
minicomputer

CR80 minicomputer

Hardware

The CR80 mini is a modern, high speed, general purpose minicomputer designed by CHRISTIAN ROV-SING A/S and produced since 1975.

The emphasis has been on a modular and reliable hardware configuration, utilizing state of the art LSI's (Large Scale Integration) and fast Schottky TTL technology.

The philosophy behind the hardware architecture is that of interfacing completely selfcontained, two-ported modules (building blocks) via two types of ultra high speed backplane Bus's; the Main-Bus connecting all modules, and Sub-Bus's for local processing by a group of modules without loading the Main-Bus.

The CR80 mini standard catalogue shown overleaf now contains nearly one hundred different modules.

A complete range of processors, memories, I/O modules and application oriented modules ensures technically and economically correct solutions and extension capabilities in accordance with future needs, without lengthy interrupts of computer operations.

Outstanding among the CR80 minicomputer building blocks are:

- A peripheral processor file management system, connecting data bases of up to 16 disk drives of 300 megabytes capacity via multicomputer ports to one or more CR80 minicomputers, relieving the main CPU's completely of disk and file related processing
- A fast serial I/O bus, the TDX-Bus (Time Divisioned Multiplexed), which extends the standard parallel I/O bus to several kilometers from the computer, and provides high speed communication at 1.6384 Mb/s between several hundreds of I/O devices, communication ports, terminals and computers. This greatly reduces the number of separate circuits required in many systems, so that many large and expensive multicore cables can be replaced by a single cable-pair.
- X-net, an upwards compatible serial multidrop TDX-Bus which can connect several thousand terminals, via wall outlets to one or more Host computers and central printing stations. The X-net makes it possible to access central computing power from every room in a building complex covering several kilometers in area, via a single cable-pair.
- An extensive range of microcoded communication ports covering most common line protocols.

					2-100					Z#100=>PSH(15:13, DISABLE TIMER
001198	1	JOIE	;	LON	2#100					ENIOG-PESHCIDELIST DISABLE FINES
001199										
001199	+	JUIF	1			COUNT	ANCY	CHECK	(1.9.0)	PROCESSING (ESG STATE 1)
				LUNGIIL	DINAL P	EDUM	DANCT	LHELK	LACI	FROCESSING TESS STATE IN
001201										
										G LRC PROCESSING:
			ESP030					8.0		G ERC PROCESSING.
001203					ESGVSN					IF PRIMARY_ESS ACTIVE
001204				I E Q M3VC			ESGPA	85		THEN PVS_ADDR=>ADDR
001205										
001206				IEQ			ESGSV	3	: .	ELSE SYS_ADDR=>ADDR
001207					SYSES			85	:	ADDR-BASE=>ADDR
001208				SUB						TOTAL_SIZE=>N
001209					-XHNAME	+X45	S12.X5	KO DO		N-1=>N
001210				ADDC	-1			RD		N-1=>N
001211				MOD	-					N.ADDR=>PLRC
212100				NJAX	0.	×5		91		N.AUUR=>PLRC
001213				NON		81	PLRC			
001214				HOVE	#FFFF			R2		#FFFF=>LRC
001215										WHILE N:=N-1 <> 0 DD
			ESP031							BEGIN
001217				XJR		×5		RZ		LRC XOR ADDR.ESG=>_RC
001218	1	002F		ADDC	1			RS		ADDR+1=>ADDR
001219	1	0030		538			ESP03			END
001220	1	0031		NOV			CLRC			LRC=>CLRC
155100	1	2000		INE		R1		R 2		IF CLRC<>PLRC
255100	1	0033		JHP			ESP10	0	;E	THEN GOTU ESS_RECOVER
	1	0034	;							
655100	1	3034	;							
455100	1	0034	; ESG	PREP !	START.	PRO	CESSIN	G (ESC	G STA	TE 1)
655100	1	2034	;							
	1	0034	;							
			ESP040							G PREPARATION:
001227	1	0034		LOM						2#111=>PSH(15:13), DISABLE INT
855100	1	0035		ABAC	DAESCI	2<9		82		ESCCP_DEVICE_ADDR=>DA
001229	1	0036		SIO		20				READID(DA, STATUS)
001230	1	0037		IBN		RO	BESCO		T;	IF ESCCP_START
001231	1	0038		JMP				0		THEN GOTO ESG_START
555100	1	0039		IBZ		RO	BESCO		;	IF ESCCP_PREP
001233	1	003A		JMP				0		THEN GOTO INT_RESERVATION
001234	1	0038		NOVC	MESCO	PPREP		20		
001235	1	0030		CIO		RO		82	;	HRITEID. (DA, PREP=1)
001236	1	0030		HOV				R5		LET_ADDR=>LET
001237				SDZ	-	SYSES	R+LTHS	1.x5	;	IF LTMS1.LET <> 0
001238	1	0040		JMP			ESP01	0		THEN GOTO INT_RESERVATION
001239	1	2041							;	ELSE
001240	1	2041							;	BEGIN
001241	1	0041		INC	-	SYSES	R+LTHS	1.X5	;	INCREMENT MESSAGELET
001242				HOVC	30000	/10		20		
001243				MOV	80 -	SYSES	R+LTHS	4. 15		3D SECONDS=>MESSAGE4.LET
001244				MON					÷ .	SEND_LETTER (TO RTC)
001245				JMP		54	ESPE5	0	;E	LETTER ERROR, GOTO ERRORS
001246				JMP		100	ESPOL		1	GOTO INT_RESERVATION
001247				200			1000000000			END
		204A								
001248										
				ISTART.	PROCE	24122	(ESG	STATE	01	
					0 -> 2				1512	
001251								10		
001231		0044		Lettre-setter at		7000 8000				

Software

AU0 AU0 AU0

Like the CR80 hardware, the CR80 software follows a completely modular concept. This policy enables the user to select a number of existing modules, create a few special purpose modules and integrate them all into a customized system, which is easy to implement, to test, and to maintain.

The System Software package used on the CR80 computer is the CR80 SYSTEM ONE.

CR80 SYSTEM ONE supports interrupt handling, multiprocessing in up to 8 CPU's and time shared multiprogramming in each single CPU. Process communication is available either as message handshake communication or as an extremely fast data buffer exchange facility.

The CR80 SYSTEM ONE FILE MANAGEMENT SY-STEM enables manipulation of disk files, virtual cardreaders and line printers. The File Management System supports random (direct) access and sequential access. The access method as well as the record-size is a file-open parameter.

Software development on the CR80 is fully supported by the CR80 SYSTEM ONE UTILITY PACKAGE which includes such standard facilities as editor, assembler, binder and patch programmes. Furthermore, the package includes a PASCAL compiler providing the facility of programming the CR80 in one of the most advanced high-level languages of the future.

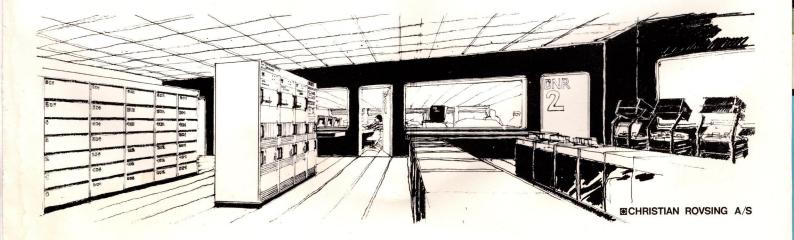
The CR80 SYSTEM ONE DRIVER PACKAGE supports the standard peripherals plus a wide range of special units interfacing the CR80. Especially in the area of handling communication lines, CHRISTIAN ROVSING A/S has developed an extensive set of System Modules.

To support the highly reliable hardware modules, CHRISTIAN ROVSING A/S has designed an advanced system of on-line and off-line Diagnostic Software giving fast error detection and thereby further improved system availability.

Systems

The flexible architecture of the CR80 mini, together with fast interrupt handling capabilities and the comprehensive instruction set, enables the CR80 mini to cover a wide range of applications in the field of fast data processing and data manipulation, process control, intelligent terminal applications, administration systems etc. Furthermore, the CR80 mini covers the area of more specialised systems when used as a front-end processor, concentrator or array processor.

Due to the modularity of the CR80 mini, simple low cost processors can be configured for less demanding applications, and high throughput rate and processing power requirements can be met by means of its multiprocessing facilities.


For applications requiring high reliability, such as node processors in data communication networks, the CR80 mini can be dualized using the Watchdog module to control the switch over from the failed branch to the hot standby. This is based on on-line diagnostic programmes running in both halves with the status regularly transmitted to the Watchdog module. The lines carrying the information between the nodes, interface through Line Termination Units connected to the CR80 mini via I/O or TDX bus's.

Utilizing the TDX bus all line multiplexing is done by interleaving of packets on the bus without loading of the CR80 minicomputer.

Since its introduction in 1975, the CR80 mini has been implemented successfully in many systems. The CR80 mini has proven itself in over 50 different applications:

- Node Processor in data communication networks.
- Message Editing and Distribution Processor for terminal clusters.
- Array Processor handling satellite data in real time.
- Data Network Control Centre Computer incl. 300 Mb. disks.
- Fast Formatter/Control Processor for High Density Digital Tape Stations.
- Color Image Manipulation System.
- Laser Plotter Controller.
- Front-End Computer for Mainframes (IBM & others).
- Traffic Analysis Systems.
- Process Control Systems.
- Data Communication Concentrator and Message Switcher.
- Telemetry Systems.
- Automation of TV-studios.

CR80 minicomputer features.

THE CR80 IS AN EXTREMELY FAST MULTIPROCESSING AND MULTIPROGRAMMABLE MINICOMPUTER BASED ON SCHOTTKY-LSI TECHNOLOGY.

- 16 bit words, 2's complement processing.
- Bidirectional Main Bus and local Sub Busses, max. transfer speed: 4M words/sec.
- Addressing range: Main Bus 256K words or 512K bytes
 Sub Bus 256K words or 512K bytes
- 274 instructions, fixed length 16 bits, extendable by MODIFY to double length.
- Execution: 0.5 to 1 million instructions per second with standard memory (in multiprocessing mode up to 5.0 Mips).
- CPU clock rate: 8MHz.
- 12 addressing modes: Immediate, base relative, program relative, location relative, register, and indexed. Word (16 bits, 2's complement) and byte (8 bits) addressing.
- 6 types of vectorized prioritized interrupts, 3 maskable, 64 vectors and 4 priority levels.
- 14 internal registers: 8 accumulators, BASE pointer, MODIFY register, PROGRAM pointer, PROGRAM counter, TIMER register, and PROGRAM STATUS register.
- Automatic loading and saving of all CPU registers with programs during multiprogram execution.
- User accessible CPU microcode RAM, dynamically alterable user extensions of instruction set during execution.
- Special instructions make CPU microcode available on local Sub Busses for direct fast execution by function module (up to 8 FUNC modules per Sub Bus), e.g. fast fourier transform, floating point etc.
- Max. 8 CPU's in a CR80 System, safe hardware based multiprocessing.
- Max. 63 I/O devices (DMA & FUNC devices excepted).
- Direct Memory Addressing (DMA) devices to 2.6 Mw/sec. with standard memory.
- Wide range of peripheral and communications interfaces, incorporating LSI's and bipolar microprocessors for further distribution of computing power.
- Hardware and firmware have taken over many functions previously done by system software.

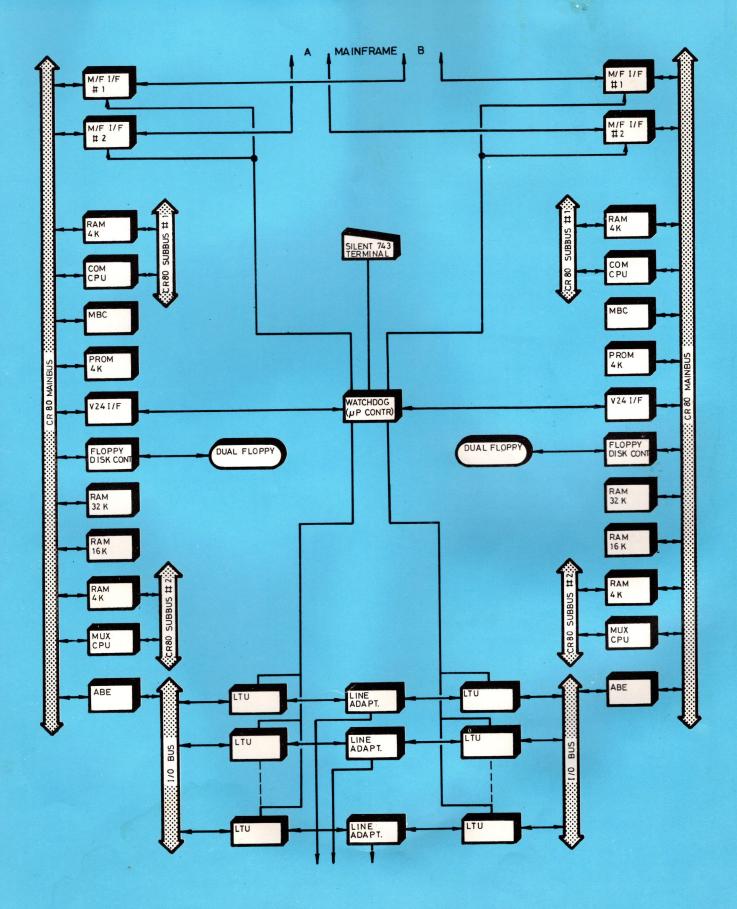
CR80minicomputer

STANDARD MODULES

CR 8000/2 CR 8001/2 CR 8001/1 CR 8002 CR 8003 CR 8004 CR 8005 CR 8006 CR 8010 CR 8011 CR 8012 CR 8013 CR 8014 CR 8022 CR 8030 CR 8031 CR 8032 CR 8033 CR 8034 CR 8035 CR 8036 CR 8037 CR 8038 CR 8039 CR 8039 CR 8040 CR 8041	CPU	
CR 8041 CR 8042	External Asynchronous LTU Synchronous Line Termination Unit	

CR 8044 CR 8045 CR 8045 CR 8046 CR 8047 CR 8049 CR 8050 CR 8050 CR 8051 CR 8052 CR 8053 CR 8054 CR 8055 CR 8055 CR 8056 CR 8059 CR 8060 CR 8061 CR 8064 CR 8065 CR 8065 CR 8070 CR 8071 CR 8072 CR 8081/1	Internal Line Termination Unit Disk Storage System VDU CR 80 DMA BIT SYNCHRONIZER Frame Synchronizer Hamming Calculator Diskette Drive 140 Diskette Formatter 1140 Floppy Disk Controller Vizir I/F Varian V77 I/F HDTR Controller TLM I/F IBM I/F ICL 2900 I/F HP I/F Card Reader CB 105-B Line Printer 8396 Watchdog Async. LTU (internal 300 baud generator) CPU Simulator Tape I/F Crypto I/F Disc I/F Active Bus Ext. (Transmitter) Active Bus Ext. (Receiver) Memory Mapping Bus Ext. Serial I/O TDX I/F Analog I/F LTU, for TDX I/F SCM
CR 80101	CPU (Mainbus)
CR 80102	CPU (Subbus)
01100102	

TDX Modules:


CR 1070 CR 1071 CR 1072	TDX CDMA TDX RD TDX CDSP
CR 1060	LTUX, 9.6kb
CR 1061	LTUX, X21
CR 1062	LTUX, Sync.
CR 1063	LTUX, Async. A
CR 1064	LTUX, 9.6kb Internal
CR 1065	LTUX, 32kb
CR 1066	LTUX, Async. B
CR 1067	LTUX, Async. B Special
CR 1068	LTUX, NBS Crypto
CR 1090	LTUX, MM master module
CR 1091	LTUX, GIO General I/O
CR 1092	LTUX, PIO Parallel I/O
CR 1093	LTUX, ADC AD-conv.
CR 1094	LTUX, DAC DA-conv.
CR 1095	LTUX, MBI Main Bus I/F
CR 1096	LTUX, IOPU I/O Protection unit

X-Net modules:

CR 2510	Terminal wall outlet
CR 2520	Amplifier and splitter
CR 2530	Terminal
CR 2540	X-net Controller
CR 2541	X-net output driver
CR 2550	Terminal adapter
CR 2551	ID-Card reader
CR 2552	V24 Terminal interface
CR 2553	Modem interface

Redundant front-end processor configuration. Up to 80K character throughput between communication lines and main frame.

CHRISTIAN ROVSING A/S 2 Lautrupvang DK-2750 Ballerup Denmark

Phone: 02-65 11 44 Telex: 3 51 11 cr dk

CHRISTIAN ROVSING INC. 828 Capitan Street Thousand Oaks California 91360 U.S.A. Phone: 805-498-2135 Telex: 910-33 65 733

Design: Ingelise Bengtson . Printed in Denmark . Rosenborg Tryk