
CR80 AMOS, PARSING SYSTEM

USERS MANUAL

CSS/210/USM/0051
‘lee ~

CR80 minicomputer

CHRISTIAN ROVSING A/S

Copenhagen . Denmark

W
a
r
e

CR80 AMOS, PARSING SYSTEM

USERS MANUAL
@ | tite:

DOCUMENT NO: _CSS/210/USM/0051

PREPARED BY: Lars Otto Kjar Nielsen Mao Me ben Miton—.

APPROVED BY: g¢rgen Hdg ¢ ee
AUTHORIZED BY: J¢grgen H¢gg

DISTRIBUTION:

ISSUE:] 1

DATE: | 800620

4
0
0
-
5
7
1
-

2

m
e
e

e
e

e
S

S
S

,

CR80 AMOSs PARSING SYSTEM €$$/219/USM/0051(1)

LKN/809620

LIST OF CONTENTS PAGE

1 0)-2 er ee rr a es a ee eo 2

2 APPLICASLE DOCUMENTS cccc cnc asccenseseesaseese 3

3 OVERVTEWe cen ces ncereenescannceseerseseesrecseece 4

ARSE TABLE GENERATOResccnccccccsesccecssecse 2

«1 Program activation SyNtaxcceseccuccsseese 7

e2 Input file syntax (meta SyNtaxdeccsscses 9

«3 Object fila formateccsccccncccccecccsese 12
-4 Messages from the parse table generator. 13

=
~
 Pp

4

4

4

4

5 PARSING se cveccecsescccenensnacesesnesnesesvce
s 17

521 Parsing SCNEMSsacccsnesesesssecvsesesacas 17

5.101 Pradefined symbolSeccccccccccceee C2
5.122 Error TeCOveryYevceceesecseenncsesan 22

5.2 SWELL PAPSAOP ees eceseaeseetensnusesesenvseene 23

5.2.1 Interface descriptionecccccecsaee 24
S.202 Integratlonascccscccecsacvccesses 26

5.3) PASCAL parsSeressccccsccsscccscncscccsess 28
Se3e1 Interface descriptionecesscnscess 28

5 edel Integrations scccccscccscccccceses 31

6 EXAMPLE, cn mvc cece secccses senses nenaeseeeeeesece 32

PAGE 1

CR80 AMOS, PARSING SYSTEM CSS/290/USM/905101)

LKN/800620 PAGE 2

1. SCQPEs

This manual describes a parsing system, including three

differant tools:

- parse table generator (program)

- SWELL parser {link module)

- PASCAL parser Csource texts)

The parse table generator is to be executed on ai CR8D

minicomputer running the AMOS operating system.

The parsers are to be integrated with programs defining the

external interfaces, and they are not system dependant.

CR80 AMOS, PARSING SYSTEM CS$/210/US/9051 61)

LKN/800620 PAGE 3

C1] CRBOQ PASCAL, REFERENCE MANUAL

r CS$S/460/RFM/0991

C23 SWELL 80, REFERENCE MANUAL

CSS/415/REM/OO02

<3] CRB80 AMOS, TERMINAL OPERATING SYSTEM, USERS MANUAL

CSS/380/USM/0926

C4) CR80 AMOS, COMMAND INTERPRETER, USERS MANUAL
CSS/3381/USM/0037

C5] Simple tR(k) Grammars, ‘Sele de Remer,
Communications of the ACMs july 1971.

[6] L28 Parsings hseVe Aho and S.C. Johnson,
Computing SurveysSs june 1974.

i
:
1
i
i
1
J go APPLICABLE DOCUMENTS.

:
‘
i
1
'
'

@

i
|

@

:

CRBO AMOS, PARSING SYSTEM C$$/219/USM/9951¢1)

LKN/890620 PAGE 4

32 OVERYIEWs

The main purpose of the prasent parsing system is to bridge

the gap between program input (Con taxt level) and the

actions performed by the actual program.

The main elements of the present parsing system are:

- table driven scanning of input text (recognizing input

symbols like constants, identifiers etc.)

- table driven syntax analysis

- automatic generation of scan tables and syntax tables

TREO AMOS, PARSING SYSTEM

The use of the parsing system may

user defined

CSS/270/USM/005101)

LKN/8090620 PASE 5

be visualized like this:

standard or

automatically cganerated

n

SYNTAX PARSE
DESCR. > TABLE
(BNF) SENERATOR

|

| ty

| PARSE
| TABLES

|

| Vy

t COARSER tad SEMANTICS

=> data flow

-> control flow

When using the parsing system,

according to the following schemes:

1. Create a syntax descristion fi

the user must sroceed

le, defining the actual

2. Senerate a table ‘file, holding scan table and syntax

table for the actual language. This generation is

performed by running the parse table generator program,

| input languages using a modified Backus-Naur Form.

3

CR80 AMOS, PARSING SYSTEM CSS/270/USM/0051061)

LKN/800620 PAGE 6

using the syntax description file as input file.

3. Write a semantics procedure to be activated by the parser

when recognizable: constructs are parsed. The semantics

procedure should perform proper actions corresponding to

@ the action index nanded over by the parser.

4. Integrate parse tables, parser and semantics procedure,

ereating an entire program.

CR80 AMOS, POARSING SYSTEM CSS/210/USM/005101)

LKN/800620 PAGE 7

40 PARSE IASLE GENERATOR,

The parse table generator reads a syntax descriptions checks

its generates sparse tables and optionally prints information

like production lists,s parse states atc.

4.1 Program activation syntax.

The syntax for calling the parse table generator is:

&

PARSERGEN { <option> }
z

<OPTION> s2:= I:<filecrid>

! P:<filerid>
! O:<filecrid>
i F:<object-format>

! Li<list-noda>

J Vi<verification-mode>

<object-format> ::= Ass ! REL ! OLD

<list-mode> 2:2 SNF ! ALL

<verification-mode> ::= YES i NO

Ie<filercid> selects the input file, from which the actual

syntax is read (the meta syntax by which the input syntax is

defined may be found in section 4.2). The "I" parameter must

ba present.

Pasfilerad> selects the print file, on which input
verifications eroduction lists parsa states and actionss

-

CR8O AMOS, PARSING SYSTEM C$$/210/US4/0051¢1)

LKN/300620 PAGE 3

error messages and statistics are printed. The "©" parameter

is optional and the current output file is used as default.

OQssfilerzid> selects the object file on which the parse
tables are written. The "0" parameter must be present.

Es<obiect-format> defines the format of the parse tables to
be generated. The primary difference is the way of pointing

within the tables. A3S is used when generating tables for
the PASCAL parser Cusing absolute indices within tables) and
REL is used when genersting tables for the SWELL parser

Cusing relative word distances when addressing within parse
tables). O19 is included only to be able to generate tables
for the SWELL compilers using an older version of the SWELL

parser.

Lasdistrmode> selects the anount of information printed ody
the parse table generator. In the figure below are indicated

the suojects printed at different list modes:

subject list mode

to be printed “default’ BNE ALL

parse actions - - +

parse statas - - +

productions - + +

symbols - + +
error messages + + +

statistics + + +

Visvecificatioqnzmede> defines whether the input text is to

be listed. This may be relevant to pinpoint errors in the

input syntax, as these errors are reported immediately when

they are discovered. The "V" parameter may te omitted, and

the default value is NO.

CR8O AMOS, PARSING SYSTEM CS$S/210/USM/0051 (1)

LKN/800620 PAGE 9

4.2 Input file syntax.

The input file defining the syntax of a language is written

according to a spacial meta syntax. To avoid conflicts

between the meta syntax and the actual syntax to be

processed, the symbols of the meta syntax (the meta symbols)

are defined by the user.

Each meta symbol consists of exactly one character in the

range 33.127.

Symbols used in the input syntax may consist of an arbitrary

number of characters in the range 33..127 of which the first

16 characters are relevant. Neither nontarminal symbols nor

any other symbols have to be surrounded by any = kind of

brackets.

In the input syntax any two symbols must be separated by one

or more separator characters (in the range 1.2232).

@

od

CRBO AMOS+r PARSING SYSTEM C$8/210/US4/0051¢1)

LKN/800620 PAGE 10

The input file syntax is shown below:

<input-syntax> 3:5 <meta-symbols>

<terminal-symbols>

<production~list>
"stop"

<metatsymbols> ::2 “alternative” "stop"

<terminal-symbols> ::= <symbol-list> "stop":

<synbolr-list> : := <symbol>

! <symbol-list> <symbol>

<production-Llist> ::2 <production>

§ <production-list> <production>

= <newrproduction> <production> 3:

1 <production> <alternative-production>

<newtproductian> ::= "new" <symbol> <right*hand-part>

= <symbol-list> <rightchand-part> i:

§ <emety>

<alternative-production> ::= “alternative” <right-hand-part>

4

| CRB AMOS, PARSING SYSTEM C$$/210/USM/095101)

LKN/800520 PAGE 11

¬her notation of the same syntax is:

or . new "alternative” "stop"

x

{ <symbol> } “ston”
4

*

{ "new" <symbol> € <synbol> }
0

{ “alternative” { <symbol> } } }

"stop"

numoer cf conventions are embedded in the system. These

conventions are listed and commanted below:

The first four terminal symbols in the input syntax must

b@ synonyms fors

identifier

constant

string

error-symbol
and they must all be listed,s even when the actual syntax

does not use all of them. They must be present beacause

the scanning part of the parser knows these symbols on

beforehand (Cand uses the lower symbol numbers for them).

The user must define synonyms for thems because

predefined names might conflict with user defined symbols

of a syntax.

Terminal symbols must be defined in accordance with the

character classes used by the parser. When disregarding

CR8Q0 AMOSs PARSING SYSTEM

LKN/800620 Pace

the first four (standard) terminal symnbdolss a eterminal

symbol must consist of alfanumerics only (with a leading

alfa) or it may consist of delimiter symbols only.

- The right hand part of a production may be empty.

However, the SLR1 scheme used by the parse table
generator will only be able to nandle a single or a very

small number of productions having an empty right hand

part.

- The right hand part of a production may not contain more

than 15 symbols.

4.35 Gbject file format.

When activating the pars? table generators the user may

specify the object file format by using the “F" option.

The object files differ in their logical contents Cusing

RELative pointing for the SWELL parser and ABSolute pointing
for the PASCAL parser). However, the object files also

differ in their representation.

RELative object files (for the SWELL parser) are text files,

containing the tables as one list of hexadecimal constants

separated by commas. This file is suitable for merging into

the INIT part of a SWELL module.

ASSolute object files (for the PASCAL parser) are binary

files containing the tables as a string of 16 bits integers

to be read by the initiating part of the parser at run time.

CSS/210/USM/90051 (1)

12

CR80 AMOS, PARSING SYSTEM CS$/210/USM/9051 (1)

LKN/800620 PAGE 13

4.4 Massages from the parse table generator

In the following are listed the Cerror) messagess that ‘nay

r be generated by the parse table generator.

ACTION TABLE FULL
Tne (Cinternal) action table within the parse table

generator has been overfilled. This table is controlled

by the constant MAXACTIONS.

CONNECT CuRR OUT FILE <ec>

The completion code <cc> was returneds when the program

i tried to connect a stream to the current output file.

CONNECT INPUT FILE <ce>
CONNECT PARAM FILE <ee>

CONNECT PRINT FILE <ce>

CONNECT OBVYECT FILE <ce>
As for connect curr out file.

FIND FILE <cc>

One of the files in the parameter list could not be

@ found.

HASH TOBLE OVERFILLED

The internal hash table used for symbols of the BNF has

been overfilied. The hash table is controlled by the

constant MAXSYMSOL.

ILLEGAL FORMAT SPECIFICATION

The mnemo indicating object file format at the "FF"
parameter was illegal.

The completion code <cc> was returned when reading from

the parameter file.

i INELEMENT <ec>

CR80 AMOS, PARSING SYSTEM CSS/210/USM/905101)

LKN/8006290 PAGE 14

INFILEID <ee>

The completion code <cc> was returned when reading fron

the parameter file.

INPUT FILE MISSING

The "I" parameter was missing in the parameter list.

INPUT STREAM ERROR <ee>
The completion coda <cce> was returned when reading from

the input file.

ITEM TASLE FULL

An internal table within the parse table senerator has
been overfilled. The table is controlled by the

constant MAXITEMS.,

LEFT HAND SYMBOL MISSING
After the meta symbol <new> (for “new production’) a
symbol is expected (the left hand symbol of a
production). This symbol was not present.

METASYMBOL ILLEGAL

The only metasymbdol allowed after the list of terminal

symbols is the <stop> symbol.

MULTIPLY DECLARED <symbol>

& symbol can only be defined explicitly as a left hand

symbol a single time. A number of productions using the

same left hand symbol must be written as one “new
production’ followed by a number of “alternative
productions’.

OBJECT FILE MISSING
The "OO" parameter was not included in the parameter

list.

OBJECT FORMAT NOT OEFINED

The "F"™ parameter was not included in the parameter

liste

C280 AMOS, PARSING SYSTEM

LKN/8004520 PAGE

ORJECT STREAM OUTPUT <ce>
The completion code <cc> was returned when writing on

the object file.

PARAMETER SYNTAX

& syntax error has been detected at a parameter

(missing °:° or the like).

PARAM STREAM ERROR <ce>

The completion code <cc> was returned when reading from

the parameter file.

PRINT STREAM ERROR <ce>

The completion code <cc> was returned when writing on

the print file.

PROOUCTION LIST FULL
The internal production list table within the parse

table generator program has been overfilled. This table

is controlled by the constant MAXPROOLIST.

REDUCE/REDUCE CONFLICT ON <symbol>

The input syntax was not a proper SLR1 syntax. A parse

state contains the ambiguitys that two possible

productions are not distinguishable by looking at a

single follower symbol. However, the parse tables will

be generated with the convention that the first

production is used. Grammars with that kind of problems

should be used with great care.

SHIFT/REOUCE CONFLICT ON <symbol>

The input syntax was not a proper SLR1 syntax. A parse

state contains the armbiguitys that one production and

the first part of another production are not

distinguishable by looking at a single follower symbol.

However, the parse tables will be generated, using the

convention that the symbols are axpected to be the

first part of the longer of the two productions.

CSS/2790/USM/275101)

15

CR80 AMOS» PARSING SYSTE™ CS$/210/USM/925101)

LKN/&800620 PAGE 16

SYMBOLS NOT ACCESSISLE FROM <GOAL“SYMBOL>: <symbol-list>

It ais checked by the parse table generator, that all

symbols of the input symtax Cexcept for the first four

standard symbols) are really used in the language.

SYMBOL TABLE FULL
The symbol table of the parse table generator has been

overfilled. This table is controlled by the constant

MAXSYMBOL.

SYNTAX ERROR

A syntax error has seen discovered within the parameter

list (the attribute of A parameter has been of wrong

kind or the like).

UNDECLARED: <symbol>

A symbol has been used in the right hand part of a

production without bseing ineluded in the list of

terminal symbols and without being defined as the left

Rand symbol of a production.

CRB0 AMOS, PARSING SYSTEM C€$$/219/US8/0051(1)

LKN/38005$20 PAGE 17

2a LABSTNGS

In this chapter is described the environment in which the

parsing is performed. Tre environment is described

functionally in section 5.1 and the actual interfaces to the

SWELL parser and the PASCAL parser are defined in section

5.2 and 5.3.

The principles of LR parsins are described in £5] and [4].

5.1 Parsing scneme.

The main objects used during parsing are the parse tables

and a parse stack. The parse tables are not relevant to the

user. Howevers the processing on the parse stack is

reflected in the activation of the semantics procedures.

The parse stack primarily contains information describing

the parse state. The total parse state is defined by a state
value associated to each symbol in the parse stack.

Similarly the user usually describes the semantic contents

of each symbol on the parse stack in a set of associated

values. The exact implementation of the semantics

descriptions are described in section 5.2 and 5.3.

.

CR380 AMOS, FARSING SYSTEM CSS/210/USM/CO5101)

LKN/800620 PAGE 18

The control flow in a parsing system may te visualized like

this:

user defined

procedures

stardard

procedures

| SEMANTICS PARSE

NEXT_
SYMBOL

>
IN_BYTE

S
n

I
)

e
d

PARSE is the controlling part of the parsing systems calling

NEXT_SYMBOL when the next symbol of the source is to be
analyzed syntacticallys and calling the SEMANTICS procedure

in each of the following cases:

- A terminal symbol having attributes, has been met and is

to be cushed on the parse stack (identifier, constant or

string).

- & syntactical error has been detected.

A production of the input language has been recognized.

- An escape character has been met in the source.

CRBC AMOS, PARSING SYSTEM CSS/210/USM/005101)

LKN/8CI620 PAGE 19

The scanner procedure NEXT_SYM30L activates the user dafined

procedure IN_BYTE whenever the next input character is to be

scanned. This is so to enabie the user to implement special

features on the source (Carror handlings file merging etc.)

and to make the parse procedures system independant.

when the SEMANTICS procedure is activated, the parser

delivers an action indexre indicating which syntactical

construction has been anaiyzed or what kind of error has

occurred.

The semantic actions are listed below with the action index

and a description of the accompanying information:

J: An ESCAPE character has been met during scanning. The

parse stack pointer defines the top of the parse stack.

1: An IDENTIFIER has been net. The identifier is stored in

the character array: SYM30LSUF. The parse stack pointer
points at tha entry into which the user may put

relevant inforration about the identifier.

2: & CONSTANT has been mets The value of the (integer)
constant is delivered in the ATTRIBUTE parameter and
the parse stack pointer points at the entry into which

the user may put relevant information about the

constant (eesg-e the value).

i
e

oe
 & STRING has been met. The string is stored in the

character array: SYMBOLSUF. The parse stack pointer

points at the antry into which the user may put

relevant information about the string. The ATTRIBUTE
parameter delivers the size of the string in

characters.

4: A SYNTAX ERRO? has been discovered. The ATTRIBUTE

parameter indicates the kind of error. The user is

CR380 AMOS, PARSING SYSTEM CSS/270/USM/995101)

LKN/8C06295 PAGE 20

responsible for reporting the errors while the parsar

tries to recover from the error automatically. The
possibilitias for the parser to recover successfully

depend on the existence of the error-sympol in the user

defined syntax. Ouring recovery the parser may call the

semantics procedure with the error action a number of

timas,s and the user may nave to suppress superfluous

error raporting.

The error codes delivered id the ATTRIBUTE parameter

are:
constant overflow

unexpectad symbol (syntax error)
string syntax

string size

parse stack full

recovery failed

>= S: A PRODUCTION of the inout syntax has deen recognized.
The action index corresponds to the production number

in the production list generated by the parse table
generator. The parse stack cointer points at the first

one of the stack entries describing right hand symbols

© of the production. This entry will be used to describe

the left hand symbol of the production after the

reduction.

If the action index corresponds to the production:

TERM s3= (€ EXPRESSION)

then the parse stack pointer points at the stack entry

corresponding to "CC", At exit from the semantics
procedure this entry should describe the left hand

symbol "TERM", and it is most likely,» that the primary

action of the semantics procedure in this case will be

to move the contants cf the “EXPRESSION” entry to the
"C" entry, creating a valid "TERM" entry.

| 1
2
3

i 4
5
6

i |

CRBO AMOS» PARSING SYSTEM CSS/272/USM/0051 01)

LKN/800620 PASE 21

521.1 Predefined syrpdols.

During scanning the parser distinguishes among the following

character classes:
ALFA (letters)

NUMERIC (digits)

DELIMITER
COMMENTCHAR
STRINGCHAR
HEXCHAR

IGNORE
ESCAPE

These classes are used when assembling and recognizing

symbols of the input language.

4 number of symbols and constructs are predefined within the

parser. These symbols are dascribed in the following.

IOENTIFIERsS are build up by ALFAsS and NUMERTCS. The first

character of an IOENTIFIER must be an ALFA,

CONSTANT may be a decimal constant or a hexadecimal

constant. A decimal constant contains NUMERICS only. A
hexadecimal constant is prefixed with a HEXCHAR ang

contains 1 to 4 digits or hex letters (°A% to °F’).

STRING is a simple string or a concatenated list of simple

strings. A simple string is a saries of characters

surrounded by STRINGCHARsS. Within a simple string,

characters in the ranga 322.126 may be used directly.
Special characters may be included by writing their

character value as a decimal constant surrounded by the

brackets "Cs" and “:)°. Simple strings may be

concatenated by using °%% as a catenation operator.

COMMENT is a series of characters prefixed with a

COMMENTCHAR ang terminated with a COMMENTCHAR or a linea

CRB0 AMOS, PARSING SYSTEM CSS/210/USM/005101)

LKN/8904620 P4GF 22

terminating character (in the range 1.4.31).

5e1.2 Error recovery.

The parser includes facilities for oerforming errer

recovery. in case of a syntax errors the recovery procedure

(within the parser) is activateds and it performs like this:

if specific “recover symtols” are included

in the parse tables then

begin

repeat read and skip next input symbol

until a recover symbol is found,

repeat skip the parse state

at the top of the parse stack

until a state is found, after whitch

an “error symbol” is acceptable;

end,

As it appears from this algorithm, the recovery is based on

the existence of some "recover symbols" and the "error

symbol”. If they are not present, the parsing will terminate

with the causes "unrecoverable".

It is up to the user to define these symbols. Tha “recover

symbols" are automatically (by the parse table generator)

generated as the set of terminal symbolss that may appear as

a follower symbol after the “error symbol”. Thus the user

just has to include the "error symbol" at relevant points in

the syntax. It is hard to give specific rules for the

insertion of the “error symbol". Howeversr an example may

°

CR80 AMOS, PARSING SYSTEM C$S8/2190/US4/005101)

LKN/509620 PAGE 23

illustrate the use of the error symbdol:

In the grammar of PASCAL it would be reasonable to

have the following production for statement:

statement i: = error-symbol statement

As statement may be empty in PASCAL, the symbols following

earror-symbol will then be all symbols that may be leading

symbols of a statement (BEGIN, IF REPEAT etc.) and symbols

that may follow a statement (ENO,- "7", UNTIL etce).

5.2 SWELL parser.

The parse stack used by the SWELL parser is a stack of

records of equal size. The first field of each record is an

integer field reserved for use by the oarser. This

convention is introduced to minimize the use of index

registers (the register usage is described in section

5.2.1) as the parser and the user defined semantics

procedure may share a single register when accessing a

specific entry in the parse stack.

The SWELL parser is prepared for dynamic selection and

reselection of parse tables and thus it is possible to

define an overall input language consisting of nested

languages. When the PARSE procedure of the SWELL parser is

activated, the context is saved (in a work area in the parse

table) and the former parse table (if any) is chained to the

actual parse table. At exit from the PARSE procedure (Ci.e.

when the final production has been recognized) the actual

parse table is unstacked, the context is reestablished and

execution may proceed in an outer parse table. Howevers a

parse table cannot be used recursively.

CRBO AMOS,» PARSING SYSTEM CSS/279/USM/0051 01)

LKN/8O00420 PAGE 24

5.2.21 Interface description.

The interface to the SWELL coarser consists of tha followins

objects:

Procedures:

PARSE (standard procedure)

INLBYTE Cuser written)
<semantics> (Cuser written)

Variables:
SYMBOL SUF (standard array of char)

The declarations of these objects are shown and commented in

the following:

PROCEDURE PARSE

CSTACKATTRIBUTESIZE,
MAXSTACKATTRIBUTES: INTEGERS

R4; “antry point of senantics procedure
R5; "parse stack base address
R7; “parse table base address
R6)- "Link

STACKATTRIBUTESIZE defines the size of each record in the

parse stack (in words).

MAXSTACKATTRIBUTES defines tha limit of the parse stack

(the maximum number of records in the parse stack)

R&4 defines the semantics procedure to be activated by the

parser (may be set by: location("semantics”))-

R5 defines the base address of the parse stack (may

set by: address("parsestack")).

CR80 AMOS, PARSING SYSTEM CSS/210/USM/0051 (1)

LKN/8006290 PAGE 25

R7 defines the base address of the parse tables (may 52

set dy: address("parsetable")).

IN_SYTE is a user written procedures, and it should be

declared like this:

PROCEDURE IN_BYTE

(R33 “character value (return)

R6);7 “Link
"all other registers are unchanged

The semantics procedure is 3 user written procedure

transferred to the parser as a parameters so the name of the

procedure is not relevant to the parser. The semantics

procedure should be declared like this:

PROCEDURE SEMANTICS

CR137 “action number
R23; “attribute
R53 “parse stack pointer

R6)- “Link
"all registers are unchanged at return

The symbol buffer holding the last scanned identifier or

string is a standard array defined like this:

SYMBOLBUF: ARRAY CGeeMAXSYMEBOLLENGTH] OF CHAR;

The standard value of MAXSY“SOLLENGTH is 132 characters.

i

CREO AMOS, PARSING SYSTEM CSS$/210/uUSM/0051¢1)

LKN/80062G PAGE 24

S.2ee Integration.

The SWELL parser is a link (sub) module to be linked together

with a user defined main module and possibly some additional

modules.

The parser imports the procedure IN_-BYTE and a character

class table CHARCLASSTASLE. A standard character class table
is offared as a link module in the parsing system.

It may often pe convenient for the user to create the parse

tadles in an individual link modules and the parsing program

is then structured like this:

CR&80 AMOSs PARSING SYSTEM CSS/219/USM/0951¢1)

LKN/890620 PASE 27

potato 1
ry

MAIN | Sua ee i
@ MODULE A MOOULES |

| \
| a eee 2

PARSER PARSE
TABLES

CHAR
CLASS.

@ TABLE

The standard files offered for SWELL parsing are all = found

in the directory:

De eGENS .D*ePARSER.D

The files are:

PARSER.L std parser link module

PARSER. std parser import source

CHARCLASSTABLE.L std character class table link module

CHARCLASSTABLE.I std character class table import source

CREO AMOS, PARSING SYSTEM C€$$/273/USM/0051¢61)

LKN/800620 PAGE 28

5.3 PASCAL parser.

The parse stack used by the PASCAL parser only contains

parsing information. The user should then creata a parallel

stack of records to hold the semantic attributes of the

symbols on the stack (an array of records having tags

corresponding to nontermiral symbols of the grammar will

often dod. The PASCAL parser does not offer nested parsing
with different languages and it uses a fixed, predefined

character classification for the scanning.

The parse tables for the PASCAL parser are loaded from the

table file at run time. This is controlled by a standard
“INIT _PARSE’ procedure within the parsing systems using a

user defined procedures interfacing to the environment.

5.2321 Interface description.

The interfaces to the PASCAL parser consists of the

following objects:

CR80 AMOS, PARSING SYSTEM CSS/210/USM/905101)

LKN/800620 PAGE 29

Procedures:

INITLPARSE (standard procedure)
NEXT TABLE WORD Cuser written procedure)
PARSE (standard procedure)

IN_BYTE Cuser written procedure)
r SEMANTICS (user written procedure)

Variables:

SYMBOLSUF (standard array of char)

Constants:

MAXSYMBOLLENGTH Cuser defined size of SYMBOLBUF)

MAXSTACK (user defined size of parse stack)

MAXSCANENTRY (size of scan table)
MAXPROOUCTION (size of production table)

MAXACTION (size of action table)

INIT_PARSE is called by the user to load and initialize

parse tables and parse variables. The procedure has no

parameters.

NEXT_TABLE_WORD is a user written procedure, called by the

INIT_PARSE procedure when reading the parse table file. The

procedure must match the following declaration:

PROCEDURE NEXT_TABLE_WORD CVAR I: INTEGER);

PARSE 13 called by the user to start parsing. The procedure

has no parameters.

IN BYTE is a user written procedures called by the scanning

part of the parser. The procedure must match the following
declaration:

PROCEOURE IN BYTE CVAR CH: CHAR);

SEMANTICS is a user written procedure parforming the

CR8B0 AMOS» PARSING SYSTEM CS$S/219/USM/0051¢1)

LKN/800620 PAGE 39

semantic actions corresponding to syntactical constructs

recognized by the parser. The procedure must obey the

following declaration.

PROCEDURE SEMANTICS CACTIONINOEX,

ATTRIBUTE,
STACKINOEX: INTEGER);

ACTIONINDEX selects the action to be performed (cf.

section 5.1).

ATTRIBUTE delivers the value of a constants the size of a

string or an error code.

STACKINDEX is the stack pointers used by the parser for

indexing in the parse stack, and used by the user for

indexing in the parallel stack of semantic attributes.

The character array holdirg the last scannea identifier or

string is declared like this:

SYMBOLBUF: ARRAY [CO..MAXSYMBOLLENGTH] OF CHAR;

The user must define the following set of constants:

MAXSYMBOLLENGTH defines the largest number of characters

tnat the parser is capable of assembling as a single

symbol.

MAXSTACK defines the size of the parse stack. This values

depends vary much on the input syntax. Howevers languages

like SWELL or PASCAL would require less than 100 elements

in the parse stack to compile usual programs.

MAXSCANENTRY, MAXPRODUCTION and MAXACTION should by the

user be set to the values printed by the parse table

generator (within the statistics).

CR80 AMOS,» PARSING SYSTEM C$$/210/USM/0051¢1)

LKN/800620 PAGE 31

The PASCAL parser uses a predefined character

classification. This classification is defined like this:

@ ALFA = “ae. “2% and °_’

NUMERIC = *9% 60 9”

COMMENTCHAR = "
STRINGCHAR = °
HEXCHAR = #

ESCAPE = vA

IGNORE = characters in the range 1..32

DELIMITERS = all others

5.3.2 Integration.

The PASCAL parser is a set of text files to 56e merged

into a user written program. The files are all found in

tne directory:

ax *GENS.C*PARSE.O

The files are:

CONSTS.S to be merged into constant part

TYPES.S to be merged into type part

VARS.S to be merged into var part
PROCS.S to be marged into procedure part

The procedures, variables and constants included in the

user interface are named as indicated in section 5.3.1.

All othar names introduced by the parser files are

prefixed by “°PRS_*° to avoid name conflicts.

@

atud per

pens

CR85 AMOSs PARSING SYSTE™ CSS/215/USM/005161)

LKN/800620 PAGE 31

Ga EXAMPLES

The examol2 used to illustrate the use of the SWELL and

the PASCAL parsers is a very limited calculator frogran

primarily building on the expression syntax, known from

almost all papers on parsing subjects.

Written in usual 8NFs the grammar looks like this:

<joal-symbol> ::= <expression> =

Caxpression> ::= <term>

! <eaxpression> + <term>

<term> ::= <factor>

! <term> * <factor>

= <constant> <factor> rs:

! (<expression>)

In the following is shownr how SWELL and PASCAL

calculator programs may be generated when using the

parsing system.

The syntax is written inte a syntax description file,

using the metasyntax as defined for the parse table

generator;

NAME CONSTANT STRING ERROR
= + * ¢ }

theta. 74

"CALCULATION EXPRESSION =

EXPRESSION TERM
° EXPRESSION + TERM

"TERM FACTOR
° TERM * FACTOR

" EACTOR CONSTANT
C EXPRESSION)

CR8O AMOS» PARSING SYSTEM

LKN/800620 PAGE

The parse table is generated by running the parse table

generator program PARSERGEN. The object format is
selected according to the destination language.

Overleaf is shown the printout generated by the parse

table generator when activated with "L:ALL". The parse

states and actions are usually of no relevance to the

usere Howevers in case of syntax definitions causing

reduce/reduce or shift/reduce conflicts the parse states

and actions may illustrate the reasons for the conflicts.

In case a user wants to understand these states and

actions fullys he may for instance study [5] and (6).

€$8/210/USM/905101)

33

SYMBOLS:

1 NAME
5 z

9)

PRISUCTIONS:

5 <SOAL SYMBOL>

6 CALCULATION

? EXPRESSION
9

9 TERM
10

@ 11 FACTOR
12

PARSE STATES AND ACTIONS:

Cd -->

CALCULATION -->

EXPRESSION -->
EXORESSTION -->
TERM -->

TERM -->

FACTOR -->

FACTOR -->

1: SHIFT 8
2: SHIFT 9
3: SHIFT 12
4: SMIFT 14

5: SHIFT 15
63 SMIFT 16

@ 7: ERROR

" -->

8: REOUCE ‘ 5

CALCULATION “7>
EXPRESSION -->

9: SHIFT 18
103 SHIFT 19
13s ERROR

EXPRESSION -->
TEQM “<>

12: SHIFT 21
V33 REDUCE ?

TERM -->

14s REDUCE 9

@ FACTOR e->

153 REDUCE 1

5
10 CALCULATION

er> CALCULATION

o-> «EXPRESSION =

o~> «TERM
wo> EXPRESSION * TER™

2o> «FACTOR
7-> TERM © FACTOR

eo> CONSTANT
“o> (EXPRESSION)

CALCULATION
EXPRESSION =
TERM
EXPRESSION * TERM

TERM * FACTOR

*
*
t]
FACTOR

C
CONSTANT
” € EXPRESSION)

ON CALCULATION
ON EXPRESSION
ON TERM
ON FACTOR
ON CONSTANT
ON ¢

CALCULATION #

EXPRESSION &# ®
EXPRESSION # + TERM

ON ®
ON +

TERM #
TERM # @ FACTOR

ON #

FACTOR @

CONSTANT #

2 CONSTANT
7

=

3
?
1

STRING

EXPRESSION

& ERROR

2 ¢

120«OTERS

ete

(# EXPRESSION)
@ TERM
EXPRESSION * TERM
FACTOR
@ TERM * FACTOP
CONSTANT
(EXPRESSION)

ON EXPRESSION

EXPRESSION = #

EXPRESSION * # TERM
FACTOR
@ TERM # FACTOR
CONSTANT
© EXPRESSION)

ON TERM

TERM « # FACTOR
CONSTANT
@ (EXPRESSION)

ON FACTOR

€ EXPRESSION #)
EXPRESSION # * TERM

ON +
ON)

EXPRESSION * TERM #

TERM # » FACTOR

ON *

TERM # FACTOR #

C EXPRESSION) #

FACTCR -->

EXORESSION “77>
EXPRESSION “->

TERM -->>
TERM -~>
FACTOR -->
FACTOR -->

163 SHIFT 23
17: GO TO 3

CALCULATION -->

18: REDUCE 6

EXPRESSION -->

TERM -->
TERM -->

FACTCR -->
FACTOR -->

193 SHIFT 26
20: GO TO 4

TEQM -->

FACTOR -->
FACTOR =>

2t: SHIFT 28
22: Go To 5

FACTOR -->

EXPRESSION -->

23: SHIFT 19
263 SHIFT 29

25: ERROR

EXPRESSION -->

TERM “>

26: SHIFT 21
27: REDUCE 8

TERM -->

28: REDUCE 10

FACTOR -->

29: REDUCE 12

STATISTICS:

TERMINALS:

NONTERMINALSS

PROOLIST SIZE:
ITEMS:
STATES:

SCANENTE TES sone
PRODUCTIONS wane
ACTIONS eocccece

TOTAL SIZE OF PARSE TABLES: 107 INTEGERS.

LKN/800520 PAGE

In case of a SWEL parsing program tha rest of the

generation is performed according to the following steps:

- The parse table may be converted to a link module by

writing a submodule as shown below Cusing the parse

table file ZDEMOSNF.H as a source file):

SuBMODULE DEMOBNF?

EXPORT VAR CALCTABLE: ARRAY [0..107]) OF INTEGER;

INIT CALCTASLE =

XSOURCE DEMOBNF.H

of

ENDMODULE

- The main moduler containing the semantics of the

calculators is shown overleaf:

CRB8O0 AMOS, PARSING SYSTEM ; CSS/2710/USM/005101)

35

€

MAINMOOULE CALCULATOR:

CONST
STACKMAX 2 15;

ASOURCE De eGENS. O*SWELLPREFIX.O*GENERALPARAMS,.S
XSOURCE De*eGENS .D*SWELLPREFIXCeMONITORNAMES.S
XSOURCE aeeGENS.DeSWELLPREFIX.D*IOSPARAMS.S
XSOURCE O**GENS.O*UTILITYHELP.O0*.1
XSOURCE d**GENS.D#PARSE.O*PARSEROI

TMPORY VAR
CALCTABLE: ARRAY (O..0] OF INTEGER;

TYFE
ATTRIBUTE =

RECORD
PARSEINDEX: INTEGERS:
VALUE: INTEGER?

END;

VAR
SEM_STACK: ARRAY C1. eSTACKMAX®SIZECATTRIBUTE)] OF

EXPORT PROCEDURE IN_8YTE
Veeaeexzestezesetzezzass"

(R35 “CHARACTER VALUE CRETURN)

R623 "LINK

VAR SAVERS, SAVERG6: INTEGER?
BEGIN

R&Z>OSAVERGS

RGZ>SAVERG;S

INBCADORESSCCINFILETYPE) S>R4se R36 RODE

SAVERG=>R4;

EXITCSAVER6)3

END;

PROCEDURE CALCULATE
“gexxznezagusxaeces"

CR1z “ACTION NO
R27) “ATTRIBUTE

R52 “PARSE STACK POINTER

RO)+ “LINK
VAR SAVEREGS: ARRAY (0.2.7) OF INTEGER?

LONGWORK: LONG. .
WRKs ARRAY (9..7] OF INTEGER;

BEGIN
R7B>SAVEREGSOC7 12
STC(64 ADDRESSCSAVEREGSC73)=>R7);¢

RSz>RO*SIZECATTRIBUTE)?
RSzr>R7+(2eSTLECATTRIBUTED D3

CASE R14 OF

2: " CONSTANT
R2e>RSAATTRIBUTE.VALUE?

4: " ERROR
MONCTERMINATEs R2e>RO, O8>R1, R7)5

6: "™ CALCULATION s:# EXPRESSION = ”
BEGIN
CADDRESSCCOUTFILETYPE) @>RG) DFILETYPE.SB>R45
MONCSTREAM, OUTINTEGER, ADORESSCWRK)B>ROs RS,

RSSATTRIBUTE.VALUE®>R2, O8>R3, R702 BINLEXIT?
MONCSTREAM, OUTNL» Roe R7)2 BINLEXITS
MONCSTREAM, FLUSHe Rb, R703 BINLEXIYs

END;

8: “ EXPRESSION ss EXPRESSION * TERM
RSDATTRIGUTE. VALUE *C(CR7GATTRIBUTE.VALUES>RO)?

10: " TERM s:= TERM * FACTOR ”
BEGIN
ACORESSCLONGWORK) 2>R6;

RSAATTRIBUTE. VALUES >RGALONG. LEAST;

R&SLONG*(R7GATTRIBUTE VALUEZ>RODG
RGAINTEGERSORSGATTRIBUTE. VALUE?

ENO?

12: “ FACTOR s:® (EXPRESSION) *
“OSATYRIBUTE. VALUE S>ROB>RSQATTRIBUTE. VALUES

END:

UNS(7¢ ADDRESSCSAVEREGS(O3) 2>R7);7
EXTTCR603

ENO,

INTEGERS

CREO AMOS, PARSING SYSTEM

LKN/ 800620

BEGIN

ACCEPTEILES(CRO)G
READSYSPARAMS (RO);

CPENSTIEAMCADORESS(CINFEILETYPE) H>RG, INPUT_MODEZ>R7, RODE

CASCRESSCCOUTEILETYPE) >R&DOFILETYOE .SE>RS,

MONCSTREAM, CUTTEXTB, R4e AQDDRESSC°READY (310290295) °22>R6, 27S ZINLEKIT,

MONCSTREAM, FLUSHs Rae 87)2 SIN_EXIT?

PARSECSIZECATTRIBUTE), STACKMAXs LICATIONCCALCULATE) 2>R4, ADDRESSCSEM_STACK)=>R5-

ADDLESS(CCALCTABLED=>R7, Rb);
MONCTERMINATEs O=>ROe OF>R14 87)2

ENG;

ENOMODULE

PAGE

- Finally the nodules area linked togethers creating the

oject program.

In case of a PASCAL program, it only remains to create

the main program into which the standard parsing source

files are merged at compile time. The PASCAL

the calculator is shown overleaf:

version of

CSS/210/USM/0051¢61)

3?

@ ANOLIST
BdeeSENS.O#PREFIX
SLIST
VEMECLEVELE2
XWHCRKAREAZ2000
XSTREAMS #3

XELSB6
NTOCIS=6
ATLESE16
XMESSAGES#S
RVERSTION#1

CONST
" CONFIGURATION ”

MAXYSCANENTRY =& 7:
MEXPRODUCTION # 3;
MAXACTION = 313
MAXSTACK = 253
MAXSYMBOLLENGTH © 1323

$D**GCENS.O#PARSE eDeCONSTS.S
SDOMGENS.CHPARSEORTYPES.S

VaR

SS**SENS DePARSE.ORVARS.S

, SEMLSTACK: ARRAY [1..MAXSTACK] OF INTEGER;
T_STREQM, OSTREAM: STREAM;

© FPOM_ADAM: BOOLEAN;
FSN: FILE_LSYSTEM_NAME;
VOL: VOLUME NAME;
NAMELIST: NAMELISTTYPE:
NAMENO: INTEGER;
©, TABLEFILE: FILE:
CC: COMPLETION CODE: a
CH: CHARS en)

PRICEDURE IN_BYTE (VAR CH: CHAR); on
BEGIN (4 a ie <0

INBYTECE STREGM, CH, CO)3 a
— ‘ tne aes bu ret a 7 _ “ ard mF ~ :

ENT? i use ve

PROCEDURE NEXT_TASLE_WORD (VAR I: INTEGER);
BEGIN

INWORCCI_STREAM, Iv CODE
IE CC <> IO_OK THEN TERMINATE(CO)¢

ENO?

PROCEQURE SEMANTICS CACTIONNOs ATTRIBUTEs STACKINOEX: INTEGER)?
BESIN

CASE ACTIONNO OF

@ sv sree
SEM_STACKCSTACKINOEKI]:2 ATTRIBUTES

és ERRQR ”

TEPMINATECATTRIBUTE);

6: “ CALCULATION i: EXPRESSION = *
BEGIN

OUTINTEGERCO_ STREAM, SEM_STACKCSTACKINOEN]+ O» CO)?
IF CC <> IO_OK THEN TERMINATE(CO)s
FLUSHC(O_ STREAM, CC)3
TF CC <> I0LOK THEN TERMINATECCC)?

END;

8: " EXPRESSION s:= EXPRESSION * TERM “
SEM_STACKCSTACKINDEX]: 2 SEM STACKCSTACKINOEX] + SEM_STACKESTACKINDEK233

10s " TERM ss: TERM » FACTOR "
SEM_STACKCSTACKINDEXIT: 2 SEM _STACKCSTACKINDEX] # SEM_STACKESTACKINDEX4+2]¢

12: " FACTOR z:= (EXPRESSION)
SEM_STACKESTACKINDEX]:= SEM_STACKLSTACKINDEK*1]¢

Oe te 36 Se Fe Do Tt: * NO ACTION *

ENDs
END?

© $d**GENS.O*PARSE .D*PROCS.S

| TE CC <> IOLOK THEN TERMINATE(CC);

¢

" CONNECT CURRENT OUT FILE AND PARAMETER FILE *

CONNECT (PARAM,OFILEs OUTPUT MODE, OSTREAM, CCDs

IF CO <> IO_LOK THEN TERMINATECCC)?

CONNECTCPARAM.PFILE, INPUT_MODE- ILSTREAM, CCDS

IF CC <> ITO_LOK THEN TERMINATECCC)¢

* SKIP FIRST LINE OF PARAMETER FILE AND READ TASLE FILE NAME ”

REPEAT IN_BYTE(CH) UNTIL CH = NLe

FSN:= PAQAM.FSN;

VOL 2 PARAM.VOL?

INFILEIOCI_ STREAM, FROM ROAM, FSNy VOLs NAMELIST» NAMENO, COs

IF CC <> 100K THEN TERMINATEC(CC);

*" FIND TASLE FILE, CONNECT IT AND INITIALIZE PARSE TASLES "
FIND CILECFROM_ADAM, FSN, VOL, NAMELIST» NAMENOs PARAM.OFILE, TABLEFILE,
IF CC <> I10_OK THEN TERMINATE(CC):
DISCONNECTCI_STREAM, Fr CC)3
IE CC <> 10_0K THEN TERMINATECCO)?
CONNECTCTABLEFILE, INPUT_MODE, I_STREAM, CC)Z
LF CC <> I0_0K THEN TERMINATECCC);
INIT PARSE;
DISCONNECTCI_STREAMs Fy CC);
IE CC <> 100K THEN TERMINATE(CC);

" CONNECT CURRENT INPUT FILE, PROMPT AND START PARSER “
CONNECTC(PARAM,IFILE, INPUT MODE, I_STREAM, CC)3
IF CC <> 10_OK THEN TERMINATE(CO)3
OUTTEXTCO_STREAM, "READY(3102)¢:0:)%% CCD3
FLUSHCO_STREAM, CC)
T= CC <> I0_OK THEN TERMINATECCC)?
PARSE?
FLUSHCO_STREAM» CO);
IF CC <> I0_0K THEN TERMINATE(CC)?

END.

cC)-

CHRISTIAN ROVSING A/S
Copenhagen - Denmark

