB illegal 7} 58 : basic 7/90 Z~ basic 6| 122 2 basic 6

27 ESC illegal 7] 59 3 basic 7191 £& basic 6] 123 2 basic 6

28 FS illegal 7| 60 <° basic 7/92 @ basic 6] 124 g basic 6

29 GS illegal 7] 61 = basic 7| 93 A basic 6 125 a basic 6

30 RS illegal 7}| 62 > basic 7| 94 * graphic 7| 126 ~ graphic 7

31 US illegal 7/63 2? graphic 7} 95 _ in text 7} 127 DEL blind 0

=

Dad BASIC SYMBOLS

D,Data classes
O, blinds The character is skipped by all read procedures.
1,shift character: Not used in the standard alphabet (see 9.32).
2, digits: May be used as digits in a number or in a text

string.

3, signs: May be used. as the sign of a number or in a text
string. .

4, decimal point: May be used as the decimal point of a number or in a
, text string.
5,exponent mark: May be used as the exponent mark of a number or in

a text string.
6, letters: May be used as part of a text string. Will terminate

a number. . .
7, delimiters: Will terminate a number or a text string.
8, terminator: Works as class 7, but terminates a call of readall

(9.52). EM (25) will immediately terminate a call of
read (9.51) or readstring (9.54).

S,Source text classes
Basic: Significant in all contexts.
Blind: Skipped in all contexts.

Graphics Significant inside text strings, causes a warning

outside.

Illegal: Produces a warning during the translation, but does

not harm.
In texts Works as a space inside text strings,blind outside.

Control characters
The control characters which are used in algol are the following:

10, NL: New Line. The change-to-new-line character.

12, FF: Form Feed, Causes a change of page on the printer,

put works syntactically as New Line outside text

strings.
25, EM: End Medium. See 2.0.3.

32,5Ps Space.

127,DEL: Delete. Used for overpunching of wrong characters.

2.0.2. Source text
The program consists either of one block, of one compound statement,

or 5) one procedure declaration surrounded by ‘external' and ‘end! (see

9020) o
All characters up to the first 'begin' or ‘external’ are skipped, but

appear in a possible listing.

After the last 'end', the compiler reads as many characters as are

necessary to distinguish the 'end' (usually a space or a new line).

2.0.4. Source files .

The source text to the compiler consists of one or more files of

text as specified in the File Processor command that started the trans-

lation (see app. B). The compiler may read source files from paper tape,

cards, typewriter, magnetic tape, and backing storage.

A file terminates either when an EM-character is read from the file

or when the file physically is exhausted. A. file on a roll of paper tape

is exhausted when the tape end is met. A. file on the backing storage is

exhausted when the end of the backing storage area is met. A file on mag-

netic tape is exhausted when a tape mark is met.

BASIC SYMBOLS a3

When the compiler meets the file termination before the source ‘text

is complete, it locks for the next file specified in the File Processor

command and continues reading from that file. If the list of files is ex-

hausted, the compiler prints an error message, generates the necessary

number of string terminations and 'end's, and compiles the program com-

pleted in this way.
The compiler handles the peripheral devices in accordance with the

rules of the File Processor (ref. 2 or 6).

240.4. Space and New Line

Space and New Line may be used freely in numbers and between identi-

fiers, compound symbols, and other delimiters. They are not, however, al-

lowed inside identifiers, compound symbols, or delimiters. .
Space and New Line are significant characters in a text string and

will be printed out at run time when the string is printed.

The character ' ' represents a space inside strings, but is complete-

ly blind outside. The latter property may be used to divide identifiers

and compound syribols (cf. 2.3).

2.1. Letters

The set of small and capital letters of the reference language is

extended with the Danish letters .

eo gak Ok

2.2.1. Logical values
Logical values are written as compound symbols without underlining:

true false (cf. 2.3).

2.5. Delimiters

The underlined delimiters (compound symbols) of the reference lan-

guage are written without underlining. A Space or a New Line is required

to separate a compound symbol from a preceding identifier or a succeeding

letter or digit. Thus the delimiter space is forbidden inside a delimiter,

put the symbol ' ' may be used instead. The delimiters 'goto' and

'hoolean' may not be written as 'go to! and 'Boolean'. Algol 6 adds the

following delimiters to the reference:

abs entier field of zone

add. extend Long or

and. external message round

case extract mod shift

Qa BASIC SYMBOLS

Other delimiters differing from the reference are shown in the following

table:

Algol 60 Algol 6 Algol 60 “Algol 6 Algol 60 Algol 6

+ // D => - _
A x V ! or *) [] ()

< <S A & and *) a <::> +)

> >= = -, <<> +)

+ <>

*) 2 alternative representations are allowed.
+) The first is used for text strings, the second for layout strings.

The delimiter 'message' is syntactically equivalent with 'conment', but

it may cause a listing of the comment at translation time (see app. B).
The delimiter '.' (point). is used to denote a field reference as well

as a decimal point (see 3.1.1).

2.4, Identifiers

Space and New Line are not allowed inside an identifier, but the sym-

pol ' ' may be used.
The words for compound symbols (see 2.2.1. and 2.3) can never be used

as identifiers.

Examples:

goto go to Both are interpreted as the delimiter

i 'zoto!,.

go to An erroneous construction consisting of

two identifiers.

13do af:= The number 13, ‘the delimiter 'do', the

identifier a7, and the delimiter :=

begin of line : = An erroneous construction consisting of

~ the delimiter 'begin', the identifier 'of-

line', the delimiter : and the delimiter =

2.4.3.
Algol 6 adds field variables, zones and zone arrays.

2.5 NUMBERS

Algol 6 numbers differ from Algol 60 in distinguishing between two

types of integers and that the number range is limited.

2.5.4. Types
Tntegers are either of type integer or of type long, depending on

the value. All other representable numbers are of type real.

BASIC SYMBOLS 2.5

2.505. Integer and long literals
integers and longs may not exceed the interval

-tho 737 488 255 327 <= integer <= 140 737 488 355 327.

If the literal is within the interval

-8 388 607 <= integer <= 8 388 607

it is classified as being of type integer. Outside this interval it is

classified as being of type long (cf. section 3.3.4).

2.5.0. Real literals
The real May not have more than 14 significant digits or 14 deci-

mals. The exponent part may not exceed the interval -1000 < exponent <

1000 pe total number is confined to the range -1.6'616 < number <

1.61616, ~ ~
The number is converted to internal binary form using the same

methods as the procedures read and readall. The relative error of the re-

sult is about 3'-11.

2,6, Strings

<string literal> ::= <text string>|<layout string>
<text string> 3::=

<:<any sequence of text symbols not containing ':>' or '<:'>:>

Layout strings are described in 9.78, write. A text symbol is a character

belonging to the classes basic, graphic, or in text (see 2.0.1) or it is

a positive integer of at most 35 digits enclosed in<>. The latter con-

struction has precedence over the character by character interpretation,

and represents the character with the integer as internal value. The value

must obey 0 < value < 128, Notice that ‘'nested' strings are not allowed.

The general string concept is described in 3.6.

Examples

<sa<b <Q9>>d:> will be printed by a running program as

a<b o>d

<< -d.ddd'+d> is a layout string.

2.7. Quantities, kinds and scopes

Algol 6 adds three kinds of quantities: zone, Zone array, and field

variable.

2,8. Values and types

The value of a zone is a set of values called the zone descriptor,

plus a set of values in the zone puffer area, plus a set of values called

the share descriptors (see 5.5).

2-6 BASIC SYMBOLS

The value of a zone array is the set of values of the corresponding
subscripted zones.

Algol 6 distinguishes between 4+ ‘types: integer, long, real and boo-
lean,

A field variable possesses an integer value, but has an associated
type denoting the type of a field. A field is either:a variable field or
an array field. Fields are subsets of arrays or zones, Variable fields

possess a single value. Array fields are one dimensional arrays.

EXPRESSIONS d=

3. EXPRESSIONS

Algol 6 adds string expressions and zone expressions to the refe-

rence language. The full definition becomes:

<expression> 32 . <arithmetic expression> |<boolean expression>|
<designational expression>|
<string expression>|<zone expression>

3.1. Variables and fields

Algol 6 adds record variables, field variables, and fields to the
reference language

Zolel. Syntax
Note that [] is replaced by ().
The full syntax becomes:

<variable identifier> ::= <identifier>
<simple variable> ::= <variable identifier>
<simple field variable> ::= <identifier>
<array field variable> ::= <identifler>
<field variable> ::= <simple field variable>|

<array field variable>
<subscript expression> ::= <arithmetic expression>
<subscript list> ::= <subscript expression> |

<subscript list>,<subscript expression>

<array identifier> ::= <identifier>

<zone identifier> ::=<identifier>
<zone array identifier> ::= <identifiler>

_<zone expression> ::= <zone identifier>|
<gzone array identifier>(<subseript expression>)

<field base> ::= <array identifier>|<zone expression>|
<array field>

<array field> ::= <field base>.<array field variable>

<variable field> ::= <field base>.<simple field variable>

<record variable> ::= <zone identifier>(<subscript expression>) |

<zone array identifier>(<subscript expression>,
<subscript expression>)

<subscripted variable> ::= <array identifier>(<subscript list>) |

<array field>(<subscript expression>)
<variable> ::= <simple variable>|<variasble field>|

<subseripted variable>|<record variable>|<field variable>

<field reference> ::= <array field>|<variable field>
<field> ::= <field reference>

3.01.2. Examples —
See 9.55 with subsections and 9.79.

3.1.3. Semantics (of record variables and fields) .

Ticcord variables designate values which are components’ of zone buf-

fer areas. The subscript expressions are evaluated like subscripts ‘of or-

dinary subscripted variables.

In ease of a zone array with subscripts, the first subscript expres-

sion selects a zone from the zone array. This subscript must obey

3-2 EXPRESSIONS

1 < subscript < number of zones declared in the array.

The last subscript selects a variable within the zone record, which
in turn is a _ set of consecutive variables of the selected zone buffer

area. This subscript must obey

1 < subscript < mumber of variables currently in the record.

When an expression is assigned tc a record variable, the location
(see 4.2.5) of the selected buffer element is not influenced by possible
changes of the record caused by procedure calls in the right hand expres-

sion. : -

Fields are subsets of arrays or zones. A field consists of a number

of bytes (see 3.1.6) located within an array or a zone. The type of a
field is defined in the declaration of the field variable (ef. section

507. Field declarations).

3.1.4. Subscripts (to array fields)

3o1 4.3.
array field is always considered one dimensional. The ordering

of the bytes in the field base and in the array field follows the lexico-

graphical ordering (cf. 5.2.6, Lexicographical ordering). The subscript
pounds are defined by means of the byte bounds (cf. 5.2.7). The byte

bounds for the array field are obtained by subtracting the value of the

array field variable from the byte bounds of the field base (possibly an

array field). An element must be located within the field base.

3.165. Type of record variables and field variables
Rh record variable 18 of type real.
A field variable is of type integer.

3.1.6. Ranges of values. Type length. Binary patterns

“Depending on the type, each variable is represented by an integral

number of bytes. Each byte is of 12 bits. The number of bytes represen-

ting a variable is called the type length. The type length may some times

be expressed in bits.

4510601. Booleans are represented as 12 bits quantities. The type length

or a boolean variable is 1 byte. The binary pattern of a boolean is exten-

ded with zeroes to the left whenever needed, The last of the 12 bits is 0

when the boolean is false, 1 when it is true.

The logical constants 'true' and ‘false' and the result of applying

the relational operators will always be 12 zeroes for false, 12 ones for

true. Other binary patterns may be obtained by applying the operators add

and shift. The 5 logical operators work on all 12 bits in parallel.

3.1.6.2. Integers are represented in 24-bits, 2's complement, binary form.

This gives the range:
-8 388 608 <= integer <= 8 388 607.

The type length of an integer variable is 2 bytes, and the binary

pattern of an integer is the oh pits of its representation extended with

zeroes to the left whenever needed. The binary patterns are used in con-

nection with the operators add, extract, and shift.

3.10603. Longs are represented in 48 bits, 2's complement, binary form.

e range o ongs should be confined to:

-140 737 488 355 327 <= long <= 140 737 488 355 327.
The type length of a long variable is 4 bytes, and the binary pat-

tern of a long is the 48 bits of its representation, The binary patterns

are used in connection with the operators add, extract, and shift.

EXPRESSIONS i)

3.1.6.4. Reals are represented as 48-bits built-in floating point numbers.
This gives the following range of non-zero real values: mo

1.6'-617 < abs(real) < 1.61616
The precision of real values correspond to 35 significant bits, Thus one

unit added to the last binary place will correspond to a relative change

of the number of between 6'-11 and 3'=11.
The type length of a real variable is 4 bytes. The 3 first bytes are

used for the number part and the last byte for the exponent ‘part of the

real. .

The binary pattern of a real consists of a. 36=bits, 2's complement,

number part followed by a 12-bits, 2's complement, exponent part so that

the real value is:
number*2**exponent.

The number is either 0 or in ‘the range -1 < number < -0.5, 0.5 < number

<1. The exponent is in the range -2048 < exponent < 2047, The exponent of
0.0 is -2048, but other exponents might Be obtained by the operator ‘add’.

If r is a floating point zero with an exponent <> -2048, the rela-

tion r = 0 will be false because the operands are compared bit by bit. The

relations r <0 or r> 0 will both be true, however, Operations like r+ b

cannot be expected to give b (see ref. 44).

4.1.7. Reals used as semi-long integers a

As there 18 neither bullt-in long multiplication nor. built-in long

division, programs using many of these operations on large. integers may

be speeded up a little by representing them as real variables. | :

This can be done with full accuracy aS long as all results are kept in

the range ‘yo

=2%%35 = -34 359 738 368 < real < 34 359 738 367 = 2%x355 - 1
If the results exceeds this range, The last bits of the semi-long integer

are lost. . oS

A kind of integer division may be obtained by a “real division fol-

lowed by a cut-off of decimals caused by the addition of a large constant.

For results in the range 0 < result < 2**34, this is done as follows:

roundconstant:= 2%*3h3 -
result:= ri/r2 + roundconstant:- roundconstant;

Safety against loss of accuracy may be obtained by ‘scaling the semi-

long integers so that loss of accuracy will cause a floating point over-

flow. The scale factor f is chosen so that £*2x*35-= 2%*2048 and fx(-2%*

35) = -2%*2048, This is fulfilled by f = 2%*2013. Addition and multipli-

cation with check for loss of accuracy may be performed like this:

ris= 11*£3 r23= L2xfs

rl + r2 ri/f*r2

301.0. Fields
Trelds are subsets of arrays and zone records. A field variable is a

pointer indicating a field within an array, a Zone record, or an array

field. The type of the field depends only of a type declared together with

the field variable (cf. section 5.7. Field declarations). All the bytes of

a variable field must be located within the field pase. |

3.2. Function designators

20201 e Syntax

The syntax is changed slightly. See 4.7, procedure’ statements.

3.2.4, Standard functions ss | eee

he standard functions abs and entier are replaced by operators of

the same name (see 3.3). This implies that variables with the name abs or

entier cannot be declared, and that abs or entier cannot be used as an ac-

tual parameter specified as real procedure or integer procedure.

3-4 EXPRESSIONS

_. The numerical standard fmctions of algol 6. are listed below. They

are described in detail in chapter 9. eo oe

arcsin. cos random . sin
arctan exp: sgn sinh
arg in sign - sqrt —

3.2.5. Transfer functions og 7 ; .
Titier 28 replaced by an operator (see 3.2.4), and the operators

round, extract, extend, add, real, long, and string take care of other

type transfers. a : '

3.5.6 Arithmetic expressions

3.3.1. Syntax ee |
Algol © adds the. operators mod, shift, add, extract, abs, entier,

round, real, long, and case to the reference language. The full syntax

becomes: , i ,

<adding operator> ::= +|-
<miltiplying operator> ::= *|/|//|mod
<pattern operator>.::= shift |add|extract

_<monadiec operator> ::= abs |entier |round |extend | real |long
<primary> 3:= <unsigned number>|<variable>|<function designator>|

_ (<arithmetic expression>) |
<monadic operator><primary>|real <string primary>|
long <string primary>

<factor> t:= <primary>|<factor>*<primary> |
<factor<pattern operator><primary>|

- ., <poolean basic> extract <primary>

<term> ::= <factor>|<term<mltiplying operator><factor>
<simple arithmetic expression> ::= <term|: no

<adding operator><tern> | oe

<simple arithmetic expression><adding operator><term>

<if clause> ::= if <boolean expression> then’ HO

<case clause> ::= case <arithmetic expression> of

<arithmetic expression list> ::= <arithmetic expression> |

<arithmetic expression list>,<arithmetic expression>

<arithmetic expression> ::= <simple arithmetic expression>|
<if clause><simple arithmetic expression> else _

<arithmetic expression> |
<case clause>(<arithmetic expression list>)

4.3.2. Examples
Primaries: .

long(if b. then <:abe:> else <<dd.d0>)

abs round ra(i) .
entier cos(y+z)

Factors:

round r shift (-6) add j
(a <b) extract 1

Arithmetic expressions:.. - : ,

case itj of(i mod j,if b then r**j else i,case i of(Jj))

if b then (case i of(j,r)) else case i of (1,5) ~

EXPRESSIONS 3.5

BoDdeDe Semantics

The semantics of the new operators are given in chapter 9. Field

variables used outside field references are handled as variables of type

integer,

3.3.4, Operators and types
The types of the new operators are given in chapter 9.

The result of applying ** is always of type real, even if both ope-

rands are of type integer or long.

The operators +, -, and * yield an integer value if both the ope-

rands are of integer type, a real value if at least one is of real type,

and a long value otherwise.
The operator / always yields a real value.
The operators // and mod are defined for two operands of type inte-

ger or long, They yield an integer value if both operands are integer and

a long value otherwise.
The result of

<if clause><simple arithmetic expression> else

<arithmetic expression> ;

is of type integer if both expressions are of type integer, of type real

if at least one expression is of type real, and of type long otherwise.

The result of

<case clause>(<arithmetic expression list>) .

is of type integer if all expressions in the list are of type integer, of

type real if at least one expression is of type real, and of ‘type Long

otherwise. :

3.3.5. Precedence of operators tet

Function calls in an expression may cause 'side-effects', but the

result will correspond to a strict left to right evaluation of the ex-

pression, so that side-effects only may influence variables to the right

of the function call.
According to the syntax given in section 3.5.1 the following rules

of precedence holds

first: abs entier real round long .extend

second: ** add extract shift
third: ¥* / // mod
fourth: + -

3.6.6. Arithmetic of real, long, and integer quantities
The Operations + - * / ** (for Integer or long exponents) are per-

formed by the built in floating point operations whenever the result is of

type real, and by the fixed point operations whenever the result is of

type integer. Whenever the result is of type long + and - are performed by

the built in double length operation, whereas the operation * is performed

by a subroutine.

The operations // and mod are performed by the built in fixed point

division whenever the result is of type integer, and by a subroutine

whenever the result is of type long. ;

When necessary integer operands are floated by means of the built in

float operation or converted te « long by extension of the sign. Conver-

sion of operands of type long to type real is performed by a subroutine.

The range of values of type real and integer is given in 3.1.6. The

action when ‘the range of reals is exceeded, 1s controlled at run time by

means of the two standard integer variables . loverflows' ‘and ‘underflows'!

(see chapter 9). The action when the range of integers or longs is excee-

ded, is determined at translatior time by means of the translation para-

meter ‘spill' (see 5.4 and app. B).

5-6 EXPRESSTONS

The precision of real arithmetic may be decreased from 36 bits to 33
pits. This option is controlled at run time by means of the procedure
'system'. -The results of the numerical standard functions are distorted
correspondingly when the low precision is selected.

3.4. Boolean expressions

3.4.1. Syntax
Rigol 5 adds the operators case, add, and shift to the reference

language. The full syntax becomes:

<relational operator> ::= <|<=|=|>=|>|<
<and> ::= and|&
<or> ::= or|!
<relation> ::= <simple arithmetic expression>

<relational operator><simple arithmetic expression>

<boolean pattern operator> ::= add|shift
<hoolean basic> ::= <logical value>|<variable>|

<function designator>|
<boolean basic><boolean pattern operator<primary>|
(<boolean expression>)

<boolean primary> ::= <boolean-basic>|<relation>
<boolean secondary> ::= <boolean primary>|

-,<boolean primary>
<boolean factor> ::= <boolean secondary>|

<boolean factor><and><boolean secondary>

<boolean term> ::= <boolean factor>|

<boolean term><or><boolean factor>
<implication> ::='<boolean term>|

<implication>=><boolean tern>
<simple boolean> ::= <implication> |

_<simple boolean>==<implication>

<boolean expression list> ::= <boolean expression>|
<boolean expression list>,<boolean expression>

<boolean expression> ::= <simple boolean>|
<if clause><simple boolean> else <boolean expression>|
<case clause>{<hoolean expression list>)

34626 Example

if b add 1 shift 3 then (case i of(true,b or c) else
ease j of((u=v) shift 1, false)

34.3. Semantics
The Semantics of the new operators are given in chapter 9.

34.4. pes
é types of the new operators are given in chapter Jo.

3.4.6. Precedence of operators
The priority or aad ~ and©6 extract is the priority of **, i.e. higher

than the relational operators.

3.4 oTe Arithmetic of poolean quantities

“Whe representation Of booleans and some rules for boolean arithmetic

is given in 3.1.6. Here, we add the rules for the relational operators:

EXPRESSIONS 3-7

< <= >= > are in most cases executed as a subtraction (floating
point or fixed point) of the two operands. Thus, you
must be prepared for overflow, underflow, or spill.

= and <> are always performed as a bit by bit comparison of the

two operands. This may for instance be utilised to

compare two text strings packed into real variables

without risx of overflow (see example 3 of 9.41).

3.5. Designational expressions commoniu KWoun) ag LABELS

505ele Syntax
Integers are not permitted as labels. The designational expressions

are extended with case constructions as described in 9.8.

3.5.0. Switch versus case statement
Switches are implemented fully in algol 6, but we recommend the use

of case statements (see 9.8) instead of 'goto sw(i)'. Case statements are

much faster and may give a clearer program.

3,6. String expressions

3.601. Syntax

<formal string> ::= <identifier>

<string primary> :!= <formal string>|<string literal>|
string <arithmetic expression>|(<string expression>) |
<string primary> add <primary>

<string expression list> ::= <string expression>|
<string expression list>,<string expression>

<string expression> ::= <string primary>|
<if clausex<string primary> else <string expression>|
<case clause>(<string expression list>)

3.6.2, Examples

if b then <:ok:> else <:error:>

case i of (<:first:>,<:second>, string ra(increase(j)))
if b then (case i of (string r,fs)) .

else case i of(<:ab:>,<<d.dd>)

3.6.3. Semantics
TR string expression is a rule for computing a string value. The

principles of evaluation are analogous to the evaluation of an arithmetic

expression. The semantics of the operator ‘string’ are given in 9.70 and

of tadd' in 9.2.
String expressions are used as actual parameters and as arguments of

the operator 'real' (see 9.55).

The value of a string expression is

a short text string (at most 5 characters, for example

<:abcede:>)

a long text string (a literal text string of more than 5

characters, for example <:result:>),
a layout string (for example <<dd.dd'+d>), or

a text portion (6 characters none of which are Nulls,

This cannot occur as a literal text,

but may be obtained by the operators

'string' or ‘add’, for example
<:abcde:>add 92).

3-8 EXPRESSIONS

When a standard procedure references a string parameter and obtains

a text portion as the result, it will accept these 6 characters as the
first part of the string and teference the parameter again and again to

obtain the next text portions. When a short or a long text string is ob-

tained, the string end is met, This rule implies that the string parameter

must have side-effects to supply new text portions when it is referenced

repeatedly. The standard procedure 'increase' assists you with this task

as explained in example 2 of 9.'/0.

3.6.4. Types ;

The argument of the operator 'string' must be of type real or long.

A formal string must be a formal parameter specified as string.

3.6.5, Binary pattern .

The binary pattern of a string value is 48 pits with the values given

below.

Text portion and short text string

‘he characters of the text. string (omitting the string quotes) are

represented as their internal value (see 2.0.1) and packed as 8-bit bytes

from left to right. The 48 pits are filled up to the right with zeroes,

Long text string
The last 24 bits contain a one followed by some undefined bits, The

first 24 bits contain segm shift 12 add rel. The characters of the text

string are stored as text portions on the backing storage area which is

oecupied by the algol program. The first text portion representing the

first 6 characters is found on segment 'segm' word rel [a and re1//2
(the 256 words of a segment are numbered 0, 1, 2, o«+). The next text

portions are found in word rel//2-3 and rel//2-2 and so on, until 48 bits

representing a new long text string are found or until 48 bits represen-

ting a ‘short text string are found. The first possibility specifies the

continuation of the string on a new segment, the latter possibility sig-

nals the string end.

Layout string
e rst 24 bits represent the spaces of the layout as follows:

First, a 1 followed by a 1 for each leading space of the layout. Second,

one 0. The following bits correspond to the digit positions of the number

part (z, f, d, and 0). A bit is 1 if the corresponding digit position is

followed by a space, otherwise 0.

The last 24 bits contain:

pit oO @)
pit 1-5 b = number of significant digits (z, b, f, and 4).

pit 6-9 h = number of digit positions before the point.

pit 10-13 d = number of digit positions after the point.

pit 14-15 pn= first letter of number part (z=10, f=01, d=00, b=11).-

bit 16-17 fn= sign of number part (+ =10, - =01, no sign = 00).

pit 18-19 s = number of digits in exponent.

bit 20-21 pe= first letter of exponent part (z=10, f=01, d=00).

bit 22.23 fe= sign of exponent part coded as fn. ©

EXPRESSIONS 3-9

4.7. Zone expressions

ZeTel e Syntax

<zone identifier> ::= <identifiler>
<zone array identifier> ::= <identifiler>
<zone expression> ::= <zone identifier>|

<zone array identifier>(<arithmetic expression>)

Zelece Examples

in polyfase(output) polyfase{input(i))

30705. Semantics
The value of a zone expression is a zone. Zone expressions are used

as actual parameters,
The arithmetic expression is evaluated as a subscript expression. It

selects a zone from the zone array. The subscript must obey

1 < subscript < number of zones declared in the array.

STATEMENTS hed

4, STATEMENTS

4.1.1. Syntax .
Algol © adds the case statements described in 9.8. ‘The definition of

a statement becomes:

<statement> ::= <unconditional statement>|
<eonditional statement>|<for statement>|
<case statement>

A procedure may be translated alone, and everything until the first
begin or external is skipped, so the definition of a program becomes:

<program> ::= <block>|<unlabelled compound>|
axternal <procedure declaration>$ end

4.2. Assignment statements

4.2.3. Semantics
Wote that variables are extended with record variables, variable

fields and field variables (see 3.1). The location of a zone buffer ele-

ment designated by a record variable is not influenced by expressions to

the right of the record variable, even if ‘these change the position of

the record within the zone buffer. Note the reformulation of 4.2.3.1 and

4.2.3.3. The location of a variable is an absolute address in the RC 4000.

4..2.301e The locations of all variables, including subseripted variables,

record variables, and variable fields, occurring in the left part are

evaluated from left to right.

(4.2.3.2. The expression of the statement is evaluated.)

4.2.3.3. The value of the expression is assigned to all the left part

Variables with locations as evaluated in step 402.301 in sequence from

right to left.

4.2.4, Types
ela variables may be used as variables of type integer.

Long is considered as a new arithmetic type. Conversion procedures

exist between all three types. The conversion of a real value to an inte-

ger or long and the conversion from a long value to an integer are per-

formed so that spill alarm (see appendix B) may occur.

4.6, For statements

4.6.1. Syntax

Tly a simple variable or a field variable can occur as the con-

trolled variable of a for statement.

4.6.4.2. Step-until-element
Tn the tollowing algorithm, localB is an anonymous variable, while

A, B, and C represent the expressions of A step B until C. V is the con-

trolled variable, The step-until-element is executed in this way:

yoo STATEMENTS

V:= As localB:= B3

Li: if (V-C)*localB > 0 then goto Element exhausted3
Statement S3 ~
localB:= B3 V:= V + localBs

goto L1$

4.6.5. The value of the controlled variable upon exit
Upon exit trom a for statement, the value of the controlled variable

is defined by the algorithm in 4.6.4.2 above and in 4.6.4.1 and 4.6.4.3 of
the Revised Report (ref. 3).

4.6.6. Goto leading into a for statement
Any occurrence outside a for statement of a label which labels a

statement inside the for statement is forbidden.

“ho7. Procedure statements

oTelo Syntax _ is ce

The expressions of algol 6 include string expressions, variable

fields, and zone expressions, which may occur as actual parameters. An

actual parameter is:

<actual parameter> ::= <zone array identifier>|
<expression>|<array identifier>|<array field>
<switch identifier>|<procedure identifier>

The 'fat comma' defined by)<letter string>:(. may not contain compound

symbols, ,

4.7.2. Examples

clear(a)begin of clearing:(i) end_of clearing: (3)

4.7.3. Semantics of zone expressions, array fields and field variables
The zone of a Zone expression 1S always evaluated before the proce-

dure is entered.

An array field is evaluated before the procedure is entered. The

evaluation is made like this:

a) The bound bytes are computed as shown in section 5.7.5
b) Tae lower bound byte is adjusted relative to the value found

above. The adjustment is made as follows:

lower bound byte:= (lower bound byte - 1)//type_length*
--‘Sype_length + if lower bound byte <= 1 then 1

else typelength + 1 ~

c) A description of a one-dimensional array of the resulting

type and with these bound bytes is set up local to the pro-

cedure.
If the procedure uses this array as an actual array field

parameter in subsequent procedure calls, this cutting may be

performed again. Thus, from a certain step, the bytes of an

array may be unaccessible from the procedures, if the values

of the array field variables are not chosen appropriately.

STATEMENTS rs)

A parameter specified as a field variable may correspond to an ac-

tual parameter of type integer, A field variable as an actual parameter
behaves aS a variable of type integer.

4.7.5. Restrictions
A value parameter specified as type integer or type real may corre-

spond to an actual parameter of type real or integer. Value arrays and va-

lue labels are not allowed (see 5.4).
A formal parameter specified as real array may actually be a zone

expression. In this case, the array elements are that part of the zone

puffer which is selected as the zone record at the moment of the call.

In all other cases, the compiler requires a strict agreement between

specification and actual kind and type (see however 4.7.5.3). All parame-
ters in algol procedures must be specified,

LT 02e
Ormal name parameter which occurs as a left part variable in an

assignment statement within the procedure, may actually be an expression

which is not a variable (a constant for instance). In this case, the as-
signment takes place to a fictious variable. If such an actual parameter

is a constant, the future value will be taken from this fictious variable,

and if it is an expression, the assignment disappears into thin air.

470d oe

actual parameter which is an array identifier can only correspond

to a formal array parameter with the same number of subscripts or with

one subscript. In the latter case, the lexicographical ordering of the

array elements is used as explained in 5.2. An array field is considered

as a one-dimensional array (see 4.7.3).

4.729. Recursive procedures
Necursive procedures are handled fully in algol 6, note however the

possible 'cutting' of array parameters which are actually array fields. If

a variable is declared '‘owm' in a procedure body and the procedure is

called recursively, the same own variable is used in all the dynamic

incarnations of the procedure. An application of this is shown in example

3 of 6.3.4.

bog

\

rn

. . a

DECLARATIONS 51

5. DECLARATIONS

Algol 6 adds the declarations of field variables, long variables and

arrays, zones, and zone arrays. All programs may be thought of as surroun-

ded by one common block (the standard identifier block). The declarations
of this block are given in the backing storage catalog of the RC 4000.
New procedure declarations are inserted in this block when external pro-

cedures are translated (see 9.20). Procedures expressed in machine lan-

guage, simple variables, and zones may be inserted in the standard identi-

fier block as deseribed in ref. 10.

Initial values, owns
thiy simple variables may be declared om in Algol 6. Ow booleans

are initially false, own integers are initially 0, and the binary pattern

of own reals and longs is initially 0. All other variables have undefined

contents just after their declaration (for zones, see 9.79).
For owns and recursive procedures, see 4.7.9.

5.1. Type declarations

5 elol. Syntax
Knew type, long, is introduced. The syntax for type becomes ;

<type> ::= real|long|integer |boolean

5 ol oe Semantics

The range and representation of variables are given in Aole

In arithmetic expressions, any position which can be occupied by an

integer or a real declared variable may be occupied by a long declared

variable.

5.2. Array declarations

5.2.1. Syntax
Own arrays are not allowed. Note that long is a new type.

5.2.4. Lower and upper bounds
Note that at least one element must be declared in an array and that

all identifiers in the bounds mst be non-local.

5.2.6. Lexicographical ordering

@ clements of an array are stored in a sequence, and a multi-di-

mensional array declared

Am(Low:up1, low2:up2,..., Lown:upn)

may in certain connections (specified in 5.2.6.1 and 5.2.6.2) be consi-

dered as a one-dimensional array

Ao(lowsup) »

Whenever the mapping of Am on Ao makes sense, the elemment

Am(i1,12,.0+,1n)

5-2 DECLARATIONS

may be found as

Ao(coe((11*e2+12) ¥5+13) *. 0 0+in)

where

c2 = up2 - low2 + 1, c3 = upd = lows + 1, and So on.

.. This mapping of the elements is called the lexicographical ordering

pecause it is a linear ordering of the elements obtained by varying the

first subscripts at the slowest rate.
The values. of. low and up may be seen to be:

low

up

vo off tes + 12) *e3 + 13)* eoo + in

eoo((ulxc2 + u2)¥c3 + u3)* ov + un

It may.also be seen that the (possibly fictive) element
Am(0,0,++,0) is the same as Ao(0).

5.20601. Multi-dimensional array as actual parameter
A multi-aimensional array may occur as an actual parameter where the

corresponding formal is a one dimensional array. The mapping above is

used in that case.

5.2.6.2. Multi-dimensional array as field base
Whenever a multi-dimensional array is used in a field reference as

the (ultimate) field base, the byte numbering and addressing described in

5.2.7 and 5.2.8 is found by mapping the multi-dimensional field base on a

one-dimensional field base according to the rules above.

5.207. Bound bytes and byte numbering
“Fach element of an array is represented by a number of bytes. This

number is the type length explained in section 3.1.6.

The first byte in an array is called the lower bound byte and the

last one the upper bound byte. Let an array be declared

A(Lowsup)
then

(low - 1)*type length + 1
up*type length.

lower bound byte
upper bound byte

The bytes of an array are numbered relative to the rightmost byte in

the (possibly fictive) element A(0). The element A(i) contains the bytes

(i - 1)*type length + 1 <= byte number <= ix type length.

5.2.8. Word boundaries and addresses
When an array 18 declared, 1t 1s created so that the word boundaries

are between an even numbered byte and its odd numbered successor,

An array element, A(i), is addressed within the array by the byte
with the number ixtype length.

5.4. Procedure declarations

5.4.1. Syntax
The set of possible speeifiers is extended so that longs, field va-

riables, zones and zone arrays, may be specified and the syntax for speci-

fier becomes:

DECLARATIONS ol)

<specifier> ::= string |<type>|array |<type> array |label|.switch|
<procedure>|<type> procedure |<type> field|
array field|<type> array field|zone|zone array

Note that long is a new type.

5.4.5. Specifications
AIT parameters must be specified. Only parameters specified real,

long, integer, or boolean may occur in the value part,
An actual field variable may correspond to a formal integer and. vice

versa.
An actual array field may correspond to a formal array of the same

type.
An actual zone may correspond to a formal real array.
An actual real may correspond to a formal integer value and an actual

integer may correspond to a formal real value.
Except for these possibilities, the kind of an actual parameter must

correspond exactly to the kind and type of the specification.

5.4.6. Code as procedure body
Procedures may be expressed in machine language and introduced into

the standard identifier block (see introduction to chapter 5) as it is
explained in ref. 10.

Algol procedures may be translated alone (see 9.20).

5.5. Zone declarations

5 oDole Syntax

<length> ::= <arithmetic expression>
<shares> :3= <arithmetic expression>

<block proc> ::= <procedure identifier>
<zone segment> ::= <zone identifier>(<length>,<shares>, <block proc>) |

<zone identifier>,<zone segment>
<zone list> ::= <zone segment>|<zone list>,<zone segment>
<zone declaration> ::= zone <zone list>

5.5.2. Examples,

zone master(2xb1,2, stderror)
zone m1,m2(a,b,c) ,m3(900,3,pr)

5.5056 Semantics
A zone declaration declares one or several identifiers to represent

zones, The arithmetic expressions in the declaration are evaluated once

for each entrance into the block. Hach zone consists of:

a buffer area

a zone descriptor

one or tore Share descriptors (often just called shares)

Inside the block, a zone identifier may occur as an actual parameter, as

a constituent of a record variable, or as a field base (cf. 3.1).

Buffer area

——“The Teneth of the buffer area for any zone is given by <length> in

the first parenthesis following the zone identifier.
Each element of the buffer area may be used as a real variable as

explained for zone record below. The elements are in some connections

identified by a byte number in the range 1 <= byte number <= 4*length.

5-4 DECLARATIONS

Zone descriptor a me
ZR zone descriptor consists of the following set of quantities, which

specify a process or a document (see ref. 1) connected to the zone and
the state of this process:

process name A text string specifying the name of a pro-

cess or a document. as

mode and kind An integer: specifying mode and kind for a do-

-cument (see 9.41,. open).
logical position A set of integers specifying the current po-

sition of a document.

give up -. An integer specifying the conditions under

which <block proc> is to be called.

state An! integer specifying the latest operation

a on the zone... _

record Two integers. specifying the part of the buf-

fer area nominated as the zone record.

used share ; An integer specifying a share descriptor

within the zone.

last byte An integer specifying the end of ‘a physical

block on:a document.

block . procedure The procedure <block proc> in the first pa-

renthesis following the zone identifier.

The normal use of these quantities is explained in details in chapter 6.

Share descriptor :

Tach zone contains the number of share descriptors given by <shares>

in the first parenthesis following the zone identifier. The share descrip-~

tors are numbered 1, 2, ...0, <Shares>.

A share descriptor consists of a set of quantities which describe an

external activity sharing a part of the buffer area with the running pro-

gram. An activity may be a parallel process transferring data between a

document and the buffer area, or it may be a child process executed in the

puffer area under supervisory control of the -algol program. Section 6.4

explains these possibilities. :

The set of quantities forming one share descriptor is:

share state An integer describing the kind of activity

going on in the shared area.

shared area, Two integers specifying the part of the buf-

fer area shared with another.process by means

of the share descriptor.

operation Specifies the latest operation performed by

means of the share descriptor.

Zone record ,

number of consecutive bytes of the buffer area may at run time be

nominated as the zone record. The bytes of the zone record may be avai-

lable as record variables, which may be thought of as a kind of real sub-

scripted variables. The record variables are numbered 1, 2, ».., <record

length> and referenced as described in 3.1. All bytes of the record may

pe referenced by means of field references, as the zone may be used as a

field base.

DECLARATIONS 5-5

5.54. Types
The two expressions <length> and <shares> must be of type integer.

The procedure <block proc> must be declared like this:

procedure <block proc> (z,s,b)$ zone z} integer s,b3

perer Scope

identifiers occurring in <length> and <shares> must be non-local

to the block. However, <bloc proc> may also be local.
At the time of exit from the block (through end, or by a goto state-

ment) , the activities described by the share descriptors are terminated as

follows: A commmication with a parallel process is completed by means of
the monitor function wait answer (see ref. 1). A running child process is
stopped (but not removed, see ref. 1). :

5.5.6. Standard zones
Two zones, ‘in’ and ‘out', are available without declarations. They

are described in 9.28 and 9.42,

5.6. Zone array declarations

50601. Syntax

<zones> ::= <arithmetic expression>

<length> ::= <arithmetic expression>
<shares> ::= <arithmetic expression>

<block proc> ::= <procedure identifier>

<zone array list> ::= <zone array list>,<zone array. list>|
<zone array identifier>(<zones>,<length>,<shares>,
<block proc>)

<zone array declaration> ::= zone array <zone array list>

5.6.2. Examples

Zone array inmerge(3,2%600,2,stderror) ,outmerge(3,2*600, 2, stderror)

5.6.3. Semantics
A zone array declaration declares one or more identifiers to repre-

sent one-dimensional arrays of zones. The arithmetic expressions in the

declaration are evaluated once for each entrance into the block. Each

zone array consists of as many zones as specified by <zones>. All these

zones are declared with <length>, <shares>, and <block proc> as specified

(cf. section 5.5). The zones of ao°zone array are numbered 1, 2, eee,

<zones>. a

Inside a block, a zone array identifier may occur as an actual para-

meter, as a constituent of a subscripted zone occurring as a parameter

(cf. 3.7), or as a constituent of a record variable (cf. 301).

5.6.4. Types
SZoness must be of type integer. See section 5.5.4 for <length>,

<shares>, and <block proc>.

5.6.5. Scope
ATL identifiers occurring in <zones> must be non-local to the block.

See section 5.5.5 for <length>, <shares>, <block proc>, and the exit from

the block,

5-6 DECLARATIONS

5.7. Field declarations

Solele Cyntax

<field list> ::= <field varieble>|<field variable>,<field list>
<variable field declaration> ::= <type> field <field list>
<array field declaration> ::= <type> array field <field list>|

array field <field list>

<field declaration> ::= <variable field declaration>|
<array field declaration>

Note that long is a new type.

57-2. Examples
dee 9,22 and subsections.

5 lode Semantics

Z field declaration serves to declare one or several identifiers as

field variables. Field variables are integers and may be used whereever

an integer variable may be used.

A variable field declaration declares simple field variables and an

array field declaration declares array field variables. The type declared

together with the field variables, the associated type, has no meaning

outside field references.

All field variables declared in one declaration have the same asso-

ciated type. If no type declarator is given in an array field declaration

the type real is understood.

5.74. Location of a variable field .

LR variable Tield 18 located within an array, a zone record, or an

array field. The denotation of a variable field is shown in section 3.1.

The variable field consists of as many bytes as the type length of the

associated type shows. A variable field cannot occupy bytes outside the

pound bytes (cf. section 5.2.7 and section 3.1.4.3). .

The location of a variable field is determined by a byte number equal

to the value of the simple field variable. This byte number is used as an

address of the field. Boolean fields are addressed by their byte number.

Integer, long, and real fields are synchronized with the word boundaries

(cf. section 5.2.8) of the RC hoo0. Integer fields are addressed by one of

the 2 bytes forming the integer word, Long and real fields are addressed

by one of the 2 bytes in the right hand word, The address must be >= lower

pound byte + type length - 1 and it must be <— upper bound byte.

5.7.5. Location and bounds of an array field

In array field 18 located within the field base. The byte number re-

ferring to a certain piece of data in the array field is. found by sub-

tracting the value of the array field variable from the corresponding byte

number in the field base. If ‘the field base is an array field, this rule

may be used recursively.

The bound byte numbers are given by the formula:

bound byte of array field =

pound byte of field base - value of array field variable.

A subscripted element in an array field is addressed according to the

rule in section 5.2.8. The address of a subscripted element must be

>= lower bound byte + type length - 1 and it must be < upper bound byte.

INPUT/OUIPUT SYSTEM 6=1

6, INPULT/OUTPUT SYSTEM

This chapter describes the use of zones for input/output and for
programming of operating systems, Details of the various procedures are
given in section 9.

Let us start with a typical example of output to a peripheral de-

vice specified by the algol program: :

begin zone pr(2¥*128,2,stderror)s
comment declare a zone which will buffer the output. Two

‘buffers of 128 elements of 4 bytes each (or 128%6 charac-
ters) are used here, The procedure stderror is called when
the. device causes troubles

open(pr,+,<:b853:>,0) 3
comment specify the output device, here:

packing storage area bs53$

write(pr,<:results::>,...)3 eee
comment output the results;

close(pr, true) $
comment terminate the output, empty the buffers;

ends

Exactly the same scheme would work for character input if write(...) was

replaced by read(...)- If the device is a magnetic tape, the tape mst be
positioned before input or output can start. That is done by means of the

procedure setposition.

Input and output are buffered in RC 4000. In the example above, this

means that 128%6 characters are packed in the zone buffer before they are
transferred to the backing storage. If you forget to close the zone, or

“4f the rm is terminated with an alarm, the last buffer of characters is

never transferred to the device. When you output to the standard zone

‘out', the File Processor will take care of printing the last buffer,

even if your program is terminated with an alarm. ,

6.1 Documents

The high level procedures assume that all peripheral devices scan

documents. For instance, a document scanned by a paper tape reader is a

roll of paper tape, a document scanned by a magnetic tape station is a

reel of magnetic tape. The documents are at run time addressed by names

appearing as text strings in algol.

A document may be thought of as a string of information, either a

string of 8-bit characters or a string of real variables (ghencnts) The

string is on some documents broken into physical plocks (e.g. on magne-

tic tapes and backing storage areas). The procedures for input/output on

character level and record level keep track of the current logical posi-

tion of the document. The logical position points to the boundary De-

Tween two characters or two elements of the document. During normal se-

quential use of the document, the logical position moves along the docu-

ment corresponding to the calls of the input/output procedures.

6-2 INPUT/OUTPUT SYSTEM

For documents consisting of physical blocks, the logical position is
given by a position within the physical block, plus a block number, plus

(for magnetic tapes) a file number. Note that the block number Is ambi-
guous in ‘the case where the logical position points to the boundary be-
tween two physical blocks. This ambiguity is resolved explicitly in the

description of the individual procedures: The term 'the logical position

is just after or just before a certain item' implies that the block num-
ber is the block number of that item.

The following sections give a survey of some documents and the way

they transfer information to and from the zone buffer. The rules for pro-

tection of documents and further details are found in ref. 1, ref. 5, and

ref, 8. The kinds mentioned below are explained in section gia, open.

6.1.1. Internal process (kind 0)
Tn internal process (another program executed at the same time as

your job) may receive or generate a document. If the process just trans-

mits the information to or from a peripheral device, the rules below for

that device will hold for the commmication with the document too. The

kind specified in 'open' should then be the kind of the document.
The internal process may also handle the information in its own way,

and then no general rules can be given, but usually, the end of the docu-

ment is signalled as explained in section 6.3.3.

6.1e2. Backing storage (kind 4)
€ backing storage consists of a drum or a disc or both. You have

no direct access to the entire backing storage, but only to documents

which are backing storage areas consisting of a number of consecutive

segments. Bach seament contains 512 bytes (or 128 real variables). ‘The

Segments are numbered 0, 1, 2, «2. within the area, and the block numbers

mentioned above are exactly these segments numbers. File numbers are

senseless,

One or more segments may be transferred directly as bit patterns to

or from the core store in one operation. The number of segments trans-

ferred is the maximum number that fits into the share used.

The physical backing storage may be a drum or a disc, Details about

the various types of devices may be found in ref, 8.

6.103 Typewriter (kind 8) .
I typewriter may be used both for input and output. The sequence of

characters input forms one document (infinitely long), and the sequence

of characters output forms another document. File number and block num-

ber are senseless on a typewriter.

One input operation transfers one line of characters (including the

terminating New Line character) to the share. If the share is too short,

less than a line is transferred, but that is an abnormal situation. The

characters are packed in ISO 7-bit form with 3 characters to one word,

and last word is filled up with nulls. One output operation transfers

characters packed in the same form to the typewriter. Several lines may

be output by one operation.

6.104. Paper tape reader (kind 10)
Tdocument consists of one roll of paper tape. It may be read in

various modes: with even parity, with odd parity, without parity, or with

transformation from flexowriter code to ISO code. File number and block

number are senseless for a paper tape.

One input operation will usually fill the share with characters

packed 3 per word, but fewer characters may also be transferred, for in-

stance at the tape end. In such cases, the last word is filled up with

null characters, The characters are not necessarily ISO characters, that

depends on the meaning you assign to them.
The RC 2000 tape reader can read about 2000 characters a second.

INPUL/OUTPUT SYSTEM 6-3

6.1.5. Paper tape punch (kind 12)
A document 18 from the programs point of view infinitely long, even

when the operator divides the output into more paper tapes. A paper tape

may be punched. in various modes: with even parity, with odd parity, with-

out parity, or with transformation from ISQ code to flexowriter code.
File number and block number are senseless for a tape punch.

One output operation may punch any number of characters packed 3 per

word, In all modes, except the mode without parity, only the last 7 bits

of the characters are output and extended with a parity bit.
The RC 150 tape punch can punch about 150 characters a second.

6.1.6. Line printer (kind 14)
Z document 18 trom the programs point of view infinitely long. File

number and block number are senseless on a printer.
One output operation may print any number of characters packed 4 per

word. The characters must be in ISO 7-bit code.
A line printer can print 7 to 17 lines a second.

6.1.7. Card reader (kind 16)
A document 18 one deck of cards. The card reader may read in various

modes as descibed in ref. 8.
One input operation will fill the share with an integral number of

cards.
Usually jobs let the operating system read all necessary eard decks

before they are started. ‘The cards may then be read as a normal ISO text

stored on backing store (see ref. 7 for further details).

6.108. Magnetic tape (kind 18)
DT document 15 one reel or tape. It consists of a sequence of files

separated by a single file mark. Hach file consists of physical blocks

possibly with variable lengths. The blocks may be input or output in even

or odd parity. The files and blocks are numbered 0; 1, 2, ..- as shown

in the figure.
One operation transfers one physical block to or from a share. If

an input block is longer than the share, only the first part of the block

is transferred.

A magnetic tape document:

logical position

load point~«-file 0 ——» tape mark~-file 1 +> tape mark end of

oO yt 1L--f t gk Jv--h)--- OQ tape

block O block 1 «ee. plock O block 1 .oe

Two kinds of tape stations exist: 7-track stations where a block

consists of a sequence of 6-bit bytes; one word of the share is here

transferred as 4 6=bit bytes. 9-track stations where a block consist of

a sequence of 68-bit bytes; one word of the share is here transferred as

3 8-bit bytes. This difference causes no trouble as long as the tapes are

written and read on RC 4000. But if you try to move a 7-track tape to

another computer (or to an off-line converter), you should remember that

the read and write procedures of algol work with 68-bit characters packed

3 to a word, which means that the physical 6-bit bytes on the tape have

a strange relation to the logical 8-bit characters. You may, however,

read or write 6-bit characters by means of the operators shift, add, ex-

tract and the procedures inrec6, outrec6.

6-4 INPUL/OUTPUT SYSTEM

The share length you use for output to -.a magnetic tape determines
the physical block length. As the blocks are separated by block gaps,

the share length has influence on the amount of information the tape can
‘hold and also on the maximum transfer speed. With a density of 556 bpi

(bytes per inch), a share length of 60 elements (240 bytes) will generate
blocks of about 3/4 inch (more or less depending on the kind of the sta-
tion). If the block gap is 3/4 inch, half of the tape is used for blocks
and half for block gaps. The data is transferred with 0.38 times the
maximum tape speed, if block gaps take 1.6 the time of blocks of the same
length. If you used a share length of 600 elements (2400 bytes), 10/11 of
the tape would be used for data and the transfer rate would be 0.86 of
the maximum possible.

Details on actual transfer rates and possible densities is found in
ref, 8 and the device manuals. :

6.1.9. Devices without documents
Some peripheral devices, for instance the clock, do not scan docu-

ments, and they cannot be handled by the high level zone procedures. How-

ever, the primitive input/output level may handle such devices too.

6.2. High level zone procedures

The following standard identifiers are known as the high level zone

procedures, because they work with a built in strategy for handling of

peripheral devices (see 6.3). This built in strategy tries to make the
documents appear as uniform as possible, For instance, the ‘end of file’

and 'end of document' conditions are transformed into End of Medium cha-

racters, which are detected easily by the normal use of the read proce-

dures.

Open (see 941). Connects a document to the zone and divides the

puffer area into shares of equal size.

close (see 9.14). Terminates the current use of a zone including

emptying of output buffers and possibly releasing of the

document.

setposition (see 9.58). Terminates the current use of a zone including

emptying of output buffers. A magnetic tape or a backing

storage area is then positioned to the file and block spe-

cified. The positioning takes no time on a backing storage

area, but it may involve a lot of tape moving operations

for a magnetic. tape.

getposition (see 9.23). Gets the file and block number corresponding

+o the current logical position of the document.

read (see 9.51). Inputs a sequence of numbers given in character
form on a document.

readchar (see 9.53) . Inputs one non-blind character from a document.

readstring (see 9.54). Inputs a text string given as characters on a

document.

readall (see 9.52). Inputs a mixture of numbers, single characters,

and text strings from a document.

INPUT/OUIPUT SYSTEM 6-5

repeatchar (see 9.56). Makes the latest character read from the docu-
ment available for reading once more. ~

intable (see 9.32). Exchanges the current input alphabet with an
alphabet specified in the program.

tableindex (see 9.75). Used in connection with intable to define the
alphabet.

write (see 9.78). Prints texts, numbers, and single characters on
a document. ;

inrec6 (see 9.31). Gets a sequence of bytes from a document and

makes them available as a zone record.

outrec6 (see 9,46). Creates a zone record with an initially unde-
fined content. The program may then assign values to the

record variables, and later the record will be output to

the document as a sequence of bytes.

swoprec6 (see 9.72). Gets a sequence of bytes from a backing sto-

rage area and makes them available as a zone record. The

program may then modify the record, which later is trans-

ferred back to the backing storage area,

changerec6 (see 9.10). Regrets the former record and replaces it by a
new-one. The function of changerec6 depends on which of the

procedures inrec6, outrec6, or swoprec6 was called most

lately, i.e. the use of the document.

inrec, outrec, swoprec, and changerec are the Algol 5 versions of inrec6,

outrec6, swoprec6, and changerec6. They differ from the

latter in- that the record length is measured in elements

of 4 bytes each.

invar (see 9.33). Gets a sequence of bytes from a document as

inrec6, but the number of bytes is given as the first word

in the record. A check sum stored in the second word may -

be checked,

outvar (see 9.48). Creates a zone record of a specified length

and stores data from an array or an other record. The length

is stored in the first word of the record. A checksum is

generated and stored in the second word of the record.

changevar (see 9.11). Changes the length of an existing record gene-

rated by means of outvar. The checksum is computed.

checkvar (see 9.13). Generates a checksum in an existing record.

The records generated by inrec6, outrec6, swoprec6, changerec6, and

the corresponding Algol 5 versions of the same procedures are often re-

ferred to as fixed length records, although they may be of varying

length. The records generated by invar, outvar, and changevar are re-

ferred to as var-records, and these procedures including the checkvar

are referred to the var-procedures, All 12 procedures are referred to as

the record handling procedures opposed to the character handling proce-

dures read, readchar, readstring, readall, repeatchar, write, outtext,

outchar, and outinteger.

6-6 INPUL/OUIPUT SYSTEM

Two standar zones, 'in' (9.28) and ‘out’ (9.42), exist. ‘'In' is
used for input on character level, ‘out' is used for output by means of
write, The documents connected to in and out are determined when the run
starts. ;

6.3. Buffering and checking

This section explains the algorithms used by the high level zone
procedures for buffering and checking of the information on a document.

6.3016 Multishare input/output
The amount of intrormation transferred to or from a share in one

operation is called a block. On a magnetic tape, a block is a physical
block or a tape mark, On a backing storage area, a block is one or more
segments, On a paper tape reader, a block is usually one share of cha-

' racters.

Input
During input from a document via a zone with sh shares, the system

uses one of the shares for unpacking of information and the remaining

sh-1 shares for uncompleted input of later blocks, The following picture

shows the state of the blocks of the document.

Input, sh = 5

| logical position physical position

begin of 1 d4 D errr Wonrnnnnw Vif close were called

document completed transfers uncompleted transfers

Note that when the document is closed, the physical position of the do-

ecument is far ahead of the logical position, This is particularly impor-

tant at the end of magnetic tapes where the 'waved' blocks may be absent

and the tape then comes off the reel.

Output
——During output to a document via a zone with sh shares, one share is

used for packing of information, and O to sh-1 of the remaining shares

are used for uncompleted output of previous blocks. The following picture

shows the state of the blocks in the output stream.

Output, sh = 3

logical position] physical position

pegin of 1 J Dp dt ee LI Vif close were called

document completed transfers uncompleted transfers

for packing

Note that when the document is closed, the physical position is just after

the block corresponding to the logical position.

INPUL/OUIPUE SYSTEM 6-7

Swoprec : . :

e€ procedure swoprec utilizes the shares as follows: One share is

used for packing and wmpacking of information. If sh> 1, another share

is used for uncompleted output. Remaining shares. are used for uncompleted

input of later blocks.

Choice of sh

The advantage of the multishare input/ output is that differences in

speed between the program and the device may be smoothed to any degree.

The most frequent choice is between single or double buffer input/output.

The following rule of thumb may help you to choose in cases where you scan

a document sequentially:

th = time spent by the program with handling of the information in a block

td = time spent by the device with transfer of a block

td + th is the total time in single buffer mode (sh = 1)
max(td,th) is the total time in double buffer mode (sh = 2)

If th varies from block to block, the situation is more complicated and

sh > 2 may pay.

The following rule of thumb concerns the sequential use of swoprec:

th + 2td is the total time per block with sh = 1
max(th,td) + td is the total time per block with sh = 2
max(th,2*td) is the total time per block with sh = 3

You should always use single buffering on printer, plotter, and

punch, except if you know for sure ‘that your job is not stopped and

Starved by the operating system. The reason is that an output operation

is terminated halfway when the job is stopped, but with sh > 1 the next

output operation is started before the first is checked and output again.

You should always use single buffering for typewriter output, be-

cause ‘the operator at any moment May stop the output operation to send

a@ console message. :

Message buffers occupied

“input/output by means of sh shares occupies permanently sh-1 of the

message buffers available for the job (see ref. 1). From the moment set-

position has been called for a magnetic tape and until the first input/

output operation is performed, one message puffer is occupied (even when

sh = 1).

603020 Algorithms for multishare input/ cuter

ou mus Ow abou ese algorl if you want to interfere with

the system in the block procedure of the zone (examples of block proce-

dures are given in 6.3.4). Section 9.26 and 9.24 explain more about the

variables in a zone. Ref. 1 and ref. 8 explain the rules behind the

communication with devices. Below sh denotes the number of shares in the

ZONE «

6-8

Snapshots

INPUT/OUTPUT SYSTEM

of shares in typical situations (sh = 3)

Change of

Just after setposition on a magnetic tape:

move operation free free
(always share 1)

After inrec:

record

~~. Ws —__—~

input free input

(used share)

After several outrecs:

record

a uo ne ee ee

output free output
(used share)

plock at input

rep:

Change of

if share state(used share) = free then
begin start transfer(input) $

used share:= used share mod sh + 13

goto rep ~
ends

comment now all shares are busy with transfers except after
a positioning;

wait transfer(used share); comment share state becomes free.
The operation checked might be a positioning operations

last byte:= top transferred(used share) - 13
comment now the share contains data from record base to last

bytes

plock at output

if share state(used share) <> free then
begin wait transfer(used_share) 3

comment & positioning Operation might be uncompleted;
ends

start transfer(output) s

used share:= used share mod sh + 13

comment one or more shares behind used share are busy with

transfers3 ~
wait transfer(used share) 3
comment share state becomes free and the share may be filled

from record base to last bytes

INPUT/OUIPUT SYSTEM 6-9

Start transfer (operation) oy
This procedure works only on used_share. It sets a part of the mes-

sage and sends it:

first absolute address of block:= abs address of first shared}

segment number of message:= Segment count;

update segment count for next transfer;
operation in message:= operations
comment the mode is left unchanged;

send messages

share state:= uncompleted transfers

Wait transfer
This procedure waits for the answer from a transfer or tape positio-

ning, checks it, and performs the standard error actions (error recovery).
Finally it may call the block procedure of the zone, In details this works
as follows:

record base:= abs address of first shared(used share) - 13
last byte:= abs address of last shared(used share) + 13
record length:= last byte - record bases 7
st:= share state(used share) $ 7
if st < running child process then
share state(used share):= free3
if st’<> uncompleted transfer then goto return;

wait answer(st); if kind = magnetic tape then
begin

if some words were transferred then block count:=
block count + 13 -

if tape mark sensed and operation is input or output mark
then begin file count:= file count + 13 block count:= 0

end ” ~ -

ends

compute logical status words; comment the logical status word

is 2h bits describing the error conditions of the transfer,

see 6.3.33
top transferred(used share):= if operation = io then
1 + address of last byte transferred else

first shared(used share) ;
users bits:= common ones in logical status and give up mask;

remaining bits:= logical status - users bits;

Perform standard error actions for all ones in remaining bits

(see 6.3.3)
if a hard error is detected then

logical status:= logical status + 13

if hard error is detected or users_bits < 0 then
begin b:= top transferred(used share) - 1 - record_base}3

let record describe the entire shared area from Tirst shared

to last shared} :

Save:= zone state$

if operation = input and tapemark and b = 0 then b:= 23

plockproc(z, logical status,b) 5
zone_state:= saves —
if b <0 or b + record base > last byte then index _alarm;

top transferred(used share):= b +1 + record base};

return: end3 ~

6-10 INPUT/OUTPUT SYSTEM

6.3.3. Standard error actions
Fach standard error action is mainly concerned with a single bit of

the remaining bits in the logical status word. The logical status word is

2h pits generated at the end of an operation on the document. The first
pits until 1 shift 12 are taken directly from the monitor, which takes
most of the bits directly from the hardware. The last bits are a trans-

formation of the result supplied by the monitor, while bits 1 shift 8,

1 shift 7, and 1 shift 6 are generated by the wait transfer routine (see

6.3.2). The meaning of the bits is as follows: | .

Logical status word

1 shift 23: Intervention. The device was set in local mode during
The operation, presumably because the operator changed
the paper or the. like.

1 shift 22: Parity error, A parity. error was detected during the

bloc ransfer.

1 shift 21: Timer. The operation was not completed within a certain

Eime defined in the hardware.
1 shift 20: Data overrun. The high speed channel was overloaded and

could not transfer the data.

1 shift 19: Block length. A block input from magnetic tape was

‘longer than the buffer area allowed for it.

1 shift 18: End of document. Means various things, for instance:
Reading or writing outside the backing storage area

was attempted, the paper tape reader was empty, the end

of tape was sensed on magnetic tape, the paper supply

was low on the printer. See ref, 1 and ref, 8 for

further details.
1 shift 17: Load point. The load point was sensed after an opera-

Elion on the magnetic. tape.

1 shift 16: Tape mark or Attention. A Tape mark was sensed or
Writeen on the magnetic tape or the attention button

- was pushed during typewriter i/o.
1 shift 15: Write-enable. A write-enable ring is mounted on the

magnetic tape.

1 shift 14: Mode error. It is attempted to handle a magnetic tape

In a wrong mode (NRZ or PE).
1 shift 13: Read error. Occurs on card reader. See ref. 8.

1 shift 12: Tard reject. Occurs on card reader. See ref. 8.

1 shift 8: Stopped. Generated by the check routine when less than

Wanted was output to a document of any kind or zero
bytes were input from a backing storage area.

1 shift 7: Word defect. Generated by ‘the check routine when the

Humber of characters transferred to or from a magnetic

tape is not divisible by ‘the number of words trans~

ferred, i.e. when only a part of the last word was

transferred. ;

1 shift 6: Position error. Generated by the check routine after

Magnetic tape operations, when the monitors count of

file and block number differs from the expected value

in the zone descriptor (see 9.26, getzone).

1 shift 5: Process does not exist. The document is unknown to the

monitor.

1 shift 4: Disconnected. The power is switched off on the device.

1 shift 3: Unintelligible. The operation attempted is illegal on

that device, ¢.g. input from a printer.

1 shift 2: Rejected. The program may not use the document, or it

Should be reserved first.

INPUL/OUTPUT. SYSTEM 6-11

1 shift 1: Normal answer, The device has attempted to execute the

Operation, 1.e. '1 shift 5' to '1 shift 2' are not set. +
1 shift O: Hard error, The standard error action has classified

The transrer aS a hard error (see 6.3.2), i.e. the er-
ror recovery could not succeed.

‘The standard error action for 'stopped' cannot be performed successfully

if ‘users bits' (see 6.3.2) contain any one of the following bits:

1 shift 227 21, 20, 19, 18, 16, 7, 5, 4, 3, or 2. As a consequence, the
stopped-bit is ignored by the standard error actions in this case.

The bit ‘normal answer' is always ignored, the remaining standard

error actions depend on the document kind given in 'open' as shown be-

low, This kind has not necessarily any relation to the actual physical

kind, Situations not covered by the description are hard errors.

As an appendix to this section, you will find a quick index on how

the standard error actions work for the different devices and status

bits. You will also find the translation of the status bits to the mes-

sages from FP when ‘the Algol program stops because of device errors

(stderror is called).
Below follows a more elaborate description of the actions.

Details of handling of device status

Kind 0, internal process
TIny status bit except '1 shift 18', end document, '1 shift 8',

stopped, and '1 shift 1', normal answer, is treated by calling the block

procedure. The special actions to be taken must be defined by a special

agreement between your program and the internal process,

End of document: This will only make sense during input. If anything has

been input, the bit will be ignored. Otherwise the empty block

Will be replaced by 2 bytes containing the text

<3<25><25><o5>:>. If this bit appears during any other opera-

tion, it will cause the block procedure to be called.

Stopped (during output): The output operation will be repeated for the

remaining part of the buffer, This action may compensate for

differences in share sizes in your program and in the internal

process,

Kind 4, backing storage area .
The monitor usually repeats defect transports to or from backing

storage areas. Therefore most error bits are treated as hard errors. Only

the bits '1 shift 18', end of area, '1 shift 8', stopped, '1 shift 5!,

process does not exist, and '1 shift 2!, rejected are given special treat

ment.

End of document (i.e. area): If this happens during input, and if nothing

has been transferred, the empty block is replaced by 2 bytes

containing the text <:<25><25><25>:>, otherwise the bit is ig-

nored. During output, the standard action is to try to extend

the areca (not at all possible in system 2). If it is impossible

to extend, the block procedure is called, otherwise the output

operation is repeated.

Stopped: This status may appear poth during input and during output. The

transfer is repeated except if it has been overruled by the ace

tion for end of area, or the two actions below.

dn
osATtTS

| dn
a
a
t
s

T
O
L
L
S

O
L
O
U
S
T

I
O
L
I
O

T
O
L
L
E

2
L
O
U
S
T

t
o
1
t
s

|
q
o
e
f
e
r

p
r
e
d

|
zl

t
u
s

|
LL

dn
a
a
t
s

|
dn

o
a
t
s

T
O
L
L
S

S
L
O
U
S
T

T
O
L
L
S

I
O
L
A

S
L
O
U
B
T

T
O
L
L
S

JOoLis
p
e
e
l

|
Cl

aeTtus
L

OL

dn
e
a
t
s

|
dn

a
a
t
e

T
O
L
I
S

T
O
L
L
S

I
O
L
I
d

L
O
L
S

J
O
L
I
E

dn
s
a
t
s

t
o
i
z
e

s
p
o
l

| +L
F
e
t
u
s

L
6

tt

p
e
T
q
e
u
s

RB
dn

s
a
t
S

|
dn

e
a
t
a

T
O
L
L
S

I
O
L
L
E

T
O
L
L
S

T
O
L
I
O

T
O
L
L
E

S
L
O
U
S
T

S
U
T
O
.
F
I
M

|
GL

O
T
U
s

L
8

e
;

UoT7.U984.9-2
§

dn
3
a
t
e

A
O
L
L
2

O
L
O
U
S
T

O
L
O
U
S
T

I
O
L
I
S

Z
O
L
L
e

O
L
O
U
B
T

Wa
|

<2o
y
r
e
m
e
d
e
.

Ql
¥
e
F
U
S

L
1

©

09
dn

a
a
t
s

O
I
L
S

ZIOLLE
L
O
U
S
T

T
O
L
L
E

IOLLIZ
O
L
O
U
S
T

B
L
O
U
S
T

q
u
t
o
d

p
e
o
t

|)
L

aitTus
L

fe)
8

Wa
IO

WH
tO

Wa
10

Wa
10

a
dn

oat?
|

p
u
e
q
x
o

dn
oats

2
L
O
U
S
T

o
s
u
e
u
o

oSueyo
210UST

dn
eats

|
q
u
e
u
m
o
o
p

pue
| ol

yaTus
1

G
ct

TOLLS
oY

dn
e
a
t
s

IOLLIS
I
O
L
I
O

IOLLIS
IOLILE

J
O
L
I
E

T
O
L
L
E

dn
e
a
t
s

|
y
4
s
u
e
T

4ooTtq
|

6L
W
I
T
U
S

L
q

a ct
dn

o
a
t
?

|
dn

o
a
t
s

T
O
L
L
S

L
O
L
L
S

I
O
L
I
O

IOLIIS
dn

o
A
T
S

|
[Te

y
e
e
d
e
x
z

|
u
n
z
z
e
a
o

exvep
|

Og
4
5
T
U
S

|
¢

°
P
o
o

S
L
O
U
S
T

Oo
dn

sates
;
dn

oats
dn

eats
dn

oats
dn

e
a
t

dn
eats

dn
eats

dn
oats

T
o
T
.

| LZ
VETUS

L
|

2
S
o
u
T
y

,
dn

e
a
t
s

|
dn

o
a
t
s

dn
o
a
t
s

O2LOUST
dn

o
a
t
s

dn
e
a
t
s

S
L
O
U
S
T

G
y
e
e
d
e
z

|}
rto1z9

AatTred
|
zz

a
E
T
u
s

1
L

dn
e
a
t
s

|
dn

o
a
t
s

O
L
O
U
R
T

.
O
L
O
U
S
T

2
L
O
U
S
T

S
L
O
U
S
T

2
I
O
U
S
T

S
L
O
U
S
T

|
U
C
T
Y
U
S
A
T
S
Y
U
T

| CZ
D
E
T
U
S

|
e)

q
u
e
T
e
A
T
n
b
e

©)
t

8
|

OL
ra

ql
gL

gL
oureu

TosTe
| °ou

4Tq

TeuteqzuTt
|
B
e
e
r
e
-
s
q

|
r
e
q
y
t
a
m
e
d
s
y

| o
d
e
q

s
o
d
e
d

|
o
d
e
q

asoded
| z

e
q
u
t
a
d

a
u
t
t

| z
e
p
e
e
r

p
e
o

odie.
2eut

T
q

s
n
7
e
4
s

Spury
FUSteTIFTP

o
y

AOfF
s
u
o
t
y
o
e

JO
W
O
T
P
B
O
T
I
T
I
U
S
P
T

6=12

°MOTSG
STIS.

o
f

UT
pUueYyy.LOUS

UT
UMOUS

ST
UCU

eer.
stu,

*
(
L
q
°
6

U
o
T
Z
O
e
s

oes)
usdo

Jo
[Ted

o
y

UT
p
e
s
n

P
u
r
y

o
t

uo
s
u
T
p
u
e
d
e
p

q
u
c
u
y
e
e
r
.

T
e
t
o
s
d
s

e
4
0
8

s
o
t
q

§
,
1
9
s
n

343
FO

U
C
T
Y
O
e
I
G
X
S

L
O
L
S

S
u
y
T
u
T
e
M
e
r

s
4
t
q

s
n
y
e
q
s

ayy,

S
U
O
T
}
O
e

T
O
T
I
e

p
r
e
p
u
e
y
g

°*C°C*g
07

x
T
p
u
e
d
d
y

6-13

*
s
n
y
e
z
s

T
e
y
j
Z
O
U
e

Y
A
T
M

1
9
4
7
3
8
5
0
2

s
a
n
d
0
0

4T
a
s
n
e
o
a
q

oO
(
f
e
n
s
u
e

T
e
m
z
o
u

Zo
e
d
e
y
2
e
u

tox
e
T
q
e
u
e

59.T1M
)

s
o
T
A
S
p

3u4
tof

T
S
u
L
I
o
U

ST
s
n
y
e
y
s

s
y
y

S
s
n
e
o
s
e
q

oq
J
e
y
y
T
e

A
U

sTUT,
°
s
N
y
e
I
s

s
T
U
D

Zogy
u
e
y
e
y

sft
uoTqZoe

ou
4
e
U
y

s
u
B
o
M

,
e
T
0
U
S
T
,

K
x
Q
U
e

oY,

°kem
T
O
Y
O

S
O
S

UT
p
e
s
n
s
T
u

useq
sey

m
e
A
s
k
s

oY.
1VeUR.

JO
PUTY

SuorA
8
U
T
M

p
e
u
s
d
o

e
v
e
y

n
o
k

V
e
y

u
e
o
m

L
e
m

47
¢
s
1
0
1
1
9
,

s
k
e
s

4T
JI

°
p
e
q
u
e
a
u
z
t

useeq
sey

u
o
t
q
o
e

p
r
e
p
u
e
z
s

ou
ynq

*Spetytoseds
purty

24}
O
f

T
N
d
D
0

A
e

4TqQ
s
n
y
e
I
s

s
T
U
y

VEU,

suUeOM
1T

‘,dn
oats,

shes
Arque

o
u

IT
°
p
e
T
T
e
o

oq
TTIM

-
a
m
M
p
e
s
0
r
d

YOotTq
anok

-
u
o
T
z
O
e

dn
saTS

ayy
pue

yes
9q

TTIM
1Tq

r
o
r
z
e

prey
ou}

F
e
y

U
B
S

sSAOGe
STGey

oY.
UT

,fo71e,
pue

,dn
aATS,

soetazque
ou,

°
U
O
T
}
O
e
E
S

STY.
UL

p
e
u
T
e
t
T
d
x
e

aq

O
L
O
U
S
T

dn
oats

da
o
a
t
s

dn
eats

dn
oats

LOLLO

LOLIO
4Sor

q
v
e
o
d
e
r

A
T
O
L
L
S

T
O
L
L
S

L
O
L
L
S

worse
prey

|
O
W
T
S

L
|

C2

S
L
O
U
S
T

S
L
O
U
R
T

S
L
O
U
S
T

S
L
O
U
S
T

O
L
O
U
S
T

a
L
O
U
S
T

D
L
O
U
S
T

T
e
u
.
1
o
u

L
45TUSs

1
22

U
t
e

mre)
dn

a
a
t
s

dn
a
a
t
e

dn
e
a
t
s

dn
e
a
t
s

dn
e
a
t
s

D
A
U
L
O
S
O
L

p
o
y
o
o
f
a
r

|
2

a
i
t
u
s

1
Lz

STATS
o

dn
o
a
t
s

dn
s
a
t
s

dn.
-aats

dn
e
a
t
s

dn
e
a
t
s

dn
s
a
t
s

dn
a
a
t
e

-
T
T
T
=
q
u
t
T
u
n

|
¢

Z
5
T
U
S

|
Og

d ©)
dn

e
a
t
s

dn
e
a
t
s

dn
e
a
t
s

dn
e
a
t
s

dn
o
a
t
s

dn
o
a
t
s

qUnou|
p
e
y
Z
o
s
u
U
o
d
S
s
T
p

|
+

F
E
T
U
S

L
6L

G

4S
TxXo

aa
3422.10

dn
o
a
t
s

dn
e
a
t
s

dn
a
a
t
e

dn
e
a
t
s

dn
e
a
t
s

qUNOUL
'qgou

s
s
o
p

|
G

4ETuUS
L

gl
g

.
IOLIE

RB
T
O
L
L
E

I
O
L
I
B

|
L
O
L
L
E

T
O
L
L
S

T
O
L
L
E

L
O
L
L
e

dn
o
a
t
s

u
o
t
y
T
s
o
d

|
9

¥
5
T
U
S

|
Lt

o

SOUT.
2:

TOLLE
TOLIO

L
O
L
L
S

TOLIS
TOLLS

IOLLE
G

yeedeazr}|
qoerzep

prom
|

J,
artus

L
9L

o
TTe

gor
Vso

gor
BUEI

IO
ane

q
e
o
d
e
r

yeodert
LOLLIO

qzeodor
qyeodor

J
o
i
z
e

|
[Te

yveodez
p
e
d
d
o
y
s

|
g

4zTUS
|

gq
®

L
O
L
I
S

IOLLE
I
O
L
L
S

IOILS
IOLLa

LOLLIO
IOLLO

ql
4TO

|
6
W
F
U
s

L
|

HL

IOLLIO
IOLLO

T
O
L
L
S

TOLLE
IOLIO

|
TOLLE

LOLLE
GL

YEO
JOL

BETUS
1

EL

:
(x

T
O
L
L
E

TOLLE
IOLL1e

|
L
O
L
I
O

AOLIS
JIOLIE

TOLLS
TOLLS

u
n
s
y
o
o
u
a

j
LL

$
T
U
S

|
a
:

6-14 . INPUT/OUTPUT SYSTEM

Process does not exist: An area process is created. If the creation is
not. successfull, the action gives up and calls the block proce-

dure. If the operation is output, the area process is reserved

for exclusive access, If this is not possible, the action

gives up and calls the block procedure. Now the transfer is re-

peated.

Rejected: Handled exactly as process does not exist.

Note that the status messages process does not exist or rejected may be

caused by the fact that you have exceeded your area claims. ot

Kind 8, typewriter
Among the status bits concerning the hardware only the timer sta-

tus, '1 shift 21' has been given special treatment. The ignored hardware

pits will either generate disconnected status, i.e. '1 shift 4" or
'1 shift 8', stopped during output.

Timer: If this status happens as a result of an output message, the

block procedure is called. After an input operation it is

ienored if anything has been input, otherwise the input opera-

tion is repeated. ,

Stopped (during output): If this bit is generated together with the
ignored bits, the rest of the buffer is output.

Kind 10, paper tape reader

ly end document status '1 shift 18' gets a special treatment from

the check system, If a parity error occurs, the monitor will substitute

the defect character by a substitute character, decimal value 26. Inter-

vention status is ignored.

End of document (i.e. end of paper tape): If anything has been input the

status is ignored, otherwise a block of 2 bytes containing

<2<25><25><25>:> is simlated.

Kind 12, paper tape punch
Tr something has been punched with parity error, the action is to

give up, and call the block procedure. The same thing happens after a ti-

mer status as this usually is caused by the punch running out of paper

tape without having given end document status. This is either caused by

hardware malfunction or by misuse of the punch.

End of document (i.e. no more tape): A message is sent to the parent,

requesting that the paper is changed in the punch and that the

job is stopped until the operator tells that he has done so.

Stopped (during output): The remaining part of the share is output.

Kind 14, line printer
If a parity error occurs during printing, the standard action is to

give up. The end of document status means that the paper has run oute

Fnd of document (i.e. no more paper): A message is sent to the parent

requesting that the paper is changed and that the job is stopped

until the operator tells that he has done so,

Stopped (during output): The remaining part of the share is output.

of

INPUL/OUTPUT SYSTEM 6=15

Kind 16, card reader
A parity error status, signalling an error in the conversion, is ig-

nored by the standard error actions, as the monitor substitutes the wrong

combination by a substitute character corresponding to the conversion

(see details in ref. 8). The end of doctment status shows.end of card
deck e

End of document (i.e. end of deck): If anything has been input, the sta-

tus is ignored, otherwise a block of 2 bytes containing
EQIP HEI > is simulated.

Kind 18, magnetic tape
The actions for maocnetic tapes are made so that a tape may be unloa-

ded and remounted during the run without harming the job using the tape.

Label check is not included, it is expected that the operating system

(or the machine staff) performs this. The action on mode error is to give
up and call the block procedure,

Parity error: The stopped bit is ignored in this case. An input operation

is repeated up to 5 times, but if the parity error persists,

the error is a hard one. An output operation is repeated up to

5 times, preceded by 1 erase operation the first time, 2 erase

operations the second, and so on. If the parity error persists,
the standard actions give up and call the block procedure.

Word defect: The actions are as for parity error. Note that if you sup-
press the word defect action by setting '1 shift 7' in your give
up mask, you can read tapes not written on the RC 4000 or tapes

written with trail <0 (see open, 9.41). Of course your block
procedure will be called each time the bit occurs, In case of

word defect, unused character positions are filled with binary

nulls e

Tapemark: Tapemark is ignored after a sense or a move operation. If

tapemark occurs after an input operation, the standard action

is to simulate a block of 2 bytes containing <:<25><25><25>:>.

Stopped (during output): If the ‘ring! bit is set, the output is repea-

ted, Otherwise a message is sent to the parent requesting a

write enable ring to be mounted. When the job is restarted af-

ter mounting of the ring, the output is repeated.

Does not exist: This bit is ignored after a sense operation or a move

operation. In other cases, a mount-tape-message is sent to the

parent. Next, ‘the tape is reserved for exclusive access and if

this goes wrong, the mount-tape-message is sent again. Third,

the tape is positioned according to file and block count and

the operation is repeated.

Rejected: Handled as 'does not exist', except that the mount-tape-message

is not sent.

Parent message :

The parent (i.e. the operating system for your job) may either

handle a message according to its own rules, or it may pass the request

on to the operator. The job may ask the parent to stop the job temporari-

ly until the operation has been performed. The exact rules depend on the

operating system in question.

6-16 INPUL/OUTPUT SYSTEM

6.304 Block procedure

Call situation

The high level zone procedures may call the block procedure after
input and -output operations and after move operations and output mark
operations on magnetic tapes. After such an operation, the call will take

place in these cases:;’

1. When some of the bits set in the give up mask occurred in
the logical status word.

2. When the standard error actions classified the situation as

a hard error (give up).

The block procedure is called with 3 parameters:

blpr(z,s,b)
Z is the zone. The record of gz is the entire shared area

available for the transfer.

s is an integer containing the logical status word.
b is the number of bytes transferred in the operation.

You can tell the difference between the call reasons by means of the

last bit in the logical status word.

Purpose and return
Tn the block procedure, you can do anything to the zone by means of

the primitive zone procedures and ‘the high level zone procedures (in the

latter case you must be prepared for a recursive call of the block proce-

dure, for instance as shown in example 3 below).
To make sense, the effect of the work should be an improved check

or error recovery of that operation which caused the block procedure to

be called. You may also avoid a standard error action by means of the

give up mask and instead perform your own checking of the transfer.

You signal the result of the checking back to the high level zone

procedure by means of the final block length, b. ‘The value of b has no

effect when an output operation is checked, but after an input operation

you may signal a longer or a shorter block or even an empty block (b = 0).

However, the value of b at return must correspond to a block which

is inside the shared area specified by the value of used share at Yre-

turn. Otherwise, the run is terminated with an index alarm. Further de-

tails may be found in 6.3.2.

rejecting part of a block Example 1
ZN block procedure which tries to repair an input block after persi-

stent parity error looks like this:

procedure repair(z,s,b)$ zone z$ integer s,b$

if s shift (-22) extract 1 = 1 then
begin conment handling of persistent parity error;

integer to, froms
to:= O$

for from:= 1 step 1 until b//4 do
if z(from) is o.k. then
begin to:= to + 1$

z(to) := z(from) 3
ends

comment the defect items of the block are squeezed out.

The new length is signalled backs:

ps= toxls
end
else stderror(z,s,b) 3

The zone should be opened with a give up mask of 0.

INPUT/OUIPUT SYSTEM 6-17

Example 2, copy input
Z block procedure which copies everything read from 'z' to 'test’ may

look like this: , ,

procedure copy(z,s,b)3 zone z$ integer s,b3
if s extract 1 = 1 then stderror(z,s,b) else
begin comment this code also works for b = 03

outrec6(test,b)$
tofrom(test,z,b)$

ends

The zone must be opened with a give up mask of 2 (normal answer). Inrec6,

invar and read take action on nothing transferred (maybe stopped) .

Example 3, label checking on magnetic tape

This example fas no relevance In system 3, if your parent (opera-
ting system) is Boss.

The safety of magnetic tape positioning can be improved by means of

file labels. Each of the logical files on the tape are separated by two

tape marks surrounding one label block. This block contains the logical

file number in text form.

The positioning to block O of a logical file (counted 1, 2, eo) is

started with this procedure:

procedure logpos(z,f)$ zone z$ integer £3
setposition(z,f*2 - 2,0)3

The procedure cannot check the label, because Simultaneous positioning

then would be impossible. Instead the block procedure may check the labels

) procedure labelcheck(z,s,b)3 zone z3 integer s,b3
if s extract 1 = 1 then stderror(z,s,b) else
pegin integer array ia(1:20)3 integer op,f,b1, lab;

own boolean nexts

conment next indicates whether the procedure was called

from labelcheck itself

getzone6(z,ia); getshare6(z,ia,ia(17))3
comment the operation checked is used share, which now is

moved to tas ~

op:= ia(4) shift (-12) extract 123
if (op = 0 or op = 8) and -, next then
begin conment positioning operation not called from

labelcheck was completeds

next:= trues

getposition(z,f,b1)3 setposition(z,f,b1)3
if read(z,lab,op) <> 1 or lab > a /? + 1 then

system(9,f//2 + 1,<:<l0>position:>)$
comment if label did not contain exactly one number or

the file number recorded is wrong, the run is terminated

with an alarms

setposition(z,f+1,0)$ b:= 0$ next:= false

end.

ends

[the zone must be opened with a give up mask of 2 (normal answer).

6-18 INPUL/OULPUT SYSTEM

6.4. Primitive Level, Operating System

When you use zones on the primitive level, you can change the values

of the zone descriptor and the share descriptors (see 5.5) in nearly any

way. In this way you may handle the peripheral devices in non-standard

ways. You may also use the full principle of sharing buffer area with

other processes to create child processes and let the algol program work

as an operating system to these child processes,

The following 7 standard procedures are known as the primitive level

zone procedures:

getzone6 (see 9.27). Transfers the contents of a zone descrip-
tor to an array.

setzone6 (see 9.62). Transfers the contents of an array to a
zone descriptor.

getshareé (see 9.25). Transfers the contents of a share descrip-
tor in a zone to an array.

setshare6 (see 9.60). Transfers the contents of an array to a
share descriptor in the zone.

monitor (see 9.49). This procedure is the algol equivalent to
all the functions of the monitor. It starts and stops

commmication with peripheral devices, it creates,
starts, stops, and removes child processes, etc.

blockproc (see 9.6). Calls the block procedure of a given zone.

check (see 9.12). Checks a transfer to or from a document in

the way used by the high level zone procedures.

6.4.2. Document driver
You may let the algol program control a document to which other pro-

cesses in the computer send output:

1. Use entry 20 (or entry 24) in ‘'monitor' to wait for
messages sent to the algol program. The sender of the

message assumes that the algol program is a document.

26 Copy the block of information described in the message

into a zone buffer area by means of 'system', entry 5,

or use entry 70 in ‘monitor’.

De Send the answer to the message by means of entry 22 in

'monitor'.
4, Output the block of information to the document.

Under special circumstances, for instance when the algol program is

the operating system for these other processes, it is possible to control

input and output from a document, even without copying the block of in-

formation from one buffer to another. That is possible because both the

sender process and the buffer for the document may be parts of the same

zone buffer area.

INPUT/OUIPUD SYSTEM 6=19

6.4.3. Operating system
You may let the algol program create, start, stop, and remove a

child process in this way:

}
1. Use entry 56 in 'monitor' to create the child process

in a zone buffer area. It may be necessary to use

entry 72 in 'monitor' to set your own catalog base in

order to define the base of the process name,

26 Include the process as a user of some peripheral devi-

ces by means of entry 12 in 'monitor', and give the

process access to the backing store by means of entry

78 in 'monitor'.
6 Initialise the child process area with a suitable bi-

nary program, for example the File Processor code

which may be read directly from the backing storage

area, fp into the zone buffer area.

4, Set the machine registers of the child process by means
of entry 62 in 'monitor'. See ref. 2 and ref. 6, if FP
is used.

Do Start the child process by means of entry 58 in 'moni-

tor', Now, the child process starts executing the in-

structions of the binary program. We say that it runs

in parallel with the other processes in the computer

(including your algol program). If FP is the executive
system, the user base is communicated so that this is

the catalog base at which the child process was started.

FP will as its first action set the catalog base to

standard.

6. When you want to stop the child, use entry 60 in ‘'mo-

nitor! ,AccORDING TO MAINTENANCE LIST Wov TT MoniTOR (66) DOESNT WORK

Te Wait for the completion of the stop by means of entry °

18 or 24 in 'monitor'. Now, all modifications of the

child process area have ceased, and you may for in-

stance store the area on the backing storage, use the

area for something else, later reestablish the process

area, and start the child again by means of entry 58 in

Imonitor' so that it continues as if nothing had

happened.

8. When you want to get rid of the child and withdraw its

resources, you use entry 64 of 'monitor'. Remember the

process must be stopped first.

In order to make an operating system which handles several child proces-

ses, serves as a driver for peripheral devices, and communicates with the

operator, you have to mix the principles of 6.4.1, 6.4.2, and 6.4.3. In

this mixing, entry 24 of ‘monitor! is very useful to help the program

serving the first arriving event first. An event is here the arrival of

a message or an answer, or the completion of a stop.

bo 5 nat

: 7 :

:

SYSTEM CONTROL 7-1

7. SYSTEM CONTROL, ETC.

This chapter gives a brief introduction to the 6 standard identi-

fiers which control global conditions of the running algol program.

blocksread

overflows

underflows

system

systime

stderror

(see 9.7). This integer variable is increased by one

each time a segment of the running algol program is

transferred from the backing storage to the core store.

It can assist you in balancing the use of the core

store.
(see 9.49). This integer variable controls the action
on floating point overflow.

(see ITT) This integer variable controls the action

on floating point underflow.
(see 9.73). This procedure controls the floating point
precision (mantissa of 36 or 33 bits). The procedure
may also supply information about the surroundings (the

console, the parent, the state of the message queue),
it may move any area of the core store into an array,

it may give the length of the available core, and it

may terminate the run with an alarm message.

(see 9.74). This procedure gives access to the real
time clock in the monitor and to the CPU time used by

the job. Further it may convert real time to date and

clock.

(see 9.69). This procedure terminates the run with an
error message specifying an error condition on a peri-

pheral device. It is used as the block procedure of

zones where you don't care for device errors.

THE ALGOL SYSTEM 8-1

8, THE ALGOL SYSTEM

This chapter describes the way the algol compiler and the running

program fits into the RC 4000 miltiprogranming system.

8.1. Translation

The compiler works in your job process and you start the transla-

tion by means of an FP-command specifying the source text, the compila-

tion variants, and the file where the resulting object program should end

(see app. B).
The result of the translation is either a complete, self-contained,

binary program or a binary external procedure. In the first case, the

program may be executed as described in 8.33 in the second case, the pro-

cedure may be used as a standard procedure in later translations. If you

permanent the program or the procedure (give it scope user or scope

project), you can use it in later jobs.

8.1.1. The compiler
The compiler occupies about 13000 instructions divided into 12 pas-

ses, either on backing storage or on magnetic tape. In the first case,

it may be used for simultaneous translation in several job processes.

The 12 passes of the compiler perform the following tasks: Pass O is

a common administration routine. Pass 1 to 8 perform the translation into

binary code by means of 8 scans of the source program. The intermediate

program text is stored in the place later occupied by the binary program.

Pass 9 rearranges the binary program, inserts references to standard

procedures, and includes the code for the standard procedures used in the

program. Pass 10 includes the run time administrative system (RS). When

an external procedure is translated, pass 9 only rearranges the binary

procedure and RS is not included. Pass 11 does not exist, but a pass 12

may make crossreferences of where the different names are used.

8.1.2. Storage requirements, etc.
The compiler requires a Job with a core area of 12 000 bytes with he

message buffers and with 6 area processes (4 if current input and output

are not backing storage) «
The minimum core area may cause the translation to terminate with

the alarm 'stack', This is due to the limited size of the table of iden-

tifiers in pass 2 and 5, and the table of labels, case elements, and

procedures in pass 8, A greater core area will remedy the problem: just

1000 bytes more give room for about 250 identifiers.

8.1.3. Speed, length of object code

Iter basic time of © seconds (compiler on drum), the total trans-

lation speed is about 1000 characters/second or 500 final instructions

per second for an average prograime

The final program consists of the code corresponding to the source

text, plus 7 segments for RS, plus the length of the standard procedures

incorporated. The length of the code corresponding to the source text is

about 1.5 the length of the source text.

8-2 THE ALGOL SYSTEM

8.1.4. Error checking
The compiler performs extensive syntax and type checking, but a few

errors may pass undetected as described in C.2.2.

Except for some rare errors concerning communication with the sur-

rounding system, no error can stop the compilation, and most of the ere .

rors will be detected in the first translation. Suitable mechanisms are

included to prevent one error from generating several error messages.

Whenever the translation has worked to the end, the program may be

executed until the first point where a syntax error was detected or un-

til the first point where an undeclared or doubly declared identifier is

used, The run is then terminated with the message 'syntax line.o.o'o'

8.2. Assembly, index, spill

Pass 9 performs the assembly of standard procedures into the main

program and if these standard procedures reference other standard proce-

dures the assembly continues recursively. All standard identifiers must

exist in the catalog at this stage.

At run time, subscript check will be omitted during the execution

of all program parts compiled with index.no. All standard procedures

mentioned in chapter 9 may be thought of as compiled with index.yes.

If the main program is compiled with spill.yes, a partial check of

integer overflow is performed in procedures compiled with spill.no. If

the main program is compiled with spill.no, integer overflow at multi-

plication will still be detected in subroutines compiled with spill.yes.

None of the standard procedures of chapter 9 can cause an integer over-

flow.

8.3. Execution

A binary object program is executed in the job process and started

by means of an FP-command as described in app. B. The program must at

that moment exist in a backing storage area.

8.3.1. Segmentation
The object program consists of independent program segments of 512

bytes. Whenever the running program demands a program segment which is

not in the core store, it is transferred from the packing storage pos-

sibly replacing another segment in the core store. The number of segments

held in the core store is increased gradually until the limit posed by

the variables is met. If more variables are declared, some segments will

be released from the core store.

This scheme works satisfactorily as long as the program segments

involved in the current part of the algorithm are kept in the core store.

Under these circumstances a jump to another segment is performed in 7

microseconds, while a jump within one segment is performed in 3 micro-

seconds.
When the number of variables is increased so that the active seg-

ments cannot stay in core, the program can still run, put a jump to ano-

ther segment will often cause a transfer from the backing storage resul-=

ting in a jump time of 18 000 microseconds, Section 9.7 shows how these

situations may be detected. You will see from this that it is very in-

portant to avoid crowding the job area with variables. As a rule, you

should have room for at least 8 segments in the core store, corresponding

to 4000 bytes.
As further aid, the compiler may print a list of line numbers corre-

sponding to the segment boundaries in the object program. The list is

printed if the compiler is called with details.8.8. (see app. B).
easel

THE ALGOL SYSTEM 8=3

8.3.2. Storage requirements
During program exécution, the job area is organized in this way:

Length in bytes: Contents

1500 | File Processor
600 1 RS — Quainins SYSTEM

Depends on program | Own variables for entire program.
QL | Segment table, L=total number of program segments.

minimm:1024 .
reasonable: 4096 Room for program segments currently in core store.

v

f Room for variables, arrays, zones.

1024 | Buffers for in and out.

When the program is called with the parameter 0 (see app. B), the space

occupied by File Processor and buffers for in and out becomes 16 bytes.

The space occupied by variables at any moment of the execution is

the sum of the reservations made at entries to ali the blocks and proce-

dure bodies which are active.

Lengths of core store are usually given in bytes (one byte = 12

bate} sometimes in words or double words (4 bytes = 2 Words = 1 double
word) «

The reservations made at block entry may be derived from the decla-

rations of the block as follows:

Quantity: Nunber of bytes reserved:

Simple boolean variable,

field variable,
simple integer variable 2
Simple long variable,
simple real variable 4
Array segment 2%(number of array identifiers + 1 + number

of subscripts) + space for total number of

array elements.

Array element, boolean 1
Array element, integer 2

Array element, real or long 4
Zone 50 + 2hxnumber of shares + 4*bufferlength.
Zone array 2+ space for all the zones.

Working locations Depends on structure of program, usually

about 10 for each block.

Block, procedure body 2xnunber of statically surrounding blocks +

(if normal block then 4 else if type proce-
dure then 14 else 10)3

Parameter ‘8 if the actual parameter is constant, 4
otherwise.

8.3.3. Message buffers, area processes, etc.

——““me job process must have been created with a sufficient number of

message buffers and area processes. The number of message buffers occu-

pied at any moment during the execution of. the program is derived as

follows:

om THE ALGOL SYSTEM

Reserved for RS 1.

Each n-shared zone used for high level input/output

("in and ‘out’ count as 1-shared zones) n-1

Each zone busy with positioning a magnetic tape

(then it is not used for input/output) 1
Zones used on primitive level,

each share describing an uncompleted transfer. 1

The number of area processes occupied at any moment is 2 + the number of

backing storage areas opened for input/output. Remember to include pos-

sible area processes used by 'in' and 'out!.

8.3.4. Execution times
Are given in app. A.

8.3.5. Error checking
The dynamic error checking and the error message are given in ADP. Co

ALPHABETIC LIST OF NEW ELEMENTS, ABS Q~1

9. ALPHABETIC LIST OF NEW ELEMENTS

This chapter gives a detailed description of all the standard iden-
tifiers supplied as a part of the compiler and all the delimiters not
found in algol 60.

The syntax of operators and other delimiters is described rather in-
formally. Take the last two lines of ‘add’ (9.2) as example:

<boolean> add <primary> is of type boolean

Priority as **,. Se

This shows that 'add' has two operands, the left is of type boolean, the
right of type integer. The result of applying ‘add' to these two operands
is of type boolean, The term 'priority as x*' means that in the rules of
precedence for evaluation of an expression, 'add' and '**! appear on the
same level and they are executed in sequence from left to right within

the expression.

The description of procedures follows a different scheme. Take ‘in-

rec6' (9.31) as an example:

Call: inrec6(z, length)

inrec6 (return value,integer). The ...
Z (call and return value,zone). The ...
length (call value, integer, long, or real). The .o.

This shows that inrec6 is called with two parameters. The first, z, must
be a zone. The contents of the zone at call time is significant and it is

changed at return from the procedure. The second, length, must be an in-

teger, a long or a real. The value of length at call time is significant.

It is not changed at return. Finally, inrec6 is shown to have an integer

value at return.
The parameters may actually be expressions, of course. Unless some-

thing else is mentioned, it is a tacit assumption that all the parame-

ters are evaluated once, but not necessarily in sequence from left to

right. Especially, if something is assigned to a parameter, ‘the assign-

ment may or may not be delayed until all the parameters have been eva-

luated (see for instance read, 9.51). Note, ‘that the evaluation of a
string parameter will access the actual parameter repeatedly until the

string end is supplied (see 3.6).

9.1. Abs

This monadic operator yields the absolute value of integer, long, or

real expression.

Syntaxs abs <integer> is of type integer.

abs <lLong> is of type long.

abs <real> is of type real.
Priority higher than **.

Examples: abs r abs sin(x) abs(0.5+sin(x))

92 ADD, ARCSIN

9.2, Add

This dyadic operator is used for packing of integer values into a

real, long, integer, or boolean value.

Syntax: <real> add <primary> is of type real.
<long> add <primary> is of type long.
<integer> add<primary> is of type integer.
<boolean> add<primary> is of type boolean.
<string> add <primary> is of type string.
Priority as **,

‘If the right hand operand is real or long it is rounded ‘(in the
sense of 9.57) to an integer. Now both operands are treated as binary

patterns (see 3.1 and 3.6) and the right hand integer is added to left
hand operand to obtain the binary pattern of the result. If the result is
a boolean, it is cut to 12 bits. The addition is binary addition in 24
pits with rightmost bit added to rightmost bit. No earry is propagating
into a possible left hand word. “

Example 1s
Let 1+1 and j be integers between 0 and 63, They may be packed into

one boolean variable in this way:

bi= false add (i+1) shift 6 add 33

If j were negative, the statement would not work as intended.

Example 2:
Two Signed integers may be packed into one real in this way:

ri:= 0,0 shift 24 add i1 shift 24 add 123

Note that the binary pattern of a negative number has zeroes in front of

the 24 ordinary bits, and that no carry will propagate into the il-part
of Yr.

Example 3:
The Last bit of an integer 'j' may be tested in this way?

if false add j then ..

9.3. Real procedure arcsin

Call: arcsin(r)
arcsin (return value, real). Is the_ mathematical function

aresine of the argument r. - 7/2 < aresin < 7/2.

r (call value, real, long, or integer). -1<r<1
must hold.

ARCTAN, ARG, BLOCKPROC 9-3

Accuracy:
r=, -1. gives an absolute error of 3'-12
r=0 gives arcsin= 0

0 < abs r < 0.5 gives a relative error below 1.1'-10
0.5 < abs r<1 gives a, relative error below 1.6'-10

9.4. Real procedure arctan

Call: arctan(r)
arctan (return value, real).. Is the mathematical function

arctangent of the argument r. - 7/2 < arctan < 7/2,
r (call value, real, long, or integer) ~

Accuracy:
r=0 gives arctan = 0
r@o gives a relative error below 1.5'-10

9.5. Real procedure arg

arg (return value, real). Is the argument in radians of
the complex number utixv. - T< arg< 7 .Ifu<0O
and v = 0, arg is positive.

U (call value, real, long, or integer) .
v (call value, real, long, or integer).

Accuracy:

v=o andu > 0 gives arg = 0.

vfoooru<0O gives a relative error below 1.8'-10.

Example:
Tet a and b be the lengths of two sides of a triangle, and let C be

the angle between them (in radians), The angle B, opposite to b, is then

computed by:

B:= arg(a-b*cos(C),b¥sin(C))s

9.6. Procedure blockproc

Executes a call of the block procedure associated with a given zone.

Blockproe makes it possible in pure algol to obtain an effect like check

(used by inrec, read, write, etc.), which only knows the zone, but still

manages to call the block procedure (see 6.3.4.) .

Call: blockproc(z,8,b)
Z (call and return value, zone). Specifies the proce-

dure to be called.

s (call and return value, integer). The value of s is

supposed to be a logical status word.

b (call and return value, integer). The value of b is

supposed to be the number of bytes in a block trans-

fer.
;

9-4 BLOCKSREAD

Let pr be the block procedure of z. Then the following call will be exe-

cuted:

pr(z,s,b)

9.7. Integer blocksread

This standard variable is increased by one each time a segment of the

algol program is transferred from the backing storage. This enables you to
estimate the length of the program loops and balance the use of the core

store. The value of blocksread is printed at program end (see appendix 2).

Example 1:
If you feel that your program is running very slowly, the first

thing to do is to insert a piece of code around the inner loop:

blocksread:= 03

The inner loops

write(out, blocksread//55)3

The number printed is then the number of seconds spent in transferring
program segments from drum to the core store. If this explains the
trouble, there are only two solutions: 1) to change the program so that

fewer variables are declared, or 2) to run the job in a greater core

area. In this example the integer printed after the end message is not

the total number of segment transfers during the run, but it shows the

number of transfers since the latest time blocksread was set to 0.

Example 2:
many caSeS a program can run with an array of varying length. One

example is the first phase of a magnetic tape sorting. Here you save tape

passes in the second phase by increasing the array available for the

first phase. But if you increase too mich, the first phase will become

very slow because of frequent program transfers,

-The following program shows how this can be balanced by the algo-

rithm itself. The idea is to reserve an array of maximum size (see sy-

stem, 9.73) and then decrease the length of the array whenever segments

are transferred in the inner loop.

ne= maxs

rep: begin array ia(1:n)3
s:= blocksread3

The inner loop$

if blocksread > s then ni=n - 1283

ends
goto rep3

Tt is much more difficult to do the same thing starting by a short array.

CASE 9-5

9086 Case

This delimiter occurs in case-expressions and case-statements, which

are generalisations of if-expressions and if-statements. The case-con-

structions use an integer to select among several expressions or Sstate-

ments.

Syntax: case <arithmetic expression> of begin <statement list> end
a is a statement.

case <arithmetic expression> of (<expression list>)
is an expression.

They have the same syntactical positions as if-statements and

if-expressions,.

The elements of an expression list mst either be all arithme-

tic, all boolean, all string, or all designational.

The statements of a statement list are separated by semicolons and num-

bered 1, 2, 35 oe The expressions of an expression list are separated

by commas and numbered 1, 2, 35 eo
A case-construction is executed as follows: First, evaluate the

arithmetic expression and if necessary round it to an integer. Next, se-

lect the list element corresponding to the result. If no such list ele-

ment exists, the run is terminated. If the selected element is a state-

ment, execute it and continue the execution after the complete case-

statement (provided that a goto was not executed). If the selected ele-

ment is an expression, evaluate it and take the result as the value of

the case-expression.

If the elements in an expression list are arithmetic, the type of

the resulting value will be:

integer if all elements are integer

Long if one or more elements are long, but none real

real if one or more elements are real.

Example 1, initializing a table.
In array May be initialized with the values 3, 5, 0, 1, 1, 2 in this

ways

for i:= 1 step 1 until 6 do
ja(i)s= case i of (3,5,0,1,1,2)3

Example 2:

The logical status word occuring as a parameter to block procedures

may be displayed in this way:

for i:= 0 step 1 until 23 do

if logical_status shift (-i) extract 1 = 1 then
write(out,case 24-1 of
(<:local:>,<:parity:>,<:timer:>, ...))3

Example 3:
See example 2 of readchar, 90556

9-6 CHANGEREC, CHANGEREC6

9.9. Integer procedure changerec

Regrets the latest call of inrec, outrec or swoprec and makes a re-

cord of a new size available. The procedure is the Algol 5 version of

changerec6,.

Call: changerec(z, length)
changerec (return value, integer). The number of elements of 4

bytes each left in the present block for further calls

of inrec, outrec or swoprec.
Zz (call and return value, zone). The name of the record.
length (call value, integer, long or real). The number of

elements of 4 bytes each in the new record, Length

must be >= 0.

For further details see 9.10.

9.10. Integer procedure changerec6

Regrets the latest call of inrec6, outrec6 or swoprec6 and makes a
record of a new size available.

Call: changerec6(z, length)
changerec6 treturn value, integer). The number of bytes left in

the present block for further calls of jinrec6, out-
rec6 or swoprec6.

Zz (call and return value,: zone). The name of the record.

length (call value, integer, long or real). The number of
bytes in the new record. Length mst be >= 0. If
length is odd, one is added.

Zone states
@ zone mst be in one of the states 5, 6 0r 7, i.e. after record

input, after record output, or after record swop (see getzone6, 9.27),

and it is left in the same state.

Blocking:

angerec6 can be used to regret a former call of the procedures for

record handling.

This happens in the following way:

1) Check that 5 <= zone state <= 7. Set the record length to 0 (zero)

and the logical position just before the record base.

2) Start the record procedure indicated by ‘the zone state with the same

parameters as changerec6. I.e. if zonestate = after record input then

inrec6 (z, length) else if zone state = after record output then out-

rec6(z,length) else swoprec6(z, length).

The terms zone state, record length, and record base are explained in

section 9.27, getzone6,
If ‘there its room in the current block for the new record size, a

call of changerec6 will not change block. In this case data in elements

available both before and after the call are unchanged.

CHANGEVAR 9-7

If you are not aware of the rest length in the used share, you must
be prepared for a block change if the length in the call of changerec6

is greater than that of the previous call of a record procedure.

The blocking is explained in more detail in 9.31, inrec6, 9.46 out-
rec6, and 9.72 swoprec6,

Example 1:

Output of records with variable length.

Records with variable length, where the length is stored in the
first word (2 bytes), may be output like this:

rep: outrec6(z,maxlength) $
eeoos Fill the buffer and compute the actual length.

zZetirstword:= actuallengths

changerec6(z, actuallength)$
If cecoo then goto rep3

Compare this with example 1 of outrec6, section 9.46, where the ac-
tual length is know before the call of outrec6.

Example 23

ee example 2 of invar, 9.33.

9.11. Integer procedure changevar

Is used in connection with outvar, as it replaces a record placed

in z by means of outvar with another, maybe of a new length. The call

changevar(z,z) always works so that indices available both before and
after the call refer to the same piece of data - even though a block

ehange may have happened.

Call: changevar(z,A)
changevar (return value, integer). The number of bytes avai-

lable for further calls of outvar before change in

block takes place exactly as for outrec6.
Zz (call and return value, zone), The zone used for

output.

A (call value, veal array). An array containing the

record to replace the current zone record. The first

word of the element with lexicographical index 1 must

contain the new record length in bytes, If it is odd,

1 is added.

Zone state:
The zone state must be after record output (state 6, see 9.27, get-

zone6), and the latest record may have been placed by means of outrec6,

outvar or the like.

Blocking:
angevar tests whether the next record may reside within the cur-

rent block, and changes the block if this is not the case. The old re-

cord is not output. The call changevar(z,z) gets a special treatment, as

the second parameter will be saved if it cannot reside in the zone buffer

9-8 CHANGEVAR

While the block is changed. The blocking and the function is explained in
more detail in section 9.48, outvar.

Record Format, counting of records:
Lhe record format 1s explained in section 9.33, invar. The free zone

parameter (see 9.27) is decreased by one if the new length ts O (null).
Otherwise it is not changed.

Example, sequential file updating by merging.
Certain systems maintain their maSter files by merging, an old ma-

ster file with a transaction file giving a new master file, We assume

that the files are sorted in ascending order with respect to a key field,

that the files end with an end-record with the key equal to the maximm
value for longs, and that the records are var-records.

The following algorithm allows several transactions to the same ma-
ster record. It also allows transactions to a new master record, sup-=
posed that the new record precedes the transaction record. The algorithm

ean easily be extended to more than 3 files.

begin comment merging algorithms

zone old, trans, new(e.e, eee, stderror)$
integer action, creation, removal, changes, guessed len$
long first, infinitys ~
integer field length, types long field key;

leneth:= 23; ... infinity:= extend(-1) shift (-1)3 ...
comment The initialisation of the type identifications

'creation', '‘'removal', and 'changes' as well as the field
variables '‘key' and 'type' depend on the record format. The
initialisation of 'infinity' assumes that the key is > 0. The
value of ‘guessed len! may lie between the minimum length
and the maximum length of the record. If it is the minimm
length, blockchanges are postponed as long as possible, and
if it is the maximm length, intermediate savings during

changevar is avoideds

open(old ecoeo Maybe also setposition on the documentss

invar(old)3 invar(trans); outrec6(new, guessed_len)3
new.length:= guessed len$ new.key:= infinity;

rep: 3 comment The following code determines an action number

which may be thought of as a binary number 1 <= action = 7,

where 1 means new contains the lowest key, 2 means trans con-

tains the lowest key, 4+ means old contains the lowest keys

first:= old.key3 action:= 4s
if trans.key = first then action:= 4 + 2
else if trans.key < first then

begin first:= trans.key$ action:= 23

end;

if new.key = first then action:= action + 13

else if new okey < first then action:= 15

ease action of

begin

CHANGEVAR 9-9

begin comment output the ready record;

outrec6(new. guessed len)3
new.ekey:= infinity; new.length:= guessed len;

end 15 ~

begin comment the transaction should be a creations3

if trans.type < creation then errors
trans.type:= ... perform necessary changes in trans$
changevar(new, trans); invar(trans)3

end 25

begin comment the transaction must be a removal or a change3

if trans.type = creation then error;
if trans.type = removal then new.Key:= infinity else

begin

ee. perform changes in new, perhaps make
new. length:= new_len} changevar(new, new);

checkvar(new) $
end3

invar(trans)
end 33
begin comment no transactions to this record

old to new:

7 7 changevar(new,old)3 invar(old)s
end 4s

begin comment 2 records with the same key exist. This is
a serious errors
alarms

end 5$

begin comment let the transaction wait until we have been
through the logic once more$3
goto old to new$

end 63 ~

begin comment if all three keys are equal to infinity, we
have finisheds
if old.key = infinity then goto mergeends

alarmealls
end 7

end actionss
goto rep;

mergeend: seceoo Put a correct end record into new, maybe check the

end records of old and trans, close the zones properly.

end$

If the number of transactions is not small compared with the number

of records in old, the checkvar-call concluding action 3 should be moved

so that it is performed just prior to the outrec-call in action 1. Note

that in this algorithm the number of new records is not counted in the

free zone parameter (see 9.27), as outvar is never called.

9-10 CHECK, CHECKVAR

9.12. Procedure. check

This procedure waits for and checks an answer from a transfer in

exactly the same way as high level zone procedures check their transfers,

Call: check(z)
Tg, (call and return value, zone). The operation given in

used share of z (see 9.27, getzone6) is, waited for
and checked.

The algorithm is given in 6.3.2, wait transfer, Section 6.3.3 describes

the standard error actions.

9.13. Integer procedure checkvar

This procedure calculates the record checksum of a record with the
format of a variable length record as generated by outvar (see 9.48),. The
checksum is stored in the second word of the record. The procedure is ine

tended for use in the very special cases where ‘the checksum is destroyed
or becomes invalid or whe're a checksum is needed later on.

Call: checkvar(z)
checkvar (eturn value, integer). The checksum which was

stored in the record before call of checkvar.
2 (call and return valine, zone). Specifies the record

for which the checksum must be calculated, and where

it is stored.

Zone state:
The record length giver. in the first word of the record mist be

ereater than or equal to 4 and equal to the record length of the zone

descr -ptor (see 9.27). The zone state is irrelevant and unchanged.
No transfer is initiated by checkvare

Example 1, simulating an end-xecord.

“In end record may be generated ir the block procedure when tapemark

is sensed
procedure endfile(z,s,b)3

Zone wn ;
integer Bb
if gs extract 1 = 1 then stderror(z,s,b)
else if b > 0 then

begin integer array deser(1:20)s
integer field reclen,firstwords
reclen:= 323 firstword:= 23

getzone6(z, descr) $
bs Geser.reclen:= z firstword:= lengths

eeece BED Other parameters in the records

checkevan} 2)
setzone(z, descr) $

ends

The zone shoulé be opened with giveup mask 1 shift 16.

Example 2:
mee example 2 of invar, 9.55.

CLOSE Q~11

9.14. Procedure close

Terminates the current use of a zone and makes the zone ready for a

new call of open. Close may also release a device so that it becomes

available for other processes in the computer.

Call: close(z,rel)
Zz (call and return value, zone). Specifies the document,

the position of the document, and the latest operation
On Ze

rel (call value, boolean). True if you want the document
to be released, false otherwise,

Close terminates the current use of the zone as described for setpo-

sition, 9.58, If the document is a magnetic tape which latest has been
used for output (state 3 and 6, see getzone6, 9.27), a tape mark is writ-
tene

Finally, close releases the document if rel is true. Releasing means

for a backing storage area that the area process description inside the

monitor is released for use by other zones of yours. The area itself is

not removed and you may later open it again.

In case of a magnetic tape, two kinds of release exist: If rel is

true and the binary pattern is false add 1, the tape will be released,

which means that the tape is not needed later in the run. Release of a

work tape means that the tape is made available to other users. If rel

is true with another binary pattern, the tape may be unmounted now (for
instance if tape stations are sparse), but it will be needed later in

the run. In both cases a message is sent to the parent asking for re-

lease or suspension of the tape.
Releasing means for other documents, that the corresponding periphe-

ral device is made available for other processes,

Zone state
The zone may be in any state when close is called. After the call the

zone is in state 4, after declaration meaning that it must be opened be-

fore it can be used for input/output again.

Example 1:
acking storage area which you want to open more times should not

be released, because that may allow other processes to remove it or out-

put to it. Avoid it in this way:

open(master,4,<:bs52:>,0) 3
for see do outrec6(master, wee
close(master, false)
open(trans,4,<:bs52:>,0) 5

Example 2s
Tet z1 and z2 be two zones which describe magnetic tapes. If you want

to close them and rewind them, proceed in this way:

setposition(z1,0,0)3 setposition(z2,0,0)3

close(z1,false)3 close(z2, false) 3 |

The rewindings are then performed in parallel and completed when close is

called. ,

9-12 COS, ENTIER, EXOR

9.15. Real procedure cos

“———~ eos (return value, real). The mathematical function cosine
of the argument r.-1 < cos < 1.

r (call value, real, long or Integer). The argument in
radians.

Accuracy’

abstr) < 7/2 gives a relative error below 1.2'-10
abs(r) > 7/2 To the relative error of 1.2'-10 mst be added the ab-

solute error of the argument, r*3'-11. This means that
cos is completely undefined for abs(r) > 3'10, and
then the result is always 0.

Example:
Tet d be an angle in degrees, The cosine of d is then

cos(3.1415 9265 359/180*d)

9.16. Entier

This monadic operator transfers an expression of type real to the

largest integer not greater than the real expression. The operation may

cause integer overflow.

Syntax: entier <real> is of type integer

Priority higher than **.

9.17. Long procedure exor.

Performs the function ‘exclusive or on two 48 bit entities a and b.
If bit patterns (see 3.1.6) of a and b are shorter than 48 bits, they are
extended by repetition of the sign bit.

Call: exor(a,b)
exor (return value, long). Bit pattern equal to -, (a=b)

performed bit ‘by bit after possible extension of the

arameters a and b.

(call value, short string (text portion), real, ong,

integer or boolean). The two parameters do not have to

pe of the same kind. They are - if necessary - extended

and they are handled as described below.

a,b

Handling of a and b according to kind:

otring: TL is tested that a string parameter describes a text portion

or a short string (see 3.6.3). This is a 48 bit entity.

Real: A real is represented by 48 bits, no conversion.

Long: A long is represented by 48 bits, no conversion.

Integer: An integer is extended to a long as if the operator extend

(see 9.19) had been applied.
Boolean: A boolean is considered as a short integer. The 12 bit boolean

pattern is extended to a 48 bit long according to the algorithm:

EXP, EXTEND 9-15

int:= boo extract 123

if int > 2047 then int := int - 4096;
param:= extend ints

The rules for extension imply that actual parameters with values
true, -1, and extend (-1) are equivalent. Note that the rules also imply
that the effect of an integer with the value 2048 differs from the effect

of a boolean with the value false add 2048.

Examples:
——In certain data transmission problems, a check character, which is a
longitudinal parity check of a data block is needed. If the block is of

more than 6 characters, the algorithm for finding the check character may
look somewhat like this:

longfield:= firstword + 23

checkword:= z.longfields
for longfield:= longfield + 4 step 4 wntil lastword do

checkword := exor(checkword,z.longfield) $
if longfield - 4 <> lastword then

checkword:= exor(checkword,z.lastword) $
checkword:= exor(checkword,checkword shift (-24));
checkword:= exor(checkwo 2 sictract 8, checkword shift (-8))3
checkchar:= exor(checkword, checkword shift (-8)) extract 83

9.18, Real procedure exp

Call: exp(r)
exp (return value, real). The exponential function of the

argument r, ex*r.
r (call value, real, long, or integer). r < 1000.

Accuracy:
r=0 gives exp = 1.
r < -1000 gives exp = 0.

abs(r) <1n(2)/2 gives a relative error below 8.5'-11.
(n-0.5)*1n(2) <= abs(r) <= (n+0.5)*In(2) gives a relative error below

1e2'e10 + n*2'=11,
Alarm A value of r greater than 1000 will terminate the run.

90196 Extend.

This monadic operator operates on an integer expression and converts

it into a 48 bit long.

Syntax: extend <integer> is of type long

priority higher than **

Examples
As operations on integers give integer values, an wmwanted integer

overflow may occur when two integers are multiplied. This may be avoided

if the operator extend is applied on one of the operands.

totals:= extend pieces * price

This is of course only relevant if totals reasonably can exceed 8 000 000

and is a longo

9-14 EXTERNAL, EXTRACT

9.20. External

This delimiter replaces the first begin of the program when an algol
procedure is translated alone.

Syntax: external <procedure declaration>$ end is a program.
A maximm of 7 parameters is allowed.

A procedure translated in this way becomes a standard procedure,
which means that other algol programs may call the procedure without ha-
ving to declare it. The name of the procedure is the name of the backing
storage area in which it was translated. All standard identifiers used
from the procedure must be present in the catalog when the procedure is

translated, but the actual code determining these standard identifiers is

not copied until the procedure itself is copied into an ordinary algol

program. 7
The name of an external procedure may not contain capital letters,

because they are forbidden in names of backing storage areas.

Example:

A standard. function 'tg' may be compiled in this way:

tg=algols File processor commands, see ref, 2 and ref. 8,
external real procedure p(r)$ value r3 real r3
begin real v3

vi= cos(r)3
p:= if vy <0 then sin(r)/v else '600

ends end

scope user tg3 File processor command.

From another program it may be used like this:

write(out, (1+te(B/2)) /(1-te(B/2)))s

Assume that the procedures cos and sin are replaced with better versions.
These new versions will automatically be used whenever tg is used during

the translation of an algol program.

9.21. Extract

This dyadic operator is used for unpacking of integer values from a

real, long, integer, or boolean value.

Syntax: <real> extract <primary> is of type integer.

~~ <long> extract <primary> is of type integer.
<integer> extract <primary> is of type integer.

<boolean> extract <primary> is of type integer.

Priority as **,

Extract treats the left hand operand as a binary pattern (see 3.1),

the right hand primary is rounded to an integer if it is of type long or

real (see 9.57) and now extract extracts a number of the rightmost bits

as indicated by the value of the primary. These bits are extended with

zeroes in front if necessary. The resulting value is the integer with

these bits as its binary pattern. The result is undefined if the, pos-

sibly rounded, primary has a value below O or above 2k.

EXTRACT 9-15

Example 1, simple splitting.
A boolean may be split into two integers in this way:

i2:= b extract 63 il:=b shift (-6) extract 63

Both integers will be in the range 0 to 63,

Example 2, splitting with sign.

A real may be split into two signed integers in this way:

ii:=r shift (-24) extract 243 i2:= r extract 2h;

Usually a signed integer is packed and split in this way

comment -32 <= i <= 313
ri= r shift 6 add (1+32)3
@eo

2= r extract 6 = 323

Example 5, splitting of text into characters.
A text string stored in the integer array ia may be split into a se-

quence of characters stored as integers in the array char in the following

way:

comment c is the current index within char,
s counts positions within ia(i)3
O$
1,c+1 while ch > 0 do

begin

if s <0 then s:=s + 8 else
begin s:= -163 i:= i+ 13 t:= ia(i) end;
char(c):= ch:= t shift s extract 83

ends

A faster version, which always splits ia(i) into 3 characters even if one
of them is the stop character (0), works like this:

comment c is current index within char, t contains ia(i)s
tr= es= -23 i:= 03
for c:= c + 3 while t extract 8 <0 do
begin

iz= i+ 13 t:= ia(i)s
chart): % shift (-16) extract 83
char(e+1):= t shift (-8) extract 83
char(c+2):= t extract 83

ends

Example 4, scaling of reals.
“Tn array of reals may be scaléd so that all elements are in the range

-1<r<1 in the following way. The mantissas are not touched so that

full accuracy is maintained. The main problem in the algorithm is the

handling of the sign of the exponent.

9-16 FIELD

max:= -20483
for is= 1 step 1 until n do
begin

et= ra(i) extract 123 if e >= 2048 then e:= e - 0963
if e > max then max:= e3

ends

comment max is now the maximal two's exponent;
for bf:= ken step -4 until 4 do
begin

et= ra.ebf extract 123
if e >= 2048 then e:= e - 40963 e:=e - max3
if e < -2048 then ra(bf shift (-2)):= 0

else raebf:= false add e3

ends

The subscript expression bf shift (-2) is slightly faster and a
little shorter in the translated code than bf//}.

9,22, Field

This delimiter is used to declare or specify field variables (see
5.7, 4.7.1, and 3.1), Field variables are pointers allowing reference to
fields of various kinds (variable field and array field) within arrays
or zone records.

The syntax and semantics are explained in sections 3.1.1, 350103,

Bel elbe3, Boledy 3el0Sy ody HeToly e705, 50206, 5o207y Set, and the sub-
sections. Here a more informal description will be given.

Field variable declaration and specification:

<type> field <field list>
<type> array field <field list>
array field <field list>

The declaration ‘array field <field list>' declares real array field va-
riables. A field list is a list of identifiers separated by commas,

Field variables are used in field references or they may be used as

integer variables.

9.22.1. The field concept and Algol 6,

A file may be seen as a Set of records and a record may be seen as

a set of fields, where a field is the smallest entity which in some con-

nection is considered as a unit of data. The terms field, record, and

file can only get a meaning when they are defined together with a specific

data set and the operations on it. Therefore there is no logical conflict

in subdivision of the levels in the hierarchical relation

field & record © file.

The Algol 6 field concept is defined along these lines but it is ex-

tended in that it is applicable to arrays of any type as well as (zone)

records. The Algol 6 fields may be variables of the types boolean, inte-

ger, long, or real, or they may be arrays of the same types. Array fields

are one dimensional.

FIELD 9-17

Please note. the difference between the concepts 'field variable!
meaning the pointer and ‘variable field' meaning the piece of data poin-
ted at. ;

Fields are selected by means of a byte-address within the array or
record. The length of the selected field is defined by a type associated
with the field variable. To use field variables it is necessary to know
how elements’ are stored and represented in an array.

In a real or a long array each element takes up 4 bytes. In an inte-

ger array the elements take up 2 bytes each, and in a boolean array one
byte per element is used. The number of bytes taken by an element is
called the type length.

Example 13

I? a program contains the declarations

real array RA(1:3)$ long array LA(1:3)3
integer array IA(1:5)3 boolean array BA(1:11)3

then the byte numeration is according to this scheme:

RA(1) RA(2) RA(3)

1 2 3 4 5 6 7 8 9 10 11012

LA(1) LA(2) LA(3)

TA(1) TA(2) TA(3) TA(4) IA(5)
1 2 3 Ty 5 6 7 8 9 10

BA(1) BA(2) BA(2) BA(4) BA(5) BA(6) BA(7) BA(8) BA(9) BA(10) BA(11)
1 2 3 4 5 6 7 8 9 10 11 A

The general rule for the byte numeration, which applies to arrays with

any number of indices and with lower bound <1 is explained in section

5.2.6. In short we have:

The byte with number 0 (zero) is the last byte in the (possibly fictive)
element with subscripts (0, 0, see 5 O)e

Example 2:
If a program contains the declaration

real array B(1:2,0:1),

the array may be sketched like this

lexicographical index

) 1 2 3 4 5

B(O,0) |B(O,1) | B(1,0)| 3B(1,1) B(2,0) B(2,1)

byte no.

. ++ 01 2)5 4 5 617 819 10/11 12/13 14115 16]17 18|19 20 A

non existent word poundaries

9-18 FIELD

Fields of integer, real and long type are synchronized with the word
boundaries of the RC 4000. For arrays which are not formal, (see 9.22.3)
the word boundaries are between an even numbered byte and its odd numbered

successor.

This implies that field variables with these types associated should
preferably assume even values, If such a field variable is assigned odd

values it will denote the same variable as it would if one had been added.
But as odd plus odd is even, you may easily make an error if odd field

references are used. This is especially the case when you use array fields

as actual parameters in procedure calls (see further in section 902203)

9.22.2, Field variables and field references.

Field variables are assigned values in the same way as integers, The

value assigned is an integer. In fact field variables used outside field

references behave as normal integers independent of the type associated.

Example 33
Or balances= 4 step 48 until 340 do
sum:= A.balance + sum; A

Associated with a field variable is - as already indicated - a type. The

associated type may be real, long, integer, or boolean. A field variable

may denote a variable or an array of the associated type lying within an

array, of any type or within a zone record.

In the field reference A.f, we refer to A as the field base and to

f as the field variable, a

The Tocation of the field referenced by a denotation Like this de-

pends on

1) the value of f
2) the type associated with f

'3) the lexicographic order of the elements in A

The byte to which a field reference points will be called the reference

byte.
In field references simple field variables denote variables of the

type associated with the field variable, and array field variables denote

fields that are arrays. The type of the array field is the type associa-

ted with array field variable.

In a variable field reference the reference byte should be the

rightmost byte in the rield referenced.

Example +:
e program in example 2 contains the declarations

integer field balance, funs
real field rate;

and the initialization

Dpalance:= 4s rates= 203 fun:= 103

then

FIELD 9-19

Berate refers to the real element B(2,1)
B.fun refers to the integer variable placed in the first

half of B(1,1), i.e., the value of B.fun is
the same as the value of B(1,1) shift (-2))
extract 2,

Bebalance yvefers to the non-existing integer element with
byte numbers 3 and 4, Therefore the program
with this reference will be terminated with

field alarm.

A simple real or long field variable may point at a field consisting

of two words from adjacent variables of the array. Thus if rate = 18, it
refers to a real variable consisting of the last half of B(2,0) and the
first half of B(2,1). A

If A is an array of any type or a zone record, and if F is an array

field identifier with any associated type, then

the reference A.F denotes a one dimensional array where the reference

Byte derines the - possibly fictive — element A.F(O).

The bounds of the array field are defined so that

pound byte in field = bound byte in base - field variable.

The bound bytes are the first and last bytes in the field. The bound

bytes are not necessarily accessible by indexing.

Special rules apply when array field references are used as parame-

ters to procedures. These rules are discussed in section 9.22.3.

Example 53
@ program contains the declarations

long array A(1:3)3
integer array field iaf;

then the assignment

iaf:= 03

will define an integer array A.iaf with the same locations as A. The

array Aeiaf may be sketched like this:

A.iaf(1) A.iaf(4) A.iaf(5)

oie A,iat(2) A,iat(4) A.iat(6)

oO {1 2413 4 6} 7 8] 9 10} 11 12

A(1) A(2) A(3)

We see that if the long array is declared with lower bound 1, the integer

array will also have its lower pound 1, when the field variable has the

value O. If we have the assignment

iaf := 63

©
e)

9-20 FIELD

the integer array is allocated like this:

Aviaf(-2) A.iaf(0) A.iaf(2)

Aviaf(-1) -| Aviaf(1) A.iaf(3)

oO; 1 243 4S 6] T 8] 9 10) 11 12

A(1) A(2) A(2)

The index bound for the integer array are as if it had been ‘declared!

integer array A.iaf(-2:3).

We may use a field reference to define a field in an array field,
for instance with iaf = 0, we may refer to the first half of A(2) by
means of an integer field subtotals = 6, The reference looks like this

A.iaf. subtotals

With iaf = 6, this reference denotes the last half of A(3). A

9.22.4. Fields as parameters to procedures

Note that field variables may be used as actual parameters to proce=-

dures. They behave as integers. Formal parameters may be specified as

field variables, but they must not be called by value. The actual must

pe integer. In the procedure body they act as field variables,

Variable fields as actual parameters are handled in the same way as

subscripted variables. This means that if the corresponding formal is not

called by value, ‘the field will be evaluated each time the formal is re-

ferred (Jensen's Device). .

Array fields are evaluated and a description of the array field as an

array is set up before the procedure is entered. This description, local

to the procedure is made so that references to the array parameter are

just as effective as references to an array declared local in ‘the proce-

dure body.

If you restrict yourself to using actual array field references

where the reference byte index is a multiple of the type length, and the

field base is one dimensional with lower bound 1, you will hardly run

into trouble.
Otherwise the formal array may be 'cut' in order to ease and secure

index check in the procedure body. The 'cutting' is made so that the

number of bytes between the reference byte of the array field and the

first accessible byte of the formal array is a multiple of the type

length. The term 'between' is to be understood so that

(address(ref byte) - address(lower bound byte) - 1) mod typelength = 0

is true.

FIELD 9-21

Example 6:
Consider a program like this:

oo

long array LA(1:2)3
long array field lafs
procedure test (1a)3

Long array la 5.

begin boolean field bf$ integer i$

woo la{i) o- la.bf ...
ends

test(LA.laf)3
eoe

For some values of laf, the accessible parts of the formal array la
may be sketched like this

laf inter- inter-

val of i val of bf

—
s

—

—
_

‘

M
y

-hoio5)6CU66Ud] dh 7)~CUBlUdL 910 233 5:12
Lee... _ ™ 4 pian + =.

3 3 6 7 |8 9)f10 11 232 5:11

2 5 6 |7 8} 9 10} 2:2 53210

“1 }s [6 7] 8 of] a2 52
oT a rn i ren manne ry

Oo: 1 2 3 4 5 6 7 122 1:8
Lamy ~ a ee is ne in ~ oo

1 1 2 35 |4 5 | 6 TY] 181 1:7

2 ty o2 13 bY] 5 6] 481 1:6

3 | 1 2 3 | BR SFP 181 125
———ees ST aS LEE]

h | 73 a2 0 1 2 3 4 Os1 -334

Bytes with equal locations are shown in the same colum.

The reference byte numbers corresponding to indexing in la are under-

lined, and the bytes accessible by direct indexing are double overlined.

The word boundaries are shown as lines going from line to line. A

In arrays which are actually fields, the word boundaries are only

between an even numbered byte and its odd numbered successor, if the va-

lue of the field variable is even.

If an actual array in a procedure call is a multiple fielded array

or record, only the type length associated with the last array field va-

riable is used in a possible ‘cutting' of the lower bound.

9-22 GETPOSITION, GETSHARE

9.25. Procedure getposition

Gets the block and file number corresponding to the current logical

position of a document.

Call: getposition(z,File,Block)
Zz (call value, zone). Specifies the document, ‘the posi-

tion of the document, and the latest operation on 2.
File (return value, integer). Irrelevant for documents other

than magnetic tape. Specifies the file number of the

current logical position (see 6.1). Files are counted

Os 15 25 coe
Block (return value, integer). Irrelevant for documents other

than magnetic tape and backing storage. Specifies the
block number of the current logical position (see 6.1).
Blocks are counted 0, 1, 2, «eee

Getposition does not change the zone state and it may be called in
all states of the zone. If the zone is not opened, the position got will

be undefined, however. The position is also undefined after a call of

close,

Example 1:

During the generation cf a magnetic tape, you may note the position

of a particular record and later return to that block:

outrec6(z,10)3
getposition(z,f,b)s
outrec6(z, 10) $
setposition(z,f,b)$ inrec6(z,10)3

If you want to get the same record again, you may use getzone6 (see 9.27)

to get the position within the block, or you may use the value of inrec6

or outrec6 to denote the position within the block.

9.24. Procedure getshare

Moves the contents of a share descriptor into an integer array for

further inspection. The procedure is the Algol 5 version of getshare6.

Call: getshare(z,ia,sh)
Z (call value, zone). Specifies the share together with

She

ia (return value, integer array,length > 12).
sh (call value, integer). The number Of a share within z.

The contents of the share descriptor are moved to the

first element of ia and on.

Works as getshare6 (see section 9.25) except that getshare computes first

shared and last shared as a buffer index instead cf as a byte index, The

puffer index is equal to (byte indext3)//4.

GETSHARE6 9=25

9.25. Procedure getshare6

Moves the contents of a share descriptor into an integer array for
further inspection. The procedure is deSigned for the primitive level of
input-output, where you implement your own blocking strategy for the pe-
ripheral devices, and for use in the block procedures where you want to
interfere with the standerd handling of devices. Skip it if you are sa-
tisfied with the high level zone procedures.

A share descriptor consists of 12 pieces of information, most of
them with names originating from their use in righ level zone procedures.
The explanation below requires some knowledge of handling of peripheral

devices (see ref. 8).
Tre share descriptor cortains certain absolute addresses of bytes

within the zone buffer. The reason for this and the relation between the
absolute address and the usual byte index are given for the procedure

getzoneb,

Call: getshare6(z,ia,sh) ’
z, (call value, zone). Specifies the share together with

sh.

ia (return value, integer array, length > 12). ‘The fol-

lowing list assumes thet ‘ia' has been declared as
ta(i:12).

sh (call. Vale integer). The nurber of the share within

z. The cortents of the share descriptor are moved to

the first element of ia and on.

ia(1) Share state. Describes what the share is used for:
= message buffer address for an uncompleted transfer or a stopping

child process.

-process description address for a running child process.

O for a free share. See below.

1 for a ready share. See below.

ia(2) First shared. Byte index for the first element available for a

block transfer which uses this share and was started by a high le-

vel zone procedure.

ja(3) Last shared, Byte index fer the last element available for a Dlock

transfer woich uses this share and was started by a high level zone

rocedure o

ia(4) to ia(11) Message. A high level zone procedure leaves the latest

message sent by means of this share in the message part of the

share descriptor. A message describing a plock transfer is com-

posed like this,

ie
ou

ta(4) operation shift 12 + mode

ja(5) first absolute address of block
ia(6) last absolute address of block

ia(7) segment number {only significant for backing storage)

ja(12) Top transferred, The absolute address of the byte just after the

latest block transferred by means of this share. Top transferred
Ars

may differ from ia(6) + 1 after an input operation, for instance.

9-24 GETZONE

Free and ready share

The output vrotedyres do not distinguish between a free and ready
share, but waenever an input procedure tries to get a new block of infor-
mation, it assumes that a ready share contains a block of information ale

ready and that a free share mist be filled with a block from the device.

Example 1:

——~"Tetz be declared as 2{300,4,stderror) with base buffer area =
29 999, (see definition in 9.27) and assume that you have opened the
zone, Tne calls getsnareS{z,ia,1), gsetshereé{z,ia,2), and getshared
(z, ia, 3) will now yield the following results in typical situstions (x
designates an undefined value):

iaf1) ia(2) ia{3) taf) ia(5) ia(6)... iaf12)

When the first block of input is being process.ds
used share) 1 hoo input 30 900 30 498 30 276
share2 >0 Tey | 800 input 30 4oo 30 798 X
share3 >0 801 1200 input 30 800 31 198 X

When the first block of output has been produced:
snare >0 1 hoo output 30 000 30 350 x
used share) ho} 800 X 390 400 30 798 X
share3 9 801 1209 X 30 800 31 198 x

Just after setposition for a magnetic tape:

used share >0 1 OO move position 30 398 x
share? fe) ho 800 x 30 400 30 798 X
share) 801 1200 x 30 800 31 198 Xx

9,26. Procedure getzone

Moves the contents of a zone descriptor into an integer array for

further inspection. Tne procedure is the Algol 5 version of getzone6 and

works as etzone6 excep that the record length is given in buffer ele-

ments instead of bytes.
A buffer element consists of 4 bytes.
Last byte of a buffer element, the reference byte, has the absolute

address:
pase buffer area + 4 * buffer index.

Call: getzone(z, ia)
Zz (call value, zone). The contents of the zone descrip-

tor are moved to the first element of ia and on.

ia (return value, integer array, length > 20).

Getzone should only be used if the zone has only~been used for in-

rec, outree or swoprec. As it cuts the record length to an integral num-

per of elements, it may give misleading results if the Algol 6 proce-

dures inrecS, outrec6, swoprec6, changerecS, invar, outvar, or changevar
have been used.

For further description see 9.27, getzone6.

GE@ZONES 9-25

9.27. Procedure getzone6

Moves the contents of a zone descriptor into an integer array for
Purther inspection. The procedure is designed for the primitive level of
input-output, where you implement your own blocking strategy for the pe-
ripheral devices, and for use in the block procedures where you want to
interfere with the standard handling of the devices, Skip it if you are

satisfied with the high level zone procedures.

A zone descriptor consists of 20 pieces of information, most-of them
with names originating from their use in high level zone procedures,

The zone buffer is just a sequence of rsal variables - from the

point of view of the algol program - but other processes (peripheral de-
vices, ete.) regard it rather as a sequence of bytes, each being identi-

fied by its absolute address.
If you want to communicate with other processes on the very primi-

tive level (procedure monitor), you cannot avoid the absolute addresses.
They are related to the usual byte index in this way:

The reference byte of a field in the zone has the absolute address:

base buffer area + byte index.
This expression also defines the quantity ‘base buffer area' as the abso=

lute address of the byte preceding the zone buffer area. The value of

‘base buffer area' and certain other byte addresses are available by means

of getzone6.

Call: getzone6(z, 1a)
Z (2all value, zone). The contents of the zone descrip-

tor are moved to the first element of ia and on.

ia (return value, integer array, length > 20). The fol-
lowing list assumes that ia has “been declared as
ia(1:20).

ia(1) Mode shift 12+ kind. Values and significance are explained under
the procedure open.

ia(2) to ia(5) Process name. The name of the process (document) with which

the zone communicates for the moment. The name is extended to 12

characters using null characters for fill.

ja(6) Name table address. The corresponding variable in the zone deserip-

tor is used by the monitor to speed up the search for the process

given by the process name.

ia(7) File count. Only significant for magnetic tape handling. See ex-

planation below.

ia(8) Block count. Only significant for magnetic tape handling. See ex-

planation below.

ia(9) Segment count. Only significant for handling of backing storage

areas, See explanation below,

ia(10) Give up mask. See 6.3. ,

ta(11) Free parameter. Is used by the Fortren read/write system and by the

var-procedures. See explanation below.

ja(12) Partial word. Used by the procedures for input-output on character

level to unpack or pack characters. See explanation below.

ja(13) Zone state, Used by high level zone procedures to keep track of

the latest operation on the zone. See below.

ia(14) Record base. The absolute address of the byte preceding the first

byte of the present record, During character input or output the

record may be regarded as the word in the zone buffer in which the

partial word will end or from which it came.

9-26 GETZONEO

ia(15) Last byte. Absolute address of the last byte of current block. Du-
ring output the block matches the shared area used for the moment,

during input the block matches the block transferred from the de-

vices

ia(16) Record length. Number of bytes in the present record. Notice that
the record length is 0 during character input or output.

ta(17) Used share. Number of a share within z. Used share will in high

level zone procedures be the share in which items are stored for
the moment or from which they are fetched.

ia(18) Number of shares, The value given in the zone declaration.
ia(19) Base buffer area. See above.
ta(20) Buffer length, The value given ir the zone declaration, ioe. meas-

ured in double words.

File count, block count ‘ '
‘In the high level zone procedures of algol the two variables, file

count and block count, are used in two ways: When a tape positioning is

initiated, file and block count denote the wanted final position. When a
block transfer has been checked, file and block count denote the physical
position corresponding to the end of that block.

Segment count
The current value of segment count is used as the 4th word of every

message sent to a device by the high level zone procedures, It will only
have significance when the message is sent to a backing storage process,
however, As soon as the message is sent, segment count is updated to cor-

respond to a transfer of the next block from the backing storage.

Free parameter

The so called free parameter may contain anything if the zone is not

used by. the Fortran read/write system or by the procedures changevar, in-

var and outvar, It is set to zero when the zone is declared. The var-pro-

cedures use this parameter as a counter of logical records generated or

read by the procedures. The var-procedures are described in the sections

9.11, 9.53 and 9. 48, The Fortran read/write system uses the last bit of

this parameter to signal if the latest call of read or write used format

or formatO. A one in the last bit means that formatO was used and a null

means that format was used. See ref. 9 for further details.

Partial word

tne element of the zone buffer consists of two words. Each of the

words contains %3% characters like this: chi snift 16 + ch2 shift 8 + ch3.

Partial word may after the call of a procedure on the character level

contain this:

After input: After output:

ch2 shift 16 + ch3 shift 8 +1 1

ch4 shift 16 + 1 shift 8 1 shift 8+ chi’

1 shift 16 1 shift 16 + chi shift 8 + ch2

Zone state

The action of a high level zone procedure will in general depend on

the latest operation upon the same zone.

GETZONES 9-27

zone state = 0 positioned after open.
1 after character reading.
2 after repeatchar.

4 after character printing.

h after declaration.
5 after record input.
6 after record output.
7 after record swop.

8 after open on magnetic tape,
> 9 after some procedures not described in this manual.

The procedure setposition expects the zone state to be 0, 1, 2, 3,

5, 6, 7, or 8 and leaves the zone state = 0.
The procedure open expects the zone state to be 4 and leaves the

zone state = 0 or 8,
- The procedure close leaves the zone state = 4, |

The procedures ‘inrec, inrec6, and invar expect the zone state to be

O or 5 and leave the zone state = 5.
The procedures outrec, outrec6, and outvar expect the zone state to

be O or 6 and leave the zone state = 6,
The procedures swoprec and swoprec6 expect the zone state to be O or

7 and leave the zone state = 7.
The procedures read, readall, readchar, and readstring expect the

zone State to be O or 1 and leave the zone state = 1.
The procedures write, outchar, outinteger and outtext expect the zone

state to be O or 3 and leave the zone state = 4,

Example 13

Tet z be declared as z2(2*128,2,stderror) and opened as the backing
storage area <:sldatal5:>. After 130 calls of 'outrec6(z,4)' the call

getzone6(z,ia) will vield something which only depends on the value of

pase buffer area:

variable contains

ia(1) ,modekind 4
ia(2)-ia(5), process name <:sldatal5:>,0
ia(6) name table address Some address
ia(7),file count ©
ia(8),block count)
ia(9),segment count 1(prepared for output of the next segment)

ta(10),give up mask As defined by open

ia(11),free parameter 9)
ia(12),partial word 1
ia(13),zone state 6(after outrec6)
haf 1) second base 30 515(base buffer + 4x128 + 4)
ia(15),last byte 31 023(base buffer + 4*255)

ia(16),record length 4
ia(17) ,used share 2(one block output already)

ia(18) number of shares 2
ia(19),base puffer area . 29999

ia(20), buffer length 256

9-28 IN

Example 2, character output to core store:

“Numbers may be transiormed to Character form by means of write. The
only problem is that you do not want to output the characters on a device,
but rather keep them in long variables as text portions. This is possible

by means of getzoneS,setzone6,. :

begin zone convert(10,1,stderror); integer array ia(1:20)3
open(convert,0,<:dummy:>,0)

rep: write(convert,<<ddd.dd'di>,the number to be converted, false, 2) 3
comment the partial word has been forced into the buffer by the

2 null characters$

getzone6(convert, ia)$:
ja(12):= 13 ia(14):= ta(19)$3 ia(16):= os
setzone6(convert, ia)3
econment Now the record contains the number in character form.

Record base and partial word are ready for converting
the next numbers mo

x1:= long convert(1)3 x2:= long convert(2)3 ...
goto reps

Example 3, improved setposition
The procedures getposition, setposition do only enable a device to be

positioned at the beginning of a block. You may reasume reading from the
middle of a block on magnetic tape or backing storage in this way:

comment generalised getposition;

read(z,ooo)$
getposition(z,pos1,pos2)$ getzone6(z, ia);
comment pos4 is the relative position within the used. share}

pos3:= ia(14) - ia(19) - ta(20)*4//1a(18)*(ia(17) - 1)3
post:= ia(12)s

comment generalised setposition, perhaps with the device con-

nected to another zone$
setposition(z1,pos1,pos2); readchar(z1,¢)$
comment now the device is positioned and the first block is

read into the first share}3

getzone6(z1,1a)3 .
ja(1):= poss + ia(19)3 ia(12):= posks setzone6(z1,1a)3

read(Z1,ee0e)3

9.28. In

The standard identifier 'in' is a preopened zone available for input

on character level. The actual file connected to the zone is determined by

the file processor command which started the program (see App. B).

The call <program> will let 'in' be the current input file of the

file processor, The call <program><text file> will let 'in' be the file

ctext file>. The call <progran><integer> makes '‘in' wunavaileble (but

frees some space in the job area).
When the program terminates the latest operation on ‘ian' must have

been a call of a character reading procedure.

INCREASE, INREC 9-29

9.29. Integer procedure increase

Used in connection with a variable text as parameter to write, open,

etco

Call: inerease(i)

increase (return value, integer). The procedure performs:

increase:= is i:= i+ 13

but i is only evaluated once.

i (call and return value, integer) »

Example: See example 2 of string.

9.30, Integer procedure inrec

This is the Algol 5 version of inrec6, Inrec gets a sequence of

elements of 4 bytes each from a document and makes them available as a

zone record.

Call: inrec(z, length)
inrec (return value, integer)..-The number of elements each

‘of 4 bytes left in the present block for further calls
of inrec.

Zz (call and return value, zone). The name of the record.
Determines further the document, the buffering, and

_ the position of the document (see 6.1).
length (call value, integer, long, or real), The number of

. elements of 4 bytes each in the new record. Length

mst be > 0.

For further description see 9.31, inrec6.

Inrec may be used with advantage, if the document is considered to

contain reals.

Example:
Records of variable length may be handled in the Algol 5-way by means

of inrec and outrec, but you should be careful: For magnetic tapes the

record length should be checked in the block procedure to make sure that

they match the block length. For packing storage areas the unused elements

at the block end must be skipped (outrec clears them).

Suppose the record length is stored as the first element of the ree

cord. The record may then be fetched in this way for all devices:

rep: vemaining:= inrec(z,1)3 length:= 2(1)3
if length <= 0 then

begin inrec(z,remaining) $
comment unused elements are skipped;

goto rep
end$

inrec(z,length - 1)3

Another solution is to call the block procedure after all normal

answers and let it adjust or check the length. Note that the relation

length = 0 instead of length < 0 would not work because a backing storage

ares, is filled up with binary zeroes (cf. 3.4.7 and 3.1.6).

0-30 INREC6

9.31. Integer procedure inrec6

Gets a sequence of bytes from a document and makes them available as

a zone record, The document may be scanned sequentially by means of in-

rec6, because the next call of inrec6 gets the elements just after those
got now.

Call: inrec6(z,length)
inrec6 (return value, integer). The number of bytes left in

the present block for further calls of inrec6.
Zz (call and return value, zone). The name of the record.

Determines further the document, the buffering, and
the position of the document (see 6.1).

length (call value, integer, long, or real). The number of
bytes in the new record, Length mst be >0O,. If

length is odd, 1 is added to the call value. —~

Zone state.
@ zone z must be open and ready for record input (state 0 or 5,

see 9.27), i.e. the zone may only have been used by inrec6, invar or the
like since the latest call of open or setposition. To make sense, ‘the

document should be an internal process, a backing storage area, a type-
writer, a paper tape reader, a card reader, or a magnetic tape. In the
latter case setposition(z,...) must have been called after the call of
open(z,.sc)-

Blocking

——“Threc6 may be thought of as transferring the bytes just after the
current logical position of the document and changing the logical posi-

tion to after the last byte of the record.
However, all bytes of the record are taken from the same block, so

if the record cannot be taken from the current block, the block is changed

as described in 6.3. Then the record becomes the first bytes of that

block, but if it still cannot hold the record the run is terminated (emp-

ty blocks are completely disregarded).
Records of length O need a special explanation: if not even a single

word is left in the block, the block is changed and the logical position

points to just before the first word of the new block.

Note that inrec6 changes the blocks in such a way that a vortion at

the end of a block may be skipped. So be careful to read a backing sto-.

rage area with the same share length as that with which it- was written,

otherwise, wrong portions might be skipped at reading. ~

Example 1:

s le scan of a file on a magnetic tape in double buffer mode may

be programmed in this way (all records are assumed to be of 20 bytes):

pegin zone file(2*128,2,endfile)$
procedure endfile(z,s,b)3 zone z3 integer s,b3

if s extract 1 = 1 then stderror(z,s,b) else ;

if b>O ors shift (-18) extract 1 = 1 then goto endscans

INREC6 9-31

open(file,18,<:mt600304:>,1 shift 18+1 shift 16)
setposition(file,1,0)3 comment skip the label in file 03

rep: inrec6(file, 20)
y:= long file(1) + file.int#;
goto rep$

endscan: close(file,true)$

The scan is terminated by the procedure endfile which is called at

tape mark (1 shift 16), end of tape (1 shift 18), and all hard errors,
After the positioning (but before the first input operation) end file may
be called with tape mark indication. In this case however, b = 0, while
b> O after input of a tape mark.

The same piece of code would work for an area on the backing store
if the file was generated with a share length of 128 elements of 4 bytes

and if the second and third parameter to open were changed.

Example 2:
Tyo tiles of 100 byte records on magnetic tape are arranged in as-
cending order (sorted with respect to the key indicated by the integer
field keyf). They may be merged into one file in this way:

begin zone result(2*256,2,stderror) 3
zone array in(2,2*256,2,endfile)$.
procedure endfile(z,s,b)$ zone z3 integer s,b3
if s extract 1 > 0 then stderror(z,s,b) else
begin b:= 1003 z.keyf:= larges

comment the procedure simulates the presence of a record
with a very large keys

ends

open(in(1),..0,1 shift 16)$3 ... setposition ...
large:= (-1) shift (-1)3
inrec6(in(1),100)3 inrec6(in(2) ,100)s
for k:= if in(1).keyf < in(2).keyf then 1 else 2
while in(k).keyf < large do
begin
outrec6(result, 100) $
tofromf requht,2(X) .100)5
inrec6(in(k) ,100)3

ends "

close(result, ...)3

Example’ 3, block reading.
You may read a Magnetic tape file or backing storage area block by

block in this way:

for b:= inrec6(z,0) while b > 2 do
begin

comment b is now the block length in bytes the standard ac-

tions simulate one word containing <:<25><25><25>:> at tapemark

and end of areas
inrec6(z »b) 3

comment the block is now available as one records

oee $

end$

if 2 .firstword <> long <:<25><25><25>:> shift (-24) extract 24
then errors

9-352 INTABLE

9.32. Procedure intable

Exchanges the current input alphabet used by all the read procedures

on character level.

Call: intable(alpha)
alpha (call value, 0 or an integer array of one dimension).

A zero signals that the standard alphabet be used.
An integer array contains the new alphabet in table
form as described below.

1. alpha is an integer array:
The actual contents of alpha are used in all calls of read procedures

until a new alphabet is selected. This means that any change in the con-
tents of alpha may have effects on the character reading. If a read pro-
cedure is called at a place where alpha is undeclared, an undefined al-

phabet is used.
To each character 'c!' delivered by the peripheral device is associa-

ted a Class and a Value, determined by the read procedures in this way:

alpha(ct+table_index) = Class shift 12 + Value extract 12

Class is an integer, 0 < Class < 4095, Value is an integer, -2048 < Value

< 2047. The character Te! is an integer, 0 <c¢ < 255, The ISO characters

Dtilize only half of this interval. The standard integer 'table index!
is normally 0, but you may use it to modify the alphabet. ~

The class determines how the value corresponding to a character is

handled:

Class = 0, blind: The character is skipped by all read procedures.

Class = 1, shift character: The value is assigned to table index and the

character is looked up again in the alphabet to determine

Class and Value.
digits: The character is a decimal digit the value of which is

Value - 48, To make sense, 48 < Value < 57 should be fulfilled.

Class = 3, signs: The character is the sign of a decimal number. Value =
43 means +, Value = 45 means -.

|

Class = 1 ine
)

“s
e

Class = 4, decimal point: The character may be used as a decimal point.

Class =5, exponent mark: The character may be used as the ' of Algol.

Class = 6, letters: The character may be used as part of a text but not

as part of a number.

Class = 7, delimiter: The character cannot be part of a text or a number.

Class = 8, terminator: The character is a delimiter as class 7, but it

will terminate a call of readall. If value is 25, it will in-

mediately terminate a call of read or readstring.

Class > 8, other delimiters: The character is handled as class 7.

2, Alpha is 0:
The standard alphabet given in section 2.0.1 is used until a new al-

phabet is selected, The value of table index has no influence on the al-

phabet. When the run starts, the standard alphabet is selected automati-

cally.

INTABLE 9-33

You should not hesitate to use a special alphabet table: The charac-
ter reading will be speeded up compared to what you could do in algol with

the standard alphabet, and the input algorithm becomes clearer. There are
two drawbacks: 1) The table takes space, but remember that 2%128 integers
correspond to one segment of a program (10 to 20 lines), and that much is

easily saved in the central loop of the input program. 2) The table is
cumbersome to initialise (even with the method of example 2 below) , but

we believe that is inevitable. In many cases it will be an advantage to

make a procedure which initialises the table with a standard alphabet and
then add modifications to this table.

Example 1, number variants: ;
Assume you want to read numbers coded in ISO form but with space re-

garded as blind information and without exponent part. You may then pro-

ceed like this:

comment initialise table with the ISO alphabets

table(32):= 03 table(39):= 7 shift 12 + 393 oo.
comment define space, apostrophe, and all other characters;

intable(table)$ table index:= 03
—vread(z,eee)3 7

Example 2, flexowriter conversion.
“It is possible. to use the read procedure for input represented in

flexowriter code if the underlining may be disregarded. The shift charac-

ters, class 1, may take care of the case shift characters, An alphabet
table of 2%128 elements is required. Qne way of initialising the table
goes like this:

for i:= 0 step 1 until 255 do table(i):=
(case i+1 of (0,2,2,2,2, 292g e ye yey CUASS

0,8 8,6,0, 052575656,
sed shift 12 +

(case it+1 of (32,49,50,51,52, 53,54,55,56,57,
0,12,25,125,0, 0,48,60,115,116,
ooo 3

Upper case and Lower case require

table(60):= 1 shift 12 + 1283
table(60 + 128) := 03
table(58 + 128):= 1 shift 12 + 03
table(58) := 03

Note, that if the input was flexowriter paper tapes which were read in.

ISO0-mode, the parity hole would not be the flexowriter parity hole, and

as a consequence a different alphabet table would be needed.

Example 3: See example 3 of readall.

9-34 INVAR

9eIDo Integer procedure invar

This procedure together with outvar, changevar, and checkvar are in-
tend for easy handling of records of variable length. Every record mst

contain its om length in bytes in its first word, the length word. Invar
makes the next record written by means of outvar available as a zone re-
eord. A record checksum in the second word may be checked, and the number
of records are counted in the so called free parameter in the zone de-
seriptor (see 9.27). ‘This procedure may call the block procedure with the
status 1 shift 11, checksum error, if the record length wanted is < 4 or
> remaining bytes in the block or odd or if the checksum is calculated
and not equal to the value of the second word in the record.

Call: invar(z)
invar (return value, integer). The number of bytes left in

the present block.
Zz (call and return value, zone). The name of the record.

Determines the document, the buffering, and the posi-
tion of the document (see 6.1).

Zone state.
“The zone z must be open and ready for record input (state O or 5),
i.e. the zone may only have been used by invar or the like since the la-

test call of open or setposition. The free parameter (see 9.27) in the

zone descriptor is used to count the number of records accepted by invar.

The value of this parameter is interpreted as check wanted shift 23 + re-

cord count where check wanted = 1 means that a checksum is calculated by

invar and checked against the second word in the record, See below for

further details.

Blocking
———You may think of invar in the way that the procedure tastes the value
of the first word just after the current logical position of the document.

Now invar exposes as many bytes as the length word indicates, including

the two bytes of this word.
However all bytes must be taken from the same block. If this is not

possible, the block procedure of the zone is called, See further on length

errors below.
If the length word is null, it is skipped and the next word from the

document is tried as length word. When there are no more in a block, the

plock is changed. This covers skipping of blank block tails that may be

generated by outvar when the kind of the document is packing storage (see

9.48).

Length errors. Checksum

—IT the leneth word is <> 0, it is expected to be even, >= 4 and <=

the bytes remaining in the present block. If not all three conditions are

fulfilled, invar will give up and call the block procedure (see below).

When the length word has passed the tests above, the contents of the

second word may be tested as a check sum of the record, If check is wan-

ted (see zone state above), invar tests if the sum of all words in the

record taken modulo 2**24 is equal to -3. If not, invar calls the block

procedure.

INVAR 9-55

Block procedure, call conditions.
invar may call the block procedure in. two. different situations:

a) The length word is not sensible (see above).
b) Record sumcheck is wanted, and the sum.is not ok (see above).

The call conditions for the parameters to the block procedure are:

z: The zone state is after record input. The defect record is
not counted in the free parameter, The record starts just

before the length word and depends on the length word like
this:

record length:=

if length word < 4 or length word > remaining then
remaining else if recordlength is odd then lengthword«

+ 1 else length word.

Remaining means the number of bytes remaining in the present
block including the length word. The terms zonestate, free

parameter, and record length is explained in 9.27, getzone6.

s: The status word parameter has the value, 1 shift 11.

b: The bytes transferred parameter is equal to the record

length, described above.

After return from the block procedure, invar restarts its algorithm
by fetching the next logical record, A defect record will thus be skipped
if the block procedure simply ignores the call.

Example 13
——Your block procedure may test whether situation a) or situation b)
above has caused the block procedure to be called. This. may be done as

follows:

procedure blpr(z,s,b)3 zone z$ integer s,b3
begin

if s = 1 shift 11 then
begin integer field lengthwords; lengthword:= 2

if b <4 or b } z.lengthword then
begin comment length error$
end

else
begin comment checksum errors eco

ends

end.

eceoce

ends

9-36 INVAR

Example 2, attempt to repair a defect record.

When you read a rile from magnetic tape written by means of outvar,
you may try to make sense of blocks with parity error and where the stan-
dard actions have given up.

This will only be waste of machine power if all records are needed in
arun. In such case it is better to give up once status errors occur. It
must be recognized, however, that problems exist where it is essential to
make as much sense out of a file as possible in one run and then try to
pick up the defect records in a later run.

A block procedure which counts the number of wrong 'records' and only
gives up when this number is too large may look something like this:

procedure afterparity(z,s,b)3 zone z$ integer s,b3
begin own integer faults; integer field length;

length: = 23
if s = 1 shift 11 then
begin

faults:= faults + 13
if faults > max then stderror(z,s,b)3
if b m z.length then

drop: write(out,<:record dropped expected: :>,z.length,
<: dropped: :>,b,<: bytes<10>:>)

else

begin comment maybe only checksum error}
if b < min length or b > max length then goto drops;
sees NOW check the contents Of the possible record if it
does not seem to be sensible then drop it else set a mark
that it may be erroneous and
checkvar(z)3 changerec6(z,0)3
comment force a new checksum into the record and regret

the record so that invar may take it once more$3

ends

end

else if logand(s,-1-(1 shift 22 + 1 shift 15 + 3) 0
then stderror(z,s,b)3$
comment give up if hard error except in connection with

parity error, ring indication and normal answer}

ends

When the zone with this block procedure is opened, the give up mask

should not contain the parity error bit, as the standard action, 5 re-

readings, is wanted for parity error. The bit for checksum wanted should

be set in the free zone parameter (see getzone6, 9.27):

open(z,18,<t002>,0)3
setposition(z,1,0)3
getzone6(z, iay3 ia(11):= 1 shift 233
setzone6(z, ia) 3

rep: invar(z)3
ecooe handle the record, note the error-mark;

goto reps

Example 3:

ee example of changevar.

LN, LOGAND 9-37

9.34, Real procedure In

In (return value, real). The Napierian logarithm of r.
r>0.

r (call value, real, long, or integer) .

Accuracy

r=1 gives 1n = 0

0.5 <r <2 gives absolute error below 2,.2!'-10

0.25 <r 025 or

2<r< y gives relative error below 1.8'-10
r<0.25 or 4<r gives relative error below 1.2'-10

Alarm: The run is terminated if r <0.

9.35. Long procedure logand

Performs the function logical and (logical miltiplication) on two 48
pit entities a and b. If the type length of a and/or b is smaller than 48
bits, they are extended by repetition of the sign bit.

Call: logand(a,b)
logand (return value, long). Bitpattern equal to (a and b)

performed bit by bit after a possible extension of the

arameters a and b.

(call values, short string (text portion), real, long,
integer, or boolean). The two parameters do not have
to be of the same kind. They are - if necessary - ex-

tended and they are handled as described below.

Ab

Handling of a and b according to kind:

Strings It is tested that a string parameter describes a text portion

or a short string (see 3.6.3). This is a 48 bit entity.

Reals A real is represented by 48 bits, No conversion.

Long: A long is represented by 46 bits, No conversion.

Integer: An integer is extended to a long as if the operator extend (see

9.19) had been applied.

Boolean A boolean is considered as a short integer. The 12 bit booiean

is extended to a 48 bit long according to the algorithm:

ints= boo extract 123

if int > 2047 then int:= int - 40963

param: = extend ints

The rules for extension imply that actual parameters with the vaiucs

true, -1, and extend («1) are equivalent. Note that the rules also imply

that the effect of an integer with the value colu8 differs from the effect

of a boolean with the value false add 20h,

Example:
Gee example 2 of invar.

9-38 LOGOR, LONG, MESSAGE

9.36. Long procedure logor

Performs the function logical or (logical addition) on two 48 bit
entities aandb. If the type length of a and/or b is smaller than 48
bits, they are extended by repetition of the sign bit.

Call: logor(a,b)
logor (return value, long). Bit pattern equal to (a or b)

perccrmed bit by bit after a possible extension of the
parameters.

a,b (call values, short string (text portion), real, ong,
integer, or boolean). The two parameters do not have
to be of the same kind, They are - if necessary - ex-
tended and they are handled as described for logand.

9.37. Long

This operator changes the type of a string expression or a real pri-

mary to type long. The binary pattern of the operand is unchanged. Note
that this use of the delimiter long is totally different from its use in

a declaration or specification.

Syntax: long <string> is of type long
long <real> is of type long

Priority higher than **

The binary pattern of a string is described in 3.6.5. The binary patter
of a real is described in 3.1.6.

9.38. Message

This delimiter may print a message during the translation of a pro-

gram.

Syntax: message follows the same rules as comment.

The text between message and semicolon is printed on current output if

message.yes was used in the translation parameter list (see app. B).

Example:

Sn can save the listing of a long algol program and still keep track

of the line numbers. Put 1 or 2 messages on each page of the program (for

instance as page head) and translate it with: algol message.yes. The mes-
sages are then printed with their line numbers attached and you can easily

find any other line given its line number.

MOD, MONITOR 9239

9.39. Mod

This dyadic operator yields the remainder corresponding to an integer

division.

Syntax; <integer> mod <integer> is of type integer.
<long> mod <integer> is of type long.
<integer> mod <long> is of type long.
<long> mod <long> is of type long.
Priority as //.

The value of i mod j is defined as

i - i//35*5

Note that the sign of i mod j is the same as the sign of i.

Example, cyclical counting.
Counting 1 = 1,2,5,1,255,1,00- may be done in this way:

is= i mod 3 + 13

A longer but slightly faster version is:

is= if i = 3 then 1 else i + 13

9.40, Integer procedure monitor

This procedure is the algol equivalent of the monitor procedures.

You may use it to handle peripheral devices in a non-standard way and to

program operating systems and executive functions in algol.
In most cases the algol procedure will only transform the parameters

to the form required by the monitor, and the description below describes

mainly this transformation. You will have to consult the manual of the

mltiprogranmming system (ref. 1) and the monitor 3 manual (ref. 5) for the
details and the ideas behind each entry.

Call: monitor(fne,z,i,ia)
~— monitor (return value, integer). In most cases the result of the

corresponding call of a monitor procedure.

fne (call value, integer). A function code specifying the monitor
rocedure to be called.

(call and return value, zone). The zone descriptor contains in vA
most cases the name of the process or catalog entry concerned.

i (call and return value, integer). Used for various purposes,

@eg. device number, message buffer address.

ia (call and return value, integer array). Used for various pur-

poses, e.g. tail of catalog entry, contents of answer. Various

lengths of ia are required in the various cases.

Certain of the procedures are only applicable to system 3. They are

marked with (sys. 3).
In most cases only some of the last 3 parameters are actually used by

the procedure. The value of fnce determines always the function as follows:

g-ho MONITOR

fne = 4, process description:
monitor

Z

Tesult, 1e€. process description address or 0,
(call value). Contains the process name,

fne = 6, initialise process:
result, 1.¢- O means process initialised, 1,2,5 means
not initialised.
(call value). Contains the process name.

result, i.e. O means process reserved, 1,2,5 means not

(call value). Contains the process name.

~ (call value). Contains the process name.

result, i.e. O means included, 2,3,4 means not inclu-

(call value). Contains the process name.
(call value). Device number,

result, i.e. O means excluded, 2,3,4 means not ex-

(call value). Contains the process name.
(call value). Device number.

burter address, 0 if the buffer claim is exceeded.
(call value). Contains the process name.
(call value). The number of a share within z. The share
state mist at call time be O or 1, at return time it is

the buffer address. The message sent is given in the

share descriptor. (See 9.25, getshare6). Note that you

may change the message in the share by means of the

procedure setshare6, 9.60.

monitor

Z

fne = 8, reserve process:
monitor

reserved.
Z

fne = 10, release process:
Z

fne = 12, include user:
monitor

ded.
Z
i

fne = 14, exclude user:
monitor

cluded.
Z
i

fne = 16, send message:
monitor
Z
i

fne = 18, wait answer:
monitor

Z

i

ia

result, ise. 1 means a normal answer, 2,3,4,5 means
duumy answers.

(call value). Determines together with 'i' the buffer
address.

(call value). The number of a share within z. The share

state mst be the buffer address at call time, at re-

turn time it is 0.
(return value, length > 8), The answer is stored here.

fne = 20, wait messages
monitor

Z,

i

ia

result, i.e. positive fora normal message, negative

for a message from a removed process.

(return value). The process name is stored here.
return value;. Buffer address.
return value,length > 8). The message is store here.

MONTTOR 9)

fne = 22, send answer:
L ear value). Buffer address, 7
ia call value, length > 9). The first 8 elements contain

the answer, the 9th element contains the result.

fne = 2h, wait event:
monitor result, i.e. O for a message, 1 for an answer.
Zz (return value). The name of the sending process is

stored here if a message was received.

i peat and return value). Last and next buffer address,
ia return value, length > 8). If a message is received,

it is stored here.
An event may either be a message sent to the job or an answer described as

the share state of some zone (possibly 'in' or 'out').

fne = 26, get event:
T (call value). Buffer address pointing to a message, An

answer cannot be released in this way - use wait answer

instead.

fne = 40, create entry:
monitor result, ise. O means entry created, 1,2,3,4,5,6 means

entry not created. ;

Z (call value). Contains the entry name.
ia (call value, length > 10). Contains the tail of the

entry. ~

fne = 42, lookup entry: .
Monitor result, i.e. O means entry looked up, 2,3,6 means not

looked up.
Zi (call value). Contains the entry name.
ia (return value, length > 10). The tail of the entry is

stored here.

fne = 4h, change entry:
monitor result, i.e. © means changed, 1,2,3,4,5,6 means entry

not changed.

Zz call valve). Contains the entry name.
ia call value, length > 10). Contains the new tail of

the entry.

fne = 46, rename entry:
Tonttor result, i.e. O means entry renamed, 1,2,3,4,5,6 means

entry not renamed.

Z (call value). Contains the present entry name.

ia (call value, length > +). Contains the new entry name.

fne = 48, remove entry:
Tonitor result, i.e. © means entry removed, 1,2,3,4,5,6 means

entry did not exist or entry is not removed.

Z (call value). Contains the entry name.

g-he MONTTOR

fne = 50, permanent entry:
monitor result, i.e. O means entry made permanent, 1,2,3,4,5,6

means entry not permanent,

Z (call value). Contains the entry name.
i (call value). Catalog key.

fne = 52, create area process:
monitor result, 1.¢. O means area process created, 1,2,3,4,6

means process not created.

Zz (call value). Contains the process name.

fne = 54, create peripheral process:
Monitor result, 1.¢. 0 means process created, 1,2,3, 4 »5,0 means

rocess not created.

Zz (call value). Contains the process name.
i (call value). Device number.

fne = 56, create internal process:
monitor result, 1.¢. 0 means process created, 1,3,6 means pro-

cess not created.

Z (call value). Contains the process name, The process
will be created in the buffer area of z.

ia (call value, length > 6 in sys2, >9 in sys3). Con
tains the parameters in this way:

in system 2:
1st element buffer index for start of process
2nd element buffer index for last of process
4rd element buffer claim shift 12 + area claim
4th element internal claim shift 12 + function

mask

5th element catalog mask

6th element protection register shift 12
+ protection key

in system 3, the first 4 elements are as for system 2.
the following are:

Sth element protection register shift 12
+ protection key

6th element lower limit of max base
7th element upper limit of max base

8th element lower limit of std base
Qth element . upper limit of std base

fne = 58, start internal process:

monitor result, 1.6. 0 means process started, 2,3,6 means pro-

cess not started.

Z (call value). Contains the process name. The process

mist have been created inside the zone buffer.

i (call value). The number of a share within z. The share

state mist at call time be O or 1, at return time it is

- process description address.

fne

MONITOR gu:

= 60, stop internal process:
monitor

Zz
i

result, 1.6. 0 means stop initiated, 3,6 means stop not
allowed. ;

(call value). Determines together with i the process.
(call value). The number of a share within z. The share
state must at call time be - process description ad-
dress, At return time it is the buffer address, Notice

that the process name in z is irrelevant.

= 62, modify internal process:
monitor

Z

la

result, 10¢. 0 means process modified, 2,3,6 means mo-
dification not .allowed.

(call value). Contains the process name.
(call value,length > 6). Contains the modified regi-
sters.

= 64, remove process:
monitor

Z

result, i.e. O means process removed, 1,2,3,5,6 means
removal not allowed.
(call value). Contains the process name.

= 68, generate name:
monitor

Z

result, i.e. O means name generated, 1,2 means name not

generated.
(return value). The generated name is stored here.

= 70, copy core area:

monLtor

Z

ia

result of the copying, O meaning area copied, 2 or 3

area, not copied.

(call value). Contains the area to or from which the
copying will take place. The limits of the copying are

given by the zone parameters record base and last byte.

(call value). The buffer address of the input or output

message defining sender's copy area.

(return value, length >= 9). Contains information about
the copying almost ready to be used by send answer:

1st element should then be set by the user

2nd element if result < 0 then 0 else bytes

copied

3rd element if result < 0 then 0 else chars

copied

9th element if result = 3 then 3 else 1.

fne = 72, set catalog base (sys. 3):
monitor

Z

ta

Tesult, O means catalog base set, 2,3,4,6 means catalog

base not set.

(call value). Contains the name of a child process or a

nullename, meaning OWN Process.

(call value, length >= 2). Contains the base to be set.

1st element lower limit of the base

Qnd element upper limit of the base

?

9-4h MONITOR

fne = 74, set entry base (sys. 3):
monitor result, 0 means entry base set, 2,3,4,5,6,7 means entry

base not set.
Z (call value). Contains the entry name.
ia (call value, length >= 2), Contains the entry base to

be set, as for the fne = 72, set catalog base.

fne_= 76, lookup head and tail (sys. 3):
monitor result, © means entry looked up, 2,3,6 means entry not

looked up.

Zz poet value). Contains the entry name.
ia return value, length >= 17). The entry looked up.

fne = 78, set backing store claims (sys. 3):
monitor result, 0 means Claims set, 1,2,3,6 means claims not

set.

Z foal value). Contains the name of a child process.
ia call value, length >= 4 + 2%no of keys), The first 4

elements contain the name of the bs document

5th element entry claim, key 0

5th element segment claim, key 0

(5+2xmax key)th element entry claim, max key
(6+2max key)th element segment claim, max key

fne = 80, create pseudo process (sys. 3):
monitor result, 0 means pseudo process created, 1,2,3,6 means

pseudo process not created.
Z (call value). Contains the name of the pseudo process,

fne = 82, regret message (sys. 3):
monitor no result from this operation. Misuse will give

break 6.
Z (call value). Determines together with 'i' the buffer

address of the message to be regretted.

i (call value). The number of a share within z. The share
state must be the buffer address at call time. At re-

turn it is 0.

fne = 90, permanent entry in auxiliary catalog (sys. 3):
monitor result, O means entry made permanent, 2,3,4,5,6,7 means

entry not made permanent.
Z foals velue). Contains the entry name.
i call value). The catalog key.
ia (call value, length >= 4), Contains the name of the bs

document.

Parameters not mentioned in the description are neither used nor changed

for that value of fnc. If the requirements stated above are not fulfilled,

or if the situation termed 'parameter error' in ref. 1 or ref. 5 occurs,

the run will be terminated with an alarm. Values of fne not mentioned

above will also terminate the run.

MONITOR g-hs5

Example 1, create a backing storage area.
A backing storage area sldata> of S segments may be created and then

used like this:

begin zone z(512,1,stderror) 3 integer array tail(1:10)3
open(z,4,<:sldata3:>,0) 3
comment. The zone contains now the document name. The document

is not initialised in case of kind = 43
tail(1):= s3 tail(2):= 13 comment preferably a disc area}
for i:= 3 step 1 until 10 do tail(i) := 03
if monitor(40)create entry:(z,0,tail) > 0 then goto errors
outrec(z,.ee)$ ~

In system 2, the area may be made permanent with some key, so that it can

survive the job:

if monitor(50)pernszent_entry:(z,key,tail) > 0 then goto error;

Example 2, scope user of an area (system 3).
~The scope user ftunction consists of © steps, First the area is made

permanent with catalog key 3. Now, as key is >= min global key (see ref.
5), the entry base may be set to the user base of the process.

Let the zone z be opened to the area to be scoped.

system(11)bases:(i,ia)s
ia(1):= ia(5)3 ia(2):= ia(6)3 comment fetch the user base
if mont tort 7} pemanent entry:(z,3,1a) <> 0 then goto error3
if monitor(74)set_base:(z,0,ia) <> 0 then goto error;

Example 3, find scope of an entry (system 3).
~ As the catalog base of an internal process and of a catalog entry may

use almost the full integer range (see 20545), they must be handled as
longs when relations between them are calculated, in order to prevent

overflow.

system(11)bases:(i,bases) $
if monitor(76)head and tail:(z,0,entry) <> 0 then goto errors
case entry(1) extract 3+ 1 of
begin

comment key 0, maybe temp:$
if extend entry(2) = extend bases(3)

and extend entry(3) = extend bases(})
then scope:= 1 else scope:= 6$

comment key 1:3 scope:= 63

comment key 2, maybe logins;

if extend entry(2) = extend bases(3)
and extend entry(3) = extend bases(4)
then scope:= 2 else scope:= 63

9-6 OPEN

begin comment key 3, user, project, or. systems
li:= entry(2)3 12:= entry(3)3
if 11 = extend bases(5)

and 12 = extend bases(6) then scope := 4
else
if 11 = extend bases(7) .
and 12 = extend bases(8) then scope:= 4
else

if 11 <= extend bases(7)
and 12 >= extend bases(8) then scope:= 5
else scope:= 63

end

ends

write(out,<:the scope is: :>,case scope of(
<:temp:>,<:login:>,<:user:>,
<:project:>,<:system:>,<:***, i.e. undef:>));

9.41. Procedure open

Connects a document.to a given zone in such a way that the zone may
be used for input/output with the high level. zone procedures.

Call: open(z,modekind, doc, giveup)
Z (call and return value, zone). After return, z de-

seribes the document.
modekind (call value, integer). Mode shift 12 + kind. See below.
doe (call value, string). A text string specifying the name

of the document as required by the monitor, i.e. 4a
small letter followed by a maximm of 10 small letters

or digits.

giveup (call value, integer), Used in connection with the
checking of a transfer, See below.

Modekind .

——“"Bpecifies the kind cf the document (typewriter, backing storage,

magnetic tape, etc.) and the mode in which it should be operated (even
parity, odd parity, etc).

The kind of the document tells the input/output procedures how error

conditions are to be handled, how the device should be positioned, etc.

This kind has nothing to do with the kind mentioned in ref. 1. As a rule,

the procedures do not care for the actual physical kind of the document,

but disagreements may give rise to bad answers from the document. If you,

for example, open a backing storage area with a kind specifying printer,

and later attempt to output via the zone, the backing storage area will

reject the messege because the document was initialised as required by a

printer.

Mode and kind must be coded as shown in the table below. If you at-

tempt a mode which does not fit into the table, the run is terminated.

OPEN 9-47

kinds
QO internal process, mode = 0.
4 packing storage area, mode = 0.
8 typewriter, mode = 0.

10 paper tape reader, mode = O for odd parity, 2 for even parity
(the normal ISO form), 4 for no parity, and 6 for conversion
from flexowriter code to ISO.

12 aper tape punch, mode = 0 for odd parity, 2 for even parity

the normal ISO form), 4 for no parity, and 6 for conversion
from ISO to flexowriter. code.

14 line printer, mode = 0 for all printers, except centronics
101A via medium speed tmx where mode = 64,

16 card reader, see ref. 8 for full details.
18 magnetic tape (tapes of 6 or 8 bit physical characters). For
“RC 747 and RC 749;

Mode = O or 4 means odd parity.
Mode = 2 or 6 means even parity.

For RC 4739 and RC 4775 modekind is defined to be:
T shift 16 + Mode shift 12 + 18, where

Mode = O means 1600 bpi, PE, odd parity.
Mode = 2 means 1600 bpi, PE, even parity.
Mode = 4 means 800 bpi, WNRZ, odd parity.
Mode = 6 means 800 bpi, WNRZ, even parity.

For output 0 <= T < 6 specifies that the last T physical cha-
racters in a block should not be output to the tape.

For input T should be 0.
If you use T <0 during output, you should set the word de-
fect bit (1 shift 7) in your give up mask and after a check
of bytes transferred simply ignore the bit in your block pro-

cedure.

Initialisation of a document

Open prepares the later use of the document according to kind:

Internal process, backing storage area, typewriter:

Nothing is done. When a transfer is checked later, the necessary

initialisation is performed.

Paper tape reader, card reader:

First, open checks to see whether the reader is reserved by ano-

ther process. If it is, the parent receives the message

wait for <name of document>

and open waits until the reader is free. Second, open initialises

the reader and empties it. Third, open initialises the reader

again (in order to start reading in lower case), sends a parent

message asking for the reader to be loaded, and waits until the

first character is available.

Paper tape punch, line printer:

Open attempts to reserve the document for the job, but the result

of the reservation is neglected.

Magnetic tape: If the tape is not mounted, a parent message is sent asking

for mounting of the tape. The message is sent without wait indi-

cation (see ref. 7).

Some of these rules have been introduced to remedy a possible lack of

an advanced operating system.

9-h8 OPEN

Giveup.

e parameter giveup is a mask of 24 bits which will be compared to
the logical status word (see 6.3) each time a transfer is checked. If the
logical status word contains a one ina bit where giveup has a one, the
standard action for that error condition is skipped and the block proce-
dure is called instead (the block procedure is also called if a hard error

is detected during the checking).

Zone state.
“he Zone mst be in state 4, after declaration. The state becomes
positioned after open (ready for input/output) except for magnetic tapes,
where setposition must be called prior to a call of an input/output pro-=

cedure.
The entire buffer area of z is divided evenly among the shares and if

the document is a backing storage area, the share length is made a miltip-

le of 512 bytes. If this cannot be done without using a share length of
O, the run is terminated.

The logical position becomes just before the first element of block

O, file 0.

Example 1:
The normal usage of a tape reader named ‘reader’ goes like this:

begin zone 2(25*2,2,stderror) $
openh 4? shift 12+10,<sreader:>,0)3
read Zeoee Seo0o

close(z, true)
ends

If you replaced stderror with the procedure 'list':

procedure list(z,s,b),zone z3 integer s,b3
write(out,<:<10:>,$,b)3

and called open with 1 shift 1 instead of 0, the block procedure would be

activated after each tape transfer and you would get a complete log of

the actions of the reader. (The procedure 'list’ should print in a better

way to be really useful).

Example 2:
Kssume you need two magnetic tapes in a job. Then the best communica-

tion with the operating system is obtained in this way:

ice ONS pea ieada
open(z2, 18,<:mt1712:>,0)
setposition(z1,1,0)3 setposition(z2,1,0)3

If ncne cf the tapes are mounted, the operating system may get the mes-

sages:

mount mt1706 without wait indication (caused by open(z1,..+))
mount mt1712 without wait indication (caused by open(22, es)

mount mt1706 with wait indication (caused by setposition(z1...))

and the job is stopped by the operating system until the tape waited for

has been mounted.

our . 9-9

Example 3:
Nearly all document names will be supplied as data to the algol pro-

gram and in many cases the kind and mode are given as data too. A conve-
nient way of doing this is to use the following syntax of the data:

<kind and mode> <document name> <possibly a file number>

Kind and mode are represented as the mnemonic code of the fp-utility pro-
gram 'set',

The algol program may then look like this:

begin

boolean procedure openvar(z,giveup)$; zone z3 integer giveup3
begin array text(1:3)3 integer i,j; .

Openvars= trues j3= C3

readstring(in, text, 1)3
for i:= 1 step 1 until 17 do

if text(1) = real(case i of

(<:ip:>,<:bs:>,<:twi>,<:tro:>,<:tre:>,...)) then j:= i3

i:= 13
if readstring(in,text,1) > 2 or j = 0 then openvar:= false
else
open(z,case j of(0,4,8,10,2 shift 12 + 10,.e),

string text(increase(i)),giveup),
if 3 > 15 then
begin read(.n,i)3

setposition(z, 1,0)
ends

end openvars$

begin zone master, trans, new(256*2,2,stderror)
if -, (openvar(master ,0) and openvar(trans,0)
and. openvar(new, 0)) then goto dataerror$

inrec6(master,m1)3; inrec6(trans,t1)3...

942. Ot

The standard identifier 'out' is a preopened zone variable for output

on character level. The actual file connected to the zone is the current

output file of the file processor. Out must be left in a state ready for

output of characters when the run is terminated.

Examples

tn FP source file containing

palgol 3
begin write(out,12,<:a:>) end
o £47 3 select f47 as current output, see ref 2 or ref 6.

ze) 3 execute

Pp 3 execute

will generate the following text in the file f7:

12a

end 7

12a

end 7

9-50 OUTCHAR, OUTINTEGER

9.43. Procedure outchar

Prints one single character on a document.

call: cutchar(z,i)
Zz (call and return value, zone). Specifies the document,

the buffering, and the position of the document.
i (call value, integer). The last 8 bits of the integer

are printed as a character.

Zone state as for write, 9.76.

Blocking as for write, 9.78.

Example:

"Bee example 1 of readchar, section 9.53.

9.44, Procedure outinteger

The procedure prints an integer or a long with a specified number of
the lest digits preceded by a decimal point. The number may be preceded by
a larger number of spaces then a usual layout. The procedure is specially

designed to print amounts cf currency.

Call: outinteger(z,rens, dec, amount)
Z (call anc return value, zone). Specifies the document,

the buffering, and the position of the document.

psns (call value, integer). Specifies the total number of
character positions to be printed. psns should be in-

side the range: abs(psns}) < 132.
dec (call value, integer). Specifies the nunber of digits

after the decimal point. Dec should be inside the

range: O <= dec <= min(<ebs(psns)-3,15).
amount (call value, integer or long). The integer or long to

be printed. ,

The procedure prints an integer or a long with a specific number of

characters as given by the absolute value of the parameter psns. If psns

is negative and ariount = 0 ‘then a number of spaces equal to the absolute

value of psns is printed. If psns is outside the allowed range, the pro-

cedure will output 132 characters.

Positive values of amount are printed without a sign whereas a nega-

tive anount is preceded oy a minus sign. Charaster positions not occupied

by digits and a possible sign and/or period are converted to spaces in

front of the integer. An integer is always printed correctly even if the

number of character positions is not adequate,

Zone state as for write, 9.73.

Blocking as for write, 9.73.

OUTREC 9451

Example:
The program

begin long 11,113
for i1i:= 5, 11*11 while 11 < 1000000 do
begin 11:= 113 outinteger(out,8,2,11)3 outchar(out,10) ends

ends ,

will print

0.05
9.25
6,25

3906.25
1525878906 .25

9.45, Integer procedure outrec

This is the Algol 5 version of outrec6. A document may be filled

sequentially by means of outrec, because the next call of outrec will

create a record which is transferred to the next elements of the docu-

ment.

Call: outree(z, length)
outrec (return value, integer). The number of elements of 4

bytes each available for further calls of outrec pefore

change of block takes piace.

Zz (call and returm value, zone). The name of a record.

Determines further the decument, the buffering, and the

position of the document (see 6.1).
length (call value, integer, long or real). The number of ele-

ments of 4 bytes each in the new record. Length must be

> 0.

For further description see 9.46, outrec6.
Ousree may be used with advantage when the document is considered to

zontain reals,

Example, storing a matrix on backing store.

Wy nenematrix a May be output row by row to a backing storage area

£13 in this way:

begin zone save((n+127) //128*128%2,2,stderror) 5

open(save,+,<:£13:>,0)5

for it= 1 step 1 until n do

begin

outrec(save,n)$
for j= 1 step 1 until n do save(j):= mi,3)3

ends

close(save, false)
ends

The zone declaration assures that the rows later may be read one by one

and used directly.

9-52 OUTREC6

9.46, Integer procedure outrec6

Creates a zone record which later will be transferred to a document,
The contents of the record are initially undefined but the user is sup.

posed to assign values to the record. The document may be filled sequen-
tially by means of outrecS because the next call of outrec6 will create a
record which is transferred to the next bytes of the document.

Call: outrec6(z, length)
outrec6 (return value, integer). The number of bytes available

for further calls of outrec6 before change of block
takes place.

Z (call and return value, zone). The name of a record,
Determines further the document, the buffering, and the
position of the document (see 6.1).

length (call value, integer, long or real), The number of
bytes in the new record. Length must be > O. If length

is odd, 1 is added. ~

Zone state :
ne zone Z must be open and ready for record output(state O or 3

see 9.27, getzone) , i.e. the zone may only have been used for record out

put since the latest call of open or setposition. To make sense, the do-

cument should be an internal process, a backing storage area, a typewri-

ter, a line printer, a punch, a plotter, or a magnetic tape. In the lat-
ter case setposition(z,...) must have been called after open(z,...).

Blocking

a thierec6 may be thought of as transferring the record to the bytes

just after the current logical pointer of the document and moving the lo-

gical pointer to just after the last byte of the record. The user is sup-

posed to store information in the record before outrec6 is called again.

Because the output is blocked, the actual transfer to the document

is delayed until the block is changed or until close or setpositioa is

called.
The full record goes into the same block, so if the block cannot hold

a record of the length attempted, the block is changed in this way:

1. Documents with fixed block length (backing storage): The remaining

bytes of the share are filled with binary zeroes, and the total share

is output as one block.

2, Documents with variable block length (all others): Only the part of the

share actually used for records is output as a dlock.

The transfer is checked as described in 6.3. The record becomes the first

pytes of the next share, but if the record still is too long, the run is

terminated,

A record length of 0 is handled as for inrec6.

OUTTEXT 9-53

Example 1, records of variable length.
Records of variable Length, with the length stored as the first word

of the record, are output like this:

open(z,...)3 setposition(z,...)3
YEP? eeseoe 5 Compute length

outrec6(z,leneth) 3.
Zefirst_word:= lengths
if ... then goto rep$
close(z, true) 3

Compare this with example 1 of changerec. The version here may be a little

bit faster.

9.47. Procedure outtext

Prints a text stored as text portions in a real array or a zone re-
cord, The procedure prints a specific number of characters. If the string

is shorter, it is supplemented with spaces, and if it is longer, it is

cut.

Call: outtext(z,pos,ra,i)
zZ (call and return value, zone). Specifies the document,

the buffering, and the position of the document.

pos (call value, integer). Specifies the total number of
character positions to be printed. Pos should be in-
side the range: abs(pos) < 132, see below.

ra (call value, real array). The text to be output is
stored in ra(i), ra(itl), and so on. For arrays of
more dimensions the lexicographical ordering is used.

i (call value, integer), see ra above.

The procedure prints a number of characters as given by the absolute

value of the parameter pos. If pos is negative a NL character is output

before the counting starts. If pos is outside the allowed range, the

procedure will output 132 characters,

The characters to be printed are supplied from a string of text por-

tions stored in a real array or a zone record. The characters are taken

from the array until either the string has been exhausted or the number of

characters as given by pos has been output.
If the text string is exhausted before the wanted number of charac-

ters are printed, spaces are printed as the following characters.

The string is considered exhausted when the last element of the ar-

ray has been printed or when a null character is met.

Zone state as for write, 9.78.

Blocking as for write, 9.78.

9-54. OUTVAR

9.48, Integer procedure outvar

This procedure is intended for output of records of variable length
so that they may be read by means of invar. Outvar makes an output re-

cord ready and fills it from a real array (or a zone. record). The first

word of the element with lexicographical index 1 in the array must con-

tain the length of the wanted record. The second word in the new record

will contain a checksum.

Call: outvar(z,A)
“~~ owtvar (return value, integer). The number of bytes available

for further calls of outvar before change of block

takes place exactly as for outrec6,
Z (call and return value, zone). The name of the record.

Determines further the document, the buffering, and
the position of the document (see 6.1).

A (call value, real array). An array to be copied into
the zone record. The first word of the element with

lexicographical index 1 contains the number of bytes

to be copied. If the number is odd, 1 is added.

Zone state
zone z must be open and ready for record output (state O or 5),

i.e. the zone may only have been used by outvar or the like since the

latest call of open or setposition. The free parameter (see 9.27) in the

zone descriptor is used to count the number of records made by means of

outvar. Usually only backing storage and magnetic tape documents make

sense.

Blocking
var may be thought of as transferring the data in the array to

the bytes just after the eurrent logical pointer of the document and mo-

ving the logical pointer to just after the transferred elements. The new

record is placed in the same block, so if the present block cannot hold

a record with the attempted length, outvar changes block exactly as out-

rec6, ise. on backing store unused parts are filled with binary nulls,

and on all other media only the used part is output.

Record format, checksum

The record consists of 2 words containing information on the record

followed by an arbitrary number of words. The record length must not ex-

ceed the blocklength.
The 2 first words contain the record length measured in bytes in

the first word and a checksum in the second word. The value of the

checksum word is chosen so that the sun of all words in the record taken

modulo 2%*24 is equal to -3.

Note that the call outvar(z,z) produces one record identical to the

last one.

OVERFLOWS, RANDOM, READ 9-55

9.49. Integer overflows

This standard identifier determines the action on floating point

overflow:

overflows <O The run is terminated when overflow occurs.
overflows >0O The value of overflows is increased by one when overflow

~ occurs. The result of the operation which caused the
overflow is 0,

When the run starts, overflow is -1. A floating point overflow occurs
when a real operation gives a result outside the range of real variab-

les.
Due to an inconvenience in the machine structure an underflow

caused by multiplication of 2 reals both in the interval 24%*(-102h) <
abs r < 2%*(-2048) will be classified as an overflow,

Example:

To check whether a real overflow occurred during the evaluation of

an expression, proceed as followss

overflows:= 03 Evaluate the expression;

if overflows > 0 then handle the overflow situations

9.50. Real procedure random

Computes two pseudo-random numbers, a real and an integer.

Call: random(i)
random (return value, real). A pseudo-random number deter-

mined by i. O < random < 1.
i (call and return value, integer). At call time the la-

test pseudo-random number generated (or a starting

value for the generation). At retum the next pseu-
do-random number. O < i < 8 388 587.

Method:
Miltiplicative generation with a period of 8 388 586, The starting

value is not critical, because a result of O is prevented explicitly in

the procedure.

9.51. Integer procedure read

Inputs a sequence of numbers given in character form on a document,

converts them to algol values, and assigns them to variables.

Call: read(z,one or more destination parameters)
read (return value, integer). The absolute value of read

gives number of destination variables to which numbers

were input.

Z (call and return value. zone). Specifies the document,

the buffering, and the position of the document (see

6.1).

9-56 READ

destination (return value} integer, long, real, integer array,
long array, or real array). Read assigns numbers to

the destination parameters in sequence from left to
right. A simple parameter is used as one destination

variable. An array is used as a sequence of destina-

tion variables, and read fills the entire array in
lexicographical order (see 5.2).

Note that all the parameters are evaluated before the procedure is en-
tered (except if the procedure is called as a formal procedure) , so the

call read(in,i,A(i)) will mean w:= is i:= numbers A(w):= numbers

Syntax of numbers,
Read skips all blind characters (class 0, see 2.0.1). Among the re-

maining characters, 'read' accepts as a number any sequence of number
constituents (class 2 to 5) terminated by some other character (class >
5). Leading characters of class >5 are disregarded unless they contain
the EM character (see below).

If the number constituents fulfill the rules for Algol 6 numbers,
the number is assigned to a destination variable. If it is not an Algol

6 number or if it exceeds the range of the destination variable, the
greatest positive number of the appropriate type is assigned instead.

Terminating reading:
Read scans the document and each time it meets a number (in the

sense defined above) it stores it into the next destination variable.
When the parameter list is exhausted, read returns. The reading stops

immediately, however, if an EM character is met. In this situation the

value of read is useful.

Zone state:
As for readchar, 9.53.

Blocking:
s for readchar, 9.53.

Example 1, reading and checking a matrix.

“Tn n*n-matrix 18 punched on current input as n followed by the ma-

trix elements. It may be read in this way with a simple check added:

if read(in,n) < 1 or n> 200 then goto dataerror$
begin array matrix(1:n,1:n)3

if read(in,matrix) < n**2 then goto dataerrors

The matrix might for instance be punched like this:

3
1.507 -6.017 2 46

-6.017 3,852 0.025
2.336 0.025 -8.170

It will be wise to check ‘that a new line terminated the last number.

That is done as follows:

repeatchar(in)3 readchar(in,i); if i < 10 then goto dataerror;

READALL 9-57

Example 2:

The following character sequence represents 5 numbers as shown:

am 1.7bcd=12345678 9°60 3+10ee
1 2 3 4 5

If it is input by the call read(z,i,j,k,r,s,t), the variables will be-
come ¢

i,j,k, (integers): great,2,great(range exceeded)
r,s,t(reals) : 9'60, great, unchanged(EM met)

Read itself has the value -5.

9.52, Integer procedure readall

Inputs a mixture of numbers in character form, text strings, and
single characters, These items are stored in an array and their kind is

stored as a code in a parallel array. The procedure is designed for fast

input on character level with possibility for extensive checking of the

input. Readall is often used in combination with intable.

Call: read al1(z,val,kind, index)
read all (return value, integer). The number of elements in val

~ to which items have been assigned. If read all termi-
nates because val or kind is full, the value of read

‘all is minus number of elements, ~
Zz (call and return value, zone). Specifies the document,

the buffering, and the position of the document (see
6.1).

val (return value, integer array, long array, or real ar-
ray). The items are stored in val(index), val(index +
1); and so on. For arrays of more dimensions, the lexi-

cographical ordering is used.
kind (return value, integer array). The kind of the items

is stored here, so that kind(i) describes ‘the con-
tents of val(is.

index (call value, integer). See description of val above.

Syntax of items:

Readall divides an input string into items in this way:

1. All blind characters are skipped (class 0, see 2.0.1).
2, A delimiter character (class > 7) is stored as a single character.

3, A character string starting “with a letter (class 6), consisting of

letters and number constituents (class 2 to 6), and terminated by a

delimiter (class > 7) is stored as a text string. The delimiter is
not a part of the text string.

h. The remaining parts of the input string are stored as numbers in the

way described under read.

In many cases the rules for text strings and numbers are inconve-

nient. It will then pay to use an alphabet (see intable, 9.32) defining

most characters as delimiters of various classes and input one line of

characters at a time, An example of the further handling of the charac-

ters is shown in example 2 of readchar.

9-58 READALL

Storing of items:

1. Blind characters are not stored.
2. A single character is stored in one element: val(i):= character va-

lue3 kind(i):= character class.
3, A text string is packed as portions of 6 8-bit characters. The cha-

racters are packed from left to right. A portion is stored in 4 bytes,
i.e. one real or long, or possibly two integers. The corresponding ele-
ments of 'kind' becomes 6. A null character is packed after the last
character of the text string and the corresponding portion is filled up

with null characters. A text packed in this way is easy to use as a
string parameter.

4, A number is stored in one element: val(i):= converted number; kind:=
2 for a legal number, kind(i):=1 for an illegal or syntactically
wrong number.

Terminating reading:
Readall returns as soon as a terminator (class8) has been input and

stored, If val or kind is filled up before that, readall returns with a

negative value. In that situation, the last character read is not
stored. You may get the character by means of repeatchar, but you cannot

expect to continue reading as if nothing has happened, because readall
may have terminated in the middle of a text string and the next charac-
ter may be a digit or a delimiter.

Zone state:

As for readchar, 9053.6

Blocking:

s for readchar, 9.53.

Example 1:
e input by read all with the stendard alphabet to an integer

array may be printed and 'reshaped' in this way:

ni= readall(z,ia,kind,1)3
if n <0 then write(out,<:illegal:>) else
for i:= 1 step 1 until n - 1 do
case kind(i) of
begin comment kind 13 write(out,<:illegal:>)

comment kind 23 write(out,<<-ddddadd, ia(1)
comment 3,4,53333
begin comment kind 63

write(out,<: :>,string(0.0 shift 24 add ia(increase(i))
shift 24 add ia(increase(i))))3

°
?

)s
3

is=i- 1

ends

comment kind 7, spaces are not printeds

if ia(i) <> 32 then write(out,<: :>,false add ia(1),1)
ends

write(out,<:<10>:>)3

READALL 9-59 .

Example 2:
The following character sequence represents 9 items if it is read

with the standard alphabet:

ab : 12345678 <NL>
12 8

al.2c 17.56
3 hs 6 9 7

If it is input by readall as in example 1, the result becomes:

1 2 3 ho 5 6 7 8 9 10 11
ia ab O 58 al. 2c 44h 32 18 32 great 10
kind 6 6 7 6 6 7 T 2 7 1 8

readall = 11

The print-out of example 1 will look like this:

ab : al.2c, 18illegal

Example 3, typical adp-input.
A list of employees is punched in this way:

<identification number><department number><status>,<surname>,<first names>

<identification number> .e.

For example: 451 55z, bell, robert george

If you read this kind of input with readall and the standard alpha-

bet, you would not get checked that the names are free of digits. Fur-

thermore you would have troubles accepting the spaces in the names as

name constituents. Instead, you may use an alphabet table of 2%128 en-

tries (see intable). The first 128 entries describe the alphabet used
during reading of the numbers, All letters are here described as shift

characters which switch to the last 128 entries (class = 1, value = 128).
In this last part of the table, space and all letters are described

as text constituents. All digits are delimiter symbols. In both parts of

the alphabet table, new line is a terminator.
An input program which checks the syntax and outputs the list as a

sequence of records may look like this:

intable(alphabet) $
comment insert some pseudo values at the end of the kind table,

so that the scanning below is terminated in all cases;

kind(maxt+1):= kind(maxt2):= 53

rep: tableindex:= 03 n:= readall(z,val,kind, 1)
if n > max or n <1 then errors

ifn = 1 then

begin if val(1) = 25 then goto terminates goto rep end;

comment check identification and department, dept points

to departments

if kind(1) < 2 or kind(2) < space then errors

for i:= 2,i+1 while kind(i) = space do3
if kina(i) <> 2 then errors dept:= 13

9-60 READCHAR

comment check status, transform it so some coded forms

if kind(i+1) < 6 or kind(i+2) < comma then error;
val(it1):= transformed value}

comment check surname$
for i:= i+ 2,i + 1 while kind(i) = 6 do3
1f kind(1) < comma or i = dept + 3 then error;

comment check first names, fnames points to first names;

fnames:= i + 1$

for i:= i+ 1 while kind(i) = 6 do3
if kind(i) < 8 or i = fmames then error;

outrec(empl,i-dept+1)3 comment now the line is accepteds
empl(1):= i-deptt+13 empl(2):= val(1)$3 empl(3):= val(dept)s
empl(4):= val(dept+1)3 k:= 4s
for j:= dept+3 step 1 until i - 1 do
begin k:= k + 13 empl(k):= val(j)s ends
goto reps

9.53. Integer procedure readchar

Inputs one non-blind character from a document and supplies the

character value and character class. Blind characters are skipped auto-

matically.

Call: readchar(z,val)
readchar (return value, integer). The class of the character

(see 2.0.1).
z . (eall and return value, zone). Specifies the docu-

ment, the buffering, and the position of the docu-

ment (see 6.1).
val (return value, integer). The value of the character

(see 2.0.1).

Zone state:

e€ zone must be open and ready for character reading (state 0, 1,

or 23 see 9.27, getzone6), i.e. since the latest call of open or setposi-
tion, the zone may only have been used for character reading, To make

sense, the document should be an internal process, a backing storage

area, a typewriter, a paper tape reader, a card reader, or a magnetic

tape. In the latter case setposition(z,...) must have been called after

open(z,..e)«
The first character read is normally the character just after the

logical position of the document, but after a call of repeatchar it is

character just before the logical position. ©

When readchar returns, the logical position is just after the last

character read, The zone record is not available (it is of length 0).

Blocking:
———Just after open or setposition or whenever a block of the document

is exhausted, the next block is transferred and checked as described in

6.3. On a typewriter in online mode this means that an entire line mst

be typed before any of the characters in the line are available to read-

char.

READCHAR 9x61

Example 1, copying.
Sequence of characters may be copied and counted in the following

slow, but simple way. The copying stops when a termination character

(class 8) is met.

is= -1$
for i:= i+ 1 while readchar(inz,c) <> 8 do
outchar(outz,c)$

Blind characters may be copted too if another alphabet is selected (see

intable 9.32). .

Example 2, syntax check:
An octal signed integer may be read and checked by means of a state

table. Each entry in the table gives the new state of the routine and the
action to be performed when a character of that class is -read in that
state. The actions are shown as numbers, explained below.

input classes: sign: digit other:

state-1, start after sign, 1 after digit, 2 start, 3
state 2, after sign after error, 4 after digit, 2 after error, 4
state 5, after digit after error, 4 after digit, 2 start, 5
state 8, after error after error, 3 after error, 3 start, 5

Action 1: set sign, Action 2: include digit in number,

Action 4: no action. Action 4: set error indication.
Action 5: complete number with sign.

This scheme is easiest to implement if a special alphabet is selec-

ted by means of intable. The digits O to 7 are given class 2, values 0

to 7. Plus and minus are given class 3, values 2 and O. All other non-

blind characters are given class 4.
The algorithm may then be written like this:

state:= -13 sigen:= 13 number:= 0$ error:= false3

rep: class:= readchar(z,c) + state$
action:= case class of

(1,2,3, 42,4, 4,2,5, 3,3,5)3
state:= case class of

(2,5,-1, 8,5,8, 8555-1, 8,8,-1)3

ease action of

begin comment 1, set signs; sign:=v - 15

comment 2, include digits;

if number >= 1 shift 20 then error:= true else

number:= number shift 3 + c - 483
comment 3, no actions 5

conment 4, set error indication; error:= true$
comment 5, terminates
begin number:= nunberxsigns goto terminate ends

ends

goto reps

terminate:

9-62 READSTRING

A shorter solution might be found for this particular problem, but
the main advantage of the method is that it applies to a lot of other
input problems and the time spent per character will hardly depend on

the complexity of the input syntax. The algorithm above will read about
_ 2000 characters a second, but it may be speeded up to about 3000 charac-

ters a second if readall is used instead of readchar to input a big por-
tion of characters. The character classes 2,3 , and 4 mst then be re-
placed by 9, 10, 11 or the like.

A further increase in speed to about 4500 characters a second is
possible if the input is performed blockwise by means of inrec6 and the
characters are unpacked as shown in example 3 of extract (9.21).

9.54, Integer procedure readstring

Inputs a text string given as 68-bit characters on a document. The .
text string is packed in a way which makes it easy to use a string para-

meter.

Call: readstring(z,arr,i)
readstring (return value, integer). The number of elements in arr

to which a text portion has been assigned. If read-
string terminates because arr is full, the value of
readstring is negative.

Zz (call and return value, zone). Specifies the document,
ghe buffering, and the position of the document (see

el e

arr (return value, long array, or real array). The text is

stored in arr(i), arr(i+1), and so on. For arrays of
more dimensions the lexicographical ordering is used.

i (call value,integer). See arr above.

Syntax of a text string.
Teadstring skips all blind characters (class 0, see 2.0.1). Among

the remaining characters, readstring accepts as a text string any se-

quence of text constituents (class 2 to 6) terminated by a delimiter

(class > 6).
Leading characters of class > 6-are disregarded unless they contain

the EM character (see below).
The text constituents, omitting all blind characters, are packed.

into arr with 6 8-bit characters to an element. The characters are

packed from left to right. The character values packed are given by the

values in the alphabet selected for the moment (see intable, 9.32). When

the standard ISO alphabet is used, the values are shown in 2.0.1. A null

character is packed after the last character of the text string and the

corresponding element of arr is filled up with null characters.

Terminating reading
Normally, readstring returns when the text and the terminator have

been read, The reading stops immediately, however, if an EM character is

met or if arr is filled. In the latter case, the value of readstring is

negative, the text string is not terminated by a null character, and the

last character is read, but not packed.

Zone state.
As for readchar, 9.536

REAL 9463

Blocking, .

s for readchar, 9.53.

Example 1: input and output of text.
“A text (for instance a heading) may be input and later printed in

this ways
begin long array text(1:n)3
intable(ia)$ comment define space etc. as text constituents;
if readstring(in,text,1) =n
and text(n) extract 8'<> 0 then goto dataerror3

i:= 13 write(out, string text(increase(1)))5
comment see 9.70, string;

Example 2:

See example 3 of open.

90556 Real

This monadic operator changes the type of a string expression to
type real. In this way, strings may be stored and analysed. Note that
this use of the delimiter real is totally different from its use in a
declaration or specification.

Syntax: real <string> is of type real.
real <lLong> is of type real

Priority higher than **.

The value of real <string> has the same binary pattern as the value
of <string>. The value of real <long> has the same binary pattern as the
value of <long>. The binary pattern of a string is described in 3.6.

Example 13

Let Ss be a formal string parameter which actually is a text string.
The statement

ri= real(case i of(<:abs:>,<:long text:>,s))3

will assign a text to r. Depending on the value of i, r will hold a
packed text, a string point, or the string value of the formal parameter

Se

In the first two cases and in the third case with s describing a

literal text string, the text may be printed in this way:

write(out, string r);

Example 25 computing a layout.
“Tssume you want to print numbers with a layout depending on the re-

lative accuracy, eps, of the numbers, If the layout is to be used many

times, it is wise to hold it in a real variable like this:

ds= -1n(eps) /1n(10) + 0.53
if ad < 3 then d:= 35 else

if d> 6 then d:= 63
ri= real(case d -2 of
(<<-d, dd! -dd>,<<d. ddd! -dd>,<<-d.dddd!' -dd>,<<-d.ddddd! -dd>))s
eeo

write(out, string r,x,y,o.e)3

9-6), REPEATCHAR, ROUND, SETPOSITION

9.56. Procedure repeatchar

Makes the latest character read from the zone specified available

for reading once more.

Call: repeatchar(z)
Zz (call and return value, zone). Specifies the document,

the position of the document, and the latest opera-

tion on Zz.

After a call of repeatchar(z), the next character read from z is
the character just before the logical position of the zone, i.e. the la-

test character read. Note that the logical position is unchanged.
If repeatchar is to have any effect, the zone should be in the

state ‘after character input! (state 1), i.e. one of the read procedures
must have been called since the latest call of open or setposition wor-
king on that zone. In all other states repeatchar is blind.

The definition of repeatchar implies that several calls of repeat-
char have the same effect as one call.

Examples

See example of read, 9516

9.57. Round

This monadic operator rounds the value of a real expression to the

nearest integer value or cuts the value of a long expression to an inte-

ger. The operation may cause integer overflow.

Syntax: round <real> is of type integer

round <long> is of type integer

Priority higher than **.

Example:

——“to reals with absolute values below 2%*23 may be integer divided

in this way:

round ri//round r2

9.58, Boolean procedure setposition

Terminates the current use of a zone and positions the document to

a given file and block on devices where this makes sense. The positio-

ning will only involve time-consuming operations on the document if this

is a magnetic tape.

Call: setposition(z,File,Block)
setposition (return value, boolean). True if a magnetic tape po-

sitioning has been started, false otherwise.

Z (call and return value, zone). Specifies the document,

the position of the document, and the latest opera-

tion on Ze

SETPOSTTTION 9-65

File (call value, integer). Irrelevant for documents other
than magnetic tape. Specifies the file number of the
wanted position (see 6,1), Files are counted 0, 1, 2,

File O will normally contain the tape volume label,
so that file 1 is the first file available for data.
File = -1 specifies that the tape is to be unwound.

Block (call value, integer). Irrelevant for documents other

than magnetic tape and backing storage. Specifies the
block number of the wanted position (see 6.1). Blocks
are counted 0, 1, 2, seo

Setposition proceeds in 3 steps: Terminate the current use, write
tape mark, and start positioning.

Terminate current use.
If the zone latest has been used for output (state 3, 6, and 73 see

getzone6 9.27), the used part of the last block is sent to the document,
A block sent to a backing storage area is not filled with zeroes, con-
trary to outrec6, or outvar. If the zone “latest has been used for cha-
racter output, the termination may involve output of one or two Nulls in
order to fill the last word of the buffer.

Next, all the transfers involving z are completed, the input trans-

fers are just waited for, and the output transfers and other operations

are checked as usually.
The physical position of a magnetic tape used for input is sh - 1

blocks ahead of the logical position where sh is the numer of shares,
If some of these sh - 1 blocks are tape marks, the positioning strategy
is affected, as explained below.

Write tape mark.
T? the document is a magnetic tape which latest has been used for

output, a tape mark is written. The document is then in a position after

that tape mark, which influences the positioning strategy {see below).

start positioning.
Setpositicon assigns the value of ‘lock to the zone deseriptor vari-~

able ‘seoment count! and returns then for all devices other than magne-

tie tape.
Tt the document does not exist or if whe job is not a user of the

device, setpusition sends a parent message asking for stop of the job

until the tape is ready. ;

{if the name of the document is zero (<z:>), the tape requested is a

work tape, and setposition accepts as the future tepe name the name re-

turned by the parent (which meens that setposition changes the document

name in the zone accordingly) .
Setpusition starts the first cperation involved in the tape posi-

tioning. The remaining operations are executed the first time tae fons

is used tor input or output, or the Pirst time setposition(z, ...) is

called again, That may be used tor simultaneous positioning of more tapes

(see exaniple 3).
The positioning is accemplished by means of tne operations position

tape, rewind, backspace file, upspace file, backspace block, upspace

plocx, and wnwind tape. The positioning is compiete as soon as File end

Block match the monitors count of the tape position for that device.

Checking against tape labels is nct performed.

9-66 SETPOSITION

Positioning strategy in system 2.

Tf the actual physical rile number differs from File, the tape is
first positioned to block O of that file. Setposition chooses between
rewind and backspace file in this way:

if actual file number//2 >= File then rewind else backspace file

This tends to minimise the number of tape operations,
During positioning within a file, setposition chooses between back-

space file (rewind for File = 0) and backspace block in this way:

if actual block number//2 >= Block then backspace or rewind file
else backspace block3

If the tape is not mounted when setposition is called, the normal
mount-tape-action is performed (see 6.1) before the positioning starts.

In system 3 a position tape operation is sent.

Zone state.
“he _Zone must be open when setposition is called (state 0, 1, 2, 3,
5, 6, 7, or. 8). Setposition changes the zone state to opened and

positioned. -
The logical position of a magnetic tape or a backing storage area

becomes just before the first element of the block specified by File and
Block. The logical position is unchanged for other devices.

Example 1, online Conversation.
When you alternatively type out something ona terminal and read

from it, you must make sure that the output really is sent to the termi-
nal and does not stay in the buffer. Assume that you run with Boss as

parent and that you have online yes as job parameter, © assume further

that your program is started with <program name> term. Such a _ conversa-

tion may then be programmed like this:

rep: write(out,<:Type yes or no:>)3
setposition(out,0,0) 3
readstring(in, La, 1)3 eoe

goto reps

Example 2, random access to backing storage.

“Tet the backing Storage area bs©> contain records of 80 bytes ori-

einally output in shares of 128 elements (= 1 segment, 512 bytes). You
may get record j in this way:

begin zone z(128,1,stderror)
comment double buffering will not pay in this case;

open(z,4,<:bs253>,0)

it= e003 setposition(z,0,5//6)3
comment 6 records are stored on one segment;

for i:= 3//6*6 step 1 until j do inrec6(z,80)s

Examplé 3,! simultaneous tape positioning.

Tet zland Zo be two zones which describe magnetic tapes positioned

at file 2 or 4. If you start reading from file 1 in this way:

SETSHARE 9-67

Setpostthonta 103 inrec6(2z1,p) 3:
setposition(z2,1,0)$ inrec6(22,p)3

then the call of setposition(z1,...) will start rewinding 21. Inrec6(z1,p)
will wait for the rewind, upspace file 1 (file 0 is usually short),
and read the first block. First at that moment, the rewind of file 22
will be started.

The following solution will rewind the two tapes simultaneously:

setposition(z1,1,0)3 setposition(z2,1,0)3
inrec6(z1,p)$ inrec6(z2,p)3

If fille C should be long, it is better to upspace the tapes simule-
taneously too.

Setpost tong 21 040)3 setposition(z2,0,0) 3
setposition(z1,1,0)3 setposition(z2,1,0)3
inrec6(z1,p)3 inrec6(z2,p)3

Example 4, output of tape mark and empty file
Iwo tape marks in Sequence may be output in this way:

outrec6(z,.e0)? getposition(z,f,b)$; setposition(z,f+1,0)3
outrec6(z,0)$ setposition(z,f+2,0)3

A call of outrec6(z,0) is also useful when you generate a magnetic tape
file which may happen to be empty. If you omit outrec6(z,0), ‘the tape
mark may be omitted.

9.59. Procedure setshare

This procedure is the ‘reverse! of getshare, 9.24, in the sense
that it assigns values to a share descriptor. The procedure is the Ale

gol 5 equivalent of setshare6.

Call: setshare(z,ia,sh)
Zz (call and return value, zone). Specifies the share

together with sh.

ia (call value, integer array, length > 12). The contents
of ia have the meaning explained in 9.24, getshare,
The contents of the first 12 elements of ia are trans-

ferred to the share descriptor, provided that the re-

strictions below are fulfilled.

sh (call value, integer). The number of the share within
Le

Restrictions

The following explanation assumes that ia has been declared as

ja(1:12).

ia(1) Share state, As for setshare63

ia(2) First shared. Must be a buffer index.
ia(3) Last shared, Must be a buffer index.
ta(4) Operation. As for setshare6.
ja(12) Top transferred. As for setshare6.

9-68 SETSHARE6, SETZONE

9.60. Procedure setshare6

This procedure is the 'reverse' of getshare6, 9.25, in the sense
that it assigns values to a share descriptor.

Call: setshare6(z,1a,sh)
Zz (call and return value, zone). Specifies the share to-

gether with sh.

ia (call value, integer array, length > 12). ‘The contents
of ia have the meaning explained in 9.25, getshare6.
The contents of the first 12 elements of ia are
transferred to the share descriptor, provided that the

restrictions shown below are fulfilled.
sh (call value, integer). The number of the share within

Le

Restrictions
The following explanation assumes that ia has been declared as

ta(1:12).

ia(1) Share state. If the state of the share descriptor is O or 1 at
call time, ia(1) will be transferred. In this case ia({1) must be
O or 1. .

jia(2) First shared, Must be a byte index in the buffer.
ia(3) Last shared. Must be a byte index in the buffer. .
ia(4) Operation shift 12+ mode. If operation is odd, ia(5) and

ia(6) are restricted to absolute addresses within the zone
puffer.

ia(12) Top transferred. Must be an absolute address corresponding to a

block within the zone buffer.

If the restrictions are violated, the run is terminated. The re-

strictions are natural, in the sense that the following always is allowed

(provided that sh is a share number and ia has at least 12 elements) :

getshare6(z,ia,sh)3 setshare6(z,1a,sh);

9.61. Procedure setzone

This procedure is the 'reverse' of getzone, 9.26, in the sense that

it assigns values to a zone descriptor. The procedure is the Algol 5

equivalent of setzone6.

Call: setzone(z, ia)
Zz (call and return value, zone). The descriptor of z is

changed. ,

ia (call value, integer array, length > 17). The contents
of ia have the meaning expleined in 9.26, getzone.

The contents of the first 17 elements of ia are trans-

ferred to the zone descriptor, provided that the re-

strictions below are fulfilled.

SETZONE6, SGN g+69

Restrictions
The following explanation assumes that ia has been declared as

ia(1:17).

ja(1) Mode shift 12 + kind. As for setzone6.
ia(i4) Record base. As for setzone6.
ia(15) Last byte. As for setzoneo.
ta(16) Record length. Measured in elements of 4 bytes each otherwise as

for setzone6. .
ia(17) Used share. As for setzone6,

9.62. Procedure setzone6

This procedure is the 'reverse' of getzone6, 9.27, in the sense that
it assigns values to a zone descriptor.

Call: setzone6(z, ia)
Z (call and return value, zone). The descriptor of z is

changed.
ia (call value, integer array, length > 17). The contents

of ia have the meaning explained in 9.27, getzone6.
The contents of the first 17 elements of ia are trans-

ferred to the zone descriptor, provided that the re-
strictions shown below are fulfilled.

Restrictions
The following explanation assumes that ia has been declared as

ta(1:17).

ta(1) Mode shift 12 + kind. The range of the kind ts < kind < 18, The

kind must be even. ~ ~
ia(14) Record base. Must be an absolute address corresponding to a re-

cord within the zone buffer. Record base must be odd.

mers Last byte. Must be an absolute address within the zone buffer.
ia(16) Record length in bytes. Must correspond to a record within the

zone buffer.

ia(17) Used share. Must be the number of a share within z.

If the restrictions are violated, the run is terminated. The re-

strictions are natural, in the sense that the following always is al-

lowed (provided that ia has at least 20 elements):

getzone6(z,ia)3 setzone6(z,ia)s

Example:

See example 2 of getzone6, 9.27.

9,63. Integer procedure sgn

Yields -1 or 1 according to the sign of the parameter.

Call: sgn(r)
sen (return value, integer). Sgn is 1 for r >0, -1 for

r<0O.

r (call value, integer, long, or real).

9-70 SHIFT, SIGN, SIN, SINH

9.64. Shift

This dyadic operator is used for packing and unpacking of reals,
longs, integers, and booleans.

Syntax: <real> shift <primary> is of type real.
<long> shift <primary> is of type long.

<integer> shift <primary> is of type integer.
<boolean> shift <primary> is of type boolean.
Priority as **.

Shift treats the left hand operand as a binary pattern (see 3.1).
The right hand operand is rounded to an integer if it is long or real.
This value is then used to indicate the number of bits the left hand
operator is to be shifted. The shift is to the left if the possible roun-
ded value is positive and the right if the value is negative. The shift
is a logical shift, which means that zeroes are shifted in to the right

or left.

Examples:
See 9.2, add, and 9.21, extract.

9.65. Integer procedure sign

Call: sign(r)
sign (return value, integer). Sign is 1 forr>O0O, 0 for

r=0, and -1 for r<0.
r (call value, real, long, or integer).

9.66. Real procedure sin

Call: sin(r)
sin (return value, real). The mathematical function sine

' of the argument r.

r (call value, real, long, or integer). The argument in
radians.

Accuracy:

Bee COS, 9.156

9.67. Real procedure sinh

Call: sinh(r)
sinh (return value, real). The mathematical function sinh

of the argument r.

(call value, real, long, or integer). -1000 < r < 1000.

Accuracy:
r=o - gives sinh = 0

abs(r) < 1n(2)/2 gives a relative error below 1.0'-10.

(n-0.5)*1n(2) < abs(r) < (n+0.5)*In(2) gives a relative error below 1.2!

7 10° + n¥7'= 11.

Alarm

——“If abs(r) > 1000, the rum is terminated.

SQRT, STDERROR, STRING 9-71

9.68, Real procedure sqrt

Call: sqrt(r)
sqrt (return value, real). The square root of r.
r (call value, real, long, or integer). r>0.

Accuracy:

r=0 gives sqrt = 0.

r>0 gives a relative error below 6.4'-11.

Alarm
The run is terminated if r <0. '

9.69. Procedure stderror

Terminates the run with an error message specifying an error condi-
tion on a peripheral device. It is used as the block procedure of zones
where you don't care for device errors.

Call: stderror(z,s,b) .
Z (call value, zone). Specifies the name of the docu-

ment.

8 (call value, integer). The logical status word after
a device transfer.

d (call value, integer). The number of bytes transferred.

The run is terminated with the alarm message:

bytes <value of b> oee
called from ...

The file processor prints an interpretation of the logical status word tg!

after the alarm message from the algol program.

Example:
See example 2 of inrec6, where stderror is used in two ways.

9.70. String

This monadic operator changes the type of a real or long expression

into type string. The operator is required when a string stored in real

or long variables is used as a parameter of type string. Note that this

use of the delimiter string is totally different from the string speci-

fication.

Syntax: string <real> is of type string.
string <long> is of type string.
Priority higher than **.

The value of string <real> or string <long> has the same binary pat-

tern as the value of the operand. The binary pattern of a string is de-

scribed in 3.6. Depending on the value of the operand, the resulting

pattern may mean a layout, a complete text string, or a text portion.

9-72 SWOPREC, SWOPREC6

Example 1, layout:
‘See example 2 of real, 9.55

Example 2, a long string: |
“Tet the real array ra(1in) hold a sequence of text portions termi-

nated by a null character. Such contents of ra may for instance have been
obtained by readstring.

This variable text may be used as a string parameter in this way,
for instance:

i:= 13 write(out, string ra(increase(1)))s;

Write will reference the second parameter, which in turn calls in-
crease(i) and yields the value of ra(1). At the same time i becomes 2,
Write will print the text portion held in ra(1) and if it does not con-
tain a null character, write will reference the second parameter again,
and so on until the null character signals the end of the text.

9.71. Integer procedure swoprec

This procedure is the Algol 5 version of swoprec6, It gives you di-
rect access to a sequence of elements of h. bytes each of a document so

that they may be updated directly.

Call: swoprec(z, length)
“~~ ss gwoprec (return value, integer). The number of elements of 4

bytes each left in the present block for further

calls of swoprec.

Z (call and return value, zone). The name of the record.
Specifies further the document, the buffering, and

the position of the document (see 6.1).
length (call value, integer or real). The number of elements

of 4 bytes each in the record. Length must be > 0.

Except that the record length is measured in elements of 4 bytes

each, swopree works as swoprec6.

9.72. Integer procedure swoprec6

This procedure gives you direct access to a sequence of. bytes of a

document. The bytes become available as a zone record, and you may modi-

fy them directly without changing the surrounding elements of the docu-

ment. This makes sense for a backing storage area, only.

The procedure works as a combination of inrec6 and outrec6 in the

sense that it gets a sequence of bytes from a document and later trans-

fers them back to the same place of the document. The document may be

scanned and modified sequentially by means of swoprec6.

SWOPREC6 9-73

Call: swoprec6(z, length)
swoprec6 (return value, integer). The number of bytes left in

the present block for further calls of swoprec.

zZ (call and return value, zone). The name of the record.
Specifies further the document, the- buffering, and

the position of the document (see 6.1).
length (call value, integer, long, or real). The number of

bytes in the record, Length must be > 0. If it is odd,
1 is added. ~ .

Zone state. =

@ zone 2Z mst be open and ready for record swop (state 0 or T,; see

9.27 get zone) , ieee. the zone may only have been used for record swop

since the latest call of open or setposition.~ To make sense, the docu-

ment must be a backing storage area.

Blocking
woprecO may be thought of as transferring the bytes just after the

current logical pointer of the document and moving the logical pointer to
the last byte of the record.

Because the records are blocked, the actual transfer back to the

device is delayed wtil the block is full or until close or setposition

is called.
All bytes of the record are taken from the same block and when the

block cannot supply a record requested, the block is transferred back to

the document and the next block is read. The checking of all transfers

takes place as described in 6.1. If the block still cannot supply the

recor’ the run is terminated. A record length of O is handled as for

inrec6d,.
If the zone contains 3 shares, one of them is used for input, while

another is used for output, and the last holds the current record.

This ensures maximum overlapping of computation and input-output.

Be careful to use the same share length as that with which the

backing storage area was written, because the unused parts of the blocks

otherwise might be treated as significant data.

Example, direct updating.

“Nach word of the backing storage area ma28 may be added to the cor-

responding word of the area ma30 in this way:

begin zone ad(512*2,2,endarea) ,res(512*3,3,endarea) 3
comment this block length is the most economical with respect

+o utilising the speed of a drum;

procedure endarea(z,s,b)3 zone z3 integer s,b3

if extract 1 = 0 then goto endscan else

stderror(z,s,b) 3

open(ad,4,<:ma28:>,0) § open(res, 4,<:ma30:>,0)

rep: inrec6(ad,2048)3 swoprec6(res, 2048) 5

for it= 1 step 1 until 512 do res(i):= real(long res(i} +
long ad(i))s

comment only if we are sure that overflow will not occur;

goto reps

endscan: close(ad,true)3 close(res, true) 3

9= 7h SYSTEM

9.75..Integer procedure system

This procedure gives access to various System and job parameters.

Some of the functions of system require knowledge of the job organisa-
tion (see ref. 2) and the miltiprogranming system (see ref. 1).

Call: system(fnc,i,arr) or
system(fne,i,s
system (return value, integer). Meaning depends on fne.
fne (call value, integer). Specifies the function of sy-

stem.

i (call or return value, integer). Meaning depends on
fne.

arr (call or return value, array of various types). Mea-

Ss

ning depends on fnec.
(call value, string). Meaning depends on fne.

The value of fnc is restricted to 1 < fne < 11, with the following mea-
nings:

System(1,i,arr), floating point precision
system

i

arr

0 at floating point precision was 36 bits mantissa, 1
if the precision was 33 bits mantissa.
(call value, integer). Specifies the new floating point
precision to 36 bits for i =0, 33 bits for i =1. The
run starts with a precision of 36 bits.
Not used.

System(2,i,arr), free core, program name
system The number of bytes available in the job process for

reservation of further variables, Section 8.3 gives
the rules for computing the number of bytes occupied
by a set of variables.
(return value, integer). Gets the same value as system.
(return value, long array or real array, length > 2).
The name of the document which holds the program Tile.
The document is always a backing storage area,

System(3,i,arr), array bounds
system
i
arr

The lower index bound for arr.

(return value, integer). The upper index bound for arr.
(call value, integer array, long array, real array, or

boolean array). If the array is of more dimensions,
the lexicographical index as defined in 5.2 is used

as the value of system and i.

System(4,1,arr), file processor parameter
This call does nov make sense if the program was called with the fp-

command <program><integer>

system The separator and length for item i in the call of the

program. The coding of separator and length is given

in ref. 2 and ref. 6, part 1, section 2.4, System is 0
if i specifies an illegal number,

SYSTEM 9-75

i (call value, integer). The number of an item in the
file processor command which called the program. The
items are counted from 0 and up.

arr (return value, real array, length > 2). The value of
item iis converted to a real” and assigned to the
first element of arr for an integer item, to the first
and second element for a text item.

An item is a name or an integer together with the preceding separator.
The following two examples show the numbering of items:

s source a. b r=pip abe

0 1 2 3 01 234

System(5,i,arr), move core area
system | if the moving was ok, O otherwise.
i (call value, integer). The absolute address of a cell

in the core store (see ref. 4).
arr (return value, integer array, long array, or real ar-

ray). System attempts to copy the core area from abso-
lute address i and on into the first element of arr

and on.

The copying stops when either arr is filled or when the word referenced

is outside the core store. In the latter case system becomes 0. The co-

pying takes place word by word, so that for instance core(i) and core(i+2)
go into the first element of arr if arr is real or long.

It is necessary to move core areas in connection with some of the en-

tries in procedure monitor, 9. ho, but you may also use system(5,...) for
investigation of tables in the monitor (see ref. 1) and in that way find

the set of peripheral devices on the actual ‘computers

System(6,i,arr), own process, any message
Sytem The process description address for the job process,

we the process which executes the program (see ref.

1)e
i (return value, integer). If the message queue of the

job process is empty, i becomes 0. Otherwise i becomes

the buffer address for the first message in the queue.

arr (return value, long array or real array, length > 2).

The name of the job process,

System(7,i,arr), primary output
system The process description address for primary output

(see ref. 1). | .
i (returm value, integer). The kind of the primary out-

+% process.

arr (return value, long array or real array, length = 2).

The name of the console.

System(8,i,arr), parent description
SEAT The process description address for the parent of

your job.

i (return value, integer). The kind of the parent pro-

cess (always 0).
arr (return value, long array or real array, length > 2)

The name of the parent process.

9-76

System(9,i,s), run

SYSTEM

time alarm

1

Ss

(call value, integer). The value to be printed follow-
ing the alarm cause.

(call value, string). The text to be printed as the
alarm cause, The text should be a new line character

followed by at most 8 non-blind characters. see ey3 page 6.)
PROG. LABEL CHECK

This entry terminates the run with an alarm message similar to the stan-
dard alarms. It is intended for use in library procedures, where it may

terminate the users program if he supplies wrong parameter values.

System(10,i,s) or
system(10,1,arr), parent message

system

arr

The result of the answer from the parent or 0O meaning

that the message has not been sent as the message claim
is exceeded. The normal result is 1 (see ref. 1).
(call value, integer). Only significant if the third
parameter is a string. If so, the value 1 will indi-
cate a request to the parent to stop the process until

the answer arrives.

(call value, string). A text of up to 21 non=blind
characters will be sent as a print message to the pa-

rent. If the text is shorter than 21 characters, the
text will be supplemented with null characters, If it
is longer, it will be cut to 21 characters.
(call and return value, integer array, long array, or
real array,lergth >= 8 words). The contents cf the 8
words will uncritically be sent as a message to the

parent. If the wait indication. is set in the first
word (the last bit is 1, see ref, 7), the answer is
awaited in the array, otherwise it is awaited in an
anonymous location, and the contents of the array is

unchanged.

The parent messages defined for the moment are described in ref. 7, Sece

tion 10.6.

System(11,i,arr), catalog bases
This entry can only be used in system 3.

system

1

arr

Always = 0 (null).
(integer) not used.
(return value, integer array, length >= 8). Contains
the catalog bases associated with the job process.

1st and.2nd element the catalog base

3rd and 4th element the standard base
5th and 6th element the user base
7th and 8th element the max base

The user base is only defined when FP is present in the job process (cf.

8.302) ©
When Boss is the parent, the standard base gives the temp scope or

the login scope, the user base gives the user scope, and the max base

gives the project base. The catalog base is the base used for the mo-

ment, usually it is the standard base.

A
t

SYSTEM 9=77

Example 1, reserving a maximum array
“The following program reserves the greatest array possible at that

point of the algorithm. However,’ the program in the inner block will pro-

bably run very slowly because of frequent transfers of program segments
from the backing storage.

begin integer i3 array arr(1:2)s
begin array ra(1:system(2 free core: (i,arr) //l4);

length: = i//4s cee

If you instead programmed like this

begin integer i$ array arr(1:2)5
system(2)free core:(i,arr)3
begin array ra(1:i// hap)

you would have to subtract some value p corresponding to thé further lo-
cations occupied by variables of the inner block,

Example 2, array bounds
~~An EEG Or arbivrary dimensions might be cleared by means of the

following procedure:

procedure clear(ra); array rag
begin integer Low, ups

for low:= system(3)bounds:(up,ra) step 1 until up do
ra(low) := 0

end$

Example 3, message buffers available
“program may rind the number of message puffers it may use for

communication with other processes:

begin integer array descr(0:34)$ integer i,bufs;
long array 1a(1:2)3
comment first the process description address of the job is

found, next the description is copied to descr;.
system(5) move core: (system(6)own_process:(i,1a), descr) 5
pufs:= deser(T3) shift (-12) extract 123
comment the description format is given in ref. 53

The program should now restrict itself to using bufs - 1 double buffered

zones simultaneously.

Example 4, on®line interaction (only system 3).
“Issue you want to modify the central loop of an online program. As

soon you send the text 'test' to the job, the job should produce auxilia-

ry output. As soon as you send something else to the job, the job re-

turns to the normal mode.
This can be done by inserting the following code into suitable

places of the inner locps:

system(6) any message: (message, arr) $
if message > 0 then operator$

9-78 - SYSTEM

Here, the procedure operator sets the poolean 'testmode! which is used

in the inner loops to determine whether auxiliary output is printed.
Operator looks like this:

procedure operators

begin zone term(10,1,stcerror)$ long array la(1:1)3
integer arrey puri(t: 39)3 integer 43
monitor(20) weit message:(term,i,but'f) ;
puff(9):= 13 moritor(22) send _ answer:(z,1,buff)$
open(term,8,<:terminal:>,0) 37
readstring(term,1a,1)5
testmodes= la(1) = long<:test:>3
close(term, false)

ends

The job mst run with the job parameters ‘online yes! and ‘attention
yes!,

Example 5, opening to a "hidden' area
This example 1s only relevant in system 3.
Suppose you want to connect a zone to an area with scope project,

but the area is 'hidden' behind an area with the same name on scope user.
The following procedure may do the job.

procedure openproject(z,doc,giveup)
zone z$ string doc; integer giveups

begin zone myself(1,1,stderror) $
integer array catbase(1: 8)3
open(myself,0,<::>,0)3
system(11) bases: (0, catbase)
comment now set the catalog base to max base$3

catbase(1):= catbase(7)3 catbase(2):= catbase(8)s
monitor(72)set_cat pase: (myself, 0,cathase) $
comment now open, Greate aren process, establish the name

table address and leave the zone as just opened;

open(z, 4, doc, giveup)$
inrec6(z 0)3
setposition(z, 0,0)3
comment at last set the catalog base to standards

catbase(1):= catbase(3)3 catbase{2):= catbase(4)s

monitor 72) set_cat base: : (myself, O, catbase)$ 3

end3

Example 6, find Scope of an entry
Dee example 5 of monitor, 9.40.

SYSTIME | 9-79

9.74. Real procedure systime

Systime gives access to the real time clock in the monitor and to
the CPU time used by the job. Further, it); may convert elapsed time into
date and clock,

Call: systime(fnc, time, r)
Sysbime (return value, real). Meaning depends on fne.
fne call value, integer).
time (call value, real). Is atime expressed in elapsed

seconds since midnight 31 December 1967. ,
r (return value, real). Meaning depends on fne.

The value of fne is restricted to 1< fne <4 and determines the meaning
of systines as follows: ~ 7

fne = 1, time measuring ,

systime The CPU time used by the job. The time is given in
seconds with an accuracy given by the length of a

tme slice (usually 25.6 milliseconds).
time Base for real time measurement.
r Real time given as the number of seconds elapsed

since the moment given by 'time', Real time is given
with an accuracy of 0.1 milliseconds, but the Limited
accuracy of r may cause a somewhat greater error.

fne = 2, date and clock (ddnmyy)
systime becomes day*100 00 + month*100 + year corresponding to

time, The year is taken modulo 100.
time The time to be converted to date and clock.
r becomes hour*100 00 + minute*100 + second. Fractions

of a second are cut off.

fne = 3, set clock
This function is usually forbidden in a job process. If this is the

case, the run is terminated,
systime Undefined

time The real time clock is initialised with the value of

time.

r Not changed.

fne = 4, ISO date and clock(yymmdd)
systime becomes year*x100 OO + month*100 + day corresponding

to time. The year is taken modulo 100.
time The time to be converted to date and clock.

r Becomes hour*100 00 + minute*100 + second. Fractions

of a second are cut off.

9-80 TABLEINDEX, TOFROM

Example 1, timing a loop mo

The following program prints the CPU time and real time used by a
part of the program as seconds with 2 decimals:

epu:= systime(1,0, time):
The program part to be timeds

eput= systime(1,time,time) - cpu3
comnent complete timing before printings
write(out,<<dddd.dd>, cpu, time) 3

j

If the time measured is short, you should compensate for the time spent
by calling systime. The cpu time will depend somewhat on the activities

of other processes, The real time used is highly dependent on other pro-

eceSses, . . :

The real time measuring shown above will be inaccurate with about 1

millisecond for each year that has passed since 1967. This is due to the
limited accuracy of the real numbers. An accuracy of 0.1 millisecond may
be obtained oy measuring relative to a base, like this:

systime(1,0,base) $
epur= systime(1,base, time) s
The program part to be timeds

cpus = systime(1,base,+%) - cpus time:= t - tims;

Example 2, print date and clock

systime(1,0, time);
write(out,<< dd dd dd>, systime(4,time,r) ,r)3

will produce output like this:

7h 05 28 22 53 37

9.75. Integer tableindex

This standard identifier is used by all the character reading pro-

cedures when a non-standard alphabet is selected, See intable, 9.32.

9.76. procedure tofrom

The procedure is intended for copying large sets of data to one ar-

ray field from the other.

Call: tofrom(to field,from field, size)
——— to field ~ (return value, boolean array, integer array, long ar-

- ray, real array, or zone record). The contents of from

field (see below) is copied into to field, The copy-

ine starts with the byte with index 1 and ends with
the byte with index size.

from field (call value, boolean array, integer array, long array,

~ real array or zone record). The contents is copied in-

to to field, The copying starts with the byte with in-

dex 17and ends with the byte with index size.

size (call value, integer). The number of bytes to be co-

pied. Size must be >= 9. ,
\

UNDERFLOWS 9-81

The reference byte of both to field and from field mst be a right
hand byte. Ieee odd valued field variables should not be used to indi-
cate the array parameters.

The procedure performs an action equivalent to

begin long field 1f3 integer field intf3
poolean field bf3

check S126 0 0 03

for 1f:= 4 step 4 until size do
to field.1f:= from _: field. 1f3

intfT= size - 13

bf:= sizes

if size > 1 then
to field.intf:= from field.intfs

if’size >O then ~~
to field. bf:= from field, bf3

ends”

The parameters are only evaluated once.

Example 1, clearing an array.
Xo Targe array can be cleared (each element is set to the binary

value zero) by setting the first double word to zero snd then let tofrom
do the rest. Suppose that the array arr is declared

real array arr(low:up)

and that raf and raf1 are real array fields, then

vaf:= 4xlow; rafi:= raf - 43
arr. .rafi(1):= real <::>3
tofrom(arr.raf,arr.raft, (up-low) #4) s

may do the job.

Example 2:
See example 2 of inrec5, 9.31.

9.77. Integer underflows

This standard identifier determines the action on floating point

underflow:

underflows <0 The run is terminated when underflow occurs.

underflows > O The value of underflows is increased py one when under-

~ flow occurs. The result of the operation which caused the

underflow is 0.

When the run starts, underflows is 0. A floating-point underflow occurs

when a result gets closer to zero than 1.6'-617 without being zero

exactly. Because of an inconvenience in the machine structure, multipli-

cation of 2 reals both in the range 2%*(-1024) < abs r < 2xx(-2048) will

be classified as overflow.

Example:

See overflows, 9.49.

9-82 WRITE

9.78.6 Integer procedure write

Prints text, numbers, and single characters on a document. Any num-
ber of such items in any sequence may be output by one call of write.

Call: write(z,one or more source parameters)
~~ write (return value, integer). The absolute value of write

gives the number of characters printed. Write is ne-

gative if a parameter error has been encountered,
otherwise write is positive.

Z (call and return value, zone). Specifies the document,
fhe, battering, and the position of the document (see
6.1).

source (call value, string, integer, long, real, or boolean).
The source parameters specify what is to be printed,

If write is not called as a formal procedure, all parameters, which are
not string expressions have been evaluated before write was entered. Now,
write scans the source parameters from left to right. Each parameter is

evaluated if it was not evaluated before write was entered, and then it
is handled according to its type as follows:

string: A text string is printed as the corresponding se-
quence of characters. The null character which termi-
nates the string is not printed. A layout string is
stored and used for printing of succeeding numbers in
the parameter list. Layouts are described below.

real,long,integer: The number is printed as a sequence of ISO characters
according to the latest layout in the list. If no lay-
out has appeared in the present parameter list, the

standard layout << -dd.dddd> is used to print a real,
and the standard Tayout << @& is used to print an in-
teger or a long. ~

A real number is printed with a relative accuracy

of about 6'-11, provided that the layout has a suffi-
cient number of significant digit positions.

boolean: A boolean parameter must be followed by an integer

arameter. The last 8 bits of the boolean pattern
(see 3.1) are printed as a character as many times as

specified by the integer parameter, If the integer is

< Q, nothing is printed,

If a source parameter cannot be classified as above, write will

print the alarm text <:<10>***write: param<10>%>, drop the parameter and

continue interpretation of its parameter list.

Zone state.

@ zone must be open and ready for character printing (state 0 or 3,

see 9.27, getzone6) , i.e. since the latest call of open or setposition,

only character output may have been made on that zone. To make sense, the

document should be an internal process, a backing storage area, a type-

writer, a tape punch, a line printer, a plotter, or a magnetic tape. In

the latter case setposition(z,...) mst have been called after

open(z, cee) °

WRITE 9-83

The first character is printed just after the logical position of

the document.
When write returns, the logical position of the zone points to just

after the last character printed. The zone record is not available (it is
of length 0).

Blocking.

Whenever a share of the zone is filled with characters, the share is

output as one block to the document and later checked as described in
6.3. This way of changing the block implies that one character more al-

ways may be stored in the block, and empty blocks may thus exist during

the normal use of write.

Layouts
~The syribols of a layout give a symbolic representation of the di-
gits, spaces, and other symbols as they will appear in the printed num-
ber. Indeed, the finally printed number will have exactly the same num-
per of printed characters as is present in the layout (except in case of

alarm printing, see below).
The general form of a layout is a Sequence of layout characters en-

closed in << >. The sequence of layout characters is composed like this:

<spaces><sign><number part><exponent part>

The number part is composed of a sequence of digit positions like this:

<first letter><d' s><zeroes>

where one point representing the position of the decimal point may be

inserted between two of the digit positions, A space or may be inser-

ted between any two digit positions which then are separated by a space

in the finally printed number,

Layout constituents:
<spaces> : consist of a (possible empty) sequence of spaces or

's, They will appear as that many spaces in the

printed nunber.

A positive number is printed without a position for
the sign. A negative number is printed with an alarm

layout (see bellow).

<sign> is empty

<sign> is - ¢ The sign of the number is printed as space for a po-

sitive number, - for a negative number.

<sign> is + : The sign of the number is printed as + for a posi-

tive, - for a negative number.

<first letter> is z: Digit positions preceding the first non-zero digit

are printed as zeroes, A possible sign is printed in.

front of the first digit position.

<first letter> is d : Digit positions preceding the first non-zero digit

are printed as spaces if they are in front of the
first digit position before the point, and as zeroes

otherwise. The sign is printed just before the first

digit printed.

9-84 WRITE

<first letter> is f: Digits are printed as for <first letter> =d. The

sign is printed in front of the first digit position.

<first letter> is b: Exactly as for <first letter> =d, except if all
digits are 0. Then all the layout positions are prin-
ted as spaces.

Consist of a (possibly empty) sequence of the letter
d. The length of this sequence + 1 (for the first
letter) gives the maximum number of printed signifi-
cant digits. All numbers will be correctly rounded to
the number of significant digits printed.

<d' s>

<zeroes> : Consist of a (possibly empty) sequence of zeroes, If
a non-empty exponent part is specified, the signifi-

cant digits of the number are allowed to move to the

right, using the digit positions given by <zeroes>,
This is done in such a way that the decimal point is
kept in the position specified and the exponent part
is made divisible by m+ 1, where m is the number of
zeroes in the layout.

Unused digit positions to the right of the point are
printed as spaces.

<exponent part>

is empty: No exponent part is printed as the digit positions

must be able to hold the digits of the number, Other-
wise an alarm layout is used.

<exponent part>

is '<sien><first letter><d's>:
The exponent part is printed as the symbol ' followed
by a tens exponent printed as an integer with the

layout <sign><first letter><d's>, <first letter> can-
not be b in this case, If <first letter> is d or f and

the tens exponent is 0, the entire exponent part is
printed as spaces.

Limitations:
Write refuses to print real numbers with more than 12 significant

digits. If more are attempted only the first 12 are used.
The number of digit positions in front of the decimal point may not

exceed 15. The number of digit positions after the decimal point may not

exceed 15.
The nunber of digit positions in an exponent part may not exceed 43.

The number of leading spaces plus the number of digit positions in front

of the last space may not exceed 22,

Alarm printing:

Tf a negative number is printed without a sign position, a minus is

inserted consuming one extra position.

If an integer is printed with a layout containing too few d's but

no zeroes, no decimal point, and no exponent part, the necessary number

of d's is inserted.
If a number in other cases is too large to be printed with the lay-

out given, an exponent part is inserted with the necessary number of di-

eit positions. An existing exponent part is just extended with one or

two d's,

ZONE 9-85

A number which is too small to be printed with the specified number

of significant digits is printed with fewer significant digits.

Example 1:

write(out,<:<10>:>,false add 97,4, -12,<< +ddd.dd>,<: and:>, 13)

will produce this line of output:

aaaa -12 and +13.00

Example 23

———"The call write(out,s,<:,:>,r,<:,:>) where s is a layout string and r
is a real will print as shown below with various layouts:

d.dd dd -zddd +fdd00 -bd.000'-4

»0000 12, » 0000, » + 1230, 9 7122 ’
90212 3 970012, 7 7 1, 9 9

970012 35, » 1235, » +12300, » -0.012' 4,
910623 45'4, 9-1235'12, » +12300'3, » 12. 1h,

9 12. ' 12,

Example 3, tabulation:

write(out,false add 32,100-write(out,<:<10>:>, string text) ,string text2)

will print text2 in column 100 and on, except if text is longer than 100

characters or contains new line characters.

9-79. Zone

This delimiter occurs in declarations of zones and zone arrays and

in specifications of zones and zone arrays. The formal definition is

given in 5.5 and 5.6, Details about input/output are given in 6,

Zone declaration:

zone<List of zone segments>; declares one or more zones.

One zone segment is composed in this way:

<list of zone identifiers>(buf, sh, bl proc)

buf (integer). The number of elements of 4 bytes each
in the entire buffer area. See below.

sh (integer). The number of shares, See below.
plproc (procedure with 3 parameters: a zone and two in-

tegers). The block procedure. It may be called by

plockproce (see 9.6) or when an operation on a do-
cument is checked by a high level zone procedure

(see 6.1) e

Zone array declaration:

zone array<list of zone array declarations>3

Declares one or more zone arrays. One zone array

declaration is composed in this way:

<zone array identifier>(n,buf, sh,blproc)

9-86 ZONE

n (integer). The number of zones in the zone array.

buf (integer). The number of buffer elements of 4
bytes each in each of the n zones,

sh (integer). The number of shares in each of the n
ZONES

blproc (procedure with 3 parameters: a zone and two inte-
gers). The block procedure associated with the n
ZONES.

Zone and zone array specifications

zone<list of zone identifiers>$
Specifies one or more formal parameters as zones,

zone array<list of zone array identifiers>s
Specifies one or more formal parameters as zone
arrays o

Buffer length.
e er area may be divided in any way among the sh shares. The

procedure 'open' will divide the buffer area evenly among the sh shares.

Share So

“ach of the sh shares may be used for one uncompleted operation on
a document or for one running child process (see 5.5).

In high level zone procedures, sh specifies the number of buffers

used for input/output to the document connected to the zone. In these
cases sh will usually be 1, 2, or 3. Section 6.3.1 contains hints on when
to use 1, 2, or 3.

Zone state.
———st after the declaration of a zone, no document is connected to
the zone. The zone record describes the entire buffer area, which has an

undefined content. All the shares are free and each of them describes the

entire buffer area.

Example 18
The rollowing block head declares 3 zones. Two references to the

record of 'new! are also shown, The standard zone ‘out' is not acces-

sible inside the block, because it is redeclared.

begin zone new,old(2%512,2,stderror) ,out(25,1,stderror) ;
new(1):= newt 1024) := 03

Example 2:
Oo zone arrays must be declared as shown below, because Zone array

zal,za2(sec) ts forbidden. One reference to the record of zai(1) and one

to the record of za1(3) are shown, The use of a subscripted zone as a pa-

rameter is shown too.

begin zone array za1(3,2*512,2,stderror) ,2a2(3,2*512,2,stderror) 3
real field rf3
za1(1,1024)s= za1(3) xrfi= 03

open(za2(3),4 shift 12+18,<:mt123456:>,0) 3

EXECUTION TIMES A-1

APPENDIX A, EXECUTION TIMES IN MICROSECONDS

The times given below represent the total physical times for execution
of algorithmic constituents. The total time to execute a program part is
the sum of the times for the constituents. The times are only valid under
the following assumptions:

1. The time for transfer of program segments from the backing storage is
negligible (see 9.7 and 8.3).

2, The program is not waiting for peripheral devices (see 6.1).
3, The time slice interval is 25.6 milliseconds or more (see ref. 1).
4, The program is the only internal process running in the computer.

When the computer is time shared, assumption 4 is not fulfilled, but then

the times represent the CPU time used by the program.

A.1. Operand references —
Reference to local identifiers and constants @)
Reference to non-local identifiers (variable, zone, or array) o-k

An array parameter is referenced as if it was declared
locally in the outermost block of the procedure.

If a sequence of identifiers from the same non-local
block are referenced without intervening references to
other non-local blocks, the first reference costs 4 micro-
seconds and the later one usually 0.

Reference to name parameter, actual is simple 9

Reference to name parameter, actual is composite 150

Reference to own variable O-4

A.2. Constant subexpressions

Operations are performed during the translation and thus do not con-

tribute to the execution time in the following cases:

+-*/shift extend working on constant operands.
conversion of an integer constant to a real constant, or vice versa.

real string long working on ail operands.

The result of an operation performed during translation is again treated

aS a constant. Examples:

A(-2+6/5) is reduced to A(-1)
14+0.5-0.25 is reduced to 1.25
pt1/2-1/4 is only reduced to pt0.5-0.25 because

p+0.5 must be evaluated first.

A.3. Saving intermediate results

By the term ‘composite expression' we shall mean any expression in-

volving operations to be executed at run time. Examples:

A(2) bt ashift 8 pr(i,i,<:ab:>) are composite

11.5 real<:ab:> 5 shift 20 are not composite (see A.2)

During evaluation of expressions, one intermediate result is saved in the

following cases:

and, or, all relations, shift, extract when working on 2 compo-
+, %,

site expressions.

-, /, //, mod when the right hand expression is composite.
add when both operands are composite or when the left

hand operand is a composite real.

A-2 EXECUTION TIMES

The saving of one intermediate result takes
integer or boolean value Saved cecceseescccceceeesecveceseeceeeees 9
real value saved ececoeeseaeeeceeresee#oovove0cvo0eeeor0ceeeeeeeewocoeeeeeeeoe eee 14

Examples:

——AUE)+B(i)+c(i) uses

Av4.

savings (+,+)
saving (and

savings

savings

saving (-)

a<xb and b<d uses

a<bte and t uses

atb+2ee uses

a-f£*(gth) uses -

O
O

fo

Operators

integertinteger, integer-integer .oeeeeocescceccccecccceeeescvoese 4

longtlong, Long-long cesereccrccecevcrccccreccccccccveveecsceseses 6

real+real, Yeal=LTeal eeccreevesreeseevrecvececcceeeesenseesssesesec 10

and, or eeoseeerneeeeeoeneneeneeoeoeoseeeeneseeeeeeecesoeeeeeeeeeteeeneeneee
s 4

integer*integer, SPLLL.NO cesececceccccccccccccecccccccrscceesoees 10
integer*integer, spillsyes weocecccceccececscecceceveresssesesosos 25
integer//integer, integer mod integer ceececesovoeereecsesccecesoo 18
realtreal, real/Teal cessecscccccccccccccccscvccccesesoesssseseoes 28
long*long COKCHOC COREE ECE ETOH HERR O HH EETHOHHOHOE SEES EHD OLED ESOS BEET 230

long//long, Long mod long .ssecessecerecesccescvoscecceeveeseeos hos

p extract<constant> eovoeoeVnerveecesnvneeveesec0ceeeeeeo0eeecveeoeeoneeoeecee 4

D CXELACE 1 ccecccccccceccecceccesececcecescessocevcsecsocesns Loti /2
real add i, long add i, string add i eeocrrceceeceeesreceeeeereoeenoe 5

integer add i, boolean add 1 ceecevercececvessveevresssccscesececc

real shift i, integer Shift 1 ceccccccceccccecccscssescons Stabs(i) /2

poolean SHALL i vececececcccecccccsccccssccsssscscsssecess Gtabs(i)/2

ENbtLEY TEAL cececocceccccceccccesecescesescs cc ee sc cee cesececeeseee 2D

YOUNG LEAL ceccccccccecccccccccecessesessccececcccccccccececsesses Ii

TOUNG LONE coccccsscecccsccccccsecsssssasscccescvvccssscecessssese 7

extend InteEZer cecoccccvececvcsevesesssccreseeserosesesscesresesece 6

ADS TEAL cecececcccccccccccccccecsseeesssesesccecccecvsvceesscoses Ii

ADS INLELEL cecccccccccccccccccsececserevescessccvcscescesssseeees 2

abs Long Coe erceseereseeeeeoeseseeeesrereeeeerneseeenoenecesesesesee
ere 17

subscripted variable with check against bounds, one subscript .eooe 21

subscripted variable without check against bounds, one subscript . 14

subseripted variable for each extra subscript add oooecsoececceces 18

Integer:=integer soececcccececcvscsccccccccscssceescsesesescscsoes 9

Integer:=Long, SPILL. yeS ccecccccccccecescessseccescesecsccsscoees 16

integert=Long, SPil1.NO eeeecesecrecccccccerecscnsssecscoesscoeces 9

integer:=real cecccccccccccccccerccecececsccseessceeseccesescoeess 20

Long: =InteZer ceccessccvcccccceccccresescacseesesceereseessssseces 18

long: =Long COCCH HCO eS OCeEOS HOHE HEOHEOHHOE HHO HEHEHE CEDHSESEEETBHEEDEEHDEDe 1

LONGIHLEAL cocececccccssccscceeceseresescesscceecesccceescesoesees 82

real: =integer eee eee eee seer esreeeereeeesdcereHTOG0ReF0S00C CC EEL DEe 20

LEALI=HALONE ceeecevecscccvcccesesscesccsscesseccsececccessesrsosoes 90

real: =real CeCe eee err ee ceeeeseseseeeseeseoTeseeeeaeeeDeeea2ee2
e0008 14

ZOtO Local Label ..cccececececcccccccecececsscncscrcsccececscecers T

for i:=1 step <constant> until n do, each Loop ceceseseesoooece 17-35

if i<j then else , all relations among integers ..sccesoeceeeevess 12

if r<q then else , all relations among reals ccoesesssesescccccees 20

1<j, other connections cessececceesccrecccccecvscesessscsevscroeces 11

r<q, other connections secceccecceocceeseccsecsvsceevercccssscesocs 19

if b then, other connections cececsesesvcecreececeecesr000e000800008 12

case 1 of ecm eee eee OCOC ee eae HEHEHE D SHEE EHETHECOSEHEH ED HEE EEEHEOOe 25

call of procedure with empty body, no parameterS .occcesccceccece 150

parameter, for each parameter Add 060000000000000000000008000000000 20

EXECUTION TIMES

A.5. Execution times for certain stendard procedures

ALCSIN cooceececcvcec ceo src cece eer eeer ro eee ee eoeesnrereseeneoeneD

arctan COSC SSHOCOCOCOOCOCE ESCH SOSH OSEHEHOHOHHOHHHEHHOHCHeSCHBHODeESGHeBOe BOBO ED

arg eeoeeeeeeeseoeeeseceseeeseeeoeeceeer0cdr#eeeoeFCceFeae0creee209
8270808008

cos exsco5aecoseesecoseeeseocseeeseeseoseeeseeeeenseevrcne
eseencre20e eee 90908080

exor eevee eeeeeceeeeceanecoceseeeeseeeetceseeeessenssceseseesoseser0eeee0

EXP eeveccvreceeceseserersreeeseeeecesreseseeenrecseecesesceesesece

UNCTEASE coceccvcvecrecescscecese sere eeseseseseseeseseseseecseseeces

intable exseeceeeseeeeeeecoeeeoseeoseeesseeece voces eevee oeeeeos00700e 2700000

in epeaeVnsoceeseeveeeeeocesecreecreeeeeeeeeeeseececneces
eseseeecnananeoeeoneeced

logand Ceeceeroeeeoceeseeecrceseeeeeneeseserereseercnesesesnenense8 208088080

logor ecevseceeceaeervrenescnesecooeeeeeeeeeoeeeeeceeeoc
nceeeeneeeeeeeeeee

random eeceenageceseeoveeeeececseo@#@ cee eoeseeeseoveecneeooseenoceseene802808 880

Sen, sign eeecoseceeeceveeceeeeeeseneceecewoeeeoesveevococeeee
c0oc0cne ©eeed

sin ecesevncoeeocVeeeeevevnr0cV@eseeeoeeececeodcocoe#eoccoeecn
ceeeoeeeeonee000080806900

sinh ease eecoccVeeeeceeoroeeeeoeeeeeeesesoeeeseeseeencnecnsneseeneecdeenes aod

sqrt ceevcoeoeeecoseeseoecveseeeeeoeeecnccoc#oe00e Ce ceeaeoeee700082 008 8C8 82888

740

570
Tho
610
200
600
165
170
85
200
200

255
225

515
715
500

tofrom eceoeceseseseocesesneeeveeeeeveeseeocese 418+13.5*double words moved.

Example:
We show the computation of the time for the following loop:

for i:=n step -1 until j+1 do 21-35 (for do)

. if ia(i)=3 and 21 (ta(i))
11 (=3)
13 (save, and)

ra(it1)>1 then 25 (ra(it+1),+)
19 (>1)
12 (if then)

126-140
pi=p + ra(itl)s ; 25 (ra(i+1) ,+)

10 (real +)
14 (p:=)

175-189

The result is that the loop takes from 175 to 189 microseconds when the
last statement is executed, from 126 to 140 otherwise.

FILE PROCESSOR COMMANDS» Be]

APPENDIX B, FILE PROCESSOR COMMANDS

The general rules for the File Processor are given in ref. 2 and ref. 6,

B.1.. Call of compiler”

B.lele Syntax

<s> <source> y

9

<bs file> = algol {= <modifier>

<source> 3:3= <text file>

index
spill
list -{xes]
message| {no }-
survey

yes)
stop.\no

<modifier> ::= <last pass>

no , 1)1
cer | yes a . { }

Zeorvieeti ons jo<intervals> o<sortarea>| | °

yes

no]

<first pass>.<last pass>
<first pass>.<last pass>.<first line>.<last line>

details.

bs)

all x

declare
<comnections> ::=\ assign

use ,
. A

<intervals>::= <first line>.<last line>{.<first name line>.<last name iine>$,

<first line>

<last line>
<first name line>
<last name line>
<first pass> }
<last pass>

:3:= <integer>

<sortarea> ::= <name>

Be2 FILE PROCESSOR COMMANDS

Bo1l.2. Semantics

<bs file>

<source>

<modifier>

index,.no

spill.yes

list. yes

message.no

survey. yes

stop.<last

A file descriptor describing a backing storage area. It is used

as working area for the compilation, and the object code ends
here and is described in the file descriptor. If <bs file> does
not exist an area is created, preferably on drum. If the job
has no drum resources, the area is created on the disc where
the job has maximum temporary resources, After a possible crea-
tion, the area is made as large as possible leaving 1 slice on

the device. An existing area is never cut, however,
In system 2 a creation of an area is only made if <bs file>

is an empty note. In this case a working area of 100 segments
is created. If the translation is successful, <bs file> will
contain a complete object program or an external procedure
(a standard procedure) .

In system 3, and in system 2 with translation into an empty
note, the area is cut to the segments necessary.

The list of sources specifies the input files to the compiler

(see 2.0.3). If no source is specified, the compiler reads the
source from current input.

The list of modifiers is scanned from left to right. Each modi-
fier changes the variables that controls the compilation. When
the scan starts, the variables are initialised to the value ex-

plained below.

Code for dynamic check of subscripts against bounds is omitted.

The initial setting is index.yes.

Dynamic check of integer overflow is performed. Even if the ex-

ternal procedures referenced were translated with spill.no, a

partial check of integer overflow is performed when they are

executed (see 8.2).
The initial setting is spill.no.

The entire source text is listed on current output with line

numbers in front of each line.
The initial setting is list.no.

Normally, the text preceding the first begin and all comments

denoted by message in the source text are listed with line num-

bers, With 'message.no' this listing is omitted.
The initial setting is message.yes.

A summary is printed on current output after the completion of

each pass of the translation. The meaning of the summary is ex-

plained in ref. 10.
The initial setting is survey.no.

pass> The translation is terminated after the pass specified.

Stop.yes terminates the translation after the last pass, The

translation is regarded as unsuccessful.

The initial setting is stop.no.

FILE PROCESSOR COMMANDS Be

xref.yes A crossreference list (xref-list) is printed on current output
after a possible listing. The xref-list is a listing of the

identifiers used in the prcgram., The list contains an occur-
rence list for each identifier, The occurrence list is’ 3 lists
of line numbers each preceded by a letter giving the kind of
the list. The kind letters may be:

D(eclaration), A(ssignment), or U(sed), see further B.1.2.1
The xref-list is made with no regard to the block structure of
the program, The identifier names are sorted according to the
collating sequence

abedefghi jklmopgrstuvwxyzega
ABCDEFGHIJKLMNCPQRSTUVWXY ZAGA
0123456789

Further details are found in B.i.2.1.
The initial setting is xref.no.

details.yes Intermediate output from all the passes of the compiler is
printed on current output. The output may be restricted to an
interval of pass numbers and to an interval of line numbers.
The output from pass & (for instance caused by 'details.S.8')
consists of a list of those line numbers which correspond to a

segment boundary in the object program.
The initial setting is details.no.

Belo2e1.e Details on xref-list and -modifications

The occurrence kind is one of the three

D: meaning the identifier is found in a declaration or specification.
A label is considered declared in the line where it is defined.

A: meaning the identifier occurred in front of :=. A switch declara-

tion is indicated with a D.
U: meaning all other occurrences.

The possible connections are

declare

assign
use The oceurrence-lists will only be those with the specified

occurrence-kinds, D, A, U respectively.

all This connection is equivalent to the connections

declare, assign .uses
xrer.yes 18 equivalent to xref.all.

The intervals may be a line interval specifying a limitation of the line

numbers appearing in the occurrence lists. This line interval may be fol-

lowed by a name line interval specifying that only the names that appear

in this line interval will appear in the set of identifier names.

<first name line>.<last name line>

Only those identifier names, that appear in the specified part

of the program, are listed in the xref-list. This parameter

restricts the set of identifier names in the xref-list. If not

specified, the name line interval will include the entire pro-

erame
<first line>.<last line>

The occurrence-lists will only contain line numbers belonging

to the specified interval. If not specified, the line interval

will include the entire program.

Beh FILE PROCESSOR COMMANDS

The sortarea is usually created by the compiler. This area is used for

sorting the occurrences of the identifiers. In system 35 a part of the area

used for compilation of the program is taken. In system 2 a sort area of

100 segments is created. 1 segment can hold approximately 100 occurrences,

For very large programs it may be necessary to create a specific sort

area. The name of this area may then be specified at the end of the list
of modifications to the xref-request.

B.1.5. Examples

o 1p

sll=algol list.yes s s13

The final program is stored in sl1. The source is taken from the file de-

seribed in s followed by the file s13. The entire source text and all

error messages appear on lp.

slil=algol list.yes stop.1

The source text is read from current input and listed on current output.

The translation stops after pass 1, i.e. just after the listing.

The following examples show the calls of the compiler with xref-modifica-

tion, and the corresponding output. The underlined lines are the commands.

algol text list.yes xref.yes
begin integer 1, J3

2 procedure pip(a,b)3
3 value as
4 real a3 integer array b3
5 b(a): =as
6
6 switch b:=A3
if integer array ia(1:2)3

8 goto b(increase(1))3
9 As pipli, ia)s

10

10 end
<a FF character is printed here >

a Ds 4
Us 2 5

b D 4 6
As 5
Us 2 8

i Ds 1
Us 9

la Ds T

2 69
increase U: 8
j Ds
pip D: 2

: 9
A Ds 9

6 Us

algol end 11

FILE PROCESSOR COMMANDS Bs5

algol text xref.assign

begin

<a FF character is printed here >
a

d At 5

i
la

increase

J
pip
A

algol end 11

algol text xref.all.2.10.1.1
begin

<a FF character is printed here >

i Us 9

J
algol end 11

algol text xref.al1.4.7.6.6
begin

<a FF character is printed here >
b D: 4 6

As 5

A Ur 6
algol end 11

B.2. Call of object program

B.2.1 Syntax

4 <empty>

= - <s> <source> <anything>
{ <name> | <bs file> <s> <integer>

<s> <param> <anything> J

<integer> <integer>

<param> 3:= ° }
<name> <name> {

Be2.2. cemantics

<name> = Has no direct significance. However, <name> may be accessed from

the running program by means of 'system!.

<bs file> A file descriptor describing a backing storage area which con-

tains an object program from an algol translation.

<empty> The program is called with 'in' as current input.

<source> Specifies a text file to be used as '‘in', Current input is not

touched in this case.

B-6

<integer>

<param>

FILE PROCESSOR COMMANDS

The program cannot use 'in' and ‘out' and it cannot print
error messages. When the program terminates, it sends a parent
message corresponding to a 'break' and specifying the cause of
the termination. On the other hand, 3000-4000 bytes more are
available in this way. This possibility is mainly intended for

operating systems, which 'never' are terminated, never use
'in' and 'out', and work satisfactorily in a very short core
areae

Works as <empty>. The command parameters <param> and <any-

thing> may be accessed from the running program by means of

‘system! and interpreted in any way.

<anything> ‘See <paran>.

Bo2.5- Examples

s=algol sl2

s sl13

8

Translates the source program in sl2. Executes it once with input from s13

and once with input from current input.

ERROR MESSAGES C1

APPENDIX C, ERROR MESSAGES

C.1. Messages from the compiler

Four formats of error messages exist:

1. <pass number> line <line number>.<operand number> <text>

(e.g. 6. line 12.6 type)
2. <pass number> <text> eg. 8. program too big)
3. <pass 9> <name> <text> CeSe 9. Write program too big)
4, x¥xalgol <text> (e.g. ***algol param)

Pelow, the error messages are sorted according to <text>. The messages are

classified as:

(alarm) The translation is terminated immediately as an wnsuccessful
execution. The program cannot be executed.

(warning) The message has no effect. The erroneous construction is skip-

ped.
Nothing The message allows the translation to continue and the program

to be executed until the erroneous construction is met or until

an undeclared or doubly declared identifier is used.

Co1e1. Line and operand numbers

The lines of the program are counted 1, 2, 3, ee. where line 1° con-
tains the first 'begin' or ‘extermal'. Only lines containing visible
(printing) symbols are counted.

The operands within a line are counted 1 2, 3, ... An operand is an

identifier, a constant, or a string.
The point of the program where an error of form 1 is detected, is

specified by the line number and the number of operands.passed within the

line, for example:

source line 12: if a<=1.5 then b(i):= real<:cd:>3 else
operand numbers: 1 2 34 5
error message: 6. line 12.5 termination

C.1.2. Alphabetic list of error texts

algol end <i> This is not an error message, The algol program has been
translated, The object code oceupies <i> segments. The

ok-bit (see ref, 2 and ref. 6) is set to yes. The warning
-bit is set to no if no error messages have occurred,

otherwise it is set to yes.

algol sorry <i> An alarm has occurred, The ok-bit is set to no (see ref.
2 and ref. 6). Tre integer i shows the number of segments
the compiler has attempted to make.

block proc (pass 6). The block procedure of a zone is declared

wrongly.
blocks (alarm, pass 5). More than 62 nested blocks.
call (pass 6). A procedure call has a wrong number of parame-

ters.

catalog (alarm, pass 2). Trouble with reading the backing storage

catalog.
(alarm, pass 9). Trouble with catalog lockup, for in-

stance because a standard identifier has disappeared. The

result of the lookup is printed.

Ca2 ERROR MESSAGES

char or illegal (warning, pass 6). Illegal character or wrong use of
a graphic.

comment (pass 6). Comment or message not after begin or semi-
colone

constant (pass 6). Syntactical error in a constant number.
+declaration (pass 6). Identifier declared twice or more times in the

same block. The message appears at each place of declara-

tion.

delimiter (pass 6). Impossible sequence of delimiters.
-delimiter (pass 6). Two operands follow each other.
entry (alarm, pass 9). A standard identifier hes been changed

in the catalog during pass 9.

error at source no’ (alarm, pass 1). Trouble with input from the source
file specified, Either because of hard errors, because
characters > 127 are read, cr because the file could not

be connected.

ext param (alarm, pass 5). More than 7 parameters in an external

procedure.

external (pass 6). External-end dces not surround a procedure de-

claration.

for label (pass 6). Lebel which labels a statement inside a for
statement is used cutside.

head (pass 6). Impossible procedure head. The line number
points to the first symbol of the procedure body.

kind (alarm, pass 9). A standard identifier has been changed.
in the catalog since the translation started. This is

most likely to happen in connection with an external pro-

cedure which was translated assuming a certain standard

identifier, but now this identifier has been changed in

the catalog.

layout (pass 6). Impossible layout.
local (pass 6). Local variable used in array or zone decla-

ration.

not text (pass 1). A source text contains a character > 127.
object area (alarm, **%*a1g01) « The file specified for the object code

does not exist, cannot be used, or cannot be created

feurty note, SEE Bel 2) e :

operand pass 6). Operand appears in wrong context or is missing.

-cperand (pass 6). Operand missing at end of construction.

overflow (pass 7). Integer or real overflow during evaluation of a

constant expression.

param (warning, *x%xalgol). Illegal parameter in the FP-command.

The parameter is ignored,

pass trouble (alarm, pass 1-12). The job area is too small to load the

next pass or the next pass has been destroyed.

program err 1 pass 7 (alarm, pass 7). An undetected error in the algol

compiler.

program too big (alarm, pass 1-12). The backing storage area specified

cennot hold the object code.

relative (alarm, pass 9). An un-debugged code procedure is as-

sembled. The procedure contains a relative reference out

side the interval 0 <= r < 510.

right par improper (pass 6). The construction) <letter string> is rot

followed by :(.
sorry <i>. (alarm, ***algol). The translation is unsuccessful, be-

cause of an alarm or because the FP-parameter 'stop' was

used, See also ‘algol sorry <i>'.

source exhausted

sort area

stack

subscripts

termination

text

type

undeclared

variables

works

xref too big

zone

zone declaration

ERROR MESSAGES Cn

(pass 1). The source text is exhausted before the program
was complete. A clue to the missing termination is prin-
ted.

(alarm, pass 12). Cross references could not be made be-

cause the sort area could not be created or connected.
(alarm, pass 2-12). The job area is too short for the
translation tables (see 8.1.2). ee
(pass 6). A subscripted variable has « wrong number of
subscripts.

(pass 6). Parantheses or bracket like structures do not
match.
(warning, pass 6). Illegal constituent of text string,
usually <: or digits in <>, evk. <#,0R ¥?
(cass 6). The declaration or type of an operand is not in
accordance with its use,
(pass 6). The identifier is not declared, Later occurren-
ces of the identifier in the same block will not print a
MeSSAZeo
(alarm, pass 5). Mcre than 1951 bytes of simple variables
and simple zones in one block, or more than 2047 bytes of
owns in entire source text, or more than 2047 labels and
procedures in entire source text.
(alarm, pass 7). Mcre than 96 bytes of working locations
in one biock.
(alarm, pass 12). The area used for sorting is not large
enough.
(pass 6). Wrong number of subscripts after zone or zone

array.
(pass 6). Wrong nuniber of commas in zone array decla-

ration.

C.2. Messages from the running program

C.2.0. Initial alarm

Before the first

xxx<program

begin of the program is entered, the alarm

name> call

may appear. It is due to either: the program is not on backing storage, the

source is not a text, or the job process is too short.

C.2.1 Normal form

When the program is called with <progran> <integer>, a run time alarm

appears as a parent message (see B.2.2).

In the normal case, a run time alarm terminates the program with a

message of the form:

<cause> <alarm address>

called from <alarm address>

ealled from eoe

A list of the possible alarm causes is given in C.2.35. The program is ter-

minated unsuccessfully except after the message ‘end’.

ch ERROR MESSAGES

An alarm address shows where the error occurred. If this is a proce-
dure or a name parameter, a line specifying the call address or the point
where the name parameter was referenced is printed too, The process is re-
peated if several calls or references were active at the time of the

alarm. If more than 10 calls or references are active, the process stops
after having printed the last 'called from', but before the last alarm
address is printed.

An alarm address may take 3 forms:

1. name of a standard procedure or a set of standard procedures

2. line <first line> - <last line>

3. ext <first line> - <last line>

Form 2 specifies a line interval in the source text of the main program.

Form 5 specifies a line interval in an external algol procedure. The accu-

racy of a line interval corresponds to about 16 instructions of generated
code. The first line number may sometimes be 1 too great if the line is
not terminated with a delimiter. The line number of a procedure call
points to the end of the paranthesis,

The following alarm addresses from standard procedures are used:

char input (read, readall, readchar, readstring, repeatchar, intable)
check (A112 high level zone procedures use the check procedure)
checkspec tame standard error actions in the check procedure)
ch/outvar changevar, checkvar, outvar)
invar (invar)
long/check (The subprocedure in the check procedure calling the user's

“plock procedure. May also be the code performing certain
operations on long)

monitor (monitor)
open (open)
outchar (write, outchar, outtext, outinteger)
position (close, getposition, setposition)
recprocs (changerec, inrec, outrec, swoprec)

recprocs6é (changerec6, inrec6, outrec6, swoprec6) Grieve 0 ArGot CHECK, POSSIBLY roe Few

stand.fct.1 (exp, In, sinh) AREAS
stand.fct.2 (arctan, arg, sin, cos)
stand.fct.3 (arcsin, sqrt
stderror tee code giving up the run of the algol program)
system system, increase)
system10 (system, entries 10 and 11)
systime tevetimes logand, logor, exor)
tofrom +ofrom)
zone declar (The code that declares zones and zone arrays)
zone share (getzone, getshare, setzone, setshare)
zone share6 (getzoned, getshare6, setzone6, setshare6)

C.2.2. Undetected errors

If all parts of a program have been translated with index.yes and

spill.yes, the following errors may still pass undetected:

1. Parameters in the call of a procedure which is a formal parameter do

not match the declaration of the corresponding actual procedure. Any

reaction may result.
2, Number of subscripts of a formal array do not match the number of sub-

scripts of the actual array. Wrong results may be produced, but the

control of the program remains intact.

ERROR MESSAGES 0.5

3. A subseript may exceed the bounds in an array declaration with more

dimensions as long as the lexicographical index is inside its bounds.
The control of the program remains intact.

4, The program may write into the backing storage area occupied by the
program itself. Any reaction may result,

5. Undebugged standard procedures in machine language may cause any re-
action.

The monitor and the operating system will usually limit the consequences
of errors in such a way that no other job or process in the computer can
be harmed (see ref. 1).

C.2.5. Alphabetic list of alarm causes

The error messages below cover only the standard procedures described in
this manual. The set of messages is expected to grow in step with the

growth of the standard procedure library.

aresin 0 Illegal argument to arcsin,

block <i> Too long record or record with a negative length in call of
changerec6, inrec6, outrec6, or swoprec6. The block length
is shown.

break <i> An internal interrupt is detected. <i> is the cause of the

interrupt, usually meaning:

O index error in program translated with index.no

6 too many message buffers used (see 8.3.3)
8 program breaked by the parent, often because it is

looping endlessly. In this case, the alarm address should

be taken with some reservation.
The break alarm will often be called as a result of the un-
detected errors described in 0.2.2.

bytes <i> Printed by stderror, The number of bytes transferred is
shown. The File Processor prints the name of ‘the document

and the logical status word.
ease <i> Case index outside range. The index attempted is shown. The

line number points to ‘of,
end <i> The program has passed the final end, The integer printed

after end shows the value of blocksread (see 9.7) as the

program terminated.

This is not an error message.

entry <i> Illegal function code or entry conditions in a call of

monitor, system, or systime. The function code attempted is

shown.

exp 0 Illegal argument to exp.
field <i> Field reference outside bounds. The illegal byte address is

shown.

index <i> Subscript outside bounds. The lexicographical index is

shown. This message occurs also for subscripted zones or

record variables. The character input procedures call the

index alarm if they cannot assign a single result to their

returm parameters or if a character outside the current al-

phabet is met. The procedure 'check' calls the index alarm

if a block procedure specifies a too long block. In this

case, the value of the parameter 'b' is shown.

integer Integer overflow.

length <i> Illegal record length in call of inrec6, outrec6, or

swoprec6, The attempted length is shown.
in 0O Argument to 1n is = 0.

C-6

modekind <i>

movesize <i>

movefld <i>

oddfield <i>

param

reclen <i>

real
segment

share <i>

sh,state <i>

sinh O

sqrt 0

stack <i>

syntax

value <i>

zokind

Zelength <i>

Zestate <i>

ERROR MESSAGES

Tilegal modekind in. call of open. The kind is shown,
Tofrom is called with the number of bytes to be moved <0.
The attempted size is shown.
Tofrom is called with an array where the byte numbered 1 or

the byte numbered size does not exist.
Tofrom was called with an array where the word boundaries
are not between an even numbered byte and its odd numbered
successor, The parameter number (1 or 2) is shown.
Wrong type or kind of a parameter.

Changevar or outvar was called with a length word < O or
O < length word < 4. ©
Floating point overflow or underflow.
A text seems to be a long string but could not be found as
a text constant.
An illegal share number is specified. The number attempted
is shown.

A share in an illegal state is specified. The

is shown.
Illegal argument to sinh.
Argument to sqrt is < 0.

The number of variables exceeds the capacity of the job
area, or an array or a zone is declared with a nonpositive
number of elements. The number of bytes attempted in the
reservation of storage is shown, OR Too smat ‘size

The program is terminated at a point where an error was de-
tected during the translation.

The contents of ia(i) in setzone(z, ia) or
sh) is illegal. The value is shown.
Swoprec is not used on a backing storage area.
The buffer length is too short. The actual buffer length is

shown.
A high level zone procedure is called in an illegal zone

state. The actual state is shown.

share state

setshare(z, ia,

INDEX 1

<= e@eceeeeeecooooseoesecoeceseeeoendce 34.7

KX oceccccccceccceccececcoececesee Jedelt

Abs eeeeeveacoceseeeorcoscoso0aeeeeeeod008 Qel

absolute address ecoosccecrseceeeeeo 9.18

QACCULACY eccecvceceer 36106, 3.300, 9eToD

actual parameter, see parameter
Add seocccccccecsccececesecevecececeee Jee

alarm, see error messages

algol 6 NUMDErS cocoececese 205 ey 2.5.6

algorithms for i/o eeccceesvreeeeen 6.342

alphabet eoevecceeeeeeco0rece 2.01, 9.32

ANG ceovccsccsvcerceesrooceececcecece 269

any message cecoceseccceseccoecceee Jol”

ALCSIN csocoscvececvccscccccccesccccece 9.3

arctan evocoseeseeeev@eovenvcoo@ow#o0ceeoneeee? 9.4

area, see backing storage _
area PYOCESS ecccccvsecevvrecenceocece 8.162

ALE ecvenresvrcvecesesrrv ec oeceeec ences 9.5

arithmetic eenroVescee Dolels 3.300, 3.4.7

arithmetic expression cecceecececces De)

. He e55 9075
array declaration cecscccccseccccsees Dee

array field woe. 2.8, Bol, a or 5.4.5,

Daley 902202, 942205
assembly eeeecocececesoeoeccececeeeee 22

ALLTAY evccccevcceeeseeecencn

Backing storage Gelel, 6.3035 9031, 9 40

base buffer area cececcecccceceeves Jor]
pinary pattern eocccccvcecce 36120, 5.6.5

blank, see space
block, (i/o) TETTITITITTT TTT Tere 66301

block, reading of cesccvescecccceee Dell

block exit OPT TTTTTTTTITTT rrr ere erry)

block gap Perrrrrr rer rrr rrr er rk 61067

block length ececccve0ces000 Bboledls 6.303

plock number cececcco00e 661, Beles 9.27

blockproc ecceceescceeececcecccecces Jo

block procedure eco 5 De, 554, 6.3.4

plocksread eecceescccseccecce Qets Co2e3

boolean ce ceeccececens0008000 202s 30106

poolean eXPreSSiON eeecceecccceccece re
bound byte .o oT od, 5 els 9.22.2, 9.22.9

bounds eoccVescesccrcoccecceecc 5.2.4, 9.73

bpi eeoercVeeeerceeceeooecnoesceeee ele

pranch test coecessccececcccceseee Belec

puffer AYe& eccceceecece 5 Dos Goel, 9.79

puffer indeX coecccccccceece rer 9.27

buffering ..cccccceeeccceees 6.6.3, 9.41
byte Ceoeeeeoceoc@eeecdos#eoseoseeeeeeooeee 8.342

CAN coecceeccc eer c vce ec e cee rc ceeee 2000]

card reader ceccooeccececeecc 6.106, 66303

CASE cecesscceccececcescescccecceose De
CATALOS cecsvcecccoeecevresccerccceereree 5

ChanNGerecC seccccerececccccssceseses 9.10

changevar Jpeceoecesecesceceescasee 9.11

character CLASSES ceccccccee 2e0oly Jere
character handling oo 9621, 9628, 9.32,

" "9,52, 9.53
character Set ccecocevvcesescreevces 2.001

characters, 6-bit PTeVrTeTriTrTT si 6.167

Check ceccceecesecr00e00eece ce cccves 9.12

Checkvar cecccccccccececccesccceces 9.13

Child procesS secceococeecce 5505s 6.4.3

CLOCK cececcveccecccccececccceecoees 9.7

clock PLOCESS eocovecrecececs08008 60109

CLOSE cecccececrrecececececceccecece 9.14

code, see machine code
coding of characterS ecoceccocseccees Le

compound SyYMbOLS sescecccecccceccvces Xe

console (see also typewriter) vee. 967
constants eoecccececccccece Led, Helede

control characters esscecccesseces CeUel
controlled variable sececsocececcccevce oO

CONVEFSALION ceecececcecescce Jeb, 9473
COS ceccccceescvrcece cen 0e 0080 e8eH0 9.15

Date PPT TTeTETTETTTrrrrerrrrrrTy 9.74

DEL cece ccc ceceec eon veeeencescees 2e0ol

delimiters oe cccc ccc ccc s eer c0ceeeeeen 203

density (see also mag tape) oecoses 64303
designational expression ceeccecceee Dod

device, see documents
dise file, see backing storage

Gisconnected cceccecseccescccceese Coded
documents (see also (i/o) o.oo 601, 9.41
AViver eoceccrcvccVeececreserr00e 08008 ete

drum, see backing storage

EM eeavoceeco0e0ee0080800806000 2001, 2.0

end of document ecececaececcerccece 6.3

entier eco5wecooec0ea0000090e08080908008 9

error messages, compiler cecescceoss
~ 9» PYOZTAM covvcogceecveceecs GoD,

error reactions, 1/0 eecccseccccce O
EVENT cevocecceevscrv,ere000000000008 6

eXECUEION eocecceccesccceccos 8.3, B

execution, speed Of soosecse Godel, 9
exit from DLOCK sesececcccesecvese ery,

exor TTT rT err rrreTr err rrr rere 9.17

CXP ceccscecccvsecececr00eeee00080008 9.18

exponentation ...cceccccessceecece 5.3.4
expression, DOOLEAN soscesccoeceoece Delt

, deSignational .ocecoesccesseees Dod
- , integer, real coosecccesceceses Jed

extend coccecccecseccoccecservesscese 9.219

external ccovccceccsceesscceccecccce0008 9.20

extemal PLrocedure cecececcececed on 920

CXTELACT coceccesrececrecerces000008 9021

False oo@#a@ceooesneesec0cocoeco°o 2o2el, 361

fat comma, @eeeccoeeeoce~eonconoeeeeso0eee 476

FF eeeceesaeceeeseeseeeaeseoneoocoeoeee 20.

Pield seccceccesscec 2.8, Bel, dels Qo 2

field base ..eccces 301, 5620002, 902202
field reference cccceceeccecce Dols 9.22

field variable . 207, Bel) eTody Seltody
: 561, 222 9.2

file @eeonoeeeeoceoeeseeseeoeesooreooceee 6.167

26003

6
1
1
2

- source Coeceeceeceeesveeesece

file mark, see tape mark

file number Ceoeeeeeecesserces 6. 1, 6. 1 “f

file PYOCESSOY ececcccccce 2.06 By 96 73, B

Plexowriter cecceccvesceceeco 2e0els 9.32

for-statement sececsecccececeeseeesces to

ELEC COTE ceccccccesccscvcesccceeses 9613

functions eececscccccccccscece 202, orery)

Getposition Ceecccvecececcese Qe 23, 9o 27

getshare Ceeeeveseecoroceesceceseces 96 25

getzone eeeccesesecoccecrceesececeee 96 27

give mask TETTTTTTTTT TTT Tee 64302, Io

goto eceoVece0eseseeo0nd 2635 4.6.6, orery)

Hard CYror cececcecceceseccccceece 603 3

high density eecosecceeeceescoescjee 6303

high level zone procedures coocVeeeoe 6 2

Identifier scccecesccececcceeceeeeee 24

if-then-else ceeccccescceccececces Bere2

in eeeceecceeeescoecsceseocceseceses Qe 28

increase sceceeecsceesceeccosoeceece 96 29

index check ceccccesecceecccce 8. 2, Bole 2

initial Values ccoescecececcccoceccces 5

input, see i/o .
INTEC ccccesccvccevccsceecescccesecec 9.31

intable cececcececrvecessccececcecce Me 32

integer eocesevecece Bele 6, 36 1 os Doe

internal proceSS cececceccoee Ooledy Oer«
intervention oe cccccscescsceccccce 6 3

°

W
e

invar eo roecccseccecosescescececcos

i/o eeeecocvr; Ve eeoeceeesoeoercooeCD 9

algorithms Ce0eeeeereeeeveesc 6

check Of eecoscececeece Gerel, 6.

driver fOr sscecccceccececees ©
errors eeceseescocceseccecece 6

high Level cocccccccceccccccces

primitive Level ceccceccsccece 66

speed Of sccccccccccer 66 Tels 6.

“9 termination Of coccececesceces 9

ISO-CODE eccVeeceeeeeocoeoocacecreceoeed 26

e

“
"
“
O
-
—
-
N
U
W
N
W
Y
L

Ro

fo

Wi

Gy

by

ON

1

O
e

Label, magnetic tape ceeeseccceeco 6 3

LabelS cec0ecceeccececcccece 36 5. 1, 406

layout eoeeevrceseceeee 30 6. 5, Qo 99 °

lexicographical ordering .secc5ocoo Fee
line printer ecevcccceseecoe 601055 6036

listing of PLOLZTVAM cocoeeecve 9. 38, B.1

literals, see constants:
In @eeeeeeeneevneeevce@eeeesceeseeveoeoeed 9.34

load point aeveeeeececconevece 6. 1 els 6. orw)

logand Corceseeecceneevesen00es 00008 9635

logical position, see position

logical status csoccccececsescvecees Oded
LOLOL ceccccccccccccceccceccceccees 9eD0
long eerecccccocveevececcccce 3.126, 9.57

Machine code ceceeccececccccceccsccecses 2

magnetic tape Belols 6 edoly 643035 9.14,

9.41, 9.58
mathematical functions .seseeesees Je2eH
merging eerreereececesccesoen 9. 11, 9.21

message (comment) Deeeeecescreccece 96 38

message-answer ce oececceseccs 6.4.2, 9e 73

message buffers 0.0 6.301, 8.1.2, 8, 303
MOD secccceccccccccecccccccescccces Je 9

mode-kind of document cesssooecseee Jolt
MONLEOY soecccescecccccecece 6461, 9.40

mount-etape-message soccosece 60303, Got
move core Ceeeesceverssecoecscoeccece 9.73

NL ces occccccccccccceccscccceatcve 2.0

normal ANSWEY scocssoceececoecccee Oed
null character eoccccscecees Co0oly De
numbers PPP rTTTTTTTITTTTr Terre Tie 2.

numerical functions secececceccecere bry

Object program, see execution

of 0 0c cocce coer oer eeeeeseeecoeseees 9. 8

on-line interaction .ocescccceccees Feld
OPEN .eecccccecceccceccecresceccces Jolt
operating system ececrecccceoccrccos 60 43

or woeeseeserceessceeececesaececcsoce a)

OUT ecececcccccecrseescceccec0e008 6; 9% he

OUTCHAY cececesccecscscccccovccccce Jot
outinteger seesecscoesccsecocecccee Jott
output, see i/o . oo
outrec ecco ccc eco cece eros eee neee 946

outtext Teer TTT TTT TTT Te TT Tere 9.47

outvar @eexcceo#eo0@e@o0e#o00000000002808089080 9.48

overflow (see also spill) .. 3.3.6, 9.49
OVELLLOWS secccccccccccccrcvcvccces JelD
overrun ccc nccccccccececcceceevece 6.3.3

OWN ecccceceseveecvr000c0e08 4709, 5

Packing eeosceeee0g0ceeoeeoeeo000e e000 9.2

paper tape punch, see tape punch
paper tape reader, see tape reader

parameter, actual-formal oo 4.701, 54.5
parameter, file proceSSOYr cesceseee 90/5
parameter comma eeecesreccccececes hy Te 1

parent ©20700@0200808080980800009889808000888880 9. 135

parent MESSAZE cecoeccccececsescoe Orde?
parity CYTOL cecceccccesceccccsecs Oe red
partial word. e@0e0e0e0008000080888088 9. 27

INDEX: 4

passes Of compiler cecccceceececee Cole
pattern, see binary pattern
peripheral device, see documents
physical position, see position
position (logical or physical) 6.1,

6.3 9.27
position CYTOL ececeecccerevcesceces es 3

positioning of magnetic tapes 9.14,9.58
precedence of operators coo 30305, 3, 4.6
precision, see accuracy |
primitive level zone procedures 6.4
printer, see line printer
printing, see write
procedure Call coccceccccccccccccece +
procedure declaration eocccesececeee D

program eevocecceceeocooneee 20002, Wed

program execution, see execution
punch, see tape punch

7
wh
ol

Random eocoeeovccecvceceeoecaaveseoenc:c oe 50

range Of ValueS ececcocecceces Je 1. 6, De 36 6

read ee cecesorecoveccecesescsesecce 6 51

readall COeeeeeeneesoeeoosoeceeseso oe 52

Teadchar soceeccceccecssccvessccvces 9253

reader, see tape reader
readstring eeccecc cee ee cececes e000” Qe 54

real sooece DoleOelty Seley 54505, 50306
real (operator) . erocecccecescoees0e De 55

record Cocoecevececceececonc De De 39 96 19

record, i/o of eoeccccccccoceseseseco Vo

record. variable ecoecssccece De 103, 5

recursive procedures soeesscecsoes 4
reference byte eocecececccecccecs 9.

Pejected sseccoccseesecececesssces On
relational operators Ceeerccesececs D4

TELEASE cecceececcccececesccocecsese Jo
repeatchar coeccesccccescccececeece Do

representation of variables 3.1.6,3.6
requirements of compiler cecceseee Gel
requirements of Program ceceescees Ged
round @escocoeaeoooomgoaooceeeeacnoeeeeoeed A

N

N
M
N
N

E
A
U

Nd

XO

Ut

PO

run time, see execution

Seope cocccoceeevecccece 2s 5D. or De 6. 5

scope of area eooececessccece 9.0, 9 15

segmentation Ceeeerecesereces 8.3. 1, 96 ve

segments rrr rrrrrrTrrrrrrrrs rr er 5. lel

setposition eeeceeeecesecocee 927, 9.58

SetShare coecceccccscesccvcvcecsceces 9.60

SETZONS ecccccccesscccaccscesccesces 9.62

sen eee rcececrc cess ecco eeerceececen 9.63

share descriptor ccs. 505035 Soltel, 9225
shared area eaccececce De De 35 6 ode 1; 9e My

shares, NO.o OF secccceccecccescces 6.3. 1

SHIFT ceoceccoencveccceccccesceccccesc Qo 6.

Side-effect wseceece Doledy Dededy He Ted
SION ccecvccecesceecsicseccecsccvece 96 5

sin coeeencvesceaeveocecceseeeseeeeaneeeee 9.66

SOULPCE PLOLTAM eeeccerx20000e0 00000 2.0

SP Ceoveecxseeeencneeneeeeencecnsesece 2.0

SPACS secvcvcescecceescess 200. 4, 2 02s 2

specifications eoe0e0e0ae00 he, 7. 5, 5 ote

SPill cocccccee Dero 6, “4.2.3, 8. 2, Bel.
splitting ee cerecccasasccreccce0008 9. 21

sqrt Coeeeceescecreeresesreno0ecnece Qo 68

standard error (i/o) eeerscc0e0ee8 65403

standard identifiers cecoscsecas 3 26 hy 5

standard procedures siesenenersedgoves 9

State table eecocoeccccccccsscccevos oe 53

statements @eeoccaoen0geceeeeveseeovneeeed

status, see logical status
stderror seco vereeceeecsescececsecses 90 69

stopped Cereeeoceeccceceesereresnge ey 3

storage requirements seeese 80102, 90502
string (operator) toeesroreoseceson Qe 70

string expressions eoVeceeeson 5.6, he Te 1

string, short, long eoeccocecac008 40 6 oD

string variable eoceeecc0es0n De O29 9070

strings (constants) eoeececrecceccces 20

subscript check eocccerceccce 8. 29 Bele2

subscripts, no. of oeeccooceeesoe he Ts Be 3

suspend eeeeoreesaeresecc0000000 000 De 14.

switch eeecrececrrecececececeoccece De or 6

SWOPLTEC ceccVseesrccVec0eeeresc 6 oDo 1, 96 72

syntax check of data soscoese 9092, 9093
syntax of chapter 9 Ce0ces0c00VGC eB eDeee8e 9

system ee eccceccecccccccescocceeece 9. 13

system CONTLOL seccecceccscccsecccecce |

systime @eecococ4«seseeeececeee oe eece sen 9. 74.

sinh excoeecnecco0@ecoeccoeon0eo0e0c0eecee 9 6

Table, initialisation of .ecsseseses 908
tableindex eecececsescceecece 96 32, 9e 15

tape, see magnetic tape
tape mark 6.167, 66303, Qott, 9.30, 9.58
tape punch errr rrr rr rrr Bolots 6636 3

tape reader eecccccoseceece 64 1 re 6. 30 3

terminate i/o oc ccccccceccccccccene 9e 58

text portion eooeccceecaeecrercecce 36 6. 5

time measuring Ceenevceceessaceccce 96 7h

timer Seeoseseosacscssaseoseveser” De 3

COPLOM cecescacseccasvrcccccccs 9 76, A.D

transfer functions cevccecccceccecs 3 e20d

translation, see compilation
ECYUC coccccccccccccccccecsa 2e2el, 3.1.6

type eoeerenccccessecese0an Jodelt, 54.5

type length @eeoaeceeseeoeeaeeo 30140, 942261

type transfer, see transfer functions

typewriter evceecesereaeece 60102, 60303

Underflow Qeerceeeenceeesre0000e008 343.6

UNderPlOWS seeccccccccecceccceccoses 9eTT

underlining eecoeceeccveccecs 2.0.44, 263

unintelligible eercercVeeveevrececreceos 6303

unpacking Core vsercesereceecv0000 00000 9021

Value ceocccer ic cccceccccccces 47. $

values eco@aeeod 30126, Belels 3.6. 3

variable field 2.8, 3.1, 5.7e4, 9

variable length of record oo. 9631, Jet
variable string cececescecccce 9055, 9.70

variables e@eceeeaeeeeoeoeoeeccearoeeeooceee 401

Word eeeecneeeeeaoe @eoooseenoeeoeeaeee 8o302

word boundaries 2 50208, 942201, 902205
word defect wecccccccccceccccesecc 66303

write COCCOCC ECC OCHE EEE OHECO ESD E CC OCES 9.78

write enable eoeeeaeeeeeeaocreceeeoe ee 6.303

ZEYTO y real ceccccescsceceeceeseeen 30106

ZONE co3secvcVeesccveceveccoe els rer Tel9

ZONE ALYTaAY eoescesscceccese Bels 4.7, 526

zone buffer, see buffer area
zone declarations escee Deo 500, 9.19

zone descriptor ecccccccenes Serer) 9.27

zone expressions eeccececsosoce Bels 4.7

zone record, see record
zone state eeeeeevrvrvcVeeeeeescecreenen 9.27

Printed in Denmark by R. Roussell

s REGNECENTRALEN

HEADQUARTERS: FALKONER ALLE1 : DK-2000 COPENHAGEN F : DENMARK
TELEPHONE: (01)105366 : TELEX: 16282 RCHQ DK : CABLES: REGNECENTRALEN

AUSTRIA

DENMARK

ENGLAND

FINLAND

GERMANY

HOLLAND

NORWAY

SWEDEN

ISBN 87 7557 018 1 (AUG/74}

