
Ao
wa

a
de

A

HH
|
.

|

i Hh
|

—
—
a

/

:

He
i

—
—

:
=

oe

_

x
0)

Oo
hs

2
-

z
=

D
=

|

—

©
)

7

re
fe)

<

/

7p)
QO.

®@

He

=
&g

SS
3

|.
D

°

a

or
=

B
e

O

a

2
=)

/

|

©
ce)

/

|

re)
fe)

/
fe)

c
|

.
—
l
t
e
e

oO
—

_

7

—

S
S

>
|

|

o
o

_
o
O

.
e
e

n
e

He
a

ae
a

a
e

S
e
e
s

E
e

Hi
EHH

Bi CR Systems

Corporate Resource Sharing Network

Introduction to Programming

CRSN Introduction to Programming -2-

ISSUE: 1.0 BY/DATE : HRH/870301 LAST PAGE: 80

The document is published for information only, and is subject to change without notice.

Copyright (c) 1987, CR

This document contains information proprietary to CR. The information, whether in the form of text,
schematics, tables, drawings or illustrations, must not, without the prior, written consent of CR, be copied,
reproduced, otherwise duplicated or used by the receiver for purposes other than those explicitly agreed in
writing with CR, or disclosed outside the recipient company or organization.

This restriction does not limit the recipient’s right to duplicate and use information contained in the
document if such information is received from another source without restriction provided such source is
not in breach of an obligation of confidentiality towards CR.

CRSN Introduction to Programming -3- PREFACE

PREFACE

This document is intended for customers interested in supplementing their CRSN
software with new applications. When the CRSN system is delivered, all necessary
software elements are proven and reliable, suited to your current needs.

However, all companies and organizations go through development phases and what is
well-suited today may be unsuitable tomorrow. Therefore, companies implementing the
CRSN will sooner or later be interested in augmenting their network applications. For
that purpose, a large amount of system software and utilities such as programming
languages and test tools are available and delivered together with the system.

OVERVIEW

Chapter 1 describes the CRSN architecture, the hardware and software concepts and
the architectural specifications.

Chapter 2 deals with the development environment, the programming languages and the
test tools.

Chapter 3 treats the Resource Handler concept and the functions it performs on different
levels of the architectures.

Chapter 4 describes the procedures and practices for software development.

SUMMARY

This document gives the reader an introduction to the software development on the
CR80 computer used in CRSN.

CRSN Introduction to Programming -4- TABLE OF CONTENTS

CONTENTS PAGE

1 THE CRSN ARCHITECTURE ~ 5

1.1 The CR80 Computer 7

1.2 Software Concepts 10

1.3 CRSN Architecture 12

1.4 Architectural Specifications 19

1.5 Data Interface Reference Manual (DIRM) 20

1.6 The Prefixes 21

2 THE DEVELOPMENT ENVIRONMENT 22

2.1 The Basic Development System Software 23

2.2 Programming Languages 28

2.3 CR80 Linker . 50
2.4 Test Tools 52

3 THE RH TEMPLATE 59

3.1 Abstract of Common Level 1 Interfaces 63

3.2 Access Resource Handler Processing Phases 65

3.3 Functions in the RH Template 68

4 PROCEDURES AND PRACTICE 72

4.1 Design 73

4.2 Development 74

4.3 Testing and Network Integration 79

APPENDICES

A REFERENCED DOCUMENTS 80

CRSN Introduction to Programming -5- ARCHITECTURE

1.1

1.2

1.3

1.4

1.5

1.6

THE CRSN ARCHITECTURE

This chapter contains a description of the Architectural rules which is the
foundation on which Corporate Resource Sharing Network (CRSN) is
built. After an introduction, descriptions of the CR80 computer, the
Software concepts and the design architecture will follow. Finally, the

Data Interface Reference Manual (DIRM) is introduced together with the
Prefixes.

CHAPTER CONTENTS

The CR80 Computer

Software Concepts

Operating System

Process Communication

CRSN Architecture

System Control Functionality

Network Management Functionality

Transport Net Functionality

Access Resource Handler Functionality

Architectural Specifications

Level 1 Architectural Specifications

Level 2 Architectural Specifications

Level 3 Architectural Specifications

Data Interface Reference Manual (DIRM)

The Prefixes

PAGE

CRSN Introduction to Programming -6- ARCHITECTURE

1 THE CRSN ARCHITECTURE

What do architectural rules mean when programming software?

Architectural rules mean the same as in the context of building houses.

When building houses, it is the architecture that ensures the construction
is safe and which provides the desired functionality. Additionally, it may
make the house appear cozy and beautiful.

It is obvious that the bigger the house, the higher need for architectural
rules since otherwise the risk of mistakes is bigger.

Not everything will of course be ‘covered by the architect. The workers
building the house will make a lot of small decisions based upon their

education and experience, guided by their knowledge of the architectural
rules.

A lot of analogies exist between building houses and programming
computer systems.

Both users and experts may have wishes as to how the building shall
function and appear, wishes which may often contradict each other. This
calls for an architect to design a building to serve the different purposes in
an optimal way.

The same applies when creating big computer systems. There will be

many requirements and wishes for the system, and they may contradict

each other. Therefore, it is necessary to have an experienced architect to
deliver an optimal architecture.

Tomorrow may bring new opportunities with which the architecture you
choose today should be able to cope. This calls for an architect with
vision and fantasy.

The next sections describe how the CRSN architecture is developed to
fulfil what we believe will be the optimal solution in big data networks.

But before going into detail, we have to define some terms.

CRSN Introduction to Programming -7- ARCHITECTURE

1.1

CRSN General Concepts and Terminology

The CRSN is a system solution for data networking. Meaning that it is a
combination of software and hardware. Therefore, it is important to be
familiar with some of the basic concepts and terms regarding:

fo) The CR80 computer

fo) The CRSN software

fo) The CRSN architecture

The CR80 Computer

The CRSN is implemented on CR80 computers that are developed
especially to cope with the demands arising from transporting lots of data
in a secure way in big networks.

Fig. 1.1-1 shows the basic hardware elements of the CR80 computer.
The figure highlights the items that are of interest to understand the
philosophy of the CR80 computer.

There is a Supra-Net (S-net) which provides the possibility to connect a
number of CR80’s together, with a high speed serial connection.

When the CR80 computer is loaded with CRSN software and is part of a
CRSN, then it is referred to as a Subnode.

There can be two Processor Units (PU) in the CRSN Subnode. One is
sufficient, but when extreme availability is needed then two are recom-
mended. They will both be loaded with identical code, at boot time, but
only one will be active and the other standby. During normal operation,
the processes in the active PU will copy vital control information to the

equivalent standby processes in the other PU. This is called checkpoint-
ing. If the active PU fails, the standby will automatically go active, and the

Subnode can continue to function.

The basic processing unit is called Computer-Map-Ram (CMR). There is

one or more CMR-boards in the PU.

CRSN Introduction to Programming -8- ARCHITECTURE

To other Subnodes
S-Net

PU#1 PU#2 | CMR

_[omr [cl

CMR CMR

CUFT

CMR

CMR

D

a

t

a

I c ICT h

a

~<— 360/370 Channel n

n
IBM e

Host |

CU#2

LTU

roswwraiond LO

Fig. AA-1 The GRAD Computer

CRSN Introduction to Programming -9- ARCHITECTURE

Level 1

Level 2

Level 3

There are a number of Channel Units (CU). The CUs take care of the
connections to external equipment, such as host-channels, host-links,

printers, discs, terminal access lines, trunk lines, etc. The different types
of external equipment are accessed via input/output units, of which some
are dedicated and some are all-purpose.

If certain external equipment processes vast amounts of data, the CU will
often be equipped with CMR(s) of the same kind used in the PU. In this
way, the CU is able to execute some of the processing, thus relieving the
PU of part of the burden.

The most common input/output unit is the Line Termination Unit (LTU).
It is equipped with a Z80 processor, and it can handle up to 4 external

lines. By exchanging the software, it is possible to service different types
of lines, both synchronously and asynchronously. Today, most of the
widely used protocols are implemented. The software in the LTU is
loaded at boot time, but can be reloaded at any time as a network
operation. And as a normal network operation, it is possible to change
speed and other parameters just by altering some data in the LTU
software.

Special hardware units, called ICT boards exist for interfacing to IBM

360/370 channels. When loaded. with the proper software, the CMR is
able to emulate Physical Unit Type 4 and physical Unit Type 5 in the
IBM-SNA concept.

The functions assigned in the different layers of the Open System
Interconnection (OSI) protocol are implemented as follows:

Physical level is hardware-implemented.

Link level is performed by software in the Z80 processor in the LTU.

Higher level functionality is performed in CMRs - either in the CU and/or
in the PU.

CRSN Introduction to Programming -10- ARCHITECTURE

1.2

Module

Process

Subsystem

Software Concepts

Below there are some terms which are often used in computer program-
ming.

Some lines of sources code. The name indicates that programming takes
place in a modularized way, with typically 500 - 1500 lines of code. A
module is, of course compilable, but unable to run alone. When compiled
it is called a Link Module.

Process means an executable code with its associated data upon which it
operates. It will consist of a number of link-modules. In the CR80
computer it is possible to let the same executable code operate upon
different sets of data. In this way it is possible to have multiple
incarnations of one process

One or more processes which together provide some well-defined
functionality.

Operating System

The operating system is called MXAMOS which is an acronym for
Mapped eXtended Advanced Multiprocessor Operating System.

It will always be a necessary part of the CR80 software, both when the
CR80 computer is used as a development computer and when it is used
as a CRSN Subnode.

Process Communication

In the CR80 computer the need for process to process communication is
solved by the Basic Communication Service (BCS).

Basically BCS offers a messagegram service. However, messagegrams
are delivered in the sequence sent.

CRSN Introduction to Programming -11- ARCHITECTURE

A message is the data entity passed between any two communicating

processes and a message is to be considered a sequential stream of
bytes. BCS performs the following important tasks:

fe) Administration of pools of buffers.

fe) Administration of queues for messages

fe) Administration of messages.

The process that has a need for sending messages, asks BCS to allocate
a memory area for pools of buffers. Then the process can write a
message into the buffer.

If a process has a need for receiving messages, it must have a queue to
receive it upon. The queue is memory area within the process data area
that contains references of where messages sent to the process are
placed.

So data is transported from a sender process to a receiver process in the

following way:

fo) The sender places a message within its own buffer pool.

fe) The sender informs BCS that there is a message that is
ready to be sent to a queue in the receiver.

fe) BCS places a reference of where to find the message in
the queue of the receiver.

fe) The receiver can then read the message.

fe) When the receiver has read the message from the
buffer, it has to dispose the buffer, so it can be used
again by the sender.

Beside the trivial read and write of complete messages it is possible to

read/write headers or trailers to the message, and it is even possible to
read/write a message at a specific position.

Queues as well as buffers can be created/removed at any time during
processing. This is essential when dealing with dynamic processing as in

the CR80 computer.

CRSN Introduction to Programming -12- ARCHITECTURE

1.3 CRSN Architecture

When developing the architecture for large data network some of the
most important requirements are:

fe) It shall be possible to interconnect to different types of
external equipment.

fe) It shall be possible to transport data from one point in the
network to another in an easy, secure and fast and
secure way.

fe) It shall be possible to monitor and control the network
from centralized location, including the possibility for
operator interventions.

fe) The software shall be developed in such a way that it
shall be easy to shift to other types of hardware, when
the technological development calls for that.

In CRSN these functionalities are implemented by software in the
Subnodes. Such software is then referred to as network elements. From
the above list of requirements the following list of applicable network
elements can be identified:

Access Resource Handler(s) (ARH(s))

Transport Network (TN)

Network Management (NM)

System Control (SC) o
o
°
0
°
0

In the following subsections a detailed description of the different network
elements will be presented. However, to ease explanation they will be
presented in reverse order of the above developed.

System Control Functionality

System Control (SC) implements a high level interface towards the
operating system MXAMOS. Thus SC creates the environment in which
all processes execute, and can therefore be considered as the operating

CRSN Introduction to Programming -13- ARCHITECTURE

system. But in the CRSN is has a broader scope, since SC will interact
with the processes in the initialization.

During the initialization SC will provide the processes with queue names

for the control interface to NM, TN and the SC network elements process.
Additionally, it informs the process whether it shall be ’active’ or ’standby’.

In the latter case the process will become an idle process just awaiting

vital data updates from the active process. This is among other things the
configuration and updates to the configuration. The data updates, also
called checkpoints, allow the standby process to take over after a fatal
error condition in the active process with a minimum loss of data and
availability.

Network Management Functionality

Some of the major requirements towards the NM-functionality can be
stated as follows:

fe) There must be a common way to describe all the

different objects, that shall be monitored and controlled.

fe) It shall be possible to make changes in the network
configuration. Small changes should be possible on-line,
while it is acceptable that major changes must be
performed off-line. However, changes in network
configuration should not require recoding, but should
only require updates of some data structures.

fe) It shall be possible to inform the network management if
there is equipment that malfunctions.

fe) It shall be possible to monitor actual state of external

equipment.

° It shall be possible to monitor data traffic leaving and
entering the CRSN.

fe) It shall be possible to collect statistical information for the

purpose of long term network planning.

fe) Some of the above functionalities will be performed
automatically, while others require operator intervention.

Therefore there shall be an advanced operator interface.

CRSN Introduction to Programming -14- ARCHITECTURE

Common

Description of

Network

Objects

In the following it will be elaborated, how the different requirements above
are satisfied, within the Network Management network element:

An important concept is the Resource. Below find a list of different kinds
of objects the network should be able to control and monitor:

fo) CR80 Hardware components:

- CU-crates

- PU-crates

- CMR-boards

- LTU-boards

- ICT-boards

o) CRSN software components:

- Processes

- Subsystems

fe) Externally connected equipments:

- Host computer channels

- Terminals

- Printers

- Terminal access lines

- Trunk lines

In the CRSN context all these are called resources. To address them

uniquely a Resource Unit Identifier (RUID) will be associated to them.

Resource Handler. A collection of one or more processes running ina

Subnode. It will often be the same as a subsystem. The name refers to
the fact that a resource handler will administrate a number of resources.

The necessary information that must be known about each resource is

called the resource record of the resource. When talking about the
collection of resource records that together holds information about all
resources controlled by one resource handler, the term configuration is

used.

CRSN Introduction to Programming -15- ARCHITECTURE

Network

Configuration

Changes

Malfunction of

Equipment

Actual State of

Equipment

Monitoring of

Data Traffic

Collection of

Statistical In-

formation

The configuration will be present in the network database, and a subset
of the configuration will be a part of the data area of the resource handler.
It will be present both in the active and the standby process.

When a resource handler is initialized it will obtain its configuration from
the Network Database in NM. During normal operation of the network a
network operator can insert/delete resource records for resources that

shall be made known/unknown to the resource handler.

An operator has also the opportunity to include/exclude resources in the
* network. This will only have the effect that the resource handler will start
servicing/stop servicing the resource.

The resource handlers should be programmed in such a way that they

should detect if resources malfunction. The resource handler will send an

event to NM. NM will maintain a list of all events, and if it is severe the

network operator will be informed for further action.

A network operator can at any time request a description of what state a

resource is in. Some standard states that must be maintained by all
resource handlers are defined. The most important ones are:

fe) Off-line/On-line. The resource is known by the resource
handler, but it is not served/served by the resource
handler.

fo) Failing/not failing. Substate of On-line. The resource is

serviced by the resource handler, but it has detected
errors/not detected errors. Will often indicate degraded

performance.

In resource handlers connected to external equipment it is possible to
trace the date leaving and entering the CRSN.

Statistical information will cover items such as numbers of messages

sent/received, number of transmission errors. Two types of statistic
information can be defined. Permanent information that will be counted

during normal operation, and temporary information where the counting
can be invocated at any time by the network operator.

CRSN Introduction to Programming -16- ARCHITECTURE

Advanced Op-

erator Inter-

face

Other NM As-

pects

To ease the operating of the network an advanced operator interface is
provided by means of a Personal Computer which allows the operator to
use menus or command as convenient. However, commands have been
defined, so they can also be issued from an ordinary terminal in the
network.

It has been mentioned previously that the configurations are kept in the
network data base. The network data base will also contain the following
two items:

re) Software database which is a collection of all

boot-modules that shall be loaded into the different

Subnodes to perform the CRSN.

° Access control database containing information to
validate network users capabilities of using applications
in the network. Thus the host computers can be relieved
from access control. ,

Transport Net Functionality

The purpose of the TN is to transport data from one resource handler to
another resource handler, regardless of where in the network the

resource handlers are placed. If the resource handlers are placed in
different Nodes, the data transport will be carried out by means of

telecommunication lines and public data network. If the resource handlers
are placed in different Subnodes in the same Node the transport will be
carried out by means of the S-net, connecting the PUs. If the resource
handlers are placed within the same Subnode then TN will use BCS.

But it is the purpose of TN to let all this be invisible to the two resource
handlers communicating.

TN offers two different types of services. These are:

fo) Connection oriented service

fe) Messagegram service

CRSN Introduction to Programming -17- ARCHITECTURE

The connection oriented service allows the user to obtain a fixed
message flow between two partners, in popular terms a telephone
service. When data are sent via a connection TN provides a protection of
the messages which secures delivery to the other end. If this is not

- possible the two end-points will be notified. TN connection service
secures that messages are delivered in the sequence which they were
sent.

The messagegram service is in popular terms a mail box. TN will not
secure that messages sent via the messagegram service are delivered to
the user. If data is lost the users will not be notified. Furthermore
messages Can be received in another sequence as they were sent.

To use the TN services a user e.g. an ARH must make itself known to TN
and obtain a TN address. This is done by enrolling to TN. After the
enrolment to TN the messagegram interface can be used immediately. If
a connection is needed a connection set-up procedure must be done.
This involves the other connection end-point.

Access Resource Handler Functionality

Access Resource Handler is used to designate a resource handler
which performs some functionality in connection with an external device.

So when creating a CRSN there will be NM, SC, TN and a various set of
ARHs. And the differences between different CRSNs will be visible by the
choice of ARHs. There will exist a number of the most commonly used
standard interfaces and protocols, but it is also possible that new
customers will have a need for a specially developed ARH.

It is possible for customers to program applications. It is then necessary
to get familiar with the CRSN architectural rules, as the CR programmers
must.

Fig. 1.3-1 shows how the network will be implemented by means of some
CRSN Subnodes in geographically separated places, and by means of
existing telecommunication services, such as Public Data Network and

Telecommunication lines.

ARCHITECTURE CRSN Introduction to Programming -18-

Network Control &

Monitoring Terminals Host

J \ Computer

(S-Net

77 Vs Pa ~~. [H— Host

a
‘ Channel

‘ 7 NN
/ \ / .

/ \ / \

/ \ / \

i \ v J \
Network | 1 — = \

Database \ i 1 i

/ \ p—_— Node

\ / /

7
4

va SS - v’
- 7

Network

Control
Subnode

Node

Telecommuni-

cation Lines
Public

Data

7 Network Pe

a
a ~~

7 ‘
/

, .

/
; .

/ \ / .

t \ LL
)

H z
| }

}

\ ! \ I
\ /

\
‘\
N

‘

eee, -_—"

S-Net
Concentrator

Access

Lines

Terminals Other
Network

TD3NWPG/D/11

Fig. 1.3-1 The CRSN Network

CRSN Introduction to Programming -19- ARCHITECTURE

1.4 Architectural Specifications

The above description of the CRSN architecture shows that NM, TN and
SC will be common in all networks. There will be a different set of ARHs

in different networks.

The NM, SC and TN will be developed and maintained by CR as well as
there will exist a number of ARHs implementing commonly used
interfaces.

Level 1 Architectural Specifications

Level 1 compatibility requires that a resource handler be able to work

together with NM, SC, and TN. It may not be necessary to use all the

provided services, but it is a must that the services needed are used in

the predescribed way.

Level 1 Architecture is basically the split of functionality described in the

former section. The level 1 architectural specifications are the documents
describing the function of the different network elements: NM, SC, TN,
and ARHSs. It is important to specify the interfaces, clearly between the
different elements. In addition to these, a special document exists which
describes how different ARHs shall use the other Networks Elements in a
standardized way.

This has the effect that many functions are decided beforehand which
eases implementation of ARHs.

The rest of the implementation depends upon the requirements of the
external equipment.

Level 2 Architectural Specifications

Level 2 Architectural requirements can be different, because they arise
from the fact, that there often are resource handlers that shall solve tasks
in cooperation. This will be the case when you consider the situations
where a host computer shall be able to communicate with different types

of terminals. Then the level 2 specifications will clarify how the protocols
between the different access resource handlers shall work.

CRSN Introduction to Programming -20- ARCHITECTURE

1.5

Level 3 Architectural Specifications

The fact that a level 1 architecture exists, and in some cases also a level

2 architecture, allows the development of software modules which can be

used in different resource handlers with little or no modification.

Description of such standardized functionality is called level 3 architectur-
al specification.

Data Interface Reference Manual (DIRM)

The CRSN product can logically be split into different systems that can be
split into subsystems that can be split into processes which can be split
into modules, etc.

To be able to control development on all levels, it is important to describe

clearly the different groups of functions as well as the interactions
between different systems, resource handlers, processes, etc.

This is done by means of the Data Interface Reference manuals (DIRM).

In the DIRM, the following items are covered:

fo) A syntactic description of the data

° A semantic description of the data

re) This may not be enough, so there is also a description of
the sequence of the commands, description of protocols,
if retry must be used, if timers shall be used to wait for
answers.

CRSN Introduction to Programming -21- ARCHITECTURE

1.6 The Prefixes

There will be many situations, where data are common to more than one
subsystem, process, module, etc.

This is to an example valid concerning basic data-structures used by the
compilers. Also when two subsystems communicate together via a
specific interface they use the same type of data structure.

It may cause errors if it is left to the subsystems alone to ensure that data
structures are consistent. Therefore, this is done by use of prefixes.

All definitions of constants and data-structure used by more than one

subsystem, module, etc., are defined in a Prefix. Then in the source code,

there is an Include statement that ensures that the definitions from
appropriate Prefixes are used when compiling the source code.

CRSN Introduction to Programming -22- ENVIRONMENT

2.1

2.2

2.3

2.4

THE DEVELOPMENT ENVIRONMENT

In this chapter the programming languages used in the development of

the Corporate Resource Sharing Network (CRSN) software are
described. Also in this chapter there is a description of the common

processing environment. A necessary element in the software

development process is testing and debugging which is therefore also
described.

CHAPTER CONTENTS PAGE

The Basic Development System Software 23

Terminal Operating System 24

Command Interpreter 26

CR80 On-line Editor 28

Programming Languages 28

CMR Processing Environment 28

The Pascal Language 31

The C Language 37

The SWELL Language 42

CR80 Linker 50

Test Tools 52

MX Debugger 52

Test Command Interpreter 54

Cyclic Debugger 56

CRSN Introduction to Programming -23- ENVIRONMENT

2.1

THE DEVELOPMENT ENVIRONMENT

The software development environment consists of the programming

languages used to develop CRSN software and some basic development

system software tools necessary to perform such necessary functions as

entering the source code, compiling and linking the program modules. In
Chapter 2.2, we look at the basic development system software, in
Chapter 2.3, we discuss the various programming languages, and in 2.4,
we view the Linker program. Chapter 2.5 describes the various test tools
available to the software developer.

The Basic Development System Software

The CR80 Development System Software is designed for an operating

system called MXAMOS: Mapped eXtended Advanced Multiprocessor
Operating System.

In this document we look at some utilities controlled by MXAMOS,

namely:

fe) The Terminal Operating System

fo) The Command Interpreter

° The CR80 Editor

The following drawing shows the process hierarchy on a CR80
development system:

CRSN Introduction to Programming -24- ENVIRONMENT

Subnode

User Process User Process User Process
1 | 2 | 3

Command Interpreter

Terminal Operating System

MXAMOS

TD4NWPG/D/25

Terminal Operating System (TOS)

TOS is an operating system supporting terminal users. It is intended for

interactive software development. The functions performed by TOS are
invoked by two types of requests:

Operator command:

Logon to the system

Assigning peripheral devices of various kinds

Execute programs

Process monitoring and control

File Maintenance

Present status information o
0
o
0
0
%
9
0
 9
8

CRSN Introduction to Programming -25- ENVIRONMENT

Programmed requests which makes it possible to carry out the same
kinds of operation by taking the commands from a command file written
by the user.

TOS now enters the work phase in which the environment can be
visualized like this:

System FMS

OC

TD4NWPG/D/24

When a user logs on to TOS, a Command Interpreter (CMI) process is

created. The CMI receives the user's command, e.g. requests to load and
run programs like the Editor, a compiler, or a linker.

CRSN Introduction to Programming -26- ENVIRONMENT

Command Interpreter (CMI)

The CMI is an interactive program which enables a user to execute and

control CR80 programs from a terminal. The CMI can also process

command input from a disk file. A long list of commands are available to
the CMI user.

Entries not recognized as commands are assumed to be requests for

execution of programs and will cause the CMI to look for a program with

that name, and if found, to request the program to be loaded and started
by TOS.

The CMI will recognize the operator keyboard as the standard input

device and the terminal as the standard output device, but these can be
redefined by CMI commands.

Initially after logon, the user is placed in the system directory. However,

by using the USE and DEUSE commands the user can descend or
ascend in the directory hierarchy. The WHAT command shows the user in
which directory he is currently working.

The system volume will always contain a directory LOGIN.D and if the
operator places a file with CMI commands in this directory, naming the
file as his login ID, this command file will be executed when CML is initially
invoked. This facility is often used for setting up a standard user
environment.

CRSN Introduction to Programming -27- ENVIRONMENT

From the following figure you will get an impression of the file system
organization on the CR80:

FSN

VOL

MD

Login.D Users.D Users.C

NN1.D NN2.D

Proj.D Proj2.D Printfil

TD3/D/NWPG/D/1

CRSN Introduction to Programming - 28- ENVIRONMENT

2.2

CR80 On-line Editor

The editor operates on three files:

The command file contains the editor commands entered by the user.
Normally, it will be from a terminal.

The display file is usually shown on a terminal. All output from the editor
is directed to this file.

The editing file is the file on which the operator is working. The editing file
is divided into lines. A line is defined as a string of maximum 132 ASCII

characters.

The editor can be invoked to handle small files of maximum 1400 lines or

big files of maximum 2791 lines.

Programming Languages

In developing the CRSN software, several programming languages have
been used, namely Pascal, C and SWELL. Of these, SWELL is a low-lev-

el language, developed by CR.

In the following sections, we will describe the programming languages
and their environments, showing some program examples to give an
impression of the syntax.

A significant advantage is that modules of all three programming languag-
es can be linked together without problems.

CMR Processing Environment

The code and data parts of a program are separated, each part being

referenced relative to its own base register. Addresses are primarily word
addresses, thus giving a program direct access to 64K words of data and

64K words of code.

An important feature of the CMR processors environment is that the
same program can be executed several times concurrently, using the
same code, only allocating memory for the data part of each process.

CRSN Introduction to Programming -29- ENVIRONMENT

The following figure shows the memory lay-out of the object code at
assembly- and run-time:

Load Run Time

Object

Pro
Header Header ~ 9

Header Size of User

Program | Assembled Program Assembled
Part Code Part Code

Header ss,
ss,

TA. “AN

Data User a A Part - | Assembled| | Size of ~~»=j_'24e" a
Data . Assembled

Data Part User
| Assembled | | User Ref to Size of Memory
SA Data Write- VO Executing Claim

~sA, able Part Process

Area

Work

Area

y
BCS

y Use Area y

This Part

is

Inaccessible
for V/O Part

USER

Y Y

TD3/NWPG/D/9

CRSN Introduction to Programming - 30- ENVIRONMENT

The CMR contains 8 general, 16-bit registers, used either individually for
word operations, or concatenated for double word operations. The CR80
supports the following six primary modes:

Register direct addressing

Immediate addressing

Code base addressing

_ Database relative addressing

Program counter relative addressing

Register indirect addressing (indexing) o
o
o
e
o
0
o
0
9
0
 8

All instructions of the CR80 computer are single word instructions, using
the primary addressing modes which may be extended. by adding the
contents of a ’modifier’ register thereby extending the addressing range.

The following four data types are directly handled by te CRS0 instruction
set:

Bits (single bit or sequence of bits

Bytes (8 bits)

Words (16 bits)

Double words (32 bits) o
o
°
0
o
 O

and the instructions include:

fo) Arithmetic and logical operations om wards

fe) ‘Move’ operations on bits, Owes, words, and double

words

fe) ‘Skip’ and ‘jump’ instructioms, performing program
sequence control

A CR80 instruction has as arguments zero,
of logic and arithmetic operations, one of th

destination operand. A number of instructic on
operations.

"= or twe operands. In case

SIL D2 operands is used as

= SLag0r memory to memory

4

L
e

CRSN Introduction to Programming -31- ENVIRONMENT

The Pascal Language

Pascal is a well-known programming language since it is used for
educational purposes in many universities and technical academies. This
means that it is easy to get well-qualified programmers accustomed to
the language. When deciding on using the language in CR it was
recognized that a standard Pascal package would not suit the needs of
the company. Therefore an enhanced version was developed using the
standard data and control structures, but omitting the I/O system since
very little of our programming has to do with file access and manipulation.
Instead a set of dedicated I/O routines compatible with the CR80 I/O
system is supplied and described in the Pascal Prefix. The other
differences between standard Pascal and CR80 Pascal are:

f°)

A ’SIZE’ operator, giving the size in words of the speci-
fied type of variable, is supporter.

The underscore character is a letter.

The ’File’ type is not supported.

The character “ is used to begin and end comments.

Labels cannot be declared or used.

GOTO statements are not allowed.

Nesting of Procedures and Functions not allowed.

Procedures and Functions as parameters not allowed.

UNIV type specifier added for relaxed type checking.

‘Power of operator introduced (**).

Hexadecimal notation allowed.

Comparison for equality between records allowed.

Comparison for equality between arrays of all types

allowed.

fo) Support the types LONG_INTEGER and LONG_REAL

C
O
o
0
o
a
0
o
O
o
O
a
o
a
o
a
o
a
o
a
o

ao

oO

Oo

Most programmers will not find it difficult to convert to CR80 Pascal if they
have already programmed in Pascal or another high-level language.

CRSN Introduction to Programming - 32- ENVIRONMENT

Environment When a CR80 Pascal program is invoked from a terminal, the Command
Interpreter (CMI) loads and starts the program and prepares a file with
program information for the run-time system which has three functions:

fo) Interface to MXAMOS Kernel procedures.

fe) Supply procedures for special operations, e.i. Floating
point operations.

° Control stack and heap operations.

The first thing the run-time system does is to initialize a STACK used for
variables, temporary results, parameters, and return information for

procedures and functions, and a HEAP used for dynamically created
variables.

Then the input and output files are opened, and finally the execution of
program statements begins.

CRSN Introduction to Programming - 33 - ENVIRONMENT

If we look at an executing CR80 Pascal program where a procedure has
just been called from the main program, the data layout would look like
this:

Base — System Data

Save Area for

Run-time System

Large Constants

Heap

Heaptop

Free Space

S

Local Variables

B

Dynamic Link High

Addresses
Stack Parameters

Temporaries

Global Variables

Program Link

Parm Record

Area Used by the

V/O/System

TD4/NWPG/D/5

Language An important element in all CR80 Pascal programs is the PREFIX which

contains type and constant definitions, plus a list of more than 130
assembly-coded procedures and functions directly available to the

programmer.

CRSN Introduction to Programming -34- ENVIRONMENT

Comment

A CR80 Pascal program consists of two essential parts, a description of
the actions to be performed, expressed in statements, and a description
of the data manipulated by these actions, expressed in declarations and

definitions.

With the differences described previously CR80 Pascal supports the
standard Pascal set of types, operators and control statements.

With the restrictions mentioned previously CR80 Pascal supports
Procedure and Function declarations known from standard Pascal.

A CR80 Pascal program consists of a Pascal standard prefix followed by

the program block written by the programmer. The prefix supplies the
compiler with the necessary information about the environment. It is
therefore important to specify the correct prefix.

The following pages show a program example with basic elements of
CR80 Pascal:

%SOURCE@**PREFIXES.D*MXAMOS.D*PASCAL.D*PREFIX.S

This line includes the file containing the Pascal prefix in the source code
of the program.

CONST

Pl =3.14;

TYPE

RANGE = 1..10;

PTR = @PERSON;

CRSN Introduction to Programming -35- ENVIRONMENT

Comment ’@’ is the pointer operator in CR80 Pascal.

STR20 = ARRAY [1..20] OF CHAR;

PERSON = RECORD

NAME, ADR : STR20;

SEX : (MM, FF);

END;

TABLE = ARRAY[RANGE] OF INTEGER;

VAR

LIST : TABLE;

ROLL : ARRAY [1..100] OF PERSON;

STUDENT : PERSON;

CC, IS, OS, A, B, C, |, CTR : INTEGER;

TAX : REAL;

FLAG : BOOLEAN;

PROCEDURE SUMLIST (LIST : TABLE; VAR SUM: INTEGER);

VAR

|: INTEGER;

BEGIN

SUM := 0;

FOR! :=1T010DO

SUM := SUM + LISTII];
END;

FUNCTION EQUALITY (A, B, C,: INTEGER): BOOLEAN;

BEGIN

EQUALITY := (A =B) AND (A=C);

END;

BEGIN

CONNECT (PARAM.OFILE, OUTPUT_MODE, OS, CC);

CONNECT (PARAM.IFILE, INOUT_MODE, IS, CC);

CRSN Introduction to Programming - 36 - ENVIRONMENT

Comment

Comment

Compiler

In the two statements above the variables OS and IS are assigned as file
identifiers for standard output and input (screen and keyboard).

WHILE (CTR >= 100) AND (I <= 5) DO

BEGIN

SUMLIST (LIST, A);

CTR :=CTR- 1;

lis] 4+ 1;

END;

IF NOT EQUALITY (A, B, C) OR FLAG THEN

FLAG := FLAG AND (A <> B);

REPEAT

OUTINTEGER (OS, A, #0320, CC);

OUTTEXT (OS, ‘IS SMALLEST’, CC);

FLUSH (OS, CC);

CR80 Pascal uses dedicated procedures for outputting variables. In
OUTINTEGER a hexadecimal number is used to specify output format.
The variable ’CC’ is used to check the result of the procedure execution.
The 'FLUSH’ operation empties the output buffer on the specified file.

A:=A+1;

UNTIL (A >= B) AND (A >= C);

END.

The Pascal compiler is capable of translating Pascal program modules
from source text into link modules. Time of compilation, number of
compile errors, etc, is handed to the linker.

In addition, the compiler can generate intermediate code dumps which
makes it possible to check the compiler operation after each pass.

A number of compiler directives may be included in the source code to
control the compiler functions. All these directives may be controlled by
conditions. In case the conditions are false, the directives are ignored.

The Pascal compilation consists of a pass driver (pass 0), 7 main
passes, and a service pass (pass 8) producing debug information. The
passes are executed in the same program area in memory, so the
compiler is not re-entrant.

CRSN Introduction to Programming -37- ENVIRONMENT

The C Language

The CR80 C compiler and standard library is based on a system devel-
oped by Whitesmith Ltd.

The CR80 C compiler and the associated standard library has tried to
remain as faithful as possible to Whitesmith’s language definitions, so that
the CR80 C source code is portable to other computer systems running
Whitesmith’s compiler and visa versa.

C is a general-purpose programming language which features economy
of expression, modern control flow and data structures (resembling
Pascal), and a large set of operators. C is often described as a ’medium
level’ language; it is not a ’big’ one, nor is it specialized to any particular
area of application. Its absence of restrictions and its generality make it
convenient and effective for a large range of tasks.

It is our experience that C code takes up less space and runs faster than
the same programs written in Pascal. It does, however, require a rather
high degree of experience before a programmer can write efficient C
programs.

CRSN Introduction to Programming - 38 - ENVIRONMENT

The definitive standard for C is appendix A in Kerninghan & Ritchie ’ The
C Programming Language’. The CR80 implementation is close to that
standard, save for minor changes in emphasis. Here is a list of differenc-
es in the CR version:

fo) The major deviation is that the compiler requires each

external declaration to be explicitly initialized exactly one
among all the files that comprise a C program; the
standard permits external declarations to remain
uninitialized.

fe) The types unsigned [char, short, long] are allowed.

fe) Backslash is used to continue strings in the standard;
here it is also used on command lines.

° Character constants with more than one character are

defined here, but not in the standard.

fe) All struct and union tags share the same name space of
all members of the struct or union in the standard; each
kind of tag has its own name space here.

fe) Our implementation permits, as an option, separate
name space for each struct or union and more rigorous
checking of . and -> operators.

fe) A union may be initialized.

fe) A preprocessor macro invocation, e.g. swap (a, b), must
be written all on one line.

fo) The size operator is explicitly disallowed in #if
expression.

fe) Floating point operations are currently not supported.

Since our implementation produces assembler code for the target system,
there is some variation in naming caused by assembler limitations. There

CRSN Introduction to Programming -39- ENVIRONMENT

Environment

may be as few as six, but never more than eight significant characters in
external identifiers.

The CR80 C language implementation makes it possible for the experi-
enced programmer to write fast, efficient code for the CRSN, with the
added advantage that the programs will be portable to other computers,
should the need arise, due to the fact that CR80 C is based on the
Whitesmith Ltd. C system implemented on may computers.

To enhance source code portability, the basic C system has access to a
number of libraries and interfaces which shall be briefly described here.

fo) The CR80 C standard library: The standard functions

available in the C language, for input and output
Operations, compare operations, type conversion,
dynamic memory allocation, etc.

fe) The CR80 C run-time system: C run-time support
functions and system interface functions.

fe) The CR80 C I/O interface prefix: An I/O prefix and
interface functions for different kinds of I/O.

° The CR80 C kernel interface: A kernel prefix and a set
of kernel interface functions.

° The CR80 C util library: Some utility functions for

packing and unpacking data strings and buffers.

A C program consists of one or several C submodules, written by the
programmer, a set of run-time system support submodules and a system

interface main module called SIL.L. In addition to the C library, submoa-
ules may be included, but they are not mandatory.

CRSN Introduction to Programming - 40- ENVIRONMENT

This drawing shows the composition of a’C’ program:

SIL —_

Main

RTS >

Submodule ———————

, L

/

N

K
= OBJECT

Cc _ R —_——- | Program

- Submodule —_—_—

ee

C Library -

Submodule _—_

a

TD3/NWPG/D/2

CRSN Introduction to Programming -41- ENVIRONMENT

Language This section shows an example of a C program utilizing many of the
syntactical elements and operators. The program is as close as possible
to the example shown in the section describing the Pascal language.

#include <std.h>

#define range 10

typedef char str20[20]

typedef int table[range]

typedef struct

{
str20 name, adr;

bool mm, ff;

} person;

sumlist (list, sum)

table list;

int sum;
t-

int i;

for (i=0; i<10; sum += list [i++];

return (Sum);
}

bool equality (a, b, c)

int a, b, c;

{
return ((a==b) && (a==c));

}
main()

{
int a, b, c, i, ctr;

person student, roll[100];

table list;

while ((ctr >=100) && (i <= 5))

{
b = sumilist (list, a);

ctr--;

i++;

}
if ! (equality(a,b,c,)) |] (flag)

flag = flag && (a !=b);

do

{
putfmt ("%i is smallest /n", a++);

}
while ((a < b) && (a <c))

CRSN Introduction to Programming - 42- ENVIRONMENT

Compiler The CR80 C compiler is a set of several programs:

Input to the first program is one or more files of C source code. Output
from the last of the programs is assembler code which performs the
semantic intent of the source code. Source files may be separately
compiled, then combined at link time to form an executable program, or C

subroutines can be compiled for later inclusion with other programs.

When invoking the compiler, it is possible to specify certain options in the
command line. At the moment the following options exist:

[D] Produce line debug information

[S] Produce symbolic debug information

[X] Invoke cross-reference program

[CT] Invoke the CTRACE test tool

[NR] Do not remove temporary files

The C compiler consists of 3 main passes and assembly process.

Each of the compiler passes can be executed separately.

The SWELL Language

The Software Engineering Low Level Language (SWELL) is specially
designed by CR for programming of high-performance modules on the
CR80 computer. Although the language in its direct use of registers
resembles assembly language, it also incorporates control and data

structures only found in high-level programming languages, such as
Pascal. Performance and resource requirements of programs written in
SWELL are comparable with those for assembly language programs.

SWELL allows the programmer to program the CR80 computer in an

efficient and well-structured manner. SWELL has adopted most of the
constructs for structuring data and algorithms from Pascal. (See the

previous chapter for a description of CR80 Pascal).

CRSN Introduction to Programming - 43 - ENVIRONMENT

Environment

Language

However, SWELL differs from Pascal on some essential points:

fe) In SWELL the programmer must control register usage,
addressing techniques, etc.

fe) SWELL does not include any kind of run-time system.
There are no run-time facilities for maintaining a variable

stack or for parameter transfer. No general purpose
registers or variables are allocated or used behind the
programmer's back.

fe) SWELL allows direct access to system software
modules.

It should be noted here that SWELL is not altogether an easy
programming language to learn and to use efficiently. However,

programmers used to assembler programming will find it easy to convert
to SWELL.

As already mentioned in the previous section, SWELL does not inciude
any kind of run-time facilities. This means that the necessary memory
locations for process workspace and intermediate storing of variables and
results must be declared as variables by the programmer, as part of the

program. It also means that dynamic memory allocation, as known from
Pascal or C is not possible in SWELL.

This section presents the language elements of SWELL. In the design of
SWELL, the programming language Pascal was used as a model, due to
the facilities Pascal offers for systematic and structured programming.
Wherever practical, the language constructs are described using
examples. The intention is to give an idea of the facilities of SWELL.

~ Constants and type definitions have been almost directly adopted from
Pascal. However, in SWELL an arithmetic expression using constant
values can be used to define constants.

CRSN Introduction to Programming -44- ENVIRONMENT

The standard data types represents the units accessible in one instruction
on the CR80:

fo) BYTE unsigned one byte integer.

fe) CHAR. equivalent to byte.

fe) INTEGER depending on the operation performed
either unsigned one word (16 _ bits)
integer or signed integer using 2’s
complement arithmetic.

° LONG two word (32bits) integer.

Scalar types can be declared as in Pascal.

Array and record types may also be defined in SWELL.

Variables may be declared and initialized in SWELL. Space for all
declared variables is allocated at compile time.

A distinct pointer type is not included in SWELL. Integers are used for this
purpose, but to support the use of pointers, SWELL includes an
ADDRESS operator returning the start address of a variable, and a SIZE
operator giving the size of a data type or variable. From the information
obtained using these functions it is possible to carry out pointer
operations as known from Pascal.

The eight general purpose registers of the CR80 are pre-declared as
integers with the name RO, R11... R7. They can also be used as double
registers, capable of containing a LONG. The names are then R01, R12,

... R70.

Nearly all operations in SWELL require the use of one or more register
variables.

In SWELL, no part of the data space is hidden from the programmer.

Since arithmetic and logic instruction on a CR80 change one of the

CRSN Introduction to Programming -45- ENVIRONMENT

source operands, an expression involving variables is also an implicit
assignment.

The expression:

RO +7

takes the value in RO, adds 7 and stores the result in RO. It should be
noted that only operations directly supported by the computer's instruction
set may be carried out, therefore adding two integer variables, | and J,
looks like this:

l=>RO+J =>!

Here RO is used as intermediate storage.

The corresponding statement in Pascal is

lr=led;

To show that all operations are carried out from left to right =>’ is used as
assignment operator.

SWELL supports the following relational operators

= is equal to

<> is not equal to

>= is greater than or equal to, signed

< is less than, signed

>>= is greater than or equal to, unsigned

<< is less than, unsigned

SWELL also supports the logical operators:

NOT

LOGOR

LOGAND

In SWELL it is possible to interface directly to the operating system with

the help of a monitor procedure called MON. The MON procedure is

special in that it can take a varying number of parameters.

CRSN Introduction to Programming - 46 - ENVIRONMENT

One of the parameters that must always be present in a procedure
definition is the link register, specifying the return address after execution
of the procedure.

Using the link register in a procedure is done through the EXIT statement
as demonstrated in the program example later in this section. Function
statements are not supported by SWELL.

In addition to the expressions and the procedure statements, the following
kinds of statements exist in SWELL:

1) Compound statements

A number of simple statements beginning with
BEGIN and ending with END;

2) Conditional statements

IF - THEN - ELSE and

CASE - OF

As in Pascal, the ‘CASE’ statement consists of an
expression (the selector) and a list of statements, each
being labelled by a constant.

Example:

CASE RO OF

sunday : GOTO church;

saturday : GOTO shops;

OTHERWISE GOTO work;

3) Iteration statements

WHILE - DO

REPEAT - UNTIL

4) GOTO statement performs an unconditional jump to a
label.

5) Dedicated statement. Executes one specific CR80
machine instruction. Similar to a procedure statement,
but without the link register. Examples on dedicated
statements are the ’STC’ and ’UNS’ statements in the
following program.

CRSN Introduction to Programming -47- ENVIRONMENT

On the following pages an example on a SWELL program is shown:

MAINMODULE EXERCISE;
%SOURCE @**GENERALPARAMS.S
%SOURCE @**MONITORNAMES.S
%SOURCE @**IOSPARMS.S
%SOURCE @**UTH.|
CONST

TEXT = IS SMALLEST (:0:)’;

TYPE

RANGE = 1..10;

PERSON_PTR = INTEGER;

STR20 = ARRAY[1..20] OF CHAR;

PERSON = RECORD

NAME, ADR : STR20;

SEX : (MM, FF)

END;

BOOLEAN = (FALSE, TRUE);

TABLE = ARRAY[RANGE] OF INTEGER;

VAR

LIST : TABLE

WORKAREA : ARRAY{1..6] OF INTEGER;

Comment Since there is no stack operation, workarea for procedures must be
reserved by the programmer.

ROLL : ARRAY[1..100] OF PERSON;

SUM, A, B, C, 1, CTR ; INTEGER;

FLAG, FLAG2 : BOOLEAN;

INIT

Comment In SWELL it is possible to initialize variables to an initial value.

CTR = 105;

1 =0;

PROCEDURE SUMLIST (R6);

VAR

REG_STACK : ARRAY[0..7] OF INTEGER;

BEGIN

R7 => REG_STACK[7];

STC(6, ADDRESS(REG_STACK[7]) => R7);

Q => R1 => R2 => SUM;

CRSN Introduction to Programming - 48 - ARCHITECTURE

A 'SIZE’ operator, giving the size in words of the specified type or variable, is
supporter.

WHILE R2 <= R5 DO
LIST[R2+1] => R1 + SUM => R4 => SUM;

UNS (7, ADDRESS(REG_STACK) => R7:
EXIT (R6);

END;
PROCEDURE EQUALITY (R6);
VAR

REG_STACK : ARRAY[0..7] OF INTEGER;
BEGIN

R7 => REG_STACK(7];
STC(6, ADDRESS(REG_STACKI7]) => R7);
((A=>R1 = B=>R2) LOGAND (R1 = C=>R3)) => R5 =>FLAG:
UNS(7, ADDRESS(REG_STACK) => R7);
EXIT (Ré6):

Comment The ’procedures’ STC and UNS are in reality instructions from the CR80
instruction set. They save and restore the contents of the 8 register
variables.

END;

BEGIN

ACCEPTFILES(R6);

READSYSPARAMS(R6);

Comment The two procedure calls above ensure that current output file (the screen)
and the parameter file (with user input) is opened.

DISMANTLEFILE(R4, R6);
OPENSTREAM(ADDRESS(CINFILETYPE) => R4, INPUT_MODE => R3, R6);

Comment The two procedure calls above close the parameter file and reuse the file
description to open the current input file (the keyboard).

WHILE (CTR=>R0 >= 100=>R1) LOGAND (l=>R2 < 6=>R3) DO

BEGIN

SUMLIST(R6);

CTR => RO - 1 => CTR;

| => R2+1 => |;

END;

IF NOT (FLAG=>R4 = TRUE=>R6) LOGOR (FLAG2=>R5 = R6)

THEN ((FLAG2=>R5) LOGAND

CRSN Introduction to Programming -49- ENVIRONMENT

REPEAT

’ ADDRESS(WORKAREA) => RO;

A => R2;

#0720 => R3;

COUTFILETYPE.S=> R4

MON(STEAM, OUTINTEGER, RO, R2, R3, R4, R7):

ERROR_DONE;

ADDRESS(TEXT)=> R6;

* MON(STEAM, OUTTEXTB, R6,R4,R7): ERROR_DONE;

A=>R2+1=>A;

UNTIL (R2>=B=>R3)LOGAND(R2>=C=>R3);

CLOSESTREAM(ADDRESS(CINFILETYPE)=>R4, R6);

CLOSESTREAM(ADDRESS(COUTFILETYPE)=>R4,R6);

DISMANTLEFILE(R4, R6);

MON(TERMINATE,0=>RO=>R1,R7);

END

ENDMODULE

Compiler | The SWELL compilation process consists of five passes, executed in the
same program area in memory. This has the advantage that the compiler

process takes up less space, thereby allowing several compilation
processes at the same time. It also means that the compiler is not
reentrant.

The user can choose from a set of options, among which are:

P: Generates a print file for the source listing.

L: Determines the amount of information in the source

listing.

X: Controls cross-reference generation.

D: Controls inclusion of symbolic debug information.

PL: Sets the number of lines per page in the print file.

CRSN Introduction to Programming - 50 - ENVIRONMENT

The compilation process is shown in the following figure:

Ext Name

“ | 8)

Variable

File

 enienbetente 7
ae 7

Source Object Pass Program Object
File = File 2 | File File

source
listing

cross

references

variable lists

NWPG/D/8

2.3 CR80 Linker

The linker is capable of transforming a number of link modules, one
which is defined as the main module, to a single executable program.

The linking process includes module linking, final address resolution
within a module and code assembly. The linker may optionally print

debug information like assembled code, initialized variables, and program
and process headers. The contents of the headers are composed of
information from the link modules and linker activation parameters
(program options).

CRSN Introduction to Programming -51- ENVIRONMENT

The linker is common for all CR80 programming languages, and links
together program modules written in one or several languages.

The linking process may be visualized like this:

Parameter

Link

Commands

Main Temporary

Module Debug
File

Sub
Object

Module Program

L
L

Link b Print
Library ! H File

!
1 |

T 1 | -_ |

Current

Out

TD3/NWPG/D/7

The linking is performed by concatenating the link modules and by

exchanging addresses according to directive in the program modules.

Link libraries consist of precompiled functions and procedures, i.e. for

handling arithmetic operators.

CRSN Introduction to Programming -~52- ENVIRONMENT

2.4

First, all submodules are handled. The linker then checks that all address-

es referring to other modules are correct. During the linking, all addresses
are checked and final object code is assembled. The linker also gener-
ates program and process headers, composed of information from the
link modules and program options.

Optionally, the linker may generate object code listings.

Test Tools

All programs require testing, and the more complex the program the more
advanced the test tools must be. When developing software for a very
fault tolerant environment such as the CRSN, advanced test tools are
crucial.

Three different debug tools are available; the first two apply only during

the development of the code. The third is part of the maintenance and
diagnostic system in the CRSN and is used during development as well:

fe) MX Debugger

Interactive test tool - used during development for small
programs or modules

fo) Test Command Interpreter (TCI)

Interactive test tool - used during development for
processes

fe) Cyclic Debugger

Test tool integrated within your program - used both
during development and during maintenance

MX Debugger

This test tool is especially designed for test of small programs or modules
from a big subsystem. Any module can be tested separately. The MX

Debugger is a test tool which allows the developer to debug a program,
provided the program has been compiled and linked with the debug
option. MX Debugger is an interactive program which alternates between

command reading and command execution as shown in fig. 2.5-1:

CRSN Introduction to Programming - 53 - ENVIRONMENT

y
Read Command

From Terminal

Send Command to

Debugged Program

Wait Answer from

Debugged Program

Display Answer

on Terminal

TD3NWPG/D/13

Fig. 2.5-1 MX Debugger Control Flow.

The most important commands used to control the debugging of the
program are:

Single step the program

Dump variables (symbolic)

Alter variables

Display registers. o
o
o

9
0

CRSN Introduction to Programming -54- ENVIRONMENT

When using this test tool, additional debug information is incorporated
into the code by the compiler, allowing the MX Debugger to control the
execution of the program under test.

Test Command Interpreter (TCI)

The main purpose of this facility is to simulate other external environment

with which the program under test is interfacing. The processes in a

CRSN environment communicating by means of the basic entity - the
message - are of special interest. Any program that must communicate
uses the Basic Communication Service (BCS).

The CR80 Test Command Interpreter interprets a language ‘Test
Command Lanugage (TCL)’, which is a high level language having a
syntax very much like the Pascal Language.

When using TCI the test sequence can be written in a high level
language and the result of the test is formatted printouts of how the
program responds to messages in all situations. The TCI normally
executes the test in sequence , but another advantage of the TCI is that it
supports interactive test of a program. That is; any procedure written in
Test Command Language can be invoked from a terminal at any time
while testing.

The Test Command Interpreter is a two pass compiler where pass one
delivers an object file as input to pass two. During pass two the actual
test of the user process is performed as shown in fig. 2.5-2. The object
file from pass one of the TCI can be used to repeat a certain test a
number of times.

CRSN Introduction to Programming - 55 - ENVIRONMENT

BCS

Queue’s

Object |
File

Test User

Command Process(es)
Interpreter

Test

Result

File(s)

Terminal

TD3NWPG/D/14

Fig. 2.5-2 Test Command Interpreter (pass two)

An especially powerful capability of this tool is to drive the process under

test into extreme situations where error handling routines in the
developed program must interact and recover. Certain error situations
seldom occur in a live network, but when they do, some implemented

code that has never been tested starts to execute and results in fatal
error. Therefore, when using the TCI to simulate an external environment

one of its most important tasks is to test if the program can recover from

various error situations.

Any number of test programs written in TCl can be activated

simultaneously and thereby simulate several processes to which the

CRSN Introduction to Programming - 56 - ENVIRONMENT

process under test has interface. Usually the TC! would be used as
simultators for SC, NM and TN subsystems.

Cyclic Debugger

The purpose of the Cyclic Debugger is twofold. Originally it was intended
to serve as a part of the maintenance and diagnostic tool integrated
within the CRSN, but considering the nature of this test tool it is clear that

it has a major function during the coding phase of any CRSN product.

The Cyclic Debugger is a utility which can dump trace information and
internal variables from a program. As additional coding the programmer
must include a number of procedure calls within the program to perform

the actual dump of the variables that need to be verified. The name

‘Cyclic Debugger’ refers to the fact that the buffer that holds the latest
debug information operates in a cyclic manner. The program code must
internally allocate memory for the cyclic buffer.

The amount of information to be logged depends on the debugging mask
which is handed to the process as a part of the process parameters
received in the initialization phase. The mask contains the following bits
which can be set independently:

fe) Trace bad completion codes. Whenever a result of an
external or internal operation is not ok this should be
logged.

1 Trace input/output from the process. All BCS messages
received or sent by the process must be logged.

2 Trace all procedure calls. All procedures within the
process must generate a tracepoint when called.

3 Trace all operation within procedures. All operations
which may result in internal error handling and therefore

the result must be logged.

4-13 Module trace bits (module 1/10). All modules within the
process must be assigned to one of 10 classes (levels).

Only the procedure belonging to a class which is select-
ed in the module trace mask should produce tracepoints.

CRSN Introduction to Programming -57- ENVIRONMENT

In CRSN

During

Development

14 Timestamp flag. When set, each tracepoint will be times-
tamped be the Cyclic Debugger interface procedure
(CDEBUG).

15 Log trace on disc file. The trace procedure should log all
tracepoints on a disc file.

The actual logging is performed by calling the procedure CDEBUG.

It is obvious that this debug interface will slow down any system, but the
masking information used ensures that only the modules which are under
test need be logged. Generally, the mask will be set so that no modules
in a program will be logged and only during a maintenance phase or
when coding the mask is set to log large amount of information to a file.

When programs are running in a CRSN environment this cyclic buffer can
at any time be dumped to a disk file in order to be inspected during
maintenance of the program. As a Normal Operator interface it is
possible to change the debug mask so that different modules and levels
can be logged.

During the Coding Phase of the program the Cyclic Debugger is used
with the file option so that all debug information goes directly to a file in
order to get a very good history log of how the program has performed

while running.

A utility to display the Cyclic debug buffer is available and is called the
‘Display Cyclic Debug Buffer’ (DCDB), see fig. 2.5-3. The DCDB takes
the debug file from the program under test as input, and when displaying
this file it is a possible to select which debug information to display. This
allows the programmer to select the module or procedure that has errors.

CRSN Introduction to Programming - 58 - ENVIRONMENT

User

Process

Debug

File

Display

Cyclic

Debugger

Display

File

TD3NWPG/D/15

Fig. 2.5-3 Debug Information Flow.

CRSN Introduction to Programming - 59 - RH TEMPLATE

3 THE RH TEMPLATE

CHAPTER CONTENTS PAGE

3.1 Abstract of Common Level 1 Interfaces 63
Network Management 63
Transport Network 65
System Control 65

3.2 Access Resource Handler Processing Phases 65
Process Initialization Phase 67
ARH Configuration Phase ~ 67
Active Processing Phase 67

_ Standby Processing Phase 67

3.3 Functions in the RH Template . 68
Process Initialization 68
Handling of SC Interface 69
Handling of TN Interfaces 69
Handling of NM Interfaces 69
Handling of Standby Processing 71
Utilities 71

CRSN Introduction to Programming -60- RH TEMPLATE

Template

THE RH TEMPLATE

When a user wants to develop new application software, e.g. an Access

Resource Handler (ARH) for the Corporate Resource Sharing Network
(CRSN), the user must secure that the new ARH fulfils the requirements
stated by the CRSN architecture.

To ease development of new ARHs, which fulfils a number of the CRSN
requirements, a software packet has been developed which can be
reused from one ARH to another. This software packet is called the RH

Template and it will implement many of the functions common to most

ARHs in CRSN. —

This chapter will introduce the RH Template and outline the functionality
available. But before describing the functionality the most common level 1

requirements stated against an ARH and an abstract of the processing
phases, which a typical ARH will go through, will be given, too.

An ARH is a network element connecting external equipment to CRSN.
As an ARH is an integrated part of the CRSN it must fulfil some

requirements given by the architectural rules outlined in the first chapter
of this document.

The architectural rules state three levels of requirements. The minimum
set of requirements an ARH must fulfil is the level 1. Level 1 concerns the

interfaces to:

fe) Network Management

fe) System Control

fe) Transport Network

The level 1 requirements means that all ARHs in the CRSN will contain
almost identical software; in addition, each ARH has special modules to

implement its specific interface towards the external equipment.

By level 2 requirements means the requirements that ARHs must fulfil in

a peer to peer protocol.

CRSN Introduction to Programming -61- RH TEMPLATE

The level 3 requirements state the requirements for standardized
components of an ARH. The fact that all ARHs contain similar software
because they interface to the same network elements, creates a basis for
development of standardized components and thereby define a number
of level 3 requirements.

A number of standardized components have been developed, and
together they constitute the RH Template. The components or modules
within the RH Template implement a number of level 1 interfaces, hence

hiding them for an application ARH. The term application ARH will be
used when referring to the part of an ARH which is not implemented by
the RH Template.

The RH Template is intended for reuse when designing new ARHs and
by reusing the RH Template a number of benefits are gained:

fe) Shorter development time of ARHs fulfilling the CRSN
requirements.

° Effort can be concentrated on designing the application
part of an ARH.

fe) ‘ Higher reliability of the ARH from the start because reuse
of well-tested and documented software.

Basically the RH Template is a collection of software modules which can
be reused as building blocks to form a level 1 compatible application
ARH. The RH Template cannot be used as a stand alone ARH - the
application ARH must implement some functionalities in addition to the
ones given in the RH Template to form a complete ARH. This is
especially the software which implements the interface towards the
external equipment and/or ancillary processes.

The modules of the RH Template will implement many of the level 1
interfaces towards NM, SC and TN, demanding a minimum of interaction
from the using application ARH. Furthermore, a number of modules will
implement some utilities which makes life easier for an application ARH
developer.

Fig. 3-1 gives an overview of an application ARH using the RH Template
to fulfil the level 1 interfaces:

CRSN Introduction to Programming - 62- | RH TEMPLATE

Resource \ Haridler LA

xr
wD

o
r
o

~
D
U

3
0
4

Cc

Z_| 8

s a)
y

§ C M

to| x
Network eon

Management mt} H
Complex r W

fo)
|

Transport Network

TD4/NWPG/D/22

Fig. 3-1 CRSN building blocks using RH Template.

CRSN Introduction to Programming - 63 - RH TEMPLATE

3.1

Before the functionality offered by the RH Template is described a short
list of the most common level 1 interfaces will be given, and a short
abstract of the typical processing phases an ARH will go through will be
given, too, to ease understanding of the RH Template functions.

Abstract of Common Level 1 Interfaces

This section will give a short description of the most common level 1
interface and the functionality which can be reached via the interfaces.

Network Management

In the CRSN a network operator can monitor and contro! all ARHs
including their resources. To do this NM requires a number of interfaces
to be serviced by the ARHs. Furthermore, NM offers a number of
services from which the ARH can obtain vital information. The most
important ones are:

° Configuration

The configuration is a description of ARHs resources
and their interrelation. This is done by means of a num-
ber of resource records. The configuration can be updat-
ed with new resource records and records can be delet-
ed.

fe) Resource Control

Resource control allows an operator to include/exclude
resources in the on-line network. Excluded means that

the resource is not served by the network. When the
resource is included data can be sent to or from it.

fe) Status

All resource records contain a status field where status

of the resource is maintained by means of a number of

standard states. An operator can monitor the status of
the resources via the status interface.

re) Events

Events are used to notify the network operator about the

current status of resources and detection of severe

CRSN Introduction to Programming -64- RH TEMPLATE

failures in an ARH. Events are sent unsolicited from the

ARH.

oO Statistics

Statistics are used to count the number of different
occurrences, @.g. number of messages received by a

resource. This will give an impression of the network in
the past. Two types of statistic are defined: permanent
and temporary.

fe) Trace

The trace interface allows the network to monitor data

traffic from/to a resource.

Transport Network

TN is used to get data transported between the Nodes in CRSN. To do

this TN offers 2 services: the messagegram service and the connection
service.

° Connection service

The connection service allows a user to obtain a fixed

message flow between two partners. The service is pro
tected meaning that messages sent via a connection is
secured to be delivered to the other end in the sequence
they were sent. The service is in popular terms a tele-
phone call.

fe) Messagegram service

This service is an unprotected service which means that
TN does not secure that a message sent is delivered to

the receiver or that messages are delivered in the se-
quence sent. The service is in popular terms a mail box.

Before one of the services can be used the user must obtain an address

from TN via an enrol interface.

CRSN Introduction to Programming -65- RH TEMPLATE

3.2

System Control

System Control will interact with the ARH in the initialization phase and it
will handle the switch between the active ARH and the standby ARH.
Furthermore, SC can change the cyclic debugging mask in an ARH at
any time.

Access Resource Handler Processing Phases

During the lifetime of an ARH it will be in one of a number of processing
phases where some specific actions have to take place. A typical ARH

will go through some of the following processing phases:

Process Initialization Phase

ARH Configuration Phase

Standby Processing Phase

Active Processing Phase o
o
o

9
8

CRSN Introduction to Programming - 66 - RH TEMPLATE

Fig. 3.2-2 shows the different phases and their logical interrelation:

Process

Initialization

Phase

ARH

Configuration

Phase

Active

Processing

Phase

NWPG/D/ARH

Fig. 3.2-2 Major ARH processing phases.

Process state equal to ’active’ received.

ARH included in network by NM

Process state equal to ’standby’ received.

Request to go active received from SC. P
W
N

CRSN Introduction to Programming -67- RH TEMPLATE

Process Initialization Phase

The first phase all ARHs must go through is the process initialization. In
this phase the process exchanges system parameters with SC and this
is, among other things, the queue names of the control queues owned by
NM, SC and TN. This enables the ARH to get in touch with NM, SC and
TN. As the last thing in this phase the ARH will receive a process state
from SC. The process state can either be active’ or standby’.

ARH Configuration Phase

If the process state received was ‘active’ the ARH must enter the ARH
configuration phase. In this phase the ARH must make itself known to
NM and request and receive its configuration. The ARH must be in this
processing phase until NM requests the ARH to enter the next processing
phase, the active processing phase.

Active Processing Phase

The ARH must be in this phase the rest of its lifetime. Here the actual
processing of the ARH is performed - data is switched from the external
equipment to another ARH and the level 1 and level 2 interfaces (see
chapter 1) are serviced.

Standby Processing Phase

If the process state received in the process initialization was ‘standby’ the
ARH must enter the standby processing phase. This ARH is now a
standby process receiving vital data from the active ARH which is
identical to the standby ARH it has just received a process state equal to
‘active’ instead. The vital data received are the configuration and
checkpoints.

Checkpoint is e.g. updates to the configuration (new resources inserted
or a resource is deleted) and states changes in a resource (e.g. from
on-line to off-line). The checkpoint enables the standby ARH to take over
in case a fatal error is discovered in the active ARH. If such an error is
discovered SC will terminate the active ARH and request the standby
process to go to the active processing phase.

CRSN Introduction to Programming - 68 - RH TEMPLATE

3.3 Functions in the RH Template

This section will outline some of the functions available in the RH

Template.

The RH Template will form a complete ARH shell, meaning that it will
implement the main waiting point and the dispatching of control in
addition to the level 1 functionalities. The main waiting point is where all
external events are received by the ARH. External events can be that a

message is received or a BCS queue has been defined, etc. If the event
is a message received event, dispatching of control to the prober function
within the RH Template or the application will be done.

The following functionalities are available in the RH Template:

fo) Process Initialization

fe) Handling of SC interface

° Handling of TN interface

fe) Handling of NM interfaces

- ARH initial configuration reception

- Standardized handling of configuration

- Event generation

- Trace facility

- Status and statistic reporting

fo) Handling of standby processing

Furthermore, a number of utilities are implemented, e.g. timer services,

monitoring of queues, etc.

Process Initialization

The RH Template will handle the entire process initialization phase; no
interaction from the application part is needed. The RH Template will

create the input queues for NM and SC, where messages are received

CRSN Introduction to Programming - 69 - RH TEMPLATE -

from the two network elements throughout the life time of an ARH. The
RH Template will exchange system information with SC in order to make
itself known to SC and BCS and to obtain a process state. Depending on
the process state the RH Template will enter the active or standby
processing phase.

Handling of SC Interface

All interfaces towards SC are implemented entirely within the RH
Template. The user ARH does not have to worry about this. When e.g. an
indication for initialization of the cyclic debug buffer is received the RH
Template will handle this without any interaction from the application
ARH.

Handling of TN Interfaces

The RH Template has implemented two state event machines to handle
the enrol and connection interface towards TN. The enrol interface allows
an ARH to obtain an address in TN and to use the messagegram service.
When an application ARH wants e.g. to establish a connection it can be
initiated by a single function call. The connection state event machine will
take care of the rest of the connection set up procedure transparently and
concurrently with other tasks in the application ARH.

The same is true for the enrol state event machine.

A state event machine is a software submodule which takes actions upon
occurrences of events. A state event machine is built upon a state event
table which tells how the state event machine must act upon occurence
of an event. An event can be e.g. that a message has been received ora
a timer has expired. The action taken depends on the state where the
state event machine resides at the time where the event occurs. With
other words, a state event table defines how the state event machine

must act in all situations which have been foreseen.

The application ARH does not have to interact with the TN interfaces.
The RH Template will take care of this.

Handling of NM Interfaces

If the process state received in process initalization was ‘active’ the ARH
will enter the ARH configuration phase. Most of the functionality needed
in this phase is implemented by the RH Template. The RH Template will

request and receive its configuration from NM. The configuration is stored
in a configuration tree which allows dynamically insertion or deletion of

CRSN Introduction to Programming -70- RH TEMPLATE

resource records in the on-line network. A number of utility functions are
available for configuration updates and searching in the configuration
tree. The RH Template will await further updates to the configuration and
NM indication which informs the ARH that it can enter the active
processing phase.

The ARH configuration phase will entirely be handled by the RH
Template except for the unpacking of the configuration records. The
outlook of the individual configuration records differs from ARH to ARH
so no general functionality is implemented.

After the ARH configuration phase the ARH will enter the active
processing phase where the actual processing of the ARH is performed;
the ARH is now considered active and on-line in the network and it must
start serving all its resources. A number of state event machines are
implemented by the RH Template in order to support the active
processing required by NM of the ARH. The state. event machines are:

Status Reporting state event machine

Statistic Collection state event machine

Event Generation state event machine

Trace state event machine o
o
o

9

Common to all state event machines is that they fulfil the level 1
interfaces in a standardized way outlined in the Level 1 Architectural
Specification. The RH Template will control the state event machines in a
way which demands a minimum of interaction from the application part of
the ARH. Only in the case where the RH Template does not have the
needed information an application interface function is invoked. This is
the case when e.g. statistic for a resource is maintained in an ancillary
process. The application interface function must fetch the statistic and
pass it on to the statistic collection state event machine. The evaluation of
ihe request and generation of the response is handled entirely within the
individual state event machines.

Before using one of the state event machines some application interface
functions must be edited to fulfil the need of information for the state
event machine. In the above example concerning statistic collection the
interface function must implement the interface to the ancillary process.

CRSN Introduction to Programming -71- RH TEMPLATE

When an ARH communicates with NM a standard request/response

protocol must be followed. The protocol requires that a request to NM is
issued a number of times with a time delay in between if NM does not

confirm the request within the time period. Furthermore, an ARH must
recognize duplicate requests sent from NM. This is handled transparently
to the application ARH by the RH Template.

Handling of Standby Processing

If the ARH is standby a number of specific actions must take place, e.g.
the configuration must be transferred from the active ARH.

The RH Template has implemented an active/standby interface with
associated functionality which will handle most of the standby processing
transparently to the user. This is, among other things, copying of the

configuration to the standby ARH handling of the standby queues,
updates to the configuration already received and reception of the SC
command, indicating that the standby ARH must go active.

In the active ARH a checkpoint state event machine is implemented
which will handle transference of checkpoints to the standby ARH.

Utilities

A number of utilities which implement a high level interface towards the
Basic Communication Service (BCS) is available, too. These utilities
allow, among other things, to create, write and send a message to a
certain destination with only one function call, to start a timer in order to

prevent a deadlock for an outstanding request, to handle loss of

communication queues transparently, etc.

CRSN Introduction to Programming -72- PROCEDURES

4

4.1

4.2

4.3

PROCEDURES AND PRACTICES

This chapter describes the development procedures and practices on a
basis so that a developer could start his writing of an application and be
guided through the process of creating software for the CR80 computer
and especially for the Corporate Resource Sharing Network (CRSN)
Subnode or the CRSN network application.

CHAPTER CONTENTS PAGE

Design 73

Development 74

RH Template 74

Database Specification 77

Program Languages and Linker- 78

Testing and Network Integration 79

CRSN Introduction to Programming -73- PROCEDURES

4.1

PROCEDURES AND PRACTICES

In this chapter the procedures and practices for designing and developing
of software to the CRSN are summarized. The description follows the
practices as used by the CR developers in terms of:

fe) Design

om Development

fe) Testing and Network Integration

Design

This section outlines the practices used by the CR developers when
designing software for the CR80 computer or the CRSN.

When a programmer has made an overall design of any application there
are some vital things to consider when programming for the CRSN.
These things are listed below:

fe) RH Template - Which Level 1 functionalities should be

supported? Can the RH Template be re-used?

o Database Specification - What should be specified as
database entries for a particular subsystem?

fe) Program Language - Which language is suitable?

fe) Testing and Network Integration - Which test tools
should be used for this specific application?

The design phase of any CR product provides guide lines from a major
design overview down to detailed design; the latter may even provide

some pseudo coding as input to the actual coding phase.

The design incorporates a modular application structure (and the actual

CR80 code reflects this) as modularization is supported both by

compilers and the linker. The modularization is often such that each

CRSN Introduction to Programming -74- PROCEDURES

4.2

application function is handled totally or partly by a distinct module (e.g.
status collection handling).

To use these procedures is not mandatory when programming for the

CR80 computer, but as the development tools of the CR80 support
modular design it is useful to use a design method that implements
modular design.

Development

This section describes the design and development procedures and
practices as used by CR engineers.

RH Template

The following paragraphs briefly explain how a developer can use the RH
Template to construct a real CRSN Access Resource Handler (ARH). But
first is outlined how the RH Template sees the application software.

As the RH Template contains the main waiting point and the ability to
dispatch control to both the RH Template and the application ARH, the
application software is seen as a number of functions the RH Template
can call. In return, the RH Template offers a number of functions to
implement the desired service. Fig. 4.2.1 shows the internal build-up of a
complete ARH, including both RH Template and application ARH
software.

CRSN Introduction to Programming -75- PROCEDURES

RH TEMPLATE

Standby SC
Init : p—| Handling Interface

Main

Wait

&

Dispatch

[_t tt
TN ™N Statistic Status Trace
Connec- — | | Enrol Sem. Sem. Sem.
tion Sem. Sem.

ry

Standby

Updates

7 1 7 4 7 1
y 4 Utilities

Fi a 5 unc
4 eT

Tt Contig

7 a nd Updates
/ y tL

Sub-modules a

Application RH Generation

TD3NWPG/D/23

Fig. 4.2-1 Internal build-up of ARH using RHT.

CRSN Introduction to Programming -76 - PROCEDURES

When a developer wants to build a new application ARH which fits into
the CRSN architecture a number of questions must be answered first:

° Has this ARH statistics to be collected? If so, what kind
should it be - temporary or permanent or both?

fe) Is the ARH going to transfer data within the network - via
Transport Network (TN)? If so, is messagegram service
sufficient or is protection of the data needed so that a
connection is necessary?

fe) What configuration shall the ARH have? How many
resources does it have and what configurable parame-
ters do they contain?

fe) Has the ARH interface to the firmware in the Line Termi-
nation Unit (LTU) (if any)? Does some software exist
which implements the interface?

re) Which resource should be traced?

When all the questions have been answered, the ARH developer can

take’ the modules from the RH Template which provides the desired
services and implement the few interfaces to the RH Template modules;
e.g. fetching status from an external process. The developer must enter

the configuration for the application ARH in a prefix for the RH Template - .
as this is the key data structure in the ARH. Then he compiles the
selected RH Template modules and links the result to a link library. This
module is now ready to be linked to the application ARH link modules.
This can be done after the developer has designed and coded the

application specific software.

The application ARH is now ready for test and subsequently integration.
Some specification of configuration, status and statistic need be specified

for the network manager (NM) as database records.

-CRSN Introduction to Programming -77- PROCEDURES

Database Specification

This section describes the entities that every developer must introduce to
the on-line database before the program can be loaded into the network.

When new application software is going to be inserted in. the network the
developer has to specify some specific database information:

° The boot-file is the object code from the compiled and
linked program. This file is to be specified as input for the
system generation tools.

fe) The database configuration is the configuration which
the individual developer specifies to the CRSN configura-

tion tool. The configuration can obtain both dynamic and
static items; static configuration is a configuration that
cannot be changed after initialization of an ARH - the
dynamic configuration specifies on-line configuration
updates which the ARH must be able to receive at any
time during processing.

fo) The status and statistic records that can be collected
from the ARH must be specified. There are two statistic

types: temporary and permanent statistics. The tempo-

rary statistic is subject to collection on operator initiative,
the permanent statistic is subject to collection on regular

time intervals.

CRSN Introduction to Programming - 80- APPENDIX

A REFERENCED DOCUMENTS

SE/SDS/0001

SE/SPC/0003

CSS/7380/USM/0116

CSS/381/USM/0037

CSS/102/USM/0021

CSS/449/RFM/0004

CSS/427/RFM/0021

CSS/415/RFM/0002

CSS/416/USM/0048

CSS/8210/USM/0125

CSS/216/USM/0124

CSS/7201/USM/0107

CSS/212/USM/0131

CPA/PSP/001

Architecture

AXDN CONCEPTS AND TERMINOLOGY

AXDN LEVEL 1 RESOURCE HANDLER ARCHITECTURAL SPECIFICATION

Basic Software

CR80 MXAMOS TOS USER’S MANUAL

MX COMMAND INTERPRETER USER’S MANUAL

CR80 ON-LINE EDITOR USER’S MANUAL

Programming Languages

CR80 PASCAL REFERENCE MANUAL
CR80 C REFERENCE MANUAL
SWELL 80 REFERENCE MANUAL

Linker

CR80 AMOS, LINKER USER’S MANUAL

Test Tools

CYCLIC DEBUGGER USER’S MANUAL

DISPLAY CYCLIC DEBUGGER USER’S MANUAL

MX DEBUGGER USER’S MANUAL

TEST COMMAND INTERPRETER

Resource Handler Template

PRODUCT SPECIFICATION FOR THE RESOURCE HANDLER TEMPLATE

BI CR Systems

