- Algol 6

=4CJCJD

DATAI\/IATI

RCSL NO: 31-D322

ALGOL 6

USER'S MANUAL
1st edition,
2nd printing

Edited by

Hans Dinsen Hansen

A/S REGNECENTRALEN

ISBN 87 7557 018 1

1. INTRODUCTION
References
2, BASIC SYMBOLS, IDENTIFIERS, NUMERALS, AND STRINGS
2.001e Character set and coding ' :
2,0.2. Source text
2,0.3, Source files
2,0.4. Space and New Line
2elo Letters
e Delimiters
24b, Identifiers
2.50 Numbers
2.6, . Strings
2eTe Quantities, kinds and scope
258, Values and types
3, EXPRESSIONS
5ele Variables and fields
BDuln Function designators
el Arithmetic expressions
Balks Boolean expressions
3¢50 Designational expressions
Buln String expressicus
3T Zone expressions
b, TATEMENTS
4.2, Assignment statements
4.6, For statements
b7, Procedure statements
5. DECLARATIONS
561 Type declarations
5ele Array declarations
5.k, Procedure declarations
5650 Zone declarations
5.6 Zone array declarations
Bel« Field declarations
6. INPUT/QUIPUT SYSTEM

- CONTENTS 1

Documents

Internal process

Backing storage

Typewriter

Paper tape reader

Paper ‘tape punch

Line printer

Card reader

Magnetic tape

Devices without documents
High level zone procedures
Buffering and checking
Multishare input/output
Mgorithms for multishare input/output
Standard error reactions
Block procedure

Primitive level, 0S
Commmmnication with dccuments
Document driver

Operating system

e © o e e o o o
© ©° B o L] o

©
O O~ O\ W N ==
L]

° L] [] o o L] L] L] [) [)
L

()
(]

©
L[]

F-F‘FFUJ{N{)J\N\N[\)-A—:-:-J-:.-\.J_&-:__-
e o
U N =
o o o o

L]
L]
©

O\ET\O\@O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\
°
L]
NN -
o

O pages

5 pages

T pages

19 pages

To
8.

90

CONTENTS 2
SYSTEM CONTROL, ETC,

THE ALGOL SYSTEM

Bele Translation

a2y Assenbly, index, spill
8.3. Execution

AT PHABETIC LIST OF NEW ELEMENTS
901- Abs

9 Add

Q4¢3 Arcsin
Galks Arctan
9¢5. Arg

G:bs Blockproe
9¢To Blocksread
9,8
9.¢
Q.1
9.1
9.1

N
.

° Case

o Changerec
0. Changerech
To Changevar
2 Check
9¢1%s Checkvar
9.1}4‘. Close

9.15. Cos
9016o Entier
9017. Exor
90180 EJ@

9619 Extend
9.20, External
96210 Extract
9,22, Field
0,23, Getposition
9,24, Getshare
9,25, Getshareb
9,26, Getzone
9.27. Getzoneb
9,28, In

9.29. Increase
0,30, Inrec
9.31. Inrecb
9,32, Intable
9¢3%, Invar
934, In

9.35. Logand
9.36, Logor

9.37. Long
9.38. Message
9.39. Mcd
9,40, Monitor
9,41, Ogen

Lo, Ot

M43, Outchar
b, Ouvtinteger
L5, Outrec

L6, Outrechd
.u7. Outtext
JL8., OCutvar

Lo, Overflows

1 page

b pages

86 pages

a 0o o 8 o o & a
e & o« © & o6 o o

L] [] L[] o [) L L]

DOV EFWNN= OO0 OO0\ U iNn=—= O
L]

OO0 \OV OOV OV VOOV OVOOVOOVOVOVOVOOVOOVOWOO

9.76.
9.TTe

9eT8e

979

CONTENTS 3

Random
Read
Readall
Readchar
Readstring
Real
Repeatchar
Round
Setposition
Setshare
Setshareb
Setzone
Setzoneb
Sgn

Shift
Sign

Sin

Sinh

Sqrt
Stderror
String
Swoprec
Swoprecb
System
Systime
Tableindex
Tofrom
Underflows
Write

Zone

APPENDIX A, Execution times in microseconds

APPENTIX B, File Processor commands

APPENDIX C, Error messages

Index

5 pages
6 pages
6 pages

4 pages

New algol facilities 1/5

1) freely placed comments

2) message at end medium

3) improved error messages at error in source
4) file numbers on sources

5) 1listing of bossline numbers

6) 1listing of selected parts of the source text by means of list.on
list.off

7) 1listing of source names and dates

8) possibility for dynamic change of list situation as well as selection
of a copysource, by means of a new delimiter algol

I. Changes in call, new modificators

o S e S o o G G S G G G B S N D G D G S B G D R AR G SU D e e e e e

yes
bossline.{no

on }
list.\off

®
copy,{<copysources>}1

II. Changes in the source text

new compound, commentstring: <* anything *>

new delimiter: algol e H

%) as described in RCSL Nc: 31-D366 by Tove Ann Aris

New algol facilities 2/5

ad 1

ad 2

ad 3

ad 4

ad 5

ad 6

comentstring <% anything *> may be placed whereever space is al-
lowed, except in fat comma. Syntactically it 1s treated like space.
The string must not contain <* ., Error messages as for text string,

In case the text is not listed, and the algol call does not specify
message.no, a message is given for end medium.

Error messages for source errors are improved to the following pos-
sibilities:

error at source: <name> unknown

error at source: <name> not textfile

error at source: <name>.<integer> not magtape
error at source: <name> illegal kind

error at source: <name> connect error

error at source: <name> connect error

error at source: <name> not text

error at source: <name> hard error
device status <name>
<cause>

Files in an entry may be specified by <name>.<integer> so that only
one entry must be inserted in the catalog. <name> must be an entry
which contains the name of the magnetic tape in question. <integer>
must not be 0. The resulting filenumber will be the file number in
the catalog entry plus <integer>. File 7, 8, 9 and 10 are chosen as
follows:

t=set mto mt123456 0 7
p=algol t tol te2 tu3

the call parameter bossline,yes implies that listing or messages be=-
sides the linenumber will state the boss linenumber, Standard is

bossline.no,

The are three degrees of listing:

1) 4if list.yes is specified the total source text is listed
2) 1if list.no is specified nothing whatever is listed.

NOTE: If as well list.no as list.yes is specified in the call, only
the last specified is valid.

New algol facilities 3/5

ad 8

3) if list.yes and 1list.no are not specified in the call, it is
possible to list selected parts of the source text,

This is governed as described below by:

fps mode listing.yes
list.on
list.off

Change of list situation.

If list.on is specified in the parameter 1list, algol will list the
source text of all the sources followlng this parameter, until a
possible parameter list.off is specified.

If list.off is specified in the parameter list, algol will omit 1li-
sting of the following sources, until a possible parameter list.on
is specified.

If the call specifies a source before a list parameter, the source
will be listed only in case fps mode listing is yes.

Source names are listed unless the call specifies message.no., Date
and clock is listed only when the source 1s selected, i.e. not at

unstack, see example.

1

1
algol{ <modifier>} {copyo{<copys0urce>} }
° <integer>

[}

<modifier> ::= listO{on }
-‘off

If a 1list parameter is not followed by a copysource, it means that
the 1listmode of the actual source is changed. If a listparameter is
followed by a copysource, the list parameter relates only to the

copysource,

If no listparameter is specified for the copysource, the copysource
will be listed in case the actual source is listed.

New algol facilities

L/5

An integer parameter is matched with +the call in which the parame-

ters are numbered 1,2,..o

A listparameter in front of copy.<dn-

teger> will be blind since the list mode specified in the call will

be valid,

Further the delimiter algol is treated as

message, i.e. it is

1li-

sted unless the parameter message.no is specified, and the delimi-

ter must follow either begin or semicolon,

minated by semicolon.

EXAMPLE

prog=algol list.on copy.tl.t2 list.off copy.t? tO bossline.yes

copysource 1
copyecource 2
copysource >

t0:

source 1 = t0
= {1
= {2
Z =.b5

begin
comment O3

algol list.ons
comment 13

algol list.offs
comment 23

algol copy.1<*tl1%>3
comment 33

algol list.on copy.ths
comment U3

algol COpy.«2<¥t2¥>3
algol copy.3<*t3¥>3
comment 53

end

comment copysource no.l;
comment copysource no.2;3
comment copysource no.3s

comment copysource ths

listed

not listed

not listed, but message
listed

listed

not listed

not listed, but message
not listed

not listed, but message
not listed

not listed, but message
nct listed, bubt message
not listed

not listed

listed
listed
not listed

listed

further it must be ter-

New facilities in algol

prog=algol list.on copy.tl.t2 list.off copy.t? tO bossline.yes

t0 2L01.75 14.36
10 1 begin
1, line 30 3 algol list.ons
4 comment 13
50 5 algol list.offs
line 70 T algol copy.l<*tl1*>3
t1 2401.75 14,33
10 T comment copysource no.ls
20 8

10

line 90 9 algol list.on copy.tls
th 240175 14,33

10 9 comment copysource tlhs

20 10

0

line 110 11 algol copy.2<*t2%>3
t2 2401.75 14.33

10 11 comment copysource no.2s

20 12

0
line 120 12 algol copy.s<*t3%>3
t3 2b01,75 1433
line 20 13 end medium
0
algol end 9

5/5

INTRODUCTION 1=-1

1e Introduction

- "This 1s a revision of the Algol 5 User's Manual “transforming it in-
to a manusl of Algol 6,

The present editor of ‘the Algol manual w1shes to express his admira-
_tion of the high standard set by his predecessor, Sgren Lauesen, therefore
large parts and, as far as possible, sthe style of description were taken
over directly from Sgren Lauesen's manual., The present editor was not al-
Ways able to follow the style set in +the Algol 5 manual. - In some rare

ceses he could not restrain his urge to make things in his own way.

1e1s Format of the manual
The manual consists of 3 rather different parts: P

; Chapters 2 0 5 follow section by section the Algol 60 report (ref.
J5) and give changes b i1 syntax and semantics relative +to the reference.
Certain of these sections are new in that they have no counterpart in Al-
gol 60, others only contain changes to Algol 60, It should be obvious from
the context which is which.,

' Chapters 6, 7, and 8 serve as . 1ntroduct10n to the input/output sy~
stem, to the facillties for programming of operating systems, and to the
coupling of the Algol system to the surroundings. -

Chapter 9 and appendices A, B, and C are the parts used in daily pro-
gramming. Chapter 9 is therefore an alphabetic list of all standard iden-
tifiers and operators, provided with realistic examples.,

1.2, Changes relative to Algol 60

T. The representation of the language is changed to ensble a good use of
the ISO alphabet.

2, A new quantity 'zone' is introduced. Zones are the basis for introduc-
tion of a general input/output system, where the user can work on a
high level with automatic buffering and error recovery, but where he
also may interfere with the administration or work on the most basic
level. He may even program operating systems (patch processing, real
time, time sharing, etc.) in algol,

3, Procedures may be translated alone, in this way new, Algol-coded,
standard procedures may be produced.

4, Field varisbles, beeing pointers to 'fields' in arrays or zones are
introduced, Fields are subsets of arrays and zones, and they do not
have to be of the same type as the type of the array,.

5, Case expressions and case statements, first suggested by C.A.R. Hoare,
are admitted.

6., Operators for working on parts of operands are introduced (pattern
operators) «

7. A new type, long, is introduced. Longs possess integral values, but
their range is extended relative to the range of Integers.

8., Some details, left undefined by the Algol 60 report, are defined: owns
are initially O or false, the controlled value at exit from a for-

statement is defined.
9. Errorful programs may be executed until the bad spots are touched.

These changes aim at converting algol from a sophisticated plaything
to a more realistic tool for software production.

1=2 INTRODUCTION

1030 Use of the manual

This 1S not a text, but a user's manual. It is +therefore expected
that the reader has been introduced to Algol in some other way.

If you are familiar with Algol, but not with Algol 6, you may start
reading until section 2.5 to learn the external represen‘bation of Algol 6
program, Next, read section 3.1.6 with subsections to become familiar with
the internal representation of numbers, Third, read the introduction to
chapter 6, Fourth skim chapter 9 and try to get an impression of the pro-
cedures and operators you can utilize, Appendix B explains how you call
the compiler and execute the translated program.

Keep away from chapters 3 to 5 unless you are famillar with the Algol
60 report (ref. 3), and keep away from 6.3 to 8 unless you want to explore
the multiprogramming system and the perlpheral devices.

1.4, Acknowledgements .

The system 1S pased on the Algol 5 compiler. It was designed by Jgrn
Jensen, Bo Tveden Jgrgensen, Sgren Lauesen, and Jgrgen Zachariassen. The
re-programming of the compiler was made by Jgrn Jensen, Bo Tveden Jgrgen-
sen, and Jgrgen Zachariassen., Hans Rischel and the editor participated in
performing certain of the necessary changes in the standard procedures.

The editor wishes to thank Nils Andersen, The Institute of Datalogy,
for provoking <this revision of the manual, and at the same time pointing
out some important spots needing re-consideration. He also wants to thank
Sgren Lauesen, E. Johansson, and Kirsten Andersen for their great help -
each one in his line - during the work with this new edition.

A/S Regnecentralen, August 1974

Hems Dinsen Hansen.

INTRODUCTION 1-3

References:

Ref,

Ref,

Ref.

Ref,

Ref,

Ref,

Ref.

Ref,

Ref,

Ref,

13
23

5

P, Brinch Hansen: Multiprogramming System.
RCSL 55-D140, A/S Regnecentralen, Copenhagen.

Sgren Lauesen: File Processor, Users Manual.
RCSL 55-D21, A/S Regnecentralen, Copenhagen.

J.W. Backus, et.al., Revised Report on the Algorithmic Language
Algol 60 (ed. Peter Naur), Regnecentralen, Copenhagen (1962):
Oorme ACM 6 noe 1 (1963), pp 1-17.

P. Brinch Hansen: RC 4000 Reference Manual.
RCSL 55-D1, A/S Regnecentralen, Copenhagen.

P, Lindblad Andersen: Monitor 3,
RCSL 31-D300, A/S Regnecentralen, Copenhagen.

Hans Rischel: Utility programs, Part 1:3s
RCSL 31-D106, 31-D233, 31-D320, A/S Regnecentralen, Copenhagen.

Sgren Lauesen: Boss 2, Users Manual,
RCSL 31-D310, A/S Regnecentralen, Copenhagen.

Kirsten Mossin: External processes.
RCSL 31-D37, A/S Regnecentralen, Copenhagen.

Jens Hald and Allan Wessel: RC 4000 Fortran.
RCSL 31-D103, A/S Regnecentralen, Copenhagen.

Tom Sandveng: Code procedures and the run time organisation of
algol programs,
RCSL 31-D199, A/S Regnecentralen, Copenhagen.

:
; Coaw . . R f L :
- N N
: N
7 B - .
B

BASIC SYMBOLS 2-1

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS

2.0.1. Character set and coding

The source text to the algol compiler must be represented in the IS0
T-bit character code. At run +time, the program may choose any alphabet,
but the ISO T-bit code is offered as a standard. It 1is possible in a
simple way to use paper tapes in flexowriter code as source and data, be-
c?use the monitor may convert the code to IS0 7-blt code (see ref, 1 and
2) . '

The table below shows for each character of the IS0 7T-bit alphabet:
the internal value (V), the graphic representation or +the name of the
character (G), the character class as source +to the translator (S), and
the character class as data read with the standard alphabet (D).

vV G S p| v ¢ S D| vV @6 S D vV G S D
0 NUL blind 0| 32 SP basic 7| 64 @ graphic 7| 96 ° graphic T
1 SOH illegal T| 33 ! Dbasic 71 65 A basic 6! 97 a basic 6
2 STX illegal 7| 3% " graphic 7| 66 B basic 61 98 b Dasic 6
3 ETX illegal 7| 35 £ graphic 7| 67 C Dbasic 6 99 ¢ Dasic 6
L EOT illegal 7| %6 $ @graphic 7| 68 D basic 6| 100 d basic 6
5 ENQ illegal 7| 37 % eraphic 7| 69 E basic 6] 101 e Dasic 6
6 ACK dillegal 7| 38 & TDbasic 7] 70 F basic 6] 102 f basic 6
7 BEL illegal 7| 39 * TDbasic 51 71 G basic 61 103 g Dasic 6
8 BS illegal 7| 4o (vasic 71 72 H Dvasic 6] 104 n Dbasic 6
9 HT illegal T| 41) Tbasic 7] 73 I basic 6] 105 i Dbasic 6
10 NL TDasic 8l 42 % Dasic 71 T+ J basic 61106 j Dbasic 6
11 VI dillegal 7| 43 + Dbasic 31 75 K basic 6] 107 k Dbasic 6
12 FF Dbasic 8 4 , Tbasic 71 76 L basic 6] 108 1 Dasic 6
13 CR blind ol 45 - Dpasic 3| 77 M basic 61 109 m Dbasic 6
14 S0 illegal T| 46 . Dasic 4L} 78 N Dbasic 6|1 110 n Dasic 6
15 SI illegal T| 47 / Tbasic 71 79 0O bpasic 6} 111 o Dbasic 6
16 DLE illegal 7| 48 0 Dbasic 2| 80 P basic 6] 112 p Dbasic 6
17 DC1 illegal 7| 49 1 Dasic 2|l 81 Q basic 6| 113 q Dbasic 6
18 DC2 illegal T 50 2 Dbasic 2{ 82 R basic 6| 11k r Dpasic 6
19 DC3 illegal T| 51 3 Dbasic 2! 83 S Dasic 61115 s Dasic 6
20 DCh illegal T} 52 L4 basic 2{ 84 T Dasic 6] 116 + %Dasic 6
21 NAK illegal T| 53 5 Dbasic 21 85 U basic 61117 u Dbasic 6
20 SYN illegal 7|54 6 basic = 2! 86 V basic 61 118 v Dpasic 6
23 ETB illegal 7|55 7 |Dasic 2| 87 W basic 6| 119 w basic 6
ol CAN illegal T|'56 8 1Dbasic 2| 88 X basic 6] 120 x basic 6
25 EM Dasic 8] 57 9 Dbasic 2] 89 Y Dasic 6| 121 y basic 6
26 SUB illegal T| 58 : Tasic 71 90 Z basic 6] 122 =z basic 6
27 ESC illegal T| 59 3 Dasic 71 91 £ basic 6] 123 = Dasic 6
08 FS illessl 7|60 < basic 7| 92 # basic 6| 12k g basic 6
29 GS illegal T| 61 = |TDasic 71 95 A Dbasic 6| 125 & Dbasic 6
30 RS dillegal T| 62 > TDasic 71 9 * graphic 7| 126 T graphic 7
31 US dillegal T| 63 ? graphic 7| 95 _ 1in text T| 127 DEL blind 0

i

2.0 BASIC SYMBOLS

D,Data classes

O,blind: The character is skipped by all read procedures.

1,shift character: Not used in the standard alphabet (see 9.32).

2,digits: May be used as digits in a number or in a text
string. .

3,8igns: May be used as the sign of & number or in a text
string. ‘ ' .

L,decimal point: May be used as the decimal point of a number or in a

, text string.

5,exponent mark: May be used as the exponent mark of a number or in
a text string.

6,letters: May be used as part of a text string. Will terminate
a number, ,

T,delimiters: Will terminate a number or a text string.

8, terminator: Works as class T, but terminates a call of readall

(9.52) . EM (25) will immediately terminate a call of
read (9.51) or readstring (9.5k4).

S,Source text classes

Basic: Significant in all contexts.

Blind: Skipped in all contexts.

Graphic: Significant inside +text strings, causes a warning
outside.

Illegal: Produces a warning during the translation, but does
not harm.

In text: Works as a space inside text strings,blind outside.

Control characters
Mhe control characters which are used in algol are the following:

10,NL: New Line. The change-to-new-line character.
12,FF: Form Feed, Causes a change of page on the printer,
but works syntactically as New Line outside text
' strings. :
25,EM: End Medium. See 2.0.3.
32,5P Space.
127,DEL: Delete. Used for overpunching of wrong characters.

2.0.2, Source text
The program consists either of one block, of one compound statement,

or of one procedure declaration surrounded by 'external' and ‘end! (see
9.20) o

A1l characters up to the first 'vegin' or 'external' are skipped, but
appear in a possible listing.

After the last 'end', the compiler reads as many characters as are
necessary to distinguish the 'end' (usually a space or a new line).

2.,0,%. Source files -

Mhe sSource Text to the compiler consists of one or more files of
text as specified in +the File Processor command that started the trans-
lstion (see app. B). The compiler may read source files from paper tape,
cards, typewriter, magnetlc tape, and backing storage.

A file terminstes either when an EM-character is read from the file
or when the file physically is exhausteds A file on a roll of paper tape
is exhausted when the tape end is met. A file on the backing storage is
exhausted when the end of the backing storage area is met. A file on mag-
netic tape is exhausted when a tape mark is met,

BASIC SYMBOLS 2.3

When the compiler meets the file terminstion before the source text
is complete, it locks for the next file specified in the Fille Processor
command and continues reading from that file, If the list of files is ex-
hausted, the compiler prints an error message, generates the necessary
number of string terminations and 'end's, and compiles the program com-

pleted in this way,.
The compiler handles the peripheral devices in accordance with the

rules of the File Processor (ref. 2 or 6).

240.4, Space and New Line

Space and New Line may be used freely in numbers and between identi-
fiers, compound symbols, and other delimiters., They are not, however, al-
lowed inside identifiers, compound symbols, or delimiters.

Space and New Line aré significant characters in a text string and
will be printed out at run time when the string is printed.

The character ' ' represents a space inside strings, but 1s complete-
1y blind outside. The latter property may be used to divide identifiers
and compound symbols (cf. 2.3).

2.1, Letters

The set of small and capital letters of the reference language is
extended with the Danish letters . '

xgakgdR

2.2,1., Logical values
Toglcal values are written as compognd symbols without underlining:

true false (cfe 2.3).

2.%, Delimiters

The underlined delimiters (compound symbols) of the reference lan-
guage are written without underlining. A Space or a New Line is required
to Separate a compound symbol from a preceding identifier or a succeeding
letter or digit. Thus the delimiter space is forbidden inside a delimiter,
but the symbol ' ' may be used instead. The delimiters 'goto'! and
boolean' may not be written as 'go to' and 1Boolean'. Algol 6 =adds the

following delimiters to the reference:

abs entier field of zone
add extend long or
and external message round

case extract mod shift

2=k BASIC SYMBOLS

Other delimiters differing from the reference are shown in the following
tables '

Algol 60 Algol 6 | Algol 60 Algol 6 | Algol 60 Algol 6
X ' N X% -=- - o ’
+ // - = o »
A *% vV ! or %) [] 0
< <= A & and *) . <> +)
> >= = - &> +)
+ <

%) 2 alternative representatioﬁs are allowed. .
+) The first is used for text strings, the second for layout strings.

The delimiter 'message! is syntactically equivalent with 'comment', but
it may cause a listing of the comment at translation time (see app. B).

The delimiter '.' (point) is used to denote a field reference as well
as a decimal point (see 3.1.1).

2.4, Identifiers

Space and New Line are not allowed inside an identifier, but the sym-

bol ' ' may be used, ,
The words for compound symbols (see 2.2,1, and 2.3) can never be used

as identifiers.,

Examples:
goto go to Both are interpreted as the delimiter
- ?go‘bo' .)
go to An erroneous construction consisting of
two identifiers.
13do aT:= The number 13, the delimiter ‘'do', the
identifier a7, and the delimiter :=
begin of line ¢ = An erroneous construction consisting of
- the delimiter 'begin', the identifier ‘'of-
line', the delimiter : and the delimiter =
2,k4.3,

Tlgol 6 adds field variables, zones and zone arrays.

2.5. NUMBERS

Algol 6 numbers differ from Algol 60 in distinguishing between two
types of integers and that the number range is limited.

2.5.4. Types

Tntegers are either of type integer or of type long, depending on
the value. All other representable numbers are of type real.

BASIC SYMBOLS 0.5

2.5:5, Integer and long literals
Integers and longs may not exceed the interval

-140 737 488 355 327 <= integer <= 140 737 4BB 355 327,
If the literal is within the interval
-8 388 607 <= integer <= 8 388 607

it is classified as being of type integer, Outside +this interval it is
classified as being of type long (cf. section 3.3.4).

2,5.0. Real literals

Mhe real may not have more than 14 significant digits or 14 deci-
mals. The exponent part may not exceed <the interval -1000 < exponent <
102?é ghe total number is confined to the range =1.6'616 < number <
1.6'616, - -

The number is converted +o internal binary form wusing the same
methods as the procedures read and readall. The relative error of the re-
sult is about 3'-=11.

2.6, Strings

<string literal> ::= <text string>|<layout string>
<text string> ::=
<:<any sequence of text symbols not containing ':>' or '<:'>:>

Layout strings are described in 9.78, write. A text symbol is a character
belonging to the classes basic, graphic, or in text (see 2.0.1) or it is
a positive integer of at most 3 digits enclosed in < >, The latter con-
struction has precedence over the character by character interpretation,
and represents the character with the integer as internal value. The value
mist obey O < value < 128, Notice that 'nested' strings are not allowed.
The general string concept is described in 3.6.

Examples
<sa<b <QoO>>dAi> will be printed by a running program as
a<b c>d
<< =d.ddd'+da> is a layout string.

2.7+ Quantities, kinds and scopes

Algol 6 adds three kinds of quantities: zone, 2zone array, and field
variable.

2.8. Values and types

The value of a zone is a set of values called the zone descriptor,
plus a set of values in the zone buffer area, plus a set of values called
the share descriptors (see 5.5).

2-6 BASIC SYMBOLS

The value of a zone array 1s +the set of values of the corresponding
subscripted zones,

Algol 6 distinguishes between L4 types: integer, long, real and boo-
lean,

A field variable possesses an Integer value, but has an associated
type denoting the type of a field. A fleld is either:a variable field or
an array field. Fields are subsets of arrays or zones, Variable fields
possess a single value, Array fields are one dimensional arrays.

EXPRESSIONS 3=1

D EXPRESSIGNS

Algol 6 adds string expressions and zone exﬁressions to the refe-
rence language. The full definition becomes: '

<expression> ::= <arithmetic expression>|<boolean expression>|

<designational expression>| :
<string expression>|<zone expression>

3.1. Varisbles and fields

Algol 6 adds record varisbles, field varisbles, and fields to the
reference language

3.1e1. Syntax
Tote that [] is replaced by ().
The full Syntax becomes:

<variable identifier> ::= <identifier>
<simple variable> ::= <variable identifier>
<simple field variable> ::i= <ddentifler>
<arrsy field variable> ::= <identifier>
<field variable> ::= <simple field variable>|
<array field variable>
<subscript expression> ::= <arithmetic expression>
<subscript 1list> ::= <subscript expression>| ‘
<subscript list>,<subscript expression>
<array identifier> ::= <ddentifier> .
<zone identifier> 3:= <identifier>
<zone array identifier> ::= <identifier>
<zone expression> ::= <zone identifier>| N
<zone array identifier>(<subscript expression>)
<field base> ::= <array identifier>|<zone expression>|
<array field>
<array field> ::= <field base>.<array field variable>
<varisble field> ::= <field base>.<simple field variable>
<record varisble> ::= <zone identifier>(<subscript expression>) |
<zone array identifier>(<subscript expression>,
<subscript expression>)
<subscripted variable> ::= <array identifier>(<subscript list>) |
<array field>(<subscript expression>)
<varisble> ::= <simple variable>|<varisble field>|
<subscripted variable>|<record variable>|<field variable>
<field reference> ::= <array field>|<varisble field> :
<field> ::= <field reference>

3.1.2. Examples
See 0.22 with subsections and 9.79.

3.1.3. Semantics (of record variables and fields) v
Record variables designate values which are components of - zone buf-
fer areas. The subscript expressions are evaluated like subscripts of or-
dinary subscripted variables. .
Tn case of @ zone array with subscripts, the first subscript expres-
sion selects a zone from the zone array., This subscript must obey

3-2 EXPRESSIONS
1< subseript < number of zones declared in the array.

The last subscript selects a variable within the zone record, which
in turn is a set of consecutive variables cf the selected =zone buffer
area. This subscript must obey

1 < subscript < mumber of variables currently in the record.

When an expression is assigned tc a record varisble, the location
(see 4,2,3) of the selected buffer element is not influenced by possible
changes of the record caused by procedure calls in the right hand expres-
sion. = - =
Fields are subsets of arrays or zones, A field consists of a number
of bytes (see 3.1.6) located within an array or a zone. The type of a
field is defined in the declaration of the field variable (ef. section
5.7. Field declarations).

3.1.4. Subseripts (to array fields)

3olelteSe

array field is always considered one dimensional. The ordering
of the bytes in the field base and in the array field follows the lexico-
graphical ordering (cf. 5.2.6. Lexicographical ordering). The subscript
bounds are defined by means of the byte bounds (cf. 5.2,7). The byte
bounds for the array field are obtained by subtracting the wvalue of the
array field variable from the byte bounds of the fleld base (possibly an
array field). An element must be located within the field base.

3.1s5. Type of record variables and field variables
K Tecord variaple is of type real.
A field variable is of type integer.

3,1.6, Ranges of values. Type length. Binary patterns

~Depending on the type, each variable is represented by an integral
number of bytes. Each byte is of 12 bits. The number of bytes represen-
ting a variable is called the type length. The type length may some times
be expressed in bits,.

3.1.6.1. Booleans are represented as 12 bits quantities, The type length
oT 2 boolean varisble is 1 byte. The binary pattern of a boolean is exten-
ded with zeroes to the left whenever needed., The last of the 12 bits is O
when the boolean is false, 1 when it is true.

The logical constants ‘'true' and ‘false' and the result of applying
the relational operators will always be 12 zeroces for false, 12 ones for
true, Other binary patterns may be obtained by applying the operators add
and shift. The 5 loglcal operators work on all 12 bits in parallel,

3.1.6.2, Integers are represented in 2l-bits, 2's complement, binary form.
This glves the range:
-8 388 608 <= integer <= 8 388 607.

The type length of an integer variable is 2 bytes, and the binary
pattern of an integer is the 2L pits of its representation extended with
zeroces to the left whenever needed. The binary patterns are used in con-
nection with the operators add, extract, and shift.

3,1.6.3. LOngs are represented in 48 bits, 2's complement, binary form.
e range O ongs should be confined to:
-140 737 U8B 355 327 <= long <= 1ho 757 488 355 327,
The .type length of a long variable is L' bytes, and the binary pat-
tern of a long is the U8 bits of its representation. The binary patterns
are used in connection with the operators add, extract, and shift.

EXPRESSIONS 3=3

3,1.6.14, Reals are represented as 48-bits built-in floating point numbers.
This gives the following range of non-zero real values: o
1.,6'-617 < abs(real) < 1.6'616

The precision of real values correspond to 35 significant blts., Thus one
unit added to the last binasry place will correspond to a relative change
of the number of between 6'-11 and 3'=11, :

The type length of a real variable is L bytes. The 3 first bytes are
used for the number part and the last byte for the exponent part of the
real. : ¥

The binary pattern of a real consists of a. 36-bits, 2's complement,
number part followed by a 12-bits, 2's complement, exponent part so that
the real value is:
nunber*2¥¥exponent,

The number is either O or in the range -1 < number < -0,5, 0.5 < number
< 1. The exponent is in the range -2048 < exponent < 2047, The exponent of
0.0 is -2048, but other exponents might Pe obtained by the operator ‘add'.

If r is a floating point zero with an exponent < -2048, the rela-
tion r = 0 will be false because the operands are compared bit by bit. The
relations r < 0 or r > O will both be true, however., Operations like r + b
cannot be expected to give b (see ref., U4).

3.,1.7. Reals used as semi-long integers o

AS There 1S neither pullt-in long multiplication nor built-in long
division, programs using many of these operations on large integers may
be speeded up a little by representing them as real variables.
This can be done with full accuracy as long as all results are kept in
the range b

~2%%35 = 34 359 738 368 < real < 34 359 738 367 = 2%¥35 - 1
If the results exceeds this range, The lasT bits of the semi-long integer
are lost. - St

A kind of integer division may be obtained by a ‘real division fol-
lowed by a cut-off of decimals caused by the addition of a large constant.
For results in the range O < result < 2%¥34, this 1s done as follows:

roundconstants= 2%x3k; - :
 result:= r1/r2 + roundconstant - roundconstants

Safety against loss of accuracy may be obtained by ‘scaling the semi-
long integers so that loss of accuracy will cause a floating point over-
flow. The scale factor f 18 chosen so that £¥2%%35-= 2x%x2048 and fx(-2%x
35) = -2x%2048, This is fulfilled by f = 2%*2013. Addition and miltipli-
cation with check for loss of accuracy may be performed like this:
r1s= 11*f; r2:= 12xf3
rl + r2 r1/f¥r2

3.1.8, Fields
TTelds are subsets of arrays and zone records, A field variable is a

pointer indicating a field within an array, a 2zone record, or an array
field. The type of the field depends only of a type declared together with
the field varisble (ef. section 5.7. Field declarations). All the bytes of
a varigble field must be located within the fileld base.

3,2, Function designators

30201 ° Sy‘.n‘tao}i
The syntax is changed slightly. See 4,7, procedure statements.

3,2.4, Standard functions o | -
M stondard Tunctions abs and entier are replaced by operators of
the same name (see 3.3). This implies that variables with the name abs or

entier cannot be declared, and that abs or entier camnot be used as an ac-
tual parameter specified as real procedure or integer procedure.

3=k EXPRESSIONS

The numericel standard functions of algol 6 are listed below. They
are described in detail in chapter 9. KE 4

arcsin - cos random sin

arctan exp sgn sinh

arg In sign - sqrt

362.5+ Transfer functions . : :

Tntier 18 replaced by an operator (see 3.2,4), and the operators
round, extract, extend, add, real, long, and string take care of other
type transfers. 3 ; : : :

3.%s Arithmetic expressions

30591.. Smtax ¥ 8 : g ‘
Klgol 6 adds the operators mod, shift, add, extract, abs, entier,

round, real, long, and case to the reference language. The full syntax
becomes: ‘ . '

<adding operator> :i:i= +|-
<multiplying operator> ::= *|/|//|mod
<pattern operator> ::= shift|add|extract ‘
 <monadie operator> ::i= abs |entier |round |extend |real|long
<primary> ::= <unsigned mumber>|<varisble>|<function designator>|
 (<arithmetic expression>) |
<monadic operator><primary>|real <string primary>|
long <string primsry> ' ‘
<factor> t:= <primary>|<factor>**<primary>|
<factor><pattern operator><primary>|
- .. <boolean basic> extract <primary>
<term> ::= <factor>|<term><multiplying operator><factor>
<simple arithmetic expression> ::= <term>|: B
<adding opera'tor><term>| R
<simple arithmetic expression><adding operator><term>
<if clause> ::= if <boolean expression> then:)
<case clause> ::= case <arithmetic expression>of
<arithmetic expression list> ::= <arithmetic expression>|
<arithmetic expression list>,<arithmetic expression>
<arithmetic expression> ::= <simple arithmetic expression>|
<if clause><simple arithmetic expression> else
<arithmetic expression>|
<case clause>(<arithmetic expression 1list>)

34342, Examples
Primaries:
long(if b then <:abc:> else <<dd.d0>)
abs round ra(i) -
entier cos(y+z)

Factors:
round r shift (-6) add j
(a2 < b) extract 1 '

Arithmetic expressions:. - ; ‘
case i+j of(1 mod j,1f b then r#xj else i,case i of(J))

if b then (case i of(J,r)) else case i of (1,5)

EXPRESSIONS Al

36300 Seman'bics
The semantics of the new operators - are given in chapter 9. Field
variables used outside field references are handled as varlables of type

integer,

3.3.4, Operators and types

Mhe types of the new operators are given in chapter 9. :

The result of applying ** is always of type real, even 1if Dboth ope-
rands are of type integer or long.

The operators +, -, and * yileld an integer value 1if both the ope-
rands are of integer type, a real value if at least one is of real type,
and a long value otherwise,

The operator / always yields a real value.

The operators // and mod are defined for two operands of type inte-
ger or long, They yleld an integer value if both operands are integer and

a long value otherwise,
The result of
<if clause><simple arithmetic expression> else
<grithmetic expression> : :
is of type integer if both expressions are of type integer, of type real
if at least one expression is of type real, and of type long otherwise,
The result of
<case clause>(<arithmetic expression 1ist>) .
is of type integer if all expressions in the list are of type integer, of
type real if at least one expression is of type real, and of <type long
otherwise. .

3.3.5. Precedence of operators s

Tunction calls 1n an expression may cause ‘'side-effects', but the
result will correspond to a strict left to right evaluation of the ex-
pression, so that side-effects only may influence variables to the right
of the function call, ' ,

According to the syntax given in section 3.3.1 the following rules
of precedence hold:

first: abs entier real round long extend
second: ** add extract shift

third: / // mod

fourth: + -

3.6.6. Arithmetic of real, long, and integer guantities

Mhe operations + - ¥] #% (Ior integer or long exponents) are per-
formed by the built in floating point operations whenever the result is of
type real, and by the fixed point operations whenever the result is of
type integer. Whenever the result is of type long + and - are performed by
the built in double length operation, whereas the operation * is performed
by a subroutine.

The operations // and mod are performed by the bullt in fixed point
division whenever the result is of type integer, and by a subroutine
whenever the result is of type long. .

When necessary integer operands are floated by means of the built in
float operation or converted tc = lorge by extension of the sign. Conver-
sion of operands of type long to type real is performed by a subroutine,

The range of values of type real and integer is given in 3.1.6. The
action when the range of reals is exceeded, 18 controlled at run time by
mesns of the two standard integer variables . loverflows! ‘and ‘'underflows’
(see chapter 9). The action when the range of integers or longs is excee-
ded, is determined at translatiorn time by means of the translation para-

meter 'spill' (see 5.4 and app. B).

3.6 EXPRESSIONS

The precision of real arithmetic may be decreased from 36 bits to 33
bits, This option is controlled at run time by means of the procedure
'system'. ‘The results of the numerical standard functions are distorted
correspondingly when the low precision 1s selected, '

3,4, Boolean expressions

30"".1 . Synta.x) ’ ’
Klgol b adds the operators case, add, and shift to the reference

language. The full syntax becomes:

<relational operator> ::= <|<=|=[>=|>]|<>
<and> ::= and|& ‘
<or> ::= or|!
<relation> ::= <simple arithme=tic expression>
<relational opsrator><simple arithmetic expression>
<boolean pattern operator> ::= add|shift
<hoolean basic> ::= <logical value>|<variable>|
<function designator>| -
<hoolean basic><boolean pattern opsrator><primary>|
(<boolean expression>)
<boolean primary> ::= <boolean basic>|<relation>
<boolean secondary> ::= <poolean primary>|
-,<boolean primary>
<boolean factor> ::= <boolean secondary>|
<boolean factor<and><boolean secondary>
<boolean term> ::= <boolean factor>|
<Hoolean term><or><boolean factor>
<implication> ::= <boolean term>|
<implication>=><boolean term>
<simple boolean> ::= <<implication>|
<simple boolean>==<implication>
<boolean expression list> ::= <boolean expression>|
<boolean expression list>,<boolean expression>
<voolean expression> ::= <simple boolean>|
<if clause><simple boolean> else <boolean expression>|
<cass clausa>{<boolean expression list>)

5-""020 Example

if b add 1 shift 3 then (cass i of(true,b or c) else
case j of((u=v) shift 1,false)

3.4,3, Semantics
= semantics of the new operators are given in chapter 9.

3.4, Types

Me Types of the new operators are glven in chapter 9.

3,4,6, Precedence of operators :
The priority of add and extract is the priority of xx, i,es higher

than the relational operators.

3.4,7. Arithmetic of boolean quantities
“The representatlon oF booleans and some rules for boolean arithmetic
1s given in 3.1.6. Here, we add the rules for the relational operators:

EXPRESSICNS 3.7

< <= >= > gre in most cases executed as a subtraction (floating
point or fixed point) of the two operends, Thus, you
mist be prepared for overflow, underflow, or spill.

= and <> are always performed as a bit by bit comparison of the
two operands, This may for instance be utilised to
compare +two ‘text strings packed into real variables
without riskt of overflow (see exampls 3 of 9.41).

3.,5. Deslgnational expressions cemmonim Xnown as LABELS

3:5410 Syntax
Tntegers are not permitted as labels. The designational expressions

sre extended with case comstructions as deseribed in 9.8,

%,5,6, Switch versus case statement
SiTcones are implemented Tully in algol 6, but we recommend the use
of case statements (see 9.8) instead of 'goto sw(i)', Case statements are

much faster and may glve a clearer program.

3.6, String expressions

3,601, Syntax

<formal string> ::= <identifier>

<string primary> ::= <formal string>|<string literal>|
string <arithmetic expression>|(<string expression>) |
<string primary> add <primary> ,

<string expression 1list> ::= <string expression>|
<string expression list>,<string expression>

<string expression> ::= <string primary>|
<if claise><string primary> else <string expression>|
<case clause>(<string expression list>)

3,6,2, Examples

if b then <:oki> else <terror:>
case 1 of (<:first:>,<:second>,string ra(increase(j)))
if b then (case 1 of (string r,fs))

else case i of(<:ab:>,<<d.dd>)

3,6.%, Semantics
K 5tring expression is a rule for computing a string value, The

principles of evaluation are analogous to the evaluation of an arithmetic
expression. The semantics of the operator 'string' are given in 9.70 and
of 'add! in 9.2. _

String expressions are used as actual parameters and as arguments of
the operator 'real' (s=e 9.55).

The valus of a string expression is

a short text string (st most 5 characters, for example
<:abcde:>)

a long text string (2 literal text string of more than 5
characters, for example <:result:>),

a layout string éfor example <<dd.dd'+d>), or

a text portion 6 characters none of which are Nulls,

This cannot occur as a literal text,
but may be obtained by the operators
'string' or ‘'add', for example
<:abcde:>add 92).

3.8 EXPRESSIONS

When a standard procedure references a string parameter and obtains
s text portion as the result, it will accept these 6 characters as the
first part of the string and reference the parameter again and again to
obtain the next text portions, When a short or a long text string is ob-
tained, the string end is met, This rule implies that the string parameter
mst have side-effecys to supply new text portions when it is referenced
repeatedly. The standard procedure 'increase' assists you with this task
as explained in example 2 of 9.70.

3,6.4, Types T ;
The argument of the operator 'string' must be of type real or long.
A formal string must be a formal parameter specified as string.

5,6,5, Binary pattern = |
: The binary pattern of a string value is 48 bits with the valnes given

belOWo

Text portion and short text string

— e chatacters of the text. string (omitting the string quotes) are
represented as their internal value (see 2.0.1) and packed as 8-bit bytes
frqp left to right. The 48 bits are filled up to the right with zeroes.

Long text string

The Llast 24 bits contain a one followed by some undefined bits, The
first 24 bits contain segm shift 12 add rel. The characters of the text
string are stored as *%ext portions on the backlng storage area which is
occupied by the algol program. Tae first text portion representing the
first 6 characters 1is found on segment 'segm' word rel</2-1 and rel//2
(the 256 words of a segment are numbered O, 1, 2, o..). The next text
portions are found in word rel//2-3 and rel//2-2 and so on, until U8 bits
representing a new long text string are found or until 48 bits represen-
ting a 'short text string are found., The first possibility specifies the
continuation of the string on a mnew segment, the latter possibility sig-

nals the string end.

Layout string
e Tst 24 bits represent the spaces of the layout as follows:

First, a 1 followed by a 1 for ecach leading space of the layout. Second,
one 0. The following bits correspond to the digit positions of the number
part (z, £, d, and 0)s A bit is 1 if the corresponding digit position is
followed by a space, otherwise O.

The last 24 bits contain:

bit O 0 :
bit 1- 5 b = number of significant digits (z, b, f, and d).
bit 6- 9 h = number of digit positions before the point.
pit 10-13 d = nunmber of digit positions after the point.

bit 14-15 pn= first letter of number part (z=10, =01, d=00, b=11).
bit 16=17 fn= sign of number part (+ =10, - =01, no sign = 00).
bit 18-19 s = number of digits in exponent.

bit 20-21 pe= first letter of exponent part (z=10, f=01, d=00) .
pit 22-23 fe= sign of exponent part coded as fn.

EXPRESSIONS 3.9

3.7+ Zone expressions

5.7-1 . Syntax

<zone identifier> ::= <identifier>
<zone srray identifier> :i= <identifier>
<zone expression> ::= <zone identifier>|
<zone array identifier>(<arithmetic expression>)

507020 E}Camples
in polyfase(output) polyfase(input(i))

3,T¢3. Semantics

The value of a zone expression is a zone. Zone expressions are us=d
as actual parameters,

The arithmetic expression is evaluated as a subscript expression. It
selects a zone from the zone array. The subscript must obey

1 < subscript < number of zones declared in the array.

STATEMENTS b1

L, STATEMENTS

4,1.1. Syntax _
KIgol © adds the case statements described in 9.8, The definition of

a statement becomes:

<statement> ::= <unconditional statement>|
<conditional statement>|<for statement>|
<case statement>

A procedure may be translated alone, and everything until the first
begin or external is skipped, so the definition of a program becomes:

<program> ::= <block>|<unlabelled compound>|
external <procedure declaration>; end

4,2, Assignment statements

Lh,2.3, Semantics

Note That varisbles are extended with record variables, variable
fields and field varisbles (see 3.1). The location of a zone buffer ele-
ment designated by a record variable 1s not influenced by expressions to
the right of the record varisble, even 1f these change the position of
the record within the zone buffer., Note +the reformulation of L,2,3,1 and
4.2,3.3, The location of a variable is an absolute address in the RC L4000,

4,2.3.1. The locations of all variables, including subseripted variables,
Tecord variables, and variable fields, occurring in +the 1left part are
evaluated from left to right.

(4.2.3.,2, The expression of the statement is evaluated.)

4,2,3.3, The value of the expression is assigned to all the left part
Yeriaples with locations as evaluated in step 4,2,3,1 in sequence from
right to left.

4,24, Types
e1d variasbles may be used as variables of type integer.

Long is considered as a new arithmetic type. Conversion procedures
exist between all three types. The conversion of a real value to an inte-
ger or long and the conversion from a long value to an integer are per-
formed so that spill alarm (see appendix B) may occur.,

4.6, For statements

LI-.6.1. S.y—-rl.tax
Only @ eimple variable or a field varisble can occur as the con-

trolled variable of a for statement.

4.6.4,2. Step-until-element
To The Tollowlng algorithm, localB is an anonymous varisble, while

A, B, and C represent the expressions of A step B until C. V 1is the con-
trolled variable., The step-until-element is executed in this way:

Lo STATEMENTS

Ve= Ay localB:i= Bj
L1: if (V=C)*localB > 0 then goto Element exhausteds
Statement S; -
localB:= By V:= V + localB;
goto L13 ;

4.6.5. The value of the controlled variable upon exit

Upon exit Trom a Tor statement, the value of the controlled varisble
is defined by the algorithm in 4.6.4.2 sbove and in 4.6.4.1 and L4.6.4.3 of
the Revised Report (ref. 3).

4.6.6, Goto leading imto a for statement ‘
K1y occurrence outside a for stavement of a lsbel which lsbels a
statement inside the for statement is forbidden.

"L,7, Procedure statements

Ll'o7.1o Syn-bax o : S R
The expressions of algol 6 include string expressions, variable
fields, and zone expressions, which may occur as actual parameters. An

actual parameter is:

<actual parameter> ::= <zone array identifier>|
<expression>|<array identifier>|<array field>
<switch identifier>|<procedure identifier>

The 'fat comma' defined by)<1et£er string>:(. may not contain compound
synibols. '

4.,7.2, Examples

clear(a)begin of clearing:(i) end of clearing:(J)

I.7.3. Semantics of zone expressions, array fields and field variables
The zone ol a zone expression is always evaluated before the proce-

dure is entered.
An array field is evaluated before the procedure is entered. The

evaluation is made like this:

a) The bound bytes are computed as shown in section 5.7.5.
b) The lower bound byte is adjusted relative to the value found

above. The adjustment is made as follows:

lower bound byte:= (lower bound byte - 1)//type_lengthx
Type_length + if lower bound byte <= 1 then 1
else typelength + 1 " :

c) A description of a one-dimensional array of the resulting
type and with these bound bytes 1s set up local to the pro-

cedure,
If the procedure uses this array as an actual array fileld

parameter in subsequent procedure calls, this cutting may be
performed again. Thus, from a certain step, the bytes of an
array may be unaccessible from the procedures, if the values
of the array field variables are not chosen appropriately.

STATEMENTS L.3

A parameter specified as a field variable may correspond to an ac-
tual parameter of type integer., A <field variable as an actual parameter
behaves as a variable of type integer.

4.7.5. Restrictions

K value parameter specified as type integer or type real may corre-
spond to an actual parameter of type real or integer, Value arrays and va-
lue labels are not allowed (see 5.1).

A formal parameter specified as real array may actually be a zone
expression, In this case, the array elements are that part of the zone
buffer which is selected as the zone record at the moment of the call.

In all other cases, the compiler requires a strict agreement between
specification and actual kind and type (see however 4,7.5.3). All parame-
ters in algol procedures must be specified,

4474502,

Ormal name parameter which occurs as a left part variable in an
assignment statement within the procedure, may actually be an expression
which is not a variasble (a constant for instance)., In this case, the as-
signment takes place to a fictious variable, If such an actual parameter
is a constant, the future value will be taken from this fictious variable,
and if it is an expression, the assignment disappears into thin air.

L|‘o705 95-

actual paremeter which is an array identifier can only correspond
to a formal array parsmeter with the same number of subscripts or with
one subscript. In the latter case, the lexicographical ordering of the
array elements is used as explained in 5.2, An array field is considered
as & one-dimensional array (see 4.7.3).

4.7.9. Recursive procedures

Reoursive procedures are handled fully in algol 6, note however the
possible 'cutting' of array parameters which are actually array fields, If
o varisble is declared 'own' in a procedure body and the procedure is
called recursively, the same own variable is used in all the dynamic
incarnations of the procedure. An application of this is shown in example

3 of 6.3.b4,

B

DECLARATIONS 5.1

5+ DECLARATIONS

Algol 6 adds the declarations of field varlables, long variables and
arrays, zones, and zone arrays. All programs may be thought of as surroun=
ded by one common block (the standard identifier block). The declarations
of this block are given in the backing storage catalog of the RC L000.
New procedure declarations are inserted in this block when external pro=
cedures are translated (see 9.20) . Procedures expressed in machine lan-
guage, simple varisbles, and zones may be inserted in the standard identi-
fier block as described in ref. 10.

Initial values, owns

Unly simple varisbles may be declared own in Algol 6. Own booleans
are initially false, own integers are initially O, and the binary pattern
of own reals and longs is initially O. All other variables have undefined
contents just after their declaration (for zones, see 9.79).

For owns and recursive procedures, see 4.7.9.

5.1, Type declarations

5.10.10 Syntax
K new type, long, is introduced. The syntax for type becomes:

<type> ::= real|long|integer|boolean

50103« Semantics

The range and representation of variables are given in 3.1

In arithmetic expressions, any position which can be occupied by an
integer or a real declared variable may be occupied by a long declared

variable,

5.2. Array declarations

5.2.1, Syntax
Own arrays are not allowed. Note that long is a new type,

5.2.4, Lower and upper bounds
NoTe That ot lesst one element must be declared in an array and that

all identifiers in the bounds must be non-local.

5.2,6. Lexicographical ordering
= elements of an array are stored in a sequence, and a multi-di-
mensional array declared
Am(Lowsupl,10W2:Up2, « + + , LOWN :UpPN)

may in certain connections (specified in 5.2.6.1 and 5.2.6,2) be consi-
dered as a one-dimensional array

Ao(low:up) .

Whenever the mapping of Am on Ao makes sensé, the elemment

Am(i1,12,000,1n)

5=2 DECLARATIONS
may be found as
A0(000 ((11%C2412) ¥C3+13) %4 0 o+in)
where
e2 =up2 - low2 + 1, ¢3 = up> - low> + 1, and so on,

. This mapping of the elements 1is called the lexicographical ordering
because it is a linear ordering of the elements obtained by varying the
first subscripts at the slowest rate. ‘

The values of low and up may be seen to be:

low
up

.on(§11*02 + 12)*05 + 15)* sao T ln
coo((ul*e2 + u2)%c3 + u3)* cus + un

It may.also be seen that the (possibly fictive) element
Am(0,0,.44,0) is the same as A0(0).

5.206e1, Multi-dimensional array as actual parameter

T miltl-dimensional array may occur as an actual parameter where the
corresponding formal is a one dimensional array. The mapping sbove is
used in that case.

5.2.6.2, Multi-dimensional array as field base

Whenever a multi-dimensional array 1s used in a fileld reference as
the (ultimate) field base, the byte nunbering and addressing described in
5.2.7 and 5.2.,8 is found by mepping the multi-dimensional field base on a
one-dimensional field base according to the rules above.

5.2.T. Bound bytes and byte numbering

Tach element of an array is represented by a number of bytes. This
number is the type length explained in section 3.1.6.

The first byte in an array 1s called the lower bound byte and the
last one the upper bound byte. Let an array be declared

A(lowsup)
then
(low - 1)*type length + 1
up*type length.

lower bound byte
upper bound byte

The bytes of an array are numbered relative to the rightmost byte in
the (possibly fictive) element A(0). The element A(1) contains the bytes

(3 - 1)*type length + 1 <= byte number <= ix type length.

5.2.,8., Word boundaries and addresses

When an array is declared, 1t 1s created so that the word boundaries
are between an even numbered.byte and its odd numbered successor,

An array element, A(i), is addressed within the array by the byte

with the number i*type length.

5.4, Procedure declarations

5.4.1. Syntax
Mhe set of possible speeifiers is extended so that longs, fileld va-
riables, zones and zone arrays, may be specified and the syntax for speci-

fier becomes:

DECLARATIONS 5=3

<specifier> ::= string|<type>|array|<type> array|label|switch|
<procedure>|<type> procedurs|<type> field|
array field|<type> array fileld|zone|zone array

Note that long is a new type.

5.4.,5, Specifications

KIT parameters must be specified. Only parameters specified real,
long, integer, or boolean may occur in the value part.

An actual field variable may correspond to a formal integer and vice
versa. . i

An actual array field may correspond to a formal array of the same
type.

An actual zone may correspond to a formal real array.,

An actual real may correspond to a formal integer value and an actual
integer may correspond to a formal real value,

Except for these possibilities, the kind of an actual parameter must
correspond exactly to the kind and type of the specification,

5.4.,6, Code as procedure body

Procedures may be expressed in machine language and introduced into
the standard identifier block (see introduction to chapter 5) as it is
explained in ref, 10, :

Algol procedures may be translated alone (see 9,20),

5.5. Zone declarations

5¢5.1. Syntax

<length> ::= <arithmetic expression>

<shares> ::= <arithmetic expressior>

<block proc> ::= <procedure identifier>

<zone segment> :t= <zone identifier>(<length>,<shares>,<block proc>)|
<zone identifier>,<zone segment> '

<zone 1list> ::= <zone segment>|<zone list>,<zone segment>

<zone declaration> ::= zone <zone list>

5¢5.2. Examples,

zone master(2¥bl,2,stderror)
zone ml,m2(a,b,c),m3(900,3,pr)

5.5¢5. Semantics

K zone declaration declares one or several identifiers to represent
zones, The arithmetic expressions in +the declaration are evaluated once
for each entrance into the block. Each zone consists of:

a buffer area
a zone descriptor

one or more sSnhare descriptors (often just called shares)

Inside the block, a zone identifier may occur as an actual parameter, as
a constituent of a record varisble, or as a field base (cf. 3.1).

Buffer area
—Mhe Tength of the buffer area for sny zone is given by <length> in
the first parenthesis following the zone identifier,

Each element of the buffer area may be used as a real variable as
explained for zone record below., The elements are in some connections

identified by a byte number in the range 1 <= byte number <= Yxlength.

5.l DECLARATIONS

Zone descriptor , ‘ SR :

L zone descriptor consists of the following set of quantities, which
specify a process or a document (see ref, 1) comnected to the zone and
the state of this process:

process name A text string specifying the name of a pro-
cess or a document. B "
mode and kind An integer: specifying mode and kind for a do-

_cument (see 9.41, open).
. logical position A set of integers specifying the current po-
’ sition of a document. '

give up - An integer specifying . the conditions under
which <block proe> is to be called.

state An ! integer specifying +the Jlatest operation

DL : on the zone, . ‘

record Two integers specifying the part of the buf-
fer area nominated as the zone record,

used share . An integer specifying a share descriptor
within the zone.

last byte An integer specifying the end of 'a physical

block on a document,
block . procedure The procedure <block proc> in +the first pa-
renthesis following the zone identifiler,

The normal use of these quantities is explained in details in chapter 6.

Share descriptor

Tach zone contains the number of share descriptors given by <shares>
in the first parenthesis following the zone identifier. The share descrip-~
tors are numbered 1, 2, o.., <Shares>,

A share descriptor consists of a set of quantities: which describe an
external activity sharing a part of the buffer area with the running pro-
gram., An activity may be a parallel process transferring data between a
document and the buffer area, or it may be a child process executed in the
puffer area under supervisory control of the -algol program. Section 6.4
explains these possibilities. s

The set of quantities forming one share descriptor 1s:

share state An integer deseribing the kind of activity
going on in the shared area.
shared aresa Two integers specifying the part of the buf-

fer area shared with another process by means
of the share descriptor.

operation Specifies the latest operation performed by
means of the share descriptor.

Zone record e g i
Tumber of consecutive bytes of the buffer area may at run time be

nominated as the zone record. The bytes of the zone record may be avai-
1able as record variables, which may be thought of as a kind of real sub-

seripted variables. The record variables are numbered 1, 2, ..., <record
length> and referenced as described in J.l. All Dbytes of the record may
e referenced by means of field references, as the zone may be used as a

field base.

DECLARATIONS 5-5

5.564s Types
The two expressions <length> and <shares> must be of type integer.

The procedure <block proc> must be declared like this:

procedure <block proc> (z,s,b)$ zone z; integer s,bs

5.5.5. Scope
identifiers occurring in <length> and <shares> must be non-local
to the block. However, <bloc proc> may also be local,

At the time of exit from the block (through end, or by a goto state-
ment), the activities described by the share descriptors are terminated as
follows: A commmnication with a parallel process is completed by means of
the monitor function wait answer (see ref. 1). A running child process is
stopped (but not removed, see ref. 1). 5

5.5.6. Standard zones
Two zones, vin' and 'out', are available without declarations, They
are described in '9.28 and 9.k42,

5.6, Zone array declarations

5.641. Syntax

<zones> !i= <arithmetic expression>

<length> ::= <arithmetic expression>

<shares> ::= <arithmetic expression>

<block proc> ::= <procedure identifier>

<zone array list> ::= <zone array list>,<zone array list>|
<zone array identifier>(<zones>,<length>,<shares>,
<block proc>)

<zone array declaration> ::= zone array <zone array list>

506020 Exalnples
zone array inmerge(3,2%600,2,stderror) ,outmerge(3,2%600,2,stderror)

5.6.3. Semantics

K zone array declaration declares one or more identifiers to repre-
sent one-dimensional arrays of =zones. The arithmetic expressions in the
declarstion are evaluated once for each entrance into the block. Fach
zone -array consists of as many zones as specified by <zones>. All these
zones are declared with <length>, <shares>, and <block proc> as specified
(cf. section 5.5). The zones of a ozone array are numbered 1, 2, e,
<zones>, . :
Inside a block, a zone array identifier may occur as an actual para-
meter, as a constituent of a subscripted zone occurring as a parameter
(cf. 3.7), or as a constituent of a record variable (efs 3.1)

5.6.4, Types
ZonesS must be of type integer. See section 5.5.4t for <length>,

<shares>, and <block proc>.

5.6.5. Scope
TIT 1dentifiers occurring in <zones> must be non-local to the block.
See section 5.5.5 for <length>, <shares>, <block proc>, and the exit from

the block,

5-6 DECLARATIONS

5.7. Fleld declarations

507+1« Syntax

<field list> ::= <field variable>|<field variable>,<field list>
<variable field declaration> ::= <type> field <field list>
<array field declaration> ::= <type> array field <field list>|
array field <field list>
<field declaration> ::= <variable field declaration>|
<array field declaration>

Note that long is a new type.

507.20 EXampleS
See 9,22 and subsections.

5.7.3%. Semantics

T Tield declaration serves to declare one or several identifiers as
field variables. Field variables are integers and may be used whereever
an integer variable may be used.

A varigble field declaration declares simple field variables and an
array field declaration declares array field variables. The type declared
together with the field variables, the associated type, has no meaning

outside field references.
All field varisbles declared in one declaration have the same asso-

ciated type. If no type declarator is given in an array field declaration
the type real is understood.

5.7.4, Location of a varisble field .

K variable Tield 1s located within an array, a 2zone record, Or an
array field. The denotation of a variable field is shown in section 3.1,
The variable field consists of as many bytes as the type length of the
assoclated type shows. A variable field camnot occupy bytes outside the
bound bytes (cf. section 5.2.7 and section 3.1.4.3).

The location of a varisble field is determined by a byte number equal
to the value of the simple field variable, This byte number 1is used as an
address of the field. Boolean fields are addressed by thelr byte number.
Integer, long, and real fields are synchronized with the word boundaries
(cf. section 5.2.8) of the RC 4000. Integer fields are addressed by one of
the 2 bytes forming the integer word., Long and real fields are addressed
by one of the 2 bytes in the right hand word. The address must be >= lower
bound byte + type length - 1 and it must be <= upper bound byte.

5.7.5. Location and bounds of an array field

An array fie s located witnin the field base, The byte nunber re-
ferring to a certain piece of data in the array field is found by sub-
tracting the value of the array field variable from the corresponding byte
number in the field base. If +the field base is an array field, this rule
may be used recursively.

The bound byte numbers are given by the formula:

bound byte of array field =
bound byte of field base - value of array field varlable.

A subscripted element in an array field is addressed according to the
rale in section 5.2.8, The address of a subscripted element must be
>= lower bound byte + type length - 1 and it must be <= upper bound byte.

INPUT/OUTPUT SYSTEM 6=1

6. INPUT/OUTPUT SYSTEM

This chepter describes the wuse of zones for input/output and for
programming of operating systems, Detalls of the various procedures are
given in section 9. : ’

Iet us start with a typical example of output to a peripheral de=-
vice specified by the algol program: : '

begin zone pr(2%128,2,stderror);

comment declare a zone vwhich willl buffer the output. Two
buffers of 128 elements of 4 bytes each (or 12846 charac-
ters) are used here, The procedure stderror is called when
the device causes troubles

open(pr,4,<:b853:>,0) 3
comment specify the output device, here:
backing storage area bs533

write(pr,<:results::>,eee)lees
comment output the results;

close(pr,true)s
comment terminate the output, empty the bufferss

ends

Exactly the same scheme would work for character input if write(.o.) was
replaced by read(...). If the device is a magnetic tape, the tape must be
positioned before input or output can start. That is done by means of the
procedure setposition.

Input and output are buffered in RC 4000, In the example above, this
means that 128%6 characters sre packed in the zone buffer before they are
transferred to the backing storage. If you forget to close the zone, or
'if the run is +terminated with an alarm, the last buffer of characters is
never transferred to the device. When you output to the standard zone
‘out!, the File Processor will take care of printing the last buffer,
even if your program is terminated with an alarm. '

6.1. Documents

The high level procedures assume that all peripheral devices scan
documents. For instance, a document scanned by a paper tape reader is a
roll of paper +tape, a document scanned by a magnetic tape station is a
reel of magnetic tape. The documents are at run time addressed by names
appearing as text strings in algol.

A document may be thought of as a string of information, either a
string of 8-bit characters or a string of real variables éelemcnts)° The
string i1s on some documents broken into physical blocks (e.g. On maghe-
tic tapes and backing storage areas). The procedures for input/output on
character level and record level keep track of the current logical posi-
tion of +the document. The logical position points to the boundary be-
Tween two characters or two elements of the document. During normal se-
quential use of the document, the logical position moves along the docu-
ment corresponding to the calls of the input/output procedures.

6-2 INPUT/OUTPUT SYSTEM

For documents consisting of physical blocks, the logical position is
given by a position within the physical block, plus a block number, plus
(for magnetic tapes) a file number. Note that the block number 1s embi-
guous in ‘the case where the logical position points to the boundary be-
tween +two physical blocks., This ambiguity is resolved explicitly in the
description of the individual procedures: The term 'the logical position
is judst after or just before a certain jtem' 1mplies +that the block num-
ber is the block number of that item.

The following sections give a survey of some documents and the way
they transfer information to and from the zone buffer. The rules for pro-
tection of documents and further details are found in ref, 1, ref. 5, and
raf, 8, The kinds mentioned below are explained in section 9.&1, open.

6.1.1. Internal process (kind 0)

N internal process (another program executed at the same time as
your job) may receive or generate a document, If +the process just trans-
mits the information to or from a peripheral device, the rules below for
that device will hold for the communication with +the document +too. The
kind specified in ‘open' should then be the kind of the document.

The internal process may also handle the information in its own way,
and then no general rules can be given, but usually, the end of the docu-
ment is signalled as explained in section 6.3.3.

6.1.2. Backing storage (kind L)

e bac storage consists of a drum or a disc or both. You have
no dlrect access to the entire backing storage, but only to documents
which are backing storage areas consisting of a number of consecutive
segments. Fach sSegment contains 512 bytes (or 128 real variables). The
Segments are numbered O, 1, 2, .o within the area, and the block numbers
mentioned above are exactly these segments numbers, Flle numbers are
senseless,

One or more segments may be transferred directly as bit patterns to
or from the core store in one operation. The number of segments trans-
ferred is the maximum number that fits into the share used.

The physical backing storage may be a drum or a disc, Details about
the various types of devices may be found in ref. 8.

61430 Typewriter (kind 8)

K Typewriter may Dpe used both for input and output. The sequence of
characters input forms one document (infinitely long), and the sequence
of characters output forms another document. File number and block num-
ber are sensSeless on a typewriter.

One input operation transfers one line of characters (including the
terminating New Line character) to the share. If the share is too short,
less than a line is transferred, but that 1s an abnormal situation. The
characters are packed in IS0 T-bit form with 3 characters to one word,
and 1last word is filled wup with nulls, One output operation transfers
characters packed in the same form to the typewrlter. Several lines may

be output by one operation.

6.1.4, Paper tape reader (kind 10)

T Tocument consists of one roll of paper tape. It may be read in
various modes: with even parity, with odd parity, without parity, or with
transformstion from flexowriter code to IS0 code, File number and block
number are senseless for a paper tape.

One input operation will wusually £i1l +the share with characters
packed 3 per word, but fewer characters may also be transferred, for in-
stance at the tape end. In such cases, the last word is filled up with
null characters, The characters are not necessarily ISO characters, that

depends on the meaning you assign to them.
The RC 2000 tape reader can read about 2000 characters a second.

INPUT/OUTPUT SYSTEM 6-3

6.1.5. Paper tape punch (kind 12)

L document 18 Trom the programs point of view infinitely long, even
when the operator divides the output into more paper tapes. A paper tape
may be punched in various modes: with even parity, with odd parity, with-
out parity, or with transformation from IS0 code to flexowriter code.
File number and block number are senseless for a tape punch,

One output operation may punch any number of characters packed 3 per
word, In all modes, except the mode without parity, only the last T bits
of the characters are output and extended with a parity bit.

The RC 150 tape punch can punch about 150 characters a second.

6.1.6, Line printer (kind 1k)

% document 1S Trom the programs point of view infinitely long. File
number and block number are senseless on a printer,

One output operation may print any number of characters packed 5 per
word., The characters must be in ISO 7-bit code. '

A line printer can print 7 to 17 lines a second.

64147, Card reader (kind 16)

K document 1s one deck of cards. The card reader may read in various
modes as descibed in ref. 8.

One input operation will f£ill the share with an integral number of
cards,

Usually jobs let the operating system read all necessary card decks
before they are started. The cards may then be read as a normal IS0 text
stored on backing store (see ref. 7 for further details).

601,80 Magnetic tape (kind 18)
ocument 18 one reel ol tape. It consists of a sequence of files
separated by a single file mark. Each file consists of physical bIocks
possibly with variable lengths. The blocks may be input or output in even
or odd parity. The files and blocks are numbered O; 1, 2, ... as shown
in the figure,
One operation transfers one physical block to or from a share, If
an input block is longer than the share, only the first part of the block

is transferred,

A magnetic tape document:

logical position

load point <«=file 0 — tape mark <—file 1 -l'-—-b-tape mark end of
O 31 1|___ . 31 JL.__-_.. O tape
block 0 Dblock 1 eee block 0 Dblock 1 <o

Two kinds of tape stations exist: T-track stations where a block
consists of a sequence of 6-bit bytes; one word of the share is here
transferred as L 6-bit bytes., 9-track stations where a block consist of
a sequence of B8-bit bytes; one word of the share is here transferred as
3 8-bit bytes. This difference causes no trouble as long as the tapes are

written and read on RC 4000. But if you try to move a T-track tape to
another computer (or to an off-line converter), you should remember that

the read and write procedures of algol work with 8-bit characters packed
3 4o a word, which means that the physical 6-bit bytes on the tape have
a strange relation to the logical 8-bit characters, You may, however,
read or write 6-bit characters by means of the operators shift, add, ex-
tract and the procedures inrec6, outrect.

6-4 INPUT/OUTPUT SYSTEM

The share length you use for output to -a magnetic tape determines
the physical block length. As the blocks are separated by block gaps,
the share length has influence on the amount of informetion +the tape can
hold and also on the maximum transfer speeds With a density of 556 bpi
(bytes per inch), a Share length of 60 elements (240 bytes) will generate
blocks of about 3/4 inch (more or less depending on the kind of the sta-
tion). If the block gap is 3/4 inch, half of the tape is used for blocks
and half for block gaps. The data is transferred with 0.38 +times the
maximum tape speed, if block gaps take 1.6 the time of blocks of the same
length. If you used a share length of 600 elements (2400 bytes), 10/11 of
the tape would be used for data and the +transfer rate would be 0.86 of
the maximum possible.

Details on actual transfer rates and possible densities is found in
ref, 8 and the device manuals,

6+1.9. Devices without documents

Bome peripheral devices, for instence the clock, do not scan docu=
ments, and they cannot be handled by the high level zone procedures. How-
ever, the primitive input/output level may handle such devices too,

6.2, High level zone procedures

The following standard ldentifiers are known as the high level zone
procedures, because they work with a bullt in strategy for handling of
peripheral devices (see 6.3). This built in strategy tries to make the
documents appear as uniform as possible, For instance, the 'end of file'
and 'end of document' conditions are transformed into End of Medium cha-
racters, which are detected easily by the normal use of the read proce-

dures.

open (see 9.#1). Connects a document to the zone and divides the

buffer area into shares of equal size.

close (see 9,14) . Terminates the current use of a zone including
emptying of output buffers and possibly releasing of the
document.

setposition (see 9.58) . Terminates the current use of a zone including
emptying of output buffers, A magnetic tape or a backing
storage area is then positioned to the file and block spe-
cified. The positioning takes no time on a backing storage
area, but 1t may involve a lot of tape moving operations
for a magnetic tape.

getposition (see 9.23). Gets the file and block number corresponding
to the current logical position of the document.

read (see 9.51). Inputs a sequence of numbers given in character
form on a document,.

readchar (see 9.53) . Inputs one non-blind character from a document.

readstring (see 9.54). Inputs a text string given as characters on a
document. '

readall (see 9.52). Inputs a mixture of numbers, single characters,
and text strings from a document.

INPUT/OUTPUT SYSTEM 6-5

repeatchar (see 9.56). Makes the latest character read from the docu-
ment available for reading once more.

intable (see 9.32). Exchanges the current input alphabet with an
alphabet specified in the program,

tableindex (see 9.75). Used in connection with intasble to define the
alphabet,

write (see 9.78). Prints texts, numbers, and single characters on
a document,

inrech (see 9.31). Gets a sequence of bytes from a document and
makes them available as a zone record.

outrech (see 9,46), Creates a zone record with an initially unde-
fined content. The program may then assign values to the
record variables, and later the record will be output to
the document as a sequence of bytes,

swoprech (see 9.72). Gets a sequence of bytes from a backing sto-
rage area and maskes them available as a zone record. The
program may then modify the record, which later 1is trans-
ferred back to the backing storage area,

changerech (see 9.10) Regrets the former record and replaces it by a
new one. The function of changerec6 depends on which of the
procedures inrecH, outrecb, or swoprec6 was called most
lately, i.e. the use of the document,

inrec, outrec, swoprec, and changerec are the Algol 5 versions of inrec6H,
outrec6, swoprecb, and changerecb. They differ from the
latter in that the record length is measured in elements
of L bytes each.

invar (see 9.33). Gets a sequence of bytes from a document as
inrec6, but the number of bytes is given as the first word
in +the record. A check sum stored in the second word may -

be checked,

outvar (see 9.&8). Creates a zone record of a specified length
and stores data from an array or an other record. The length
is stored in the first word of the record. A checksum is
generated and stored in the second word of the record.

changevar (see 9.11). Changes the length of an existing record gene-
rated by means of outvar. The checksum is computed.

checkvar (see 9.13). Generates a checksum in an existing record.

The records generated by inrec6, outrec6, swoprec6, changerecO, and
the corresponding Algol 5 versions of +the same procedures are often re-
ferred to as fixed length records, although they may be of wvarying
length, The records generated by invar, outvar, and changevar are re=-
ferred to as var-records, and these procedures including the checkvar
are referred to the var-procedures., All 12 procedures are referred to as
the record handling procedures opposed to the character handling proce-
dures read, readchar, readstring, readall, repeatchar, write, outtext,

outchar, and outinteger.

6-6 INPUT/OUTPUT SYSTEM

Two stendar zones, 'in' (9.28) and ‘out' (9.42), exist. 'In' is
used for input on character level, 'out' is used for output by means of
write, The documents connected to in and out are determined when the run
starts. .

6.3. Buffering and checking

This section explains the algorithms used by +the high level =zone
procedures for buffering and checking of the information on a document.

6.3.1. Multishare input/output

The amount or information transferred to or from a share in one
operation is called a block. On a magnetic tape, a block is a physical
block or a tape mark, On a backing storage ared, a block is one or more
segments, On a paper tape reader, a block is usually one share of cha-
" racters. '

Input

= During input from a document via a zone with sh shares, the system
uses one of the shares for unpacking of information and the remaining
sh-1 shares for uncompleted input of later blocks., The following picture
shows the state of the blocks of the document,

In.pu.tz sh =3
llogical position physical position
begin of)\) et s ¥V 1 close were called

document completed transfers uncompleted transfers

Note +that when <the document is closed, the physical position of the do-
cument is far shead of the logical position. This is particularly impor-
tant at the end of magnetic tapes where the 'waved' blocks may be absent
and the tape then comes off the reel.

Cutput

— TDuring output to a document via a zone with sh shares, one share is
used for packing of information, and O to sh-1 of the remaining shares
are used for uncompleted output of previous blocks. The following picture
shows the state of the blocks in the output stream.

Output, sh =3

logical positionl physical position
begin of J 1) bt b~ Y. _ _Vif close were called
document completed transfers uncompleted transfers

for packing

Note that when the document is closed, the physical position is just after
the block corresponding to the logical position.

INPUT/CUTPUT SYSTEM 6-T

Swoprec -) . : :
e procedure swoprec utilizes the shares as follows: One share is
used for packing and unpacking of information. If sh > 1, another share
is used for uncompleted output. Remaining shares are used for uncompleted
input of later blocks. ”

Choice of sh

_ The advantage of the multishare input/output is that differences in
speed between ‘the program and the device may be smoothed to any degree.
The most frequent choice is between single or double buffer input/output.
The following rule of thumb may help you to choose in cases where you scan
a document sequentially:

th = time spent by the program with handling of the information in a block
td = time spent by the device with transfer of a block

td + th is the total time in single buffer mode (sh = 1)

max(td,th) is the total time in double buffer mode (sh = 2)

If th varies from block to block, the situation‘ is more complicated and
sh > 2 may pay.

The following rule of thumb concerns the sequential use of swoprec:

th + 2%td is the total time per block with sh = 1
max(th,td) + td is the total time per block with sh = 2
max(th,2*td) is the total time per block with sh =3

You should always use single buffering on printer, plotter, and
punch, except if you know for sure that your Job 18 1O stopped and
STarted by the operating system. The reason is +that an output operation
is terminated halfway when the job is stopped, but with sh > 1 the next
output operation is started before the first is'checked and output again.

You should always use single buffering for typewriter output, be=-
cause the operator at any moment may SLOp the output operation to send
a console message. : .

Message buffers occupied

—Tnput/output by means of sh shares occupies permsnently sh-1 of the
message buffers availsble for the job (see ref. 1). From the moment set-
position has been called for a magnetic tape and until the first input/
output operation is performed, one message buffer 1s occupied (even when

sh =1).

6,342, Algorithms for multishare inpu‘béou‘bpu‘b

ou mus ow abou ese algori If you want to interfere with
the system in the block procedure of the zone (examples of block proce~-
dures are given in 6.3.4). Section 9.26 and 9,24 explain more about the
varisbles in a zone. Ref. 1 and ref. 8 explain the rules behind the

commmication with devices. Below sh denotes the number of shares in the
ZONe .,

6-8

Snapshots

INPUT/OUTPUT SYSTEM

of shares in typical situations (sh = 3)

Change of

Just after setposition on a magnetic tape:
move operation free free
(always share 1)

After inrec:

record
wt___‘:'_'.‘____lu-vw
input free input

(used share)
After several outrecs:
record
[) l..: J B PN P |

output free output
(used share)

block at inp_u'l':

rep:

Change of

if share state(used share) = free then

begin start transfeT(input)s
used share:= used share mod sh + 1}
goto rep - -

end;

comment now all shares are busy with transfers except after
a positionings

wait transfer(used share); comment share state becomes free,
The operation checked might be a positioning operation;

last byte:= top transferred(used share) - 13

comment now the share contains data from record base to last

bytes
block at O'Ll'tp’l_&

if share state(used share) <> free then
begin wa'i't_transfer'('used_share);
comment a positioning operation might be uncompleted;
ends
start transfer(output);

used share:= used share mod sh + 13

comment one or more shares behind used share are busy with
transferss B ‘

wait transfer(used share);

comment share state becomes free and the share may be filled
from record base to last bytes

INPUT/OUTPUT SYSTEM 6-9

Start transfer (operation) o
This procedure works only on used share. It sets a part of the mes-
sage and sends it:

first apsolute address of block:= abs address of first shared;
segment nunber of message:= sSegment count;

update segment count for next transfer;

operation in message:= operation;

comment the mode is left unchangeds

send message)

share state:= uncompleted transfer;

Wait transfer

This procedure waits for the answer from a transfer or tape positio-
ning, checks it, and performs the standard error actions (error recovery).
Finally it may call the block procedure of the zone, In details this works
as follows:

record base:= abs address of first shared(used share) - 13
last byte:= abs address of last shared(used share) + 13
record length:= last byte - record base;

st:= share state(used share)s e

if st < rumning child process then

share state(used share):= frees

if st <> uncompleted transfer then goto return;

wait answer(st); if kind = magnetic tape then
begin
if some words were transferred then block count:=
block count + 13 -
if tape mark sensed and operation is input or output mark
then begin file count:= file count + 13 block count:= 0
end - - -
ends
compute logical status words comment the logical status word
is 24 bits describing the error conditions of the transfer,
see 6.3.33
top transferred(used share):= if operation = 1o then
1 + address of last byte transferred else
first shared{used share);
users bits:= common ones in logical status and give up mask;
remaining bits:= logical status - users bits;
Perform sTandard error actions for all ones in remaining bits
(see 6.3.3).
if a hard error is detected then
logical statust= logical status + 1;
if hard error is detected or users_tits <> O then
begin b:= top trensferred(used share) - 1 - record base;
let record describe the entiTe shared area from Tirst shared
to last shared; i
save:= zone state;
if operatioz-; = input and tapemark and b = O then b:i= 23
blockproc(z,logical status,b)s
zone_state:= saves
if b < 0 or b + record base > last_byte then index_alam;
top transferred(used_sﬁare) t=b + 1 + record_base?

return: end;

6-10 INPUT/OUTPUT SYSTEM

6.3.3. Standard error actions

Fach Standard error action is mainly concerned with a single bit of
the remaining bits in the logical status word. The logical status word is
24 bits generated at the end of an operation on the document. The first
bits until 1 shift 12 are taken directly from the monitor, which takes
most of the bits directly from the hardware. The last bits are a trans-
formation of the result supplied by the monitor, while bits 1 shift 8,
1 shift 7, and 1 shift 6 are generated by the walt transfer routine (see
6.3.2) s The meaning of the bits is as follows:

Logical status word

1 shift 23%: Intervention. The device was set in local mode during
The operation, presumsbly because the operator changed
the paper or the like,

1 shift 22: Parity error. A parity error was detected during the
bloc ransfer,

1 shift 21: Timer., The operation was not completed within a certain
Time defined in the hardware.

1 shift 20: Data overrun. The high speed channel was overloaded and
could not transfer the data.

1 shift 19: Block length. A block input from magnetic tape was
Tonger than the buffer area allowed for 1t.

1 shift 18: End of document. Means various things, for instance:
Reading or writing outside +the backing storage area
was attempted, the paper tape reader was empty, the end
of tape was sensed on magnetic tape, the paper supply
was low on the printer., See ref., 1 and ref, 8 for
further details.

1 shift 17: Load point, The load point was sensed after an opera=-
Tion on the magnetic tape.

1 shift 16: Tape mark or Attention. A Tape mark was sensed oOr
Written on the magnetic tape or the attention button

* was pushed during typewriter i/o.

1 shift 15: Write-enable. A write-ensble ring 1s mounted on the
magnetic tapea

1 shift 1k: Mode error. It is abtempted to handle a magnetic tape
Tn a wrong mode (NRZ or PE). ‘

1 shift 13: Read error. Occurs on card reader., See ref. 8.

1 shift 12: Uard reject. Occurs on card reader. See ref, 8. \

1 shift 8: TTopped. Generated by the check routine when less than
Wanted was output to a document of any kind or zero
bytes were input from a backing storage area.

1 shift 7: Word defect. Generated by the check routine when the
Tumber of characters transferred to or from a magnetic
tape is not divisible by the number of words trans~
ferred, i.e. when only a part of the last word was
transferred.,

1 shift 6: Position error. Generated by the check routine after
magnetic tape operations, when the monitors count of
file and block number differs from the expected value
in the zone descriptor (see 9.26, getzone).

1 shift 5: Process does not exist., The document is unknown to the
monitor,

1 shift U4: Disconnected. The power is switched off on the device,

1 shift 3: Unintellligible. The operation attempted is illegal on

That device, e.g. input from a printer.
1 shift 2: Rejected. The program may not use the document, or it

should be reserved first.

INPUT/OUTPUT SYSTEM o 6-11

1 shift 1: Normal answers The device has attempted to execute the
operation, i.e. '1 shift 5' to '1 shift 2' are not set.

1 shift 0: Hard error, The standard error action has classified
The transter as a hard error (see 6,3,2), i.e. the er-
ror recovery could not succeed.

‘The standard error action for ‘'stopped' cannot be performed successfully
if ‘tusers bits' (see 6.3.,2) contain any one of the following bits:
1 shift 227 21, 20, 19, 18, 16, T, 5, 4, 3, or 2. As a consequence, the
stopped-bit is ignored Ty the standard error actions in this case,

The bit 'normal answer! is always ignored, the remalning standard
error actions depend on the documnent kind given in ‘'Open' as shown be-
low., This kind has not necessarily any relation to the actual physical
kind, Situabtions not covered by the description are hard errors.

As an appendix to this saction, you will find & quick index on how
the standard error actions work for the different devices and status
pits. You will also find the translation of the status bits %o the mes-
sages from FP when %he Algol program stops because of device errors

(stderror is called).
Below follows a more elaborahe description of the actions,

Details of handling of device status

Kind O, internal process

Tny status Dbit except '1 shift 18', end document, '1 shift 87,
stopped, and '1 shift 1', normal answer, 1is treated by calling the block
procedure, The special actions to be taken must be defined by a special
agreement betwsen your program and the internal process.

End of document: This will only make sense during input., If anything has
been input, the bit will be ignored. Otherwise the empty block
will be replaced by 2 bytes containing the text
L3L25><25<25>>, IT this bit appears during any other opera-
tion, it will cause the block procedure to be called,

Stopped (during output):s The output operation will be repeated for the
remaining part of the buffer, This action may compensate for
differences in share sizes in your program and in the internal
process,

Kind L, backing storage area

The monitor usually repeats defect tramsports to or Zfrom backing
storage areas. Therefore most error bits are treated as hard errors. Only
the bits '1 shift 18', end of area, '1 shift 8', stopped, '1 shift 5!,
process does not exist, and '1 shift 2!, rejected are glven special treab-

ment.

End of document (i.e. area): If this happens during input, and if nothing
has been transferred, the empty block is' replaced by 2 Dytes
containing the text <:<25><25><25>:>, otherwise the bit is 1g-
nored. During output, the standard action 1s +to try to extend
the arca (not at all possible in system 2). If it is impossible
to extend, the block procedure is called, otherwise the output

operation is repeated, ;

Stopped: This status may appear both'during input and during output. The
transfer is repeabed except 1f 1t has been overruled by the ac-
tion for end of area, or the two actions below,

dn SATS | dn =ATS JIQILID SJI0USIT JOIID JOJII® 9JI0UIT JOJIS | 9o9fax paed |zl 2ITUS | L
dn 2AT3 | dn °oATS JIOJIID SIO0UST JIOJIID JIOIIS SJ0UIT JIOIID JOJJIS Ppeat [¢L AJITUS L ol
dn aAT3 | dn =ATS JIOJIID JIOJIID JIOLID JOJIID JIOXID dn aATS JOLIS Spow | fL 3ITUS | 6 -
PSTqeUS =
dn sATS | dn °ATS JOJIS JIOIID JOJIID JOLI® JIOIID SJI0oUST SurATaIM | Gl AFTUS | o) m.
_ UOTqUS%9B 2
dn 2ATS JI0I1ID SJI0UIT 9JI0UIT JOLID JOIID 2JI0UIT Wi | J0 Saewmadey 9L 3JTus L) o
i)
dn oATS 5 (ol £ JOJID SJIOUIT JIOJJID JOLI SJOUTT SIOUIT qutod peoT | L1 A+ITUS | 9 m
N IO WH J0 WH J0 WHE J0 , m
dn SATS | pusyxe dn sA1S 9JI0U3T a3ueyo afueyo 2J0UIT dn oAT3 | queumoop pue | gl 1JITUS | 4 o
JOLID o
dn 2ATS b (o k=) JOJID JIOLID JIOJJID JOIJI® JOIID dn SAT® | U33usT MO0Tq | 6L AITUS | 1 m
ot
dn oATS | dn =ATS JOJIS JIOIID JIOJID JOJID dn SAT3 | TTe 9®odeJ | UNIISAO BYED | 02 FITUS | ¢ “
b 9JIOUIT J0
dn oaTS | dn oATS dn aAT3 dn oATS dn sATS dn oA dn oAT3 dn aATS Jowrtd | lg AFTUS L 2
SSWTY
dn 2ATS | dn oATS dn oA13 9I0oUIT dn sATS dn oA SJI0UST ¢ qeadax | goxxs Lqtxed | zg AITUS L L
dn SATS | dn oAT3 SJI0UIT SJI0UIT SJ0UST SJIOUSIT 9J0UIT SJOUST | UOTRUSAIDMUT | ¢z 4ITUS L 0
queTBATNDS
0 i g ! oL zl fl ol gl sureut TOSTe | *ou 31q
TBWISQUT | BOIB=-8q | J29TImadLy |odeq aaded | odeq Joded |xequtad SUIT |JIopeoad pIeO adeq.3eu 9Tq shyeas
SPUTY JUSISIJITP 9U3 JIO0J SUOTIO® JO UOTYBOTITIUSDT

6=12

°MOTSq 9T0Bq 39U} UT PUBYLIOUS UT UMOUS ST JUSWIBSIY STUT,

*(L*6 uoTyo9s 99g) usdo Jo TTEO U3} UT
Posn putry Sl Uo Furpusdop qusuyeaiq TeToads ' 198 s9Tq §,J19s1 8U3 JO UOTLOBIAXS JO91JB JUTUTEBWSI s1TJ SNYBLS ST

SUOTAOB JOJI® PIBpUBYg °C°C*g 0% XTpuaddy

6-13

°SNYeYS JISYFOUB UYJTM JISUQST01 SINOO0 9T SSMBOSG JO (xeomsue Temiou xo odeqPeuw IOF STAEUS mpﬂ.ﬂsv 90TASD 93U
40 TEWIOU ST snjels Y3 SsNBOSQ 9q JI9YLTO Lew STYL, °sNyBAS STUL J40J US¥B]1 ST UOTJOB OU 3BYY SUBSM ,SJ0UIT, LIUs oyf,

°fem JOUQO0 SWOS UT PISNSTH Usaq sBY Weqshs oY) 9BY} JO PUTY SUOIM
B U3TM pousdo 2ABY NOA 9B8UY uesw Lem 4T ¢ 1 IOLI9y sAes 4T JI °POFUSAUT US(SBY UOTLOB DPIBPUBLS OU 4Nq ‘poTrToeds pury
U3} J0J Jnoo0 Lew 1Tq SNYBYS STUL 9BY] SUBSW 9T ¢,dn oATT, sfee Arqus oy JI °POTTEBO 24 TITA = sanpedoad }ooTq Jnofk -
UuoT3oB dn SATS SU3 PUB 9498 9Q TTTM 9Tq JOJLID DIBY 93U} 38U} UBSW SAOQR STOBY S} UT J0II9, pue ,dn 9ATS, soTJqUe oyj,

. °UOT3O9s STUYL UT psuTeTdXS °q
Pom.m.m..EpH.Amm.quHPomm wmmv h@bﬁh@#ﬁpamoﬁupsonxomnoHomdwosph@.@monm.nmqu Poﬂmﬂpﬂp_hoﬁwgmxoosc,mﬁ*

SJIOUIT
dn =2AT3
dn 24713
dn =418
dn =ATS

JOLIS

JOIID

q4sax
1eadax

JA0JI9

JIOIID

' I0x1IS |

J0II® PIEY | O WITUS L | <2
SJIOUIT SJIOUIT SJIOUIT SJIOUST 9JI0UBT 2J0UIT SJIOUIT TemwIou | | 4JTus 1 22
9183J0O dn =ATS dn oATZ dn oATS dn sATS dn oATS SAISSOT poqoslax | 7 AITUS | 12

oTqI3 g

dn SATS dn oATS dn aATS dn oATS dn oAT3 dn =ATS dn oaATS =TTT=uTum | ¢ 4ITUS | 0z m

o
dn =ATS dn oATS dn osATS dn oATS dn oA dn oATS QUOOW | PIJOSUUOISTP | + IFTUS | 6L o
IsTXS 0a
EL-ER ko) dn oATS dn =ATS dn AT dn oATS dn oA QuUnou " q0u s90p | § AITUS L gl m
. . JOLID &
JIOJIID JOJIID | JIOLID - XI0JID JOXID JOJI® dn oATZ uotqrsod | 9 9FTUS | Li w
SSWTY &
JIOIID JOJIID JIOIID JOLID JOJIID JIOIID G qeadax| 9o097°p pIom |), ¥ITUS | gl o
ITe qsox , 1581 q80d SUTI IO s
qeadaa qeadax JIOIIS qeadax qesdax JOoII® | TTe 9qeadax peddoys | g JITUS | g1 @
JOIID JOJIID JOIID JOJID JOJIID JIOIID JOJLID il 3T4 | 6 WITUS L | #l
JOILID JOJIIO JOIID JOLIS JI0XIS | JOLID JIOIID GL 1TA {0l AITUS L m ¢l
(% xoxas .
JOJID M JOIID h JOLID JOLID JOIID JOJIID JIOIID UMSYOOUD | L 3FTUS | ozl

6-1k ‘ INPUT/CUTPUT SYSTEM

Process does not exist: An area process 1s created, If +the creation 1is
not successfull, the action gives up and calls the block proce-
dure. If +the operation is output, the area process is reserved
for exclusive access, If this 1s not possible, the action
gives up and calls the block procedure. Now the transfer is re-
peated. '

Rejected: Handled exactly as process does not exist.

Note that the status messages process does not exist or rejected may be
caused by the fact that you have exceeded your area clains, -

Kind 8, typewriter
Among the status bits concerning the hardware only the timer sta-

tus, '1 shift 21' has been given special treatment., The ignored hardware

bits will either generate disconnected status, i.e. '1 shift 4! or

'1 shift 8', stopped during output.

Timer: If this status happens as a result of an output message, the
block procedure is called. After an input operation it 1is
ignored if anything has been input, otherwise the input opera-
tion is repeated. :

Stopped (during output) : If this bit is generated together with the
ignored bits, the rest of the buffer is output.

Kind 10, paper tape reader
nly end document status '1 shift 18' gets a special treatment from

the check system, If a parity error occurs, the monitor will substitute
the defect character by a substitute character, decimal value 26, Inter=-

vention status is ignored.

End of document (i.e. end of paper tape): If anything has been input the
status is ignored, otherwise a block of 2 bytes containing
<L1<25><25<25>:> is simulated.

Kind 12, paper tape punch

TT something has been punched with parity error, the action is to
give up, and call the block procedure. The same thing happens after a ti-
mer status as this usually is caused by the punch running out of paper
tape without having given end document status. This is either caused by

hardware malfunction or by misuse of the punch.

Fnd of document (i.e. no more tape): A message 1s sent to the parent,
requesting that the paper is changed in the punch and that the
job is stopped until the operator tells that he has done s0.

Stopped (during output): The remaining part of the share is output.

Kind 14, line printer
TIT a parity error occurs during printing, the standard action 1is to
give up. The end of document stabtus means that the paper has run out.

End of document (i.e. no more paper): A message is sent to the parent
requesting that the paper is changed and that the job is stopped
until the operator tells that he has done so.

Stopped (during output): The remaining part of the share is output.

-l

INPUT/OUTPUT SYSTEM 6-15

Kind 16, card reader

K parity error status, signalling an error in the conversion, is ig-
nored by the standard error actions, as the monitor substitutes the wrong
combination by a substitute character corresponding to the conversion
(see details in ref. 8). The end of document status shows end of card

deck .

End of document (i.e. end of deck): If anything has been input, the sta-
tus is ignored, otherwise a block of 2 bytes containing
<:<25><25><25>:> is simulated,

Kind 18, magnetic tape -

The actions rtor macnetlc tapes are made so that a tape may be unloa~-
ded and remounted during the run without harming the job using the tape.
Label check 1s mnot included, it is expected that the operating system
(or the machine staff) performs this. The action on mode error is to give
up and call the block procedure,

Parity error: The stopped bit is ignored in this case. An input operation
is repeated up to 5 times, but if +the parity error persists,
the error is a hard one. An output operation is repeated up to
5 times, preceded by 1 erase operation the first time, 2 erase
operations the second, and so on. If the parity error persists,
the standard actions give up and call the block procedure.

Word defect: The actions are as for parity error. Note that if you sup-
press the word defect action by setting '1 shift 7' in your give
up mask, you can recad tapes not written on the RC 4000 or tapes

- written with trail <> O (see open, 9.41). Of course your block
procedure will be called each time the bit occurs. In case of
word defect, unused character positions are filled with binary

nulls,

Tapemark: Tapemark is ignored after a sense or a wmove operation. If
tapemark occurs after an input operation, the standard action
is to simulate a block of 2 bytes containing <:<25><25><25>:>,

Stopped (during output): If +the 'ring' bit is set, the output is repea-
 ted, Otherwise a message is sent to the parent requesting a
write enable ring to be mounted, When the job is restarted af-

ter mounting of the ring, the output is repeated.

Does not exist: This bit is ignored after a sense operation or a move
opsration, In other cases, a mount-tape-message is sent to the
parent. Next, the tape is reserved for exclusive access and 1f
this goes wrong, the mount-tape-message is sent again. Third,
the tape is positioned according to file and block. count and
the operation is repeated.

Rejected: Handled as 'does not exist', except that the mount-tape-message
is not sent.

Parent message .

Mhe parent (i.e. the opsrating system for your Jjob) may either
handle a message according to its own rules, or 1t may pass the request
on to the operator. The job may ask the parent to stop the job temporari-
1y until the operation has been performed. The exact rules depend on the

operating system in question.

6=16 INPUT/OUTPUT SYSTEM

6.344s Block procedure

Call situation ’

The high level zone procedures may call the block procedure after
input and .output operations and after move operations and output mark
operstions on magnetic tapes. After such an operation, the call will take
place in these casezs:’

1. When some of the bits set in the give wup mask occurred in
the logical status word.

2, When the standard error actions classified +the situation as
a hard error (give up).

The block procedure is called with 3 parameters:

blpr(z,s,b)

Z is the zone., The record of 3z is the entlre shared area
avallable for the transfer,

s is an integer containing the logical status word.

b is the number of bytes transferred in the operation.

You can tell the difference between the call reasons by means of the
last bit in the logical status word.

Purpose and return

Tn the block procedure, you can do anything to the zone by means of
the primitive zone procedures and ‘the high level zone procedures (in the
latter case you must be prepared for a recursive call of the block proce-
dure, for instance as shown in example 3 below).

To mske sense, the effect of the work should be an improved check
or error recovery of that operation which caused the block procedure to
be called. You may also avoid a standard error action by means of the
give up mask and instead perform your own checking of the transfer,

You signal the result of the checking back to +the high level zone
procedure by means of the final block length, b. The value of Db has no
effect when an output operation is checked, but after an input operation
you may signal a longer or a shorter block or even an empty block (b =0).
However, the value of b at return must correspond to a block which
is inside the shared area specified by the value of used share at re-
turn. Otherwise, the run i1s terminated with an index alarm, Further de-

tails may be found in 6.3.2,

rejecting part of a block

Example 1
K block procedure which tries to repair an input block after persi-

stent parity error looks like this:

procedure repair(z,s,b)s zone z3 integer s,bs
if s shift (-22) extract 1 = 1 then
begin comment handling of persistent parity error;
integer to,froms
to:= 03
for from:= 1 step 1 until b//4 do
if z(from) is o.k. then
begin to:= to + 13
z(to) 1= z(from);
ends -
comment the defect items of the block are squeezed out.
The new length 1s signalled backs;"
be= toxls
end
else stderror(z,s,b)s

The zone should be opened with a give up mask of O,

INPUT/OUTPUT SYSTEM 6-17

Example 2, copy input
% block procedure which copies everything read from 'z' to 'test' may
look like this: '

procedure copy(z,s,b)s zone z3 integer s,bs
if s extract 1 = 1 then stderror(z,s,b) else
begin comment this code also works for b = O3
outrect(test,b);
tofrom(test,z,b)3
ends

The zone mst be opened with a give up mask of 2 (normal answer) o InrecH,
invar and read take action on nothing transferred (maybe stopped) .

Example 3, label checking on magnetic ‘tape

This example has no Televance in system 3, if your parent (opera-
ting system) is Boss.

The safety of magnetic tape positioning can be improved by means of
f{le labels., Each of the logical files on the tape are separated by two
tape marks surrounding one label block. This block contains the logical
file nunber in text form.

The positioning to block O of a logical file (counted 1, 2, «eo) is
started with this procedure:

procedure logpos(z,f)s zone z3 integer f3
setposition(z,f*2 - 2,0)3

The procedure cannot check the label, becanse similtaneous positioning
then would be impossible. Instead the block procedure may check the label:

J;‘ procedure labelcheck(z,s,b); zone z; integer s,bj
if s extract 1 = 1 then stderror(z,s,b) else
begin integer array ia(1:20); integer op,f,bl,labs

own boolean nexts

comment next indicates whether the procedure was called
from labelcheck itself}

getzoneb(z,1a); getshareb(z,ia,ia(17))s

comment the operation checked is used share, which now is
moved to ias -

op:= ia(l) shift (-12) extract 12;

if (op = 0 or op = 8) and -, next then

begin comment positioning operation not called from
labelcheck was completeds
nexti= trues
getposition(z,f,bl); setposition(z,f,bl)s
if read(z,lab,0p) < 1 or lab < f{/z + 1 then
system(9,£//2 + 1,<:<10>position:>);
comment if lsbel did not contain exactly one number oOr

the file number recorded is wrong, the run is terminated
with an alarms

setposition(z,f+1,0)s b:= 03 next:= false;

end

ends

/[?he zone must be opened with a give up mask of 2 (normal answer) o

6-18 INPUT/OULPUT SYSTEM

6.4, Primitive Level, Operating System

When you use zones on the primitive level, you can change the values
of the zone descriptor and +the share descriptors (see 5.5) in nearly any
way., In this way you may handle the peripheral devices in non-standard
ways., You may also use the full principle of sharing buffer area with
other processes to create child processes and let the algol program work
as an operating system to these child processes, '

The following 7 standard procedures are known as the primitive level
zone procedures:

getzoneb (see 9.27). Transfers the contents of a zone descrip-
tor to an array. '
setzoneb (see 9.62). Transfers the contents of an array to a

zone descriptor,.
‘getshareb (see 9.25). Transfers the contents of a share descrip-
tor in a zone to an array.

setshareb (see 9.60). Transfers the contents of an array to a
share descriptor in the zone,
monitor (see 9.49). This procedure is the algol equivalent to

all the functions of the monitor., It starts and stops
commnication with peripheral devices, it creates,
starts, stops, and removes child processes, etc.
blockproec (see 9.6). Calls the block procedure of a given zone.
check (see 9,12) . Checks a transfer to or from a document in
the way used by the high level zone procedures.

6.4,2, Document driver
You may let uhe algol program conbtrol a- document to which other pro-

cesses in the computer send output:

1. Use entry 20 (or entry 24) in ‘'monitor' to walt for
messages sent to the algol program. The sender of the
message assumes that the algol program is a document.

2 Copy the block of information described 1in +‘the message
into a zone buffer area by means of 'system', entry 5,
or use entry 70 in 'monitor!'.

S Send the answer to the message by means of entry 22 in
'monitor',
b, Output the block of information to the document.

Under special circumstances, for instance when the algol program is
the operating system for these other processes, it is possible to control
input and output from a document, even without copying the block of in-
formation from one buffer to another. That 1s possible because both the
sender process and the buffer for the document may be parts of the same

zone buffer area.

i

INPUT/OUTPUT SYSTEM 6-19

6,443, Operating system
Tou may let the algol program create, start, stop, and remove a

child process in this way:

}

1. Use entry 56 in 'monitor' to create the child process
in a zone buffer area. It may be necessary to wuse
entry 72 in ‘'monitor' to set your own catalog base in
order to define the base of the process name,

2. Include the process as a user of some peripheral devi-
ces by means of entry 12 in 'monitor', and give the
process access to the backing store by means of entry
78 in 'monitor!.

5. Initialise the child process area with a suitable Dbi-
nary program, for example the File Processor code
which may be read directly from the backing storage
area fp into the zone buffer area.

b, Set the machine registers of the child process by means
of entry 62 in ‘monitor'. See ref. 2 and ref, 6, if FP
is used.

5o Start the child process by means of entry 58 in 'moni-

tor!s Now, <+he child process starts executing the in-
structions of the binary program, We say that it runs
in parallel with the other processes in the computer
(including your algol program). If FP is the executive
system, the user base is commnicated so that this is
the catalog base at which the child process was started.
FP will as its first action set the catalog base to

standard.
6. When you want to stop the child, use entry 60 in 'mo-
nitor!.RccoRDING 70 ‘mAINTENANCE L1ST MoV TT MoniToR [50).00:5»4’7 WORX
Te Wait for the completion of the stop by means of entry ’

18 or 24 in 'monitor'. Now, all modifications of the
child process area have ceased, and you may for in-
stance store +the area on the backing storage, use the
area for something else, later reestablish the process
area and start the child again by means of entry 58 in
monitor' so +that it continues as 1f nothing had
happened.

Ba When you want to get rid of the child and withdraw its
resources, you use entry 64 of 'monitor'. Remember the
process must be stopped first,

In order to make an operating system which handles several child proces-
ses, serves as a driver for peripheral devices, and commnicates with the
operator, you have to mix the principles of 6.h.1, 6.4.2, and 6.4,3, In
this mixing, entry 24 of ‘'monitor! is very useful to help the program
serving the first arriving event first., An event 1is here the arrival of
a message or an answer, or the completion of a stop.

| | |) ¥ s
!) o b ' 5 e L
‘ o
| .
3

SYSTEM CONTROL 7=

7. SYSTEM CONTROL, EIC.

This chapter gives a brief introduction to the 6 standard i1denti-
fiers which control global conditions of the running algol program.

blocksread

overflows
underflows

system

systime

stderror

(see 9,7). This integer varisble 1s increased by oOne
each +time a segment of +the running algol program is
transferred from the backing storage to the core store.
It can assist you in balancing +the use of the core
store.

(see 9.49). This integer varisble controls the action
on floating point overflow,.

(see 9.77), This integer variable controls the action
on floating point underflow,

(see 9.73). This procedure controls the floating point
precision (mantissa of 36 or 33 bits). The procedure
may also supply information about the surroundings (the
console, the parent, the state of the message queue),
it may move any area of the core store into an array,
it may give the length of the available core, and it
may terminate the run with an alarm message.

(see 9,74) . This procedure gives access to the real
time clock in the monitor and to the CPU +time wused by
the job., Further it may convert real time to date and
clock.

(see 9.69). This procedure terminates the run with an
error message specifying an error condition on a peri-
pheral device, It 1s used as the block procedure of
zones where you don't care for device errors.

THE ALGOL SYSTEM 8-1

8. THE AIGOL SYSTEM

This chapter describes the way the algol compller and the running
program fits into the RC 4000 multiprogramming system. .

8.1. Translation

The compiler works in your job process and you start the transla-
tion by means of an FP-command specifying the source text, the compila-
tion varisnts, and the file where the resulting object program should end
(see app. B).

The result of the translation 1is either a complete, self-contained,
binary program or a binary external procedure, In the first case, tThe
program may be executed as described in 8,33 1in the second case, the pro-
cedure may be used as a standard procedure in later translations. If you
permanent +the program or +the procedure (give 1t scope user or scope
project), you can use it in later jobs.

8.1.1. The compiler

The compiler occupies about 13000 instructions divided into 12 pas-
ses, either on backing storage or on magnetic tape. In the first case,
it may be used for simultaneous translation in several job processes,

The 12 passes of the compiler perform the following tasks: Pass O is
a common administration routine. Pass 1 to 8 perform the translation into
binary code by means of 8 scans of the source program., The intermediste
program text i1s stored in the place Ilater occupled by the binary program.
Pass 9 rearranges the binary program, inserts references to standard
procedures, and includes the code for the standard procedures used in the
program. Pass 10 includes the run time administrative system (RS). When
an external procedure is translated, pass 9 only rearranges the binary
procedure and RS is not included. Pass 11 does not exist, but a pass 12
may make crossreferences of where the different names are used.,

8.1.2. Storage requirements, etc.

The compller Tequires & Job with a core area of 12 000 bytes with I
message buffers and with 6 area processes (4 if current input and output
are not backing storage).

The minimm core area may cause the translation to terminate with
the alarm 'stack!, This is due to the limited size of the table of iden-
tifiers in pass 2 and 5, and the table of labels, case elements, and
procedures in pass 8. A greater core area will remedy the problem: Jjust
1000 bytes more give room for about 250 identifiers.

8.1.3. Speed, length of object code

TTTer Dasic Time of ? seconds (compiler on drum), the total trans-

lation speed is about 1000 characters/second or 500 final instructions

per second for an average prograil.
The final program consists of the code corresponding to the source

text, plus 7 segments for RS, plus the length of the standard procedures
incorporated. The length of the code corresponding to the source text is
about 1.5 the length of the source text.

B8-2 THE ALGOL SYSTEM

8.1.4. Error checking

The compller performs extensive syntax and type checking, but a few
errors may pass undetected as described in C.2,2,

Except for some rare errors concerning communication with <the sur-
rounding system, no error can stop the compilation, and wmost of the er- .
rors will be detected in the first translation. Sultable mechanisms are
included to prevent one error from generating several error messagesS.

Whenever the translation has worked to the end, the program may be
executed until +the first point where a syntax error was detected or un-
til the first point where an undeclared or doubly declared ldentifier is
used, The run is then terminated with the message 'syntax line.oo's’

8.2, Assenbly, index, spill

Pass 9 performs the assembly of standard procedures into the main
program and if these standard procedures reference other standard proce=-
dures the assenmbly continues recursively, All standard i1dentifiers must

exist in the catalog at this stage.
At run +time, subscript check will be omitted during the execution

of all program parts compiled with index.no, All standard procedures
mentioned in chapter 9 may be thought of as compiled with index.yes.

If the main program is compiled with spill.yes, a partial check of
integer overflow is performed in procedures compiled with spill.no, If
the main program is compiled with spill.no, integer overflow at multi-
plication will still be detected in subroutines compiled with spill.yes.
None of the standard procedures of chapter 9 can cause an integer over-
flow,

8.3. Execution

A binary object program is executed in the Job process and started
by means of an FP-command as described in app. Bo The program must at
that moment exist in a backing storage area.

8.3.1. Segmentation

Mhe object program consists of independent program segments of 512
bytes. Whenever the running program demands a program segment which is
not in +the core store, it is transferred from the backing storage pos-
sibly replacing another segment in the core store. The number of segments
held in +the core store is increased gradually until the 1imit posed by
the variables is met. If more variasbles are declared, some segments will
be released from the core store.

This scheme works satisfactorily as long as the program segments
involved in the current part of the algorithm are kept in the core store,
Under these circumstances a jump to another segment 1s performed in 7T
microseconds, while a jump within one segment is performed in 3 micro-
seconds,

When the number of varisbles is increased so that the active seg-
ments cannot stay in core, the program can still run, but a jump to ano-
ther segment will often cause a transfer from the backing storage resul-
ting in a jump time of 18 000 microseconds. Section 9.7 shows how these
situations may be detected. You will see from this that it is very im-
portant to avoid crowding the job area with varigbles, As a rule, you
should have room for at least O segments in the core store, corresponding
to 4000 bytes. _

As further aid, the compiler may print a list of line numbers corre=-
sponding to the segment boundaries in the object program., The 1list 1is
printed if the compiler is called with details.8.8. (see app. B).

———————————t—.

THE ALGOL -SYSTEM 8<3

8e3.2, Storage requirements
During program execution, the job area 1s organized in this way:

Length in bytes: Contents

1500] File Processor

600 1l RS ~— Ruaning 4N STEM

Depends on program | Own variables for entire program. ,

2%1, 1 Segment table, L=total number of program segments.
minimmms 1024 ' - ‘
reasonable: 096 Room for program Segments currently in core store.

v
1t Room for variasbles, arrays, zones.
1024 | Buffers for in and out.

When the program is called with the parameter O (see app. B), the space
occupied by File Processor and buffers for in and out becomes 16 bytes.

The space occupied by variables at any moment of the execution is
the sum of the reservations made at entries to all the blocks and proce-
dure bodies which are active.

Lengths of core store are usually given in bytes (one byte = 12
bits%, sometimes in words or double words (U4 bytes =2 words = 1 double
word) « :

The reservations made at block entry may be derived from the decla-
rations of the block as follows:

Quantity: Number of bytes reserved:
Simple boolean variable,
field variable,

simple integer variable 2

Simple long variable,

simple real variable I

Array segment 2%(number of array identifiers + 1 + number

of subscripts) + space for total number of
array elements.

Array element, boolean 1

Array element, integer 2

Array element, real or long U

Zone 50 + 2lsnunber of shares + Uxbufferlength.

Zone array 2 + space for all the zones.

Working locations Depends on structure of program, usually
about 10 for each block.

Block, procedure body oxnunber of statically surrounding blocks +

(if normal block then 4 else if type proce-
dure then 14 else 10);
Parameter ‘8 if the actual parameter is constant, U

otherwise.

8.3+3. Message buffers, area processes, etcC. ‘
""'TEE‘38B‘5E3EEEE75&5%‘5555‘6335‘5?35%8&‘ with a sufficient number of
message buffers and area processes. The number of message buffers occu-
pied at any moment during the execution of the program is derived as

follows:

8-k THE ALGOL SYSTEM

Reserved for RS 1.
Each n-shared zone used for high level 1npu't/ outpu'l:

('in and ‘out' count as 1-shared zones) n-1

Each zone busy with positioning a magnetic tape

(then it is not used for input/output) 1

Zones used on primitive level,

each share describing an uncompleted transfer. 1

The number of area processes occupied at any moment is 2 + the number of
backing storage areas opened for mpu't/ output. Remermber to include pos=-
sible area processes used by 'in' and 'out!.

8.3.l4, Execution times
Are given in app. Ae

83450 Error checking .
The dynamic error checking and the error message are given in app. Co

ATPHABETTIC LIST OF NEW ELEMENTS, ABS 9=-1

9. ALPHABETIC LIST OF NEW ELEMENTS

This chapter gives .a detailed description of all the standard iden-
tifiers supplied as a part of +the compiler and all the delimiters not
found in algol 60, .

The syntax of operators and other delimiters is described rather in-
formelly. Take the last two lines of 'add' (9.2) as example:

<boolean> add <primary> is of type boolean
Priority as ¥, S

This shows that 'add' has two operands, the left is of type boolean, the
right of type integer. The result of applying 'add' to these two operands
is of type boolean. The term 'priority as **' means that in the rules of
precedence for evaluation of an expression, 'add' and 'x*%' appear on the
same level and they are executed in sequence from left to right within
the expression.

The description of procedures follows a different scheme. Take 'in-
rec6' (9,31) as an example:

Call: inrec6t(z,length)

inrech (return value,integer). The ...
z (call and return value,zone). The ...
length (call value, integer, long, or real). The ...

This shows that inrec6 is called with two parameters. The first, z, must
be a zone, The contents of the zone at call time is significant and it is
changed at return from the procedure. The second, length, must be an in-
teger, a long or a real. The value of length at call time is significant.
It is not changed at return. Finally, inrecb is shown to have an integer
value at return.

The parameters may actually be expressions, of course. Unless some-
thing else is mentioned, it is a tacit assumption that all the parame-
ters are evaluated once, but not necessarily in sequence from left to
right, Especially, if something is assigned to a parameter, the assign-
ment may or may not be delayed until all the parameters have been eva-
luated (see for instance read, 9.51). Note, that the evaluation of a
string pareameter will access the actual parameter repeatedly until the
string end is supplied (see 3.6). '

9,1 Abs

This monadic operator yields the absolute value of integer, long, or
real expression.

Syntax: sbs <dinteger> 1s of type integer.
abs <long> is of type long.
abs <real> is of type real.

Priority higher than %%,

Examples: abs r abs sin(x) abs(0.5+sin(x))

9-2 ADD, ARCSIN
9,2, Add

This dyadic operator is used for packing of integer values 1nto a
real, long, integer, or boolean value.

Syntax: <veal> add <primary> is of type real.
<long> add <primary> is of type long,
<integer> add <primary> 1is of type integer.
<poolean> add <primary> 1is of type boolean.
<string> add <primary> 1is of type string.
Priority as **.

‘If +the right hand operand is real or long it is rounded '(in the
sense of 9,57) to an integer. Now both operands are treated as binary
patterns (see 3.1 and 3.6) and the right hand integer is added to left
hand operand to obtain the binary pattern of the result. If the result is
a boolean, it is cut to 12 bits, The addition is binary addition in 2L
bits with rightmost bit added +to rightmost bit. No earry is propagating
into a possible left hand word.

Example 1:
Tet i+1 and j be integers between O and 63, They may be packed into

one boolean variable in this way:
b:= false add (i+1) shift 6 add j3
If.j were negative, the statement would not work as intended.

Example 2
Two signed integers may be packed into one real in this way:

ri= 0,0 shift 24 add i1 shift 24 add i2;

Note +that +the binary pattern of a negative number has zeroes in front of
the 24 ordinary bits, and that no carry will propagate into the il-part
of re

Example 3t
The last bit of an integer 'j' may be tested in this way.
if false add j then ..

9;5. Real procedure arcsin

Call: arecsin(r)

aresin (return value, real). Is the mathematical function
aresine of the argument r. - 7 /2 < arcsin < 7/2,
T (call value, real, long, or infeger). =1<r <1

mst hold.

ARCTAN, ARG, BLOCKPROC 9-3

Accuracy: _

r=1, -1 gives an absolute error of 3'-12
r=0 gives arcsin= 0O

0 < abs r< 0.5 gives a relative error below 1,1'-10
0.5 < abs r < 1 gives a relative error below 1.6'=10

9.4, Real procedure arctan

Call: arctan(r)

arctan (return value, real). Is the mathematical function
arctangent of the argument r. - 7/2 < arctan < 7/2,
r (call value, real, long, or integer), -
Accuracy:
T =0 gives arctan =0
r<0 gives a relative error below 1.5'-10

9.5. Real procedure arg

Call: arg(u,v) _
arg (return velue, real). Is the argument in radians of
the complex number utixv, - T<arg< 7 . Ifu<0
and v = 0, arg is positive.

u (call value, real, long, or integer).
v (call value, real, long, or integer).
Accuracy:
Yv=0andu > 0 gives arg = O,
v<>0oru<o gives a relative error below 1.8'-10.
Example:

TeT o and b be the lengths of two sides of a triangle, and let C be
the angle between them (in radians), The angle B, opposite to b, is then
computed by:

B:= arg(a-bxcos(C),b*sin(C));

9.6. Procedure blockproc

Executes a call of the block procedure associated with a given zone.
Blockproc mskes it possible in pure algol to obtain an effect like check
(used by inrec, read, write, etc.), which only knows the zone, but still
menages to call the block procedure (see 6.3.k44).

Call: blockproc(z,s,b) .

z (call and return value, zone). Specifies the proce-
dure to be called.

s (call and return velue, integer). The value Oof s is
supposed to be a logical status word.

b (call and return value, integer). The value of b is

supposed to be the number of bytes in a block trans-
fer, :

9-4 BLOCKSREAD
Let pr be the block procedure of z, Then the following call will be exe-

cuted:
pr(z,8,Db)

9.7. Integer blocksread

This standard variable is increased by one each time a segment of the
algol program is transferred from the backing storage. This enables you to
estimate the length of the program loops and balance the use of the core
store. The value of blocksread is printed at program end (see appendix 2).

Example 12
IT you feel that your program is running very slowly, the first
thing to do is to insert a piece of code around the inner loop:

blocksread:= 03
The inner loops
write(out,blocksread//55)s

The number printed is then the number of seconds spent in transferring
program Segments from drum to the core store. If this explains the
trouble, there are only two solutions: 1) to change the program so that
fewer variables are declared, or 2) to run the job in a greater core
ares., In this example the integer printed after the end message is not
the total number of segment transfers during the run, but it shows the
nunber of transfers since the latest time blocksread was set to O.

Example 2:
many caSeS a program can run with an array of varying length. One

example is the first phase of a magnetic tape sorting. Here you save tape
passes in the second phase by increasing the array avallable for the
first phase, But if you increase too much, the first phase will become
very slow because of frequent program transferso

-The following program shows how this can be balanced by the algo-
rithm itself. The idea is to reserve an array of maximum size (see sy-
stem, 9,73) and then decrease the length of the array whenever segments
are transferred in the inner loop.

ns= maxs
rep: begin array ia(l:n);
s:= blocksreads
The inner loops
if blocksread > s then ni=n - 1283
ends

goto reps

Tt is much more difficult to do the same thing starting by a short array.

CASE 9-5
9,8. Case

This delimiter occurs in case-expressions and case-statements, which
are generalisations of if-expressions and if-statements. The case-con-
structions wuse an integer 10 select among several expressions or state-
ments,

Syntax: case <arithmetic expression> of begin <statement 1list> end
- is a statement,
case <arithmetic expression> of (<expression list>)
is an expression.
They have the same syntactical positions as if-statements and
if-expressions,
The elements of an expression list must either be all arithme-
tic, all boolean, all string, or all designational,

The statements of a statement list are separated by semicolons and num-
bered 1, 2, 3, oes The expressions of an expression list are separated
by commas and numbered 1, 2, 3, eeo

A case-construction is executed as follows: First, evaluate the
arithmetic expression and if necessary round it to an integer. Next, se-
lect the 1ist element corresponding to the result. If no such list ele-
ment exists, the run is terminated. If the selected element is a state-
ment, execute it and continue the execution after the complete case-
statement (provided that a goto was not executed). If the selected ele-
ment is an expression, evaluate it and take the result as the value of
the case-expression,

If +the elements in an expression list are arithmetic, the type of
the resulting value will be:

integer if all elements are integer
long if one or more elements are long, but none real
real if one or more elements are real.

Example 1, initializing a table.
o array may be initialized with the values 3, 5, O, 1, 1, 2 in this
ways:

for i:= 1 step 1 until 6 do
1a(i)s= case 1 of (3,5,0,1,1,2);

Example 2:
e logical status word occuring as a parameter o block procedures

may be displayed in this way?

for i:= 0 step 1 until 23 do

if logical status shift (-1) extract 1 =1 then
write(out,case 24-1 of
(<:locali>,<iparity:>,<ttimer:>, ...))s

Example 3
Sce example 2 of readchar, 9.53.

9-6 CHANGEREC, CHANGEREC6

9.9, Integer procedure changerec

Regrets the latest call of inrec, outrec or swoprec and mekes a re-
cord of a new size available, The procedure is the Algol 5 wversion of
changerecb,

Call: changerec(z,length)

changerec (return value, integer). The number of elements of UL
bytes each left in the present block for further calls
of inrec, outrec or swoprec,

z (call and return value, zone). The name of the record.

length (call value, integer, long or real). The number of
elements of L bytes each in the new record. Length
must be >= 0,

For further details see 9,10,

9,10, Integer procedure changerect

Regrets the latest call of inrec6, outrecb or swoprect and mekes a
record of a new size available,

Call: changerec6(z,length)
changerech Zreturn value, integer). The number of bytes left in

the present block for further calls of inrec6, out-
recH or swoprechH.

Z (call and return value, zone). The name of the record.

length (call value, integer, long or real). The number of
bytes in +the new record. Length must be >= 0, If
length is odd, one is added.

Zone state:
= Zohe mst be in one of the states 5, 6 or 7, 1.e. after record

input, after record output, or after record swop (see getzoneb, 9.27),
and it is left in the same state.

Blocking:
angerec6 can be used to regret a former call of the procedures for

record handling.,
This happens in the following ways:

1) Check that 5 <= zone state <= 7. Set the record length to O (zero)
and the logical position just before the record base.

2) Start the record procedure indicated by the =zone state with the same
parameters as changerec6. I.e, if zonestate = after record input Then
inrec6 (z,length) else if zone state = after record output then out-

rec6(z,length) else swoprect(z,length).

The terms zone state, record length, and record base are explained in

section 9.27, getzoneb,
If +there 1s room in the current block for the new record size, a

call of changerecHh will not change block. In thils case data in elements
available both before and after the call are unchanged.

CHANGEVAR 9-T

If you are not aware of the rest length in the used share, you must
be prepared for a block change if the length in the call of changerecH
is greater than that of the previous call of a record procedure,

The blocking is explained in more detail in 9,31, inrec6, 9.46 out-
rec6, and 9.72 swoprecb,

Example 1:
Output of records with variable length.

Records with varigble length, where the length is stored 1in the
first word (2 bytes), may be output like this:

rep: outrecH(z,maxlength)s
eseoy Fill the buffer and compute the actual length.
z.,firstword:s= actuallengths
changerect(z,actuallength)s
if ceooo then goto reps

Compare this with example 1 of outrect, section 9.46, where the ac-
tual length is known before the call of outrecb.

Example 2:
ee example 2 of invar, 9.33.

9.11. Integer procedure changevar

Is used in connection with outvar, as it replaces a record placed
in z by means of outvar with another, maybe of a new length. The call
changevar(z,z) always works so that indices available both before and
after the call refer to +the same piece of data - even though a block
change may have happened,

Call: changevar(z,A) ‘
changevar (return value, integer). The number of bytes avai-
lable for further calls of outvar before change in
block takes place exactly as for outrecb,

z (call and return value, zone), The zone used for
output.
A (call value, real array). An array containing the

record 1o replace the current zone record., The first
word of the element with lexicographical index 1 must
contain the new record length in bytes, If it is odd,
1 is added.

Zone state:
Mhc zone State must be after record output (state 6, see 9.27, geb-
zoneb), and the latest record may have been placed by means of outrecH,

outvar or the like.

Blocking:
angevar tests whether the next record may reside within the cur-

rent block, and changes the block if this 1s not the case. The old re-
cord is not output. The call changevar(z,z) gets a special treatment, as
the second parsmeter will be saved if it camnnot reside in the zone buffer

9-8 CHANGEVAR

while the block is changed. The blocking and the function is explained in
more detail in section 9.48, outvar,

Record Format, counting of records:

The record format 1s explalned in section 9. 35, invar. The free zone
parameter (see 9.27) is decreased by one 1if the new length is 0 (null).
Otherwise it is not changed.

Example, sequential file updating by merging.

Certaln sysbems maintain their master files by merging an old ma-
ster file with a +transaction file giving a new master file, We assume
that the files are sorted in ascending order with respect to a key field,
that +the files end with an end-record with the key equal to the maximum
value for longs, and that the records are var-records.

The following algorithm allows several transactions to the same ma-
ster record, It also allows transactions to a new master record, sup-
posed that the new record precedes the transaction record. The algorithm
can easily be extended to more than 3 files,

begin comment merging algorithms
zone 0ld, trans, new(eee, ees, stderror);
integer action, creation, removal, changes, guessed len}
long first, infinitys -
integer field length, types long field keys

lengthi= 2§ ... infinity:= extend(-1) shift (-1); ...

comment The initialisation of +the +type identifications
'creation', ‘'removal', and ‘'changes' as well as the field
variables ‘key' and 'type' depend on the record format. The
initialisation of 'infinity' assumes that the key is > 0., The
value of 'guessed len' may lie between the minimum length
and the maximum length of the record., If it i1s +the minimum
length, blockchanges are postponed as long as possible, and
if it is +the maximum length, intermediate savings during
changevar is avoided;

open(old maybe also setposition on the documents;
invar(old)s invar(trans); outrec6(new, guessed len)s
new,length:= guessed lenj new.,key:= infinity;

rep: 3 comment The following code determines an action number
which may be thought of as a binary number 1 <= action <= T,
where 1 means new contains the lowest key, 2 means trans con-

tains the lowest key, U4 means old contains the lowest keys

first:= old.key; action:= Ug
if trans.key = first then action:= L + 2
else if trans.key < first then
begin first:= trans.keys action:= 23
end; .

if new.key = first then actlon:i= action + 13
else if new.key < first then action:= 13

case action of
begin

g GEVAR ; 9 —9

begin comment output the ready record;
outrecb(new.guessed len)s
new.key:= infinity; hew.length:= guessed len;
end 13 -

begin comment the transaction should be a creations
if trans.type < creation then error;
trans.type:= ... perform necessary changes in transj
chengevar(new, trans); invar(trans);

end 23

begin comment the transaction must be a removal or a changes
if trans.type = creation then error;
if trans.type = removal then new.key:= infinity else
begin :
. oo perform changes in new, perhaps make
new,length:= new_lens changevar(new, new);

oecoe

checkvar(new);
ends
invar(trans);
end 33
begin comment no transactions to this record
old to new:
-7 changevar(new,01d); invar(old);
end Lg

begin comment 2 records with the same key exist. This is
a serious errors
alarms

end 53

begin comment let the transaction wait until we have been
through the logic once morej
goto old to news

end 63 -7

begin comment if all three keys are equal to infinity, we
have finisheds
if old.key = infinity then goto mergeends
alarmealls

end T

end actionsj
goto reps

mergeend: seeco Put a correct end record into new, maybe check the
end records of old and trans, close the zones properly.

ends

If +the number of transactions is not small compared with the number
of records in old, the checkvar-call concluding action 3 should be moved
so +that it is performed just prior to the outrec-call in action 1. Note
that in +this algorithm +the number of new records is not counted in the
free zone parameter (see 9.27), as outvar is never called.

9-10 CHECK, CHECKVAR

9.12. Procedure.check

This procedure waits for and checks an answer from a transfer in
exactly the same way as high level zone procedures check their transfers,

Call: check(z)

-z (call and return value, zone). The operation given in
used share of =z (see 9.27, getzoneb) is, waited for
and checked,

The algorithm is given in 6.3.2, wait transfer. Section 6.3.3 describes
the standard error actions,

9.13. Integer procedure checkvar

This procedure calculates the record checksum of a record with the
format of a variable length record as generated by outvar (see 9.48), The
checksum is stored in the second word of the record. The procedure is in-
tended for use in the very special cases where the checksum is destroyed
or becomes invalid or where a checksum is needed later on.

Call: checkvar(z)

checkvar (return wvalue, integer), The checksum which was
stored in the record before call of checkvar,
2 (call and return vaine, zone). Specifies the record

for which: the checksum must be calculated, and where
it is stored.

Zone state:

The record length givern in +the first word of the record must be
greater than or equal <o 4 and equal to the record length of the zone
descr ptor (see 9.27). The zone state is irrelevant and unchanged.

No transfer is initiasted by checkvar,

Exsmple 1, simulating an end-record.
— In end record may be generated in the block procedure waen tapemark
is sensed

procedure endfile(z,s,b)s
Zone 7 2
integer s,b 3
¥ s extract 1 = 1 then stderror(z,s,b)
else if b > O ‘then
begin integer array descr(1:20);
integer field reclen,firstwords
reclens= %23 firstword:= 2§
getzoneb(z,descr) ;
be= descr.reclen:= z,firstword:i= lengths
ceeno Beh Other parameters in the records
checkvaréz);
setzonet(z,descr);
ends

Q

The zone shoulé be opened with giveup mssk 1 shift 16.

Example 23
oSce exanple 2 of invar, 9.33.

CLOSE 9«11

9.1k, Procedure close

Terminates the current use of a zone and makes the zone ready <for a
new call of open. Close may also release a device so that it becomes
available for other processes in the computer,

Call: close(z,rel)

z (call and return value, zone). Specifies the document,
the position of the document, and the latest operation
on Ze

rel (call value, boolean), True if you want the document

to be released, false otherwise,

Close terminates the current use of the zone as described for setpo-
sition, 9,58, If the document is a magnetic tape which latest has been
used for output (state 3 and 6, see getzoneb, 9.27), a tape mark is writ-
ten.

Finally, close releases the document if rel is true. Releasing means
for a backing storage area that the area process description inside the
monitor is released for use by other zones of yours., The area itself is
not removed and you may later open it again,

In case of a magnetic tape, two kinds of release exist: If rel is
true and the binary pattern 1s false add 1, the tape will be released,
which means +that +the +tape is not needed later in the run. Release of a
work tape means +that the <tape is made available to other users. If rel
is true with another binary pattern, the <tape may be unmounted now (for
instance if +tape stations are sparse), but it will be needed later in
the run, In both cases a message is sent to the parent asking for re-
lease or suspension of the tape.

Releasing means for other documents, +that the corresponding periphe-
ral device is made available for other processes.

Zone state
The zone may be in any state when close is called. After the call the

zone is in state L, after declaration meaning that it must be opened be-
fore it can be used for input/output again,

Example 1:
acking storage area which you want to open more times should not
be released, because that may allow other processes to remove it or out-

put to it. Avoid it in this way:

open(master,t,<:bs52:>,0) ;

fOr eee d0 outrect(master, o
close(master,false);
open(trans,t,<:bs52:>,0)3

eo0 e

Example 23
Tet z1 and z2 be two zones which describe magnetic tapes. If you want
to close them and rewind them, proceed in tThis way:

setposition(z1,0,0); setposition(z2,0,0)s
close(z1,false)s close(z2,false)s :

The rewindings are then performed in parallel and completed when close is
called, '

9-12 C0S, ENTIER, EXOR

9.15. Real procedure cos

Call: cos(r)

— cos (return value, real). The mathematical function cosine
of the argument r.-1 < cos < 1. :
T (call value, real, long or Integer). The argument in
radians,
Accuracy:
abs(r) < 7/2 glves a relative error below 1.2'=10
abs(r) > /2 To the relative error of 1.2'-10 must be added <the ab-

solute error of the argument, r*3'-11, This means that
cos is completely undefined for abs(r) > 3'10, and
then the result is always O,

Example:
Tet d be an angle in degrees, The cosine of 4 is then

cos(3.1415 9265 359/180+%4)

9.16. Entier

This monadic operator transfers an expression of +type real to the
largest integer not greater than the real expression. The operation may
cause integer overflow,

Syntax: entier <real> is of type integer
Priority higher than %%,

9.17. Long procedure exor.

Performs the function 'exclusive or on two 48 bit entities a and b.
If bit patterns (see 3.1.6) of a and b are shorter than U8 bits, they are
extended by repetition of the sign bit.

Call: exor(a,b)

exor - (return value, long). Bit pattern equal to -, (a==b)
performed bit by bit after possible extension of the

arameters a and b.

?call value, short string (text portion), real, long,
integer or boolean)., The two parameters do not have to
e of the same kind. They are - if necessary - extended
and they are handled as described below.

a,b

Handling of a and b according to kind:

String: TE 15 Lested that & string parameter describes a text portion
or a short string (see 3.6.3). This is a 48 bit entity.

Real: A real is represented by 48 bits, no conversion.

Long: A long is represented by 48 bits, no conversion.

Integer: An integer is extended to a long as if the operator extend
(see 9.19) had been applied.

Boolean: A boolean is considered as a short integer. The 12 pit boolean
pattern is extended to a L8 it long according to the algorithm-

FXP, EXTEND 9-15

int:= boo extract 12;
if int > 2047 then int := int - L096;
param:= extend intj

The rules for extension dimply that actual parameters with values
true, -1, and extend (-1) are equivalent. Note that the rules also imply
that the effect of an integer with the value 2048 differs from the effect
of a boolean with the value false add 2048,

Example:

T In certain data transmission problems, a check character, which is a
longitudinal parity check of a data block is needed., If the block is of
more than 6 characters, the algorithm for finding the check character may
look somewhat like this:

longfield:= firstword + 23
checkword:= z.longfields
for longfield:= longfield + L4 step 4 until lastword do
checkword := exor(checkword,z.longfield);
if longfield - 4 <> lastword then
checkwords= exor(checkword,z.lastword);
checkword:= exor(checkword,checkword shift (-24));
checkword: = exor(checkwa . -itract 8, checkword shift (-8));
checkchar:= exor(checkword,checkword shift (-8)) extract 8j

9.18, Real procedure exp

Call: exp(r)

exp (return value, real). The exponential function of the
argument r, e¥xr,
T (call value, real, long, or integer). r < 1000,
Accuracy:
r=0 gives exp = 1.
r < =1000 gives exp = 0.

abs(r) < 1n(2)/2 gives a relative error below 8,5'-11.

(n-0.5)*In(2) <= abs(r) <= (n+t0.5)*In(2) gives a relative error below
12'=10 + n*2'a11,

Alarm A value of r greater than 1000 will terminate the run.

90190 Extend

This monadic operator operates on an integer expression and converts
it into a 48 bit long.

Syntaxs extend <integer> is of type long
priority higher than #*

Example:

As operations on integers give integer values, an unwanted Iinteger
overflow may occur when two integers are multiplied. This may be avoided
if the operator extend is applied on one of the operands. '

totals:= extend pleces ¥ price

This is of course only relevant if totals reasonably can exceed 8 000 000
and is a longe

9-1k EXTERNAL, EXTRACT

9.20. External

This delimiter replaces the first begin of the program when an algol
procedure is translated alone,

Syntax: external <procedure declaration>$ end is a program.
A maximum of 7 parameters is allowed,

A procedure translated in +this way becomes a standard procedure,
which means +that other algol programs may call the procedure without ha-
ving to declare it. The name of the procedure is the name of the backing
storage area in which it was translated., All standard identifiers used
from the procedure must be present in the catalog when the procedure is
translated, but the actual code determining these standard identifiers is
not copied wuntil +the procedure itself is copied into an ordinary algol
program. ;

The name of an external procedure may not contain capital letters,
because they are forbidden in names of backing storage areas.

Example:
L standard function 'tg' may be compiled in this ways:

tg=algoly File processor commands, see ref, 2 and ref. 8,
external real procedure p(r); value r; real T3
begin real v§
vi= cos(r);
p:= if v <> 0 then sin(r)/v else '600
ends end
scope user tgs File processor command,

From another program it may be used like this:
write(out, (1+tg(B/2)) /(1-t2(B/2)))3
Assume that the procedures cos and sin are replaced with better versions.

These new versions will automatically be used whenever +tg 1s used during
the translation of an algol program,

9.21, Extract

This dyadic operator is used for unpacking of integer values from a
real, long, integer, or boolean value.

Syntax: <real> extract <primary> 1s of type integer.

- <long> extract <primary> is of type integer.
<integer> extract <primary> 1is of type integer.
<boolean> extract <primary> 1s of type integer.
Priority as %%,

Extract treats the left hand operand as a binary pattern (see 3.1),
the right hand primary is rounded to an integer if it is of type long or
real (see 9.57) and now extract extracts a number of the rightmost bits
as indicated by the value of the primary. These Dblts are extended with
zeroes in front if necessary. The resulting value is the integer with
these bits as its binary pattern. The result is undefined if the, pos-
sibly rounded, primary has a value below O or above 2k.

EXTRACT 9-15

Exam@le 1, simple splitting.
A boolean may be split into two integers in this way:

i2:= D extract 63 il:= b shift (-6) extract 63
Both integers will be in the range O to 63,

Example 2, splitting with sign.
A real may be split into two signed integers in this way:

il1:= r shift (-24) extract 2U4; i2:= r extract 24;
Usually a signed integer is packed and split in this way

comment =32 <= 1 <= 31}
ri= r shift 6 add (i+32);

®e0

it= r extract 6 - 323

Example 3, splitting of text into characters.
K Text string stored in the integer array ia may be split into a se-
quence of characters stored as integers in the array char in the following

ways:

comment ¢ is the current index within char,
s counts positions within ia(i);

s:= 1:= 03

for ci= 1,ct+1 while ch < 0 do

begin
if 8 < O then s:= s + 8 else
begin st= -163 i:=1 + 13 t:= ia(i) end;
char(e):= ch:= t shift s extract 8

ends

A faster version, which always splits ia(i) into 3 characters even if one
of them is the stop character (0), works like this:

comment ¢ is current index within char, t contains ia(i)s
ti= ci= =25 1= 03

for c:=c + 3 while t extract 8 < 0 do

begin

fe= 1 + 13 te= ia(i)s
charg c):=t shift (-16) extract 8;
et1):= t shift (-8) extract 8;
char(c+2):= t extract S
end,

Example L, scaling of reals.
~ An array of reals may be scaled so that all elements are in the range

-1 <r<1 in the following way. The mantissas are not touched so that
fulT accuracy is maintained. The main problem in the algorithm is the
handling of the sign of the exponent.

9-16 FIELD

maxs= -20L483
for i:= 1 step 1 until n do :
begin

et= ra(i) extract 125 if e >= 2048 then e:= e - L0O96s
if e > max then maxi= e}

ends

comment max is now the maximal two's exponent;

for bfi= Ubxn step -4 until 4 do

begin
e:= ra.bf extract 123
if e >= 2048 then e:= e - 40965 e:= e - maxs
if e < =2048 then ra(bf shift (-2)):=0

else ra.bf:= false add ej
ends

The subscript expression bf shift (-2) is slightly faster and a
little shorter in the translated code than bf//L.,

9,22, Field

This delimiter is wused to declare or specify field varisbles (see
5T 4.7.1, and 3.1), Field variables are pointers allowing reference to
fields of various kinds (variable field and array field) within arrays
Oor zone records,

The syntax and semantics are explained in sections 3.1.7, 3,103,
31403, 3.1.5, 34148, 42, hTo1, LeTe5, 5.2.6, 5.2.7, 5.7, eand the sub-
sections, Here a more informal description will be given.

Field variable declaration and specification:

<type> field <field list>
<type> array field <field list>
array field <field list>

The declaration ‘array field <field list>' declares real array field va-
riables, A field l1list is a list of identifiers separated by commas,

Field variables are used in field references or they may be used as
integer variables,

9.22,1, The field concept and Algol 6,

A file may be seen as a set of records and a record may be seen as
a set of fields, where a field is the smallest entity which 1in some con-
nection is considered as a unit of data. The terms field, record, and
file can only get a meaning when they are defined together with a specific
data set and the operations on it. Therefore there is no logical conflict
in subdivision of the levels in the hierarchical relation

field & record € file,

The Algol 6 field concept is defined along these lines but it is ex-
tended in that it is applicable to arrays of any type as well as (zone)
records, The Algol 6 fields may be varisbles of the types boolean, inte-
ger, long, or real, or they may be arrays of the same types. Array fields
are one dimensional,

FIELD 9-17

Please note +the difference between +the concepts !'field variable!
meaning the pointer and 'variable field'! meaning the piece of data poin-
ted at. .

Fields are selected by means of a byte-address within the array or
record. The Ilength of the selected field is defined by a type associated
with the field variable. To wuse field variables it is necessary to know
how elements are stored and represented in an array.

In a real or a long array each element takes up 4 bytes. In an inte-
ger array the elements take up 2 bytes each, and in a boolean array one
byte per element is used. The number of bytes taken by an element is
called the type length.

Example 1:
1T a program contains the declarations

real array RA(1:3)s long array LA(1:3)3
integer array IA(1:5)3 boolean array BA(1:11);

then the byte numeration is according to this scheme:

RA(1) RA(2) RA(3)

1 2 3 b 5 6 7 8 9 10 11 12
1A(1) LA(2) LA(3)

1A(1) IA(2) IA(3) TA(L) IA(5)

1 2 3 L 5 6 7 8 9 10

BA(1) BA(2) BA(?) BA(L) BA(5) BA(6) BA(T) BA(8) BA(9) BA(10) BA(11)

1 2 3 L 5 6 7 8 9 10 11 A

The general rule for the byte numeration, which applies to arrays with
any number of indices and with lower bound <> 1 is explained in section
5.2.6, In short we have:

The byte with mumber O (zero) is the last byte in the (possibly fictive)
element with subscripts (O, Oy eee 4 O)e

Example 2:
IT a program contains the declaration

real array B(1:2,0:1),
the array may be sketched like this

lexicographical index

0 1 2 3 b 5
B(0,0) [B(0,1) | B(1,0)| B(1,1) B(2,0) B(2,1)
by‘te no.
. :_:n_é—Rnélé_i 5 6|7 8/9 10]11 12[13 14]15 16[17 18|19 20 A

non existent word boundaries

9-18 FIELD

Fields of integer, real and long type are synchronized with the word
boundaries of the RC 4000. For arrays which are not formel, (see 9.22.3)
the word boundaries are between an even numbered byte and its odd numbered
successor,

This implies that field variables with these types associated should
preferably assume even values, If such a field variable is assigned odd
values it will denote the same variable as it would if one had been added.
But as odd plus odd is even, you may easily make an error if odd field
references are used, This is especially the case when you use array fields
as actual parameters in procedure calls (see further in section 9022,5).

9,22,2, Field variables and fleld references.

Field variables are assigned values in the same way as integers. The
value assigned is an integer. In fact field variables used outside field
references behave as normal integers independent of the type associated.

Example 3: ,
or balance:= L step 48 until 340 do
sum:= A,balance + sum; lﬁi

Associated with a field variable is - as already indicated - a +type. The
associated type may be real, long, integer, or boolean. A field variable
may denote a variable or an array of the assoclated type lying within an
array of any type or within a zone record.

In the field reference A.f, we refer to A as the field base and to
f as the field variable, -

The Tocation of the field referenced by a denotation 1like this de-
pends on

1) the value of f

2) the type associated with f

'3) the lexicographic order of the elements in A
The byte to which a field reference points will be called the reference
byte,

Tn field references simple field variables denote variables of the
type associated with the field variable, and array field variables denote
fields that are arrays, The type of the array field is the type associa-
ted with array field variable.

In a wvarisble field reference the reference byte should be the
rightmoSt Dybe in the field referenced. ;

Example U:
TT the program in example 2 contains the declarations

integer field balance,funs
real field rates

and the initialization
balance:= U3 rates= 203 fun:= 103

then

FIELD 9-19

B.rate refers to the real element B(2,1)

B.fun refers to the integer variable placed in the first
half of B(1,1), i.e., the value of B.fun is
the same as the value of B(1,1) shift (-2k)
extract 2U.

B.balance refers +to the non-existing integer element with
byte numbers 3 and 4, Therefore the program
with +this reference will Dbe terminated with
field alarm.

A simple real or long field variable may point at a field consisting
of two words from adjacent variables of the array. Thus if rate = 18, it
refers to a real variable consisting of the last half of B(2,0) and the
first half of B(2,1). A

If A is an array of any type or a zone record, and if F is an array
field identifier with any associated type, then

the reference A.F denotes a one dimensional array where the reference
byte derines the - possibly ficutive - element A.F(0).

The bounds of the array field are defined so that
bound byte in field = bound byte in base - field variable.

The bound bytes are the first and last bytes in the field. The bound
bytes are not necessarily accessible by indexing.
Special rules apply when array field references are used as parame-

ters to procedures., These rules are discussed in section 9.22.3.

Example 5:
a program contains the declarations

long array A(1:3)s
integer array field iaf;

then the assignment
iaf:= O3

will define an integer array A.iaf with the same locations as A, The

array A.iaf may be sketched like this:

A.iaf(1) A.iaf(3) A.iaf(5)
L A, ia£(2) A iaf(l) A.iaf(6)
0 |1 2 | 3 k 6| 7 8| 9 10| 11 12
A1) A(2) A(3)

We see that if the long array is declared with lower bound 1, the integer
array will also have its lower bound 1, when the field variable has the
value O. If we have the assignment

iaf := 63

o
€]
9-20 FIELD

the integer arrasy is allocated like this:

A iaf(-2) A.iaf(0) A.iaf(2)
L A.iaf(-1) | Adiaf(1) A.1af(3)
0|1 2 3 L 5 6 7 8 9 10| 11 12
A1) A(2) A(2)

The index bound for the integer array are as 1if it had been 'declared!
integer array A.iaf(-2:3).

We may use a field reference +to define a field in an array field,
for instance with iaf = 0, we may refer to the first half of A(2) by
means of an integer field subtotals = 6, The reference looks like this

A.iaf.subtotals
With iaf = 6, this reference denotes the last half of A(3). ‘ lﬁ&'

9.22,%, Fields as parameters to procedures

Note that field variables may be used as actual parameters to proce=-
dures., They behave as integers., Formal parameters may be specified as
field varisbles, but they must not be called by value. The actual must
be integer. In the procedure body they act as field variables,

Variable fields as actual parameters are handled in the same way as
subscripted variables., This means that if the corresponding formal is not
called by value, the field will be evaluated each time the formal 1s re-

ferred (Jensen's Device).

Array fields are evaluated and a description of the array field as an
array is set up before the procedure is entered. This description, local
to the procedure is made so that references to the array parameter are
just as effective as references to an array declared local in the proce-
dure body.

If you restrict yourself to using actual array field references
where the reference byte index is a multiple of the type length, and the
field base is one dimensional with lower bound 1, you will hardly run
into trouble.

Otherwise the formal array may be 'cut' in order to ease and secure
index check in the procedure body. The 'cutting' is made so that the
number of bytes between the reference byte of the array field and the
first accessible byte of the formal array 1s a multiple of the type
length. The term 'between! is to be understood so that

(address(ref byte) - address(lower bound byte) - 1) mod typelength =0

is true.

FIELD 9-21

Example 63 .
Consider a program like this:

e00C
long array LA(1:2)3
long array field lafs
procedure test (1a);
long array la 3
begin boolean field bfs integer I3
svs 1ali) see laSE ves
ends

test(LA.laf) s

For some values of laf, the accessible parts of the formal array la
may be sketeched like this

laf inter- inter-
val of i val of bf
| iR N S -1 N . R R
wli L 5 6 T 8 19 10 F11 12} 2:3 5:12
5 L_E_ 6 7 |8 9 |10 11| 2z 5211
-2 5 6 |7 8|9 10| 2:2 5:10
-1 J 5 5 % "§: '“9 2:2 5320
——— by I s o o Reas i, 7 7
0 | 1 2 g b 5 6 7 122 1:8
b - ";_"_‘,‘_".I;.”_‘.?._'_ N IR '“L.J e
1 1 2 > |k 5|6 121 1:7
2 12 |3 L5 6] 11 1:6
3 [1T 2 3k 59 125
f'::_'_—‘—:_f R SRR S S
L LI? ___2 . -1 0 1 2 3 E O:1 =3l

Bytes with equal locations are shown in the same columm.

The reference byte numbers corresponding to indexing in la are under-
lined, and the bytes accessible by direct indexing are double overlined,
The word boundaries are shown as lines going from line to line, tﬁ&

In arrays which are actually fields, the word boundaries are only
between an even numbered byte and its odd numbered successor, if the va-

lue of the field variable is even.

If an actual array in a procedure call is a multiple fielded array
or record, only the type length associated with the last array field va~
rigble is used in a possible 'cutting'! of the lower bound.

9-22 GETPOSITION, GETSHARE

9.23. Procedure getposition

Gets the block and file number corresponding +to the current logical
position of a document.

Calls getpositiongz,File,Block)
- = call value, zone). Specifies the document, the posi-
tion of the document, and the latest operation on z.
File (return value, integer). Irrelevant for documents other
than magnetic tape. Specifies +the file number of the
current logical position (see 6.1). Files are counted
0, 1, 2, woe '
Block (;eturn value, integer). Irrelevant for dccuments other
than magnetic tape and backing storage. ©Specifies the
block number of the current logical position (see 6.1).
Blocks are counted O, 1, 2, «es

Getposition does not change the zore state and it may be called in
all states of the zone, If the zone is not opened, the position got will
be undefined, however, The position is also undefined after a call of

close,

Example 1: »
During the generation ¢f a magnetic tape, you may note the position
of a particular record and later return to that block:

outrecH(z,10);3
getposition(z,f,b);
outrect(z,10)3
setposition(z,f,b)s inrect(z,10)3

If you want to get the same record sgain, you may use getzoneb (see 9.27)

to get the position within +the block, or you may use the value of inrecb
or outrecH6 to denote the position within the block.

9.2k, Procedure getshare

Moves the contents of a share descriptor into an integer array for
further inspection. The procedure is the Algol 5 version of getshareb,

Call: getshare(z,ia,sh)

z (call value, zone)., Specifies the share together with
sh.

ia (return value,integer array,length > 12)

sh (call value, integer). The nurber Of a share within z,

The contents of the share descriptor are moved to the
first element of ia and on.

Works as getshare6 (see section 9.25) except that getshare computes first
shared and last shared as a buffer index instead of as a byte index. The

puffer index is equal to (byte indexff)//”-

GETSHAREG 923

9.25, Procedure getshareb

Moves the contents of a share descriptor into an integer array for
further inspection., The procedure 1s designed for the primitive level of
input-output, where you implement your own blocking strategy for the pe-
ripheral devices, and for wuse in the block procedures where you want to
interfere with the standsrd handling of devices., Skip it if you are sa-
tisfied with the high level zone procedures,

A share descriptor consists of 12 pieces of information, most of
them with names originating from their use in lrigh level zone procedures.
The explanation below requires some knowledge of hendling of peripheral
devices (see ref. 8).

Tre share descriptor cortains certain absolute addresses of bytes
within the zone buffer. The reason for this and the relation between the
absclute address and the wusual byte index are given for the procedure

getzcneb,

Callt getsharet(z,ia,sh) \

e (call value, zcne). Specifies the share together with
sh.,
ia (return value, integer array, length > 12), The fol-

lowing 1list assumes thst ‘ia' has™ been declared as
ia(1:12). ' ’

sh (call vadile, integer). The nurber of the share within
7z, The cortents of the share descriptor are moved to
the first element of ia and on.

1a(1) Share state. Describes what the share is used for:
= message buffer address for an uncompleted transfer or a stopping

child process.
-process description address for a running child process.

0 for a free share. See below,

1 for a ready share, See below,

ia(2) First shared. Byte index for +the first element available for a
block transfer which usss this share and was started by a high le-
vel zone procedure,

ia(3) Last shared, Byte index for the last element availlable for a block
transfer wnich uses this share and was started by a high level zoae

rocedure,

ia(l) o ia{11) Message. A high level zone procedure leaves the latest
message sent by means of +this share in the message parc of the
share dsscriptor. A message describing a block transfer 1s come-
posed like this, !

/]

ia(l) operation shift 12 + mode

ja(5) first sbsolute address of block

ia(6) last absolute address of block

1a(7) segment nurber {only sisnificant for backing storage)

1a(12) Top transferred. The sabsolute address of the byte just after the
1atest block transferred by means of this share. Top transferred

Nee

may &iffer from 1a(6) + 1 after an input operation, for insbances

9.2l GETZONE

Free and ready share

The output nrosedvres dd not distinguish betwsen a free and ready
share, but whenever an input procedure tries to get a new block of infor-
mation, it assumes that a ready share coantains a block of information ale
ready and that a frees share mist be filled with a block from the devicea.

Example 1:

ISt Tz be declared as ={300,3,stderror) with base buffer area =
29 999, (see dafinition in 9,27) and assume that you have opensd the
Z0ONe, The calls getshare6(z,ia,1), getshareé(z,ia,Z), and getshared
(z,1ia,3) will now yield the following results in tvpical situstions (x
designates an undefin=d value):

ia{1) da(2) ia(3) dia(l) 1a(5) ia(6) ... iaf12)

When the first block of input 1s being processads

nusad share 0 1 Loo input 30 000 30 398 30 276
share? >0 401 800 input 30 400 30 798 X
share3 >0 801 1200 input 30 800 31 193 X
When the first block of output has bean producad:

snarel >0 1 409 output 30 000 30 350 X
usad share 0 4o 800 4 30 400 30 798 X
share? 0 801 1200 X 30 800 31 198 X
Just after s=tposition for a magnetic tape:

usad share >0 1 400 move position 30 398 X
share? 0 4o 800 X 30 400 30 799 X
share3 0 801 1200 X 30 800 31 198 X

9,26, Procedure getzone

Moves the contents of a zone descriptor into an integer array for
further inspection. Tne procedure 1s the Algol 5 version of getzonsb and
WOrKsS as getzone6 excaDy that the record length is given in buffer ele-
ments instead of oytes,

A buffer slement consists of U4 bytes.

Last byte of a buffer slement, the reference byhte, has the absolute
address:

base buffer area + 4 * buffer index.

Call: getzone(z,ia)

zZ (call valve, zone). The contents of the zone dsscrip-
tor are moved to the first element of ia aad oo,
ia (return value, integer array, leangth > 20).

Gatzone should only be used if the wone has onlybeen used for in-
rec, outrec or swoprec. As it cuts the record length to an integral num-
ber of elements, it may give misleading results if the Algol 6 proce-
dures inrecH, outrecb, swoprec6, changerecH, invar, outvar, or changevar
have bean ussd.

For further description see 9.27, getzoneb.

GEZ0NES 9-25

9,27, Procedure getzoneb

Moves the contents of a zone descriptor into an integer array for
Purther inspsction. The procedure i1s designed for the primitive level of
input-output, where you implement your own blocking strategy for the pe-
riphsral devices, and for use in the block procedures where you want to
interfere with the standard handling of the dsvices, Skip it if you are
satisfied with the high level zone procedures.

A zoane descriptor consists of 20 pieces of information, most of them
with names originating from their uss in high level zone procedures.

The zone buffer is Jjust a saquence of r2al variables - from the
point of view of the algol program - but other processes (peripheral de-
vices, etc.) regard it rather as a sequence of bytes, each being identi-
fied hy its absolute address,

If you want to communicate with other processes on the very primi-
tive level (procedure monitor), you cannot avoid the sbsolute addresses,
They are related to the usual byte index in this way:

The reference byte of a field in the zone has the absolute address:

base buffer area + byte index.
This expression also defines the quantity 'base buffer area' as the abso=-
lute address of the byte preceding the zone buffer area. The value of
'base buffer area'! and certain other byte addresses are avallable by means
of getzoneb.

Call: getzoneb(z,ia)

Z (2all value, zone). The contents of the zone descrip-
tor are moved to the first element of ia and on.
ia (return value, integer srray, length > 20). The fol~-

lowing 1ist assumes that ia has been declared as
ia(1:20).

ia(1) Mode shift 12 + kind., Values and significance are explained under
the procedure open.

1a(2) to 1a(5) Process name. The name of the process (document) with which
the zone communicates for the moment., The name 1s extended to 12
characters using null characters for fill.

1a(6) Name table address. The corresponding variable in the zone descrip-
tor is wused by the monitor to speed up the search for the process
given by the process name,

ia(7) File count. Only significant for magnetlc tape handling. ©See ex-
planation below,

1a(8) Block count. Only significant for magnetic tape handling. See ex-
planation below, ,

1a(9) Segment count., Only significant for handling of backing storage
areas, See explanation below,

1a2(10) Give up mask. See 6.3. -

1a(11) Free parameter, Is used by the Fortran read/write system and by the
var-procedures. See explanation below.

ia(12) Partial word. Used by the procedures for input-output on character
level to unpack or pack characters. See explanation below.

ia(13) Zone state. Used by high level zone procedures to keep track of
the latest operation on the zone. See below,.

1a(14) Record base. The absolute address of the byte preceding the first
byte of the present record., During character input or output the
record may be regarded as the word in the zone buffer in which the

partial word will end or from which it came.

0-26 GETZONES

1a(15) Last byte. Absolute address of the last byte of current block., Du-
ring output the block matches the shared area used for the moment,
during input the block matches th° block transferred from the de-
viceo

ia(16) Record length. Number of bytes in the preSent record, Notice that

‘ the record length is O during character input or output.

ia(17) Used share, Number of a share within z, Used share will in high
level zone procedures be the share in which items are stored for
the moment or from which they are fetched,

ia(18) Number of shares., The value given in the zone declaration.

1a(19) Base buffer area. See above.

ia(20) Buffer length., The values given ir the zone declaratlon, i.e. meas-
ured in double words.

File count, block count » !

In the high level zone procedures of algol the two variables, file
court and block count, are used in two ways: When a tape positioning is
initiated, file and block count denote the wanted final position. When a
block transfer has been checked, file and block count denote the physical
position corresponding to the end of that block,

Segment count

The current value of segment count is used as the bth word of every
message sent to a device by the high level zone procedures. It will only
have significance when the message is sent to a backing storage process,
however, As soon as the message is sent, segment count 1s updated to cor-
respond to a transfer of the next block from the backing storage.

Free parameter

The so called free parameter may contain anything if the zone is not
used by the Fortran read/write system or by the procedures changevar, in-
var and outvar. It is set to zero when the zone is declared. The var-pro-
cedures use this parameter as a counter of logical records generated or
read by the procedures, The var-procedures are described in the ssctions
9.11, 9.3% and 9. 48, The Fortran read/wrlte system uses the last bit of
this parameter to signal if the latest call of read or write used format
or formatO. A one in the last bit means that formatO was used and a null
means that format was used, See ref, 9 for further details.,

Partial word
Dne element of the zone buffer consists of two words. Each of ‘the

words contains 3 characters like this: chl shift 16 + ch2 shift 8 *+ ch3.
Partisl word may after the call of a procedure on the character level

contain this:

After input: After output:

ch?2 shift 16 + ch? shift 8 + 1 1
ch? shift 16 + 1 shift 8 ' 1 shift 8 + chi

1 shift 16 1 shift 16 + chi shift 8 + ch?2

Zone state

The action of a high level zone procedure will in general depend on
the latest operation upon the same zone.

GETZONES Gt

zone state = 0 positioned after open.

after character reading.

after repeatchar.

after character printing.

after declaration.

after record input.

after record output.

after record swop.

after open on magnetic tape,

after some procedures not described in this manual.

O O~ W Fu o=

iv

The procedure setposition expects the zone state to be 0, 1, 2, 3,
5, 6, Ty Or 8 and leaves the zone state = O.

The procedure open expects the zone state to be U4 and leaves the
zone state = 0 or 8,

The procedure close leaves the zone state = ki,

The procedures inrec, inrecb, and invar expect the zone state to be
0 or 5 and leave the zone state = 5.

The procedures outrec, outrecH, and outvar expect the zone state to
be O or 6 and leave the zone state = 0,

The procedures swoprec and. swoprech expect the zone state to be O or
T and leave the zomne state = 7o

The procedures read, readall, readchar, and readstring expect the
zone state to be O or 1 and leave the zone state = 1.

The procedures wrlte, outchar, outinteger and outtext expect the zone
state to be O or 3 and leave the zone state = 3.

Example 1:

Tet z be declared as z(2%128,2,stderror) and opened as the backing
storage area <:sldatal5:>., After 130 calls of ‘outrect(z,4)' the call
getzoneb(z,1a) will vield something which only depends on the value of
base buffer areal

variable contains

ia(1) ;modekind L

ia(2)-1ia(5), process name <:sldatal5:>,0

1a(6) yname table address Some address

ia(7),file count 0

ia(8),block count 0

ia(9) ,segment count 1(prepared for output of the next segment)
ia(10),give up mask As defined by open

ia(11),free parameter 0

ia(12) ,partial word 1

ia(13) ,zone state 6(after outrect)

ia§1’+),record base 30 515(base buffer + 4x128 + k)
1a(15) ,1last byte 31 023(base buffer + 4x255)
ia(16) ,record length b

ia(17) yused share 2(one block output already)
ia(18) ,nunber of shares 2

ia(19),base buffer area ; 29999

1a(20) ,buffer length 256

9-2 IN

Example 2, character output to core store:

~Numbers may be transiormed O character form by means of write. The
only problem is that you do not want to output the characters on a device,
but rather keep them in long variables as text portions., This is possible
by means of getzoneb,setzoned, :

begin zone convert(10,1,stderror); integer array ia(1:20);
open(convert,0,<: dumny:>,0) 3
rep: write(convert,<<ddd.dd'di>,the number to be converted,false,2);

comment the partial word has been forced into the buffer by the
2 null characters;

getzoneb(convert,ia);

ia(12):= 13 ia(14):= 1a(19)s 1a(16):= Los

setzoneb(convert,ia)s

comnent Now +the record contains the number in character form.
Record base and partial word are ready for converting
the next number; o

x1:= long convert(1); x2:= long convert(2); ...

goto reps

Example 3, improved setposition ,

The procedures getposition, setposition do only enable a device to be
positioned at the beginning of a block. You may reasume reading from the
middle of a block on magnetic tape or backing storage in this way:

comment generalised getpositions

read(z,o00)3

getposition(z,post,pos2); getzoneb(z,ia);

comment pos3 is the relative position within the used share;
pos3:= ia(14) - 1a(19) - 1a(20)#4//1a(18)*(1a(17) - 1)3
posh:= ia(12);

comment generalised setposition, perhaps with the device con-
nected to another zomes

setposition(z1,pos1,pos2); readchar(z1,e)s

comment now the device is positioned and +the first block 1s
read into the first share;

getzoneb(z1,1ia)s)

1a(14) 1= pos3 + 1a(19); ia(12):= posl; setzone6(z1,1a)s

read(z1,...)§

9.28, In

The standard identifier 'in' is a preopened zone available for input
on character level. The actual file connected to the zone is determined by
the file processor command which started the program (see App. B).

The call <program> will let 'in' be the current input file of the
file processor. The call <program><text file> will let 'in' be the file
<text file>. The call <program><integer> mskes 'in' unavailsble (but

frees some space in ‘the job area).
When the program terminates the latest operation on tin' must have

been a call of a character reading procedure.

INCREASE, INREC 9=29

9.29, Integer procedure increase

Used in connection with a varisble text as parameter to write, open,
etco,
Call: increase(i)
increase (return value, integer). The procedure performs:
increase:= i3 i:= 1 + 13
but i is only evaluated once,
i (call and return value, integer) o

Example: See example 2 of string.

9,30, Integer procedure inrec

This is +the Aleol 5 wversion of inrec6. Inrec gets a sequence of
elements of U4 bytes each from a document and makes them available as a
zone record.

Call:t inrec(z,length)

inrec (return value, integer). The number of elements each
© of b bytes left in the present block for further calls

of inrec.
z (call and return value, zone), The name of the record.

Determines further the document, +the buffering, and
, . the position of the document {see 6.1).
length (call value, integer, long, or real), The number of
. elements of U4 bytes each in the new record. Length
mst be > 0.

For further description see 9.31, inrecb.
Inrec may be used with advantage, if +the document is considered to

contain reals.

Example:

Records of variable length may be handled in the Algol 5-way by means
of inrec and outrec, but you should be careful: For magnetic tapes the
record length should be checked in the block procedure to make sure that
they match the block length. For backing storage areas the unused elements
ot the block end must be skipped (outrec clears them).

Suppose the record length is stored as the first element of the re=-
cord. The record may then be fetched in this way for all devices:

rep: remaining:= inrec(z,1); lengthi= z(1);
if length <= 0 then
begin inrec(z,remaining)s;
comment unused elements are skipped;
goto rep
end;
inrec(z,length - 1)3

Another solution is to call the block procedure after all normal
answers and let it adjust or check the length. Note +that the relation
length = O instead of length < 0O would not work because a backing storage
ares is Filled up with binary zeroes (cf. 3.4.7 and 3.1.6).

Q=20 INREC6

9.31. Integer procedure inrect

Gets a sequence of bytes from a document and mskes them available as
a zone 7record, The document may be scanned sequentially by means of in-
rec6, because the next call of inrecb gets the elements just after those
got now.

Call: inrec6t(z,length)

inrech (return value, integer). The number of bytes left in
the present block for further calls of inrec6.
z (call and return value, zone). The name of the record.

Determines further the document, the buffering, and
the position of the document (see 6.1).

length (call value, integer, long, or real).. The number of
bytes in the new record., Length must be > 0, If
length is odd, 1 is added to the call value.

Zone state,.

Zzone z must be open and ready for record input (state O or 5,
see 9.27), i.e. the zone may only have been used by inrec6, invar or the
like since the latest call of open or setposition. To make sense, the
document should be an internal process, a backing storage area, a type-
writer, a paper tape reader, a card reader, or a magnetic tape. In the
1att?r cas§ setposltlon(z,...) must have been called after the call of
open(Zyeeoc)e

Blocking

— Inrec6 may be thought of as transferring the bytes just after the
current logical position of the document and changing the logical posi-
tion to after the last byte of the record,

However, all bytes of the record are taken from the same block, so
if the record cannot be taken from the current block, the block is changed
as described in 6.3, Then the record becomes the first bytes of that
block, but if it still cannot hold the record the run is terminated (emp-
ty blocks ave completely disregarded). :

Records of length O need a special explanation: 1f not even a single
word is left in the block, the block it changed and the logical position
points to just before the first word of the new block.

Note +that inrecb changes the blocks in such a way that a vortion at
the end of a block may be skipped. So be careful to read a backing sto-.
rage area with the same share length as that with which it was wrltten,
otherwise, wrong portions might be .skipped at reading.

Example 1:
le scan of a file on a magnetic tape in double buffer mode may

be programmed in this way (all records are assumed to be of 20 bytes)

begin zone file(2#128,2,endfile)s

procedure endflle(z s b) zone z§ integer s,b;

if s extract 1 =1 then stderror(z s,b) alE .
ifb>0ors shlft (-18) extract 1 = 1 then goto endscan3

INREC6 9-31

open(file,18,<:mt60030%:>,1 shift 18+1 shift 16)
setposition(file,1,0)3 comment skip the lsbel in file 03
rep: inrec6(file,20);
yi= long file(1) + file.intf;
goto rep;
endscan: close(file,true)s

The scan 1is +terminated by the procedure endfile which is called at
tape mark (1 shift 16), end of tape (1 shift 18), and all hard errors,
After the positioning (but before the first input operation) end file may
be called with tape mark indication., In this case however, b = 0, while
b > 0 after input of a tape mark.

The same piece of code would work for an area on the backing store
if the file was generated with a share length of 128 elements of U4 Dbytes
and if the second and third parameter to open were changed,

Example 2:

T~ Mwo Tiles of 100 byte records on magnetic tape are arranged in as-
cending order (sorted with respect to the key indicated by the integer
field keyf). They may be merged into one file in this way:

begin zone result(2%256,2,stderror);
zone array in(2,2%256,2,endfile); _
procedure endfile(z,s,b); zone zj integer s,bs
if s extract 1 > O then stderror(z,s,b) else
begin b= 1005 z.keyfi= large;
comment the procedure simulates the presence of a record
with a very large keys
ends

open(in(1) yeoo,1 shift 16)3 ... setposition ...
large:= (-1) shift (-1);3
inrec6(in(1),100)3 inrec6(in(2),100);
for ki= if in(1).keyf < in(2).keyf then 1 else 2
while in(k).keyf < large do
begin
outrec6(result,100);
tofrom(result,z(k),100);3
inrec6(in(k),100)3
ends :
close(result, ...)3

Exampie’B, block reading.
You may read a magnetic tape file or backing storage area block by

block in this way:

for b:= inrec6(z,0) while b > 2 do

begin

comment b is now the block length in bytes the standard ac-
tions simulate one word containing <:<25><25><25>:> at tapemark
and end of area$

inrec6(z,b)s

comment the block is now available as one records

cee 9

ends
if z.firstword < long <:<25><25><25>:> shift (-24) extract 2k

then errors

9-32 INTABLE

9.32., Procedure intable

Exchanges the current input alphabet used by all the read procedures
on character level,

Call: intable(alpha)
alpha (call value, O or an integer array of one dimension) .
A zero signals +that the standard alphabet be used.
An integer array contains the new alphabet in table
form as described below,

1. alpha is an integer array:

The actual contents of alpha are used in all calls of read procedures
until a new alphabet is selected. This means that any change in the con-
tents of alpha may have effects on the character reading. If a read pro-
cedure is called at a place where alpha is undeclared, an undefined al-
phabet is used.

To each character 'c' delivered by the peripheral device is associa-
ted a Class and a Value, determined by the read procedures in this way:

alpha(c+table index) = Class shift 12 + Value extract 12

Class is an integer, O < Class < 4095, Value is an integer, -2048 < Value
< 2047. The character Te'! is an integer, O < ¢ < 255, The IS0 characters
Ttilize only half of this interval. The sTandard integer 'table index!
is normally O, but you may use i1t to modify the alphabet. -

The class determines how the wvalue corresponding to a character is
handled:
Class = 0, blind: The character is skipped by all read procedures.
Class = 1, shift character: The value is assigned to table index and The
character is looked up again in the alphabet to determine
Class and Value,

Class = 2, digits: The character is a decimal digit the value of which 1s
Value - 48, To make sense, 48 < Value < 57 should be fulfilled.

Class = 3, signs: The character is the sTgn of a decimal number. Value =
43 means +, Value = L5 means -o

Class = 4, decimal point: The character may be used as a decimal point.

Class =5, exponent mark: The character may be used as the ' of Algol,

Class = 6, letters: The character may be used as part of a text but not
as part of a number.

Class = 7, delimiter: The character cammot be part of a text or a number,

Class = 8, terminator: The character is a delimiter as class T, but 1t

will terminate a call of readall. If value is 25, it will im-
mediately terminate a call of read or readstring.
Class > 8, other delimiters: The character is handled as class 7.

2, Alpha is O:

The standard alphabet given in section 2.0.1 is used until a new al-
phabet is selected, The value of table index has no influence on the al-
phabet. When the run starts, the standard alphsbet is selected automati-

callyo

INTABLE 9-33

You should not hesitate to use a special alphabet table: The charac-
ter reading will be speeded up compared to what you could do in algol with
the standard alphabet, and the input algorithm becomes clearer. There are
two drawbacks: 1) The table takes space, but remember that 2%128 integers
correspond to one segment of a program (10 to 20 lines), and that much is
easily saved in the central loop of the input program. 2) The table is
cumbersome to Initialise (even with the method of example 2 below), but
we believe that is inevitable. In many cases it will be an advantage to
make a procedure which initialises the table with a standard alphabet and
then add modifications to this table.

Example 1, nunber variants:

~ Assume you want o read numbers coded in ISO form but with space re=-
garded as blind information and without exponent part. You may then pro-
ceed like this:

comment initialise table with the ISO alphabet;
table(32) t= 03 table(39):= 7 shift 12 + 395 ...

comment define space, apostrophe, and all other characters;
intable(table)s table index:= 03

,read(z,...); -

Example 2, flexowriter conversion.

“It 18 possible To use the read procedure for input represented in
flexowriter code if the underlining may be disregarded. The shift charac-
ters, class 1, may ‘take care of the case shift characters. An alphabet
table of 2%128 elements is required. One way of initialising the table
goes like this:

for i:= 0 step 1 until 255 do table(i):=

(case i+1 of (0’23232929 242,242,2, LRSS
098 896,03 09297’6$69

.ooi shift 12 +

(ca.Se i+l of (32’)"'9950,51,52, 559511',55,56,57,
0,12,25,125,0, 0,48,60,115,116,

coo 3
Upper case and Lower case require

table(60):= 1 shift 12 + 1283
table(60 + 128):= 03

table(58 + 128):= 1 shift 12 + 03
table(58) := 03

Note, that if the input was flexowriter paper tapes which were read in. .

ISO-mode, the parity hole would not be the flexowriter parity hole, and
as a consequence a different alphabet table would be needed,

Example 3: See example 3 of readall.

9-3h INVAR

9¢330 Integgr procedure invar

This procedure together with outvar, changevar, and checkvar are in-
tend for easy handling of records of variable length. Every record mst
contain its own length in bytes in its first word, the length word. Invar
makes the next record written by means of outvar available as a 2zone re-
cord, A record checksum in the second word may be checkéd, and the number
of records are counted in the so called free parameter in the zone de-
scriptor (see 9.27), This procedure may call the block procedure with the
status 1 shift 11, checksum error, if +the record length wanted is < 4 or
> remaining bytes in the block or odd or 1if the checksum is calculated
and not equal to the value of the second word in the record.

Call: invar(z)

invar (return value, integer). The number of bytes left in
‘the present block,
z (call and return value, zone). The name of the record.

Determines +the document, the buffering, and the posi-
tion of the document (see 6.1).

Zone state.

T Mhe zone 2z must be open and ready for record input (state 0 or 5),
i,e., the zone may only have been used by invar or the like since the la-
test call of open or setposition, The free parameter (see 9.27) in the
zone descriptor is used to count the number of records accepted by invar,
The value of this parameter is interpreted as check wanted shift 23 + re-

cord count where check wanted = 1 means +that a checksum is calculated by
invar and checked against the second word in the record. See below for

further details.

Blocking

—You may think of invar in the way that the procedure tastes the value
of the first word just after the current logical position of the document.
Now invar exposes as many bytes as the length word indicates, including
the two bytes of this word.

However all bytes must be taken from the same block. If this is not
possible, the block procedure of the zone is called. See further on length
errors below.

If the length word is null, it is skipped and the next word from the
document is tried as length word. When there are no more in a block, the
block is changed, This covers skipping of blank block tails that may be
generated by outvar when the kind of the document is backing storage (see

9,48).

Length errors. Checksum
T The Tength word is <> 0, it 1s expected to be even, >= 4 and <=

the bytes remaining in the present blocke If not all three conditions are
fulfilled, invar will give up end call the block procedure (see below).
When the length word has passed the tests above, the contents of the
second word msy be tested as a check sum of the record., If check is wan-
ted (see zone state gbove), invar tests if the sum of all words iIn ‘the
record taken modulo 2%%24 1s equal to =3, If not, invar calls the block

procedure.

INVAR 9-25

Block procedure, call conditions.
Invar may call the block procedure in two-different situations:
a) The length word is not sensible (see sbove).
b) Record sumcheck is wanted, and the sum.is not ok (see sbove).

The call conditions for the parameters to the bléck procedure are:

z: The zone state is after record input, The defect record is
not counted in the free parameter. The »record starts Just
before the length word and depends on the length word like
this: :

record lengthi=
if length word < L or length word > remsining then
remaining else if recordlength is odd then lengthword-
+ 1 else length word,

Remaining means the number of bytes remaining in the present
block including the length word. The terms =zonestate, free
parameter, and record length is explained in 9.27, getzonebf.

s: The status word parameter has the value 1 shift 11,

b: The bytes <transferred parameter is equal to the record
length, described above.

After return from the block procedure, invar restarts its algorithm
by fetching the next logical record, A defect record will thus be skipped
if the block procedure simply ignores the call,

Example 1:

~— Your block procedure may test whether situation a) or situation b)
above has caused the block procedure to be called., This may be done as
follows:

procedure blpr(z,s,b)s zone z3 integer s,b;
begin
if s = 1 shift 11 then
begin integer field lengthwords lengthword:= 23
if b < 4 or b < z.lengthword then
begin comment length errors
end '
else
begin comment checksum errors ...
ends
end

so0e0e

ends

9-36 INVAR

Example 2, attempt to repalr a defect record.

When you read a Iile from magnetic tape written by means of outvar,
you may try to make sense of blocks with parity error and where the stan-
dard actions have given up.

This will only be waste of machine power if all records are needed in
a run. In such case it is better to give up once status errors occur. It
must be recognized, however, that problems exist where it is essential to
make as much sense out of a file as possible in one run and then try to
pick up the defect records in a later run.

A block procedure which counts the number of wrong 'records' and only
gives up when this number is too large may look something like this:

procedure afterparity(z,s,b)s zone z3 integer s,b;
begin own integer faults; integer field lengths

lengthi= 23
if s = 1 shift 11 then
begin

faultss= faults + 13

if faults > max then stderror(z,s,b);

if b < z.length then

drop: write(out,<:record dropped expected::>,z.length,

<: dropped::>,b,<: bytes<i0>:>)

else

begin comment maybe only checksum errors
if b < min length or b > max length then goto drop3
veso now check the contents of the possible record if 1t
does not seem to be sensible then drop it else set a mark
that it may be erroneous and
checkvar(z); changerect(z,0)s
comment force a mnew checksum into the record and regret
the record so that invar may take it once mores

end3

end

else if logand(s,-1-(1 shift 22 + 1 shift 15 + 3) < O

then stderror(z,s,b)s

corment give wup if hard error except in connection with

parity error, ring indication and normal answer;

ends

When the zone with this block procedure is opened, the give up mask
should not contain the parity error bit, as the standard action, 5 re-
readings, is wanted for parity error. The bit for checksum wanted should
be set in the free zone parameter (see getzoneb, 9.27):

open(z,18,<t ees:>,0)3
setposition(z,1,0);3
getzone6(z,ia5; ia(11):= 1 shift 233
setzoneb(z,1a);

rep: invar(z):
eoooe handle the record, note the error-marks;
goto reps

Example 3:
ee example of changevar.

IN, LOGAND 9-3T

9,34, Real procedure 1n

in (return value, real). The Napierian logarithm of r.
r > 0.
r (call value, real, long, or integer).
Accuracy:
r=1 gives In =0
0,5 S ¥ 2 gives absolute error below 2,2'-10
0.25 < r 0.5 or
L rx Iy gives relative error below 1.8'-10
r < 0,25 or bk <r gives relative error below 1.2'=10

Alarm: The run is terminated if r < 0.

9.35. Long procedure logand

Performs the function logical and (logical multiplication) on two 48
bit entities a and b. If the type length of a and/or b is smaller than 48
bits, they are extended by repetition of the sign bit.

Call: logand(a,b)

logand (return value, long). Bitpattern equal to (a and b)
performed bit by bit after a possible extension of the
parameters a and b.

a,b (call values, short string (text portion), real, long,
integer, or boolean). The two parameters do not have
to be of the samz kind., They are - if necessary - ex-
tended and they are handled as described below.

Handling of a and b according to kind:

String: Tt 1s tested tnat a string parameter descrives a text portion
or a short string (see 3,6.3). This is a 48 bit entity.

Reals A real is represented by L8 bits, No conversion.

Long: A long is represented by 48 bits. No conversion.

Tnteger: An integer is extended to e long as if the operator extend (see
9.19) had been applied.

Boolearn: A boolean is congidered as a short integer. Tae 12 bit boolean
is extended to a 43 bit long according to the algorithm:

int:= beo a2xtract 123 '
if inbt > 2047 then int:= int - L0Y6;
parsam:= extend ints;

The rules for extension imply that actual parameters with the wvalues
true, -1, and extend (~1) are cquivalent. Note that the rules also imply
+hat the effect of an integer with the value 2ol8 @differs from the effect
of = boolesn with the valve false add 2045,

Example:
Sece example 2 of invar.

9-38 LOGOR, LONG, MESSAGE

9.36. Long procedure logor

Performs the function logical or (logical addition) on two 48 Dbit
entities a and b, If the type length of a and/or b is smaller then 48
bits, they are extended by repetition of the sign bit.

Call: logor(a,b)

logor (return value, long). Bit pattern equal to (a or b)
periimed bit by bit after a possible extension of the
parameters.

a,b (call values, short string (text portion), real, long,

integer, or boolean). The two parameters do not have
to be of the same kind, They are - if necessary - ex-
tended and they are handled as described for logand,

9.,37. Long

This operator changes the type of a string expression or a real pri-
mary to type long. The Dbinary pattern of the operand is unchanged. Note
that this use of the delimiter long is +totally different from its use in
a declaration or specification.

Syntax: long <string> is of type long

long <real> is of type long
Priority higher than **

The binary pattern of a string is described in 3.6.5, The binary pattern
of a real is described in 3.1.6.

9,38, Message

This delimiter may print a message during the tramnslation of a pro-
gram,

Syntax: message follows the same rules as comment,

The text between message and semicolon is printed on current output if
message.yes was used in the translation parsmeter list (see app. B).

Example:

_—EEBYEE can save the listing of a long algol program and still keep track
of the line numbers. Put 1 or 2 messages on each page of the program (for
instance as page head) and translate it with: algol message.yes. The mes-
sages are then printed with their line numbers attached and you can easily
find any other line given its line nunber,

MOD, MONITOR 9-39
9.39. Mod

This dyadic operator yields the remainder corresponding to an integer
division.

Syntax: <integer> mod <integer> is of type integer.
<long> mod <integer> is of type long.
<integer> mod <long> is of type long.
<long> mod <long> is of type longe.
Priority as //.
The value of 1 mod J is defined as
1-1//3%3
Note that the sign of i mod J is the same as the sign of i,

Example, cyclical counting.,
Counting 1 = 1,2,5,14293,14e0. May be done in this way:

it=1mod 5 + 13
A longer but slightly faster version is:

je=if 1 =3 then 1 else 1 + 13

9.40, Integer procedure monitor

This procedure is the algol equivalent of the monitor procedures.
You may use it to handle peripheral devices in a non-standard way and to
program operating systems and executive functions in algol.

In most cases +the algol procedure will only transform the parameters
to the form required by the monitor, and +the description below describes
mainly this transformation., You will have to consult the manual of the
miltiprogramming system (ref. 1) and the monitor 3 manual (ref. 5) for the
details and the ideas behind each entry,

Call: monitor(fne,z,i,1a)
monitor (return value, integer). In most cases the result of the
corresponding call of a monitor procedure.
fne (call value, in‘beger)° A function code specifying the monitor
?roce&ure t0 be called,

Z call and return value, zone), The zone descriptor contains in
most cases the name of the process or catalog entry concerned.

i (call and return value, integer). Used for various purposes,
e.g. device number, message buffer address.

ia (call and return value, integer array). Used for various pur-

poses, e.8. tail of catalog entry, contents of answer. Various
lengths of ia are required in the various cases.

Certain of the procedures are only applicable to system 3. They are
marked with (sys. 3).

Tn most cases only some of the last 3 parameters are actually used by
the procedure. The value of fnc determines always the function as follows:

9-40

MONITOR

fne = 4, process description:

monitor
Z

Tesult, l.e. process description address or 0,
(call value). Contains the process name,

fne = 6, initialise process:

result, l.es O means process initialised, 1,2,5 means
not initialised.
(call value). Contains the process name,

result, i.e. O means process reserved, 1,2,5 means not

(call value). Contains the process name,

~(call value). Contains the process name.

Tesult, i.e. O means included, 2,3,4 means not inclu-

(call value). Contains the process name.
(call value). Device number.

Tesult, i.es O means excluded, 2,3,4 means not ex-

(call value). Contains the process name,
(call value). Device number,

PutTer address, O if the buffer claim is exceeded,
(call value). Contains the process name,

(call value). The number of a share within z. The share
state must at call time be O or 1, at return time it 1s
the buffer address, The message sent is given in the
share descriptor. (See 9.25, getshare6). Note that you
may change the message in the share by means of the
procedure setshareb, 9.60.

monitor
z
fne = 8, reserve process:
monitor
reserved.
Z
fnc = 10, release process:
zZ
fne = 12, include user:
monitor
ded.
A
i
fne = 14, exclude user:
monitor
cluded.
Z
i
fne = 16, send message:
monitor
Z
i
fne = 18, wait answer:

monitor

Z

i

ia

Tesult, i.e. 1 means a normal answer, 2,3,4,5 means
durmy answers.

(call value). Determines together with 'i' the buffer
address.

(call value). The number of a share within z. The share
state must be the buffer address at call time, at Tre-
turn time it is O.

(return value,length > 8) s The answer is stored here.

fne = 20, wait message:

monitor

Z
i
ia

result, i.e. positive for a normal message, negative
for a message from a removed processS.

return value). The process name is stored here.

return velw:,. Buffer address.

return value,length > 8). The message 1s store here.

MONITOR 9l

fnec = 22, send answer:
1 écall value) . Buffer address, o
ia call value, length > 9). The first 8 elements contain
the answer, the 9th element contains the result,
fne = 2, wait event:

monitor result, i.e. O for a message, 1 for an answer,

z (return value). The name of the sending process is
stored here if a message was received.,

i gcall and return value). Last and next buffer address,

ia return value, length > 8). If a message is received,

it is stored here,
An event may either be a message sent to the job or an answer described as
the share state of some zone (possibly 'in' or ‘out').

fne =26, get event:

1 (call value). Buffer address pointing to a message. An
answer cannot be released in this way - use wait answer
instead.,

fnec = 40O, create entry:
monitor result, i.e. O means entry created, 1,2,3,4,5,6 means
entry not created. :

zZ (call value). Contains the entry name.
ia (call value, length > 10). Contains the tail of the
entry. -

fne = 42, lookup entry: ‘
monitor result, i.e. O means entry looked up, 2,3,0 means not

looked up.
z (call value). Contains the entry name.
ia (return value, length > 10). The tail of the entry is

stored here.

fne = Ul, change entry:
monitor result, i.e. O means changed, 1,2,3,4,5,6 means entry
not changed.

z call valte). Contains the entry name.
ia call value, length > 10). Contains the new tail of
the entry.

fne = 46, rename entrys:
Tonitor result, i.e. O means entry renamed, 1,2,3,4,5,6 means
entry not renamed,
A (call value). Contains the present entry name.
ia (call value, length > 4). Contains the new entry name.

fne = 48, remove entry: ;
monitor result, i.e. O means entry removed, 1,2,3,4,5,6 means
entry did not exist or entry is not removed.
z (call value). Contains the entry name.

9-h2 MONITOR

fne = 50, permanent entry:
monitor result, i.e. O means entry made permanent, 1,2,3,4,5,6
means entry not permanent,
7 (call value). Contains the entry name,
i (call value). Catalog key.

fnc = 52, create area process:
monitor result, i.e. O means area process created, 1,2,3,4,6
means process not created.
z (call value). Contains the process name,

fne = 54, create peripheral process:
moritor result, 1.e. O means process created, 1,2,3,4,5,6 means
rocess not created.
z %call value)., Contains the process name,
i (call value). Device number.

fnc = 56, create internal process:
monitor result, L.c. O means process created, 1,3,6 means pro-
cess not created.

Z (call value)., Contains the process name., The process
will be created in the buffer area of z.
ia (call value, length > 6 in sys2, > 9 in sys3). Con-

tains the parameters in this way:™

in system 2:
18t element Dbuffer index for start of process
2nd element Tbuffer index for last of process
3rd element Dbuffer claim shift 12 + area claim
Lth element internal claim shift 12 + function
mask
5th element catalog mask
6th element protection register shift 12
+ protection key

in system 3, the first L4 elements are as for system 2.
the following are:

5th element protection register shift 12

+ protection key

6th element lower limit of max base

Tth element upper limit of max base

8th element lower limit of std base

9th element upper limit of std base

fnec = 58, start internal process:
TonITor Tesult, 1.e. O means process started, 2,3,6 means pro-
cess not started.

Z (call value). Contains the process name., The process
mist have been created inside the zone buffer,
o (call value). The number of a share within z. The share

State mist at call time be 0 or 1, at return time it is
- process description address.

MONTITOR 9.l

fnc = 60, stop internal process: :

monitor

Z
i

Tesult, l.e. O means stop initiated, 3,6 means stop not
allowed. ;

(call value). Determines together with 1 the process.
(call value). The number of a share within z. The share
state must at call +time be - process description ad-
dress. At return time it is the buffer address., Notice
that the process name in z is irrelevant,

fne = 62, modify internal process:

monitor

Z
ia

Tesult, l.e. O means process modified, 2,3,6 means mo-
dification not .allowed,

(call value). Contains the process name.

(call value,length > 6). Contains the modified regi-
sters,

fne = 64, remove process:

monitor

Z

Tesult, i.e. O means process removed, 1,2,3,5,6 means
removal not allowed,
(call value). Contains the process name.

fnc = 68, generate name:

monitor

Z

result, i.e. O means name generated, 1,2 means name not
generated.
(return value). The generated name is stored here,

fne = 70, copy core areal v

monicor
Z

i

ia

Tesult of the copying, O meaning area copied, 2 or 3
area not copiled.

(call value). Contains the area to or from which the
copying will take place. The limits of the copying are
given by the zone parameters record base and last byte.
(call value). The buffer address of the input or output
message defining sender's copy area.

(return value, length >=9), Contains information about
the copying almost ready to be used by send answer:

1st element should then be set by the user

2nd element if result < 0 then O else bytes
copied

3rd element if result <> O then O else chars
copied

9th element if result = 3 then 3 else 1.

fne = T2, set catalog base (sys. 3):

monitoyr

Z

ia

Tesult, O means catalog base set, 2,3,4,6 means catalog

base not set.
(call value). Contains the name of a child process or a

null-name, meaning own Process.
(call value, length >= 2). Contains the base to be set.

1st element lower limit of the base
ond element upper limit of the base

i

0-lk MONITOR

fne = 74, set entry base (sys. 3):
monItor result, O means entry base set, 2,3,4,5,6,7 means entry
base not set. '
z (call value). Contains the entry name,
is (call value, length >= 2). Contains the entry base to
be set, as for the fnc = 72, set catalog base,

fnc = 76, lookup head and tail (sys. 3):
monitor result, O means entry looked up, 2,3,6 means entry not
looked up.
z écall value). Contains the entry name,
ia return value, length >= 17). The entry looked up.

fnc = 78, set backing store claims (sys. 3):
monitor result, O means claims set, 1,2,3,6 means claims not

set.
z gcall value). Contains the name of a child process.,
ia call value, length >= Lk + 2¥no of keys), The first b

elements contain the name of the bs document

5th element entry claim, key O

5th element segment claim, key O

(5+2#max key)th element entry claim, max key
(6+2%max key)th element segment claim, max key

fne = 80, create pseudo process (sys. 3):
mOnitor result, O means pseudo process created, 1,2,3,6 means
pseudo process not created. '
z (call value). Contains the name of the pseudo process,

fne = 82, regret message (sys. 3):
monitor no result Irom this operation. Misuse will give

break 6.

z (call value). Determines together with 'i' the buffer
address of the message to be regretted.

i (call value). The number of a share within z. The share

state must be the buffer address at call time. At re=-
turm it is O.

fne = 90, permanent entry in auxiliary catalog (sys. 3):
monitor result, O means entry made permanent, 2,3,4,5,6,7 means
entry not made permanent.

zZ zcall velue) . Contains the entry name,

i eall value). The catalog key.

ia (call value, length >= 4), Contains the name of the bs
document. '

Parameters not mentioned in the description are neither used nor changed
for that value of fnc. If the requirements stated above are not fulfilled,
or if the situation termed 'parameter error! in ref, 1 or ref, 5 occurs,
the run will be terminated with an alarm. Values of fnc not mentioned
above will also terminate the run.

MONITOR 9-L5

Example 1, create a backing storage area.
K backing storage area sidatas of S segments may be created and then
used like this:

begin zone z(512,1,stderror); integer array tail(1:10);

open(z,l4,<:sldata3:>,0)3

comment, The zone contains now the document name. The document
is not initialised in case of kind = Lj

tail(1)s= s3 tail(2):= 13 comment preferably a disc aress

for i:= 3 step 1 until 10 do tail(i) := 0;

if monitor(L0)create entry:(z,0,tail) > O then goto errors

outrec(Zyees)3 -

In system 2, the area may be made permanent with some key, so that it can
survive the job:

1f monitor(50) perrsrent entry:(z,key,tail) > O then goto error;

Example 2, scope user of an area (system 3).

— e Scope USer Tunction consists of 2 steps., First the area is made
permanent with catalog key 3. Now, as key is >= min global key (see ref.
5), the entry base may be set to the user base of the process.

Let the zone z be opened to the area to be scoped.

system(11)bases:(i,ia);

ia(1):= 1a(5); ia(2):= ia(6); comment fetch the user base;
if monitor§50)permanen‘b entry:(z,3,ia) <> O then goto error;
if monitor(7h)set base:(z,0,ia) < 0 then goto error;

Example 3, find scope of an entry (system 3).

— As the catalog base of an internal process and of a catalog entry may
use almost the full integer range (see 2.5.5), they must be handled as
longs when vrelations between +them are calculated, in order to prevent
overflow,

system(11)bases:(i,bases);

if monitor(76)head and tail:(z,0,entry) <> O then goto error;
case entry(1) extract 3 + 1 of

begin

comment key O, maybe temp:3

if extend entry(2) = extend bases(3)
and extend entry(3) = extend bases(l)
then scope:= 1 else scope:= 63

comment key 1:3 scope:= 63

comment key 2, maybe loginis

if extend entry(2) = extend bases(3)
and extend entry(3) = extend bases(l)
then scope:= 2 else scope:= 63

9-L6 OPEN

begin comment key 3, user, project, or systems
11:= entry(2); 12:= =ntry(3);
if 11 = extend bases(5)
and 12 = extend bases(6) then scope := 3
else '
if 11 = extend bases(7) ‘
and 12 = extend bases(8) then scope:= 4
else
if 11 <= extend bases(7) ,
and 12 >= extend bases(8) then scope:= 5
else scope:= 63

end

ends

write(out,<:the scope is: :>,case scope of(
<stempi>,<ilogini>,<iuser:i>,
<iproject:>,<isystem:>,<:¥%x, i,e, undef:>));

9,41, Procedure open

Connects a document to a given zone in such a way that the zone may
be used for input/output with the high level zone procedures.

Call: open(z,modekind,doc,giveup)

Z (call and return value, zone)., After return, =z de-
scribes the document.

modekind (call value, integer) . Mode shift 12 + kind. See below.

doe (call value, string). A text string specifying the name
of the document as required by +the monitor, i1i.e. a
small letter followed by a maximum of 10 small letters
or digits.

giveup (call value, integer). Used in connection with +the
checking of a transfer, See below,

Modekind ,
— Specifies the kind cf the document (typewriter, backing storage,
magnetic tape, etc.,) and the mode in which it should be operated (even
parity, odd parity, ete).

The kind of the document tells the input/output procedures how error
conditions are to be handled, how the device should be positioned, etc.
This kind has nothing to do with the kind mentioned in ref., 1. As a rule,
the procedures do mnot care for the actual physical kind of the document,
but disagreements may give rise to bad answers from the document. If you,
for example, open a backing storage area with a kind specifying printer,
and later attempt to output via the =zone, the Dbacking storage area will
reject the messege because the document was initialised as required by a
printer,

Mode and kind must be coded as shown in the table below., If you at-
tempt a mode which does not fit into the table, the run is terminated.

OPEN . 9-L7

kind:

0 internal process, mode = O.

4 backing storage area, mode = O,
8 +typewriter, mode = O,

10 paper tape reader, mode = 0 for odd parity, 2 for even parity
(the normal ISU form), U4 for no parity, and 6 for conversion
from flexowriter code to ISO,

12 aper tape punch, mode = 0 for odd parity, 2 for even parity

the normal ISO form), UL for no parity, and 6 for conversion
from IS0 to flexowriter code.

14 line printer, mode = O for all printers, except centronics
101A via medium speed tmx where mode = 6L,

16 card reader, see ref, 8 for full details,

18 magnetic tape (tepes of 6 or 8 bit physical characters). For

=" RC TWT and RC Tho:

Mode = 0 or L means odd parity.

Mode = 2 or 6 means even parity.
For RC 4739 and RC U775 modekind is defined to be:
T shift 16 + Mode shift 12 + 18, where

Mode = O means 1600 bpi, PE, odd parity.

Mode = 2 means 1600 bpi, PE, even parity.

Mode = 4 means 800 bpi, NRZ, odd parity.

Mode = 6 means 800 bpi, NRZ, even parity.
For output O <= T < 6 specifies that the last T physical cha-
racters in a block should not be output to the tape.
For input T should be O,
If you use T <> 0 during output, you should set the word de-
fect bit (1 shift 7) in your give up mask and after a check
of bytes transferred simply ignore the bit in your block pro-
cedure,

Initialisation of a document
Open prepares the later use of the document according to kind:

Internal process, backing storage area, typewriter:
Nothing is done. When a transfer is checked later, the necessary

initialisation is performed,

Paper tape reader, card reader:
First, open checks to see whether the reader is reserved by ano-
ther process. If it is, the parent receives the message
wait for <name of document>

and open waits until the reader is free. Second, open initialises
the reader and empties it. Third, open initialises the reader
again (in order to start reading in lower case), sends a parent
message asking for the reader to be loaded, and waits until the
first character is available.

Paper tape punch, line printer:
Open sttempts to reserve the document for the job, but the result
of the reservation is neglected.

Magnetic tape: If the tape is not mounted, a parent message is sent asking
for mounting of the tape. The message is sent without wait indi-

cation (see ref, 7)0

Some of these rules have been introduced to remedy a possible lack of
an advanced operating system.

0-48 OPEN

Giveup,

e parameter giveup is a mask of 24 bits which will be compared to
the logical status word (see 6.3) each time a transfer is checked. If the
logical status word contains a one 1In a bit where giveup has a one, the
standard asction for that error condition is skipped and +the block proce-
dure is called instead (the block procedure is also called if a hard error
is detected during the checking).

Zone state.

T The zone must be in state 4, after declaration. The state becomes
positioned after open (ready for input/output) except for magnetic tapes,
where setposition must be called prior to a call of an input/output pPro=-
cedure,

The entire buffer area of z is divided evenly among the shares and if
the document is a backing storage area, the share length is made a multip-
le of 512 bytes, If +this cannot be done without using a share length of
0, the run is terminated.

The logical position becomes just before the first element of block
0, file O.

Example 13 »
The normal usage of a tape reader named 'reader! goes like thiss

begin zone z(25%2,2,stderror)s
openéz,Q shift 12+10,<sreader:>,0)3
read Zgoes Seoco

close(z,true);

ends

If you replaced stderror with the procedure 'list':

procedure 1list(z,s,b),zone z3 integer s,b;
write(out,<:<10:>,s9b5;

and called open with 1 shift 1 instead of O, the block procedure would be
activated after each tape transfer and you would get a complete log of
the actions of the reader. (The procedure 'list' should print in a better

way to be realiy useful).

Example 2
Issume you need two magnetic tapes in a job. Then the best communica-
tion with the operating system is obtained in this way:

open§z1 ,18,<:mt1706:>,0) 3
open(z2,18,<:mt1712:>,0) 3
setposition(z1,1,0)3 setposition(z2,1,0)s

If ncre of +the tapes are mounted, the operating system'may get the mes-
Sages:

mount mt1706 without wait indication (caused by open(zi,...))
mount mb1712 without wait indication (caused by open(zz,...))
mount mt1706 with wait indication (cavsed by setposition(zles.))

and the job is stopped by the operating system until +the tape waited for
has been mounted.

oUT | 9-L9

Example 3:

Nearly all document names will be supplied as data to the algol pro-
gram and in many cases the kind and mode are given as data too, A conve-
nient way of doing this is to use the following syntax of the datat

<kind and mode> <document name> <possibly a file number>

Kind and mcde are represented as the mmemonic code of the fp-utility pro-
gram 'set',
The algol program may then look like this:

begin
boolean procedure openvar(z,giveup); zone z; integer giveup;
begin array text(1:3); integer i,Js .
openvar:= true; Jji:= C3
readstring(in,text,1)3
for i:= 1 step 1 until 17 do
if text(1) = real(case i of
(<sips>,<tbsi>,<itwi>,<itro:>,<:stre:>,...)) then j:= i3

i:= 13
if readstring(in,text,1) > 2 or j = 0 then openvar:= false
else
open(z,case j of(0,4,8,10,2 shift 12 + 10,...),
string text(increase(i)),giveup),

if j > 15 then
begin read(:n,i);

setpositionzz,i,o)
ends

end openvars

begin zone master,trans,new(256%2,2,stderror);
if -, (openvar(master,os and openvar(trans,0)
and openVar(new,O)) then goto dataerrors

inrec6(master,mi); inrect(trans,t1)s...

9.2, Out

The standard identifier 'out' is a preopened zone variable for output
on character level., The actual file connected to the zone is the current
output file of the file processor. Out mist be left in a state ready for
output of characters when the run is terminated.

Example:
In FP source file containing

p = algol 3
begin write(out,12,<:a:>) end

o i1 3 select f47 as current output, see ref 2 or ref 6.
P 3 execute
P 3 execute

will generate the following text in the file fUT:

12a

end T
12a

end 7

9-50 OUTCHAR, OUTINTEGER

9,43, Procedure outchar

Prints one single character on a document,

call: cutchar(z,i)

Z (call and return value, zone)., Specifies the document,
the buffering, and the position of the document,
i (call value, integer). The last 8 bits of the integer

are printed as a character.
Zone state as for write, 9.78.
Blocking as for write, 9.7C.
Example:
T Pee example 1 of readchar, section 9.53.

9,44, Procedure outinteger

The procedure prints an integer or a long with a gpecified number of
the last digits preceded by a decimsl pcoint. The number may be preceded by
a larger nunber of spaces then a usual layout. The procedure is specially
designed to print amounts cf currency.

Call: outinteger(z,pens,dec,amount)

z (call and return value, zone) , Specifies the documert,
the buffering, and the pesition of the document.
psns (call value, integer). OSpecifies the total numker of

character positions to te printed. psns should be in-
side the range: abs(psns) < 132,

dec (cell velue, integer). Specifies the nunber of digits
after +the decimal point. Dec should be 1inside the
range: 0 <= dec <= min(zbs(psns)-3,15).

amount (call value, integer or long). Tke integer or long to
be printed. '

The procedure prints an integer or a long with a specific number of
characters as given by the absolute value of the parameter psns., If psns
is negative and amount = 0 then a number of spaces equal to the absolute
value of psns is printed. If psns is outside the allowed range, the pro-
cedure will output 132 characters.

Positive values of amouat are printed without a sign whereas a nega-
tive amount is preceded oy a minus sign. Characzter positions not occupied
by digits aad a possible sign and/or period are converted to spaces in
front of the integer. An integer is always printed correctly even if the
number of character positions 1s not adequate,

Zone state as for write, 9.73.

Blocking as for write, 9.78.

OUTREC 9-51

Example:
The program

begin long 11,113

for ii:= 5, 11x¥11 while 11 < 1000000 do

begin 1l:= 113 outinteger({out,8,2,11); outchar{out,10) ends
ends

will print

0.05
0.25
6,25
3906.25
1525878906.25

9,45, Integer procedure outrec

This is the Aleol 5 version of outrec6. A document may be filled
sequentially by means of outrec, Dbecauses the naxt call of outrec will
create a record which is transferred to the next elements of ‘the docu-
mente

Call: outrec(z,length)

outrec ~ (return value, integer)., The nunber of elements of L
bytes each available for further calls of outrec before
change of block takes place,

Z (call and return value, zone), The name of a record.
Determines further the decument, the buffering, and the
position of the document (sse 6.1).

length (call value, integer, long or real). The number of ele-
ments of 4 bytes each in the new record. Length mist be
> 0. j

For further description see 9.46, outrecb,

Ousrec may be used with advantage when the document is considered to
zontain reals,

Example, storing a matrix on backing store,
T hRn-mAbTriX M mMav De output row by row to a backing storage area

£1% in this ways:

begin zone sawe((n+127)//128*128*2,2,stderror);
open(save,h,<:f15:>,0);

for i:= 1 step 1 until n do
begin
outrec(save,n)s
for ji= 1 step 1 until n do save(§):= n(i,j)s
ends
close(save,falsz)
ends

The zone declaration assures that the rows later may be read one by one
and used directly.

9-52 OUTREC6

9,46, Integer procedure outrech

Creates a zmone record which later will be transferred to a document.
The contents of the record are initilally undefined but the wus=sr is sup~
pos=d to assign values to the record, The dJdocument may be filled sequen=-
tially by means of outrec5 because the next call of outrecb will create a
record which is transferred to the next bytes of the document.

Call: outrect(z,length)

outrecH (return valus, integer). The number of bytes available
for Turther calls of outrecH before change of block
takes place.

z (call and return value, zone)., The name of a record.,
Determines further the documsnt, the buffering, and the
position of the dociment (see 5.1).

length (call value, integer, long or real), The number of
bytes in the new record. Length must be > 0. If length
is odd, 1 is added. -

Zone state .

ne zone 7 must be open and ready for record output(state 0 or 53
see 9.27, getzone), i.e. the zone may only have been used for record oub-
put since the latest call of open or setposition. To make sens=, the do-
cunent should be an internal process, a backing storage area, a typewri-
ter, a line printer, a punch, a plotter, or a magnetic tape, In the lat-
ter case setposition(z,...) must have been called after open(z,e..).

Blocking
trec6 may be thought of as transferring the record to the bytes

just after the current logical pointer of the document and moving the lo-
gical pointer to just after the last byte of the record. The user is sup-
posed to store information in the record before outrec6 is called again.

Because the output is blocked, the actual transfer to the document
is delayed until the block is changed or until close or setposition is
called.

The full record goes into the same block, so if the block cannot hold
a record of the length attempted, the block is changed in this ways:

1o Documents with fixed block lenszth (backing storage): The remaining
bytes of the share are filled with binary zerces, and the total share
is output as oae blocke.

0. Documents with variable block length (all others): Only the part of the
share actually used for records is output as a block.

The trensfer is checked as described in 6,3, The record becomes the first
bytes of the next share, but i1f the record still is too long, the run 1s

terminated,
A record length of O is handled as for inrechH,

OUTTEXT 9-53

Example 1, records of variable length.,
Records of variable lengtn, with the length stored as the first word
of the record, are output like this:

open(z,...)s setposition(z,...);
TEP: eeeoce 3 compute length

outrect(z,length)s

zofirst_wordi= lengths

if o.. then goto reps

close(z,trus);

Compare this with example 1 of changerec, The version here may be a little
bit faster.

9,47, Procedure outtext

Prints a text stored as text portions in a real array or a zone re-
cord, The procedure prints a specific number of characters, If the string
is shorter, it is supplemented with spaces, and if it 1s longer, it is
cut.

Call: outtext(z,pos,ra,i)

z (call and return value, zone). Specifies the document,
the buffering, and the position of the document,.
poS (call value, integer). Specifies the total number of

character positions to be printed. Pos should be in-
side the range: abs(pos) < 132, see below.

ra (call value, real array). The text to be output is
stored in ra(i), ra(i+1), and so on. For arrays of
more dimensions the lexicographical ordering is used.

i (call value, integer), see ra above.

The procedure prints a number of characters as given by the absolute
value of the parameter pos. If pos 1is negative a NL character is output
before the counting starts. If pos is outside the allowed range. the
procedure will output 132 characters.,

The characters to be printed are supplied from a string of text por-
tions stored in a real array or a zone record. The characters are taken
from the array until either the string has been exhausted or the number of

characters as given by pos has been output.
If +the text string is exhausted before the wanted number of charac-

ters are printed, spaces are printed as the following characters.
The string is considered exhausted when +the last element of the ar-
ray has been printed or when a null character is met.

Zone state as for write, 9.78.

Blocking as for write, 9.78.

9-5L QUTVAR

9,48, Integer procedure outvar

This procedure is intended for output of records of variable length
so that they may be read by means of invar. Outvar makes an output re-
cord ready and fills it from a real array (or a zone record). The first
word of the element with lexicographical index 1 in the array must con-
tain the length of the wanted record. The second word in the new record
will contain a checksum,

Call: outvar(z,8)

— outvar (return value, integer). The number of bytes avallable
for further calls of outvar before change of block
takes place exactly as for outrect,

z (call and return value, zone). The name of the record,
Determines further +the document, the buffering, and
the position of the document (see 6.1).

A (call value, real array). An array to be copied into
the zone record, The first word of the element with
lexicographical index 1 contains the number of bytes
to be copied. If the number is odd, 1 is added.

Zone state
=~ zone 2z must be open and ready for record output (state 0 or 5),

i.e. the zone may only have been used by outvar or the 1like since the
latest call of open or setposition., The free parameter (see 9.27) in the
zone descriptor is used to count the number of records made by means of
outvar. Usually only backing storage and magnetic tape documents make
SENsSE.

Blocking
var may be thought of as transferring the data in the array to

the bytes just after the current logical pointer of the document and mo-
ving the logical pointer to just after the transferred elements. The new
record is placed in the same block, so if the present block cannot hold
a record with the attempted length, outvar changes block exactly as out-
rec6, i1.e. on backing store unused parts are filled with binary nulls,

and on all other media only the used part is output.

Record format, checksum »
Mhe Tecord consists of 2 words containing information on the record

followed by an arbitrary number of words. The record length must not ex-

ceed the blocklength.

The 2 first words contain the record length measured in bytes in
the first word and a checksum in the second word. The value of the
checksum word is chosen so that the sum of all words in the record taken
modulo 2%%24 is equal to -3,

Note that the call outvar(z,z) produces one record identical to the

last one.

OVERFLOWS, RANDOM, READ 9-55

9,49, Integer overflows

This standard identifier determines +the action on floating point
overflow:

overflows < O The run is terminated when overflow occurs,

overflows & 0 The value of overflows is increased by one when overflow
occurs., The result of +the operation which caused the
overflow is O,

When the run starts, overflow is -1. A floating point overflow occurs
when a real operation gives a result outside the range of real variab-
les.

Due to an inconvenience in +the machine structure an underflow
caused by multiplication of 2 7reals both in the interval 2xx(=1024) <
gbs r < 2%%(-2048) will be classified as an overflow,

Example:
Mo check whether a real overflow occurred during the evaluation of
an expression, proceed as follows:

overflows:= O3 Evaluate the expression;
if overflows > 0 then handle the overflow situation;

9,50, Realggpocedure random

Computes two pseudo=-random numbers, a real and an integer,

Call: random(i)

random (return value, real), A pseudo-random number deter-
' mined by i. O < random < 1,
i (call and return value, integer). At call time the la-

test pseudo-random number generated (or a starting
value for the generation)., At return the next pseu-
do-random humber. 0 < i < 8 388 587,

Method:
Miltiplicative generation with a period of 8 388 586, The starting
value is not eritical, because a result of O 1is prevented explicitly in

the procedure.

9.51. Integer procedure read

Inputs a sequence of numbers given in character form on a document,
converts them to algol values, and assigns them to variables,

Call: read(z,one or more destination parameters)

read (return value, integer). The absolute value of read
gives number of destinatlon variables to which nuxbers
were inpute.

z (call and return value, zone). Specifies the document,

the buffering, and the position of the document (see
6s1)a

9-56 READ

destination (return value; integer, long, real, integer array,
long array, or real array). Read assigns mnumbers +to
the destination parameters in sequence from Ileft to
right, A simple parameter is used as one destination
variable, An array is used as a sequence of destina-
tion varisbles, and read fills the entire array in
lexicographical order (see 5.2).

Note +that all +the parameters are evaluated before the procedure is en-
tered (except if the procedure is called as a formal procedure), so the
call read(in,i,A(i)) will mean wi= i3 i:= number; A(w):= number;

Syntax of numbers.

Read SKips all blind characters (class 0, see 2,0,1)., Among the re-
maining characters, 'read' accepts as a number any sequence of number
constituents (class 2 to 5) terminated by some other character (class >
5). Leading characters of class > 5 are disregarded unless they contain
the EM character (see below).

If the number constituents fulfill the rules for Algol 6 numbers,
the number is assigned to a destination variable, If it is not an Algol
6 nunber or if it exceeds the range of the destination variable, the
greatest positive number of the appropriate type is assigned instead.

Terminating reading:

TRead scans the document and each time it meets a number (in the
sense defined above) it stores it into the next destination variable.
When +the parameter 1list is exhausted, read returns. The reading stops
immedistely, however, if an EM character is met., In +this situation the
value of read is useful. '

Zone state:
Ks for readchar, 9.53.

Blocking:
s ror readchar, 9.53.

Example 1, reading and checking a matrix.
— In nAn-matrix 1s punched on current input as n followed by the ma-

trix elements. It may be read in this way with a simple check added:

if read(in,n) < 1 or n > 200 then goto dataerror;
begin array matrix(1:n,1:n)3
if read(in,matrix) < n**2 then goto dataerror;

The matrix might for instance be punched like this:

3
1.507 w5017 2 .4h6
-6,017 3,852 0.025
2,336 0.025 -8.170

It will be wise to check +that a new line terminated the last number,
That is done as follows:

repeatchar(in); readchar(in,i); if 1 <> 10 then goto dataerror;

READALL ‘ 9-5T7

Example 2:
The Tollowing character sequence represents 5 numbers as shown:

a- 1,Tbed=12345678 9160 3+10ee
12 5 L 5
If it 1is input by the call read(z,i,j,k,r,s‘,t), the variables will be-
come:
i,3,k,(integers): great,?2,great(range exceeded)
r,s,tzreals): 9160, great,unchanged(EM met)

Read itself has the value -5.

9,52, Integer procedure readall

Inputs a mixture of numbers in character form, text strings, and
single characters., These items are stored in an array and their kind is
stored as a code in a parallel array. The procedure is designed for fast
input om character level with possibility for extensive checking of the
input. Readall is often used in combination with intable,

Call: read all(z,val,kind,index)
read all (return value, integer). The number of elements in val
- to which items have been assigned. If read all termi-
nates because val or kind is full, the value of read
"al1l is minus number of elements, =

zZ (call and return value, zone). Specifies the document,
the)buffering, and the position of the document (see
6e1)e

val (return velue, integer array, long array, or real ar-

ray). The items are stored in val(index), val(index +
1), and so on. For arrays of more dimensions, the lexi-
cographical ordering is used.

kind (return value, integer array). The kind of the items
is stored here, so that kind(i) describes the con-
tents of val(is.

index (call value, integer). See description of val above,

Syntax of items:
Readall divides an input string into items in this way:

1. A1l blind characters are skipped (class 0, see 2,0.1).

2, A delimiter character (class > 7) is stored as a single character.

%, A character string starting ~with a letter (cIass 6), consisting of
letters and number constituents (class 2 to 6), and terminated by a
delimiter (class > 7) is stored as a text string. The delimiter is
not a part of the text string.

L, The remaining parts of the input string are stored as numbers in the

way described under read.

In many cases +the rules for text strings and numbers are inconve-
nient. Tt will then pay to use an alphabet (see intable, 9.32) defining
most characters as delimiters of various classes and input one line of
characters at a time, An example of the further handling of the charac-

ters is shown in example 2 of readchar.

9-58 READATI.

Storing of items:

1. Blind characters are not stored.

2. A single character 1s stored in one element: val(i) := character va-
lue; kind(i):= character class. '

3, A text string is packed as portions of 6 8-bit characters. The cha-
racters are packed from left to right. A portion is stored in U bytes,
i.e, one real or long, or possibly two integers. The corresponding ele-
ments of 'kind' becomes 6. A null character is packed after the last
character of the text string and the corresponding portion is filled up
with null characters. A text packed in this way is easy to use as a
string parameter.

4, A number is stored in one element: val(i):= converted number; kind:=
2 for a legal number, kind(i):=1 for an illegal or syntactically
wrong number.

Terminating reading:

Readall returns as soon as a ‘terminator (class8) has been input and
stored, If wval or kind is filled up before that, readall returns with a
negative value. In +that situation, +the last character read is not
stored., You may get the character by means of repeatchar, but you cannot
expect to continue reading as d1if nothing has happened, because readall
may have terminated in the middle of a text string and the next charac-
ter may be a digit or a delimiter,

Zone state:

Xs Tor readchar, 9.53.

Blocking:
s for readchar, 9.53.

Example 13
e input by read all with the standard alphabet to an integer
array may be printed and 'reshaped! in this way:

n:= readall(z,ia,kind,1)3
if n < O then write(out,<:illegal:>) else
for i:= 1 step 1 until n - 1 do
case kind(i) of
begin comment kind 13 write(out,<:illegal:>)
comment kind 23 write(out,<<-dddddd>,ia(i)
comment 3,4,53333
begin comment kind 63
write(out,<: :>,string(0.0 shift 24 add ia(increase(i))
shift 24 add ia(increase(i))));

o

2

)o
2

ii=1 -1
ends
comment kind 7, spaces are not printeds
if ia(i) < 32 then write(out,<: :>,false add ia(1),1)
ends
write(out,<:<10>:>)3

READATL 9-59

Example 23
The Tollowing character sequence represents 9 items if it is read
with the standard alphabet:

ab

: 12345678 <NL>
12 8

al.2c 17.56
5 hs g 9

7

If it is input by readall as in example 1, the result becomes:
1 2 3 b 5 6 7 8 9 10 11
ia agb O 58 al. 2c L4 32 18 32 great 10
kind 6 6 7 6 6 7 7 2 7 1 8
readall = 11
The print-out of example 1 will look like this:
ab ¢ al.2c, 18illegal

Example 3, typical adp-input.
A Tist of employees 1s punched in this way:

<identification number><department number><status>,<surname>,<first names>
<ddentification number> ...

For example: 451 55z, bell, robert george

If you read this kind of input with readall and the standard alpha-
bet, you would not get checked that the names are free of digits, Fur-
thermore you would have troubles accepting the spaces in +the names as
name constituents., Instead, you may use an alphabet table of 2%128 en-
tries (see intable). The first 128 entries describe the alphabet used
during reading of the numbers, All letters are here described as shift
characters which switch to the last 128 entries (class = 1, value = 128).

In this last part of the table, space and all letters are described
as text constituents. All digits are delimiter symbols., In both parts of
the alphabet table, new line is a terminator.

An input program which checks the syntax and outputs the 1list as a
sequence of records may look like this:

intable(alphabet)s

comment insert some pseudo values at the end of the kind table,
so that the scanning below is terminated in all cases;

kind(max+1) := kind(max+2) := 53

rep: tableindex:= 03 n:= readall(z,val,kind,1);
if n > max or n < 1 then error;
if n =1 then
begin if val(1) = 25 then goto terminate; goto rep end;

comment check identification and department, dept points
to department;

1if kind(1) < 2 or kind(2) <> space then error;

for is= 2,i+1 while kind(i) = space dos

if kind(15 <> 2 then error; dept:= i3

9-60 READCHAR

comment check status, transform it so some coded forms
if kind(i+1) < 6 or kind(i+2) <> comma then error;
val(i+1):= transformed value;

comment check surname$
for i:= 1 + 2,i + 1 while kind(i) = 6 doj
1f kind(i) < comma or i = dept + 3 then error;

comment check first names, fnames points to first names;
fnames:= 1 + 13 :

for i:= 1 + 1 while kind(i) = 6 do;

if kind(i) < 8 or i = fnames then error;

outrec(empl,i-dept+1); comment now the line is accepteds
empl(1) := i-dept+1; empl(2):= val(1); empl(3):= val?dept);
empl(L) := val(dept+1)s k:= L3

for ji:= dept+3 step 1 until i - 1 do

begin ki=k + 13 empl(k):= val(j); ends

goto rep;s

9,53, Integer procedure readchar

Inputs one non-blind character from a dJdocument and supplies the
character value and character class. Blind characters are skipped auto-

matically.

Call: readchar(z,val)

readchar (return value, integer)., The class of the character
(see 2.0.1).

z ~ (call and return value, zone), Specifies +the docu-
ment, the buffering, and the position of the docu-

ment (see 6.41).

val (return value, integer). The value of the character

(see 2.,0.1).

Zone state:
e zone must be open and ready for character reading (state 0, 1,

or 23 see 9.27, getzoneb), i.e, since the latest call of open or setposi-
tion, the zone may only have been used for character reading. To make
sense, the document should be an internal process, a backing storage
area, a typewriter, a paper tape reader, a card reader, or a magnetic
tape, In the latter case setposition(z,.o.) must have been called after
open(Z,eee)e

The first character read is normally the character just after the
logical position of the document, but after a call of repeatchar it is
character just before the logical position.

When readchar returns, the logical position is just after the last
character read. The zone record is not availsble (it is of length 0).

Blocking: ,
—7JUsT after open or setposition or whenever a block of the document
is exhausted, the next block is transferred and checked as described in
6.5. On a typewriter in online mode this means that an entire line must
be +typed before any of the characters in the line are available to read-

char,

READCHAR 9-61

Example 1, copying.

sequence of characters may be copied and counted in the following
slow, but simple way. The copying stops when a termination character
(class 8) is met.

it= -1}
for i:= i + 1 while readchar(inz,c) < 8 do
outchar(outz,c)s

Blind characters may be copled too if another élphabet is selected (see
intable 9,32).

Example 2, syntax check:

~An octal signed integer may be read and checked by means of a state
table, Each entry in the table gives the new state of the routine and the
action to be performed when a character of that class 1is -read in ‘that
state., The actions are shown as numbers, explained below,.

input classes: sign: digit other:
state-1, start after sign, 1 after digit, 2 start, 3

state 2, after sign after error, 4 after digit, 2 after error, L
state 5, after digit after error, U4 after digit, 2 start, 5

state 8, after error after error, 3 after error, 3 start, 5

Action 1: set sign. Action 2: include digit in number,
Action 3: no action. Action U4: set error indication.
Action 5: complete number with sign.

This scheme is easiest to implement if a special alphabet is selec=-
ted by means of intable, The digits O 1o 7 are given class 2, values O
t0 7o Plus and minus are given class 3, values 2 and O, All other non-
blind characters are given class k.

The algorithm may then be written like this:

statet= -13 sign:= 13 number:= 03 error:= falses

rep: class:= readchar(z,c) + states
action:= case class of
(145243 L,2,k, 4,2,5, 343,5)3
state:= case class of
(2’59"19 895989 8959"19 8’89‘1)3
case action of
begin comment 1, set signj signi=v - 13
comment 2, include digits
if number >= 1 shift 20 then error:= true else
nunber:= number shift 3 + c - 463
comment 3, no actions 3
comment L4, set error indicationj error:= true;
corment 5, terminate;
begin number:= nunberxslgn; goto terminate ends
end$s
goto reps
terminate:

9-62 READSTRING

A shorter solution might be found for this particular problem, but
the main advantage of the method is that it applies to a lot of other
input problems and the time spent per character will hardly depend on
the complexity of the input syntax. The algorithm above will read about
- 2000 characters a second, but it may be speeded up to about 3000 charac-
ters a second if readall is used instead of readchar to input a big por-
tion of characters. The character classes 2,3 , and 4 must then be re-
placed by 9, 10, 11 or the like. :

A further increase in speed +to about U500 characters a second is
possible if the input is performed blockwise by means of inrec6 and the
characters are unpacked as shown in example 3 of extract (9.21).

9,54, Integer procedure readstring

Inputs a text string given as 8-bit characters on a document, The
text string is packed in a way which makes it easy +to use a string para-
meter,

Call: readstring(z,arr,i)

readstring (return value, integer). The number of elements in arr
40 which a text portion has been assigned., If read-
string terminates because arr is full, the wvalue of
readstring is negative,

A (call and return value, zone). Specifies the document,
Zhe)buffering, and +the position of the document (see

.1 L]
arr (return value, long array, Or real array)° The text is
stored in arrzi), arr(i+1), and so on. For arrays of

more dimensions the lexicographical ordering is used.
1 (call value,integer). See arr above.

Syntax of a text string.

Readstring skips all blind characters (class 0, see 2,0,1)s Among
the remaining characters, readstring accepts as a text string any se-
quence of text constituents (class 2 %0 6) terminated by a delimiter
(class > 6).

Leading characters of class > 6 are disregarded unless they contain

the EM character (see below).

The text constituents, omitting all blind characters, are packed
into arr with 6 8-bit characters to an element. The characters are
packed from left to right. The character values packed are given by the
values in the alphsbet selected for the moment (see intable, 9.32). When
the standard ISO alphabet is used, the values are shown in 2.0.1. A null
character is packed after +the last character of the text string and the
corresponding element of arr is filled up with null characters.

Terminating reading
Normally, readstring returns when the text and the terminator have

been read., The reading stops immediately, however, 1f an EM character is
met or if arr is filled. In +the latter case, the value of readstring is
negative, the text string 1is not terminated by a null character, and the
last character is read, but not packed.

Zone state.
Ks for readchar, 9.53.

REAL 9-63

BlOCking o
s Tor readchar, 9.53.

Example 1: input and output of text.
" K text (for instance a heading) may be input and later printed in
this way:
begin long array text(1:n)3
intable(la), comuent define space etc, as text constituents;
if readstring(in,text,1) =n
and text(n) extract 8'<> 0 then goto dataerror;
it= 13 write(out,string text(lncrease(i))),
comment see 9,70, strings ,

Example 2:
See example 3 of open,

9.55. Real

This monadic operator changes the <+type of a string expression to
type real, In +this way, strings may be stored and analysed. Note that
this use of the delimiter real is totally different from its use in a
declaration or specification.

Syntax: real <string> is of type real,
real <long> is of type real
Priority higher than %%,

The value of real <string> has the same binary pattern as the value
of <string>. The +value of real <long> has the same binary pattern as the
value of <long>. The binary pattern of a string is described in 3.6.

Example 13
Tet s be a formal string parameter which actually is a text string.

The statement
= real(case i of(<:abs:>,<:long text:>,s));

will assign a text to r. Depending on the value of i, r will hold a
packed text, a string point, or the string value of the formal parameter
S,

In the first +*two cases and in the third case with s describing a
literal text string, the text may be printed in this way:

write(out,string r);

Example 2y computlng a layout.

Assume You want To print numbers with a layout depending on the re-
lative accuracy, eps, of the nmumbers, If the layout is to be used many
times, it is wise to hold it in a real variable like this:

d:= -1n(eps)/In(10) + 0.53

if A < 3 then d:= 3 else

if d > 6 then d:= 63

ri= real(case d -2 of

(<<~d.dd!-da>,<<d.ddd' -dad>,<<-d.dddd' -dd>,<<-d.ddddd’'-da>))s

e 0

write(out,string r,X,¥,cee)3

9-6L REPEATCHAR, ROUND, SETPOSITION

9,56, Procedure repeatchar

Makes +the latest character read from the zone specified available
for reading once more,

Call: repeatchar(z)
z (call and return value, zone). Specifies the document,
the position of the document, and +the latest opera-
tion on z.

After a call of repeatchar(z), the next character read from z is
the character just before the logical position of the zone, i.e. the la-
test character read. Note that the logical position is unchanged,

If repeatchar is to have any effect, the =zone should be in the
state 'after character input' (state 1), i.e. one of the read procedures
mist have been called since the latest call of open or setposition wor-
king on that zone. In all other states repeatchar is blind.

The definition of repeatchar implies that several calls of repeat-
char have the same effect as one call.

Example:
See example of read, 9.51.

9.57. Round

. This monadic operator rounds the value of a real expression to the
nearest integer value or cuts the value of a long expression to an inte-
ger. The operation may cause integer overflow,

Syntax: round <real> is of type integer
= round <long> is of type integer
Priority higher than *x.
Example: '
Mo reals with absolute values below 2%x23 may be integer divided
in this way:

round r1//round r2

9,58, Boolean procedure setposition

Terminates the current use of a zone and positions the document to
a given file and block on devices where this makes sense, The positio-
ning will only involve time-consuming operations on the document if +this

is a magnetic tape.

Call: setposition(z,File,Block) ,
setposition (return value, boolesn). True if a magnetic tape po-
gitioning has been started, false otherwise.
z (call and return value, zone) . OSpecifies the document,
the position of the document, and the latest opera-

tion on ze.

SETPOSITION 9-65

File (call value, integer). Irrelevant for documents other
than magnetic tape. Specifies the file number of the
wanted position (see 6,1), Files are counted 0, 1, 2,
File 0 will normally contain the tape volume label,
so that file 1 1s the first file available for data.
File = =1 specifies that the tape is to be unwound.

Block (call value, integer). Irrelevant for documents other
than magnetic tape and backing ‘storage. Specifies the
block number of the wanted position (see 6.1). Blocks
are counted O, 1, 2, ¢eo

Setposition proceeds in 3 steps: Terminate the current use, write
tape mark, and start positioning.

Terminate current use,

IT the zone latest has been used for output (state 3, 6, and 73 see
getzoneb 9,27), ‘the used part of the last block is sent to the document.,
A Plock sent to a backing storage area is not filled with zeroes, con-
trary to outrec6, or outvar. If the zone ~latest has been used for cha-
racter output, the termination may involve output of one or two Nulls in
order to fill the last word of the buffer,

Next, all the transfers involving 2z are completed, the input trans-
fers are just waited for, and the output transfers and other operations
are checked as usually.

The physical position of a magnetic tape used for input 1is sh - 1
blocks ahead of the logical position where sh is +the nuwiher of shares,
If some of these sh - 1 blocks are tape marks, the positioning strategy
is affected, as explained below,

Write tape mark,

1T the document is a magnetic tape which latest has been used for
output, a taps mark is written. The document 1s then in a position after
that tape mark, which influences the positioning strategy {sec below).

bart positioning.

Cetpositicn mssigns the value of Bleock t¢ the zone descerivior vari-
ghle ‘seoment count! and returns then for all devices other than magie-
tvic tape,

It the document does not exist or 1f +the job is not a user of the
device, setpusition sends a parent message asking Tor stop of the joc
until the tape is ready.

Tt “he name of the document is zerc (<>, >}, ‘the tape requested is a
wok tapd and setpositicn acerpls as the futuxe tepe naome the nsime re-
turned by the parent {(which means that setposition changes the document
name in the zone accordingly) .

Setpucition starts the first operation lzvolved in <the tape posi-
tioning. The remaining operzticns are execubed the first time ths zZone
is used For input or oubtput, or the first time s=tp051tion(4,o.¢) is
called again. That mey be used tor sirmmltaneous positioning of more tapes
(see example 3).

The positioning is accomplished by means of toe operatlons position
tape, rewind, backspace file, upsSpace file, backspace hlock, upspace
blociz, and unwind tape. The positioning is complete as soon as File end
Block maitch the monitors count of +the tape position for that device.
Checking against tape labels is nct performed.

9-66 SETPOSITION

Positioning strategy in system 2,

IT the actual physical file number differs from File, the +tape is
first positioned to block 0O of +that file. ©Setposition chooses between
rewind and backspace file in this way:

if actual file number//2 >= File then rewind else backspace filej

This tends to minimise the number of tape operations,
During positioning within a file, setposition chooses between back-
space file (rewind for File = 0) and backspace block in this way:

if actual block number//2 >= Block then backspace or rewind file
else backspace blocks

If the tape is not mounted when setposition is called, the normal
mount-tape-action is performed (see 6,1) before the positioning starts,
In system 3 a position tape operation is sent.

Zone state,
— The zone must be open when setposition is called (state 0, 1, 2, 3,
5, 6, T, or 8). Setposition changes the =zone state to opened and
positioned.,

The logical position of a magnetic tape or a Dbacking storage area
becomes just before the first element of the block specified by File and
Block. The logical position is unchanged for other devices,

Example 1, online Conversation.

When you alternatively type out something on a terminal and read
from it, you must make sure that the output really is sent to the termi-
nal and does not stay in the buffer, Assume that you run with Boss as
parent and that you have online yes as job parameter, - assume further
that your program is started with <program name> term. Such a conversa-
tion may then be programmed like this:

rep: write(out,<:Type yes or no:>);
setposition(out,0,0)s
readstring(in,ra,1)s eoe.
goto reps

Example 2, random access to backing storage,

TeT the backing storage area Dps2p contain records of 80 bytes ori-
oinally output in shares of 128 elements (= 1 segment, 512 bytes). You
may get record j in this way: ;

begin zone z(128,1,stderror);
comment double buffering will not pay in this case;
open(z,4,<:0s25:>,0) 3

i1= ..e3 setposition(z,0,3j//6)s
comment 6 records are stored on one segments;
for i:= j//6%6 step 1 until j do inrect(z,80)3

Examplé 3,/ simultaneous tape positioning.
Tot 21 and z? be two zones wnich describe magnetlc tazes positioned
at file 2 or 3. If you start reading from file 1 in this way:

SETSHARE 9-67

setposition§z1,1,0); inrec6t(z1,p)s
setposition(z2,1,0); inrec6(z2,p)3

then the call of setposition(zl,e..) Will start rewinding z1. Inrec6(z1,p)
will wait for +the vrewind, upspace file 1 (file 0 is usually short),
and read the first block. First at that moment, the rewind of file 72
will be started,

The following solution will rewind the two tapes simultaneously:

setposition(z1,1,0); setposition(z2,1,0);
inrec6(z1,p)s inrec6(z2,p)s

If file C c<hould be long, it is better to upspace the tapes simule
taneously too.

oo

se'bposi'tionéz‘l ,0,0)3 setposition(z2,0,0)
setposition(z1,1,0); setposition(z2,1,0)
inrec6(z1,p)s inrec6(z2,p)s

o
k4

Example 4, output of tape mark and empty file
'wo tape marks 1n sequence may be output in this way:

outrect(z,e00): getposition(z,f,b); setposition(z,f+1,0);
outrect(z,0)3 setposition(z,f+2,0);

A call of outrec6(z,0) is also useful when you generate a magnetic tape

file which may happen to be empty., If you omit outrec6(z,0), ‘the tape
mark may be omitted.

9,59, Procedure setshare

This procedure is +the ‘reverse' of getshare, 9.24, in the sense
that it assiens values to a share descriptor. The procedure is +the Al-
gol 5 equivalent of setshareb,

Call: setshare(z,ia,sh)

z (call and return value, zone). Specifies the share
together with sh,
ia (call value, integer array, length > 12). The contents

of ia have the meaning explained in 9.24, getshare,
The contents of the first 12 elements of 1ia are trans-
ferred to the share descriptor, provided +that the re-
strictions below are fulfilled.

sh (call value, integer). The number of the share within
Z.

Restrictions
The Tollowing explanation assumes that ia has been declared as

ia(1:12).

ia(1) Share state. As for setshareb;

ia(2) First shared., Must be a buffer index.
ia(3) Last shared. Must be a buffer index.
ia(l) Operation. As for setshareb.

1a(12) Top trensferred. As for setshareb.

9-68 SETSHAREG, SETZONE

9.60. Procedure setshareb

This procedure is the 'reverse! of getshareb, 9.25, in the sense
that it assigns values to a share descriptor.

Call: setshare6(z,ia,sh)
z zcall and return value, zone). Specifies the share to-
gether with sh.
ia (call value, integer array, length > 12). The contents

of ia have the meaning explained in 9.25, getshareb,
The contents of the first 12 elements of d1a are
transferred to the share descriptor, provided that the
restrictions shown below are fulfilled.

sh (call value, integer). The number of the share within
Ze

Restrictions
The following explanation assumes that 1a has been declared as

ia(1:12).

ia(1) Share state. If the state of the share descriptor is O or 1 at
call time, ia(1) will be transferred. In this case ia(1) must be
0 or 1. . 4

ia(2) First shared. Must be a byte index in the buffer,

ia(3) Last shared. Must be a byte index in the buffer. _

ia(l) Operation shift 12 + mode. If operation is odd, ia(5) and
ia(6) are restricted to absolute addresses within the zone
buffer,

ia(12) Top transferred. Must be an absolute address corresponding to a
block within the zone buffer.

If the restrictions are violated, the run 1s terminated. The re-
strictions are natural, in the sense that the following always is allowed
(provided that sh is a share number and ia has at least 12 elements) :

getshare6(z,ia,sh)s setsharebt(z,ia,sh);

9.61. Procedure setzone

This procedure is the 'reverse! of getzone, 9.26, 1in the sense that
it assigns values to a zone descriptor. The procedure 1s the Algol 5
equivalent of setzoneb,

Call: setzone(z,ia)

z (call and return value, zone). The descriptor of z is
changed. '
ia (call value, integer array, length > 17). The contents

of ia have +the meaning explained in 9.26, getzone.
The contents of the first 17 elements of ia are trans-
ferred to the zone descriptor, provided that the re-
strictions below are fulfilled. .

SETZONE6, - SGN 9-69

Restrictions
The following explanation assumes +that 1a has been declared as

1a(1:17).

ia(1) Mode shift 12 + kind., As for setzoneb.

ia(14) Record base. As for setzoneb,

ia(15) Last byte. As for setzoneb.

1a(16) Record length. Measured in elements of U bytes each otherwise as
for setzoneb, ‘

ia(17) Used share. As for setzoneb,

9.62, Procedure setzoneb

This procedure is the 'reverse' of getzoneb, 9.27, in the sense that
it assigns values to a zone descriptor,

Call: setzonet(z,ia)

z (call and return value, zone). The descriptor of z is
changed.,
ia (call value, integer array, length > 17). The contents

of ia have the meaning explained in 9.27, getzoneb,
The contents of the first 17 elements of ia are trans-
ferred to the zone descriptor, provided that the re-
strictions shown below are fulfilled.

Restrictions
The Tollowing explanation assumes that ia has been declared as

1a(1:17).

ia(l) Mode shift 12 + kind. The range of the kind is < kind < 18, The
kind must be even, - -

1a(14) Record base. Must be an sbsolute address corresponding to a re-
cord within the zone buffer. Record base must be odd.

1a(15) Last byte. Must be an absolute address within the zone buffer.

ia(16) Record length in bytes. Must correspond to a record within the
zone buffer. ,

1a(17) Used share. Must be the number of a share within z.

If the restrictions are violated, the run is terminated. The re-
strictions are natural, in the sense that the following always is al-
lowed (provided that ia has at least 20 elements):

getzoneb(z,1a); setzoneb(z,ia)s
Example:
Tee example 2 of getzoneb, 9.27.

9,63, Integer procedure sgn

Yields -1 or 1 according to the sign of the parameter.

Call: sgn(r)
sen’ . (return velue, integer). Sgn is 1 for r >0, -1 for
r <O0.
T (call value, integer, long, or real).

9-70 SHIFT, SIGN, SIN, SINH
9.6k, Shift

This dyadic operator is wused for packing and unpacking of reals,
longs, integers, and booleans,

Syntax: <real> shift <primary> is of type real.
<long> shift <primary> 1is of type long.
<integer> shift <primary> is of type integer.
<boolean> shift <primary> 1is of type boolean.
Priority as %%,

Shift treats the left hand operand as a binary pattern (see 3.1).
The right hand operand is rounded to an integer if it 1is long or real.
This value is then used to indicate the number of ©bits the left hand
operator is to be shifted. The shift is to the left if the possible roun-
ded value is positive and the right if the value is negative. The shift
is a logical shift, which means that zeroes are shifted in to the right
or left.

Examples:
See 9.2, add, and 9.21, extract.

9.65. Integer procedure sign

Call: sign(r)

sign (return value, integer). Sign is 1 for r >0, O for
: r =0, and -1 for r < 0,
r (call value, real, long, or integer).

9.66. Real procedure sin

Call: sin(r)

sin (return value, real), The mathematical function sine
of the argument r. '
r (call value, real, long, or integer). The argument in
radians.
Accuracy?

— oee cos, 9.15.

9.67. Real procedure sinh

Call: sinh(r) -
— sinh (return value, real). The mathematical function sinh
of the argument r.
(call value, real, long, or integer). -1000 < r < 1000.

Accuracy:

r=0_ -+ gilves sinh = O

abs(r) < 1n(2)/2 gives a relative error below 1.0'-10.

(n-0.5)*1n(2) < abs(r) < (n+0.5)*1n(2) gives a relative error below Twid?
T =10+ nx¥7'- 11,

Alarm
=If abs(r) > 1000, the run is terminated.

SQRT, STDERROR, STRING 9-11

9,68, Real procedure sqrt

Call: sqrt(r)

sqrt (return value, real). The square root of r.
r (call value, real, long, or integer). r > O,
Accuracy:
r=0 gives sqrt s O,
T >0 gives a relative error below 6.4'-11,

Alarm _
The run is terminated if r < O. \

9,69, Procedure stderror

Terminates +the run with an error message specifying an error condi-
tion on a peripheral device, It 1s wused as the block procedure of zones
where you don't care for device errors.

Call: stderror(z,s,b) .

7 (call value, zone). Specifies the name of the docu-
ment,

s (call value, integer). The logical status word after
a device transfer.

b (call value, integer). The number of bytes transferred.

The run is terminated with the alarm message:

bytes <value of 1> cee
called from ...

The file processor prints an interpretation of the logical status word 1gl
after the alarm message from the algol program.

Example:
See example 2 of inrecbH, where stderror is used in two ways.

9,70, String

This monadic operator changes the type of a real or long expression
into type string. The operator is required when a string stored in real
or long variables is used as a parameter of type string. Note that this
use of +the delimiter string is totally different from the string speci-

fication.

Syntax: string <real> is of type string.
string <long> 1is of type string.
Priority higher than %%,

The value of string <real> or string <long> has the same binary pat-
tern as the value of the operand. The binary pattern of a string is de-
seribed in 3.6. Depending on the wvalue of the operand, the resulting
pattern may mean a layout, a complete text string, or a text portion.

QT2 SWOPREC, SWOPREC6

Example 1, layout: '
See example 2 of real, 9.55

Example 2, a long string:

“Tet the real array re(l1:n) hold a sequence of text portions termi-
nated by a null character. Such contents of ra may for instance have been
obtained by readstring.

This variable text may be used as a string parameter in this way,
for instance:

i:= 13 write(out,string ra(increase(i)));

Write will reference the second parameter, which in turn calls in-
crease(i) and yields the value of ra(1). At the same +time i becomes 2,
Write will print the text portion held in ra(1) and if 1t does not con-
tain a null character, write will reference the second parameter again,
and so on until the null character signals the end of the text.

9.71. Integer procedure swoprec

This procedure is the Algol 5 version of swoprecb6, It gives you di-
rect access to a sequence of elements of 4 Ppytes each of a document so
that they may be updated directly.

Call: swoprec(z,length)

swoprec (return value, integer), The number of elements of L
bytes each left in +the present block for further
calls of swoprec.

Z (call and return value, zone). The name of the record.
Specifies further +the document, the buffering, and
the position of the document (see 6.1).

length (call value, integer or real). The number of elements
of 4 bytes each in the record. Length must be > O.

Except that the record length is measured in elements of 4 bytes
each, swoprec works as swoprecbo

9.72. Integer procedure swoprect

This procedure gives you direct access to a sequence of Dbytes of a
document., The bytes become available as a zone record, and you may modi-
fy them directly without changing the surrounding elements of +the docu-
ment. This makes sense for a backing storage area, only.

The procedure works as a combination of inrec6 and outrec6 in the
sense that it gets a sequence of bytes from a document and later trans-
fers +them back to the same place of the document. The document may be

scanned and modified sequentially by means of swoprech.

SWOPREC6H 9-T3

Call: swoprecHt(z,length)

swoprec6 (return value, integer). The number of bytes left in
the present block for further calls of swoprec,

z (call and return value, zone)., The name of the record.
Specifies further +the document, the buffering, and
the position of the document (see 6.1).

length (call value, integer, long, or real). The number of
bytes in the record., Length must be > 0, If it is odd,
1 is added. B

Zone state. ;

e zone =z must be open and reéady for record swop (state O or 7, see
9,27 get zone), i.eo the zone may only have been used for record swop
since the latest call of open or setposition, - To make sense, the docu-
ment must be a backing storage area.,

Blocking

woprec6 may be thought of as transferring the bytes just after the
current logical pointer of the document and moving the logical pointer to
the last byte of the record.

Because the records are blocked, +the actual +transfer back to the
device is delayed until the block is full or until close or setposition
is called.

A1l bytes of the record are taken from the same block and when the
block camnot supply a record requested, the block is transferred back to
the document and the next block is read. The checking of all transfers
takes place as described in 6.1, If the block still cannot supply the
recorg, the run is terminated., A record length of O is handled as for
inrecb.

If the zone contains 3 shares, one of them is used for input, while
another is used for output, and the last holds the current record.
This ensures maximm overlapping of computation and input-output.

Be careful to use the same share length as +that with which the
backing storage area was written, because the unused parts of the blocks
otherwise might be treated as significant data.

Example, direct updating.
~Tach word of the backing storage area ma28 may be added to the cor-
responding word of the area ma30 in this way:

begin zone ad(512%2,2,endarea),res(512%3,3,endarea);

comment this block length is the most economical with respect
to utilising the speed of a drum;

procedure endarea(z,s,b)s zone z; integer s,bs

if extract 1 = O then goto endscan else

stderror(z,s,b)s

open(ad, 4,<:ma28:>,0) 3 open(res,lt,<:ma30:>,0);

rep: inrec6(ad,20u48); swoprect(res,2048); ‘
for i:= 1 step 1 wntil 512 do res(i):= real(long res(ij +
long ad(i))s
comment only if we are sure that overflow will not occur,
goto reps .
endscan: close(ad,true)s close(res,true);

9-7h SYSTEM

9473, Integer procedure system

This procedure gilves access to various system and job parameters,
Some of the functions of system require knowledge of the job organisa-
tion (see ref. 2) and the multiprogramming system (see ref. 1).

Call: system(fnc,i,arr) or

system(fnc,1i,s)

system (return value, integer). Meaning depends on fnc.

fne (call value, integer)., Specifies the function of sy-
stem.

i (call or return wvalue, integer). Meaning depends on

‘ fnec.

arr (call or return value, array of various types). Mea-
ning depends on fnc.

s (call value, string). Meaning depends on fnc.

The value of fnc is restricted to 1 < fne < 11, with the following mea-
ningss =

System(1,i,arr), floating point precision

system 0 iT Tloating point precision was 36 bits mantissa, 1
if the precision was 33 bits mantissa.
i (eall velue, integer). Specifies the new floating point

precision to 36 bits for 1 =0, 33 bits for i = 1, The
run starts with a precision of 36 bits.
arr Not used.

System(2,i,arr), free core, program name
system The number of bytes available in the Jjob process for
reservation of further variables., Section 8.3 gives
the rules for computing the number of bytes occupied
by a set of variables.
i (return value, integer). Gets the same value as system.
arr (return value, long array or real array, length > 2).
The name of the document which holds the program Tile.
The document is always a backing storage area,

System(3,1i,arr), array bounds

system The lower index bound for arr.
i (return value, integer). The upper index bound for arr.
arr (ecall value, integer array, long array, real array, oOr

boolean array). If +the array is of more dimensions,
the lexicographical index as defined in 5.2 1s wused
as the value of system and i.

System(Y4,1,arr), file processor parameter
Mhis call does not make sense i1 otne program was called with the fp-

command <program><integer>

system The separator and length for item i in the call of the
program. The coding of separator and length 1is given
in ref. 2 and ref., 6, part 1, section 2.4, System is O
if i specifies an illegal number,

SYSTEM 9-T75

i (call value, integer). The number of an item in the
file processor command vwhich called the program. The
items are counted from O and up. '

arr (return value, real array, length > 2). The value of
item i is converted to a real and assigned to the
first element of arr for an integer item, to the first
and second element for a text item.

An item is a name or an integer together with the preceding separator,
The following two examples show the numbering of items:

8 source a. b r=pip a b ¢
o 1 2 3 0 1 234
System(5,i,arr), move core area
system 1 1fthe moving was ok, O otherwise,
i (eall value, integer). The sbsolute address of a cell
in the core store (see ref. L4).
arr (return value, integer array, long array, or real ar-

ray) . System attempts to copy the core area from abso-
lute address i and on into the first element of arr
and on,

The copying stops when either arr is filled or when the word referenced
is outside the core store. In the latter case system becomes O. The co-
pying takes place word by word, So that for instance core(i) and core(i+2)
go into the first element of arr if arr is real or long.

It 1s necessary to move core areas in connection with some of the en-
tries in procedure monitor, 9.40, but you may alsc use system(5,...) for
investigation of tables in the monitor (see ref, 1) and in that way find
the set of peripheral devices on the actual computer.

System(6,1,arr), owvn process, any message :

system The process description address for +the Jjob process,
iie. the process which executes the program (see ref.
1)e

i (return value, integer). If the message queue of the
job process is empty, i becomes 0. Otherwise i becomes
the buffer address for the first message in the queue.

arr (return value, long array or real array, length > 2) s
The name of the job process, -

System(7,1,arr), primary output

system The process description address for primary output
(see ref. 1). ' .
i (return velue, integer). The kind of the primary out-
t process.
ary ?Eeturn value, long array or real array, length > 2) .

The name of the console.

System(8,1,arr), parent description
System The process description address for the parent of

your Jjobo.

i (return value, integer). The kind of the parent pro-
cess (always 0).
arr (return value, long array or resl array, length > 2) .

The name of the parent process.

9-76

System(9,1,8), run

SYSTEM

time alarm

1

S

(call velue, integer). The value to be printed follow-
ing the alarm cause,

(call value, string). The text to be printed as the
alarm cause, The +text should be a new line character

followed by at most 8 non-blind characters. see €23 Pace b.)F
PROG . LARKLAWECLK

This entry terminates the run with an alarm message similar to the stan-
dard alarms,
terminate the users program if he supplies wrong parameter values.

System(10,i,s8) or

It is intended for use in library procedures, where it may

oystem|10,1,arr), parent message

system

arr

The result of the answer from the parent or 0 meaning
that the message has not been sent as the message claim
is exceeded, The normal result is 1 (see ref. 1).

(call value, integer). Only significant if the third
parameter is a string., If so, the value 1 will indi-
cate a request to the parent +to stop the process until
the answer arrives.

(eall value, string). A text of wup to 21 non-blind
characters will be sent as a print message to the pa-
rent, If the text is shorter than 21 characters, the
text will be supplemented with null characters, If it
is longer, it will be cut to 21 characters.

(call and return velue, integer array, long array, oOr -
real array,lergth >= 8 words)., The contents ¢f the 8
words will uncritically be sent as a message to the
parent, If the wait indication is set in the first
word (the last bit is 1, see ref, 7), the answer is
awaited in the array, otherwise it 1s awaited in an
anonymous location, and the contents of the array is
unchanged.,

The parent messages defined for the moment are described in ref. T, Sec=
tion 10.6.

System(11,1,arr), catalog bases

This entry can only be used in system 3.

The user base is only defined when FP 1s present in the job process (cf.

8.502) °

system
i
arr

Always = 0 (null). -
(integer) not used.

(return value, integer array, length >=8). Contains

the catalog bases associated with the job process.

1st and 2nd element +the catalog base
3rd and Uth element the standard base
5th and 6th element the user base
Tth end 8th element +the max base

LN o

When Boss is the parent, the standard base gives the temp scope or
the login scope, the user base gives the user scope, and the max base
gives the project base. The catalog base is the base used for the mo- pe
ment, usually it is the standard base. .

SYSTEM 9=TT

Exemple 1, reserving a maximum array

~he following program reserves the greatest array possible at that
point of the algorithm, However, the program in the immer block will pro-
bably run very slowly because of frequent transfers of program segments
from the backing storage.

begin integer i3 array arr(1:2); '
begin array ra(1:system(Z)free core: (1,arr)//h);
leng'bh:= 1//’-'-, cee

If you instead programmed like this

begin integer i3 array arr(1:2);
system(2) free core:(i,arr);
begin array ra(1:i/ /’-L-p),

you would have to subtract some value p corresponding to the further lo-
cations occupied by variables of the inner block.

Eyample 2, array bounds
— In array of arpitrary dimensions might be cleared by means of the
following procedure:

procedure clear(ra); array ra$

begin integer low,up;
for low:= system(3)bounds:(up,ra) step 1 until up do
ra(low):= 0

ends

Example 3, message buffers avallable
— A program may Tind The number of message buffers it may use for
communication with other processes:

begin integer array descr(0:34); integer i,bufs;

long array la(1:2)3

comment first the process description’ address of the Jjob is
found, next the description is copied to descrs;.

system(S)move core: (system(6) own_process:(1,1a), deec,r),

bufs:= deser(T3) shift (-12) extract 123

coment the description format is given in ref. 5;

The program should now restrict itself to using bufs - 1 double buffered
zones simultaneously.

Exemple L, on®line inmteraction (only system 3).

Assume you want to modify the central 1oop of an online programe. As
soon you send the text 'test' to the job, the job should produce guxilia~
ry output. As soon as you send something else to the job, the job re-
turns to the normal mode.

This can be done by 1nsert1ng the following code into sultable

places of the inner locps:

System(E)any messaget (message,arr) s
if message > O then operators

9-78 SYSTEM

Here, the procedure operator sets the boolean 'testmode' which is wused
in the imner loops +to determine whether auxiliary output is printed,
Operator loocks like this:

procedure operator;

begin zone term(10,1,stéerror); long array la(1:1);
integer arrey LuTﬁ(T :9); integer 1;
menitor(20)weit message:(term,i,butt);
buff(9):= 13 mor:tor(’?,scrd answers: (z,1,buff);
open(term,8,<:terminal:>,0);™
read~tr1ng(term,la,1),
testmodes= la(1) = long<:itest:>;
close(term, false)s

ends

The Jjob mst run with the Jjob parameters 'online yes'! and 'attention
yes!,

Example 5, opening to a 'hidden' ares

"his example 1s only relevant in system 3.

Suppose you want to connect a zone to an area with scope project,
but the area is 'hidden' behind an area with the same name on scope user,
The following procedure may do the job.

procedure openproject(z,doc,giveup);

zone z$ string docs integer giveup;

begin zone myself(1,1,stderror);
integer array catbase(1 8)s
open(myself,0,<::>,0);3
system(11)ba8es (O catbase);
comment now set the catalog base to max bases
catbase§1)'— catbase(7); catbase(2):= catbase(8);
monitor(72)set_cat_ baSP.(szelf 0,catbass);
comment now open, crzabe ares process, establish the name

table address and leave the zone as just openeds

op@n(z L,doc, giveup)s
inrec6t(z O)
SetDODitlon(z 0,0)3
coment at last set the catalog vase to 3taandard;
catbass(1) 1= catbass(3); catbass(2):= catbase(l)s
monitor(72)set_cat Dbasa: (myself,0 ,catbase)s

ends

Example 6, find scope of an entry
Tes GXample 5 Or monitor, 9.40.

SYSTIME | 9-T79

9.74. Real procedure systime

Systime gives access to the real time clock in the monitor and to
the CPU time used by the job., Further, it, may convert elapsed time into
date and clock. 3

Call: systime(fnc,time,r)

Systime Ereturn value, real). Meaning depends on fnec.

fne call valus, integer). _

time (call value, real). Is a time expressed in elapsed
seconds since midnight 31 December 1967, '

T (return value, real). Meaning depends on fnc.

The valus of fne is restricted to 1 < fne < U4 and determines the meaning
of systins as follows: - -
fne = 1, time measuring ’

systime The CPU time used by the Jjob. The time 1is given in
seaonds with an accuracy given by the length of a

tme slice (usually 25.6 millis=conds).

time Base for real time measurement.

r Real time given as +the number of seconds elapsed
since the moment given by 'time'., Real time is given
with an accurazy of O.1 milliseconds, but the limited
accuracy of r mey canse a somswhat greater error.

fnc = 2, date and clock (ddmmyy)
systime becomes day%100 00 + month*100 + year corresponding to
time, The year is taken modulo 100.
time The time to be converted to date and clock,
r becomes hour*100 00 + minute¥100 + second. Fractions
of a second are cut off,

fne = 3, set clock
This tunction is usually forbidden in a job process, If this is the
case, the run is terminated.
systime Undefined

time The ©real +time clock is initialised with the value of
time.
r Not changed,

fne = 4, ISO date and clock(yymmdd)
systime becomes yearx100 00 -+ month¥100 + day corresponding
to time, The year is taken modulo 100.
time The tims to be converted to date and clock.
r Becomes hour*¥100 00 + minute*100 + second, Fractions
of a second are cut off.

9-80 TABLEINDEX, TOFROM

Example 1, timing a loop -
The following program prints the CPU +time and real time used by a
part of the program as seconds with 2 decimals:

cpus= systime(1,0,times):

The program part to be timeds

cpus= systime(1,tims,time) - cpus
comnent complete timing before printings
write(out,<<dddd.dd>,cpu, time);

/

If the time measured is short, you should compensate for the time spent
by calling systime., The cpu time will depend somewhat on the activities
of other processes, The real time usad is highly dependent on other pro-
cessas, '

The real time measuring shown above will be inaccurate with about 1
millisecond for each year that has passed since 1957, This is due to the
limited accuracy of the real nunbers. An accuracy of 0.1 millisscond may
be obtained oy measuring relative to a base, like this:

systime(1,0,basz2);

cput= systime(1,base,time)s

The program part to be timed;

cpus= systime(1,base,t) - cpus time:= t - time;

Example 2, print date and clock

systime(1,0,time);
write(out,<< dd dd dd>,systime(l,time,r),r);

will produce output like this:

Th 05 28 22 53 37

9.75. Integer tableindex

This standard identifier is used by all the character reading pro=-
cedures when a non-standard alphabet is sclected, See intable, 9.32.

9.76, procedure tofrom

The procedure is intended for copying large sets of data to one ar-
ray field from the other.

Call: tofrom(to fleld,from field,size)
—= o field ~ (return value, boolean array, integer array, long ar-
- ray, real array, or zone record). The contents of from
field (see below) is copizd into to field. The copy-
ine starts with the byte with index 1 and ends with
the byte with index size.
from field (call value, boolean array, integer array, long array,
- real array or zone record)a The contents is copied ine-
to to field., The copying starts with the byte with in-
dex 1 and ends with the byte with index size.
size (call value, integer). The number of bytes to be co-
pied. Size must be >= O. '

\

UNDERFLOWS 9-81

The reference byte of both to field and from field must be a right
hand byte, I.es o0dd valued fieTd varisbles should not be used to indi-
cate the array parameters.

The procedure performs an sction equivalent to

begin long field 1fs integer field intf;
boolean field Hfs
check Sizeooo;
for 1f:= U4 step 4 until size do
to field.lf:= from field.lfs
intfi= size - 13
bfi= sizes
if size > 1 then
to field.intfi= from field.intf;
ifTsize > 0 then
to field ,bfe:= from field,bfs
ends -

The parameters are oaly evaluated once,

Example 1, clearing an array.

K Iarge array can be cleared (each element is set to the binary
value zero) by setting the first double word to zero snd then let tofrom
do the rest. Suppose that the array arr is declared

real array arr(low:up)
and that raf and rafl are real array fields, then
rafi= Uxlows rafl:= raf - U3
arr.raf1(1) 1= real <::>3
tofrom(arr.raf,arr.rafl, (up~low) *4);
may do the job.
Example 2%
See example 2 of inrecH, 9.31.

9.77. Integer underflows

This standard identifier determines +the action on floating point
underflows:

underflows < 0 The run is terminated when underflow occurs.
underflows > O The value of underflows is increased ny one when under-
- flow occurs. The result of the operation which caused the
underflow is O,

When the run starts, underflows is O, A floating-point underflow occurs
when a result gets closer to zero than 1.6'-617 without being zero
exactlys Because of an Inconvenience in the machine structure, mltipli-

cation of 2 reals both in the range 2%%(-1024) < sbs r < 2%x(-2048) will
be classified as overflow.

Example.
See overflows, 9..49.

9-82 WRITE

O T0 Integer procedure write

Prints text, numbers, and single characters on a document, Any num-
ber of such items in any sequence may be output by one call of write.

Call: write(z,one or more source parameters)

T write (return value, integer). The absolute value of write
gives the number of characters printed., Write is ne-
gative 1if a parameter error has been encountered,
otherwise write is positive,

Z (call and return value, zone). Specifies the document,
ghe)buffering, and ‘the position of the document (see

1)
source (call value, string, integer, long, real, or boolean).

The source parameters specify what is to be printed,

If write 1s mnot called as a formal procedure, all parameters, which are
not string expressions have been evaluated before write was entered. Now,
write scans the source parameters from left to right. Bach parameter is
evaluated if it was not evaluated before write was entered, and then 1t
is handled according to its type as follows:

string: A text string is oprinted as the corresponding se-
quence of characters. The null character which termi-
nates the string is not printed. A layout string is
stored and used for printing of succeeding numbers in
the paramster list. Layouts are described helow,

real,long,integer: The number is printed as a sequence of IS0 characters
according to the latest layout in the list., If no lay-
out has appeared in the present parameter list, the
standard layout << -dd.dddd> is used to print a real,
and the standard Tayout << @ is used to print an in-
teger or a long. -

A real mnumber is printed with a relative accuracy
of about 6'-11, provided that the layout has a suffi-
cient nmmber of significant digit positions,.

booleans: A boolean parameter must be followed by an integer
arameter., The last 8 Dbits of +the boolean pattern
%see 3.1) are printed as a character as many times as
specified by the integer parameter., If the integer 1is
<0, nothing is printed,

If a source parameter cannot be classified as above, write will
print the alarm text <:<10>¢¢xwrite: param<iO>:>, drop the parameter and

continue interpretation of its parameter list.

Zone state.
= Zone must be open and ready for character printing (state O or 3,

see 9.27, getzone6), i.e. since the latest call of open or setposition,
only character output may have been made on that zone., To make sense, the
document should be an internal process, a backing storage area, a type-
writer, a tape punch, a line printer, a plotter, or a magnetic tape. In
the latter case setposition(z,...) st have TDbeen called after

Open(Z, o.c) °

WRITE 9-83

The first character is printed just after the logical position of
the document,

When write returns, the logical position of the zone points to just
after the last character printed. The zone record is not availsble (it is
of length 0).

Blocking.

Whenever a share of the zone is filled with characters, the share is
output as one block %o the document and later checked as described in
6.3, This way of changing the block implies that one character more al-
ways may be stored in the block, and empty blocks may thus exist during
the normal use of write.

Layouts,
e symbols of a layout give a symbolic representation of the di-
gits, spaces, and other symbols as they will appear in the printed num-
ber, Indeed, the finally printed number will have exactly the same num-
ber of printed characters as 1s present in the layout (except in case of
alarm printing, see below).

The general form of a layout is a sequence of layout characters en-
closed in << >, The sequence of layout characters is composed like this:

<gpaces><sign><number part><exponent part>
The number part is composed of a sequence of digit positions like this:
<Pirst letter><a's><zeroes>

where one point representing the position of +the decimal point may be
inserted between two of the digit positions, A space or may be inser-
ted between any two digit positions which then are separated by a space
in the finally printed number,

Layout constituents:
<spaces> : consist of a (possible empty) sequence of spaces or
's, They will appear as +that many spaces in the
Printed nunber.

<sign> is empty : A positive number is printed without a position for
the sign. A negative number is printed with an alarm
layout (see below).

<sign> is = ¢t The sign of <the number is printed as space for a po-
sitive nunber, - for a negative number.
<sign> is + ¢ The sign of the number is printed as + for a posi-

tive, - for a negatlve number.

<first letter> is z: Digit positions preceding the first non-zero diglt
are printed as zeroes., A possible sign is printed in
front of the first digit position.

<first letter> is 4 ¢ Digit positions preceding the first non-zero digit
are printed as spaces if +they are in front of the
first digit position before the point, and as 2zeroes
otherwise, The sign is printed just before the first
digit printed.

9-84 WRITE

<first letter> is f : Digits are printed as for <first letter> = d. The
sign is printed in front of the first digit position.

<first letter> is b ¢ Exactly as for <first letter> = d, except if all
digits are 0. Then all the layout positions are prin-
ted as spaces.

Consist of a (possibly empty) sequence of the letter
d. The 1length of this sequence + 1 (for the first
letter) gives the maximum number of printed signifi-
cant digits., All numbers will be correctly rounded to
the number of sisnificant digits printed.

<d's>

<zeroes> : Consist of a (possibly empty) sequence of zeroes, If
a non-empty exponent part is specified, the signifi-
cant digits of the number are allowed to move <to the
right, using the digit positions given by <zeroes>.,
This is done in such a way that the decimal point is
kept in the position specified and the exponent part
is made divisible by m + 1, where m is the number of
zeroes in the layout.
Unused digit positions to the right of the point are
printed as spaces.

<exponent part>
is empty: No exponent part is printed as the digit positions
mist be able to hold the digits of the number, Other-
wise an alarm layout is used.

<exponent part>
is '<sign><first letter><a's>:
The exponent part is printed as the symbol ' followed
by a tens exponent printed as an integer with the
layout <sign><first letter><d's>, <first letter> can-
not be b in this case, If <first letter> is d or f and
the tens exponent is O, the entire exponent part is
printed as spaces,

Limitations:

Write refuses to print real numbers with more than 12 significant
digits. If more are attempted only the first 12 are used.

The number of digit positions in front of the decimal point may not
exceed 15. The number of digit positions after the decimal point may not
exceed 15,

The number of digit positions in an exponent part may not exceed 3.
The number of leading spaces plus the number of digit positions in front
of the last space may not exceed 22,

Alarm printing:

TT & negavive number is printed without a sign position, a minus is
inserted consuming one extra position.

If an integer is printed with a layout containing too few d's but
no zeroes, no decimal point, and no exponent part, the necessary nurber
of d's is inserted.

If a nunber in other cases is too large to be printed with the lay-
out given, an exponent part is inserted with the necessary number of di-
oit positions. An existing exponent part is just extended with one or

two d's.

ZONE 9-85

A number which is too small to be printed with the specified number
of significant digits is printed with fewer significant digits.

Example 1:

write(out,<:<10>:>,false add 97,4, -12,<< +ddd,dd>,<: and:>,13)
will produce this line of output:

asaa =12 and +13,00
Example 22

The call write(out,s,<:,:>,r,<:,:>) where s is a layout string and r
is a real will print as shown below with various layouts:

d.dd dd ~-zddd +£ddoo -bd.000'-d
9O°12 359 9“00129 s - Ty ’ ’
,-0012 55, [} 1235,) +]25OO,) -00012' Ll‘,
s 1025 4511, ,~1235112, . , +12300!3, , 12, 'l
, 12, ' 12,

Example 3, tabulation:

write(out,false add 32,100-write(out,<:<10>:>,string text),string text2)
will print text2 in columm 100 and on, except if text is longer than 100
characters or contains new line characters.
9.79. Zone
This delimiter occurs in declarations of zones and zone arrays and
in specifications of zcnes and zone arrays. The formal definition 1is

given in 5.5 and 5.6, Details about input/output are given in 6,

Zone declarations:

zone<list of zone segments>; declares one Or more zones,
One zone segment is composed in this way:
<ist of zone identifiers>(buf,sh,blproc)

buf (integer). The number of elements of U bytes each
in the entire buffer area. See below.

sh (integer). The number of shares, See below.

blproc (procedure with ? parameters: a zone and two in-

tegers). The block preocedure. It may be called by
blockproc (see 9.6) or when an operation on a do-
cument is checked by a high level zone procedure
(See 6e1) .

Zone array declaration:

zone array<list of zone array declarations>;
Declares one or more zone arrays., Une zone array
declaration is composed in this way:

<zone array identifier>(n,buf,sh,blproc)

9-86 ZONE

n (integer). The number of zones in the zone array,

buf (integer). The nunber of buffer elements of L
bytes each in each of the n zones,

sh (integer). The number of shares in each of +the =n
ZOones,

blproc (procedurs with 3 parameters: a zone and two inte-
gers), The block procedure associated with +the n
zones,

Zone and zone array specification:

zone<list of zone identifiers>;
Specifies one or more formal parameters as zones,
zone array<list of zone array identifiers>$
Specifies one or more formal parameters as zone
arrayso.

Buffer length.
e er area may be divided in any way among the sh shares., The
procedure 'open' will divide the buffer area evenly among the sh shares.

Share Se
= Tach of +the sh shares may be used for one uncompleted operation on
a document or for one running child process (see 5.5).

In high level zone procedures, sh specifies the number of buffers
used for input/output to the document connected to +the 2zone, In these
cases sh will usually be 1, 2, or 3. Section 6.3,1 contains hints on when

to use 1, 2, or 3.

Zone state.

Just after the declaration of a zone, no document is connected to
the zone, The zone record describes the entire buffer area, which has an
undefined content., All the shares are free and each of them describes the

entire buffer area.

Example 1¢

The rollowing block head declares 3 zones., Two references 1o the
record of 'new' are also shown, The standard zone ‘out' 1is not acces-
sible inside the block, because it is redeclared.

begin zone new,0ld(2¥512,2,stderror) ,out(25,1,stderror);
new(1):= new(102h):= 03

Example 2:

—TWo zone arrays must be declared as shown below, because zone array
za1,za2(...) is forbidden. One reference to the record of zal(1) and one
to the record of za1(5) are shown., The use of a subscripted zone as a pa-

rameter is shown t00.

begin zome array zal(3,2%512,2,stderror),za2(3,2¥512,2,stderror);
real field rfs

zal1(1,1024) ;= zal1(3) .rfi= 03

open(za2(3) I shift 12+18,<:mt123456:>,0)3

EXECUTION TIMES A-1

APPENDIX A, EXECUTION TIMES IN MICROSECONDS

The times given below represent the total physical times for execution
of algorithmic constituents. The total time to execute a program part is
the sum of the times for the constituents. The times are only valid under
the following assumptions:

1. The time for transfer of program segments from the backing storage is
negligible (see 9.7 and 8.3).

2, The program is not waiting for peripheral devices (see 6.1),

3. The time slice interval is 25.6 milliseconds or more (see ref. 1).

4, The program is the only internal process rumning in the computer.

When the computer is time shared, assumption 4 is not fulfilled, but then
the times represent the CPU time used by the program.

A,1. Operand references

ReTerence to local ldentifiers and constants 0
Reference to non-local identifiers (variable, zone, or array) 0=k

An array parameter is referenced as 1if it was declared
locally in the outermost block of the procedure.

If a sequence of identifiers from the same non-local
block are referenced without intervening references to
other non-local blocks, the first reference costs 4 micro-
seconds and the later one usually O,

Reference to name parameter, actual is simple 9
Reference to name parameter, actual is composite 150
Reference to own variable 0-U4

A2, Constant subexpressions
Operations are pertormed during the translation and thus do not con-

tribute to the execution time in the following cases:

+=-%/shift extend working on constant operands.
conversion of an integer constant to a real constant, or vice versa.
resl string long working on all operands.

The result of an operation performed during translation is again treated
as a constant, Examples:

A(-2+6/5) is reduced to A(-1)

1+0.,5-0.25 is reduced to 1.25

p+1/2-1/4 1is only reduced to p+0.5-0.25 because
p+0.5 must be evaluated first.

A,3, Saving intermediate results
By the term 'composite expression' we shall mean eny expression in-

volving operations to be executed at run time, Examples:

A(2) b+l a shift 8 pr(i,i,<:iab:>) are composite
11.5 real<:ab:> 5 shift 20 are not composite (see A.2)

During evaluation of expressions, one intermediate result is saved in the
following cases:

+, %, and, or, all relations, shift, extract when working on 2 compo-
site expressions,

- /[y [/, mod when the right hand expression is composite.

add when both operands are composite or when the left

hand operand is a composite real.

A-2

EXECUTION TIMES

The saving of one intermediate result takes

integer or boolean value SavVed sescecescsccoscsssssosscsssscescsce I
real Valu.e SaVEd. @ 0 00 0606 06060600 086060000000 ©0 6000006060 0e 0000000 sOe®O®eO 1L"

Examples:

T A(1)+B(i)+C(i) uses

AL,

savings (+,+)
saving (and
savings
savings
seving (-)

a<b and b<d uses
a<pb+c and t© uses
atb+2-e uses
a-7*(g+h) uses

—= OO -

Operators

integer+integer, integer-integer soeeseoosteoccssssccecsscsscscens L
ToNBALonD, LORE-LOMR «qsssomes s sammssesssaesynssnsownnasnvomnnsas O
real+real, real-real 000000 0P 000000 008000000000 00008060000006000800606000 10
and’ Or ‘.....0....0.....000......0'......C.00..'......&...0...‘.. u
integer*integer, SPIlleNlO eeeeseccseccessssssssssssssssssasscsasss 10
integer*integer, SPilleyeS seccesssseccscssscscsssssasssasssnscsos 2
integer//integer, integer mod integer seeeesescsosssesssssooscssos 18
real*real, Teal/Teal ceesesessssossssscsssossssscsscasossassssssas 20
long*long ©00000080 0000608000006 0000000080 06000006006060600000060000000000 250
long//long, long mOA 1ONE seeeeessssssessssssscscscsssccassssasoo Los

pemract<cons.t8‘n-t> 0 000000000000 00000 0000006000000 000000606000600G6GCIOSIES L"
B SEETEON L e w mommsore o 5.0 ol 5 08 s i s i VAP B
real add i, lOng add i, String add i $0 000000000000 06000000000008080 5
integer add i, boolean 2dd 1 eeesesescscesscsssscscssssscsssscsnno L
real shift i, integer Shift I secececcossescssssscsassccas S+abs(i) /2
boolean BHITE 1 seseserenssissssssssssnsosassanssonenannse SHabs(i)/2

ENt1ET TEBL cesecoecsssassnsnssssssssossssosooasscossosasescesssss 20
TOUNA TEB1 eoeessescsssessssssosoessessssosecssssscsssscsssssaasae 1[
TOUNA 1ONE cceeessscesccccscsssssssssassassssesssosssccssscscscsssase T
extend INTeger oceccesessccscsecssscsssscscscsescscescscsssnecscsccsnse 6
BhE PEHL ceosaasmnenssssssedtssFssssssussnnsEaanssessennusnssoonss 11
BDS INTEEET «eeeeeeccsessssssasssssssasasescessoososcescssenssssso D

abs long 0000000000060 00600060000060060060000000006000000060000000cs00000 17

subscripted variable with check against bounds, one subscript eoos 21
subscripted variable without check against bounds, one subscript . 14
subscripted variable for each extra subsScript add cccececsssecsess 18

integer:=integer scecescescssscssscssesssssssssssosescsessssscsosonse 9
integer:=1ong, SPIll.YES seeeeescscssscscsssassccssssssscoossccnns 16
integeri=long, SPI1llcNO cesesscsscsscsssscesoscsscasccscoscscossss 9
iNtegeri=real .ececscseccsssscssscssscscsssssscsnsossssocsssscosess 20
10NE: =INTEEET veeeassscsssesssssescssssscscssssssosessscsssansscas 18
long:=long 008608800080 000000080800 0060800000 00000000000000000000000000 1
1ONE:=TEAL ccoesessassssssssosssssasssssosssoossossoccsesosecsasss 82
real:=integer © 00608006 000000000000600006006000080000800008000000806000c0 20
7621 :=10NZ ecesceseosssssscscesssssssassscsssscooscscocsesescscsces 90

real:=real c.oo..onno-.o.oo.l..ioo..no.--uolol-ooouu.o..oo.to.ool. 1u

goto 10cal 18bel sececeeecesssasessscacacessacscscsssccccscccscses T
for i:=1 step <constant> until n do, each 100D «ecesecesecccese 17-35

if i<j then else , all relations among THESHOTE sonevssassvowmonnn 18
if r<q then else , all relations among reals cccessecsecccccccacss 20
i<j, other connections seesecesescssosesccecsccscnsncsccecscccccce 11
r<q, other connections ...ceececcecocsssscosssssscessscoooesscnsocs 19
if b then, other connectlonsS ceceesssescscoseeescescssoccecsescesss 12

case i Of oooo--oc-ao-un-noooootcooo-oono.nao.oo‘-cootooo-cnaooooo 25

call of procedure with empty body, no parameters .ceeccecsccsccece 150
parameter, for each paramEter add ecoocecoccoccocsososcecesccocooenc 20

EXECUTION TIMES

A.5, Execution times for certain standard procedures

8YCSIN ccceeeescseecoscscoesssesssssssconsesessosescoececsecscenen
AYCLAY) cceevessccc0ececseessscscoseeseesssscecocesesencscnesneensosse
OYE e0000000068000000000000600000008000080000000909000000000000000000
COS 9000000000 000060860068606000000088000080009000900000000000000000O0O0Ee
CXOY c000000000000060008006000600606068000000000000000000060060080000000
€XP 0000000000000 0008000800000000000000000000000006000600000600000800
INCreasSe cecessssccscecscscecesesesseecsecsscscssssssssocssccsssssen
Intable cececsessscecossceesssssssssesceoscossssesossesococoocosnecsse
ln 2 00 00 000000000000 0008000006008 000600060000600000080e6000006006060e00800
lOgand 0000 00006 00000000060060000000006060000000606060000000008606000086080
logor 000 0 0000000000000 08000000000 0000000°00QCE0OCESE0CE0CEECESIRRSROIOECECEOENSINONONOSIOSEOSEDS
rand-om 0000000080000 00080C0080C000000000600000@0600060000000C0IC0OICNINOSDSSO
sgl’ Sigl 000000000 0000000000000 0080000000000 Q0000 CCE0O0CEEESON00CQ0C00CEOC®EEESSCT
Sin 00000000 0000000089000 00000000000000000000000000C0COCEOCIOCESCI0OC0C0OCO00O00
Sirﬂl 0 909 0 080000000000 00 Ce000 006060000000 06000000000000000600060060600000

Sqr‘t 0000000 B000BSO0B00 0000000000000 0000090O00CE0000EEO0C000C0CQOCRSNSESEDSIESOSPOEO

Tho
570
Th0
610
200
600
165
170
485
200
200
235
225
575
715
500

LOFTOM eoeevececesccessscsssasssssssscoses I18+13,5%d0ouble words moved

Example:
We show the computation of the time for the following loop:

for i:=n step -1 until j+1 do 21-35 (for do)
I Ej+1)
if ia(i)=3 and 21 (1a(1))
11 (=3)
13 (save, and)
ra(i+1)>1 then 25 (ra(i+1),+)
19 (>1)
12 (if then)
126-140
p:=p + ra(i+1); - 25 (ra(1+1),+)
10 (real +)
14 (p:=)
175-189

The result is that the loop takes from 175 to 189 microseconds when the

last statement is executed, from 126 to 140 otherwise.

FILE PROCESSCR COMMANDS B-1

APPENDIX B, FILE PROCESSOR COMMANDS

The general rules for the File Processor ai'e’giveri in ref. 2 and ref, 6,

B.1. Call of compiler-

Bc1-1- Syn'tax

<> <source> }""
Lo

<bs file> = algol {<s> <modifier>

<source> ::= <text file>

index
spill

list .{yes}
message) (no |-
survey

yes)
stop.{no
; <last pass>

no
r 131

xrefo{ yes : J(’ { : , } }

!‘{ <horneations _i°<1ntervals> ,<sortarea>o .
yes
no)
<first pass>.<last pass>
<first pass>.<last pass>.<first line>.<last line>

<modifier>

details.

&0

aJJ- »

declare
<connections> ::=Y assign

use .

; ; A
<intervals>::= <first line>.<last line>{.<f‘irst name line>.<last name line>}°

<first line>
<last line>
<first name line>
<last name line>
<first pass>)
<last pass>

1= <dnteger>

<sortarea> ::= <name>

B-2

FILE PROCESSOR COMMANDS

B,1.2, Semantics

<bs file>

<source>

<modifier>

index.no

spill.yes

list.yes

message.no

survey.yes

stop.<last

A file descriptor describing a backing storage area. It is used
as working area for the compilation, and the object code ends
here and is described in the file descriptor, If <bs file> does
not exist an area is created, preferably on drum, If the job
has no drum resources, the area is created on the disc where
the job has maximum temporary resources, After a possible crea-
tion, the area is made as large as possible leaving 1 slice on
the device., An existing area is never cut, however,

In system 2 a creation of an area is only made if <bs file>
is an empty note. In this case a working area of 100 segments
is created, If the translation is successful, <bs file> will
contain a complete object program or an external procedure
(a standard procedure).

In system 5, and in system 2 with translation into an empty
note, the area is cut to the segments necessary.

The list of sources specifies the input files to the compiler
(see 2,0,3). If no source is specified, the compiler reads the
source from current input.

The list of modifiers is scamned from left to right. Each modi-
fier changes the variables that controls the compilation. When
the scan starts, the variables are inltialised to the value ex-
plained below.

Code for dynamic check of subscripts against bounds is omitted.
The initial setting is index.yes.

Dynamic check of integer overflow is performed. Even if the ex-
ternal procedures referenced were translated with spill.no, a
partial check of integer overflow is performed when they are
executed (see 8.2).

The initial setting is spill.no.

The entire source text is listed on current output with 1line
numbers in front of each line,
The initial setting is list.no.

Normally, the text preceding the first begin and all comments
denoted by message in the source text are listed with line num-
bers, With 'message.no' this listing is omitted.

The initial setting is message.yes.

A summary is printed on current output after the completion of
each pass of the translation. The meaning of the summary is ex-
plained in ref. 10,

The initial setting is survey.no.

pass> The translation is terminated after the pass specified.
Stop.yes terminates the translation after the last pass. The
translation is regarded as unsuccessful.

The initial setting is stop.no.

FILE PROCESSOR COMMANDS B=%

xref.yes A crossreference list (xref-list) is printed on current output
after a possible listing. The xref-list 1is a listing of the
identifiers used in the prcgram, The 1list contains an occur-
rence list for each identifier, The occurrence list is 3 lists
of line numbers each preceded by a letter giving the kind of
the list, The kind letters may be:

D(eclaration), A(ssignment), or U(sed), see further B.1.2.1
The” xref-list is made with no regard to the block structure of
the program, The identifier names are sorted according to the
collating sequence

abedefghi jklmmopgrstuvwxyzega

ABCDEFGHIJKLMNCPQRSTUVWXYZEZR

0123456789
Further details are found in B.1.2.1,

The initial setting is xref.no.

details.yes Intermediate output from all the passes of the compiler 1s
printed on current output. The output may be restricted to an
interval of pass numbers and to an interval of line numbers,
The ouwtput from pass 8 (for instance caused by 'details.8.8')
consists of a list of those line numbers which correspond to a
segment boundary in the object program.
The initial setting is details.no.

B.1,2.1. Details on xref-list and -modifications

The occurrence kind is one of the three

D: meaning the identifier is found in a declaration or specification.
A label is considered declared in the line where it is defined.

A: meaning the identifier occurred in front of := ., A switch declara-
tion is indicated with a D.

U: meaning all other occurrences.

The possible connections are

declare

assign

use The ocecurrence-lists will only be those with the specified
occurrence-kinds, D, A, U respectively,

all This connection is equivalent to the connections
declare.assign.use,

XreT.yes 18 equivalent to xref.all.

The intervals may be a line interval specifying a limitation of the 1line
numbers appearing in the occurrence lists. This line interval may be fol-
lowed by a name line interval specifying that only the names that appear
in this line interval will appear in the set of identifier names.

<first name line>.<last name line>
Only those identifier names, that appear in the specified part
of the program, are listed in the xref-list. This parameter
restricts the set of identifier names in the xref-list. If not
specified, the name line interval will include the entire pro-
gram,

<first line>.<last line>
The occurrence-lists will only contain line numbers belonging

to the specified interval. If not specified, the line interval
will include the entire program. :

Balt FILE PROCESSOR COMMANDS

The sortarea is usually created by the compiler. This area 1s used for
sortIng the occurrences of the identifiers, In system 3 a part of the area
used for compilation of the program is taken. In system 2 a sort area of
100 segments is created. 1 segment can hold approximately 100 occurrences.
For very large programs it may be necessary 1o create a specific sort
area. The name of this ares may then be specified at the end of the list
of modifications to the xref-request.

B.,1.3. Examples

o 1lp
sli=algol list.yes s sl3

The final program is stored in sll. The source is taken from the file de-
seribed in s followed by the file sl3, The entire source text and all
error messages appear on lp.

sl1=algol list.yes stop.l

The source text is read from current input and listed on current output.
The translation stops after pass 1, i.e. just after the listing.

The following examples show the calls of the compller with xref-modifica-
tion, and the corresponding output. The underlined lines are the commands.

algol text list.yes xref.yes
begln integer 1, Js

2 procedure pip(a,b)s
3 value a3
I real aj integer array b3
5 b(a):=as
6
6 switch bi=A;
g integer array ia(1:2)3
8 goto b(increase(1));
9 A: pip(i, i1a)s
10
10 end
< a FF character is printed here >
a D: 4
U: 2 5
b D: L 6
As 5
Uu: 2 8
i D: 1
Us 9
ia D: T
U: 9
increase U:s 8
j D: 1
pip D: 2
U: 9
A D: 9
6

U:
algol end 11

FILE PROCESSOR COMMANDS B-5

algol text xref.assign

begin

< g FF character is printed here >
a

b A 5
i

ia

increase

J

pip

A

algol end 11

algol text xref,all.2.10.1.1

begin
< g FF character is printed here >
i Us 9

.‘I

algol end 11

algol text xref.all.t.7.6.6

begin
< a FF character is printed here >
b D: L4 6

A 5
A Us 6
algol end 11

B.2. Call of object program

B.2.,1 Syntax

: <empty>

- - <s> <source> <anything>
{<name> }o<bs file> <> <intepert
<s> <param> <anything>)

<integer> %integer>}
<psram> ::= .)
<name> <name> f

B.2.2. Semantics

<name> = Has no direct significance. However, <name> may be accessed from
the running program by means of 'system'.

<bs file> A file descriptor describing a backing storage area which con-
tains an object program from an algol translation,

<empty> The program is called with 'in' as current input.

<source> Specifies a text file to be used as 'in', Current input is not
touched in this case.

B-6

<integer>

<param>

FILE PROCESEOR COMMANDS

The program cannot use 'in' and ‘out' and it cannot print
error messages., When the program terminates, it sends a parent
message corresponding to a 'break' and specifying the cause of
the termination. On the other hand, 3000-4000 bytes more are
available in this way. This possibility is mainly intended for
operating systems, which 'never' are terminated, never use
Yin' and ‘out', and work satisfactorily in a very short core
aresa.e

Works as <empty>. The command parameters <param> and <any-
thing> may be accessed from the running program by means of
'system! and interpreted in any way.

<anything> See <param>.

B.2.3., Examples

s=algol s12

s sl13
s

Translates the source program in sl2, Executes it once with input from sl3
and once with input from current input.

ERROR MESSAGES C=1

APPENDIX C, ERROR MESSAGES

Cele Messages from the compiler

Four formats of error messages exist:

1. <pass number> line <line number>,<operand number> <text>
(eege 6. line 12,6 type)

2., <pass nunber> <text> e.g. 8. program too big)
3, <puss 9> <name> <text> €e8e 9. Write program too big)
4, wxxxalgol <text> (e.g. ¥*xalgol param)

Below, the error messages are sorted according to <text>, The messages are
classified as:

(alarm) The translation is terminated immediately as an unsuccessful
execution, The program cannot be executed.

(warning) The message has no effect. The erroneous construction is skip-
ped.

Nothing The message allows the translation to continue and the program
to be executed until the erroneous construction is met or until
an undeclared or doubly declared identifier is used.

Col1s1, Line and operand numbers

The lines of the program are counted 1, 2, 3, ..o Where line 1 con=-
tains the first 'begin'® or ‘external'. Only 1ines containing visible
(printing) symbols are counted.

Tre operands within a line are counted 1 2, 3, ... An operand is an
identifier, a constant, or a string.

The point of the program where an error of form 1 1is detected, 1is
specified by the line number and the number of operands.passed within the
line, for example:

source line 12: if a<=1.5 then b(i):= real<:cd:>; else
operand numbers: 1 2 3L 5
error message: 6. line 12,5 termination

Cele2. Alphabetic list of error texts

algol end <i> This 1s not an error message, The algol program has been
translated, The object code occupies <i> segments. The
ok-bit (see ref, 2 and ref, 6) is set to yes. The warning
-bit dis set to no if no error messages have occurred,
otherwise 1t 1s set to yes.

algol sorry <i> An alarm has occurred, The ok-bit is set to no (see ref,
2 and ref, 6). Tre integer i shows the number of segments
the compiler has attempted to make,

block proc (pass 6). The block procedure of a =zone is declared
wrongly.

blocks (alarm, pass 5). More than 62 nested blocks.

call (pass 6). A procedure call has a wrong number of parame-
ters.

catalog (alarm, pass 2). Trouble with reading the backing storage
catalog,

(alsrm, pass 9). Trouble with catalog lockup, for in-
stance because a standard identifier has disappeared. The
result of the lookup is printed.

C-2 ERROR MESSAGES

char or illegal (warning, pass 6). Illegal character or wrong use of

a graphic, :

comment (pass 6)., Comment or message not after begin or semi-
colon,

constant (pass €). Syntactical error in a constant number.

+declaration (pass 6). Identifier declared twice or more times in the
same block. The message appears at each place of declara-
tion.

delimiter (pass 6). Impossible sequence of delimiters.

~delimiter épass 6). Two operands follow each other.

entry alarm, pass 9). A standard identifier hes been changed

in the catalog during pass 9.

error at source no: (alarm, pass 1). Trouble with input from the source
file specified, Either because of hard errors, because
characters > 127 are read, ¢r because the file could not

be connected.

ext param (alarm, pass 5). More than 7 parameters in an external
procedure,

external (pass 6). External-end dces not surround a procedure de-
claration,

for label (pass 6). Lebel which labels a statement inside a for
statement 1s used cutside.

head (pass 6). Impossible procedure head. The 1line nunber
points to the first symbol of the procedure body.

kind (alarm, pass 9). A standard identifier has been changed

in the catalog since the translation started. This 1is
most likely to happen in connection with an external pro-
cedure which was translated assuming a certain standard
identifier, but now this identifier has been changed in
the catalog,

layout (pass €). Impossible layout.

local (pass 6). Local varisble used in array or zone decla-
ration,.

not text (pass 1). A source text contains a character > 127,

object area (alarm, ***algol). The file specified for the object code

does not exist, cannot be used, or cannot be created
(empty note, see B.1.2).

operand (pass 6). Operand appears in wrong context or is missing.

-cperand (pass 6). Operand missing at end of construction,

overflow (pass 7). Irteger or real overflow during evaluation of a
constant expression.

param (warning, #*%%glgol) . Illegal parameter in the FP-command.
The parameter is Ignored,

pass trouble (alarm, pass 1-12) . The job area is too small to load the

next pass or the next pass has been destroyed,

program err 1 pass 7 (alarm, pass 7). An undetected error in the algol
compiler,

program too big (alarm, pass 1-12). The backing storage area specified
cennot hold the object code,

relative (alarm, pass 9). An un-debugged code procedure 1s as-
sembled. The procedure contains a relative reference out-
side the interval O <= r <= 510,

right par improper (rass 6). The construction) <letter string> is mnot
followed by :(.

sorry <i> (alarm, ***algol), The translation is unsuccessful, be-
cause of an alarm or because the FP-parameter 'stop' was
used, See also 'algol sorry <i>!'.

source exhausted

sort area
stack
subscripts
termination
text

type

undeclared

variables

works
xref too big
zone

zone declaration

FRROR MESSAGES C-3

(pass 1), The source text is exhausted before the program
was complete., A clue to the missing terminaticn 1is prin-
ted, '

(alarm, pass 12). Cross references could not be made be-
cause the sort area could not be created or connected.
(alarm, pass 2-12). The job area is too short for the
translation tables (see 8.1.2).

(pass F). A subscripted variable has = wrong number of
subscripts.

(pass 6). Parantheses or bracket like structures do not
match,

(warning, pass 6). Illegal constituent of text string,
usually <: or digits in < >, evk.<¥,eR ¥7

(tass 6). The declaration or type of an operand is not in
accordance with its use,

(pass 6)., The identifier is not declared, Later occurren-
ces of the identifier in the same block will not print a
message.

(alarm, pass 5). Mcre then 1951 bytes of simple varisbles
and simple zones in one block, or more than 2047 bytes of
owns in entire source text, or more than 2047 labels and
procedures in entire source text.

(alarm, pass T). Mcre than 96 bytes of working locations
in one block.

(alarm, pass 12). The area used for sorting is not large
enough.

(pass 6) . Wrong number of subscripts after zone or zone
array.

(pass 6). Wrong number of commas in zone array decla-
ration,

Ce?2. Messages from the running program

Ce2.,0, Initial alarm

Before the first

*¥¥<program

begin of the program is entered, the alarm

name> call

may appear. It is due to either: the program is not on backing storage, the
source is not a text, or the job process is too short.

C.2.1 Normal form

When the program 1s called with <program> <integer>, a run time alarm

sppears as a parent message (see B.2.2). .
In the normal case, a run btime alarm terminates +the program with a

message of the form:

<csuse> <alarm address>
called from <alsrm address>
called from ece

A 1ist of the possible alarm causes 1g given in C.2.3. The program 1s ter-
minated unsuccessfully except after the message 'end!.

c-k ERROR MESSAGES

An alarm address shows where the error occurred. If this is a proce-
dure or a name parameter, a line specifying the call address or the point
where the name parameter was referenced is printed too., The process is re-
peated if several calls or references were active at +the time of the
alarm, If more than 10 calls or references are active, the process stops
after having printed the last 'called from', but before the last alarm
address is printed.

An glarm address may take 5 forms:

1. name of a standard procedure or a set of standard procedures
2. line <first line> - <last line>
3, ext <first line> - <last line>

Form 2 specifies a line interval in the source text of the main programe.
Form 5 specifies a line interval in an external algol procedure. The accu-
racy of a line interval corresponds to about 16 instructions of generated
code, The first line nunber may sometimes be 1 +too great if the line is
not terminated with a delimiter, The 1line number of a procedure call
points to the end of the paranthesis,

The following alarm addresses from standard procedures are used:

char input (read, readall, readchar, readstring, repeatchar, intable)
check (A11 high level zone procedures use the check procedure)
checkspec zThe standard error actions in the check procedure)
ch/outvar changevar, checkvar, outvar)

invar (invar)

long/check (The subprocedure in the check procedure calling the user's
"block procedure., May also be the code performing certain
operations on long)

monitor (monitor)

open iopen)

outchar write, outchai, outtext, outinteger)

position Eclose, getposition, setposition)

recprocs changerec, inrec, outrec, swoprec)

recprocsb (changerec6, inrec6, outrecH, swoprech) Guevp 0 ALtoL CHeck PoseiBiN Too Few
stand.fcte.1 (exp, 1n, sinh) AREAS

stand.fct.2 (arctan, arg, sin, cos)
stand.fct.3 (arcsin, sqrt

stderror §The code giving up the run of the algol program)
system system, increase)

system10 (system, entries 10 and 11)

systime gsystime, logand, logor, exor)

tofrom tofrom)

zone declar (The code that declares zones and zone arrays)
zone share (getzone, getshare, setzone, setshare)

zone share6 (getzoneb, getsharef, setzoneb, setshareb)

Ce2+2o Undetected errors

If all parts of a program have been translated with index.yes and
spill.yes, the following errors may still pass undetected:

1. Parameters in the call of a procedure which is a formal parameter do
not mateh the declaration of the corresponding actual procedure. Any

reaction may result.
2. Number of subscripts of a formal array do not match the number of sub-

scripts of the actual array. Wrong results may be produced, but the
cohtrol of the program remains intact,.

ERRCR MESSAGES -5

5. A subscript may exceed the bounds in an array declaration with more
dimensions as long as the lexicographical index is inside its bounds.
The control of the program remains intact.

4, The program may write into the backing storage area occupied by the
program itself, Any reaction may result,

5. Undebugged standard procedures in machine language may cause any re=-
action.

The monitor and the operating system will usually limit +the consequences
of errors in such a way that no other job or process in the computer can
be harmed (see ref. 1).

Ce2.30 Alphabetic list of alarm causes

The error messages below cover only the standard procedures described in
this manual. The set of messages is expected to0 grow in step with the
growth of the standard procedure library.

aresin O Illegal argument to arcsin,

block <i> Too long record or record with a negative length in call of
changerec6, inrecb, outrecHb, or swoprecb. The block length
is shown.

break <i> An internal interrupt is detected. <i> is the cause of the
interrupt, usually meaning:

0 index error in program translated with index.no

6 too many message buffers used (see 8.3.3)

8 program breaked by the parent, often Dbecause it 1is
looping endlessly, In this case, the alarm address should
be taken with some reservation.,

The break alarm will often be called as a result of the un-

detected errors described in C.2.2.

bytes <i> Printed by stderror., The number of bytes transferred is
shown., The File Processor prints the name of +the dJdocument
and the logical status word,

case <i> Case index outside range. The index attempted is shown. The
line number points to ‘of'.

end <i> The program has passed the final end, The integer printed
after end shows the value of blocksread (see 9.7) as the
program terminated.

This is not an error message.,

entry <i> Illegal function code or entry conditions in a call of
monitor, system, or systime, The function code attempted is
shown,

exp O Tllegal argument to exp.

field <i> Field reference outside bounds., The illegal byte address is
shown,

index <i> Subscript outside bounds. The lexicographical index 1s
shown. This message occurs also for subscripted zones or
record varisbles, The character input procedures call the
index alarm if they cannot assign a single result to thelr
return parameters or if a character outside the current al-
phabet is met. The procedure 'check' calls the index alarm
if a block procedure specifies a too long block. In this
case, the value of the parameter 'b' is shown.

integer Integer overflow,

length <i> Tllegal record length in call of inrecb, outrecb, or
swoprecb6, The attempted length is shown.

In O Argument to 1n is <= O.

C-6

modekind <i>
movesize <i>

movefld <i>
oddfield <i>
param
reclen <i>

real
segment

share <i>
sh,state <i>
sinh

0
sgrt O
stack <i>

syntax
value <i>

Z.kind
Z.length <i>

Z.8tate <i>

ERROR MESSAGES

Tllegal modekind in call of open. The kind is shown. :
Tofrom is called with the number of bytes to be moved < 0.
The attempted size is shown,

Tofrom is called with an array where the byte numbered 1 or
the byte numbered size does not exist,

Tofrom was called with an arrsy where the word boundaries
are not between an even numbered byte and its odd numbered
suceessor, The parameter number (1 or 2) is shown.

Wrong type or kind of a parameter,

Changevar or outvar was called with a length word < O or
0 < length word < L,

Floating point overflow or underflow.

A text seems to be a long string but could not be found as
a text constant. :

An illegal share number is specified. The number attempted
is shown.

A share in an illegal state is specified. The
is shown,

Illegal argument to sinh.

Argument to sqrt is < O,

The number of variables exceeds the capacity of the Job
area, Or an array or a zone is declared with a nonpositive
nunber of elements. The number of bytes attempted in the
reservation of storage is shown. OR Yoo smacl 'size’

The program 1s terminated at a point where an error was de-
tected during the translation.

The contents of ia(i) in setzone(z, ia) or
sh) is illegal. The value is shown.
Swoprec is not used on a backing storage area.

The buffer length is too short. The actual buffer length is
shown,

A high level zone procedure is called in an dillegal zone
state, The actual state i1s shown.

share state

setshare(z, ia,

INDEX 1

<=> 9000000 000000000000 0COGSESESIOONCQOS 5'“.7

** oooooolonooo.o.ocoo.voconoolc.uA5l50)"l'

Abs 90 0000000090 00000909080006608000080 9.1

absolute addresSS esccscceccsesescen 9018
8CCUYACY eeeevcocecess 3.106, 30506, 9°7°3
actual parameter, see parameter
Bl s geevssnsnsevossesuEssuspnsrs s Tol
alarm, See error messages
algOl 6 NUMbEY'S cecocececsss 20505, 2.506
algorithms for i/o eeeccesscecsseo 6-302
alphabet eeecsec0seeses000Rae 2uoo], 9-52
a0l suusnesseoREssuy s DTS RS BOEEE LS Ca)
any MEeSS8ZE ceccoesscccsescocsssese Jol)
8rCSIN eecescscesecsecsssccssccossce 9.5
arctan @00 09090 O®SPQOEOQDEO0ODO@@ODOOOGROENDNOEEOGSEOOTO® 9.1‘.
area, see backing storage '
ares8 ProCESS eceeccoeescocececcocece 8-132
OYE eesecescoceesssscoccecoesesscences 9.5
arithmetic eeccesces 5;107, 3-5.6g 5.&.7
arithmetic eXPreSSion R W
8rT8Y esccccoscesssseesscecoo h-705, 9075
array declaration eesccccossccoosess Dol
array field ecee 208, 5;1, uo?cay 5.”-5’
BeTeDy 9.22.2, 94223

aSSeﬁbly ©000000000000000008000C000 0TS 8.2

Backing storage 6elel, 6¢3.3, 9031, 9,10
base buffer area cececcesscsscesves 02T
binary Dattern sieeeeeceses 3oleb, 34645
blank, see space

blOCk, (i/O) 66 DHEED LS 6 NOPES T YS BOO 60501
blOCK, reading of o.-oonoooon.oo;oo 9;51
block exit -.c.o.o.o..;.;on-oooooa 505-5
DlOCK 28D eeecoceccosccesccoecsccoo 6.1.7
block length ©08000000088000 60107, 605-5
block nuMbeY cececccooco 601, 6o1079 9027
DLOCKDYOr weossssaaonssssnsnsrsspone Je
block procedure eeo0 o 50503, 5050“, 6.5-h
blocksread ceeessscocssccscas 907, C°2¢5
boolean ouoo.ncoooo-ogonooooo 2.5, 501.6
boolean exXpreSSiON eesccesccccscosse Je
bound byte‘oc uc?oB, 5-7, 9-2202, 9022-5
bounds ecoescescccoco0eccesce 502.u, 9075
bpi ©00000000000000000000Q00BCSGEES 17
branch test ccecessccesscccccesese Bel42
buffer area eccsescess 50505, 90279 9079
buffer indeX coecccoccccsses 5.5.5, 9027
PUFFETING eeccccccaceaacoaasn 6.6.3, 9.1

.by-te 00080000000 00C00000000000000OCTS 8.5.2

CAN scecocesccosscccoescscsescccecss 2,001
card reader ceccceccscecess 6.106, 60505
CESE 000000000000 C000000000C00COGO0SS 9-

Catalog 0000000000000 00000000000000000 5
Changerec ©0000000000000000080000000 9.10

changevar .oooooeno;oaonooooonooooo 9.11
character clasSSeS eceeccessss 20051, 9052
character handling ... 9.21, 9.28, 9.32,
T T9052,79.55
character Set eeececoccesscccscacen 2,041
Characters, 6—bit anooooooo;onooo. 60107
cheCk ceccesossesenncoecoeecscscssses 9.12
CheCKVar eeseceesscossscssssscsssns 9.15
child PYrOCESS se0esco000eeocoe 505055 6.&.5
ClOCK eececosecsesecoscsesssssscnce 9-7
clock PYOCESS eeecosecscessccosoces 60109
ClOSE ceeeossscossecsnsasssescsssce 9-1u
code, see machine code
coding of charactersS eececccesceas 24001
compllatilon secevsessnosasnunne Only Bal
- Speed of nooa.o-oooo;;.no;co-‘80105
compound SYMDOLS seeeccseecccssescss 2o
console (see also typewriter) ceeee 9.73
eOnBbEntE ;g gouves senswanos Sudy HulInl
control characters sosoeccoesessss 24041
controlled variablé oceecoscsscccecoe 4ob
conversation ..oo.oooo;o-;;o-v9058, 9-75

COS ceeeesse000000000000006000008000 9-15

DateI0.00.00000.!‘3.00.....0'9 9.7Ll'
DEH—' .G'G....0......000.‘...00.'0.‘.. 2.001
delimj--ters -ooc.-ooo-o-ooonouo.;;ooo 203
density (see also mag tape) ceceeo 0e303
designational expression sewaasooEns JaF
device, see documents

disc file, see backing storage
Qlacommected sssswssgssseusssenns Dede)
documents (see 8180 (1/0) aeoe 6al, 9 41
Ariver ecocesccccsesscesscccoscseee o Te

drum, see backing storage

m @009 000 0000000 0©GESEQQ0CQS®RSOODO 2.0.1, 2.0
end of document eceescascecscessse 6-5
entier 00090000098 000000000ee00SGCEIIOOGICEES 9
error messages, COMPiler cecececscss

- o PYOZYalM cooo0cocoeecoscseo 9;73,
error reactions, 1/0 eeccccscscoce O
evenlt ceoeesescsccoecscoesccccooee 6
execution eocecocescesssccsccs 8.5, B
execution, speed Of cocseos 8odaly 9
exit from DloCK eesecesccoeeccceee 5-5-5

exor 0000000000000 000000000008090°0Q00O0 9.17

D
BOUIWW D — OV W

- L]

e@ 9......0000.0‘0.000....0.0..... 9018
exponentation ..oceccecocccoccccseasas 3.3.4
expression, DOOLEAN cossessscessoscs Jolt
, designational eceeeosecccessssss JoD
- , integer, real cecseccscscecesss Do)
extend ccesccoeceecccoecseccesscese 9.19
external 0090000000000000600008Q000000 0 9.20
ememal procedure Qe00e000Q0OCO®OGSDO 5’ 9020
e}c‘trac.t .OO.....9.'..0.0.00..00.... 9.21

False ©00000000000000000000 202013 sl
fal comms eeecoesecssccnocessaosee ho?
FE waevoaeinionesnsosesssssosesssses Sl
field eeeecec0000000 208, 301, 5-79

feld bafe vivssses Isls TeloOsly G
field reference ecoccesesscecco I 1,

field variable ° 207’ 5.1, 40705, 50

5.7y 9.2
file 0000000000000 000000000000 0COCS 6.1.7
2,043

9.
20,
9.2
1.5,
2

- bl Sowce 0000090 0COCEOOCOOGEOOSIOOEOINDOSTOSTEOEEOEO

file mark, see tape mark

file nIJm.ber 000000 0OC0C000C0OO0CO00 S 6.1, 60197
file ProcesSSOY eceeccccose 2.003, 9'75, B
fleXOWriter eceeessvesceceses 2-001, 9052
for-statement sesesesesccecsessssces o
free COTE cecesscscseesccosscccessne 9075
functions ececeeccccccccecscsse 302, 50505

Getposition ceccessscecescoene 9. 25’ 9.27
getshare ceeeeecsssccccesscecsccces 925
getzone ©8000006000000008000000000000 9 27
give M3SK eecessccscecscsces 6.502,‘95u1
goto e0e0ec0evececse000 205, hv6o6, 50505
Hard error cececoceccecessccocceses 6050
high denSity seco00eeceeceesc00sO 0 605.
high level zone procedﬂres coco0coeeece 6

N W\

Identifier aooo‘ol.oo.oc.oottooooooo 2.4
if-then-else cesecccescoeccecseses 3e042
in eeecseccsseescscecesecccsescesco 9. 28
increase s0ecses0s00es00e0000000000 9 29
index checCk ceeeceeeccessscoe 8 2 B.1. 2
initial values eccescscecesscscsssscas 5
input, see i/o '
inrec 00000 000000000000 00C0O00CDOGESESNOO®O 9.51
intable cececcessccecsssccececoscce 9,32
integer eseesscscece 50106, 30107, 303
internal ProcesSs eeececcces Oolel, 6B
intervention o.ooc.o-o.oooo;oo.oc; 6030
INVAT eesceccessccssessescescscssses 3
i/o ©0000000000080000000000000000 g
algorithms 0eceeesscesesceeso 6
check Of esecocsscecssce 6.5.1’ 6-
driver for 000000000 QRCOOIEOCOROQOOSOSTS 6
ETTOYTS seceseesccoceseccececs 6
high level cececesescsssssscscs
primitive 1eVel eceecescessses Oolte
Speed Of ececescesccces 6 Te 1, 6
- , termination of ccccecececceces Je 5
ISD-CDDE 000000000 0000060000000 O0COED 2 O

LU TRV Y BT TR TRV SRV)

Label, magnetic taPe cesesscccescs Oedolt
labels 00000000000 CONOOOSNOSONOIDS 35 .]’ L"o 06
layout e000e0000600C0008 5 6 5 9 55 9 78
lexicographical ordering ceeececoo 5e240
line prlnter e0e00c00000OOCO0S 691.59 60 5
1isting of Program eeeeseccs 938, Bals2

2

literals, see constants

IN seeecsescscscccscsasercascoscses Juak
load P01nt ceceeeececccccee 6 1 7, 6 ¢35
108aN0d eecesessesscsssssscocescesse 935
logical position, see position

logical StatuS ecccocececssscsssees Dedo3
logor ©00000080000000000000008600008-0 9-56
long evceccccccssseccsccncce 501.6’ 9057

Machine COde eeeeosnsooososecescssscee
magnetic tape 6¢1.7, 64301, 62303, 9.1k,

9.1, 9.58
mathematical functions seeeeeccces 342 L
mﬁrglng ¢e00s00000000s0cec0s0 9. 11, 9.51
message (Comment) 00eseecsscceecece 9 58
MESSAZE-ANSWET eoeesesesescs Olh2, 9.73
message buffers seee 0 3.1, Beti 2, 8 2]
MOQ seeescecscscscceccesscsessssens Je39
mode-kind of document sessssoscsess 9ol
moNItor iceseveicessssnsance 6,&.1, 9.”0
mount-tape-MmesSsage eoecsssoe Deded, 911
move core 0eseee00000000000c000000e 9.75

New 1Ine seuseesosscassansnss 2olle u zou
NL otoooonoao.ocoooo.oco.ooa-;..;o 2000
normal ansSWeY eeosescssscssocssssee 605-
nill cHeracter coevssoonomes LsBely Jud
numbers o-oov.o.oco.oo...o-oooo;o;-;cn 2.
numerical functions ceeseccscscccos 5 2

;fU1CD\N-d

ObJject program, See executlon

of ooooooooao-ooocooooo--oooeooo--oo 9. 8
on-line interaction sceeeccccecocees 9e73
ODEN wessssossessousssssanassseenns JulHl
Operaﬁlng System eeec00esccscccceoe 6 uB
Oro....o‘..c.o..o.0..0.... 25
out ecececeescsecesscoeccensscos 6, % h2
OULCHAY ceeecesecscsosssccscssecsses Dult3
Outlnteger ©80000000000000000000080 9-uu
output, see i/o I

outrec oooo-aooooééo.;cgo--;oonoo;; 9,46
outtext ooooaauoo-ooooaoocoao-ao.;o 9.&7
OULVEY eecececeeosccococcccccesssos 9.”8
overflow (see also spill) .. 3.3.6, 9.49
OVETELONS. 53555 swagss sswwessssssumnn Toid
overrun .nouo.co-uo-oooo.l-nooe;oo 6-505
OWIl eeeeceeececeecccessccce ho7n9’ elal

Pac}{ing 0000000000000 000000000000 900 9.2
paper tape punch, see tape punch

paper tape reader, sSee tape reader
parameter, actual-formal .. 4.7.1, 5.k4.5
parsmeter, file ProcesSsOr ceesscees 973
parameter COIME, eeeceececcoosecssese h 7 1
parent .00..00.‘.0..060..DODOOI;... 9 7)
paren‘b meSSaZE eecoceseseecsscesocoe 6 D-
Parity EIrYOY eceeeesecescescsccesse 6-3.
paI’tial Word 000000000000 00000006000 9 2

—J Ul W

INDEX 3

passes of compiler cececececescesse 8.1.1

pattern, see binary pattern

peripheral device, see documents

physical position, see position

position (logical or phy31cal) sane Bl
s Do 27

pOS;tlon €YTO0Y eeceecccececseccscee 6.5 5

positioning of msgnetic tapes 9.14,9.58

precedence of 0OpPeratorsS see JeeDy 5 L.6

precision, see accuracy .

primitive level zone procedures .e.o Ool

printer, see line printer

printing, see write

procedure call oo-oco-;ooo-;o-.ooo;; u

procedure declaration o-oo-cooooocoo>5

Programl seccecoecesccocccess 2.002, uo1

program execution, see execution

punch, see tape punch

;
!
o1

Random .o".ooo.oo....ﬁ..........ol 9 50
Trange of values escceccecec e 1 6 S 3 6
read 0.0....00.000.00.0..0......000 9 51
readall 0000000000006 000008000000000 9 52
readchal eceeccceccessscssssscsvcse 9055
reader, see tape reader

readstrlng ..ooooeooaoooooooao-oooo 9 5”
real sooece 3olebult, 30147, 3305, 3.3.6
real (Operator) -oaooaoooon-eooonoa 9 55
record ©cccoececececcescecces 5e 5 5, 9,79
record 1/0 of ececssccsccccscsensen 60
record variable ecceesececo 5 Te 59 5 5
recursive procedures ecesecceseces ‘hele
reference byte ;oo-ooococo-ooeooo 9 22
reJected #se000000ses0c0ececsscs0e0 6 e
relational OpeI'a'tOI'S ©eseccossesce 5 ,'I'
PEIEHEE o ensmncescnwenns asmewsne sy ol
repealtchal’ coceccessccoeesccecscsees 9.5
representation of variables 3.1.6,3.6
requirements of compiler ceccseess 8
requirements Of ProOgYam ccceceeess O

romld 000000 OO0O0000OCOGOIOQCEOEOESEBSNSIOERESS 9

run time, see execution

2
3
g
5
T
L
6
)
o
eDe?2
ST

Scope ©0000000000000000 /, 5 56 5, 5e 6 5
scope of ares #ccscecesscssce 9oho 9 75
Segmentatlon seeeececssccsces 8-5 1, O. 7
Segmeﬂts 000000000000 00CC0C00CORGGROGIESTS O Tel
SetPOSition see0e00000000000 e 9927, 9.58
Setshare cceececsscessccccocescesce 9§6O
SelZONe eceesescsesccsscscssccenscn 9.62

Sgrl ‘O‘.D9.0.90..'....;...00..0.9.0 9.65

share descriptor eeee 54503, Goltel, 9.25
shared 8rea esseescss 5¢5¢3, 6341, 911
Shares, NOo Of ceeeceseccesccessces 6-5 1
ShIft cessvoescessceesssssvesessnac Jo 6l
side~effect ceveeeco Jol 5, e 5, u 7 3
S1GN eeesccecesseectccsaccsesssnace Jo 5

sin 0000000 000QROEO0CDNRN0CQ00COCOESOEONOSEONOEOINOGINOEEOOS 9.66

Sinh eeccescecsoececoecoceccecoseces 9.67
SOUrce PrOgrall eeessessocsssacssses 2e0e2
SP ceocsesosesseceessesssccsossssse 2,041
SPACE eesscesaescecscens 240, h 2 5, Zou
Speciflcations co0eo0esceo0adeeo h 7 5, 50u.5
Splll sossssene Je 5 6 h 2 5, Be1.2
Spllttlng #0ce0ec0e0000000000000000 9 21
Sqrt e0e0es000000000000000000000000 90 8
standard error (1/0) ®seccococoecees 60205
standard identifiers cecceccsicae 5 2 u 5
standard procedures e0eeen0esc0se0csescee 9
state table oooooocooo-oo--c;-ooooo 9 55
statementsS eeesscoecocecessccsscscncccee
status, see logical status

SHASYTOL ecenvevesesssccsscscssssssses Jo 69
Stopped 0Ceceee0eeecceccesececesose 605 3
storage requirements soeees 8o142, 8.3.2
Strlng (Operator) ¢ceesrcoeceesesoo 9 70
Strlng expr65310ns c0eceesesco 5.6, u 7 1
String, Short, long .o.oooooaaooo. 5 6 5
string variable 600ees000es00 e 55’ 9, 70
Strings (Constants) eo0eecscecosessese 24
SUbSCrlpt CheCk ceeeesccecese 8 2 B.1.2
Subscrlpts, no, of ooonéoooo.oo u 7, 5 3
Suspend ®csecesscsceceecocnceccseces 9 1u
Swltch 0...o...oo.....0.0.0-000000 35 6
SWOPYEC cecoeeeccosecosesceso 6 3 1, 9 72
syntax check of data soseceso 9452, 9.55
syntax of chapter 9 cevcescccsesccsese O
SYStem onocooooo.oeooan-o.oooco;oat 9. >
System CONLYOL ceececescssccosssecssss 7
Systme @9 0000989000 OCG0OOROCODSOESROEOOSNOSNSNOOSNEOSNTSTDS 9 7111-

Table, initialisation of eecessceess 9.8
tableindeX secececsssccescsase 9 52 9 75
tape, see magnetic tape

tape mark 601.7, 6.5-5, 9§1h,‘90503 9058
tape punCh ao..lOOOOOOI;;no 6o1§u, 605 >
tape readeYr seecveacsececco 6 1 5, 6 5 5
terminate l/O ooocooooaoo.o-;oo.;o. 9 58
text portlon slain s & 0@ aieias o e oiciaisien % 6 5
time measurlng ...0.00..0....0..;0. 9 7u
.tlmer e.......................0.0.
tOPYOM ceoesceccccscscossesans 9 76,
transfer functions cescecececcscse O
translation, see compilation
true-................. 2.2.1, 5.
type ®e0eceeccccecsseec0000 3.3.&, He
type length eeeaeescsesceo 501.6, 902
type transfer, see transfer functions
typewx.iter 00 000CO0OOCE0OCONRDSGOOD 601.2, 6.5.5

.5 5
A5
e205
1.6
k.5
2.1

Underflow 0000000000000 00000000008 5.5.6
underflows ©e0e0000000080000000000 00 9.77
underlining eeco0eceec00ecceso 2.0.&, 243
unintelligible ®se000eecveccecccscoe 6.5-5
unpacking ©0 000000000000 000000 00000 9.21

varisble length of record .ee 9¢31, 9.k
Varia-ble String 00O0C@®@OGOGEOCOEOGOEPQOPOCOES 9055, 9.70
variables 000000 O0BQSOOOCICONCTOOOO0O0OODOOOS 501

wordo.....o...vooo...o..o..... 8‘5.2
word boundaries se 50248, 9.22.1, 92203
WOrd defeCt seeeccccccccscsscesssc 6.505
WILite cecceesesccsecscscscsscsecsees 9.78
write enable eceeccsessccscecscese 60503

Zero, T8l oceeeccsscececescsssssso 5-106
ZONE coecceeesessseccccoce 5.7, 505, Te'(9
Z0Nne array eceeessesccesccse 307, h’o?, 5-6
zone buffer, see buffer area

zone declarations 00100.50505', 506, 9.79
zone desScriptor eccossessees DeDods 9427
zone eXpI‘eSSiOIlS ee00ceceescseee 5-79 LJ'O7
zone record, see record

zone state 0000000000000 000000000 00 9.27

Printed in Denmark by R.Roussell

s REGNECENTRALEN

HEADQUARTERS: FALKONER ALLE1 :+ DK-2000 COPENHAGENF : DENMARK
TELEPHONE: (01)105366 ' TELEX:16282 RCHQ DK : CABLES: REGNECENTRALEN

AUSTRIA
DENMARK
ENGLAND
FINLAND
GERMANY
HOLLAND
NORWAY
SWEDEN

ISBN 87 7557 018 1 (AUG/74)

