
Author: 

MIKADOS 

Pascal Link Program - User’s Guide 

Dansk Data Elektronik ApS 

23 March 1981 

Claus Téndering Copyright 1981 

Dansk Data Elektronik ApS



Pascal Link Program User’s Guide 

Introduction 

Basic Concepts 

An Example 

The Structure of the Compilation Modules 

4.1. The Main Module 

4.2. The Modules Containing the Seperate Segments 

4.3. On Segment Numbering 

The Link Programs 

5.1. The PEX Program 

5.2. The PLINK Program 

5.3. Special Considerations 

A Larger Example 



Pascal Link Program User’s Guide 

1. Introduction. 

In many cases when a programmer designs a large program, the 

need arises for a means to link seperately compiled modules 

together. The advantages of this are, first, there is no need 

to recompile everything after small corrections; second, the 

modules to be compiled will be smaller, so that a program 

which normally would be to big for the compiler to handle 

would be reduced to an acceptable size. 

The PEX and PLINK programs are designed to equip the 

programmer with tools to link seperately compiled Pascal 

modules. The programs operate directly with the P-code files, 

so that no modification of the compiler is necessary to use 

them. 

This manual describes PEX and PLINK and how to use them. 

It is required that the user be familiar with Pascal’s SEGMENT 

facility. 

Dansk Data Elektronik ApS reserves the right to change the 

specifications in this manual without notice. Dansk Data 

Elektronik Aps is not responsible for the effects of 

typographical errors or other inaccuracies in this manual, and 

cannot be helt liable for the effects of the implementation 

and use of the programs described herein.



Pascal Link Program User’s Guide 

The PEX and PLINK programs provide the user with a means to 

link together seperately compiled SEGMENT procedures’ and 

functions of a Pascal program. They cannot be used to link 

together procedures and functions that are not segments. 

The principles of operation are: 

The P-code file of a compiled Pascal program is a direct 

access file with a record length of 128 bytes. The first of 

these records is a segment descriptor. It contains information 

about the length of each segment of the program and the record 

number where the P-code segment starts. 

We wish to create a Pascal program where one of the segments 

is taken from a seperate source file. This is done in the 

following manner: 

The source text of the main program must contain a SEGMENT 

PROCEDURE or a SEGMENT FUNCTION declaration of the external 

segment. However, the body of that procedure is left empty, 

that is, the BEGIN and END are present, but no code is 

included between BEGIN and END. 

The source text of the module containing the code for the 

segment procedure is structured in the same manner as the main 

program, except that all unnecessary declarations are omitted, 

the body of the main program is omitted, but the code of the 

segment procedure is present. 

This will be described in greater detail in chapter 4 of this 

manual. 

The two modules are compiled independently. The PEX program is 

then executed. This program will edit the P-code file of the



Pascal Link Program User’s Guide 

main program, so that the segment descriptor will contain 

information that the relevant segment is not present in the 

P-code. Execution of the PLINK program will then merge the 

P-code file of the main program together with the P-code file 

of the external segment procedure, so that the relevant 

segment of the main program is replaced by the seperately 

compiled segment procedure.



Pascal Link Program Users Guide 3.1 

3. An Example. 

The link between the seperately compiled modules is 

established not by means of common identifiers, but rather 

with the location of the declarations of the various 

identifiers in the modules. 

The structure of the compilation units is most easily 

described with an example. 

a
 

a
 

Let us take the following program, which is written here in 

the conventional manner with no external segments: 

PROGRAM ALFA; 

CONST VALUE=12. 86; 

VAR R,S,T: REAL; 

I: INTEGER; 

SEGMENT PROCEDURE BETA(J: INTEGER) ; 

VAR K: INTEGER; 
BEGIN 

K:=I8J; 
WRITELN(“I,J,K are: ~,1:5,3:5,K:5); 

END; 

BEGIN 

WRITE(“Write a real number and an integer: “); 

READ(R,1); 
S:=VALUE* I; 

T:=S*R; 
BETA(3) 5 
WRITELN(“T=",T); 

END. 

We wish to remove the segment procedure BETA from the above 

program, and make it a seperately compiled procedure.



Pascal Link Program User’s Guide 

The main program is restructured: 

PROGRAM ALFA; 

CONST VALUE=12.86; 

VAR R,S,T: REAL; 
I: INTEGER; 

SEGMENT PROCEDURE BETA(dJ: INTEGER) ; 

BEGIN 

(* External segment *) 

END; 

BEGIN 

WRITE(“Write a real number and an integer: ~); 

READ(R,1I)3 

S:=VALUE*T; 

T:=S*R; 

BETA(3); 
WRITELN(“T=" ,T) ; 

END. 

The code and the local declaration of BETA have now been 

removed. The comment in the body of BETA is, of course, not 

required, but it is a good programming practice to have it 

there. 

This module is compiled in the usual manner. 

The source text of the segment procedure BETA will look like 

this:



Pascal Link Program User’s Guide 

PROGRAM ALFAX; 

VAR DUMMY: PACKED ARRAY (1..24) OF CHAR; 

I: INTEGER; 

(* EXTERNAL *) SEGMENT PROCEDURE BETA(J: INTEGER) ; 

VAR K: INTEGER; 

BEGIN 

K:=1¥J;3 

WRITELN(“°I,J,K are: ~,1:5,0:5,K:5); 

END; 

BEGIN 

END. 

Here the body of the main program has been removed. The 

unnecessary declarations of R, S, and T, which are not used by 

BETA, are removed. The declaration of the global variable I is 

retained, so that BETA may refer to it. However, since the 

link between the I used in this module and the I used in the 

main module is established through the position of the 

declaration of I, it is required that the declaration of I be 

offset by the same number of bytes as in the main module. 

Therefore, the declaration of the variable DUMMY is included. 

The type of this variable is such that it takes up the same 

number of bytes as the variables R, S, and T, that is, 3 times 

8 bytes. 

Of course, the declarations of R, S, and T could have been 

retained, but no compiler memory would have been saved. 

Reducing the number of declared variables reduces the amount 

of compiler memory required. 

Here again the (* EXTERNAL *) comment preceding the segment 

procedure declaration is not required, but is good programming 

practice.



| 
Pascal Link Program User’s Guide 

This module is compiled in the usual manner. 

Let us now link thesé two modules together. 

We assume that the P-code of the main module is in file 

ALFA:P2 and the P-code of the module containing BETA is in 

file ALFAX:Pe. 

We use the PEX (P-Pascal EX-External) program to edit the 

P-code file ALFA. We wish to indicate in this file that 

segment number 1 is external, that is, a seperately compiled 

module. The numbering of segments is discussed in chapter 4 of 

this manual. 

PEX is executed in the following manner: 

>PEX 

Write name of file: ALFA:P2_ 

Write number of segment to be made external: 1 

Write number of segment to be made external: <escape> 

PEX terminated. 

The PLINK program is executed: 

>PLINK 

Write name of source file: ALFA:P2 

Write name of destination file: ALFAR:P2 

Write name of file for segment #1: ALFAX:P2 

PLINK terminated. 

These opeations will create a P-code file, ALFAR, which 

contains the linked program. It may then be executed in the 

normal manner: 



Pascal Link Program User’s Guide 

>INTRE, ALFAR 

PEX will alter the contents of the ALFA P-code file, put PLINK 

will not alter any file except, of course, the resulting 

P-code file, ALFAR. If, therefore, a change is made in ALFA, 

it is recompiled and PEX and PLINK should be run again; there 

is no need to recompile ALFAX. If a change is made in BETA 

(file ALFAX), BETA should be recompiled and PLINK should be 

run. There is no need to execute PEX again.



a
 

Pascal Link Program User’s Guide 

4h, The Structure of the Compilation Modules. 

Chapter 3 gave a ‘short description of the structure of the 

compilation modules. This chapter gives a more detailed 

description. 

The word procedure will be used to mean both procedures and 

functions. 

4.1. The Main Module. 

This module should contain an appropriate declaration of the 

external segment procedures required. The declaration should 

describe all the parameters passed to the segment and a 

possible value returned. 

Declarations of local identifiers within the segment need not 

be included, nor does the segment body need to contain any 

statements. 

If, however, the segment procedure itself contains another 

segment procedure, the declaration of this procedure should be 

included, even though the main module will never reference it 

directly. 

Note that the number of segment procedures may not exceed 15, 

and that they must be the first procedures declared in a 

program. They may, however, be preceded by procedure 

declarations that use the key word EXTERNAL or FORWARD. 

'



a
 

ee
 

ee
 

ee
 

ee
 

ee
 

ee
 

o
e
 

ee
 

ee
 

ee
 

o
e
 
l
e
 

Pascal Link Program User’s Guide 

4,2. The Modules Containing the Seperate Segments. 

The structure of these modules is a bit more complicated, and 

the user should be careful when writing them. Remember that 

PLINK performs no check that the various modules are 

compatible. 

A module containing a segment procedure to be used in another 

program should contain basically all the declarations in the 

main program that precede the declaration of the procedure 

itself. 

However, the following declarations may be omitted from the 

module: 

Any global CONST or TYPE declaration not required by 

the segment procedure. 

Any global VAR declaration following the declaration 

of the last global variable used by the segment 

procedure. 

Any global VAR declaration not used by the segment 

procedure, provided that the declarations are replaced 

by another declaration that fills the same amount of 

bytes. 

The body of any segment procedure preceding the 

procedure in question may, of course be omitted; 

however, the declaration of any possible nested 

segment procedure within another segment procedure 

must be included. 

The programmer must include the declarations of variables and 

procedures in the same order as in the main module.



Pascal Link Program User’s Guide 

The PEX and PLINK programs refer to the segments with segment 

numbers. 

The segments of a program are numbered consecutively in order 

of appearance of any PROGRAM, SEGMENT PROCEDURE, or SEGMENT 

FUNCTION declaration. The numbering begins with zero, but the 

user should never have an external segment number zero, as 

zero refers to the main program itself. 

The follwing example illustrates the segment numbering: 

PROGRAM XYZ; -—~-Segment no. 0 

SEGMENT PROCEDURE A; --Segment no. 1 

SEGMENT FUNCTION B: INTEGER;. —-Segment no. 2 

BEGIN 

body of segment no. 2 

END; 

BEGIN 

body of segment no. 1 

END; 

‘SEGMENT PROCEDURE C; --Segment no. 3 

BEGIN 

body of segment no. 3 

END; 

BEGIN 

body of segment no. 0 

END.



| Pascal Link Program User’s Guide 5el 

5. The Link Programs. 

PEX and PLINK are themselves written in Pascal. It is possible 

in spite of this to execute the programs under MONITOR 

control. 

5.1. The PEX Program. 

PEX requests the user to enter the name of the P-code file 

containing the main program module. If this file name 

specification does not contain a disk identification, PEX 

requests the user to enter the disk-ID. Pressing the escape 

key will abort the program at this point. 

The user is then asked to enter the number of a segment which 

should be indicated as being external. The number is entered, 

followed by a depression of the RETURN key, whereupon the user 

is asked to enter the name of another segment. 

This sequence of questions is terminated by pressing the 

escape key in response to the segment question. 

5.2. The PLINK Program. 

PLINK requests the user to enter the name of the P-code file 

containing the main program module. (PLINK uses the word 

"source" to designate this file. This, of course, does not 

mean the source text file, but the P-code file used as input 

for PLINK.) If this file name specification does not contain a 

@isk identification, PLINK will search all disks in the 

system. 



Pascal Link Program User’s Guide 

The user is next requested to enter the name of the file which 

will receive the resulting linked P-code. If this file name 

specification does ‘not contain a disk identification, the 

PLINK program requests the user to enter the disk-ID. 

The user is requested to enter the name of the file containing 

the P-code for each segment that was marked by the PEX program 

in the main module as being external. If this file name 

specification does not contain a disk identification, PLINK 

will search all disks in the system. 

The escape key will abort the program at any time. 

The various segment procedures are not required to reside in 

different files. A file may contain two segment procedures 

that are to be linked to the main module. 

5.3. Special Considerations. 

If the seperately compiled modules contain declarations of 

EXTERNAL procedures, they must, as usual, be compiled using 

the compiler E option. 

The relocatable file of the main program module is then linked 

to create a special interpreter. However, this interpreter 

requires that the P-code be in a file with the same name as 

the main program module. Because the PLINK program creates a 

new P-code file with a different name, renaming of this file 

will be required. 

The programmer may take advantage of the fact that it is 

possible to perform the PEXing and PLINKing in successive 

steps. It is thus possible, for example, to retain the dummy



n
m
 

m
m
 

m
m
 

E
E
 
O
l
e
 
l
e
l
 

Pascal Link Program User’s Guide 

version of a segment while testing other segments. If, for 

example, the main program module contains 2 external segments, 

the user may first use PEX to mark segment number 1 as 

external, then create a P-code file using PLINK. When this 

P-code has been tested, PEX may be used to mark segment 2 of 

this code as external, and link anew.



| Pascal Link Program User’s Guide 

6. A Larger Example. 

This chapter illustrates some of the principles discussed in 

the preceding chapters. 

Consider the following main program module: 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

J



| Pascal Link Program User’s Guide 

PROGRAM ZETA; 

CONST 'TEN=10; 

VAR A,B,C: REAL; 
1,J,K: INTEGER; 
STR: STRING; 

PROCEDURE PR1(VAR ALFA: INTEGER; BETA: INTEGER); 
FORWARD; 

FUNCTION F(CINT: INTEGER): INTEGER; 

EXTERNAL; 

SEGMENT PROCEDURE SEG1(VAR S: STRING) ; 

SEGMENT FUNCTION SEG2(S: STRING): INTEGER; 

BEGIN 
(* External segment *) 

END; 

BEGIN 
(* External segment *) 

END; 

SEGMENT PROCEDURE SEG3; 

BEGIN 

(* External segment *) 

END; 

PROCEDURE PR1; 
BEGIN 

ALFA:=2*BETA; 

END; 

BEGIN (* MAIN *) - 
READ(A,B,C); 
WRITELN(A*TEN ,B*TEN,C#TEN) ; 

STR:=°"; 
EDIT(STR:20) ; 
SEG1(STR) ; 
WRITELN(STR) ; 

SEG33 
WRI (1:5,0:5,K:5)5 

END. 



Pascal Link Program User’s Guide 6.3 

Let SEG1 be defined in the following module: 

PROGRAM ZETA1; 

PROCEDURE PR1(VAR ALFA: INTEGER; BETA: INTEGER); 
FORWARD; 

FUNCTION F(INT: INTEGER): INTEGER; 
EXTERNAL; 

(* EXTERNAL *) SEGMENT PROCEDURE SEG1(VAR S: STRING) ; 

VAR COUNT: INTEGER; 

SEGMENT FUNCTION SEG2(S: STRING): INTEGER; 

BEGIN 
(* External segment *) 

END; 

=
e
 

BEGIN 
COUNT: =SEG2(S) MOD 20 + 1; 

S(COUNT) :=7*7 ; 
END; 

PROCEDURE PR1; (* Required because of the FORWARD declaration *) 

BEGIN 

END; 

BOCIN 
END.



Pascal Link Program User’s Guide 

Let SEG2 be defined in the following module: 

PROGRAM ZETA2; 

PROCEDURE PR1(VAR ALFA: INTEGER; BETA: INTEGER); 
FORWARD; 

FUNCTION F(INT: INTEGER): INTEGER; 
EXTERNAL; 

SEGMENT PROCEDURE SEG1(VAR S: STRING); 

(* EXTERNAL *) SEGMENT FUNCTION SEG2(S: STRING): INTEGER; 

VAR C: INTEGER; 
BEGIN 

C:=ORD(S(4)); 
SEG2:=F(C); 

END; 

BEGIN 

END; 

PROCEDURE PR1; (* Required because of the FORWARD declaration *) 

- BEGIN 
END; 

BEGIN 
END. 



Finally, let SEG3 be defined by the following module: 

PROGRAM ZETA3 

VAR DUMMY: PACKED ARRAY (1..24) OF CHAR; 
1,J,K: INTEGER; 

PROCEDURE PRI(VAR ALFA: INTEGER; BETA: INTEGER); 
FORWARD; 

FUNCTION FCINT: INTEGER): INTEGER; 
EXTERNAL; 

SEGMENT PROCEDURE SEG1(VAR S: STRING) ; 

SEGMENT FUNCTION SEG2(S: STRING): INTEGER; 

BEGIN 
(* External segment *) 

END; 

BEGIN 
(* External segment *) 

END; 

(* EXTERNAL *) SEGMENT PROCEDURE SEG3; 

BEGIN 

T:=I+1; 
J:=Jt2; 

PR1(K,J) 5 
END; 

PROCEDURE PR1; (* Required because of the FORWARD declaration *) 

BEGIN 
END; 

BEGIN 
END. 

m
m
m
 

e
m
 

Ee
 

m
e
 
e
e
e
 

e
e
 

C
e



| 
Le.

 

Pascal Link Program User’s Guide 6.6 

The following MIKADOS commands will compile and link these 

modules. It is assumed that the modules reside in the files 

ZETA, ZETA, ZETA2, 

>PASCALE, ZETA, ,E 

>PASCALE, ZETA1, ,E 

>PASCALE, ZETA2, ,E 

>PASCALE, ZETA3, ,E 

>PEX 

Write name of file: 

and ZETA3 respectively. 

ZETA: P2 

Write number of segment to be made external: 1 

Write number of segment to be made external: 2 

Write number of segment to be made external: 3 

Write number of segment to be made external: <escape> 

PEX terminated. 

>PLINK 

Write name of source file: ZETA:P2 

Write name of destination file: ZETAR:P2 

Write name of file for segment #1: ZETA1 

Write name of file for segment #2: ZETA2 

Write name of file for segment #3: ZETA3 

PLINK terminated. 

>LINK, ZETA,R1 

>RENAME 

Enter old file name: 

Enter new file name 

Enter file type P 

Enter old file name: 

Enter new file name 

Enter file type P 

Enter old file name 

RENAME terminated. 

>ZETA 

disc identification (e.g. AB:P1) ZETA:P2 

ZETAS 

disc identification (e.g. AB:Pl) ZETAR:P2 

ZETA 

:dise identification (e.g. AB:Pl) <escape> 

-- Now the program will run. 


