
RCSL No: 42-i1542

Edition: November, 1980

Author. Bo Bagger Laursen

Title:

RC3502 — PASCAL80

Reference Manual.

§ REGNECENTRALEN
cS af 1979

Keywords:

PASCAL80, RC8000, RC3502, Multiprogramming.

Abstract:

This is a description of the RC3502 implementation of the

programming language PASCAL80.

The following are described: the rmtime environment of a PASCAL80

process on the RC3502 machine, the predefined routines, and how to

use the PASCAL80 compiler.
Sr (76 printed pages)

Copyright © 1980, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen
Users of this manual are cautioned that the specifications contai-

- ned herein are subject to change by RC at any time without prior no-
3 tice. RC Is not responsible for typographical or arithmetic errors
= which may appear in this manual and shall not be responsible for
$ any damages caused by reliance on any of the materials presented.

t TABLE OF CONTENTS PAGE

1. INTRODUCTION eeeveeveseseeeeeeeeeeeeeeeesevneesneeeeeeneseenes]

2. THE RC3502 MACHINE .ccccccccccccccccccccccccccccecccccs

2.1 Run Time Environment ..cceccccccccccccccscvccscces

2.2 MONITOR Process see e ccc ce cece ececcesnccccssececces

2.3 Driver PLOCESSES cecccesereccccccccvccccescccecces,

2.3.1 Time OUt coccecrccccccccnvccccccccssccccccs

264 TIMER PLOCESS ceccccccccccccccccccccccccccvceccees

2.5 ALLOCATOR PLOCeSS .eccccccccccccccccccsccccccccccne

2.6 LINKER ProceSS .cccccccccccccccccccccccccsccccsces

@ 2.7 ADAM PLOCceSS coccccccccccccccccccccccccccccccecces

2.8 OPERATOR PrOCeSS .occccccccccccccccccceccsvecccces W
w

O
N

N
D

HD

—&

W
D

LN

n
d

3. RC3502~PASCAL80 IMPLEMENTATION DETAILS AND LANGUAGE

MODIFICATIONS eeesveeveeveseeeeveeseeeeeevseeveeoe eee eeseeeeenee @ 15

4, PREDEFINED CONSTANTS, TYPES, AND VARIABLES 18

5. PREDEFINED ROUTINES e@eseeoeveoeeeseeeeosvpeeneeeeseeveeesneene eee 8 20

6. REPRESENTATION AND LAYOUT OF VARIABLES ...seccecceeseee 35

6.1 Representation Of Values ..cescccccvcccccvcssseees 35

6.1.1 Enumeration Types .esesesecccccccccccceseee 35
@ 6.1.2 Shielded and Pointer Types ..cceeeceseeeess 35

6.1.3 Structured Types ..ccccccccccvccccscccscees 36

6.1.4 Type Size ccccrcccccccccccccccccccscccssees 36

6.2 Memory Layout ..cceccccccccccccccccsccccsccssccess 37

6.2.1 Word AlignMentccccccccccsccccccccscess 37

6.2.2 Stack FLAME .occecccccccccccccccsscccsseses 38

6.2.3 Structured TyPeS .ocsececccccccssccccccsees 40

6.2.3.1 Arrays and Records, Not Packed ... 41

6.2.3.2 Packed Arrays and Records 41

6.2.3.3 Set TYPES coceccccccccccccssecseese 43

ii

TABLE OF CONTENTS (continued) PAGE

APPENDICES :

A. REFERENCES eeeeveeseereeeseseseseeeseeeseecseneeneeeeosesenene 45

B. USE OF THE PASCAL80 COMPILER eeoeveseeeeeeeeoeeeeoeseeoevens 46

B.1 Call of the Compiler esveeeeeeseeceeeeseeeeeevoeeseoeze 46

B.2 Use of the Contexts @eeoreeeeeeeeeeseeeeeeeseeasenne 48

C. PASCAL80 ERROR MESSAGES .ccccccccccccccccvcccccccsesess 49

C.1 Messages from PasS 1 cccecccccccccccccccccccsseces 49

C.2 Messages from PaSS 3 cccccesccccccccccccvscscccece 5]

C.3 Messages from Pass 4 .ccccccccccccccscccsesccsevee 57

C.4 Messages from Pass 5 wcccccccccccceccccccccesecees 59

C.5 Messages from PaSS 6 scsocecevcccccccccccscscseses 60

D. LOAD FILE GENERATION ON RC8000 ...ccscseccccscccccseess 62

Del CROSS—Linker .occccccccccccccccccccscscceseseseses 62

D.2 Use of punchl6é to Generate a Load File ..ccceseeee 67

D.2.] Generating a Papertape .eseccececcccceseses 67

D.2.2 Generating an FPA Bootfile ...cccccecsecees 67

E. COMPLETE LIST OF LANGUAGE SYMBOLS ..csccesesecececesess 69

@. INTRODUCTION

This manual describes the RC3502 implementation of the

programming language PASCAL80.

The manual is structured in the following way:

Chapter 2 describes the standard processes comprising the run

time environment for RC3502-PASCAL80 processes.

Chapter 3 contains the differences and limitations of the RC3502

PASCAL80 language as defined in the PASCAL80 Report [2].

Chapter 4 describes the predefined types, constants, and variab-

les used in the RC3502 implementation.

Chapter 5 describes all the predefined routines inclusive all

input/output routines.

Chapter 6 describes the representation of objects in storage at

run time.

The appendices B and C describes the use of the RC3502—PASCAL80

compiler, and the error messages from the compiler.

Appendix D describes how a load file is generated on RC8000.

Appendix E contains a complete list of language symbols.

THE RC3502 MACHINE

2.1 Run Time Environment

After autoload and system initialization, the incarnation

structure is:

Figure 1: Incarnation structure after initialization.

MONITOR

TIMER

ALLOCATOR

controls short term scheduling (time slicing) and

performs medium term scheduling (START, STOP).

performs delay timing and time out of drivers.

administers allocation and deallocation of RAM

memory and I/O channels.

is the root of the dynamic tree of incarnations.

ADAM automatically creates and starts three

incarnations:

- OPERATOR

« OPSYS

- S

2.1

2.2

LINKER administers a catalog of processes and routines,

the LINKER catalog.

OPERATOR is the interface between a human operator and the

CONSOLE running incarnations. CONSOLE performs I/O to the

debug console.

OPERATOR processes messages signalled to the

operator semaphore.

OPSYS is a command interpreter functioning as an

interface between a human operator and ADAM.

PRINTEXCEPT prints a list of the dynamic chain of routine

calls, when a process incarnation goes into a

runtime error (exception).

S is the root of all application incarnations. If a

. process S exists in the LINKER catalog, an

incarnation of S will be created and started. This

will be the case when a process S is blasted in

PROM or autoloaded.

S may replace OPERATOR with its own NEW_OPERATOR,

and OPSYS by its own NEW OPSYS.

Monitor Process 2.2

The main purpose of the Monitor is to control the set of active

incarnations.

The active incarnations are divided into three priority classes:

Class I: High priority

Class II: Medium priority

Class III: Low priority

Scheduling of class I incarnations is managed by the hardware

2.3

interrupt priority mechanism. Incarnations in class I are running

on an interrupt level greater than zero.

Class II and III incarnations are running on interrupt level 0.

The incarnations in these classes are organized in active queues.

Scheduling of class II and III incarnations is also performed by

the hardware.

The class II incarnations are scheduled according to internal

priority in the class and round robin for a given priority.

The class III incarnations are scheduled after a time sliced

roundrobin algorithm with built-in priority.

The monitor is activated

- by the expiration of a time slice

- when incarnations call the routines BREAK, REMOVE, START, or

STOP.

Driver Processes 2.3

By definition, a driver process is a process which uses the

CHANNEL <reference variable> DO <statements>;

construction or the standard input/output routines.

The access to all input/output routines and the CHANNEL statement

is a reference variable which refers to a message of kind

"channel message’.

A channel message is obtained by calling the routine RESERVECH

specifying the input/output channel the incarnation wants to

control.

The system guarantees that at most one channel message is

allocated per input/output channel.

When an incarnation executes a CHANNEL statement or calls an

input/output routine, it is checked that the reference variable

is not nil and that the reference variable refers to a message

header of kind ‘channel message’.

In the input/output routines this is also checked.

Before execution of the first statement in the CHANNEL

construction, the incarnation has entered the class I priority

class.

The statements in the CHANNEL construction are executed on the

hardware priority level specified by the channel message.

After execution of the last statement in the CHANNEL

construction, the incarnation reenters the priority class (II or

III) which the incarnation left, when entering the CHANNEL

construction.

The user should be very much aware of the fact that all incarna-

tions in the priority classes II and III, besides all incarna-

tions running at a hardware priority level less than the priority

level of the user's incarnations, are disabled while executing

statements in a CHANNEL construction.

This is true for all statements except those input/output

routines, which clear the interrupt level, and thereby allow

incarnations with less priority to execute instructions.

Therefore, the following recommendations should be followed:

- minimize the number of statements which are executed in a

CHANNEL construction

- the statements in a CHANNEL construction should mainly be

input/output routine calls.

The system allows an incarnation to possess several channel mes-

sages, but it is emphasized that it is the channel message used

2.3.1

in the CHANNEL statement that defines the level, where the r

incarnation is sensitive for interrupts.

Therefore it is normally the same channel message which is used

both in the CHANNEL statement and the input/output routines.

The channel messages may differ. This may be used to sense an

input/output channel on another level than the level defined by

the CHANNEL statement, or even outside a CHANNEL construction.

Time Out 2.3.1

2.4

Time Out of class I incarnations is performed by the TIMER

Process which decrements once per second the standard variable

OWN. TIMER in all class I incarnations.

Time Out takes place, when the variable is decremented fran 1 to

0.

Timer Process 2.4

The Timer Process

- returns messages after a specified interval (Delay Timing) @

- controls time out of incarnations running on interrupt

levels greater than zero.

Delay timing is requested by calling the procedure SENDTIMER (see

chapter 5).

Time out is requested by assigning the time out period in seconds

to the variable OWN.TIMER. Time out will only happen when running

as a class I incarnation.

2.6

ALLOCATOR Process 2.5

After startup of the system, ALLOCATOR controls the available

memory.

Memory is allocated to contain the incarnation stack, when a

process incarnation is created.

Variables of type POOL are allocated memory, when a newborn

process incarnation is started.

The memory possessed by a process incarnation is deallocated when

the controlling father process incarnation or an ancestor calls

the REMOVE procedure.

ALLOCATOR also controls access to all I/O channels. This is done

by messages of kind CHANNELMESSAGE.

An I/O channel is allocated by calling the routine RESERVECH

specifying

DEV -—- device number

MASK — facility mask.

A channel message is released by the statement

RELEASE (channel_message) ;

LINKER Process 2.6

LINKER administrates the LINKER catalog describing all programs

(processes and routines) in the system. The programs are linked

to physical memory (static relocated) and all calls of external

routines are resolved.

The LINKER processes link/unlink requests fron running incarna-

tions (see the routines LINK, UNLINK).

2.7 ADAM Process 2.7 @

Immediately after upstart of the system the incarnation tree is:

ALLO-

CATOR

Figure 2: Snapshot of incarnation structure.

(This figure is not complete).

ADAM is the root of the dynamic tree of incarnations. ADAM

creates and starts three incarnations:

1) OPERATOR, which performs input/output to the control

microprocessor console, and processes messages fran

running incarnations.

2) OPSYS, which interprets commands fran the console and

converts the commands to ADAM control messages.

3) S is the root of all applications.

MONI- ALLO-
LINKER

TOR CATOR
- a

a 7 -

a“ — =

OPER-
ATOR

Figure 3: Snapshot of incarnation structure if S is included.

S is declared as an external process in ADAM.

The declaration of S in ADAM is:

PROCESS S(VAR sem vector: system_vector);

EXTERNAL;

S is application dependent, and the formal parameters of the

actual S must obey this declaration.

The parameter sem vector is used to pass references to system

semaphores like:

adam semaphore [sem vector (adamsem) {]

allocator semaphore [sem vector (allocatorsem)]

operator semaphore [sem_vector (operatorsem) f]

ADAM may be requested to STOP and REMOVE any of the children and

unlink the process by sending a message to the Adam semaphore

specifying the function to perform.

E.ge:

1) A human operator may stop, remove, and unlink the whole

application tree (S) and start up a complete different

application tree. >

2) The application tree may stop, remove, and unlink OPERATOR

and OPSYS. A NEW OPERATOR may be created and started as a

child of S, e.g. to implement remote operator communication.

NEW_OPERATOR must wait for the operator semaphore (at least

all messages signalled to the operator semaphore must be

released).

10

ALLO-

CATOR

OPER-

Figure 4: Incarnation structure when OPERATOR is replaced by

NEW_OPERATOR.

Messages signalled to the ADAM semaphore are interpreted as a

data message of type

adamtype=RECORD

namel: alfa;

name2: alfa;

aux] : integer

END;

Message headers to/from ADAM have the format

ADAM message answer

ul function unchanged

u2 not used result

u3 not used unchanged

u4 not used unchanged

All messages which cannot hold a variable of type adamtype are

returned with result=1. An unknown function is returned with

result=15.

1]

function=1 (LINK)

If ADAM has a free process declaration the process ‘'namel’ is

linked to a free process declaration. All process declarations in

ADAM are

PROCESS processname (VAR sem_vector: system vector);

EXTERNAL

Result | Meaning

0 ok

2 a process is already linked to a process declara-

tion in ADAM with the external name '‘namel'

3 no free process declarations

process with name ‘namel' does not exist in the

LINKER catalog

5 process with name 'namel’ exists in the LINKER

catalog, but the number of parameters or the type

of parameters does not match.

function=2 (CREATE)

An incarnation with name 'name2' of the process ‘namel' is

created with size ‘auxl’. Mmly one incarnation per process can be

created.

Results Meaning

0 ok

6 an incarnation: of process 'namel' is already

created

7 no process with external name ‘namel' is linked to

a process declaration in ADAM

8 no storage or demanded size (auxl) is too small

12

function=3 (START)

The incarnation with name ‘'name2' is started with priority

"auxl’.

Results Meaning

0 ok

9 unknown incarnation

function=4 (STOP)

The incarnation with name 'name2’ is stopped.

Results Meaning

0 ok

10 unknown incarnation

function=5 (REMOVE)

The incarnation with name ‘name2'’ is removed.

Results Meaning

0 ok

11 unknown incarnation name

function=6 (UNLINK)

The link to the process with external name 'namel' is deleted.

Results Meaning

0 ok

12 no process with external name 'namel'’ is linked to

a process declaration in ADAM

13 ADAM still controls an incarnation of the process

"namel'

2.8

13

function=7 (BREAK)

The incarnation with name 'name2' is breaked with code aux].

Results Meaning

0 ok

14 unknown incarnation

OPERATOR Process 2.8

Messages signalled to the OPERATOR semaphore [sem vector

(operatorsem) f] are interpreted as a data

message of type

Buffertype = RECORD

first: integer;

last : integer;

next : integer;

name : alfa; (* 12 chars *)

databuf: array (18..97) of char

END;

The data part of the message follows the driver conventions. It

is checked that the following assertions hold:

6 + alfalength <= first

and

first <= last

and

last < 6 + alfalength + 80

Messages to OPERATOR

read: ul = 1]

The message is queued up until it is "activated" by the

human operator.

14

write: ul = 2 r

The message is printed as soon as possible.

Answers from OPERATOR

All messages are returned, when the appropriate action has been

performed.

ul, u3, u4 are unchanged

u2 = result: 0 = ok

= not processed

= timeout @

perm error

= illegal message

Oo

Ff

Ww
W

NO

—

Mt

attention

"next" is undefined, unless result = ok

15

eo: RC3502-PASCAL80 IMPLEMENTATION DETAILS AND LANGUAGE MODIFICATIONS

The following is a list of modifications and details as compared

to the PASCAL80 Report of this first version of the

-RC3502~-PASCAL80 implementation. The reference is done by page and

line number in the PASCAL80 Report [2].

Page 2 Comment:

> (t Y

-— character

-—non—printing symbol——

re—Character

—-non—printing symbol——

Page 3 line 2 from the bottom: "all" is replaced by "most".

Page 63 identifier

— letter \ >

—> pe—letter+—

r 7 <—digit =—

le

Page 63 numeric value is implemented as:

~digit > ~

> *b binary digity™

p> ¥o-proctal digit 7>

p> *hprhexa digit

© binary digits are 0..1

octal digits are 0..7

hexa digits are 0..9 and a..f
°

16

Page 9 and pages 41-42: Parameterized types are not

implemented, hence the predefined type string (n) (page @

36) has no meaning. Instead of string (n) there is a

predefined type:

alfa = array(1..12) of char;

and the routine heading of link is changed to:

FUNCTION link(external_name:alfa;PROCESS name): integer;

Page 19: The type real is not implemented.

Page 16 Char value:

——> "—»string character >"—>—>-

L»'—»string character —»' —

The string characters are the characters: sp ..

Page 36, page 64 Character string:

>>" ali string character >" —

Lp! maid string character nial —_>

The string characters are the characters sp ..

Page 52 and page 60:

Prefixed process declaration has not been implemented.

As an alternative the compiler accepts "context's", see

appendix B.2.

Page

Page

Page

Page

Page

17

60 prefix declaration is implemented as:

prefix declaration:

PREFIX prefix name ; routine declaration

The file containing the generated code for the routine may

be specified as input to the linker when processes using the

routine are linked.

19

The bounds min bound and max bound of a subrange type

definition must be given by constant expressions.

45, Pool Initialisation

The allocation of memory for messages for a pool variable is

performed during the initialisation of an incarnation after

it has been started and scheduled to run. One effect of this

is that an incarnation may in unfortunate cases be success~

fully created and yet unable to run due to lack of memory.

51, Process Parameters

Process parameters of reference, pool, or shadow types are

not allowed, neither as variables, values, or camponents of

structured parameters. Pointers may be passed only as values

or frozen variables. Semaphores may be passed as variables,

but not as values.

56, Incarnation Termination

When an incarnation is terminated (by canpleting its can-

pound statement) it is permanently descheduled and will not

become running again. Garbage collection is performed, when

the incarnation is removed by the father or an ancestor.

4. PREDEFINED CONSTANTS, TYPES, AND VARIABLES

The following constants and types are predefined.

CONST

alfalength = 12;

stdpriority = -3;

maxint = 32767;

minint = -—32768;

TYPE

bit = 0..1;

byte = 0..255;

alfa =

adamsemtype = (allocatorsem,adamsem,operatorsem,?,?,

PD Por wrlear Pp? pe)? spe pe pspee

adamvector = ARRAY(adamsemtype) OF

system_vector = !adamvector;

incarnation descriptor =

RECORD

timer : integer;

incname: alfa;

END;

VAR

own: incarnation_descriptor;

ARRAY (1..alfalength) OF char;

semaphore;

19

The variable OWN. INCNAME is initialized by the CREATE routine.

The values of the predefined type integer constitutes the

subrange minint..maxint.

In the RC3502 implementation the following relations between the

fields in a message header refered by the reference variable r

hold:

#elements in #elements in

message message header] message data

size kind empty (r) | stack stack

> 0 >0 true]

> 0 >0 false > 1 >1 data

. message

> 0 0 false > 1 >)

0 0 true] 0 header

0 0 false > 1 0 message

facility channel
mask < 0 true] 0 message

The ‘size’ field specifies the number of words (16 bits) of the

associated message data. The maximum size a message can take is

32 K words, where SIZE=-32768.

"Facility mask’ originates from the call of RESERVECH (see

chapter 5).

20

PREDEFINED ROUTINES

The following routines are predefined unless explicitly

mentioned.

If there is no functional description of the routine, the reader

is requested to consult the PASCAL80 Report [2].

In the description of the input/output routines a device is

considered as containing a number of registers:

- CONTROL

STATUSIN

STATUSOUT

- DATAIN

- DATAOUT

where information is transferred to/from by means of canmands

issued by the RC3502 machine.

The procedures INBYTEBLOCK, INWORDBLOCK, OUTBYTEBLOCK,

OUTWORDBLOCK interprete the actual datamessages as being of type

buffertype= ARRAY(0..max) OF byte

FUNCTION abs(xsinteger): integer;

FUNCTION alloc(VAR r: reference; VAR p: pool 100;

VAR s: semaphore);

PROCEDURE break(VAR sh: shadow; excode: integer);

~ stops the child and starts it in the exception procedure (see

EXCEPTION)

FUNCTION chr(int: 0..127): char;

21

@ PROCEDURE control (control _word: 16 bittype;

VAR chmsg: reference);

- this contents of the parameter control_word are transferred to

the CONTROL register in the device selected by the channel

message chmsg. The current interrupt level is not cleared so

the next statement is executed without waiting for interrupt

from the device.

The procedure must be declared in the declaration part of the

process.

The type of control _word may be any type of size 16 bits.

An exception occurs if chmsg does not refer to a channel

@ message.

PROCEDURE controlclr (control word: 16 bittype;

VAR chmsg: reference);

- the contents of the parameter control _word are transferred to

the CONTROL register in the device selected by the channel

message chmsg. The current interrupt level is cleared, so the

next statement is executed when an interrupt arrives from the

device.

The procedure must be declared in the declaration part of the

process.

The type of control_word may be any type of size 16 bits.

An exception occurs if

- the reference variable chmsg is nil

- chmsg is not a channel message

FUNCTION create (incarnation_name: alfa;

processname (actual parameters);

VAR sh: shadow;

Size: integer): integer;

- a new incarnation of the process linked to processname is

created. The size parameter specifies the amount of storage for

r holding the runtime stack. The stack is initialized with the

actual parameters and various administrative information. The

22

incarnation name field in the stack is initialized to

incarnation_name and the state to stopped.

The function returns the following results:

result meaning

0 call ok, incarnation creation

] the shadow variable was not nil

2 the process was not linked

3 no storage or demanded size too small

The size parameter is indicated in words. The maximum size an

incarnation stack can take is 32 K words, which will be

allocated if size is negative.

FUNCTION empty (VAR r: reference): boolean;

FUNCTION eoi: boolean:

- true if the EOI (End Of Information) status bit is 1 in the

program status word in the incarnation descriptor. The EOI

status bit is updated whenever a READ or WRITE data cammand is

issued by the incarnation.

After a READ command eoi=true indicates that the device has

responded with no data. After a WRITE command eoi=trvue

indicates that the device has accepted the data and wants no

more data.

PROCEDURE exception (excode: integer);

- if the user has not declared an exception procedure, a standard

exception procedure will be called, when an exception occurs.

The procedure may also be called as a normal procedure.

23

The standard exception procedure produces output with the

format:

process name >> exception, excode=code: error text

gf= @eevees a lf eeeees

called from: eeeee v ic= e@eoog line evens ee a date

- The list of "called fram ..." is the dynamic chain of routine

activations.

- "gf" and "lf" are stack references

- "code" and "“errortext" are the actual exception code and the

meaning of the code, some of the texts include information

about the operands which caused the exception.

- "ic" and "line ...-..." is an identification of the calls

- "date" is the compilation date of the modules in question.

PROCEDURE getbufparam

(VAR i: RECORD

top, count: integer;

saddr: datastart;

END;

first, last: integer;

VAR msg: reference);

- returns the start address (saddr) of the byte with index first

in the data buffer referenced by msg. As a sideeffect

count:= last+1-first

top:= last+]

is returned.

The procedure is intended for initializing a DMA controller

with the start address and count for an input/output operation.

The following exceptions may occur

~- the reference variable is nil

- the message is no data message

- size of message is too small

last < first

24

The procedure must be declared in the declaration part of the

process. The type of i may be any type of size 8 bytes.

PROCEDURE inbyteblock

(VAR next: integer;

first, last: integer;

VAR msg: reference;

VAR chmsg: reference);

- inputs a block of bytes to the databuffer specified by msg,

first, and last from the device specified by the channel

message chmsg. When the procedure terminates next will be the

index of the byte following the last byte input.

The procedure will terminate in two situations

- when next=lastt1];

- when eoi=true

If nothing is input next=first.

The following exceptions may occur

- the reference variables chmsg is nil

- chmsg is not a channel message

- the reference variable msg is nil

- the message msg is no data message

- size of msg is too small

- last < first

PROCEDURE inword (VAR word: 16 bit type;

VAR chmsg: reference);

- the contents of the DATAIN register in the device selected by

the channel message chmsg is transferred to the parameter word.

If eoi=true after the call the contents of word are undefined.

The procedure must be declared in the declaration part of the

process.

The type of word may be any type of size 16 bits.

An exception occurs in the following situations:

- the reference variable chmsg is nil

- chmsg is not a channel message

25

PROCEDURE inwordblock

(VAR next: integer;

first, last: integer;

VAR msg: reference;

VAR chmsg: reference) ;

~ inputs a block of words to the data buffer specified by msg,

first, and last from the device specified by the channel

message chmsg.

The procedure terminates in two situations

- when next=last+1

- when eoi=true

If nothing is input next=first.

The first word input will be the word indexed by first even if

first is odd (note all indices are byte indices!).

The word indexed by last will only be input if first is even

and last is odd.

The following exceptions may occur

the reference variable chmsg is nil

- chmsg is not a channel message

~- the reference variable msg is nil

~ the message msg is the data message

- size of msg is too small

last < first

FUNCTION link (external_name: alfa; process name): integer;

~ The process identified by external_name is looked up in the

LINKER catalog.

If found the process identified by external_name is linked to

process name.

The function returns the following results:

result Meaning

0 . process linked

1 process with name ‘external_name’ was not found

in the LINKER catalog.

26

3 process with name ‘external_name' is in the r

LINKER catalog, but the number of parameters or

the type of parameters do not match

6 a process is already linked to process name.

FUNCTION locked (VAR sem: semaphore): boolean;

FUNCTION nil (VAR r: niltype): boolean;

FUNCTION open (VAR sem: semaphore): boolean;

FUNCTION openpool (VAR p: pool 1): boolean;

— returns the value true if the pool is not empty, false

otherwise.

FUNCTION ord (x: niltype): integer;

PROCEDURE outbyteblock

(VAR next: integer;

first, last: integer;

VAR msg: reference;

VAR chmsg: reference);

~ outputs a block of bytes from the databuffer specified by msg,

first, and last to the device specified by the channel message

chmsg. When the procedure terminates next will be the index of

the byte following the last byte output. The procedure will

terminate in two. situations

—- when next=last+]

'= when eoi=true

27

If nothing is output next=first.

The following exceptions may occur

- the reference variable chmsg is nil

- chmsg is not a channel message

_- the reference variable msg is nil

- the message msg is no data message

- size of msg is too small

last < first.

PROCEDURE outword (word: 16 bit type;

VAR chmsg: reference) ;

- The contents of the parameter word are transferred to the

DATAOUT register in the device selected by the channel message

chmsg. The current interrupt level is not cleared so the next

statement is executed without waiting for interrupt fram the

device.

The procedure must be declared in the declaration part of the

process.

The type of word may be any type of size 16 bits.

An exception occurs in the following situations

- the reference variable chmsg is nil

~- chmsg is not a channel message

PROCEDURE outwordblock

(VAR next: integer;

first, last: integer;

VAR msg: reference;

VAR chmsg: reference);

~ outputs a block of words from the data buffer specified by msg,

first, and last to the device specified by the channel message

chmsg.

The procedure terminates in two situations

- when next=last+1

- when eoi=true

If nothing is output next=first.

The first word output will be the word indexed by first even if

first is odd (note all indices are byte indices!) .

28

The word indexed by last will only be output if

first is even and last is odd.

The following exceptions may occur

- the reference variable chmsg is nil

- chmsg is not a channel message

- the reference variable is nil

- the message msg is no data message

size of msg is too small

last < first.

PROCEDURE outwordclr (word: 16 bittype;

VAR chmsg: reference) ;

- the contents of the parameter word are transferred to the

DATAOUT register in the device selected by the channel message

chmsg. The current interrupt level is cleared, so the next

statement is executed when an interrupt arrives fram the

device.

The procedure must be declared in the declaration part of the

process.

The type of word may be any type of size 16 bits.

An exception occurs in the following situations

- the reference variable chmsg is nil

- chmsg is not a channel message.

FUNCTION ownertest (VAR p: pool 1;

VAR r: reference): boolean;

- returns the value true, if the message references by r

originates from the pool p, otherwise false.

An exception occurs if

- the reference variable is nil

FUNCTION passive (VAR sem: semaphore): boolean;

29

PROCEDURE pop (VAR rl, r2: reference);

- the top message header from r2 is removed. If the new top

message and the old top message refer to the same data buffer

only the message header is removed. If not the top message data

is removed also. rl refers to the removed message.

Exceptions occur if

- rl is not nil before call

- r2 is nil before call

r2 becomes nil after the call if empty (r2)=true before the

call.

FUNCTION pred (x: niltype): niltype;

PROCEDURE push (VAR rl, r2: reference);

- The header referred to by rl becomes the new top header of the

stack. After the call, r2 refers to the new stack.

If the new top message is a header message, the top data of r2

remains the same. After the call rl is nil.

The parameter rl must refer to a message (must not be nil), amd

this message must have exactly one header, otherwise an

exception occurs. The message accessible through r2 (possibly

nil) is called the stack.

30

1) Before call

Lrg fref2h[}H
aa

2)

A] aE:

——

=

Figure 5: Example on the behavior of push.

FUNCTION ref (VAR sem: semaphore): semaphore;

PROCEDURE release (VAR r: reference);

PROCEDURE remove (VAR sh: shadow);

FUNCTION reservech (VAR chmsg: reference;

channel, mask: integer): integer;

~ allocates the channel message to the I/O channel specified by

the parameter channel. The parameter mask is extended for

specification of the actions the user wants to perform on the

channel. The parameter is not used in this revision.

3]

result meaning

0 reservation ok. chmsg refers to the allocated

channel message.

] the channel is already reserved

2 - the reference variable chmsg is not nil before

call.

PROCEDURE return (VAR r: reference);

PROCEDURE sendtimer (VAR r: reference);

~ signals the message referenced by r to the TIMER process. No

wait is performed in the procedure.

The parameter must refer to a message (must not be nil),

otherwise an exception occurs.

message answer

ul unused unchanged

u2 unused resultcode=1

u3 delay 1 undefined

u4 delay 2 undefined

The message is returned after delay] *2faelay2 msec.

PROCEDURE sense

(VAR status in: 16 bittype;

status out: 16 bittype;

VAR chmsg: reference) ;

- the contents in the parameter status out are transferred to the

STATUSOUT register in the device selected by the channel

message chmsg. As a response fram the device the contents of

the STATUSIN register are transferred to the parameter

status _in. The current interrupt level is not cleared so the

next statement is executed without waiting for interrupt fran

the device.

The procedure must be declared in the declaration part of the

process.

32

The type of status_in may be any type of size 16 bits.

An exception occurs in the following situations

- the reference variable chmsg is nil

- chmsg is not a channel message

PROCEDURE sensesem (VAR r: reference; VAR s: semaphore);

- takes a message from the semaphore, otherwise r remains nil.

The caller will not be waiting.

An exception occurs if the reference parameter is not nil.

PROCEDURE signal (VAR r: reference; VAR s: semaphore);

~- The reference parameter must refer to a message (must not be

nil), otherwise an exception occurs. The reference variable is

nil after a call of signal.

If the semaphore is passive or open, the message referred to by

r becomes the last element of the semaphore's sequence of

messages. If a semaphore is locked, the first incarnation

waiting on the semaphore completes its wait call.

PROCEDURE start (VAR sh: shadow;

priority: integer);

- activates a child which has been created by calling the CREATE

routine or which has been stopped by a call of the STOP

procedure.

If the child is already started, the procedure call is dummy.

The monitor activates the child by placing it in an active

queue according to <priority>. If <priority> > 0, the child is

placed in the coroutine class (Class II). If <priority> < 0,

the child is placed in the time slice class (Class III).

If the activation is actually a reactivation of the child, the

child could have been waiting at a semaphore. In that case the

instruction counter for the child was decremented when stopped,

so that the WAIT statement will be repeated.

33

If the child was stopped at an interrupt level greater than

zero, the child is scheduled directly to the old interrupt

level and activated by a TIMEOUT interrupt.

An exception occurs if the shadow variable is nil.

PROCEDURE stop (VAR sh: shadow);

- stops a child. The associated subtree - if any - is not

stopped.

If the child is already stopped, the procedure is dummy.

The child is removed fran the active queue or semaphore where

the child is placed.

If the child is active (waiting for interrupt) on an interrupt

level greater than zero, the child is removed fram the

interrupt level.

If the shadow variable is nil, an exception occurs.

FUNCTION succ (x: niltype): niltype;

FUNCTION unlink (process name): integer;

- the link to the process linked to process name is deleted, if

there exists a link and no incarnations of the process exists.

The function returns the following results

result meaning

0 process unlinked successfully.

] no process was linked to processname.

2 incarnations of the process are existing.

34

PROCEDURE wait (VAR r: reference; VAR s: semaphore);

~- The reference parameter must be nil, otherwise an exception

occurs. After a call of wait it refers to a message.

If the semaphore is open, the first message is removed fram the

semaphore's sequence of messages. If the semaphore is passive

or locked, the incarnation waits and becomes the last element

of the sequence of incarnations waiting on the semaphore. It

can be resumed by another incarnation calling signal or return.

@..

35

REPRESENTATION AND LAYOUT OF VARIABLES 6.

In this chapter it is explained how values of the various types

of PASCAL80 are represented in the RC3502 implementation and how

memory is allocated and laid out to hold the values of the

variables of a process incarnation.

Representation of Values 6.1

Enumeration Types 6.1.21

6.1.2

An enumeration type is defined as consisting of a finite, totally

ordered set of values, corresponding to a set of ordinal values

which is a subset of the integral numbers. The representation of

a value of an enumeration type is the two's complement represen-

tation of the corresponding ordinal value. If a type includes

negative ordinal values the representation of values of the type

is always in 16 bits (a word). If the type includes only

non-negative ordinal values, and n is the largest of these then

the representation is in log, (n+1) bits (at most 16). Examples:

- integer values (-32768..32767) are represented in 16 bits,

- boolean values (false, true) are represented in 1 bit,

- char values (see [2]) are represented in 7 bits,

- values of the subrange type -3..7 are represented in 16 bits,

values of the scalar type (red, green, blue, orange, pink) are

represented in 3 bits.

Shielded and Pointer Types 6.1.2

The representation of values of shielded and pointer types is not

revealed.

6.1.3

36

Structured Types

6.1.4

Values of array or record types are vectors of values of

enumeration, shielded, pointer, and set types. The component

values are represented as described for the component types.

The representation of values of a set type uses a bit vector

whose length depends on the base type. The base type must be an

enumeration type which does not include negative ordinal values.

If the ordinal value set of the enumeration type T is the range

M.e.n (m > 0) then values of the type set of T are represented in

a bit vector with indices from 0 to n. The first m (possibly

zero) of these bits are not significant. If the element of T

whose ordinal value is i (m< i<n) is a member of a particular

value of type set of T then bit i in the representation of that

value is 1, otherwise it is 0. Example:

TYPE

a=set of 3..5;

VAR

The value of b is represented as shown:

bit 012345

Gp O}1| The shaded bits are not significant.

Type Size

The size of a type T, denoted S(T), is the number of bits used to

represent values of type T. The concept of size is only relevant

for types which are affected by packing when used for components

of structured types, and is therefore not defined for all types.

For enumeration types S(T) is computed as described above.

Example: S(char)=7, S(integer)=16.

6.1.3

6.1.4

37

Memory Layout

6.2.1

The memory requirement of a type T, denoted M(T), is defined as

the number of bytes which are allocated for a variable of type T.

For an enumeration type T, M(T) depends on S(T), as follows:

1 < S(T) <8: M(T)=1
9 < S(T) < 16: M(T)=2

For shielded and pointer types, M(T) is the following:

M(reference)= 8

M(semaphore)= 8

M(shadow)= 12

M(pointer)= 4

M(pool)= 8

Memory requirement for structured types is described in

connection with memory layout for these types in subsections

6.2.3 and 6.2.4. .

Word Alignment

The memory of the RC3502 machine consists of a sequence of eight

bit bytes. Each byte has an address. Two consecutive bytes of

Which the first byte has an even address is a word. The most

significant halfword is the byte with the lowest address.

Memory allocation for a variable of a shielded or pointer type,

or of a structured type containing components of shielded or

pointer type(s) is word-aligned, i.e the allocated memory starts

on a word boundary.

6.2

6.2.1

6.2.2

38

Stack Frame

Memory for variables declared in process or routine blocks is

allocated in stack frames in the data structure of the

incarnation to which the variables belong. The general layout of

an incarnation stack is shown in fig. 6.

In the portion of a stack frame used for declared variables

memory is allocated from low to high addresses in the order of

declaration of the variables in the program text.

An integral number of bytes is allocated for each variable. The

number of bytes is determined by the memory requirement of the

type of the variables. Because of word-alignment unused bytes of

memory may be left between variables (in fact also inside

structured variables).

When more memory is allocated for a variable of an enumeration

type than indicated by the size of the type, the variable is

placed in the least significant bits of the allocated byte or

word.

Example: Corresponding to the declarations:

VAR

as char;

b,c: 0..7;

d: integer;

e: reference;

memory is allocated within a stack frame as illustrated in fig.

7.

6.2.2

39

@~ address

global frame —+J

incarnation descriptor

) global frame

— ee cee ee ee ee ee eee eee ee ee

variables declared at the

process block level

e |

stack frames for

) intermediate

routine calls

local frame —- 5

anonymous parameters

actual parameters local frame

@ Po EE SS) (for the latest
variables declared at the .

routine call)
routine block level

Operands of expression

being evaluated

stack top —_

high address

@ Figure 6: Incarnation stack layout (snapshot).

6.2.3

40

MSB LSB

address 01234567

st+0 Y a s is even

s1 V/ALLL/
2V/////
s+3 the shaded areas are unused

st+4 d

sSVLLLLLLL
st+6

e

st+13

Figure 7: Memory layout for simple declared variables in stack

frame or record type (not packed).

The layout of actual parameters is similar to that of declared

variables, with a minor modification: since the smallest unit of

memory pushed on the evaluation stack is a word, each actual

parameter of a process or routine stack frame occupies an

integral number of words. Similarly to the case of declared

variables, an actual parameter of an enumeration type of size

less than 16 (bits) is placed in the least significant bits of

the allocated word.

Structured Types

The memory requirement of a structured type is determined by the

memory requirements of the component type(s) and by the necessary

word~alignment.

The memory allocated for a variable of a structured type is

sub-allocated for the components of the variable in a fashion

which depends on whether the type is declared as packed or not.

For an array, memory is allocated from low to high addresses for

the elements in index order, and for a record, memory is

allocated from low to high addresses for the fields in the order

they are declared in the record type definition.

6.2.3

@..2.3.1

4]

Arrays and Records, Not Packed

6.2.3.2

For an array or record type which is not packed memory allocation

for the components takes place in precisely the same fashion as

allocation of memory for declared variables in a stack frame,

i.e.

- from low to high addresses,

- an integral number of bytes per component,

- word-alignment (relative to the beginning of the array or

record and by implication also in absolute memory) as

described in subsection 6.2.1,

- right justification of each enumeration type component

within the allocated byte or word.

Example: With the record type definition

TYPE

r=RECORD .

a: char;

b,c: 0..7;

d: integer;

e: reference

END;

Fig. 7 shows the layout of a variable of type r.

By summation (or multiplication) the memory requirement of an

array or record type may be determined from the above rules for

sub-allocation of memory for components. For the record type in

the example M(r)=14.

Packed Arrays and Records

In the memory allocated for a variable of a packed array or

record type several consecutive components may be packed into a

single word. Only components of types with size less than 16

(bits) (for arrays: 6 bits) are candidates for packing. Packing

of components always starts from bit 0 (MSB) of a word, and each

6.2.3.1

6.2.3.2

42

canponent is allocated as many bits as indicated by its size.

When it is not possible to fit any more camponents without

crossing a word boundary packing stops and allocation is resumed

from that word boundary. By this rule unused space may be left in

the least significant bits of a word in which one or more

components are packed.

Notice that in the current implementation only components of

enumeration types are candidates for packing.

The memory requirement of a packed record or array type is always

at least 2 (bytes).

Example: The layout of variables of the following packed record

type is shown in fig. 8.

TYPE

Q=PACKED RECORD

a: char;

b,c: 0..7;

d: integer;

e: reference

address 0 1 2 3 4 5 6 7 8 9 1011 12 13 1415.

s+0 a b c SII
+2 d

+4

e

+10

Figure 8: Memory layout for packed record. M(q)=12.

@.2.3.3

43

Set Types

The memory requirement of a set type is always an even number (of

bytes), i.e. an integral number of words is allocated for each

variable of a set type. The number of words used is the smallest

number which will accomodate the bit vector used to represent

values of the set type, cf. subsection 6.1.3. The bit vector is

laid out with index 0 in the most significant bit of the first

word. The last word may contain an unused portion in its least

significant bit positions. Example: see fig. 9.

address’ 0 1 23 4 5 6 7 8 9 10 11 12 13 14 15

st6 LLLLLLIE LEAL LLL LLL

Figure 9: Layout of a variable of the type set of 0..50; s is

even, and 13 bits are unused. The memory requirement of

the type is 8.

6.2.3.3

44

_ REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

RCSL No

RCSL No

RCSL No

RCSL No

RCSL No

RCSL No

RCSL No

RCSL No

RCSL No

42~-11577:

52-AA964 :

42-11539:

31-D617:

52-AA1000

52-AA996:

31-D627:

52-AA1016:

52-AA972:

45

PASCAL80, Introduction

PASCAL80, Report

PASCAL80, User's Guide

PASCAL80, Driver Conventions

RC3502-PASCAL80, Generating Guide

RC3502—PASCAL80, Installation Guide

RC3502, Introduction

RC3502, Operating Guide

RC3502, Reference Manual

A.

46

USE OF THE PASCAL80 COMPILER B.

B.1 Call of the Compiler B.1

\e.2]

1
{<n file= \ 0 pascal80 {| <s><option> H <s><context> { 0

- 1
{ <e<option> {<s><souce> } 0

- <source> is a text file defining a process or a prefix. If no

source is specified, the compiler reads the source fran current

input.

~ <context> is a text file containing declarations of types,

constants, and external routines. Contexts can be used for

definition of libraries. The syntax is described in appendix

B.2. .

- <bin file> is a file descriptor describing the backing storage

area where the object code ends.

If "<bin file-=" is amitted,

"pass6code=" is assumed.

- <option>::= codesize.<size>

| list.<yes or no>

| stop.<pass nr>

| spacing .<interval>

- <size> is an unsigned integer in the range 0-15000. The size

denotes the maximum number of bytes to be generated on one

"program page".

- <yes or no>::= yes | no

list.yes means turn on listing of input (on current output).

The list option is superfluous since the utility programs

indent and cross may produce more readable listings (see the

description of indent and cross).

47

@ - <interval> is the distance between two line number records. The

line number records are used by the standard exception

procedure to relate the address of a run time error to a line

interval of the program. ’

<pass nr>::= 1 | 3, 4] 5] 6

stop.<pass nr> terminates the translation after the pass

specified.

A short description of the passes:

@ pass

pass 3

pass 4

pass 5

pass 6

performs

performs

performs

performs

performs

- default values:

the call:

syntax analysis

machine independent semantic analysis

storage allocation and machine dependent

semantic analysis

symbolic code generation

transformation of symbolic code to binary

format

@ pascal80 inputfile

is equivalent to:

pass6code =pascal80 list.no codesize.512 spacing.52 stop.6

inputfile

Resource requirements

at least 90000 hW memory (size 90000)

area 8

temp disc at least 350 segm. and 8 entries

B.2

48

Use of the Contexts

Specification of more input files to the PASCAL80 compiler is

used for inclusion of (common) contexts (environments), i.e.

constant and type definitions and declaration of external

routines. The syntax is:

context:

context name ——>}; ——» context declarations —_ ~

context declarations:

r

~e

r—= constant declaration ——

+—> type declaration —————»_

——external declaration——»

external routine declaration:

—»—> procedure heading he Gell At ex ternal ————_>-

—» function heading——~

B.2

49

6. PASCAL80 ERROR MESSAGES

C.1 Messages from Pass]

0 Illegal character or fatal error

1 Context expected

2 Idenfier expected

3. ';" expected

4 Identifier expected

5 ',' or ':' expected

6 Error in declaration

7 Set element or '.)' expected

@ 8 Constant, variable, or '(<expression>)' expected

9 Expression expected

10 Actual parameter expected

11 Expression expected

12 ‘of’ expected

13. '(" expected

14 Identifier or '?' expected

15 *')’ expected

16 Only ‘array’, ‘record’, and ‘set’ can be packed structure

17 *..' expected

18 ')’ or ',’ expected

19 ‘')' or ',’ expected in array declaration

20 ‘end’ or ';' expected

@ 21 *',' or '.)' expected

22 ‘';' or ')’ expected

23 '‘':' expected

24 Unsigned integer expected

25 ‘:' expected

26 ‘begin’ expected

27 Error in for-variable specification

28 ‘to’ or ‘downto’ expected

29 ‘of' expected

30 Error in channel-variable specification

31 ‘do’ or ',' expected

32 ‘do’ expected

Ww

Ww
W

(0
s)

ta
s

"then' expected

Label expected (name or integer)

C.

C.1

50

35 ',' or ':' expected

36 ‘else’ expected

37 ‘;', ‘end’ or ‘otherwise’ expected

38 ‘until’ expected

39 Label definition expected (integer or name)

40 Error in label list (',' or ';' expected)

41 '‘=" expected

42 Environment specification expected

43 ‘process’ or ‘include’ expected

44 '." expected

45 ‘process’ or 'prefix' expected

46 Only procedure or function declaration allowed in a prefix

47 End of process expected

100 Error in real constant: digit expected

101 String did not terminate within line

102 Line too long, more than 150 characters

The following messages indicating fatal errors may appear fran

pass! of the PASCAL80 compiler. The message will be preceded by

the line just being parsed with an indication of error number 0

discovered.

E.g.

91721 if prod = 1305 then

to
*** const ‘chbufmax’ too small

In case no other errors are discovered a fatal error may indicate

that one or more of the compiler tables are insufficient in size.

But most often this kind of fatal errors appear in consequence of

syntactical errors, and after correction of the marked errors the

fatal error may disappear.

The messages are:

***parse stack overflow.const ‘stackmax' too small

Parsing of a too small syntactical construction.

C.2

5]

*kkend of file encountered

Input exhausted before the process/prefix has been satisfied.

***recovery abandoned

The error recovery was unsuccessful.

***kreduction buffer overflow.const ‘redumax’ too small

Parsing of a too complicated syntactical construction.

**k*oonst ‘stringmax' too small

Literal text string too long.

***koonst ‘chbufmax’ too small

Parsing of a too complicated syntactical construction.

x

***oonst ‘'maxnamenodeindex’ too small

Too many very long names.

***oonst ‘maxnameheads' too small

. Too many different names.

***oonst ‘typebuffersize’ too small

Too complicated type definition.

Messages from Pass 3 C.2

Error messages from pass 3 have the format:

***pass 3 line <lineno>, <operand no> <text>

where:

<lineno> is the line number where the error is detected

<operand no> gives a hint of where in the line the error was.

52

Operands are: identifiers and numbers (Note: the empty set @

does not count).

First operand in a line has number 1. (Note: if <operand no>

is 0, the error occurred before the first operand in the

line, maybe even in the last part of the previous line).

undeclared,

(*identifier not declared*)

inconsistent use,

(*identifier used before declaration*)

double declaration,

(*identifier already declared at this level*)

label_not_declared , .

(*label-identification not declared at all*)

not_label_name,

(*other identifier used as label-name*)

multiple defined label,

(*label defined several times at this level*)

label_not_locally declared, @

(*label-identifier declared at surrounding level*)

erroneous label,

(*use of a multiple defined label*)

label_used_fran_inner '

(*a label-ident has been used in inner routine*)

label _used_outside_scope,

(*goto leading into control-structure*)

label_defined_outside_lock_or_channel, r

(*goto out of lock- or channel statements*)

53

not_typename,

(*identifier is not a type-identifier*)

recursive _use of type,

(*error in record or array etc.*)

recursive _cons tant_use,

(*constant is used in its own definition-expression*)

illegal_pool_type,

(*pool ... of <illegal type>*)

pool_cardinality must _be integer,

(*illegal size'ing of pool type*)

subrange _elems must_be enumeration,

(*illegal limit-types in subrange def*)

type_may only be used_at process level,

(*nb: semaphore, pool*)

process only allowed_at_processlevel,

(*processes inside functions/procedures forbidden*)

external_only at processlevel,

(*restriction on ‘external '*)

illegal_formal_type,

(*formal type may not be used in this context*)

illegal_function_type,

(*functiontype may not contain: semaphore etc.*)

paramlist_changed_since_forwarddecl,

(*'new’ paramlist may be empty or exact the same*)

forward_not_ solved,

(*forward-declared routine not followed with the real body*)

54

funcval_not_used,

(*function—value has not been defined at all*)

type has pointers,

(*locktype contains pointer—types*)

type_has systemtypes,

(*locktype contains semaphore, reference, shadow, pool*)

Operands incompatible,

(*operands not of same typename*)

for incompatible,

(*for-variable/startvalue/endvalue not of canpatible types*)

case_incompatible,

(*case-expression/caselabels not of campatible types*)

if_type,

(*if-expression must be boolean type*)

repeat_type,

(*until-expression must be boolean type*)

while type,

(*while-expression must be boolean type*)

with_type,

(*with-variable must be a record*)

lock_type,

(*lock-variable must be reference type*)

channel_type,

(*channel-variable must be reference type*)

not_index_ type,

(*type of operand must be enumeration-type*)

55

not_variable,

(*operand cannot be used as variable*)

field _must_follow_recordtype,

(*<variable> in front of <.> is not a record*)

name_not_fieldname,

(*<name> after <.> is not a fieldname of <variable>*)

must_be pointertype before uparrow,

(*<variable> in front of <uparrow is not a pointer*)

mixed_ type in setlist,

(*elements in set-value may not be mixed*)

relation error,

(*illegal mixture of types in relation*)

arithmetic error,

(*illegal mixture of types in term of factor*)

monad ic_ error ,

(*illegal type for monadic operator*)

real_not_implemented,

(*real occuring in expression*)

real_expression not_implemented,

(*real-division of integers not impl*)

illegal_in expr,

(*illegal operand kind in expression*)

too_few_parameters,

(*too few actual parameters to routinecall (or strucrecord*)

too_Many actual params,

(*errors in routinecall*)

56 :

too_many val ues_in_record_struc ture, @

(*error in structured-record constant*)

type_must_be record or array,

(*typename in front of arglist must be ...*)

double_param_onl y_in_struc_const '

(*the '***' operator must only occur in structured-array constant*)

subscript after _nonarray,

(*name in front of arglist is not of array-type*)

incompatible index, ©

(*index-expression does not match array-declaration*)

assign_incompatible,

(*incompatible types in assignment*)

exchange_incompatible,

(*incompatible types in exchange*)

not_procedure call,

(*the statement is not a procedure-call*)

variable may not_be packed,

(*for-variable or actual var-param is packed*) @

not_assignable,

(*operand may not be assigned: sem, pool, ref, shadow, frozen*)

not_exchangeable,

(*operand may not be exchanged: sem, pool, frozen*)

exchange _ type,

(*type must be: reference or shadow*)

Illegal_var_param_substitution,

(*formal and actual type must match exactly*) r

C.3

57

illegal_value_param_substitution,

(*actual and formal types are not canpatible*)

actual_may not be frozen,

(*formal is not frozen, therefore ...*)

skipparam_ only in struc_const,

(*the '?' may only occur in structured constants*)

struc_arr_ impossible,

(*incomp. types in structured array-constant*)

struc_rec_ incompatible,

(*incomp. types in structured record-constant*)

var_init_incompatible,

(*incomp. types in var-initialization*)

repetition type,

(*repetition must be integer*)

Messages from Pass 4

All error messages fran pass 4 have the format:

Xxx pass 4 line <no>, <text>

C.3

where <no> is the line number where the error is detected.

<text> is one among the following:

subrange def. Error in the definition of subrange type

— lower bound > upper bound.

set def. Error in the definition of set type -

lower bound of the basis subrange type is

negative. .

pool def.

record size

array size

no init in

environment

constant value

case label range

constant

set constant

times

not constant

stack

overflow

compiler error

58

Error in the definition of pool type -

number of elements is zero or negative.

Record type > 65536 bytes.

Array type > 65536 bytes.

Initializing of variables in environment

not allowed.

Value of constant outside interval

bounds.

In a case label interval first > last.

Syntax error in number.

Error in set constant, - negative

constant, or an interval with first value

< last value, or constant > 1023.

Wrong number of values in constant of

array type.

Variable, or set constant used in

expression, outside the statement part of

a procedure or process.

Variable in a block occupies more than

65536 bytes.

Value of constant or constant expression

outside the interval ~- 32768, 32767.

Error in pass 4.

C.4

59

Campilation terminated by <error>

where <error> is

Operand overflow

nametable overflow too many names in program

block level overflow too many block levels

constant area overflow too many or too big structured constants

Messages from Pass 5 C.5

I:

- text:

***compilation terminated after pass5

— meaning:

The canpiler has stopped after (or inside) pass5 according to a

"fatal error" detected in pass5 (see below).

- text:

xkkkkEMessage from pass5: <kind> at: <place>

current token/param. is: <token/param>

no. of items input: <no. of items>

line no.: <linie nummer>

—_meaning:

<kind: meaning:

"not implemented’ The source program uses a ficility not yet

implemented.

"fatal error’ A fatal error is detected in pass5. The

cause of the error is described by <place>.

‘warning’ Warning, pass5 continues, but the object

code may by wrong.

C.5

60

<place>: The cause of the error:

2305 ‘case labels’ are not unambiguous (see RCSL

No 52-AA964: PASCAL80 Report, page 14 on

top [2]).

1201 too many external processes/routines (table

full).

1202 too many parameters to an external

process/routines (table full).

1203 too many calls of external routines (table

full).

1207 inconsistency between formal parameter

specification of an ‘external’

process/routine declaration and the object

program (in a library) of the same name.

anything else Please report to the software responsible.

The reason might be a campiler error, or

Maybe some tablesizes are too small.

<token/param>;<no of items> is used in error detection in pass 5

(see above: <place> = ‘something else').

<linie nummer> points out the number of the line in the source

program in which the error was detected.

Messages from Pass 6 C.5

- Constant <name> too small

If <name> is "maxnameix" the trouble may be avoided by

increasing the codesize (option to the call of PASCAL80).

If <name> is "max_jump_ix" the. trouble may be avoided by

decreasing the codesize (option to the call of PASCAL80).

°
61 ‘

- Compiler error detected

Please inform the compiler group.

- Error in compilation

Use option codesize, with at least <number> as page size..

62

LOAD FILE GENERATION ON RC8000

D.1 CROSS-Linker

The program will generate a file containing all the specified

object modules and the necessary library routines. The file will

be a coreimage, i.e. references between the modules are solved.

Calls:

<obj file>

<outfile> = crosslink <lib file>

<params>

<outfile> contains the generated coreimage.

<obj file>::= <file name

<file name> contains one or more object modules which (all) must

be included in the coreimage.

<lib file>::= lib. <file name

<file name> contains one or more object modules which may be

included by CROSSLINK, if they are referenced fran an included

object module.

<obj file> and <lib file> can be output file(s) fram the PASCAL80

compiler.

(start .<base>.<displacement>

s
descr. {* }

no

<params>: :=4 a,
map.

no

; yes ; L
print. -<words per line>

\ no 0

63

start

<base> and <displacement> specify where the first word of the

coreimage is supposed to be loaded. The start-param may only

occur before the first filename.

<base> <integer>

<displ> h <hexadecimal digits>

Default is: start.0.0

Note: If the coreimage is to be autoloaded by the BOOT program,

start must be: start.0.256

descr

defines whether the descriptor segments of the following modules

are included in the coreimage or not.

Note: This option should not be used! (Only intended for special

program generation) .

Default: descr.yes

map

controls listing of the included modules. Each included module is

listed with: .

<modulename> <start of descriptor segment> <start of code segment>

Default: map.no

64

print

controls printing of the coreimage. Each line consists of:

<A>. <C>.<D> <hexadecimal contents of coreimage words>

<A> and is the absolute address (i.e. base and displacement)

of the first word in the line.

<C> and <D> is the corresponding relative address (within the

module) .

Example

coreimage=crosslink map.yes start.0.h0100 descr.yes,

bmonitor,

blinker,

ballocator,

bprintexcep (or bniniexcept),

btimer,

badam,

boperator,

bopsys ,

bconsole,

may be substituted by your own operating system

, userprocess 1] ... uSerprocess n

lib.stdlib,

lib.debuglib

will generate a coreimage in a file with the name COREIMAGE,

containing (all) the object program(s) in the files explicitly

mentioned, extended with the necessary object programs fran the

library files STDLIB, and DEBUGLIB which contains all standard

runtime routines (link, create,).

The coreimage will start in memory module 0, displacement 256, as

demanded by the BOOT program.

A supplementary loadermap is printed.

65

Errormessages from CROSSLINK

Errormessages are printed like:

fatal error

warning

or

} at <cause>:<value>

**k<routinename> : not defined

Error causes:

1.

101.

102.

103.

104.

105.

Illegal

because

Illegal

Illegal

Tllegal

Illegal

contents of object (or library) file, normally

the file has not been created by PASCAL80.

contents in outfile (error in CROSSLINK).

parameter. Value identifies the parameter.

hexadecimal digit. Value identifies the parameter.

hexadecimal number. Value identifies the parameter.

Displacement in memory too large.

Tllegal

Illegal

base value.

displacement value.

No <outfile> specified.

No <outfile> specified.

No <outfile> specified.

No <outfile> specified.

Illegal Parameter (value is irrelevant).

106.

107.

108.

109.

110.

111.

112.

113.

114.

117.

118.

119.

7913

7914

7915

7916

7917

7918

7919

66

Illegal descr-param

Illegal descr-param

Illegal descr-param

Illegal start-param

Illegal start-param

Illegal start-param

Illegal start-param

Start param may only occur before object (or library)

files.

Illegal start-param

Object file contains open routines.

Inconsistent descriptor segment.

Illegal start-param

As 1.

Illegal print-param

Illegal print-param

Unknown parameter option

Illegal lib-param

Parameter description of external routines does not match.

As |.

D.2

67

7920 Illegal map-param

7921 Illegal map-param

7922 Inconsistency in loader map

Use of punchl6 to Generate a Load File D.2

@:2:

Generating coreimages for load from papertape or via FPA.

Generating a Papertape D.2.1

D.2.2

Assume coreimage has been generated by CROSSLINK.

A job like:

job xx 7913 device punch

tpn = punchl6 mode.8 coreimage

finis

will generate a papertape with the correct format for the BOOT-

program.

Generating an FPA Bootfile D.2.2

Assume coreimage has been generated by CROSSLINK.

A job like:

job xx 7913

bootfile = punch16 mode.boot coreimage

finis

will generate a file with the correct format for the AUTOLOAD-

program.

68

This file may later be used like:

main35001 = autoload bootfile

69

COMPLETE LIST OF LANGUAGE SYMBOLS

AND ELSE

ARRAY END

AS EXPORT **)

BEGIN EXTERNAL

BEGINBODY *) FOR

CASE FORWARD

CHANNEL FUNCTION

CONST GOTO

DIV IF

DO IN

DOWNTO INCLUDE

+ - * / "

<> <= >= ()

= := 2=3 . ’
kkK (* *) ! ?

E.

PROCESS

RECORD

REPEAT

SET

THEN

70

RETURN LETTER

Title: RC3502 -— PASCALS80 RCSL No.: 42-11542

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42
-1

1
2
8
8

beeen eee nena Do not tear - Fold here and staple45.

Affix
postage

here

Ee § REGNECENTRALEN
af 1979 @

Information Department
Lautrupbjerg 1

DK-2750 Ballerup

Denmark

