
RCSL No: 43-—GL11703 

Edition: November, 1981 

Author: Harald Villemoes 

Title: 

RC3502 LAM108/116 Driver ~ 
Reference Manual 

‘ § REGNECENTRALEN 
4 C af 1979 



Keywords: 

RC3502, Real Time PASCAL, Asynchronous Multiplexor, Driver. 

Abstract: 

This document describes the RC3502 LAM-driver. Messages and answers 

are described as well as the necessary process environment. 

(18 printed pages). 

RC
SL
 

42
-1

15
92

 

Copyright © 1981, A/S Regnecentralen af 1979 
RC Computer A/S 

Printed by A/S Regnecentralen af 1979, Copenhagen 
Users of this manual are cautioned that the specifications contai- 
ned herein are subject to change by RC at any time without prior no- 
tice. RC is not responsible for typographical or arithmetic errors 
which may appear in this manual and shall not be responsible for 
any damages caused by reliance on any of the materials presented. 



INDHOLDSFORTEGNELSE | SIDE 

l. 

2. 

General DESCPIPtLON. weceeccccccccnccccccccccccsccceccccucccces 

Messages and Answers. PO ee me merece rarer ervsreeervesecnvecsececes 
2.1 Fixed Types. PPC e ome ee rere err neeenraresserensccescsceecscece 
2.2 Control Messages. i 

2.2.1 Sense Line. ee 
2.2.2 Line Control. ee 
2.2.3 Set Conversion. a 
2-4 Set Timers. Peo m mere rene r eves erceeencesesecscesccece 
2-5 Reset. Co eee rere erence rn nce nnreerenresccseseccccevece 
PANSPUL MESSAGES. cececccccccccaccccvcccccccscccecccccece 

SoZel INput. coc cccccccccccccccccccccccscsccccvcccceccece 
2-3-2 output CO eee eer errr enc ecrererernvecressscsescvcssceee 

2-4 Results. Coe eee e meer rrr rece resrercecasesesscccccccssesecce 10 
2.5 Treatment of Characters Received. Come meer cece cvesesssecese LO 

2 
2 

2.3 T 

O
 
C
O
O
N
 

W
W
 

Po
 

PO
 

LAM-—Driver Process. cee eee eee eee eee eee eer eee eee nee e ern enero esreenee 11





General Description. 

The RC3502 LAM—driver supports full duplex V.24 
asynchronous communication on §%&% or 16 lines with 
transmission speed selectable between 110 bps and 
1200 bps on a= per line basis. The driver Supports 
program controlled 

- echoing, 
- input continued, i.e. collection of characters 

received before an input buffer arrives, 
- input conversion, 
- timeout monitoring, 
- modem control, 
- conversion table sharing between lines. 

Lines are numbered 0 to 7 or 0 to 15 for both input 
and output lines.



Messages and Answers. 

All messages are signalled to the LAM-driver general 
semaphore and all answers are returned to the answer 
semaphore except when the driver is removed or 

enteres an exception. 

The general format for messages is 

message answer 
ul function function 

u2 not used result 
u3 lineno lineno 
u4 not used unchanged 

Fixed Types. 

All message data types starts with first, last, next: 
integer in accordance with the standard driver 

convensions. 



line_status_type = 
packed record 

2: 0O..1; 

line speed: 0..3; 
(* 0: 110 bps, 

1: 300 bps, 
2: 600 bps, . 
3: 1200 bps #*) 

data_size: 0..33 
(* 0: 5 data bits / char, 

1: 6 data bits / char, 
2: 7 data bits / char, 

3: 8 data bits / char #) 
stop bits: boolean; 

(* true: 2 stop bits, 
false: 1 stop bit #) 

pty_mode: 0..33 

(* 0: odd parity, 
1: ignore parity, parity bits received 

are stripped off and ignored; chars 
xmitted has even parity bit supplied #) 

2: even parity, 
3: no parity, characters received and 

xmitted without parity bit #*) 
2: 0..1; 
rts, (* request to send, outgoing modem signal *) 
dtr, (* data terminal ready, outg. modem signal #*) 
ded, (* data carrier detect, inc. modem signal *) 
rfs, (* ready for sending, inc. modem signal #*) 
dsr, (* data set ready, incomming modem signal #) 
?,?: boolean; 

end; (* line status_type *) 

Control Messages. 

Control messages except set conversion are always 
executed and returned immediately. Control messages 
are common for the input and output lines. 

sense Line. 

202



Format: 

message answer 
ul 0 @) 
u2 - result 
u3 lineno lineno 
u4 - unchanged 
buf: - line status 

sense buffer type = 
record 

f, 1, n: integer; (* not used *) 
line status: line_status_type; 

end; 

function: 

The current state of the three incomming modem 

signals: DSR, RFS, and DCD is updated and the answer 
is returned. 

Line Control. 

Format: 

message amswer 
ul 4 4 
u2 - result 

u3 lineno lineno 

u4 - unchanged 
buf line_control line_status 

buffer type = 
record 

f, 1, n: integer; (* not used *) 
new_line state, 
actual_changes: line_status; 

end; 

Function: 

The record, actual changes, is inspected for true or 
non-zero values and for each such found, the 

corresponding line state is set. 
Finally the function, sense line, is executed, the 
record, new_line_ state, updated, and the answer 
returned.



5 

Oele 3 Set Conversion. 

Format: 

message answer 
ul 8 3 
u2 - result 
u3 lineno lineno 
u4 - unchanged 
buf conv_spec conv_spec 

conv_spec = 
record 

f, 1, n: integer; (* not used *) 
conv_control: integer; 

(* -2: clear and push current conversion 
buffer, if any, under this message 
and return this message, 

-1: set conv_tab in this buffer as conver- 
Sion table for this line. If a 
conversion table is already set for 
this line it is returned. 

0-15: set the conversion table for the 
specified line as conversion table 
well. If a conversion table is already 
set for this line, it is returned. #*) 

end; 

Conversion is executed for input and attention 
operations only. Incomming characters are converted 
and classified using the value of the incomming 
characters for table lookup in conv tab. 
The type, conv_integer, in interpreted in one of two 
ways depending on the value of conv_integer.normal- 
conv . If normal_conv is true the value is used for 
normal classification of incomming characters while 
Special conversion is performed when normal_conv is 
false. 

conv—-integer = 
packed record 

normal-conv: boolean; 
(* false: the value of conv-integer is used as 

index in conv-tab for the start-— 
integer of a special conversion 
record, 

true: this element is used for conversion 
and classification of the received 



character. #*) 

attention: boolean; 
(* true: this character is an attention char. 

i.e: if an input-operation is present, it is 
terminated and returned with status att. 
with the value delivered, if specified. 
If an attention-operation and no input- 
operation is present, the attention-operation 
is terminated and returned with the value 

delivered, if specified. 
If an input- or attention-operation is pre- 
sent and an output-operation is being 

executed, this output-operation is terminated 
with status: attention. 
Note however that if no input- or attention- 

is present, the attention charecter is 
stored in the internal buffer but not 
executed. *) @ 

termination: boolean; 
(* an input operation is terminated with this 

character, which is delivered if specified. #) 
blind: boolean; 

(* the value is not delivered *) 
noecho: boolean; 

(* the value is not echoed *) 
erase last: boolean; 

(* if current buffer is empty, this character 
is delivered, if specified, but not echoed. 
If current buffer is non-empty, the last 
stored character is erased and the received 

character is delivered, if specified, and 

echoed, if specified. #*) 
erase all: boolean; 

(*# all characters in the current buffer are 
erased and the received character is 
delivered, if specified, and echoed, 
if specified. ¥*) r 

mark: boolean; 
(* status mark is set in the result of the 

current input buffer if value is stored. #) 
conv_char: byte; 

(* the value to be delivered and echoed. *) 
end; 

If normal_conv is false, the binary value of conv- 
integer is the index in conv_tab of the first integer 
of a special conversion record: 

spec_conv_record = 
packed record



Spec_conv_integer: conv_integer; 
(* values as normal conversion. *) 

length: integer; 
(* length of special echo (in bytes) #*) 

Spec_echo: array (l..length) of byte; 
end; 

Function: 

Conversion is set or cleared as specified in 
conv_spec. When an old conversion table is returned 
by a clear-function, this is done by PUSH’ ing the old 
one under the clear-message and then returning this. 
Then an old conversion table is returned by setting 
up a new one, this is done by returning the old one. 

Set Timers. 

Format: 

message answer 
ul 12 12 

u2 - result 

u3 lineno lineno 
u4 - unchanged 
buf timers timers 

timers = 
record 

f, 1, n: integer; (%#-not used #) 
itimerl: integer; 

(* defines the timeout before first character 
input to a buffer. *) 

itimer2: integer; 
(* defines the timeout between chars. input. *) 

otimerl: integer; 
(* defines the timeout per character output 

from a buffer or echo. *) 
end; 

All timers are in units of 1 second and a zero value 
means no timeout. 

Note however that the value n means a period between 
n-l1 and n seconds, e.g: the value 1 is senseless. 

Function: 

The timer values are set and the answer returned. 

2ec24



Format: 

message answer 
ul 16 - 16 
ue - result 

u3 lineno lineno 
u4 - unchanged 
buf - unchanged 

Function: 

All operations in progress on the input and output 
line are terminated and all messages are returned 
with status: reset (= not processed ). Finally the 

reset operation is returned with result: ok. 

2.3 Transput Messages. 

The driver supports message data stacks of a maximal 
depth of 1, i.e. on stacked (chained) buffers. All 
transput messages are formatted according to standard 

using first, last, and next indices. 

2.3.1 Input. 

Format: 

message answer 
ul inpfune inpfunce 
u2 - result 
u3 lineno lineno 
ud - unchanged 
buf - rec-data 

Function: 

The value of inpfune in ul defines the actual input 
function for the message and is composed of a sum of 
binary numbers, each defining a specific 
characteristic of the input function: 

2.3 

223-1



2.3.2 

inpfune 1 

inpfune +2 

inpfune +4 

inpfune +8 

inpfune +16 

output 

Format: 

message 
ul 2 

ue - 
u3 lineno 
u4 - 

buf data 

Function: 

The data in the 

Basic input function. 

Echoing of significant characters 
are to be performed. 

Continuing input, i.e. characters 
received from returnal of the 
previous input operation and onto 
initiation of this input message 
are accepted instead of skipped. 

Attention, only characters, which 
are classified with attention, 
are accepted. 

Flow control by means of XON / 
XOFF characters are to be 
performed. The following action 
is taken: 

- When the driver initiates 

execution of a flow control 
input message an XON— 
character (dec: 17) is 
output. 

- When the driver terminates 

execution of a flow control 
input message an XOFF- 
character (dee: 19) is 
output. 

answer 

2 

result 
lineno 
unchanged 

unchanged 

buffer is output and the answer 

2.3.2



returned. A timeout condition or the recognition of 

an attention character will terminate the output-— 
operation prematurely. 

\ 

Results. 2.4 

Result Modifications: @ 

or internal buffer overrun. The oper. terminates. 

2.4 

Basic Results: 

0 operation executed succesfully. 
1 operation not processed but returned by a reset 

operation. 
2 error described by result modification. 
4 illegal function code or lineno. 

+0 timeout. The operation is terminated. 
+3 echo error. The operation continues. 
+16 attention. The operation terminates. 
+32 parity or stopbit error. The oper. continues. 
+64 overrun or character lost, e.g: hardware overrun 

+128 mark. The operation continues. 

2.5 Treatment of Characters Received. 205 

Normally characters received are placed in an 
internal buffer (size= 32 chars) until an input 

operation is available. They are then converted, if 
conversion is defined, echoed, if specified, and 
stored in the input buffer. 

If echoing or transmission of flow control characters © @ 
are to be performed and the output line is busy 
executing an output operation no echoing is performed 
but status echo-error is set in the answer. The same 
applies to a timeout error during output of echo 
characters. 

A character received with parity or stop-bit error is 
substituted by the character SUB (dec: 26) and status 

parity is set in the answer. 
A received break signal is treated as a character 
with conversion index -1 when conversion is defined. 

If conversion is not defined, however, a break signal 
is treated as a character with parity error and a 

SUB-character is stored.



ll 

3. LAM-Driver Process. 3. 

The LAM driver process is created with the following 
format: 

PROCESS lamdriver(var lamsem: semaphore; 
lamlevel: integer) ; 

where lamsem is the driver input semaphore, and 
- lamlevel is the interrupt level of the lan. 

LAM-driver stack size: 1440 words. 

Recommended LAM-driver priority: 0. 





, RETURN LETTER 

© Title: RC3502 LAM108/116 Driver RCSL No.: 43-GL11703 
‘ Reference Manual 

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im- 
prove the quality and usefulness of its publications. To do this effectively we need 
user feedback, your critical evaluation of this manual. 

Please comment on this manual’s completeness, accuracy, organization, usability, 
and readability: - 

Do you find errors in this manual? If so, specify by page. 

How can this manual be improved? 

Other comments? 

Name: ° Title: 

Company: 

Address: 

Date: 

Thank you 42
-1
 
1
2
8
8



Affix 

postage 
here 

8 REGNECENTRALEN 
- at 1979 

Information Department @ 

Lautrupbjerg 1 

DK-2750 Ballerup 

Denmark


