CR80 AMOS, PARSING SYSTEM
USERS MANUAL

CSS/210/UsSM/0051

) e >

CR80 minicomputer

CHRISTIAN ROVSING A/S
Copenhagen . Denmark

ware

CR80 AMOS, PARSING SYSTEM
USERS MANUAL

® | e

DOCUMENT NO: CSS/210/USM/0051

4

PREPARED BY: Lars Otto Kjar Nielsen Mo % y /A

APPROVED BY: Jgrgen Hgg %/8(%

AUTHOR'ZED BY J¢rgen H¢g

DISTRIBUTION:

ISSUE:| 1

DATE: | so0620

-.—---‘---‘-

400-571-2

. O O A am W= e
.

CR80 AMOS, PARSING SYSTEM €SS/7210/70sM/70051(1)

LKN/800620

LIST OF CONTENTS : PAGE
1 SCOPE........"'..I.“.l...............'..I.. 2
2 APPLICASLE DOCUMENTSQC.l......'..'......I.... 3

3 OVERVIENC..I...l.--........I.C......‘....I.'. ‘

BRSE TASLE GENERATOR.secevceccsecoscasccsaccsns [
.1 Program activation syntaxceessccssonssece 7
.2 Input fila syntax (meta syntax)eesesseses 9
.3 Object fila formateecccasssncescccssccanss 12
.4 Messages from the parse table generator, 13

£~

)
A
4
4
4

S PARSING.I..I.."-.....IQ...I...I.l.‘......... 17
5.1 Parsing SCNEM@sscessncsssccsnsnvsacsacas 17
$S.17.1 Pradefined SymbolSeeecesccceasssea 22

5.1.2 Error reCOVeryssvsecassesssvseasnsesas 22

5.2 SWELL PArSOrecsssscesscssoevsssvsescesosnsvssccse 23
5.2.1 Interface descriptiONeeccsccesess 24

Sedel Integration.......--.....--...... 26

5.3 PASCAL PArsS2recscsecesescssacsscsncsccssase 28
S.3.1 Interface descriptioNeeccsscescess 2%

53,2 IntegratiON.cececcccescsccscscccsse 31

6 EXAMPLE.......'.............I.........‘.‘Il‘. 32

PAGE 1

.

CRB0O AMOS, PARSING SYSTEM CSS/210/USM/0051€1)

LKN/8J0623 PAGE 2

1. SCOPE.

This manual describes a parsing system, including three
different tools:

- parsa2 table generator (program)
- SWELL parser {link module)
- PASCAL parser (source texts)

The parse table generator is to be executed on a (CR8D
minicomputer running the AM0S operating system.

The parsers are to bz integrated with programs defining the
external interfaca2s, and they are not system dependant.

CR80 AMOS, PARSING SYSTEM

LKN/800622 PAG

¢ ABRLICAGLE QOCUMENTI,

£31]

4]

£s3

CREC PASCAL, REFERENCE MANUAL
CSS/7460/RFM/0001

SWELL 80, REFEREZNCE MANUAL
CSS/415/RFM/ 2002

CRBO aMQOS, TERMINAL OPERATING SYSTEM, USERS MANUAL
CSS/7380/UsSM/0226

CR30 AMOS, COMMAND INTZRPRETER, USERS MANUAL
CSS/331/USM/0037

Simple LR(k) Grammars, F.l. de Remer,
Communications of the ACM, july 1971.

LR Parsing, A.V. Aho and S.C. Johnson,
Computing Surveys, Jjunz 1974,

E

€S5/7210/usSM/3051 (1)

3

. "

CR80 AMOS, PARSING SYSTEM €SS/7210/USM/00351(¢1)

LKN/800620 PAGE &

22 QYERYIEWs

The main purpose of the prosent parsing system is to bridge
the gap between program input (on taxt level) and the
actions performed by the actual program.

The main elements of the present parsing system are:

~ table driven scanning of input text (recognizing input
symbols like constants, 1i1dentifiers atc.)

- table driven syntax analysis

- automatic generation of scan tables and syntax tables

CR2O AM0S, PARSING SYSTEM CSS/7210/USM/70051 (1)

LXKN/880620 PAGE 5

The use of the parsing system may be visualized like this:

standard or
automatically ga2na2ratad

user defined

.

SYNTAX PARSE
JESCR. => TASLE
(3NF) SENERATOR
i
| %
' PARSE
I TABLES
I
l \y
|
SEMANTICS (€ t PARSER

=> data flouw
-> control flouw

Wwhen wusing the parsing system, <the wuser must oproceed
according to the following scheme:

1. Create a» syntax descripgtion file, defining the actual
input language, using a modified Backus=Naur Form,

2. DGenerate 3 table file, holding scan table and syntax
tanle for th2 actual language. This generation is
performed by runring th2 parse table generator program,

s

CR8Q AMOS, PARSING SYSTEM €SS/7210/uSM/0051(1)

LKN/800620 PAGE 6

using the syntax description file as input file.

3. Write a semantics procedure to be activated by the parser
when recognizable constructs are parsed. The semantics

procedure should perform proper actions corresponding to
‘ the action index nanded over by the parser,

4. Integrate parse tables, parser and semantics procedure,
creating an entire program.

'

CR80 AMOS, PARSING SYSTEM €SS/7210/UsSM/0051 (1)

LKN/800620 PAGE 7

4s PABSE TABLE GENERAIQR,

The parse table generator rzads a syntax description, chacks
its generates parse tables and optionally prints information
like production lists, parse states atc.

4.1 Program activation syntax.

The syntax for calling the parse table generator is:

&
PARSERGEN { <option> 1}
T
<OPTION> 1= l:<file-1id>
! P:<file~id>
! J:<file~id>
! F:<object-format>
! L:<list-moda2>
! V:<verification-mode>
<object-format> ::= A8S ' REL ' 0OLD
<list=-mode> ::= BNF ! ALL
<verification=-mode> ::= YES ! NO

Iasfilg=id> seleacts the input file, from which the actual
syntax is read (the meta syntax by which the input syntax is
defined may be found in section 4.2). The "I" parameter must
bs pressent.

Pisfile-id>2 selects the print file, on which input
verification, oproduction 1list, parsa states and actions,

.

CR80 aMOS, PARSING SYSTEM €SS/210/7usmM/0051(1)

LKN/830620 PAGE 3

error messages 3and statistics are printed. The "P" parameter
is optional and the current output file is used as default.

Qa<sfilg=id2 selects the objaect file on which the parse
tables are written. The "0" parameter must be present.

Ez<obdact-format> defines the format of the parse tables to
be generated. The primary difference is thz way of pointing
within the tables. A3S is used when generating tables for
the PASCAL parser (using absolute indices within tables) and
REL is used when genaersting <tables for the SWELL ©parser
(using relative word distances when addressing within parse
tables). OLD is included only to be able to generate tables
for the SWELL compiler, using an older version of the SWELL
parser.

Li<list-modz> s2lects the amount cf information oprinted by
the parse tabdble generator. In the figure below are i1ndicated
the subjects printed at different list modes:

subject list mode

to be printed ‘default”’ BNF ALL
parse actions - - +

parse statas - - +

productions - + +

symbols - + +

error messages + + +

statistics + + +

Yai<yerificatign-moge> defines whether the input text is to
be listed. This may be relavant to pinpoint errors in the
input syntax, as these errors are reported immediately when
they are discovered. The "V" parameter may be omitted, and
the default value is ND,

CR80 AMOS, PARSING SYSTEM £SS/7210/UsSM/0051 (1)

LKN/800620 PAGE 9

4.2 Input file syntax.

The input file defining the syntax of a language is written
according to a special mata syntax. To avoid <conflicts
between the meta syntax and the asctual syntax to be
processeds the symbols of the meta syntax (the meta symbols)
are defined by the user.,

Each meta symbol consists of exactly one character in the
range 33..127.

Symbols used in the imput syntax may consist of an arbitrary
number of characters in the range 33..127 of which the first
16 <characters are relevant. Neither nontaerminal symbols nor
any other symbols have to be surrounded by any kind of
brackets.

In the input syntax any two symbols must be separated by one
or more separator characters (in the range 1..32).

v

v

CRB0O AMOS, PARSING SYSTEM C$S/7210/UsSM/0051(C1)

LKN/233620 PAGE 10

The input file syntax is shown below:

<input=syntax> ::= <mgta-symbols>
<terminal=symbols>
<production-list>
"stop"

<meta-symbols> ::= “"alternative" "stop"

<terminal-symbols> ::= <symbol=-list> "stop""
<symbol=list> :

1= <symbold>
! <Ksymbol=-list> <symbol>

<production—=list> ::= <production>
! <production=list> <production>

= <neuw=production>

<production> ::
1 <production> <alternative=-production>

<new=production> ::= '"neu"” <symbol> <right=hand=part>

<right=-hand=-part> ::= <symbol-list>

! <empty>

<alternative-production> ::= "alternative” <right=hand=-part>

A

' CR8J AMOS, PARSING SYSTEM CSS/7210/USM/0351(1)

LKN/800620 PAGE 11

dnother notation of the same syntax is:

" [1]

new "slternative” "stop”

*

{ <symbol> } “"ston"
4

{ "naw" <symbol> (<symbol>)}

{ "alternative” { <symbol>)} 3 1}

Nstop"

numoer o¢f conventions are embedded in the system. Thesza

conventions are listed and commanted below:

The first four terminal symbols in the input syntax must
be synonyms for:

identifier

constant

string

error-symbol
and they must all be listad, even when the actual syntax
does not use all of them, They must be present bacause
the scanning part of the parser knouws these symbols on
neforehand (and uses the lower symbol numbers for them),
The user must define synonyms for them, because
predefined names might conflict with user defined symbols
of a syntax.

Terminal symbols must be defined in accordance with the
character classes used by the parser. When disregarding

CRB0 AMOS, PARSING SYSTEM

LKN/8J0520 PAGE

the first four (standard) terminal symbolss, a terminal
symbol must consist of alfanumerics only (with a leading
alfa) or it may consist of delimiter symbols only.

- The right hand part of a production may be eompty.
However., the SLR1 scheme wused by the parse table
generator will only be able to handle a single or 3 very
small number of productions having an empty right hand
part.

- The right hand part of a production may not contain more
than 15 symbtols.

4.3 CObject file format,

When activating the pars2 table generator, the user may
spacify the object file format by using the "F" option.

The object files differ in th2ir logical contents (using
RELative pointing for the SWELL parser and ABSolute pointing
for the PASCAL parser). However, the object files also
differ in their representation.

RELative object files (for the SWELL parser) are text files,
containing the tables as one list of hexadecimal constants
separated by commas. This file is suitable for merging into
the INIT part of a SWELL module.

A8Solute object files (for the PASCAL parser) are binary
files containing the tables as a string of 16 bits integers
to be read by the initiating part of the parser at run time.

CSS/210/7UsM/0051(1

12

CRB0O AMOS, PARSING SYSTEM €557210/USM/0051 (1)

LKN/BOOS2C PAGE 13

4e4 Moassagas from the parse table generator

In the following are listed the (error) messages, that may
‘ be generated by the parse table generator,

ACTION TABLE FULL
The (internal) action table within the parse table
generator has been overfilled., This table is controlled
by the constant MAXACTIONS.

CONNECT CURR QUT FILE <cc>
The completion code <cc> was returned, when the program

' tried to connect a straam to the current output file.

CONNECT INPUT FILE <cc>
CCNNECT PARAM FILE <cec>
CONNECT PRINTY FILE <cc>
CONNECT QBJECT FILE <cce>
As for connect curr out file.

FIND FILE <cc>

One of the files in the parameter 1list could not be
. found.

4ASH TABLE OVERFILLED
The internal hash table used for symbols of the BNF has
been overfillied. The hash table is controlled by the
constant MAXSYMSB0L.

ILLEGAL FORMAT SPECIFICATION
The mnemo indicating object file format at the "F"
parameter was illegal.

The completion code <cc> was returned when reading from
the parameter file.

. INELEMENT <cc>

CR80 AMOS, PARSING SVYSTEM €SS/210/uUsSM/0051 (1)

LKN/800620 PAGE 14

INFILEID <cc¢>
The completion code <cc> was returned when reading fronm
the parameter file.

INPUT FILE MISSING
The "I" parameter was missing in the paramester list.

INPUT STREAM ERRQCR <cc>
The completion code <cc> was returned whan reading from
the input file.

ITEM TASBLE FULL
An internal table within the parse table generator has
been overfilled. The table 1is <controlled by the
constant MAXITEMS,

LEFT HAND SYMBOL MISSING
After the meta symbol <new> (for ‘new production’) a
symbol 1is expected (the 1left hand symbol of a
production). This symbol was not present.

METASYMBOL ILLEGAL

The only metasymbol allowed after the list of terminal
symbols is the <stop> symbol.

MULTIPLY DECLARED <symbol>
4 symbol can only b2 da2fined explicitly as a left hand
symbol a single time. A number of productions using the
same left hand symdbosl must be written as one ‘new
production’ followed by a number of ‘alternative
productions”’.

OBJECT FILE MISSING
The "0" parameter was not included in the parameter
list.

OBJECT FORMAT NOT DEFINED
The "F" parameter was not included 1in the parameter
list.

CRB0 AMQS, PARSING SYSTEM

LKN/80Q%20 PAGE

QRJECT STREAM QUTPUT <cc>

The completion <code <cc> was returned when writing on
the object file.

PARAMETER SYNTAX
A syntax error has been detected at a parameter
(missing “:° or the like).

PARAM STRZAM ERROR <ce>
The completion code <¢c¢> was returned when reading from
the parameter file.

PRINT STREAM ERRQR <cc>
The completion code <c¢> was returned when writing on
the print file.

PROJUCTION LIST FULL
The internal production list table within <the pars2
table generator program has been overfilled. This table
is controlled by the constant MAXPRODLIST.

REDUCE/REDUCE CONFLICT ON <symbol>

The input syntax was not a proper SLR1 syntax. A parse
state contains the ambiguity, that two possible
productions are not distinguishable by looking at a
single follower symbol. However, the parse tables will
ba generated with the <convention that the first
production is used. Grammars with that kind of problems
should be used with great care.

SHIFT/REDUCE CONFLICT ON <symbol>

Th2 input syntax was not a proper SLR1 syntax. A rparse
state contains the ambiguity, that one production and
the first part of another production are not
distinguishable bty looking at a single follower symbol.
Howevers, the parse tables will be generated, using the
convention that the symbols are expected to be the
first part of the longer of the two productions.

CSS/210/7USM/C251C1)

15

CR8D AMOS, PARSING SY3T:ZwM €SS5/7210/7USM/3251(1)

LKN/800620 PAGE 16

SYMBOLS NOT ACCESSIBLE FROM <LGQOAL=-SYMBOL>: <symbol=list>
It is <checked by the parse table generator, that all
symbols of the input symtax (except for th=2 first four
standard symbols) are re2ally used in the language.

SYM3OL TA3LE FULL

The symbol tabla of the parse table generator has been
overfilled. This table is controlled by the <constant
MAXSYMBOL .

SYNTAX ERROR
A syntax error has been discoverad within the parameter

list (the attribute of » parameter has bgen of wrong
kind or the like).

UNDECLARED: <symbol>
A symbol has been used in the right hand part of 3
production without ©teing 1included in the 1list of
terminal symbols and without being definad as the left
hand symbol of a production.

CRB0 AMOS, PARSING SYSTEM €SS/213/usSM/0051(1)

LKN/303%620 PAGE 17

s DARJING,

In +this <chapter 1is described the environment in which the
parsing 1is performed. The environment is described
functionally in section 5.1 and the actual interfaces to the
SWELL parser and the PASCAL parser are defined in section
5.2 and 5.3.

The principles of LR parsins are described in {51 and [4].

S«1 Parsing scheme.

The main objects used durin; parsing are the parse tables
and a parse stack. The parse tablzs are not ralevant to the
user. However, the processing on the parss stack is
reflected in the activation of the semantics procedures.

The parse stack primarily contains information describing
the parse state. The total parse state is defined by a state
value associated to each symbol in the parse stacke.
Similarly <the user usually dascribes the semantic contents
of each symbol on tha parse stack in a set of associated
values. The exact implementation of the semantics
descriptions are described in section 5.2 and 5.3.

-

CR30 aMOS, PARSING SYSTEM €557210/uSM/7C051(1)

LKN/800620 PAGE 18

The control flow in a parsing system may te visualized like
this:

user defined
procedureas

stardard
procedures

i SEMANTICS

PARSE

NEXT_
SYMBOL

)

IN_BYTS

- o d wme - o e wm o] s - = e o

PARSE is the controlling part of the parsing system, calling
NEXT_SYMBOL when the next symbol of the source is to be
analyzed syntactically, and calling the SEMANTICS procedure
in each of the following casas:

- A terminal symbol having attributes, has been met and 1is
to be pushed on the parse stack (identifier, constant or
string).

- A syntactical error has baan detected.

A production of the input language has been recognized.

- An escape character has been met in the source.

CRBC AMOS, PARSING SYSTEM €SS/210/USM/CO51 (1)

LKN/8C2620 PAGE 16

The scanner procedure NEXT_SYM30L activates the user defined
procedure IN_BYTE uheneover the next input character is to be
scanned. This is so to enable the user to implement special
foeatures on the source (error Yandling, file merging etc.)
and to make the parse procedura2s system independant,

When the SEMANTICS procedure is activated, the parser
delivers an action 1index, indicating which syntactical
construction has been analyzed or what kind of error has
occurrad.,

The semantic actions are listed below with the action index
and 3 description of the accompanying information:

J: An ESCAPE character has been met during scanning. The
parse stack pointer defines the top of the parse stack.,

1: An IDENTIFIER has been met. The identifier is stored in
the character array: SYM3QOLBUF. The parse stack pointer
points at tha entry into which the user may put
relevant inforration about the identifier,

2: A CONSTANT has been met. The value of the (integer)
constant is delivared in tha ATTRIBUTE parameter and
the parse stack pointer points at the entry into which
the user may put relevant information about the
constant (e.g. the value)d.

(]
..

&4 STRING nhas been met. The string is stored in the
character array: SYMBOLSUF. The ©parse stack pointer
points at the eantry into which the user may put
ralevant information about the string. The ATTRIBUTE
parameter delivers the size of <the s3tring in
characters,.

G: A SYNTAX ERRCR has been discovared. The ATTRIBUTE
parameter indicates the kind of error. The user is

CRB0 AMOS, PARSING SYSTEM CSS/7210/7UsSM/73351(1)

LKN/8C0623 PAGE 20

responsible for reporting the error, while the parsar
tries 1to recover from the error automatically. The
possibilities for the parser to recover successfully
depend on the existence of the error=symbol in the user
defined syntax. During recovery the parser may call the
semantics procedure with the error action a number of
times, and the user may nave to suppress superfluous
error raporting.

The error codes delivered id the ATTRIBUTE parameter
are: :
constant overflouw

unaxpectad symbol (syntax error)

string syntax

string size

parse stack full

recovery failed

>= S5: A PRODUCTION of the input syntax has bpDeen recognized.
The action index corrzsponds to the production number
in the production list generated by thg parse table
generator. The parse stack pointer points at the first
one of the stack entries describing right hand symbols
‘. of the production. This entry will be used to describe
the left hand symbol of the production after the
reduction.,

If the action index corresponds to the production:
TERM ::= (EXPRESSION)

then the pars2 stack pointer points at the stack entry
corresponding to "(". At wexit from the semantics
procedure this entry should describe the left hand
symbol "TERM", and it is most likely, that the primary
action of the semantics procedure in this case will be
tc move the contants cf the “EXPRESSION" entry to the
"(" entry, creating a valid "TERM" entry,

| 1
2
3
l 4
5
6

l |

CRB8C AMOS, PARSING SYSTEM CSS/7212/UsM/70051 (1)

LKN/800620 PAGE 21

Selel Predefined symbols.

During scanning the parser distinguishes among the following
character classes:

ALFA (letters)

NUMERIC (digits)

DELIMITER

COMMENTCHAR

STRINGCHAR

HEXCHAR

IGNORE

ESCAPE
These classes are wused whan assembling and recognizing
symbols of the input language.

& number of symbols and constructs are predefinad within the
parser. Thes2? symbols are dascribed in the following.

IDENTIFIERs are build up by ALFAs and NUMERICs. The first
character of an IDENTIFIER must be an ALFA,

CONSTANT may be a decimal <constant or & haxadecimal
constant. A decimal constant contains NUMERICs only. A
hexadecimal constant 1is prefixed with a HEXCHAR and
contains 1 to 4 digits or hex letters (°A° to “F’).

STRING is5 a simple string or a concatenated list of simple
stringse A simple string is a saries of characters
surrounded by STRINGCHARs., Within a simple string.,
characters in the rang2 32..126 may be used directly.
Spacial characters may be included by writing their
character value as a decimal constant surrounded by the
brackets (s and “2)’. Simple strings may be
concatenated by using ‘2° as a catenation operator.

COMMENT is & series of <characters praefixed with a
COMMENTCHAR and terminated with a COMMENTCHAR or a lina

CR80 aMOS, PARSING SYST:EM CSS/7210/7UsmM/0051(1)

LKN/800420 94aGe 22

terminating character (in the range 1..31).

S¢1.2 Error recovery.

The parser includes facilitias for verforming errcr
recovery. in case of a syntax error, the recovery procedure
(within the parser) is activated, and it performs like this:

if specific "recover symbtols”™ are included
in the parse tables then
begin
repeat read and skip next inmput symbol
until a recover symbol is found,
repeat skip the parse state
at the top of the parse stack
until a state is found, after whitch
an "error symbol"” is acceptable;
end/

As it appears from this algorithm, the recovery is based on
the existence of some '"recovaer symbols" and the "error
symbol”. If they are not present, the parsing will terminate
with the cause, "unrecoverable”.

It is wup to the user to define these symbols. Tha "recover
symbols" are automatically (by the parse table genarator)
generated as the set of terminal symbols, that may 3appear as
a follower symbol after the "error symbol”. Thus the user
just has to include the "error symbol" at rslevant points in
the syntax. I%t is hard to give specific rules for the
inserticn of the "error symbol”. However, an example may

' CRB0 AMNS, PARSING SYSTEM €SS/7210/uSM/3051C1)

LKN/300620 PAGE 23

illustrate the use of tha error symbol:

In the grammar of PASCAL it would be reasonable to
have the following production for statement:

. statament ::= error-symbol statement

As statement may be empty in PASCAL, the symbols following
error=-symbol will then be all symbols that may be leading
symbols of a statement (3EGIN, IF REPEAT etc.) and symbols
that may follow a statement (ENO, ";'", UNTIL etc.).

The parse stack wused by the SWELL parser is a stack of
records of equal size. The first field of esach record is an
integer field reserved for wuse by the oarser. This
convention is introduced to minimize the wuse of 1index
registers (the register wusage 1is described in section
§5,2.1)s as +the parser and the wuser deflined semantics
procedura may share a single register when accessing a
‘ specific entry in the parse stacke.

The SWELL parser 1is preparsd for dynamic selection and
reselection of parse tables, asnd thus it is possible to
define an overall input language <consisting of nested
languages. When the PARSE procedure of the SWELL parser is
activated, the context is saved (in a work area in tha parse
table) and the former parse table (if any) is chained to the
actual parse table. At exit from the PARSE procedure (i.e.
when the final ©production has been recognized) the actual
parse table is unstacked, the context is reestablished and
execution may proceed in an outer parse table. However, 3
parse table cannot be used recursively.

I 5.2 SWELL parser.

.

CRBQO aAM0S, PARSING SYSTEM €S$SS/7213/7usSM/7G0051 ()

LKN/8CJ620 PAGE 24

5.2.17 Interface description.

The interface to the SWELL oarser consists of tha following
objects:

Procedures:
PARSE {(standard procedure)
IN_BYTE (user written)
<semantics> (user uwritten)
Variables:
SYMBOLBUF (standard array of char)

The declarations of these objects are shown and commented in
the following:

PROCEDURE PARSE
(STACKATTRIBUTESIIE,
MAXSTACKATTRIBUTES: INTZGERS
R4, "Yentry point of semantics procedure
RS, "parse stack base addrass
R7; ‘"parse table base address
R6Y; "link

STACKATTRIRBRUTESIZE defines the size of each record in the
parse stack (in words).

MAXSTACKATTRIBUTES dofines tha limit of the parse stack
(the maximum number of rescords in the parsa stack)

R4 defines the semantics procedure to be activated by the
parser {(may be set by: locstion("semantics'))’

RS defines the base addrass of the parse stack (may be
set by: address("psrsestack”)).

CRB80 AMOS, PARSING SYSTEM CSS/7210/USM/0051 (1)

LKN/800620 PAGE 25

R7 defines the base address of the parse tables (may b2
set by: address("parsatable”)).

IN_SYTE is a wuser written oprocedurer, and it should be
. declared like this:

PROCEDURE IN_BYTE
(R3; '"character value (return)
R4); "link
“"all other registers are unchanged

The samantics procedur?2 is 3 wuser written procedure

l transfarred to the parser as a parameter, so the name of the
procedure is not relavant ¢to the parser. The semantics
procedure should be declared like this:

PROCEDURE SEMANTICS
{R1; "action number
R2; "attribute
R5; "parse stack pointer
R6); "link
‘ 311 registers are unchanged at return

The symbol buffer holding the last scanned identifier or
string is a standard array defined like this:
SYMBOLBUF: ARRAY [O. .MAXSYMBOLLENGTH] OF CHAR;

The standard value of MAXSYM3IOLLENGTH is 132 characters.

CR80 AMOS, PARSING SYSTEZM CSS/7210/usSM/70051¢C1)

LKN/7800620 PAGE Z#

5.2.2 Integration.

The SWELL parser is a link (sub)module to be linked together
with a user defined main module and possibly some additional
modules.

The parser imports the procedure IN_BYTE and 3 character
class table CHARCLASSTABLE. A standard character class table
is offared as a link module in th2 parsing system,

It may often be convenient for the user to create the parse
tables in an individual link module, and the parsing progranm
is then structured like this:

CR80 AMOS, PARSING SYSTEM €SS/7213/uUSM/3351(1)

LKN/800620 PAGE 27

P 1
[y
MAIN | SUB !
e — o — i
® MODULE 2 MOOULES |
| |
L o e o o e e e 3

PARSER PARSE
TABLES
CHAR_
CLASS.
. TABLE

The standard files offered for SWELL parsing are all found
in the directory:

S*xGENS.D*PARSER.D

The files are:

PARSER.L std parser link module

PARSER.I std parser import sourc?2
CHARCLASSTABLE.L std character class table link module
CHARCLASSTABLE.I std character class table import source

CRB0O AMOS, PARSING SYSTEM €S$S/212/7USM/0051(1)

LKN/80C620 PAGE 238

5.3 PASCAL parser,

The parse stack wused by the PASCAL parser only contains
parsing information. The user should then creata a parallel
stack of records to hold the semantic attributes of the
symbols on the stack (an array of records having tags
corresponding to nonterminal symbols of the grammar will
oftan do). The PASCAL parser doas not offer nested parsing
with different languages, and it uses a fixed, predefined
character classification for the scanning,

The parse tables for the PASCAL parser are loaded from the
table file at run time. This is controlled by a standard
“INIT_PARSE’ procedure within the parsing system, using 3
user defined procedure, interfacing to the 2nvironment,

5¢3«1 Interface description.

The interfaces to the PASCAL parser czonsists of the
following objects:

CR80 aAM0OS, PARSING SYSTEM £$5/7210/USM/3051 (1)

LKN/800620 ©°asGcs 29

Procedures:

INIT_PARSE (standard procedure)
NEXT_TAEBLE_WORD {user written procedure)
PARSE (standard procedure)
IN_BYTE (user written procedure)
. SEMANTICS (user written procedura)
Variables:
SYMBCLBUF (standard array of char)
Constants:
MAXSYMBOLLENGTH (usar defined size of SYMBOLBUF)
MAXSTACK (user defined size of parse stack)
MAXSCANENTRY (size of scan table)
MAXPRODUCTION (size of production table)
MAXACTION (size of action table)

INIT_PARSE is called by the wuser to 1load and initialize
parse tables and parse variables. The procedure has no
parameters.,

NEXT_TABLE_WORC is a user written procedure, called by the
INIT_PARSE procedure when reading the parse table file. The
procedure must match the following declaration:

PROCEDURE NEXT_TABLE_WORD (VAR I: INTEGER);

PARSE 13 called by the user to start parsing. The procaduras
has no parameters,

IN_BYTE is 3 user uwritten procedure, called by the scanning
part of the parser. The procedure must match the following
declaration:

PROCEDURE IN_BYTE (VAR Ch: CHAR);

SEMANTICS is a3 wuser written procedure performing the

CR8JO AMOS, PARSING SYSTEM CSS/7213/USM/0051(1)

LKN/800620 PAGE 30

semantic actions <corresponding to syntactical <constructs
recognized by the parser. The procedure must obey the
following declaration.

PROCEDURE SEMANTICS C(ACTIONINDEX,
ATTRIBUTE.,
STACKINDEX: INTEGER)’

ACTIONINDEX selacts the action to be performed (cf.
section 5.1).

ATTRIBUTE deolivers the value of a constant, the size of a
string or an error code.

STACKINDEX is the stack pointer, used by the parser for
indexing in the parse stack, and used by the user for
indexing in the parallel stack of semantic attributes.

The character array holdirg the last scannea identifier or
string is declared like this:

SYMBOLBUF: ARRAY [Q..MAXSYMSBSOLLENGTH] OF (CHAR;

The user must define the following set of constants:

MAXSYMBOLLENGTH defines the largest number of characters
that the parser is <capable of assembling as a single
symbol.

MAXSTACK defines the size of the parse stack. This value
depends vary much on the input syntax. Howaver, languages
like SWELL or PASCAL would regquire less than 100 elements

in the parse stack to compile usual programs.

MAXSCANENTRY, MAXPRODUCTION and MAXACTION should by the
user be set to the values printed by the parse table
generator (within the statistics).

CR80 AMOS, PARSING SYSTEM €S$S/210/7/USM/7Q0051(¢(1)

LKN/800620 PAGE 31

The PASCAL parser uses a predefined character
classification. This classification is defined like this:

' ALFA = ‘A’..°1L° and *_°
NUMERIC = ‘0%..°9°

COMMENTCHAR = "

STRINGCHAR = ‘

HEXCHAR = #

ESCAPE = %

IGNORE = characters in the range 1..32
DELIMITERS = all others

53.2 Integratione.

The PASCAL parser is a set of text files to be merged
into a wuser written program. The files are all found in

the directory:

A**GENS.C*PARSELD

The files are:

CONSTS.S to be merged into constant part
TYPES.S to be merged into type part
VARS.S to be merged into var part
PROCS.S to be merged into procedure part

The procedures, variables and constants included in the
user interfaca are named as indicated in section 5.3.1.
All othar names introducad by the parser files are
prefixed by °“PRS_° to avoid name conflicts.

. '

AAku/fm/
e, T T

/LA/AA¢AL
!

4./‘\’/ ’/,’(/\—4

CR83 AMQS, PARSING SYSTEM CSS/213/7USM/0051(1)

LXN/800620 PAGE 31

€1 FXAMELE.

The exampla wused %o illustrate the use of the SWELL and
the PASCAL parsers 1s a very limited calculator rprogranm
orimarily building on tha expression syntax, known €rom
almost 3ll papers on parsing subjects,

Written in usual B3NF, the grammar looks like this:

<jcal=symbol> ::= <expression> =

<axprassion> ::= <term>
! <axpression> + <termd>
<term> ::= <factor>

' <term> * <factor>d>

= <constant>

<factor> ::
! (<expression>)

In the following 1is shown, how SWELL and PASCAL
calculator programs may be Jenerated when wusing the
parsing system.

The syntax is written intc a3 syntax description file,
using the metasyntax 233 defined for the parse table
generator:

NAME CONSTANT STRING ERROR
= + « ()

* CALCULATION EXPRESSION =

* EXPRESSION TERM

’ EXPRESSION + TERM
" TERM FACTOR

‘ TERM « FALTOR

" FACTOR CONSTANT

(EXPRESSION)

CR80 AMOS, PARSING SYSTEM

LKN/300620 PAGE

The parse table is generated by running the parse table
generator program PARSERGEN. The object format is
selected according to the destination language.

Overleaf is shown the printout geng2rated by the parse
table generator when activated with "L:ALL". The parse
states and actions are usually of no relevance to the
user. However, in case of syntax definitions causing
reduce/reduce or shift/reduce conflicts the parse states
and actions may illustrate the reasons for the conflicts.

In case a wuser wants to wunderstand these states and
actions fully, he may for instance study [5] and [é].

€SS/210/usmM/0051(1)

33

SYM39LS:

1 NamE
5
9
PIICUCTIONS:
b <50A4L SYMBOL>
6 CALCULATION
7 EXPRESSION
2
9 TeERM
10
. 11 FACTOR

PARSE STATES AND ACTIONS:

f] =)
CALCULATION -=>
EXPRESSION -=>
EXPRESSION -=>
TERM -=>
TERM -=>
FACTOR -->
FACTOR -->
1: SHIFY 8
2: SHIFT 9
3: SHIFT 12
' SHIFT 14
St SHIFTY 15
62 SHIFTY 146
‘ 7: ERROR
. -=>
8 REDUCE ']
CALCULATION -=>
EXPRESSION -=>
9: SHIFT 18
10: SHIFT 19
11: ERROR
EXPRESSION -->
TERPM .-
12: SHIFT 21
13: REDUCE ?
TEAM —-=>
142 REDUCE 9
. FACTOR =)
15 REDUCE "

2
$
10

-a)

-ew)

-—ed

-a)
=)

-y
-e)

Teey

TERM

L3k 3R K 3 3 B K 3

CONSTANT
.

CALCULATION

CALCULATION
EXPRESSION =

TERM

EXPRESSION ¢ TEaMm

FACTOR
TEQRM ¢ FACTOR

CONSTANT
C EXPRESSION)

CALCULATION
EXPRESSION =

EXPRESSION # TERM
FACTOR

* FACTOR

CONSTANT
¢ EXPRESSION)

ON CALCULATION
ON EXPRESSION
ON TERM

ON FACTOR

ON CONSTANT

ON (

CALCULATION ¢

EXPRESSION # =
EXPRESSION # ¢ TERM

ON =
ON ¢+

TERM ¥
TERM &

ON »

FACTOR

* FACTOR

CONSTANT #

-

3
7
1

STRING

EXPRESSION

6 EQ2IQqR
T«
12 TERv

ERS——

(# EXPRESSION)

g TERM

$ EXPRESSION ¢ TERM
& FACTOR

TERM « FACTOP

¢ CONSTANT

(EXPRESSION)

ON EXPRESSION

EXPRESSION =z &

EXPRESSION ¢ # TERM
4 FACTOR

N TERM » FACTOR

¥ CONSTANT

(EXPRESSION)

ON TERM

TERM « # FACTOR
4 CONSTANT
4 (EXPRESSION)

ON FACTOR

(EXPRESSION ¢)
EXPRESSION # ¢ TERM

ON +
ON)

EXPRESSION ¢ TERM ¥
TERM # » FACTOR

ON »

TERM « FACTOR #

(EXPRESSION) #

EACTCR =-=>
EXPRESSION -=>
EXPRESSION >
TERM™ >
TERM -—>
FACTOR -->
FACTCOR -=>
14 SHIFT 23
17: GO0 TO 3
CALCULATION -=>
18: REQUCE 6
EXPRESSION -=>
TERM -->
TERM --d>
EACTCR -->
FACTOR ->
19: SHIFT 26
20: GO TO [
TEQM -=>
FACTOR -->
FACTOR -=>
21: SHIFT 28
22: G0 YO 5
EACTOR -—>
EXPRESSION >
23: SHIFT 19
241 SHIFT 29
2S: ERROR
EXPRESSION —-——>
TERM -
262 SHIFT 21
27: REDUCE 8
TERM -=>
28: REDUCE 10
€4ACTOR =->
29: REDUCE 12

STATISTICS:

TERMINALS:
NONTERMINALS:
PRIJDLLIST SILE:
ITEMS:

STATZS:

SCANENTFIES.ens
PRODUCTIONScawe
ACTIONScoeecass

TOTAL SIZE OF PARSE TABLES:

24
53
15

-~

107 INTEGERS.

LXN/800520 PaGE

In case of 3 SWEL parsing program thz rest of the
generation is performed according to the following steps:

- The parse table may be converted to a link module by
writing a submoedule 2s shown below (using the parse
table file ZEMOBNF,H as a source file):

SUBMODULE DEMQBNF:

EXPORT VAR CALCTABLE: ARRAY [0..107] OF INTEGER:
INIT CALCTASLE =

XSOURCE DEMOBNF.H

3;

ENDMODULE

-~ The main module, contairing the semantics of the
calculator, is shown overleaf:

CR30 AMOS, PARSING SYSTEM : €S$5/210/usSM/C0S1 (1)

35

[

MAINMODULE CALCULATOR:

CONST
STACKMAX = 15;

%SOURCE D#*GENS.DeSWELLPREFIX.D#GENERALPARAMS,S
XSOURCE Dd##GENS.D«SWELLPREFIX, CAMONITORNAMES,S
XSOURCE 9##GENS,DeSWELLPREFIX.D*IOSPARAMS,S
XSOURCE @#+GENS.O*UTILITYHELP.D*.I

XSOURCE @#+GENS.O*PARSE.O#PARSER.I

IMPORT VAR
CALCTABLE: ARRAY [0..0] OF INTEGER;

TYFE
ATTRIBUTE =
RECORD
PARSEINDEX: INTEGER;
VALUE: INTEGER;
END’

VAR

SEM_STACK: ARRAY C1..STACKMAX*SIZECATTRIBUTE)] OF INTEGERS

EXPORT PROCEDURE IN_BYTE
“"zxazsmestarzEssxexzzass’
(R3; "CHARACTER VALUE (RETURN)
R6)2 "LINK
VAR SAVER4, SAVERG6: INTEGER:
BEGIN
R4=>SAVERG,
R62>SAVERG,
INB(ADDRESSCCINFILETYPE)=>R4, R3, RS)/
SAVERL=D>RL,
EXIT(SAVERS),
END;

PROCEDURE CALCULATE
"grxzazsasmsxaszex"
(R1; "ACTION NO
R2; "ATTYR]IBUTE
R57 '"PARSE STACK POINTER
R6); "LINK
VAR SAVEREGS: ARRAY [0..7] OF INTEGER;

LONGWORK: LONG/)

WRK: ARRAY [J0..7] OF INTVEGER,
3EGIN

R7=>SAVEREGSL7]:

STC(6, ADDRESSC(SAVEREGS(71)=>R7);

RS=>R64SIZECATTRIBUTE)
RS=>R7+(2+SIZE(ATTRIBUTE));

CASE RY OF

2 " CONSTANT
R2=>RSIATTRIBUTE.VALUE!

4: " ERROR
MON(TERMINATE, R2=>R0, 0=>R1, R7);

6: " CALCULATION ::= EXPRESSION = "
BEGIN
CADDRESSC(COUTFILETYYPE)®ORLIIFILETYPE.S=OR4;
MON(STREAM, QUTINTEGER, ADORESS(WRK)=>R0, R4,

R5SATTRIBUTEL.VALUE=>RZ2, 0=>R3, R7): BIN_EXIT;

MON(STREAM, OUTNL, R4, R7): BIN_EXIT;
MON(STREAM, FLUSH, R&, R7): BIN_EXIY;
END?

8: " EXPRESSION ::= EXPRESSION ¢ TERM "
RSDATTRIBUTE.VALUE+(R73ATTRIBUTE.VALUE®>R0)

10: ™ TERM ::= TERM =~ FACTOR "
BEGIN
APORESSCLONGWORK) =>R4;
RSQATTRIBUTE,VALUE=>RLALONG.LEAST;
R4ILONG*(R73ATTRIBUTE.VALUE=>RD);
RLAINTEGER=DRSSATTRIBUTE.VALUE?
END;

12: " FACTOR ::= (EXPRESSION) "
»63ATTRIBUTE.VALUE=>RO=>RSQATTRIBUTE,VALUE’

END?
UNS(7, ADDRESS(SAVEREGSCO0J)=>R7);

EXIT(RS) S
ENDZ

v

CR80 AMOS, PARSING SYSTEM

LKN/800620

BEGIN

ACCEPTFILES(RS)
READSYSPARAMS(RE)
CPENSTREAM(ADIRESS(CINFILEYYPE)=>RL, INPUT_MODE=>R3, R6);
(ASCRESS(COUTEILETYPE)=>RLIJIFILETYPE,S=>R4;
MON(STREAM, OUTTEXTB, R&, ANDRESS(’READY(:10:)(:2:)°)=>R6, R7): IIN_EXIT,
MON(STREAM, FLUSH, R4, R7): BIN_EXIT;
PARSE(SIZECATTRIBUTE), STACKMAX, LOCATIONCCALCULATE)=>R4, ADDRESS(SEM_STACK)=>RS,
ADORESS(CALCTABLE)=>R7, R6):
MON(TERMINATE, 0=>R0, 0=>R1, R7);
ENC/

ENDOMODULE

PAGE

- Finally the modules are linked together, creating the

oject program,

In case of a PASCAL program, it only remains

to

create

the main program into uhich the standard parsing source

files are merged at compile time. The PASCAL
the calculator is shown overleaf:

version

of

CSS/210/usSM/2051(1)

37

‘ ANOLIST
PIe*5ENS.DPREFIX

ALIST
YEXECLEVEL=Z
XWCRKAREA=2000
XSTREAMS=]
XF35%6
%XI0C98=¢6
XTLES=16
XMESSAGES=S
XVERSION=1

CONST
" CONFIGURATION "
MAXSCANENTRY = 72
MLXPRODUCTION = LH
MAXACTION = 317
MAXSTACK = 25;
MAXSYMBOLLENGTH = 132;

$I**GENS,O*PARSELDCONSTS,S
SQenGENS.CH#PARSELO*TYPES.S

var
SR**#GENS . D*PARSEL.D*VARS,.S

’ SEM_STACK: ARRAY [1..MAXSTACK] OF INTEGER;
1_STREAM, O _STREAM: STREAM;
. FPOM_ADAM: BOOLEAN;
FSN: FILE_SYSTEM_NAME;
VOL: VOLUME NAME;
NAMELIST: NAMELISTTYPE;
NAMENO: INTEGER’
€, TABLEFILE: FILE;

€C: COMPLETION_CODE; P
CH: CHAR, / oy (’ s et e R e J
PROCEDURE IN_BYTE (VAR CH: CHAR); .
BEGIN (4,.;;/ [ER VS L AVETY
INBYTE(I_STREAM, CH, CC)J R T
. i\ C et 7

ENTS j

: .)
(o drigormy Ao, T oM PO <oy
, . .

PROCEDURE NEXT_TABLE_NORD (VAR I: INTEGER);
BEGIN

INWORD(I_STREAM, I, CC);

IF CC <> 13_0K THEN TERMINATE(CC):

ENZZ

PROCESOURE SEMANTICS (ACTIONNO, ATTRIBUTE, STACKINDEX: INTEGER):?
BESIN
CasSE ACTIONNO OF

® . . .-

SEM_STACKLSTACKINOEX]:= ATTRIBUTE,

4: " eproR *
TEPMINATECATTRIBUTE);

6: ' CALCULATION ::= EXPRESSION =
BEGIN
OUTINTEGER(O_STREAM, SEM_STACKCSTACKINDEX], 0, CC);
IF CC <> I0_0K THEN TERMINATE(CC)S
FLUSH(O_STREAM, CC);
IF CC <> 10_0OK THEN TERMINATE(CC);
END;

8: " EXPRESSION ::= EXPRESSION ¢ TERM “
SEM_STACK{STACKINDEX]:= SEM_STACKUSTACKINDEX] + SEM_STACK[STACKINDEX+21;

10: " TERM ::= TERM » FACTOR "
SEM_STACKISTACKINDEX]:=z SEM_STACKLSTACKINDEX] # SEM_STACKCSTACKINDEX+2];

12: " FACTOR ::= (EXPRESSION) *
SEM_STACK[STACKINDEX):= SEM_STACKLSTACKINDEX+11;

O¢ 14 3+ 5S¢ 7s 9, 11z ™ NO ACTION "

ENDS
END?Z

. $A+*GENS O~PARSE.D*PROCS.S

' If CC <> I10_0K THEN TERMINATE(CC);

(4

» CONMECT CURRENT OUT FILE AND PARAMETER FILE
CONNECT(PARAM,OFILE, OUTPUT_MODE, O_STREAM, CC)}
IF CC <> I0_OK THEN TERMINATE(CC)?
CONNECT(PARAM,PFILE, INPUT_MODE, I_STREAM, CC)/
IF CC <> 10_0K THEN TERMINATE(CC)S

v gKIP FIRST LINE OF PARAMETER FILE AND READ TASLE FILE NAME "
REPEAT IN_BYTE(CH) UNTIL CH = NL/

FSN:= PARAM.FSN;

VOL:2 PARAM,VOL,

INFILEID(I_STREAM, FROM_BDAM, FSN, VOL, NAMELIST, NAMENO, ccy:
IF CC <> 10_0K THEN TERMINATE(CC)?

* EIND TASLE FILE, CONNECT IT AND INITIALIZE PARSE TASLES "
FIND_CILE(FROM_BGDAM, FSN, VOL, NAMELIST, NAMEND, PARAM.DFILE, TABLEFILE,
IF CC <> 10_0K THEN TERMINATECCC)

JISCONNECT(I_STREAM, F, CC)3

I® CC <> 10_0K THEN TERMINATE(CC)

CONNECT(TABLEFILE, INPUT_4O0DE, I_STREAM, CC);

IF CC <> I0_0KX THEN TERMINATEC(CC);

INIT_PARSE;

JISCONNECT(I_STREAM, F, CC);

IF CC <> 10_0K THEN TERMINATE(CC);

" CONNECT CURRENT INPUT FILE, PROMPT AND START PARSER "
CONNECT(PARAM,IFILE, INPUT_MODE, I_STREAM, CC);

IF CC <> 10_0K THEN TERMINATE(CC)]

OUTTEXT(O_STREAM, °READY(:10:)(:0:)°, CC);
FLUSH(O_STREAM, CC)J

I= CC <> I0_OK THEN TERMINATE(CC):

PARSE;

FLUSH(O_STREAM, CC);

IF CC <> I0_0K THEN TERMINATE(CC)?

END.

(4o I

CHRISTIAN ROVSING A/S
Copenhagen - Denmark

