
RCSL No: 31-D617

Edition: October 1980

Author: Ejvind Lynning

Title:

PASCAL80 Driver Conventions

R
C
S
L

42
-i
19
05

§ REGNECENTRALEN
7 af 1979

Keywords:

PASCAL80, driver programming.

Abstract:

This manual contains a standard for the interface between a PASCAL80

driver and process (es) using the driver.

(16 printed pages)

RC
SL

42
-1
19
05

~

Copyright © 1982, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no-
tice. RC is not responsible for typographical or arithmetic errors

which may appear in this manual and shall not be responsible for.
any damages caused by reliance on any of the materials presented.

TABLE OF CONTENTS PAGE

1. INTRODUCTION Commerc ceer ence eervecseeeeeeeeeeeecececece

PROCEDURES eeoeeeseseereeseeeseeeeeereeeeseseeeeeseeeeesnnenoens

FORMATS coccccccccccccccnncccccccscscsccesesesesscecece

3-1 Header MeSSage ..ccecccseccsccccccsceccccccccccces

3.1.1 Driver MeESSAGe ..cceccecvcvcvcccccccccveces

3.2 Data Buffer eneeeeeseseeeexeeeesesevneeeseeeeseeoensener

DRIVER MANUALS eeevesveeeseovoeeeeeeeeeeeeeseseeeeneeeeeeeaeses

N

DO

&
PB

W

10

INTRODUCTION

This note deals with the procedures and formats used for comuni-

cation between a driver and one or more process incarnations in a

PASCAL80 system which use(s) the driver to provide i/o functions.

The standard described in this note applies to drivers written in

PASCAL80 as described in the PASCAL80 Report (RCSL No 52-AA964)

as it stands at the present date. Future revisions of the

PASCAL80 language will most likely entail revisions of the driver

conventions as well.

The conventions described here apply not only when the driver

process and the process(es) using the driver are programmed com

pletely in PASCAL80, but also when one or more of the processes

are programmed in machine code, as long as they communicate by

using the PASCAL80 message exchange mechanisms (signal, wait,

etc.).

By definition a PASCAL80 driver is (an incarnation of) a process

containing a CHANNEL statement. This definition indicates that a

driver performs i/o functions, but it does not characterise the

amount of processing, such as e.g. error correction or data

structuring, which is performed. The functions related to i/o may

therefore in different cases be distributed differently between

the driver and the process incarnation(s) which make use of the

driver. In order that the present conventions should not intro-

duce undesirable restrictions on this functional distribution

they have been kept fairly minimal.

Procedures and formats which need not be adhered to in all cases,

but which should be followed whenever they are appropriate, are

included as recommendations.

The note also contains some hints on the structure and contents

of driver manuals.

PROCEDURES

By convention each driver incarnation has a unique request sema-

phore. A request to the driver is made in the form of a message,

called a driver message, signalled to this semaphore.

When a driver has processed a request the message is returned

(i.e. signalled to its answer semaphore). When returned, the

message is referred to as an answer.

If a driver does not process and answer requests in the same

order as the driver messages are received this should be

explained in the driver manual.

When a driver maintains internal request (buffer) queues it shall

in general be possible to recall the pending requests by means of

a "regret" request.

FORMATS , 3.

In the following we use the term i/o-data to mean data which is

actually transferred to or from an input or output device (notice

that a communication line is also considered an i/o device). The

term "data buffer" is used with the same meaning as "message

data" in the PASCAL80 Report.

The "user" bytes ul, u2, and u3 of the header of a driver mes-

sage/answer are used to specify the function requested from a

driver and after processing of a request to provide result

information. When ul-u3 are not sufficient to hold the request/—

result information, part of this information may also be placed

in the data buffer.

I/o data, including address information to indicate the precise

amount of data, are held in the data buffer of the driver

buffer/answer.

The general format is illustrated below:

driver message answer

message header message header

ul function unchanged

u2 no standard use result

u3 device address or data byte data byte if needed

if needed

data buffer with output data data buffer with input data

byte 0-1 first unchanged

byte 2-3 | last unchanged

byte 4-5 (lastw) next

(from function or address information result/status information)

(byte 6 not held in ul—u3 not held in ul—u3))

remaining

bytes output data _ input data

3.1 Header Message

3.1.1

The "user" bytes ul-u4 are used in driver messages and answers as

described in this section.

Driver Message

ul: function

The byte ul is used to specify the function to be performed by

the driver as shown below (bit 7 is most significant, bit 0 least

Significant), i.e. ul=basic function+4*function modification.

bit 7 2 =«1 0

function modification | basic function

The basic function is coded as follows:

value meaning

0

There is no standard for the coding of the function modification.

control operation, i.e. any operation that does not

involve an actual transfer of data,

read (receive) data operation,

write (transmit) data operation,

write and read data operation, i.e. write followed by read

using the same buffer,

When necessary, this field is used in a driver dependent way to

distinguish between different function requests with the same

basic function code. The following coding is recommended

(bf=basic function, fm=function modification):

bf=0,

bf=0,

bf=0,

bf=0,

bf=0,

b£OO0,

fm=0:

fm=1:

fm=2:

fim=3:

fm=5:

fm=0:

get device status,

initiate/connect/open device,

terminate/disconnect/close device,

regret request,

pause (release channel to test program),

block transfer of binary data to/from data buffer.

u2: not used

Normally u2 is not used to hold information to a driver.

u3: device address or single byte i/o data

There are two alternative uses of the u3 byte.

When a driver services more than one device, uw3 is used to hold

device address information.

When data is transferred in single byte mode, i.e. a driver

request causes the transfer of only one byte, u3 is used to hold

this byte, so that a header message (message without data buffer)

may be used.

u4; not used

The byte u4 must not be used in driver messages.

Notes

These conventions do not rule out the use of u3 for other

purposes than described, nor the use of u2, in a driver message.

However, such use is not standardised.

When the bytes ul-u3 are not sufficient to hold a driver request,

additional information may be placed in the data buffer. In the

case of a data transfer request, i.e. when the data message is

used for i/o data, such information should start in byte 6,

otherwise there are no restrictions. Using the PASCAL80 LOCK

statement such information can freely be given a suitable

type-definition (as opposed to ul—u3 which are restricted to the

type 0..255 by the language definition).

3.1 2 Answer 3.1.20

ul: unchanged

When a driver message is returned as an answer ul is unchanged.

u2: result

The byte u2 is used to give result information from a driver to

the requesting incarnation (actually the incarnation to which the

request message is returned) as shown below, i.e.

u2=result+8*result modification;

bit 7 3 2 0

result modification | result

The result is coded as follows:

value meaning

0 processed succesfully,

] not processed because of a previous error not yet repaired

(used with multi-buffering),

2 transient error, i.e. error which may be corrected by the

driver; accompanying data may contain errors, e.g. parity

errors.

3 persistent error, i.e. error which must be corrected by @

operator intervention and/or a suitable driver request to

reset the device,

4 illegal function, i.e. unintelligible driver message,

5-6 reserved, not used presently.

7 not used; this value may be used to indicate that a

message does not contain an answer from a driver.

The result modification is used in a driver dependent way to

provide additional information needed to distinguish different

results, e.g. different kinds of transient error requiring

different repair. As a general recommendation, only distinctions

which will be useful for the requesting process incarnation r

should be provided.

3.2

u3: unchanged if device address or single byte i/o data

When u3 is used in a driver message to hold a device address it

should not be changed by the driver.

If data is transferred in single byte mode u3 is used to hold

data read from a device.

Other uses of u3 are not ruled out, but they are not

standardised.

u4s; not used

The byte u4 must not be changed by a driver. This allows the user

of a driver to use u4 for purposes other than communication with

the driver.

Note

Result information which cannot be placed in ul-u3 may be held in

the data buffer of an answer in the same way as request

information in the data buffer of a driver message.

Data Buffer

The format of the data buffer is standardised for block data

transfer requests, i.e. when the buffer is used to hold i/o data.

Other uses of the data buffer, e.g. for device status information

are not standardised.

3.2

When all request/result information needed in a driver

message/answer can be held in ul—u3 the data buffer (of size n

bytes) is treated by a driver as a record of the type:

data_buffer=RECORD

first: INTEGER;

last: INTEGER;

lastw/next: INTEGER;

(* when necessary, additional request/result *)

(* information is placed here *)

data: ARRAY(6..n-1) OF byte (* i/o data *)

END (*RECORD*) ;

The locations ("sub-array") data(first..last) is called the data

area of the buffer.

The output data for a write/transmit operation are taken from the

data area. Note that in the case of a write and read data oper-

ation lastw (not last) is used as the index of the last data byte

to be written. If the write operation completes normally,

next=last+1 (or lastw+1) afterwards.

Similarly the input data of a read/receive operation are placed

in the data area. If this area is not sufficient for the received

data, buffer overrun will occur. If the read/receive operation

completes normally, next, in the answer, will be the index of the

location following the last received byte. Thus next indicates

the length of the block that was actually received into memory.

A driver must not change first or last.

Some drivers may accept a data buffer stack. As a general rule

each data buffer in the stack is formatted as described above,

and the concatenation of the data areas of the buffers, from top

to bottom, is considered one logical i/o data record. Mmly the

top message header is interpreted according to the conventions

spelled out in section 3.1. When a driver supports stacked data

buffers it should be explicitly mentioned in the driver manual.

When request/result information in addition to what can be held

in ul-u3 is needed, such information should be placed between

lastw/next and the data array; the min bound of this array (6)

_Should be incremented accordingly. The formatting of such

request/result information is not standardised.

10

DRIVER MANUALS 4.

The following contents are suggested for driver manuals.

Section 1: Introduction

Section 2: Functions Supported by the xxx Driver

This section contains a thorough description of the functions

provided by the driver.

Section 3: Driver Interface

This section contains explicit specifications of all formats

and codes used in driver messages as well as the answers that

May occur for each type of request. The actions caused by a

particular request need not be explained in detail, but

references to section 2 should be given whenever appropriate.

The material in this note need not be repeated in all driver

manuals, a reference is sufficient.

Section 4: Parent Process Responsibilities

This section contains information on how to declare, link,

create, and start the driver. Specifically all process

parameters of the drivers should be decribed. Suggested values

of the storage and priority parameters needed for create and

start should also be given.

RETURN LETTER

@ Title: PASCAL80 Driver Conventions RCSL No.: 317D617

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42
-1

1
2
8
8

eee eee eee eee Do not tear - Fold here and staple-.

Affix
postage
here

§ REGNECENTRALEN
cc af 1979

Information Department

Lautrupbjerg 1

. DK-2750 Ballerup

Denmark

