Sponsored by

ZaUniForum

- 24, 1991

eaUniForum.

ational Confer of UNIX® Systems Usel

1991
UniForum Conference
Proceedings

January 22-24 1991
Infomart
Dallas Texas

Copyright e 1991 by UniForum, 2901 Tasman Dr., #201,
Santa Clara, CA 95054; (408) 986-8840. No part of this
document may be reproduced in any form without the written
permission of UniForum and the individual authors.
Conference changes made after Dec. 7, 1990, are not
represented in this document.

UNIX is a registered trademark of AT&T
UniForum is a trademark of UniForum

UniForum 1991 Conference Proceedings, Dallas, Texas

Preface

The UniForum Conference is sponsored annually by UniForum, The International As-
sociation of UNIX Systems Users. In 1991, the three-day event is being held Jan.
22-24 at the Infomart in Dallas, Texas.

This document contains reprints of the technical presentations of the conference, in-
cluding the names and corporate affiliations of the speakers. The papers are arranged
in the order presented at the conference. Author, Keyword, and Plenary and Panel
Speaker indexes appear at the back of the book, as well as comprehensive details and
contact information on the Plenary and Panel Sessions.

For more information on individual papers and presentations, contact the respective
author or speaker directly at the address noted. For details on UniForum member-
ship and services, or to order additional copies of the Proceedings, contact UniForum
at the address below.

UniForum

2901 Tasman Dr., #201

Santa Clara, CA 95054

Tel: (800) 255-5620
(408) 986-8840

Fax: (408) 986-1645

UniForum 1991 Conference Proceedings, Dallas, Texas iii

UniForum Program Committee

The following volunteers comprised the 1991 UniForum Program Committee. Under
the guidance of committee chairman Ed Palmer, the volunteers coordinated the plan-
ning for the tutorials, conference sessions and workshops presented during the Uni-
Forum conference.

Nancy Batten Saleem Haider

Sequent Computer Systems Digital Equipment Corp.

William N. Bonin Mike Hunter

Hewlett-Packard Co. IBM Corporation

Ed Borkovsky Roger McKee

Unican Marketing Services RLM Associates

Brad Burnham Raanan Peleg

AT&T Hewlett-Packard Co.
Ray Swartz

Conference Tutorial Coordinator
Berkeley Decision/Systems

In addition, each person served on the UniForum Technical Review Team, which con-
sidered the technical papers presented at the conference to determine the 1991 "Uni-
Forum Best Technical Paper." The following people also served on the review team.

Jeffrey Haemer Irene Hu

Interactive Systems Digital Equipment Corp.
Mary Hesselgrave Frank Papierniak
AT&T Bell Labs Zoran Corporation

iv UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991
Conference Proceedings

Table of Contents
Preface iii
UniForum Program Committee iv
Application Development in the ANDF Model 1

Ronald G. Smith, Open Software Foundation

Beyond the ABI: Attaining "Shrink Wrapped" Software 13
Rita M. Anderson, NCR Corporation

Porting System/370 Cobol Applications to UNIX-based Computers 29
Mark Kiuchi and Kenneth Engelhardt, Chrysler Corporation

Multimedia Document Workstation: Future Data Terminal Equipment 39
Jonathan Z. Ma, Accurate Information Systems, Inc.

Selecting a Graphical User Interface Strategy for Maximum Portability 5§
Paul Shearer, Tektronix, Inc.

Porting Between Open Look and OSF/Motif GUIs 71
Paul E. Kimball, Digital Equipment Corporation

The Use of Erasable Optical Disk Technology for Data Archival
in a UNIX Internet Environment 89
Mark A. Clark, LTV Aircraft Products Group

CD-ROM and UNIX: Making CD-ROMs Usable Under the Multiuser
UNIX System Environment 105
Thomas K. Wong, Sun Microsystems, Inc.

Rethinking the Information Security Paradigm for Workgroup Computing R———, § 1.1
Christopher J. Riddick, Simpact Associates, Inc.

Why Isn’t My Data Portable? 125
Michael J. Andrew, Digital Equipment Corporation

System Administration Using Artificial Intelligence 143
Elsie L. Yip, NCR Corporation

UniForum 1991 Conference Proceedings, Dallas, Texas v

A Comparison of Network Queueing Systems
David Wright, Hewlett-Packard Company

A Study of Version Control Systems
Brian O’Donovan, Jane B. Grimson and John Haslett, Trinity College

An Object Model for Distributed Systems
James Waldo, Hewlett-Packard Company

Perspectives on NFS File Server Performance Characterization
Bruce E. Keith, Digital Equipment Corporation

Enterprise Transaction Processing
Terence Dwyer, UNIX System Laboratories

International Language Support in X11 Release 5: Building a Standard
for Internationalized Heterogeneous Network Computing
Glenn Widener, Tektronix, Inc.

Author Index

Keyword Index

Plenary and Panel Speaker Index

Plenary and Panel Session Descriptions

UniForum 1991 Conference Proceedings, Dallas, Texas

L

Application Development
in the ANDF Model

Ronald G. Smith

Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
(617) 621-8984
rsmith@osf.org

UniForum 1991 Conference Proceedings, Dallas, Texas 1

UniForum 1991 Conference Proceedings, Dallas, Texas

Application Development in the ANDF Model

Ronald G. Smith
Open Software Foundation
11 Cambridge Center
Cambridge, MA 02142
(617) 621-8984

This paper describes the goals of an Architecture-Neutral Distribution Format (ANDF), the
development environment, and the steps an independent software vendor or an application developer
has to perform to develop applications that could be distributed in ANDF.

Introduction

Architecture-Neutral Distribution Format (ANDF) is a new technology for distributing application
software to users. Today, current methods include linked or unlinked object code, and source code. Object
code is platform specific; it is dependent on both the hardware and operating environment. If
application developers want to distribute their code to multiple platforms, several object files must be
built, tested, supported and stocked. Source code provides an alternative to multiple distribution copies.
However, there is no protection for proprietary information such as algorithms and data structures. It
also requires a compiler at the user site for the source language. Until recently there was no standard for
C, the most popular UNIX® language, a fact which increased the risk of an application failing to
compile.

ANDF provides a single means of distribution to multiple platforms. Under ANDF, the application
developer uses an ANDF producer to translate portable source code into ANDF code. The producer is
very similar to a compiler front-end; it performs syntax and semantic checking of the language and
generates an intermediate representation of the source. The ANDF code is then distributed to end users.
A user will install the application by running the ANDF installer on their system. The installer will
complete the compilation process and create executable binaries that the user can run directly on the
platform. The installer performs the same function as the back-end of a compiler, including storage
allocation, code generation and optimization, and that of a linker, binding ANDF code to native
libraries. See figure 1.

r Source Code J
ANDF Producer Architecture Neutral
Target Independent

Y

ANDF
Code

v

Runtime Architecture Specific
Liorary __b'c ANDF Installor) Target Dependent

Executable
Code

Figure 1. Overview

UniForum 1991 Conference Proceedings, Dallas, Texas 3

Goals of ANDF

The goal of the ANDF program is to promote growth of the open systems market by attracting a rich set
of applications software to these platforms. This will be accomplished by the development of an
architecture-neutral format for software distribution. ANDF will enable software developers who
create portable source code to automatically convert it to ANDF, package it once, and have it run on all
platforms supporting ANDF. The developer will be able to create and market software independent of
hardware platforms. ANDF will also seek to reduce the level of effort to migrate the application to
multiple hardware architectures and increase the lifetime of applications.

Increase Software Availability

Currently, software vendors may develop their applications in a portable way so they can easily
migrate the software to many different hardware platforms. Because they distribute software in
binary form and binaries are not portable, they must package and distribute their products in a
different way for every platform or machine architecture on which the software will run. Vendors'
software distribution is limited by the number of machines they can afford to support. As a result, they
must decide which platforms are most important.

By providing a single software distribution format that is architecture-neutral, the promise of
portability can be fulfilled: hardware and software truly can be separated. Software vendors will be
able to provide their software on more platforms. The net result will be dramatically increased
availability of software for open systems.

Facilitate Shrink-Wrapped Distribution of Software

A single, hardware-independent distribution format will enable software vendors to distribute their
software in high volumes. It will also make possible shrink-wrapped, mass market software for open
systems and provide the end user with all the associated benefits:

* personal, consumer software products
e low-cost
* retail purchase.

De-couple Software Purchase from Hardware

ANDF should enable a user to make software purchasing decisions without concern for the full range of
hardware platforms they plan to use. In particular, the user should be able to purchase software for
their workstations without concern for the underlying hardware architecture. Furthermore, they

should be assured that the application will behave consistently across all architectures.

Reduce ISV Effort to Target Multiple Platforms

Related to the goal of increasing software availability is the goal of reducing the level of effort an ISV
must make to support multiple platforms in the following areas:

development,
distribution,
maintenance, and
testing.

ANDF will also define what is needed to write an ANDF-compliant application and thereby aid the
ISV in writing portable code that is truly hardware independent. It is also a goal to increase the

UniForum 1991 Conference Proceedings, Dallas, Texas

consistency of function and behavior for C programs across these platforms. Maintaining one version of
the application source will reduce the software vendor's maintenance load. Although we still expect
that many vendors will test their applications on all key platforms, we believe the amount of overall
testing required will be reduced and even eliminated in certain cases, such as the testing required to
support new operating system releases.

Software Longevity

Hardware innovation will flourish and the spirit of open systems will be kept alive by providing end
users all the associated benefits of scalability, portability, and interoperability. As such, ANDF will
allow software to have a life cycle totally independent of the underlying processor technology.

Currently, many software products must be recompiled and redistributed whenever a new version or
release of the operating system occurs. It is a goal of ANDF to isolate software from these changes and
allow users to merely reinstall the software on their machines.

What about ABIs?

An Application Binary Interface (ABI) or Binary Compatibility Standard (BCS) defines the interface
to the operating environment, instruction set and binary software conventions. These software
conventions may include data alignment and size rules, function calling convention, error codes and
binary object file format. The conventions may even include how the software is stored on tape. An ABI
conforming application will install and execute properly on any certified ABI platform. There are ABIs
for the Intel 386 and i860, Motorola 68000 and 88000, and Sun SPARC architectures.

Although ABIs are currently available, they are only part of the solution for shrink-wrapped
software. ABIs are still operating system and processor dependent, so many versions of the same
application are needed to support the entire market. Since ABIs are processor dependent, they need to
be redefined for each new platform. With ANDF, the developer could develop a single version. ANDF
does not preclude ABI's: ANDF installers will generate the appropriate ABI on a target platform that
conforms to an ABI standard.

Development Environment Comparison

The development environment is slightly different for developing an application under ANDF versus a
typical environment in use today. Today, the application developer may have target independent
source, target specific source and maybe some key assembly language routines. Target independent source
may use header files (both system defined and user defined) to isolate characteristics of the operating
environment or functionality. Target specific or target dependent source contains knowledge of the
underlying hardware architecture or services not available on all platforms. For example, assumptions
about whether data is stored in "big-endian” or "little-endian” byte ordering, or whether a specific
GUI is available. Usually, the more target independent code there is, the more portable the
application is.

Traditional Environment

In the traditional environment, a compiler is used to translate the high level source language into
binary objects which contain machine instructions for a particular platform. A linker is used to combine
binary objects and libraries to produce an executable image of the application. Other executables may
be combined with data files and install scripts to produce an application package. This package is

UniForum 1991 Conference Proceedings, Dallas, Texas

distributed to the users. It is platform specific and it is usually for a single operating system. The whole
process takes place at the developer's site.

The end user purchases the application and installs it on the system. This may include running a script
and providing information during the process. Executable objects and libraries are moved into their
expected location and the environment is set up to run the application. See figure 2.

Assembly Language Portable Source Target Specific Source

l y v
.) (P

v v v

Binary Object Binary Object Libraries

\(> Linker ¥ j/

v

[Executable I

!

| OataFies)]

Application Builder
Ilsiall Procedure H)
v

L Application Package j
v

“

LUsev Interaction ‘I.._’ (Installation Manager ’

v

Installed Application

Figure 2. Traditional Development Environment

The application is tested by installing it on each platform and running a set of tests. The output of tests
may be slightly different from one platform to another depending on the target environment. When the
developer wants to debug a problem, the application is compiled with a debugging flag and run under a
symbolic debugger.

ANDF Environment

Using ANDF, the steps an application developer performs in translating source code into an executable
image and distributing it are different. The compiler will be replaced with two separate components,
the producer and installer. The producer is invoked just like a compiler, giving it command line options
and names of source files to process. The producer analyzes the source to verify that it conforms to the
syntax and semantic constraints of the language. ANDF object modules are generated that represent the
original. Although the producer never makes target dependent assumptions, a producer can generate
ANDEF from source which is explicitly target specific. A useful example might be code which assumes
the availability of a particular GUI. Optionally, an ANDF linker could be used to link ANDF
generated from different source files together to form a single ANDF object module and remove resolved
external names.

UniForum 1991 Conference Proceedings, Dallas, Texas

The application builder will construct the ANDF distribution package from ANDF object modules,
native code modules, data files and installation procedures. The ANDF application package is
distributed to users.

The user purchases a version of the application in ANDF and runs the ANDF installer to install the
software on the platform. The installer will complete the processing that is necessary to turn the
original source code into an executable binary. The installer will also call the native linker to combine
binary objects and native libraries. Linking may also be deferred to run time as with ABIs. See figure 3.

Assembly Language Portable Source Target Specific Source

v

Assombler) :
e

Binary

Object ANDF Portable Object ANDF Target Specific Object
y
ANDF Linker
r Data Files
| Tnstall Procedure 1 ‘wlic:ion Builder ’
I ANDF Application Package I

| User Interaction T Installation Manag: Installation Parameter Table

Linker Libraries I

v

Installed Application l

Figure 3. ANDF Development Environment

Testing and debugging is almost the same as in the traditional environment. Developers will continue to
test their applications on platforms which are considered critical. The application will be installed on
a test system and the test suite run. The developer specifies an option to the producer that will generate
additional information for debugging in the ANDF object module. The installer will fill in the missing
information such as variable locations. The application is then run under a symbolic debugger. After the
bug is fixed, the developer turns off the symbolic debug option and creates another ANDF application
package.

Evolution Plan for Releases of ANDF

The first release of the ANDF technology will support the ANSI C language. Installers will be
available for most of the popular open systems platforms. Successive releases may add additional
languages such as C++, FORTRAN and COBOL along with installers for additional platforms. Tools

UniForum 1991 Conference Proceedings, Dallas, Texas 7

also will be developed to help the application developer write more portable source. These tools may
include a portability checker (like a vastly improved lint) to flag possible non-portable use in source
code and an environment checker to verify that the platform conforms to ANDF requirements.

As the developer modifies the source code to run under ANDF, the process also will make their
application more portable in the traditional development environment. For today's developers,
portable code enables them to reach the widest audience with the least effort. The application
developer's effort to create portable code for ANDEF is not wasted.

Why is ANSI C not enough?

If there is a standard language definition for C, why not distribute C source code? Two disadvantages
have been cited previously: possible loss of proprietary information and the necessity for a
development environment at the user site. The third disadvantage has to do with portability. Strict
conformance to the ANSI C standard by an application does not in itself guarantee that the application
is portable between architectures. Compilers are free to choose the behavior of implementation-
defined areas in the standard. For example, ANSI C does not define whether a char data type is signed
or unsigned (ANSI 3.2.1.1). In the following example, the variable i is either positive or negative
depending on whether c is signed or unsigned.

char ¢;
int i;

¢ = SCHAR MAX; c++;
i c;
if (1 > 0)

printf ("char is unsigned\n");
else

printf ("char is signed\n");

If the developer writes an application that depends on char being unsigned, it could fail in an
environment where char is signed. ANDF will help solve this problem. The developer will use a single
ANDF ANSI C producer to process his source code for multiple platforms. The producer will treat all
chars as unsigned and provide an option to allow char to be signed if the original code is written
assuming signed char. Using traditional compilers, application developers do not enjoy such levels of
consistency.

Another area that the application developer has little control over is the size of data types. How
large is an int? How long is a long? The ANSI C standard only specifies the minimum maximum values
that C data types are required to have and the relationship between short, int and long. In the
following code fragment, the signedness of an expression is determined by the size of int and long data

types.

signed long s1;
unsigned int ui;

sl + ui;

The expression will be unsigned on platforms where ints and longs are equal size, but signed if longs are
larger that ints. This behavior results from the C rule of "usual arithmetic conversions" (ANSI 3.2.1.5).
As in the char example, the ANDF ANSI C producer could define the size of data types. This would
lead to consistent behavior in this example. However, this would only lead to more serious problems.
Discrepancies between the size of an int passed between an application and libraries could lead to
subtle errors. The close() function has both an int parameter and a function return type of int, and the

UniForum 1991 Conference Proceedings, Dallas, Texas

div_t structure contains two int members initialized by the div_t() function.* The solution is for the
developer to properly cast mixed type expressions to ensure the desired results. The ANDF installer
will allocate the proper sized data types so ANDF applications can share data with natively
compiled code and libraries.

The ANSI C standard contains an appendix devoted to portability issues. Appendix F lists all the
unspecified, undefined and implementation-defined behaviors contained in the standard. Many of
these behaviors are in this section because they are dependent on the underlying architecture and
operating environment. The standard was written to promote portability, not enforce it. It allows a
developer to write nonportable code just as easily as portable code. It is up to the developer to follow
self-imposed rules to insure portability.

ANDF Impact on Source Code

The requirements that ANDF technology places on source code are different between source classified as
target independent or target dependent. ANDF application developers should maximize target
independent source in their application; they should minimize and isolate target dependent source.
When target dependent source can not be avoided, they must make sure that each target supported has
a version of the target dependent source in the ANDF application package. Whenever possible, the
application developer should supply a portable version of such target dependent code so that the
ANDF application would execute on all ANDF targets.

Target Independent Source

There are very few restrictions ANDF imposes on the use of C. The application developer needs to
conform to ANSI X3.159-1989, the language standard for C (ANSI C), and avoid some preprocessing
constructs and a few of the portability issues (Appendix F) in the standard. ANDF provides an
incentive for the developer to write more generic portable code than code which is customized for a
specific platform.

The key requirement of target independent source is that it is written in a portable fashion. ANDF will
not make unportable code portable. In the past, a portable application was one which could be moved to
a different platform with very minimal effort. For ANDF, the developer must take a more proactive
approach towards portability. Traditionally, each port to a new machine gave the developer an
opportunity to slightly modify the sources if necessary. Portable C code for ANDF must be source which
requires no modification, as it will be the single input to one producer which generates ANDF for many
installers. Portability of the application is affected by dependencies on 1) machine architecture, 2)
operating environment and 3) software and hardware implementations.

Portable code must not make any assumptions about the underlying machine architecture. For example,
the range of data types, their representation and layout in memory are areas to avoid. The developer
should avoid assuming that ints are 32 bits and that the floating point representation is IEEE. The
ANSI C standard does specify the minimum range data types must have and the developer can safely
rely on these ranges for ANDF applications.

The operating environment for ANDF applications is defined by IEEE Std 1003.1-1989 (POSIX) and
ANSI X3.159-1989 (ANSI C). Any use of functionality outside these standards is not guaranteed to be
present on every ANDF platform. ANDF does provide a mechanism to encapsulate dependencies on
functionality not in ANSI C and POSIX. See Target Dependent code section.

* A program and its libraries must share a common idea of objects.

UniForum 1991 Conference Proceedings, Dallas, Texas 9

As applications are developed, defects in the implementation of the compiler, operating system or even
microcode are sometimes worked around. This can be very frustrating, particularly when porting an
application to a platform and discovering a large number of defects in software other than yours. ANDF
allows the developer to translate his source into ANDF code on a single system for multiple targets.
Using a single producer will lead to more consistent application behavior. In the PC clone market, the
market defines compatibility between different implementations. The application developer can
expect the same from the ANDF market.

The ANSI C standard documents a number of portability issues in Appendix F. A strictly conforming
program and a portable application should not depend on a particular behavior. Unlike a strictly
conforming program, target independent source may rely on implementation defined behaviors which
are guaranteed to be consistent across all ANDF platforms. For example, ANDF specifies the number of
significant initial characters in an identifier without external linkage, the maximum number of case
values in a switch statement and the value of an integer character constant that contains more than one
character. ANDF will also allow the developer to select a particular behavior and guarantee that
behavior on all platforms. Examples include the sign of the remainder on integer division (when one
operand is negative), whether a "plain” char has the same range of values as signed char or unsigned
char, and whether a "plain” bit field is treated as a signed bit field or as an unsigned bit field.

Target Dependent Code

In general, the application developer make tradeoffs when it comes to performance, functionality, and
code portability. ANDF allows the developer to include target dependent (non-portable) code in his
application. There are two methods: target dependent ANDF object modules and a conditional
compilation capability similar to #if.

A target dependent ANDF object module can be created by either the native assembler or compiler, or by
the ANDF producer with target dependent assumptions contained in the source. The ANDF application
builder will label these modules as target dependent and attach a dependency requirement to them.
The ANDF application builder will group together multiple target dependent modules that represent
the same functionality. One of these modules could be labeled as a portable version. When the user

installs the application, the ANDF installer will process only those modules whose dependency
requirements are met. If, in a group of target dependent modules that are linked together, none meet the
dependency requirement, the module labeled as portable will be selected. With ANDF, the developer
could create a 100% portable application and continue to compete on platforms where performance or a
particular user interface is necessary. See figure 4.

A well defined usage of conditional compilation (#if and #ifdef) is available to the ANDF developer.
If the condition is known to the producer, the #if may occur anywhere. For example, "#ifdef DEBUG",
where DEBUG is defined or not defined on the command line, can be resolved during the producer stage.
If the evaluation of the condition must be deferred until install time, such as in "#if INT_MAX > 32767"
where INT_MAX is defined in the header file limits.h and its value is unknown to the producer, the
location and use of the #if might be more restrictive. For instance, ANDF might be able to handle
conditional compilation only if it cleanly divides executable statements in the source. ANDF might not
allow it to be used in the middle of statements or declarations. For example:

i=1+
#ifdef MIPS

100;
#else

j * 10 - 3;
#endif

UniForum 1991 Conference Proceedings, Dallas, Texas

Target Assembly Target Target
Dependent Code Independent Independent
Source Source Source
< ANDF ANDF ANDF
Producer) (Assembler) (Producer Producer
ANDF Object Binary Code ANDF Object ANDF Object
aaa() aaaf) aaaf) bob()
ANDF
Application Builder
ANDF Object Binary Code ANDF Object
aaa() 1P|) lll——P 2330
Intel 386 68K “portable”
ANDF Object
bbb()
“portable™ ANDF Package

Figure 4. ANDF Package - with Target Dependent Code Modules 1

The ANDF producer will generate an ANDF code fragment and label it with the dependency
requirement. Care must be taken to either provide a #else clause whenever necessary, or to assure that
there is no effect on platforms whose target characteristics do not satisfy the defined condition.

In both methods, the ANDF installer will interpret a system wide installation parameter table (IPT)
or use user interaction during the install process to determine the correct values for each dependency.
The IPT is a simple database which will be available on all platforms supporting ANDF installations.
It will describe in a standard manner the hardware and software attributes of the current environment,
for instance endianness or identity of the graphical user interface.

Summary

Architecture-Neutral Distribution Format will promote growth of open systems by bringing a wealth of
applications to a large number of these platforms. It will allow a developer to create a single version of
an application that can be installed and run on multiple platforms regardless of the hardware
architecture or operating system. Application developers will have the potential to compete in new
markets and realize a reduction in both their development and manufacturing costs. Users will have a
larger selection of applications to choose from and they will be insulated from the hardware life cycle.
ANDF will work with other existing technologies for distribution, such as ABIs and portable source
code.

The application developer's target independent source must be written in ANSI C, use only ANSI C and
POSIX functionality, be portable, and refrain from making assumptions about the target environment.
However, there is a well-defined mechanism, compatible with today's methods to include customized

UniForum 1991 Conference Proceedings, Dallas, Texas 11

or target dependent code in the distribution package. Modified source for ANDF will continue to work
under the traditional development environment.

The current ANDF technology does not address some issues particular to the open systems market. The
distribution of software in shrink-wrap form is only one part of the solution. A single or limited set of
physical medium to distribute software on is highly desirable. Until the industry can reach a consensus
on a single medium, application developers will continue to distribute using the most popular media.
Another issue ANDF does not provide a solution for is data interchange between platforms. Standards
organizations such as POSIX have started to explore the issue of data interchange and possible
solutions. For now, ANDF applications will continue to use the same workarounds or proprietary
solutions in use today.

Future advances of ANDF technology might reduce the level of testing needed. It will be a significant
achievement if application developers only have to test their application on a single ANDF compliant
platform and have a high level of confidence that the application will work properly on any other
ANDF compliant platform. ANDF installers could also start to appear on proprietary systems. As
system vendors implement standard conforming functionality such as POSIX and ANSI C into their
proprietary operating systems and provide popular GUIs and other functionality, ANDF compliant
platforms and installers could spread beyond the limits of open systems.

Typically, the end user is looking to purchase software that is packaged and installed much as PC
software is today. The biggest advantage that end users will see in an open systems market is they will
find developers' applications conforming to a specification that permits execution in as many
environments as possible. To this end, an intermediate format such as ANDF is the best potential
answer to user needs.

1 This is one of the methods to include target specific code.

© 1990 Open Software Foundation
11 Cambridge Center

Cambridge, MA 02142

(617) 621-8700

UNIX is a registered trademark of Unix System Laboratory, Inc. in the USA and other countries.

SPARC is a trademark of Sun Microsystems.

UniForum 1991 Conference Proceedings, Dallas, Texas

L

Beyond the ABI:
Attaining “Shrink Wrapped”
Software

Rita M. Anderson

NCR Corp.

3325 Platt Springs Rd.

West Columbia, SC 29169

(803) 791-6864
rita.anderson@columbia.ncr.com

UniForum 1991 Conference Proceedings, Dallas, Texas 13

UniForum 1991 Conference Proceedings, Dallas, Texas

Beyond the ABI: Attaining "Shrink Wrapped" Software
Rita M. Anderson

NCR Corporation, E&M Columbia
3325 Platt Springs Rd.
West Columbia, SC 29169
rita.anderson@columbia.ncr.com

ABSTRACT

Attaining a volume of "shrink wrapped" software is a key objective of many
system vendors who are or will be shipping UNIX System V Release 4. This
paper examines the contribution of the System V ABI towards this goal, the
factors necessary to achieve this volume, and the methods which system
vendors employ in the effort. The paper concludes with the recommendation
that a reference port provides the optimal mechanism for evolving a "shrink
wrapped" software environment.

The Value of "Shrink Wrapped" Application Software

There are few successful models of "shrink wrapped"! software which span multiple vendors’
hardware platforms. The most prominant examples are MS-DOS and Santa Cruz
Operations’ XENIX / UNIX products.}

Attaining a volume of "shrink wrapped" software is a primary objective of platform and
system vendors who are or will be shipping UNIX System V Release 4. Establishing a base
of "shrink wrapped" software provides a vendor a significant time-to-market advantage over
his competitors. As Figure 1 illustrates, traditional product delivery processes require some
form of Beta delivery to foundation software vendors for initial ports. These are languages,
data bases, networking products, etc. Once these are available, then the platform can be
made available to the myriad of horizontal and vertical software vendors to secure ports of
those applications. The process may span the better part of a year, rendering the platform
technology unavailable to the end user during that period.

t The term "shrink wrapped” implies software that is marketed such that the license is activated by opening the
cellophane packaging. The term has been commonly applied to software which is made available on
multiple vendor systems through referral catalogs without explicit ports to these platforms.

$ MS is a registered trademark of Microsoft, Inc.
XENIX is a registered trademark of Microsoft, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas 15

Appl 1

Appl 2 \ GENERAL
- AVAILABILITY

GUI
SQL LAN
COBOL |C++ Appl n

Foundation Software Other Applications

Platform 1 '~~~ 3 +..MONTHS ~----|

Figure 1. The Traditional Product Delivery Process

Figures 2 illustrates the competitive advantage of "shrink wrapped" software; the vendor
who can leverage an existing distribution of "shrink wrapped" referral software is
empowered to provide new platform technology to the marketplace as soon as it is released
from the development process.

GENERAL
AVAILABILITY

Platform 2

Figure 2. The Advantage of Shrink Wrapped’

The platform vendor may, in fact, choose to secure specific ports of foundation or other
application software to take advantage of the new features or technology introduced with
the platform. The difference is that the release of Platform 2 to the general user is
independent of the completion of these activities.

UniForum 1991 Conference Proceedings, Dallas, Texas

UNIX International promotes System V as the only UNIX system to be described by an
Application Binary Interface (ABI). The purpose of the the System V ABI is to facilitate
application portability among compliant platforms. In fact, the combination of the generic
ABI specification and a processor-specific specification facilitate the migration of
application binaries among compliant platforms which utilize the same processor
architecture.

Although the ABI is an excellent step towards establishing a "shrink wrapped" distribution
of application software for UNIX System V Release 4 platforms, it can not, in and of itself,
guarantee the availability of "shrink wrapped" software.

The System V Application Binary Interface (ABI)

Source Standards: The Derivation of the ABI

The ABI is actually derived from the System V Interface Definition (SVID) Issue 3. The
intent is that compliance to SVID is the vehicle by which application source can port from
one vendor’s SVID-compliant platform to another vendor’s SVID-compliant platform.

The System V Interface Definition defines both the presence and the behavior of the various
components of the UNIX operating system. The presence of a utility, system call, library
function, etc. is either required or not required for compliance. The run-time behavior of
components is also described, including the definition of parameters, return values, and any
effect that the component has on other system components.

SVID provides for base and extensions. A SVID-compliant system may contain only the
base, but if the files for a particular extension are present, then the set must comply to the
interface definition for that extension.

The base defines the minimal run-time operating system. Extensions include the following.
o The Kernel Extension (memory mapping calls, shared memory, ...)
« The Basic Utilities Extension (run-time command set: sh, cat, ...)
« The Advanced Ultilities Extension (vi, mailx, ...)
o The Administration Systems Extension (fsck, mount, runacct, ...)
» The Software Development Extension (cc, lint, make, ...)
o The Terminal Interface Extension (terminfo, curses, ...)
o The Real Time Extension (timer and time of day system calls)
» The Remote Services Extension (RFS, RPC, XDR, ...)
o The Windowing System Extension (X Window SystemJr Version 11 commands and

utilities)

t X Window System is a trademark of the Massachusetts Institute of Technology.

UniForum 1991 Conference Proceedings, Dallas, Texas 17

SVID specifies the minimum directory tree, required system files such as /etc/passwd, and
the formats associated with these. Common device interfaces to the point of ioctl’s are
included as well as libraries such as terminfo; actual device names beyond the generic
/dev/console, /dev/null, /dev/tty are not included. Device interfaces to disks, tape drives,
etc. are not necessarily common to all systems and are, therefore, not defined in detail.

The Intent of the ABI

The ABI was developed because the System V Interface Definition is not sufficient to
guarantee that an application source compiled in a SVID-compliant environment can
migrate from one system to another provided that the systems have the same processor and
memory management architectures. SVID does not specify internal data formats, function
calling sequences, and internal table formats. Interfaces which are beyond the UNIX kernel
and library interfaces such as installation formats, supported media, etc. are omitted from
SVID.

The intent of the System V Application Binary Interface is to leverage the existing source
standards, including not only SVID, but X/Open XPG3 and the IEEE POSIX 1003 Base,
to define both presence and execution behavior of the various operating system components
and to provide a definition for low-level constructs. The ABI is divided into a generic
definition and a processor-specific definition. The generic portion defines those components
common to all architectures such as system call interfaces, library interfaces, system file
formats, etc. The processor-specific section describes the implementation of the low-level
constructs for that particular processor architecture. These include data type formats, stack
frames, page sizes, etc.

The purpose of maintaining an ABI is that the binaries generated from application source
written to comply to the interfaces defined by the ABI will be migratable across all
conformant platforms.

The ABI Specification

Analogous to the SVID classification of base and extension, the ABI specifies base and
optional components. An ABI-compliant platform must include the base components;
optional components, if present, must conform to the interface as described.

The ABI does provide definition of system components not included in SVID. A summary
of the operating system features included in the ABI follows.

« Software Packaging

The ABI defines physical distribution, media formats, and layout of the required data
and script files. The definition of the application software distribution is key to
facilitating "off-the-shelf" software.

Object File Formats

The ABI specifies the Executable and Linking Format (ELF) which supports
relocatable, executable, and shared object files. To increase portability, ELF provides
for an architecture-independent definition of a word and utilizes no bit fields. The ABI
defines the process of resolving dynamic references.

Note that although System V Release 4 does provide run-time support for UNIX V.3
Common Object File Format (COFF) executables and relocatables, the ABI specifies

UniForum 1991 Conference Proceedings, Dallas, Texas

only ELF.
« System Libraries

The ABI specifies the basic system libraries as required: libc, the C library as defined by
SVID, ANSI C, POSIX, etc., libsys, which supplies the traps to the system calls, and
libnsl which describes the transport layer interface (TLI)T Libx, which defines the X
Window System, is optional.

These libraries are specifically required to be implemented as dynamic shared libraries
and are, therefore, included in the ABIL. Other libraries defined by the SVID extensions
are not. Since they represent code which is linked into the application program, their
run-time behavior is actually part of the application and not described by the platform
ABL

Interdependencies between libraries are resolved by the provision that application
executables must provide a complete dependency graph during execution.

« System File Formats

In most cases, the ABI requires that conforming applications access all system files
whose formats are not defined by SVID, via the programmatic interfaces provided.

File formats included in the ABI are the general archive packages, the cpio archive
format, and the terminfo data base.

o Networking Data Formats and Protocols

These functions implemented in libnsl are optional, but if present, must comply to the
ABIL Included are the external data representation (XDR), remote procedure call
(RPC) protocols, and the Data Encryption Services (DES) authentication services. Note
that the act of binding a client to a service is considered a higher level function and is,
therefore, not included in the ABI.

« Application Environment

A minimal application environment is included. A set of basic commands: sk, cat, cpio,
kill, etc. are included and must be accessible via the default PATH environments.

Also included for the application execution environment is required system functions
and a rudimentary directory tree. (The directory tree does exceed the list of root level
directories included in SVID.)

What the ABI Realistically Provides; What’s Missing

UNIX International is justified in the efforts to advertise the ABI because a written
application binary interface not only guarantees a "common denominator" between

t Other networking capabilities provided within /ibns/ such as remote procedure calls, authentication, and
others are optional.

UniForum 1991 Conference Proceedings, Dallas, Texas 19

compliant systems, but facilitates source migration among different hardware
architectures.

What adherence to the ABI can not provide is the assurance that any application which
executes on one ABI-compliant system will execute on another.

Although one might argue that no paper standard can document every application
programmatic interface, the ABI actually provides a very limited set of required
directory structures, no specific devices names, no device driver interfaces, and less than
60 utilities (or shell commands).

For example:

« A fast backup tool that references a specific device node to access the tape drive can
not be guaranteed to execute on another ABI-compliant system.

o Software developed on V.3 systems are, by definition, not ABI-conforming
applications.!

o When a V.3 application is ported to V.4, it may compile successfully, but during its
execution, an attempt to reference the /usr/spool directory may fail since the V.4
equivalent directory is /var/spool.}

« An application which contains a shell script which uses the awk command is not
guaranteed to execute on another ABI-compliant system. Although awk is specified
in the SVID Base Ultilities, it is not included in the list of commands required for
ABI-conformant systems.

The ABI, therefore, specifies a somewhat restricted subset of system interfaces. The
segments marked with vertical bars in Figure 3 illustrate the relative portion of UNIX
System V which is described by the ABIL.

t The ABI requires that application software utilize the Executable and Linking Format (ELF).

$ Although not specified by the defining standards, the links to many of the standard V.3 directories are
included in the current V.4 port, as delivered from UNIX System Laboratories today.

UniForum 1991 Conference Proceedings, Dallas, Texas

Sys Files

Lib Calls

/
\

Figure 3. The System V ABI

Independent software vendors (ISV’s) demand an assurance from system vendors that
not only the base operating system be standardized via an ABI, but also the application
environment be identical among compliant platforms. The application programming
environment is best defined as the set of software required to execute the application
that is not directly packaged on the same distribution media with the application. The
availability of "shrink wrapped" software is most dependent on the degree to which this
assurance is provided to ISV’s by the system vendors and the volume of platforms
represented by the vendors who are willing to commit.

Alternative Approaches to the Problem

Groups of platform or system vendors which share a common processor architecture
have attempted to offer this guarantee via several methods.

o Test Suite Verification

Platform conformance test suites have grown in popularity in recent years. ISV’s
can be assured that the set of platforms which support the application base are
tested for conformance to SVID, the X/Open Programming Guide, and soon
IEEE POSIX definitions via the test suite method.

The test suite executes as an application on the platform and verifies that the
implementation of each interface is consistent with the documented standard.
Test suites are very effective means of building credibility; however, test suites
may or may not cover 100% of the interfaces defined. What this method does
assure is that there exists a common subset among the platform implementations
which pass the suite.

Several groups have attempted to measure the degree of an application’s
conformance to a particular standard via a test suite. At the source level, the test

UniForum 1991 Conference Proceedings, Dallas, Texas 21

serves much as a compiler front-end providing syntactical and semantic analysis of
the code to determine potential incompatibilities. Test suites which operate on
the application binary typically provide a simulation of the operating environment.
Such suites may appear to provide a strong assurance to the ISV community, but
it is difficult to assess the degree of accuracy or coverage of these. Since the suite
must be used for any application, it is virtually impossible to provide a suite which
can detect any failure in compliance.

The ABI can best be interpreted as a contract among platform vendors to ensure
a common operating environment. Given this perspective, it is incongruous to
focus on the conformance of the application source developed by the ISV as
opposed to the assurance of a standard operating environment provided by the
platform vendor.

Although platform vendors can use the test suite method to demonstrate to the
ISV that each platform implementation is consistent with at least a subset of the
documented operating system, the test suite method does not address the larger
scope, the application execution environment.

Porting or Testing Centers

Many groups of platform vendors which share a common processor architecture
are establishing porting centers or testing laboratories. The centers serve as a
convenient location where the ISV can test his application on any or all of the
platforms installed at the center.

Assuming that the majority of applications which are brought to the center do
execute successfully on all platforms tested, the method can be very effective in
assuring the ISV community that the set of platforms do represent a common
application environment. The degree of coverage, and, consequently, the
effectiveness of the assurance, is limited by the number of platforms represented
in the center and what percentage of the total population that number represents.

An additional disadvantage of this approach is that the burden of proof is placed
on the ISV. It is the ISV who must bring his application to the center and satisfy
himself that the application is portable to the various platforms available there.

Establishment of a Reference Port

If a group of platform vendors sharing a common processor technology can
identify sufficient commonality among the system architectures to derive a
reference hardware platform, then the group can utilize a reference port. The
reference port is the minimal operating environment defined by the ABI and is,
therefore, a tangible subset of UNIX System V Release 4 that is defined by the
ABI. The reference port can actually can best be viewed as the standard test or
application execution environment.

The degree of coverage is, by definition, 100%, since the group is endorsing the
reference port as a tangible ABI. More importantly, the burden of proof of
conformance is now shifted to the platform vendor. It is the responsibility of the
platform vendor that his system maintain compatibility with this minimal set; he
must ensure that any added feature functionality provided in his packaging of
System V contain the identical application interfaces. The ISV is, therefore,

UniForum 1991 Conference Proceedings, Dallas, Texas

assured that if his application executes successfully on the reference port or test
environment, then it will execute on all platforms which are compliant with the
generic and the particular processor-specific ABI.

The reference port method has the added advantage that it can address the
application execution environment beyond what is defined by the operating system
standard: the reference port can evolve to encompass specific features or products
as they emerge as de facto standards in the marketplace at a quicker pace than the
documented standard will evolve.

The following section examines this process further.
Refining the Reference Port Concept

"Shrink Wrap" Successes Today

The establishment of a reference port embodies the two factors that have been key to
the success of both MS-DOS and SCO UNIX or XENIX:

1. A standardized hardware architecture.

Both MS-DOS and SCO UNIX / XENIX utilize the PC or PC clone system as
the application porting base. Establishment of a reference port does require that
there be enough commonality between the various hardware platforms supporting
a particular processor ABI so that a majority of the systems can execute a
common, minimal operating system. Modifications for installation, hardware
initialization and management, and device drivers are assumed. The more the
actual system architectures diverge, the more difficult the process of defining a
common tangible ABIL.

2. One operating system.

Both Microsoft and Santa Cruz Operations have protected the concept of one
operating system: there exist no variants of the standard as exists with the UNIX
marketplace as a whole today. Microsoft and Santa Cruz Operations have
complete control of the their respective products.

The platform vendors, building systems based on System V Release 4, target
various market segments and differentiate their product set by offering added
value features and functionality to the UNIX operating system. Thus, it would
appear that the concept of one vendor’s providing the common operating system
is, at best, naive,

The ISV, however, is interested in the volume of potential sales for each
application port; he, therefore, will tend not to rely on added value features if he
can utilize one port for multiple vendors’ systems.

The reference port is that "common denominator" system which provides a port
base for the ISV and which maximizes the number of hardware platforms and
different vendors’ systems for which he can sell his application software.

UniForum 1991 Conference Proceedings, Dallas, Texas

23

The Logistics of Utilizing a Reference Port

The reference port is, therefore, a tool for the ISV community; it does not represent a
product for the end user community. It may or may not include the development tools.!
The reference port is basically a standardized execution environment or testbed for the
application.

The group of platform vendors supporting a processor-specific ABI can structure the
reference port so that each vendor ships the port as a standardized test environment with
the package of hardware, software, and documentation that they normally ship to their
ISV’s.

Another alternative would be to designate one vendor as the provider of the reference port.
That vendor would serve as the primary ISV contact for the entire group.

Defining and Evolving a Reference Port

The starting point for determining the contents of the reference port is the ABI
specification. The next step is to include those files necessary for booting and establishing a
sufficient operating environment for the common hardware base.

The reference port may not necessarily be encumbered by how restrictive the ABI may
appear; a reference port can be extended to include the primary source standards:

As cited in a previous example, an application whose installation scripts depends on
the awk utility is, by definition, not ABI-conforming, because awk is not included in
the ABI. Since awk is included in the Base Ultilities Extensions of the System V
Interface Definition, and since most groups of platform vendors view conformance to
SVID as a requirement, awk would naturally be included in a reference port. The
benefit is that the ISV does not have to be burdened with determining whether to
redesign his installation scripts to exclude the use of awk.

The true advantage of the reference port as a mechanism for promoting "shrink wrapped"
application software over test suite execution or porting centers is the ease with which the
"common denominator" between the platform, as defined by standards such as SVID and
the ABI, can evolve to include the components of the application execution environment.

The components included in a reference port can also extend beyond the documented
standards.

For example:
¢ Inclusion of Graphical User Interfaces

The incorporation of graphical user interfaces in sophisticated application software is
growing more prevalent. Although no one graphical user interface technology has
emerged as the standard technology for UNIX systems such as Microsoft Windows
has for MS-DOS, one technology may dominate that portion of the market targeted

t Many platform vendors may choose to differentiate their UNIX products with added value development
tools, such as high performance compilers. Again, it is the responsibility of the platform vendor to ensure
that these tools generate ABI-compliant software.

UniForum 1991 Conference Proceedings, Dallas, Texas

by a group of platform vendors who share a common processor technology. For
example, a reference port for the SPARC processor might include the OPEN LOOK

t Graphical User Interface product.

Other groups of platform vendors may choose to include two competing interface
products, such as OSF/Motif and the OPEN LOOK GUI, thus allowing the ISV the
choice of technology.

« Preservation of Existing Application Environment

The announcement of the agreement between Intel, UNIX System Laboratories, and
Santa Cruz Operations to extend the Binary Compatibility Standard to incorporate
application interfaces inherent to the SCO UNIX products is significant to the
platform vendors who plan to offer UNIX System V Release 4 systems based on the
386/486 architecture. The extension of the BCS provides a migration path to SVR4,
allowing the existing SCO application base to be applied to i386/486 SVR4 systems.

The inclusion of the extended BCS interfaces is a viable option for the platform
vendors building SVR4 systems based on the 386/486 in defining a reference port for
that particular processor base.

« Inclusion of Common Device Interfaces

Where there exist common hardware or peripheral devices among the systems which
share a common processor technology, it is likely that the interfaces to those can be
standardized to the point of common device names, common interface structures, and
common utilities. For example, many systems utilize 3.5" flex as the primary
distribution media for application software. If the device naming conventions and the
utilities to access the flex drive have already become de facto standards for systems
based on a particular processor architecture, it is natural that the device names and
the utilities would be reflected in the reference port for the processor architecture.

The reference port for a particular processor base can, therefore, evolve to include those
portions of the application environment which are most important for the population of
systems or platforms represented. Other examples are the standardization of a data base
query language for front-end processors, inclusion of Kanji interfaces for the Japanese
marketplace, networking interfaces for client-server systems, and others.

t OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

25

Evolving the Documented Standard

Published standards such as the ABI, SVID, and others tend to document what already
exists as "common practice" in the existing implementations of the UNIX operating
system.

The establishment of reference ports allows the subset of "common practices" to evolve
to encompass the features necessary for a complete application execution environment
as applications become more sophisticated and more dependent on interfaces beyond
the basic operating system interfaces.

The published standards must then also evolve to document these practices as they
become de facto standards. The current revisions of the System V Interface Definition
and the System V Application Binary Interface provide an excellent example of this
process:

The X Window System has evolved to be a de facto standard as a windowing
system for UNIX platforms. Once the X Window System had become
established in the UNIX community, the libraries were documented in both the
SVID and ABI specifications.

Thus, the reference port for a processor-specific must reflect the ABI specification for
that processor, and in turn, the ABI specification must evolve as the reference
environment evolves.

Summary Statements

o The ABI represents an excellent step towards establishing a mechanism for "shrink
wrapped" software for System V platforms.

The ABI, as it is defined today, is not a sufficient mechanism for creating a "shrink
wrapped" motion for System V Release 4 platforms.

The group of platform vendors whose systems share a common processor base and a
sufficient common architectural base are best positioned to create a "shrink
wrapped" application motion for their products by endorsing a reference port for
that processor.

A reference port provides the ISV with a tangible ABI and an environment to which
he can port his applications with the assurance that the applications will be portable
to all platforms conformant to the ABI.

As new technologies emerge, application software will become more dependent on
interfaces beyond the UNIX system and library call interfaces. Examples of these
today include graphical user interfaces, data base query commands, networking
protocols, and others.

The true significance of a reference port, beyond providing a tangible representation
of the paper standard, is that it is the medium by which the standard operating
system can evolve to include the necessary components of the application
environment.

UniForum 1991 Conference Proceedings, Dallas, Texas

o The reference port must reflect the published ABI specification; the ABI
specification must, in turn, evolve with the marketplace and include the de facto
standards of the application environment.

Figure 4 illustrates the fact that the evolution of the ABI can be virtually unbounded as
application technologies evolve.

Utilities, Files

Emerging API’s

Figure 4. The ABI: The Application Execution Environment

References

AT&T. System V Application Binary Interface, 1990.

AT&T. System V Interface Definition, Industry Review Draft, Volumes 1-3, 1989.
Intel Corporation. The Intel 386 Architecture and the System V ABI, 1990.

Santa Cruz Operation. SCO MPX, January, 1990.

UNIX International System Interfaces Working Group. ABI Creation and Evolution
Process, Ul Internal Draft, February, 1990.

27

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

i

Porting Between
Open Look™ and
OSF/Motif GUIs

Paul E. Kimball

Digital Equipment Corporation
800 W. El Camino Real
Mountain View, CA 94040
(415) 691-4756

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

Introduction

Cost-reduction is a compelling reason for
using UNIX®-based computer systems as
opposed to computer systems based on propri-
etary operating systems. In a paper presented
at UniForum™ 1990 (Converting S/370 Batch
Applications to Run Under UNIX, UniForum
1990 Conference Proceedings, pages 37-46)
we found that:

+ High-performance UNIX-based computers
have superior price/performance character-
istics as compared to IBM® System/370™
computers (308X, 3090, etc.) that use a
proprietary operating system.

o There are several COBOL compilers
available today for use on UNIX-based
computers. One of the compilers that was
tested was very compatible with IBM’s
0OS/VS COBOL and COBOL II compilers.

« Although file transfer and data conversion
between a UNIX-based computer and a
System/370 computer is more difficult
than it is between UNIX-based computers,
it is manageable and can be done on a
day-to-day basis.

Continuing to explore the issue of porting
System/370 COBOL applications to UNIX-
based computers, this paper examines the
following issues:

« Compiler Considerations
+ CICS emulation

+ Embedded SQL

« Use of NFS™ and TCP/IP
« RISC vs. CISC

Compiler Considerations

One COBOL compiler that is very compatible
with IBM’s System/370 COBOL compilers is
the Micro Focus® compiler. The Micro Focus
compiler is available on a wide range of
hardware, including computers which use the
MS-DOS™, 0S/2™ and UNIX operating

UniForum 1991 Conference Proceedings, Dallas, Texas

systems. The Micro Focus compiler supports
the same numeric formats that the IBM
COBOL compilers do.

The computer that we used last year for
testing was a Sequent Symmetry® S27 com-
puter. The S27 is a multi-processing
computer utilizing two or more Intel® 80386
microprocessors. During last year’s test, the
Micro Focus COBOL compiler on the S27
could only produce programs which required
run-time support. Stand-alone executable
programs could not be produced. It was our
feeling, based on the use of the Micro Focus
compiler on other computers, that stand-alone
executable programs would execute more
quickly than programs which required run-
time support. A compiler that could produce
stand-alone executable programs was
delivered just prior to the completion of this
paper. A cursory study indicated that there
was little, if any difference in performance
between the stand-alone executable programs
and those programs which required run-time
support when running compute-bound
programs. However, on the S27, when
running disk benchmarks, the stand-alone
executable code was consistently 10-20%
faster than the run-time dependent code. (On
another UNIX-based computer that was
recently tested, there was no significant dif-
ference between stand-alone and run-time
versions of the disk benchmark programs.)

Another observation that we made last year
was that none of the currently available
COBOL compilers could take advantage of
the multi-processing architecture of the $27 to
reduce the time required to run a single pro-
gram (multiple programs which execute
concurrently are automatically load-balanced
by the S§27). This situation has not changed
since last year. Single programs can take
advantage of multi-processing if they are re-
written (probably to C). However, re-writing
a COBOL application to take advantage of
multi-processing today will certainly reduce

31

porting ease, not only between a System/370
computer and a UNIX-based computer but
between UNIX-based computers as well
because of the lack of multi-processing
standards.

CICS

System/370 computers utilize a teleprocessing
monitor to manage the interaction between
application programs on one hand and
terminals, printers and other computing
devices on the other. The two teleprocessing
monitors most commonly used with IBM’s
MVS™ operating system are TSO (Time-
Sharing Option) and CICS (Customer
Information and Control System).

The following are some of the components
necessary to build a CICS COBOL
application:

+ BMS source code files (also called maps).
These files describe the layout of the
screens used by CICS programs. BMS
source code files are compiled and linked
into executable programs.

Copybooks. Copybooks are similar to the
.h include files used in the C
programming language.

COBOL programs compiled and linked
into executable programs.

File Control Table (FCT). This table
relates dataset names to VSAM file names
and key paths. It also defines the location
and properties of those files.

Terminal Control Table (TCT). Older
versions of CICS required that any
terminal which used CICS be defined via
the TCT.

Program Control Table (PCT). This table
relates Transaction Identifiers and AID
key values to application program names.

Processing Program Table (PPT). This
table is used to identify the programs that

are run under CICS.

CICS makes use of VSAM (Virtual
Storage Access Method) files. VSAM file
formats include ESDS (Entry Sequenced
Data Sets), KSDS (Keyed Sequence Data
Sets) and RRDS (Relative Record Data
Sets).

VIS/TP™. VISystems Inc. offers a program
called VIS/TP which provides CICS function-
ality on UNIX-based computers. VISystems
claims that VIS/TP is compatible with Release
1.7 of CICS. The current version of CICS (as
of October, 1990) is 2.1. VIS/TP requires
that the following steps be performed in order
to run a CICS COBOL program on a UNIX-
based computer:

 The File Control, Terminal Control,
Program Control and Processing Program
tables (as well as other CICS tables) can
be defined to VIS/TP (these tables are
interactively created - they are not down-
loaded from the System/370 computer).

Data files that are used must be converted
using a VIS/TP utility. In order to use
this utility, the corresponding copybooks
must be available.

Using the vismpgen utility, BMS maps are
compiled and linked into executable
modules. During this process, each BMS
statement is analyzed (parsed) for validity
based on syntax and level of support.
Statements failing the analysis are flagged
with a message.

COBOL programs are translated and
passed to the C compiler. Linking is then

performed. (COBOL programs must
conform to the ANSI 85 standard.)

Development and debugging of CICS
COBOL can be done using the VIS/TP
package. A debugging tool similar to
CDEF is available, although the VIS/TP
implementation is not as functionally rich
as the actual CICS product. Debugging is

UniForum 1991 Conference Proceedings, Dallas, Texas

done at the COBOL and CICS source
level.

Two applications that were tested using
VIS/TP were: 1) the Special Vehicle Handling
application and 2) the Broadcast System
application. The main purpose of this testing
process was to determine what place (if any)
such a product would have at Chrysler in the
future. There was no intention to immed-
iately port these production applications to a
UNIX-based computer.

Special Vehicle Handling. This application
is used to handle special vehicle orders (fleet
orders, customized vehicles, etc.). This appli-
cation consists of:

« Six COBOL programs and the associated
copy books with 14,750 total lines of
source code.

¢ One large BMS source file (map) with
1200 lines of source code.

¢ One VSAM data file.

All of the above files were transferred to the
Sequent $27 computer using RJE (remote-job
entry) as the file-transfer method. The
following are our observations in porting this
application to the S27:

» The vismpgen utility converted the BMS
map file without any problems.

« The data file was converted for use under
UNIX using the VIS/TP file convert
utility without any problem.

o One of the COBOL programs used the
variable “DAY-OF-WEEK”, a reserved
word under COBOL ANSI 85. It was not
reserved in previous ANSI COBOL
standards. Because of the reverse byte-
ordering for words used by Intel micro-
processors, a part of one of the COBOL
programs that performed a alpha/numeric
byte-check had to be changed. (This was
a conscious decision on the part of
VISystems and not a bug.) Once these

UniForum 1991 Conference Proceedings, Dallas, Texas

two changes were made, the COBOL
programs compiled and executed without
a problem. '

« It took 1-1/2 man-days to port this appli-
cation, including the time necessary to
create the various control tables that were
required.

Broadcast System. The Broadcast System is
used to create a build order for use at
Chrysler’s assembly plants. This application
consists of:

« Eight COBOL programs (four main pro-
grams and four supporting programs) and
five IBM System/370 assembler sub-
routines with 43,680 total lines of source
code.

« The copybooks for this application were
incomplete. This was unfortunate since
one of the copybooks had over 300
different record formats defined in it.

« Six BMS source files (maps) with 1500
total lines of source code

+ Five VSAM data files (using both fixed
and variable record types)

Once again, RJE was used to perform a file-
transfer between the System/370 computer
and the S27. The following are our obser-
vations in porting this application to the S27:

+ The vismpgen utility converted the BMS
map files without any problems.

+ In order to use the VIS/TP file convert
utility, the corresponding copybooks are
required. In the case of the broadcast
system, these copybooks did not exist and
additional programs needed to be written
so that VIS/TP could use the VSAM data
files which were downloaded. In order to
work around this, five COBOL programs
on the System/370 computer and five
COBOL programs on the S27 (all batch)
were written.

33

* One of the COBOL programs used the
variable “DAY-OF-WEEK”, a reserved
word under COBOL ANSI 85. It was not
reserved in previous ANSI COBOL
standards. The verb TRANSFORM
needed to be changed to INSPECT
(another COBOL version change).

There were five System/370 assembler
routines. VIS/TP does not support the use
of System/370 Assembler code. At the
time that this paper was written, not all of
these assembler routines had been con-
verted to COBOL.

This system made extensive use of CICS
features. Some of these features were
added in recent CICS upgrades. As is the
case in similar situations, there are two
moving targets. VISystems continues to
work on VIS/TP while at the same time
IBM is releasing new versions of CICS.

Based on our experience, we believe that the
following conditions make it more likely that
a CICS COBOL program can be ported using
VIS/TP:

* Good system development practices were
followed (i.e., complete copybooks exist,
COBOL code follows relatively recent
COBOL standards, etc.).

Programs do not use
assembler code.

System/370

A list of the CICS features used is main-
tained so that it can be compared to the
list of supported VIS/TP features.

DB2

One of the issues that was raised during the
presentation last year was the porting of
COBOL programs which contained embedded

SQL statements accessing DB2, IBM’s
relational database management system.
While there are UNIX-based solutions that
provide SQL functionality, careful con-
sideration should be given to the available

alternatives.

VISystems. Although VISystems provides
CICS functionality, the current release of
VIS/TP does not yet support SQL.

Micro Focus. Currently, Micro Focus does
not support SQL on its products for UNIX-
based compilers. The vendors that provide
SQL functionality with the Micro Focus MS-
DOS compiler (Gupta Technologies and
Software Systems Technology) have
announced their intention to support UNIX-
based computers in the future.

At least two other RDBMS vendors currently
provide the capability to embed SQL state-
ments in COBOL programs.

We have not tested any of these products.
However, as was the case with our COBOL
programs which accessed VSAM files, batch
COBOL programs with embedded SQL will
be easier to port than those that require CICS.
It is also certainly easier to port COBOL
programs which use VSAM files as opposed
to DB2 files.

NFS and TCP/IP

The main feature of NFS (Network File
System) is the ability for a client computer to
“import” a file system from a server
computer. While the term “import” is used
(suggesting a one-time exchange of data),
NFS really “virtualizes” file systems so that a
file system on the server appears to the client
computer like a file system of its own. The
exported file system can be made available to
multiple clients on a network and multiple
servers can be defined on the network. A
computer can serve as both a server and a
client. If a System/370 computer (running
MYVS or VM) had the ability to act as an NFS
file server, then a UNIX-based computer
would be able to transparently access the IBM
file systems. Unfortunately, this capability is
not available today, mainly because of the
very different nature of the file systems

UniForum 1991 Conference Proceedings, Dallas, Texas

involved. However, there are numerous
TCP/IP and NFS solutions that permit some
degree of inter-operability between UNIX-
based computers and System/370 computers.

A typical System/370 computer system uses
the following components to communicate to
other computing devices:

» The System/370 computer itself.

« Front-end processors which are *“channel-
attached” (a high-speed direct connection)
to the System/370 computer.

« Communications links on the front-end
processor to remote computing devices.

+ Computing devices of some sort which
may or may not serve as a hub for even
more computing devices. (See Figure 1.)

Most implementations of TCP/IP on a
System/370 computer require TCP/IP software
on the System/370 computer. Some
implementations (including IBM’s) support
NFS, however a separate file space is
allocated for NFS use. From that point, the
following options are available (this list is not
exhaustive):

+ An IBM 3745 front-end processor can be
remotely connected via X.25 to a UNIX-
based computer with X.25 and Ethernet™
communication capabilities.

« An IBM 3745 front-end processor can be
remotely connected via an SNA network
to a device that supports an Ethernet
network (Mitek’s 2130 is an example of
such a device). Because many
organizations already have an extensive
SNA network, such an option may be less
disruptive than the options which require
an X.25 communications link.

« A front-end processor can be directly
connected to an Ethernet network (IBM’s
3172 and 8232 front-end processors are
examples of this).

UniForum 1991 Conference Proceedings, Dallas, Texas

Amdahl offers a Multiple Domain Feature™
(MDF)™ which allows multiple operating
system environments to be run on their
systems (even single-engine computers). In
this environment, it is possible to run UTS™
(Amdahl’s implementation of UNIX) in one
domain and, for example, MVS/XA in another
domain, File transfer between the UNIX
domain and the MVS domain take place at
channel speeds. Perhaps the most important
feature of MDF is the ability for programs
running under MVS and UTS to access the
same files on UTS utilizing APPC (Advanced
Program-to-Program Communication) calls.
Multiple domains and Amdahl’s TCP/IP
software can be used on other System/370
plug-compatible computers.

There is a wide range of TCP/IP and NFS
products available today for the System/370
environment. These products differ in the
functionality they offer, the performance they
offer, the amount of System/370 computer
resources that are required and their cost.

RISC vs. CISC

In the past 18 months, we have tested UNIX-
based computers from ten different vendors.
Some of these computers were aimed toward
the engineering/scientific market and others
were aimed toward the traditional business
minicomputer market. Among the computers
tested were several RISC computers. In two
cases, RISC and CISC computers from the
same manufacturer were tested. Based on our
benchmarking tests and the use of these
computers, we can make the following obser-
vations about the RISC vs. CISC issue:

o The RISC-based computers were, as a
whole, faster than CISC-based computers
when performing single compute-bound
tasks. However, as more tasks were
added, the RISC-based computers tended
to lose their performance advantage.
(While we tested computers with recent
RISC microprocessors, we have not tested

35

Figure 1:
Typical System/370 TCP/IP Implementation

System/370 System/370
MVS or VM

Computer

TCP/P

Software Dedicated
File Space

Channel Channe!

IBM IBM Front-end
3745 3172 or 8232 Processors

Ethernet
SNA Network

UNIX Mitek .
Computer M2'1 30 Remote Devices

Ethernet Ethernet
Network Network

UniForum 1991 Conference Proceedings, Dallas, Texas

computers which use either the Intel
80486 or the Motorola 68040 micro-
Processors.)

+ RISC computers did not show any
performance advantages when doing disk-
intensive operations.

« Executable program files were larger on
RISC computers vs. CISC computers.

How important is the issue of RISC vs.
CISC? For our applications (business appli-
cations as opposed to scientific or engineering
applications), the issue is not very important.
Certainly, when selecting a computer to port
System/370 applications to, software avail-
ability (COBOL compiler, communications
software, etc.) requires a higher level of
consideration that the RISC vs. CISC issue.

Conclusions

Based on our experience over the past two
years in porting IBM System/370 COBOL
applications to UNIX-based computers, we
suggest that the following steps be taken for
a successful porting effort:

« Form a team that will be responsible for
porting efforts. The team should have
expertise in the following areas:

- Typical UNIX hardware platforms
(Intel 80X86, Motorola 680XO0, etc.)

- System/370 computer operation,
including communications, file
structure and areas applicable to the
programs being ported (CICS, MVS,
VM, TSO, DB2, etc.)

- UNIX

- COBOL

- C

- Muld-processing (helpful)

- MS-DOS computers (helpful)

+ The team should be cross-educated. That
is, a person on the team should be know-
ledgeable about both C and COBOL. A
person on the team should be

UniForum 1991 Conference Proceedings, Dallas, Texas

knowledgeable about how UNIX-based
computers and System/370 computers
interface with terminals. This cross-
education is important because the
terminology and the technology of the
UNIX-based computer environment is
very different from that of the System/370
environment.

» Expectations about future porting success
should not be based on early porting
experiences. There is a learning curve
involved in becoming proficient at porting
programs.

» Once the team has become proficient at
porting IBM System/370 computer
programs to a UNIX-based computer, a
porting profile should be developed. This
dynamic profile should detail the likely
costs/benefits of porting certain types of
programs (batch vs. non-batch programs,
programs which use VSAM files vs.
programs which use DB2, etc.). This
profile should be used to determine the
probable cost/benefit of porting candidate
applications.

Nobody today suggests that IBM System/370
applications can be put into a magic “black
box” which would turn out the same appli-
cation on a UNIX-based computer. However,
the increasing popularity of UNIX has
encouraged vendors to bring products to
market which make it possible to port certain
types of System/370 applications to run on
UNIX-based computers with a relatively low
expenditure of effort. This trend is likely to
continue and the benefits for those
organizations which can take advantage of
this trend include lower computing costs,
greater flexibility and faster system implemen-
tation cycles.

This paper should not be construed as an
endorsement of any of the aforementioned
products.

37

Trademarks

Amdahl is a registered trademark of Amdahl Corporation.

Ethernet is a trademark of Xerox Corporation.

Intel is a registered trademark of Intel Corporation.

Micro Focus is a registered trademark of Micro Focus.

MS-DOS is a trademark of Microsoft Corporation

Multiple Domain Feature and MDF are trademarks of Amdahl Corporation
MYVS is a trademark of the International Business Machines Corporation
NFS is a trademark of Sun Microsystems, Inc.

OS/2 is a trademark of the International Business Machines Corporation
SPARC is a trademark of Sun Microsystems, Inc.

Sun is a trademark of Sun Microsystems, Inc.

Symmetry is a registered trademark of Sequent Computer Systems, Inc.
UniForum is a trademark of UniForum

UNIX is a registered trademark of AT&T

UTS is a registered trademark of Amdahl Corporation.

VIS/TP is a trademark of VISystems Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

Multimedia Document

Workstation: Future Data
Terminal Equipment

Jonathan 2. Ma

Accurate Information Systems, Inc.
3000 Hadley Road

South Plainfield, NJ 07080

(201) 754-7714

jma@accurate.com

39

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

Multimedia Document Workstation
Future Data Terminal Equipment

Jonathan Z. Ma
jma@accurate.com

ACCURATE Information Systems, Inc.
3000 Hadley Road,
South Plainfield, N.J. 07080

ABSTRACT

A multimedia document consists of text, images, graphics and, possibly, speech.
In a computer-assisted environment, the ability to compose and to exchange such
a document via data communications networks has the potential to significantly
increase the effectiveness of communications. The benefit of multimedia in
communications is clear; by exchanging information in multimedia, one can not
only acquire the information, but also experience it. For example, an animated
multimedia presentation of a surgical demonstration would give medical students
much a stronger impression than a text book does. Also, a multimedia
conference, although it cannot completely relace human face-to-face meetings, will
certainly help to reduce the barrier introduced by geographical separation.
However, like any emerging technology, multimedia communications capability
also introduces a number of technical challenges. This is why, until recently,
most of the multimedia document systems have only been available in research
laboratories.

This paper discusses the technical challenges in constructing a multimedia
document system and how the current technology can be applied to resolve these
challenges. It presents the architecture of a multimedia document workstation
which integrates all the necessary functional components and provides multimedia
communications capability. The paper will also discuss how a multimedia
document workstation, which may become a future Data Terminal Equipment
(DTE), can be integrated with wideband data communications networks.

1. Introduction

A multimedia document consists of text, images, graphics and, possibly, speech. In a
computer-assisted environment, the ability to compose and to exchange such a document
via data communications networks has the potential to significantly increase the
effectiveness of communications. However, like any emerging technology, multimedia
communications capability also introduces a number of technical challenges. This is
why, until recently, most of the multimedia document systems have only been available
in research laboratories.

Firstly, a multimedia document, by its nature, often contains a large volume of data.
Consequently, to exchange such documents requires high bandwidth networks. With the
advent of FDDI and ISDN, efficient and economical exchange of multimedia documents

UniForum 1991 Conference Proceedings, Dallas, Texas 41

becomes feasible.

Secondly, composing and processing a multimedia document often requires higher
processing power. Recent development in high performance micro-computers paves the
way for commercially viable, cost-effective multimedia workstations.

Thirdly, to construct, store and manipulate a multimedia document requires mass storage
and sophisticated input/output devices. Recent progress in optical disk storage, scanning
facilities and printing devices provides the necessary ingredients for the construction of a
multimedia workstation.

Lastly, perhaps the most <hallenging task in constructing a multimedia document system
is the provision for interchangeability of multimedia documents in heterogeneous
environments. Needless to say, the interchangeability of multimedia documents requires
all the systems in question to be open systems. The OSI [1] model provides the desirable
architecture. However, an open system alone, even if it is in conformance with the OSI
standards, does not make the multimedia documents interchangeable. Since physical
characteristics of peripheral devices vary widely, information formatted for the
originator’s devices may appear quite differently on the recipient’s devices; sometimes, it
may even be illegible. Documents that are to be interchanged should have a certain
structure and follow some interchange format, so that when required, they can be easily
reprocessed and reformatted on the recipient’s machine and properly rendered on the
recipient’s devices. The rules for defining the structures in documents are collectively
called the document architecture model, referred to, by ISO, as the Office Document
Architecture (ODA) [2].

This paper discusses the technical challenges in constructing a multimedia document
system and how the current technology can be applied to resolve these challenges. The
emphasis of the paper is on document processing and integration techniques required in
building a multimedia system.

Today, multimedia are still a raw frontier in which tools and skills are mixed freely
without having to follow any standard architecture. The complexity of existing
multimedia systems varies from a simple CD-ROM player, through a sophisticated
authoring system, to an integrated multimedia system [3]. The multimedia system
discussed in this paper refers to such a system which is able to compose, store, retrieve,
and to represent machine-processable information expressed in multimedia. The
multimedia information should be organized in a structure conforming to the Office
Document Architecture (ODA) [2]. In addition, the system should be able to exchange
such a document which is in compliance with the Office Document Interchange Format
(ODIF) [2] in a heterogeneous environment via wideband networks. Hopefully, such a
system will become a forthcoming Data Terminal Equipment (DTE) and widely applied
in future information and data communications systems.

Prior to discussing the architecture and details of such a system, the terminology and
concepts related to the Office Document Architecture need to be described. Section 2
introduces the basic concept of ODA and ODIF. The architecture of such a multimedia
system is discussed in Section 3. Two key components of the multimedia system, namely
a structure editor and a structure formatter, are discussed in Section 4 and Section 5
respectively. Section 6 is concerned with the presentation of a multimedia document.
Storage organization and database techniques used for multimedia document storage and

UniForum 1991 Conference Proceedings, Dallas, Texas

presentation are covered in Section 7. In Section 8, a possible implementation scheme
under UNIX® System V (Release 3 or greater) is discussed.

2. Office Document Architecture

An electronic document can be interchanged in an image form or a processable form. An
electronic document received in an image form can be directly presented on the recipient’s
device(s) should the devices are compatible with or identical to the originator’s devices.
Unfortunately, in real life, this requirement cannot always be satisfied. In general, an
electronic document, especially a multimedia document, needs to be presented in a
processable form so.that when it is exchanged in a heterogeneous environment it can be
easily reproduced on the recipient’s machine. ODA and ODIF define the architecture and
interchangeable format of a machine processable electronic document. According to the
ODA standards, the content of a document is physically and logically structured and the
structure of the document is reflected by its logical and layout structures. Both the
logical and layout structures are hierarchical and together they provide a different, but
complementary view of a document.

The logical structure divides the content of a document into a hierarchy of logical objects,
e.g. chapters, appendices, headings, paragraphs, footnotes, figures, etc.

The layout structure divides the content of a document into a hierarchy of layout objects
for positioning and rendition on presentation media.

A group of similar objects is called an object class. A definition which describes the
structure of an object class is called a generic object definition -- generic logical definition
or generic layout definition. The structures that are particular to a given document are
referred to as specific logical and layout structures. A document may also include a
document profile, which is separate from the structure and the content of the document.
A document profile contains information for handling the document as a whole.

3. Multimedia System Architecture

The attractiveness of a multimedia system is obvious, however to achieve the spectacular
results it promises, it has first to overcome a number of technical challenges summarized
below:

eData capture and data acquisition: a multimedia document may include information
from various sources. Conventional input devices, such as keyboards and disks, by
themselves are not sufficient. Special data capture devices, such as a scanner, a voice
encoder, and a motion video board, are required to capture the information presented in
various media and convert it to digitized and formatted data so that it can be processed
by a computer.

eData presentation: to achieve the eflectiveness of multimedia communications,
multimedia information needs be presented, often simultaneously, to diversified devices.

® UNIX is a registered trademark of AT&T.

UniForum 1991 Conference Proceedings, Dallas, Texas 43

For example, to present a multimedia training tutorial, while text, graphic and image
are being presented to a graphic monitor, the sound explanation may need, at the same
time, to be sent to the attached speaker. Also, during the data presentation process,
issues associated with data conversion and synchronization need to be addressed. For
example, the output from a computer’s VGA adapter is incompatible with the interlaced
signal defined by the National Television Systems Committee (NTSC) standard for
broadcast television [4]. Consequently, an image capture by a video camera has to be
converted before being presented to a VGA monitor. In addition, to present
multimedia information comprised of image and voice, a proper synchronization is
required.

oLarge storage and data compression: audio, image and/or video information when
digitized, generates large volumes of data. A scanncd image (assume that scanning
resolution is 300 dots per inch and data is not compressed) of one A4-size paper requires
about 1M bytes of storage. A one minute digitized motion picture, before it is
compressed, requires 2 gigabytes storage [5]. Audio data is more compact. A one
second quality segment of digitized sound needs about 44k bytes of storage. While data
compression can considerably reduce the required storage space, the sheer volume of
multimedia data still creates a storage problem. Optical disks, with storage capacity
measured in gigabytes, provide required mass storage. An optical disk can be a CD-
ROM, a WORM (Write Once, Read Many) or an erasable optical disk. The choice
depends on the requirement of applications. Optical disks can be organized in Jukeboxes
to provide very large storage. Often large data redundancy is observed in scanned image
and digitized audio and video data. An efficient compression algorithm can considerably
reduce the volume of data. Data compression/decompression can be conducted on a
workstation by software or on an add-in board by firmware. Perhaps the most efficient
way to implement data compression/decompression functions, is to incorporate these
functions in firmware and free the main processor(s) to handle other computing tasks.

eStructure construction and presentation: the logical and layout structures of a
multimedia document and the temporal relation between different media needs to be
specified. Thus, at the receiving end the multimedia information can be properly
reconstructed and rendered to appropriate devices.

o Efficient retrieval: in general, digitized audio and video data requires large volumes of
space and often is not formatted. This kind of information is not appropriate for a
database. The information can be stored on a separate storage device, e.g. an optical
disk, instead of the same device where the database resides. However, efficient and
versatile indexes should be built on the database, so that the media dependent
information can be efficiently and easily retrieved.

olligh communication bandwidth: exchanging a multimedia document requires high
communication bandwidth and appropriate communication protocols so that adequate
communication performance can be achieved.

To meet the above mentioned challenges, a multimedia system should be comprised of
the following functional components:

— Special I/0 devices.
— Structure editor.

— Structure formatter.

UniForum 1991 Conference Proceedings, Dallas, Texas

— Structure presenter.
— Database management system.
— Efficient data communications sub-system.

However, unless these functional components are integrated together and presented via a
friendly user interface, multimedia systems will only be in the hands of specialists.

The architecture presented below provides a platform whereby all the functional

components can be integrated together. As depicted in Figure 1, the proposed system will
consist of the following functional modules:

(User Interface)

structure structure structure transport
editor formatter presenter manager

content
editor

multimedia ommunication

database

sub system

d

medium-dependent driver (I/0)

_ Figure 1. Architecture of a Multimedia System.

1. User Interface: this module is the user’s access point to the system. From here, a
user can either invoke the structure editor to compose a multimedia document, the
structure formatter to format a pre-composed document, the structure presenter to
interpret the formatted structure of the multimedia document and to present the
document on suitable media, or the transport manager to exchange a multimedia
document with a remote partner. The user interface module should be a menu-
driven interface with pop-up and pull-down menu capability to allow a user to
solicit any of the underlying functional modules. Function keys and icons should
also be provided to assist access of the system by non-technical users.

2. Structure Editor: this module is responsible for composing a multimedia document.
This module takes input from the user and the database, where generic logical
structures are saved, produces a composed multimedia document. When needed, the
structure editor will also call the content editor to create and allocate a content

UniForum 1991 Conference Proceedings, Dallas, Texas

45

portion for a chosen basic logical object. In creating a content portion, a special
I/0O device may need to be called.

Formatter: this module is responsible for producing the specific layout structure of a
composed document.

Structure Presenter: this module helps a user view a composed multimedia
document.

Multimedia database: the database system which stores and maintains multimedia
documents and associated information such as document profiles, generic logical
structures and generic layout structures. Indexes to contents may also be saved in
the database, although the contents themselves may be stored on a separate storage
device.

Transport manager: this module is responsible for exchanging a multimedia
document with a remote system -- a host or a database server.

eneric specihc
%o ical structure logical
. ogic
& editor &
structure structure

specific
logical

structure

content content
editor element

graphic
editor

device-dependent
driver

Figure 2. Interaction between Structure Editor and Content Editor.

UniForum 1991 Conference Proceedings, Dallas, Texas

4. Structure Editor

The process of editing a multimedia document includes document creation and document
revision. From an architecture perspective, these activities are indistinguishable. The
document editing process consists of the logical structure editing process and the content
editing process. The logical structure editing process is concerned with the creation of a
specific logical structure and the modification of a previously created logical structure.
The content editing process deals with the creation of a new content element or the
modification of an existing content element. The interaction between these two processes
is depicted in Figure 2.

During the logical structure editing process, the inputs fed to the structure editor are
generic and, possibly, specific logical structures. The generic logical structure is used as a
template to guide the creation of a specific logical structure. The generic logical structure
for a memorandum might be the one illustrated in Figure 3. A windowing system will
make this editing process much easier. For example, while one window is used to display
the generic logical structure, another window can be employed to create the specific
logical structure. During this process, window oriented utilities such as cut and paste, can
be utilized to speed up the editing.

document
root
SEQUENTIAL
header body ending
SEQUENTIAL
from to date ‘ subject ’
REPEAT
CHOICE SEQUENTIAL
paragraph figure name signature

Figure 3. A Generic Logical Structure for Memorandum.

UniForum 1991 Conference Proceedings, Dallas, Texas 47

Once the specific logical structure is created, the content editing process can be started to
allocate content elements for each of the basic logical objects. Again, if an appropriate
windowing system is employed, the user can simply move the cursor to a content element
and click a mouse button to activate the content editor.

memo
document
root

|

header

|

|

|

to

subject

|

|

|

]

content
element

content
element

content
element

content
element

paragraph-1

paragraph-2

content
element

content
element

content
element

content
element

signature

content
element

Figure 4. A Specific Logical Structure for a Memo.

UniForum 1991 Conference Proceedings, Dallas, Texas

From the content editor, the user can call any medium-dependent editor. For example
the user may invoke the text editor to create the first paragraph in the memo body. He
may invoke the graphic editor to create the illustrating figure and the image editor to pull
out the scanned image of his signature. The final specific logical structure for a memo is
illustrated in Figure 4.

The output of the structure editor -- specific logical structure and the corresponding
content portions -- can either be fed to the structure formatter for further processing,
saved in a database, or sent to a remote machine.

5. Structure Formatter

The structure formatter is called to format the document during the layout process. The
layout process includes the document layout process and the content layout process.
These processes are concerned with the creation of a specific layout structure which can be
used by the imaging process to present the document in human perceptible form on the
presentation media. The specific layout structure generated by the structure formatter
should be consistent with the corresponding generic layout structure. The specific layout
structure should also be in line with the layout directive attributes specified in the
corresponding logical objects. During the document and content layout processes, the
structure formatter will create layout objects into which the content of the sequence of
basic logical objects is to be laid out. The layout objects follow a hierarchical structure.
For example, a specific layout structure may form a tree structure, which consists of a
layout root, page sets, frame sets, and blocks. The leaf nodes of the tree are blocks --
basic layout objects, and attached to each block is a content element.

The document layout process controls the allocation of the areas within a frame or
sequence of frames into which the content of each basic logical object is to be placed. It
will also defines constraints on the area(s) into which the content may be laid out. The
content layout process is responsible for formatting the content into the allocated area
taking into account the constraints imposed by the document layout process. The content
layout process determines the dimensions of the basic layout objects. The document
layout process is responsible for determining the position of these basic layout objects
within the frame which they belong to. The document layout process is also responsible
for determining the dimensions and positions of frames. The structure formatter should
provide all the necessary utilities in assisting a user to complete the document and
content layout processes. The output of the structure formatter -- specific layout
structure and laid-out content -- can be sent to the structure presenter or to a remote
machine for presentation.

6. Structure Presenter

The responsibility of the structure presenter is to interpret the specific logical and layout
structure and present the document on appropriate media. During this process, data
conversion and filtering may be carried out to convert the layout directives to a pertinent
device-dependent control language understood by the device driver being used. For
example, if the document is to be presented to a PostScript printer, the layout directives
should be converted to PostScript commands.

ODA defines the logical and layout relationship between document objects. The only
temporal relationship specified by ODA is the sequential order of document objects. The

UniForum 1991 Conference Proceedings, Dallas, Texas 49

sequential order defined by ODA is such that each object in the structure is succeeded by
all of its immediate subordinates, before any other objects with the same immediate
superior. Each of the immediate subordinates is followed by all of its immediate
subordinates, before proceeding to the next immediate subordinate in sequence. ODA
does allow the imaging order to determine the precedence of layout objects for imaging.
Thus, the imaging order can be different from the sequential layout order. However, the
imaging order is still sequential. This over simplied temporal relationship is not always
adequate to delineate the temporal relationship of document objects in a complicated
multimedia document. Often, two content elements need to be simultaneously presented.
For example, motion video and sound explanation need to be synchronized and text and
figures need to be accompanied by corresponding voice annotation. The coordination of
such a presentation is essential for its understanding. The required synchronization
should be built within the document structure. Two new attributes, a
temporal _relationship and a logical_ID_list are recommended. The temporal_relationship
attribute specifies the temporal relationship between the logical object in question and
other related logical objects. The value of this field can be ‘sequential’, ‘independent’ or
‘simultaneous’. When the value is ”simultaneous”, the logical_ID_list field should
contain all the IDs of the logical objects which are to be presented simultaneously.
During the presentation process, the structure presenter should examine the temporal
relationship attributes and determine when to present a content element.

7. Storage Organization and Database Management

A multimedia document consists of information in various media. During document
presentation, manipulation, and processing, medium-dependent information needs to be
retrieved, processed and updated. Consequently, the storage organization has a direct
impact on the performance of document processing and its presentation. Since a
multimedia document can be very large, it is not practical to store the entire document in
memory. Hierarchical storage is required. Fast retrieval memory should be used to store
the most recently accessed portion of the document. Hard disks should be used to save
the frequently accessed documents, and optical disks, which are slower but have larger
capacity, should be used for long term storage and archival. The contents of a
multimedia document may be scattered among different storage devices, the structures of
the documents and indexes to the contents should always be stored and managed by the
database system. A possible database user schema is depicted in Figure 5.

According to this user schema, a user can retrieve a document by key words, a author
name, a title or the document creation date. From these indexes the user can get an ID
-- the unique identifier to the document. Using the ID as a primary key, the user can then
retrieve the logical/layout objects and their associated content elements. The database

server may be physically separated from its clients, such as a structure editor or a
structure presenter.

UniForum 1991 Conference Proceedings, Dallas, Texas

key_words 1D author title create_date ID

specific specific presentation content parent
ID type profile_ID | logical layout style D object
object ID 1D 1D ID

R

specific specific

document . presentation content
logical layout
profile obiect obiect style element
table ;) table table

table table

generic generic

type logic layout
ID ID

generic generic

logical layout
structure structure
table table

Figure 5. A Database User Schema.

8. An Implementation Scheme

A multimedia system can be implemented on a micro-computer, a workstation, or mini-
computer running under various operating systems. However, the UNIX operating
system is always a good platform for building a multimedia system due to its
sophistication, flexibility and versatility. A possible implementation scheme for a

UniForum 1991 Conference Proceedings, Dallas, Texas 51

multimedia system implemented under the UNIX operating system (System V Release 3
or greater) using the STREAM [6] mechanism is presented in Figure 6.

User_interface

Applications
CMISE
ROSE/ACSE

structure structure structure communication
editor formatter presenter agent

L |

User Space

Kernel Space

1

acquisition +rver

‘ ! presentation

¢

medium-dependent

driver transport

SNDCP

LAN
(802.3)

Figure 6. A UNIX Implementation Scheme for a Multimedia System

Here the implementation is split between the user space and the kernel space. Running
in the user space will be the user interface, structure editor, structure formatter, structure
presenter, content editor, database agent and communication agent modules. Running in
the kernel space will be the communication stack, the data acquisition server and
medium-dependent drivers. The user interface module is responsible for interacting with a
user and assisting the user in obtaining the services provided by the structure editor, the

UniForum 1991 Conference Proceedings, Dallas, Texas

structure formatter, the structure presenter and/or the communication agent. The
database agent module accepts the requests initiated by structure editor, content editor,
structure presenter and/or structure formatter modules for data retrieval, deposit or
updates.

The database agent module will first decide whether the information in question is stored
locally or remotely. If the information is saved locally, the database will interact with
the data acquisition server and retrieve/save the information on the appropriate medium.
Thus the database agent will perform all the functions required by a database
management system such as data integrity and data consistency checks. If the
information is stored remotely, the database agent will act as a client to the remote
database server. The interaction with the remote database server is achieved via the
communication agent module. The communication agent module running in the user
space provides the required application services and application service elements, such as
the Common Management Information Service Element (CMISE) [7], the Remote
Operations Service Element (ROSE) and the Association Control Service Element
(ACSE) [8]. OSI upper layers [8], i.e. session, presentation, transport layers and SubNet
Dependent Convergence Protocol (SNDCP), and lower layers, namely network dependent
communication protocols, will run in the kernel space as STREAM drivers and modules.

Medium-dependent drivers will also be implemented in the kernel space as STREAM
drivers and modules. The strengths of the STREAM lie in its capability for maintaining
adequate real-time response and, at the same time, providing desirable flexibility. Both
data communications and medium dependent devices require real-time response.
Consequently, the software that handles real-time signals needs to remain in the kernel.
On the other hand, the specific system configurations may vary from installation to
installation. Using the STREAM mechanism, application developer(s) can easily
reconfigure the kernel to accommodate the requirement of a particular system. For
example, when ISDN becomes available, one can simply add an appropriate STREAM
driver to handle the corresponding lower communications protocols without impacting
the upper layer implementation.

9. Conclusions

The attractiveness of a multimedia system is obvious. It can significantly improve the
effectiveness of communications. A multimedia system requires a wide spectrum of high
technology. Special data acquisition devices, large storage systems, sophisticated database
systems and efficient and high performance data communications systems are the
necessary ingredients. Recent development in these technical fields have made the
technology becoming cheaper, more common and mature. Although multimedia systems
rely on the technology of their components, the integration of components into an
integrated system is more important and just as challenging as the technology employed
in the components. Perhaps the most challenging task in constructing a multimedia
document system, is the provision for interchangeability of multimedia documents in a
heterogeneous environment. To achieve this goal, a number of new document processing
facilities, namely a structure editor, a structure formatter and a structure presenter, are
required. The integration of these new document processing facilities with other
functional components is essential to success. Clearly, a friendly user interface is another
important measure to liberate multimedia document systems from the hands of
specialists and to pave the way to much wider application. Hopefully, when all the
required technology and facilities are in place, multimedia systems, as future Data

UniForum 1991 Conference Proceedings, Dallas, Texas 53

Terminal Equipments on tomorrow’s data communication networks will become just as
popular and pervasive as telephones on today’s telecommunication networks.

REFERENCES

1. ISO 7498, ‘Information Processing Systems -- Open System Interconnection -- Basic
Reference Model’ (1984).

2. ISO 8613, ‘Information Processing Systems -- Text and Office Systems -- Office
Document Architecture (ODA) and Interchange Format’ (1989).

3. ‘Multimedia: the Next Frontier for Business?’, Robin Raskin, PC Magazine, July, 1990.
4. ‘Putting Your PC on Tape’, Lori Grunin, PC Magazine, July, 1990.

5. ‘Document Imaging System: Technology Overview’, Datapro Reports on Document
Imaging Systems, June, 1990.

6. ‘UNIX System V STREAM Programmer’s Guide’, AT&T, 1986.

7. ISO 9595, ‘Information Processing System -- Open System Interconnection -- Common
Management Information Service Definition’, Sept. 1989.

8. ‘Data Communication Networks Open Systems Interconnection (OSI) Protocol
Specifications, Conformance Testing’, Recommendations X.220 - X.290, CCITT, Nov.
1988.

UniForum 1991 Conference Proceedings, Dallas, Texas

L

Selecting a Graphical
User Interface Strate?y
for Maximum Portability

Paul Shearer

Tektronix, Inc.

P.O. Box 1000 MS 60-850
26600 SW Parkway
Wilsonville, OR 97070
(503) 685-2137
paulsh@orca.wv.tek.com

55

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

Selecting a Graphical User Interface
Strategy for Maximum Portability

Paul Shearer

Interactive Technologies Division
Tektronix Inc.

ABSTRACT

This paper discusses strategies which facilitate porting software applications
between APIs and GUIs. The use of standards is recommended and the strengths
of the toolkit paradigm which partitions code into user interface components
(widgets) and application callback routines is emphasized as a means of
separating user interface code from application code, which in turn improves
portability.

The author describes the porting effort involving a modern application with a
highly interactive graphical user interface (TekColor Editor) which has been
ported to two X toolkits widget sets (Athena and Motif) and to an X terminal
without toolkit support. The tasks involved in the latter port are outlined and it is
shown that the main interface layers between the application and the toolkit were
reimplemented in an attempt to minimize changes to the applications custom
widgets and callback routines. This porting strategy proved successful in reusing
application code and reducing the size of the GUI layer, which was the main
requirement for the target Tektronix TekXpress X Terminal. The total size of the
toolkit based application is over 1 MB (1089 KB) whereas the ported X terminal
version is under 200 KB.

Introduction

This paper identifies a strategy for maximizing the portability of software implemented with
graphics languages or graphical user interfaces (GUI), primarily those implemented using the X
Window System. Advantages of software portability go beyond economic justifications.
Requiring software to be portable has always had the effect of making that software better
designed, better documented, and more thoroughly tested, all of which add to the software’s
reliability and maintainability. But recently porting software to GUI environments has also
increased user productivity.

A consistent, easy-to-learn GUI provides a more productive environment for computer users. A
recent study sponsored by Zenith Data Systems and Microsoft Corp. showed that microcomputer
users who work with a GUI versus character user interfaces (CUI) are less frustrated and tired,
and take advantage of more software features. The experienced GUI users finish 58% more
correct work and novice GUI users finish 48% more correct work than CUI counterparts [5]. For
these reasons software developers need to be prepared to port applications to the preferred GUIs
of their users.

57

UniForum 1991 Conference Proceedings, Dallas, Texas

Nineteen years ago the IFIP Working Conference on Graphic Languages had a panel discussion
entitled "Are we anywhere near a universal graphic language?” "The answer is no," was the
opening reply by graphics expert Andries van Dam [1]. A lot has changed in the last nineteen
years, although many experts would argue that the answer is still "no." Today there are far more
choices available to graphics application programmers than there were nineteen years ago.
However, those choices do include many standards and methods that increase our ability to write
portable applications.

Before describing these choices, it is appropriate to define portability. Historically the term
portability described the ability to transport software to different machines and/or operating
systems. Today portability involves a broader spectrum of issues. The application programmer
now must also decide what GUT environment the software will be ported to, what application
programming interface (API) will be used, and how the application will communicate with other
applications in that GUI environment. In this paper I will discuss the characteristics of portable
software which minimize design changes and maximize the reuse of code when moving from one
API or GUI to another.

GUI and API Defined

The graphical user interface (GUI) is what a computer user sees and interacts with while using a
software application. From the user’s point of view, the GUI is defined in terms of look and feel
(appearance and behavior).

The GUI software functional specifications, written from the user’s perspective, define these
GUIs and provide a standard for the application programmer to follow. Examples are the
OSF/Motif Style Guide [2] and the OPEN LOOK Graphical User Interface Functional
Specification [3].

The application programming interface (API) defines the actual function calls and data structures
the programmer must incorporate into the application to implement the user interface. Selecting
a specific GUI does not necessarily restrict the application programmer to one API. Examples are
the three toolkits, SunView2, At+, and NDE, each of which provides a different API to the
OPENLOOK GUI [4].

Designing an application to be portable between different GUIs introduces new issues for
programmers, some of which are: GUI Policy, Level of API, and GUI Certification.

The application programmer must decide if the application is to retain its own user interface look
and feel or if it is to adopt the same style as the new GUL With few exceptions, the choice will
usually be to adopt the new GUI style. If the choice is to retain a single look and feel, the
programmer has the choice of porting the application’s internal graphics layer to a lower level
API. However, to adopt the new GUI, the programmer needs to port to a higher level API
(usually a toolkit), one that implements the look and feel of the GUIL. This has changed the nature
of the porting effort.

Finally, if the programmer wants to be able to use the GUI trademark in reference to the ported
application, the application must receive GUI certification. This is a process that verifies the
application as having the required feature set and following required interaction policies of the
GUI Currently both OSF/Motif and OPEN LOOK have such a certification procedure [6]({7].

Internal vs External Control

Writing portable GUI software will almost always require the application to be designed using an
external control model. This section describes the difference between intermal and external

UniForum 1991 Conference Proceedings, Dallas, Texas

control models. See figure 1 and 2. The next section will discuss Toolkit APIs that require the
external control model.

Traditional applications utilizing a custom GUI have done so by defining a GUI library that was
invoked internally throughout the application code. As graphic API standards were developed
(Core and GKS in the late 70’s and early 80’s, and PHIGS+ and the X Window System Xlib in
the late 80’s), porting these GUIs meant porting them to whatever graphics library was supported
by the target platform.

These early GUIs used an internal control model. Internal control from a user’s perspective
means that the application dictates the sequence of interaction. The user is prompted for input
and has no external control of the order that input can be entered. Internal control from the
application programmer’s point of view means that calls to graphics input routines are made
internally from within many application procedures. A single software procedure or function
may have several calls to graphic input routines. This same function would have several blocks
of code that define application actions for this required sequence of input events.

Current second generation GUISs tend to follow an external control model. External control gives
the user control of the sequence of interaction. The application programmer writes small
procedures (callback routines) which define the application action for a single event. The GUI
toolkit or User Interface Management System (UIMS) software provides the main loop used to
input and dispatch graphics events externally to the application code.

Layers of Choices

One of the toughest questions facing an application programmer is "What API should the
application programmer use to maximize portability?" The answer will depend on how extensive
the porting goals are (different window systems?), the customer requirements (different GUIs?),
and the application requirements (graphics API or window system requirements). The
subsections that follow group the API choices into layers according to the level of functionality
or portability they provide. See figure 3.

Vendor-Specific Graphics

All applications using a custom graphics library can port to a vendor’s machine by porting the
custom graphics library on top of the vendor’s supplied graphics library.

The biggest advantage at this layer is performance. Also the porting effort is isolated to the
drivers in the custom graphics library.

A disadvantage is the cost of writing new drivers for a vendor specific AP1. Also the scope of the
port is limited to the vendor’s family of machines.

Examples at this layer are kernel-level windowing systems like SunViews and high performance
vendor-specific graphics packages like the Tektronix OnRamp Graphics Library. Extensions to
client-server windowing systems should also be considered in this layer. Until an extension is
widely accepted, it may only be available on certain vendor’s servers.

Window System API (Client/Server Protocol)

This layer identifies the lowest level API that an application programmer can interface to a
window system.

An advantage at this layer is portability. The application will run on any vendor machine
supporting that window system API (protocol). For client-server window systems like the X

59

UniForum 1991 Conference Proceedings, Dallas, Texas

Figure 1. Graphics API architecture.

a) Traditional application with internal control user interface
Application code

Application custom graphics user interface

Standard Graphics Library

b) Application with external control designed to be ported to different GUI toolkits

Application 1nitialization code |

Toolkit Intrinsics]
event dispatcher
Toolkit $ Application Application i_—
Standard Custom Callback
Widgets Widgets Routines

Standard Graphics Library

Figure 2. Menus resulting from porting code to a graphics library vs. a toolkit.
a) Menus generated by traditional application interface, di

Full Size
Properties...
Back
Refresh

Quit

b) Menus generated by application using different GUI toolkit widget sets.

Window
Full Size
Properties
Back
Refresh
Quit

UniForum 1991 Conference Proceedings, Dallas, Texas

Figure 3. Examples of Different Graphics API Layers.

Multiple
Window
System XVT .
API
/...
UIMX TeleUse Many Others ...
UIMS

S

, x Many Others ...

CLIM Athena Openlook Motif Interviews Sunview2 NDE
Widgets Widgets Widgets

CLUE \ i /

Toolkit\ Xt Intrinsics
Many Others ...
\
Graphics CLX XLIB GKS 2D PHIGS+
Library

51.»\&'145

V4

/

Macintosh
v . MS Wind
Window | X Window System [X Extensions | x11/News —
System Protocol Input, PEX, ... § PM 0S/2
Servers

Extended Servers

UniForum 1991 Conference Proceedings, Dallas, Texas 61

Window System, this means that the application can reside on only one vendor’s machine and be
displayed on any other vendor machine supporting the protocol.

Disadvantages are that applications interfacing to this layer will always have a custom look and
feel rather than adopting the policies of the GUI environment they are used in. Since applications
interfacing to this layer might use a traditional "internal control” design, with multiple calls to
graphics input routines scattered throughout the application code, they may not be easy to port to
higher GUI layers that use an external control design where the main loop that dispatches events
resides outside the application code.

An example of APIs at the window system layer is Xlib, the C language API to the X Window
System Protocol. For the purposes of this paper, I will also group APIs such as PHIGS+, GKS,
and the supporting CGI standard in this layer.

GUI Toolkits

The next higher layer of API provides the programmer with an interface which adheres to the
look and feel of a particular GUI. This layer includes the popular toolkits that have built on top
of the lower level window system API. Some common components of these toolkits are [4]:
e Prebuilt graphical user interface components called widgets or controls.

API that allows programmer to combine prebuilt widgets or create custom widgets.

API that allows programmer to interface application code (callbacks) to the user interface

built from the toolkit.

Other communication services that interface with the window system or other cooperating

applications using the same GUL

One of the most important toolkit features from the programmer’s perspective is that these
toolkits provide an external control framework into which the programmer integrates the
application code. This external control is provided by a main loop that receives events and
dispatches these events to prebuilt components or to application callback routines. Thus the
toolkit API discourages the application programmer from attempting to read and process events
in a predefined sequence internally within the application code. To adhere to the external control
model, the application code needs to be partitioned into callback routines that usually handle only
one input event at a time. The application’s custom widgets need to be written so they can be
displayed and manipulated by the same toolkit API framework that interfaces to the toolkit
supplied widgets.

Advantages of this layer should not be underestimated. An application written with the toolkit
API functions with a specific GUI look and feel. At the widget level, this look and feel is free,
since the GUI that the user sees is almost totally built from toolkit-supplied widgets. The
application programmer only has to supply the callback routines that define the application
actions resulting from the user’s input. The application custom widgets and callback routines can
be easily ported to other toolkits at this level that use the same external control design. For
example, experience has shown that porting custom widgets and callbacks to toolkits based on
the Xt Intrinsics (Athena Widgets and Motif Widgets) is fairly straightforward and much easier
than attempting to port an application using the Xlib API without an external control design to an
API at the toolkit level.

Other advantages include the added value toolkits supply such as the X11 R5 Xt resource loading
conventions which will allow localization of messages. This will simplify the porting task of
supplying different messages for different languages [8][9]. Toolkits with attribute-value APIs
also allow a simpler interface, since the toolkit provides default values for attributes not specified
by the programmer.

UniForum 1991 Conference Proceedings, Dallas, Texas

A disadvantage of the toolkit APIs is the redesign needed to port an internal control application
based on a low level graphics API. Applications that are designed around the external control
model may also need to keep track of more state information than applications that require
internal sequencing of user input.

Examples of Toolkit APIs are Motif, Athena Widgets, and OPENLOOK X+, all based on the X
Widow System Xt Intrinsic layer. Others include Interviews, Andrew Toolkit XTk, and
OPENLOOK APIs SunView2 and NDE [4].

Multiple GUIs, Same Window System

The next level of API choices include those products that provide value-added features on top of
the toolkits. These often include UIMS features like interactive WYSIWYG tools for building
graphical user interfaces from toolkit-supplied components, high level descriptive languages used
to define the interface, and libraries of convenience routines that provide still more functionality.

Advantages at this level are ease of use and fast prototyping. UIMS tools can also provide
application templates (style guide prototypes) that adhere to the style of the supported GUL One
of the most important features of this level is the potential to provide a common API to more than
one GUI. A user should not expect this goal to be 100% achievable for sophisticated
applications. However, code at this level could have a common/specific split of about 80%/20%,
depending on how many of the GUI specific features were being called from within the code.

A disadvantage is the necessity to learn yet another tool or user interface descriptive language.
The APIs or output of these products will not be very portable between products at this level. As
mentioned above, GUI-specific features must still be coded in a non-portable way. Although
there are no current UIMS standards, the UIMS Working Group of OSF/SIGUEC (Special
Interest Group User Environment Component) is addressing common interchange formats and
other UIMS issues. However the fact that the programmer often supplies or can produce C code
using these tools means they can utilize standards established at the lower levels.

Examples of UIMS products at this level include: UIMX, Guide, AutoCode, TeleUse,
FaceMaker, NextStep, X-Pression, and Widget Creation Library. For a discussion of many of
these products, refer to the May 1990 issue of UnixWorld [10].

Multiple GUISs, Different Window Systems
Finally, the most general API layer supports multiple GUIs and multiple window systems.

The obvious advantage of this API would be to support applications that are targeted for markets
with different window systems. The portions of the application that can use this general API are
completely portable to all the supported environments.

The disadvantage of such APIs is that they are forced to offer the lowest common denominator of
functionality among the GUIs or window systems supported. This means that an application
wanting to take advantage of a GUI or window system-specific feature (like hierarchical menus or
event types) can’t do so using the API provided, but must use non-portable hooks into the specific
GUI or window system.

XVT is the best example of this layer of API. The XVT API can be used to generate applications
that run on Macintosh, MS-Windows, OS/2 Presentation Manager, X Window System (Motif), or
any character screen display. X VT is currently being considered as a proposed standard by the
IEEE P1201.1 Working Group. The group had previously been working on standardizing the
"N3 Proposal” from AT&T, which provided a common API to OSF/Motif and OPEN LOOK.
However, the proposal was dropped when the API requirements expanded to include non-X

63

UniForum 1991 Conference Proceedings, Dallas, Texas

Window Systems.

Porting Software Between or Within Layers

When selecting a strategy for maximizing portability, it is important to know what API layers and
which APIs or GUI within those layers the software will be ported to. Desired options may be to
port across a layer, for example, to stay within the toolkit layer and port to different widget sets,
such as Motif and OPENLOOK. Another option may be to port up to the next higher layer,
having coded an application at the toolkit layer, to begin using a UIMS, and to reuse the code
written at the Toolkit layer. Still another option is the ability to port down, to reuse code written
with a UIMS at the toolkit layer, or to reuse code written at the toolkit layer in an environment
supporting only the Xlib API.

The best strategy the designer can apply in all of these cases is to design the application user
interface by partitioning the code into widgets and callback routines, following the API defined
by the Xt Intrinsics. This code has the best chance of being ported (with minimal redesign) to
other toolkits and UIMS systems built on top of toolkits. This is the main emphasis of this paper
and will be repeated in the section on strategies below.

Extensions and Portability

The X Window System Protocol Version 11 has provided the basic foundation upon which many
of the software layers described in this paper have been built. However some software layers
require additional hardware support not covered by this protocol. This additional support can be
added to X by defining extensions to the core X protocol. X extensions that are accepted as
standards by the X Consortium will probably be widely integrated into future X servers. This
will obviously increase the portability of any software that relies on the extensions. Many X
servers already support the X input extensions. The Tektronix TekXPress second generation of X
terminals uses this extension to provide support for tablets in addition to the standard mouse. The
X extensions that will have the biggest impact on graphics applications are the PHIGS+

Extension (PEX), being implemented by SUN Microsystems Inc., and the Video Extension
(VEX) being implemented by Tektronix Inc.

To date, no extensions have been proposed that extend the X server’s ability to manipulate user
interface components. This may be due to the original design goals to provide mechanism and
not policy. Still it is tempting to consider these extensions, especially as more applications are
developed using graphics-intensive interfaces.

Consider the example of a single five-item menu implemented using the Xt Toolkit and Athena
widget set. To simply display the menu and drag the pointer across all choices requires over 13
client requests (270+ bytes) and many generate over 100 events (3000+ bytes) returned from the
server. The network traffic could be reduced and the interactive performance increased if an
extension was implemented to encapsulate the display and interaction of a downloaded menu
with a single request. This feature is already standard in the NeWS window system which allows
PostScript programs to be downloaded to the window server.

An alternate migration path is for user interface components to migrate out of the application to a
user interface server (UI server), as opposed to the X server via X extensions. This does not
eliminate the network traffic unless the X and Ul servers are on the same host. However, it would
eliminate the requirement that the user interface logic be linked to each application. And it
would allow the UI Server to switch GUIs without requiring any change in the application. This
would provide a portable GUI interface that did not even require the application to be relinked.

UniForum 1991 Conference Proceedings, Dallas, Texas

The UIMS software X-Pression from Unicad is already implementing Ul server technology.

Case Study, TekColor Editor

We are often reminded of the saying, "There is no such thing as portable software, only software
that has been ported." So to demonstrate the portability of widgets and callback routines, I will
describe a case study involving the port of an application from the toolkit layer to the lower level
Xlib layer.

The TekColor Editor is an interactive software application that allows the user to intuitively
select screen colors and match screen colors to hardcopy colors. The TekColor Editor uses the
Tektronix Color Management System (TekColor CMS) and the TekHVC (hue value chroma)
color space [11], which allows colors to be described in a device-independent manner.

The TekColor Editor consists of a unique interactive graphical interface that contains both
standard widgets (menus, buttons, arrowbuttons, text) as well as custom widgets (HueBar,
HueLeaf). The user selects a hue from the HueBar, and then varies the color’s value (lightness)
and chroma (intensity) by dragging the mouse in a two dimensional widget called a HueLeaf.
The changing color is displayed dynamically in the ColorPatch widget. See figure 4.

The TekColor Editor was originally written for the Apple Macintosh. It was subsequently
rewritten as an X client using the Xt toolkit intrinsics and the Athena widget set. TekColor
Editor was then ported to the Motif widget set running on a Tektronix XD88/10 Workstation.
Finally, it was decided to support the Motif version as an X client running locally on a Tektronix
second generation TekXPress XP27 X Terminal.

First a requirement specification was written to identify the customer and application
requirements and the system constraints in the new environment. A brief list of the requirements
and constraints follows:

X Window System only.

Match the user interface using the same custom widgets.

GUI depended on customer site. (Many Motif users.)

GUI certification NOT required.

Native language support required.

Xlib sufficient for all custom widget display routines.

Complex editing features supplied in standard widgets NOT required. (No fancy text
editing.)

o Maximum size of the runtime executable must be under 200 KB. (Original Motif version
was 1089 KB).

Guided by the above requirements, the following design decisions were made.

The ported interface would resemble Motif since that was the appearance chosen for all local X
clients running on the X terminal.

The main size reduction would need to be achieved by reducing or replacing the Xt toolkit
intrinsic layer and Motif widgets, since that accounted for over 80% of the original application
size. Two approaches were considered.

The first approach was to start with the original toolkit code and remove functionality, keeping
only a minimum feature set. This may have worked, and increased portability, but the resulting
window based widgets may have still consumed too much runtime allocated memory on the X
server side.

UniForum 1991 Conference Proceedings, Dallas, Texas 65

Figure 4. TekColor Editor user interface

Color Patch Color Patch Coordinate
Index Area Display Area

Color Patch _{{f
Arrow Buttons

Hue Bar)
Slider S Monitor
‘ - Hue Leaf

(filled)

Hue Bar
Arrow Buttons
Printer
~ Hue Leaf
Hue Bar (dashed)

Figure 5. Relative code sizes of ported TekColor Editor application showing modifications

Key:
B Modified

Unmodified
Toolkit replace

Intrinsics Standard Misc. Custom Callbacks
Widgets Interface Widgets

Toolkit Replacement Application Code Ported

UniForum 1991 Conference Proceedings, Dallas, Texas

The second approach was to follow the same toolkit paradigm, but build a minimal feature set
from bottom up. This approach was adopted since it allowed all original primitive widgets to be
designed as windowless rectangular objects (gadgets).

Each original widget data structure was reduced to a subset of its original members, and changes
were made to convert them to gadgets. Whenever possible data structures and procedure
interfaces were left unchanged to allow reuse of code. Main features of the replacement intrinsic
layer were mechanisms for traversing the gadget hierarchy, an event dispatcher, and state
information to track things like which text gadget has keyboard focus. To illustrate the
scaledown effort, the default "resize” routine used by all gadgets was implemented using a simple
gravity mechanism requiring only 36 lines of C code.

Once the above intrinsic layer was in place, standard and custom widgets were ported, one at a
time, in a straightforward manner. Reusing the toolkit paradigm made this easier since the code
was already correctly partitioned.

The code size and ratio of ported to modified application code is shown in figure 5. The code
used to replace the Xt toolkit intrinsic layer and standard widgets (window, composite, button,
text) was reduced by an order of magnitude, but still made up 48% of the binary executable.
From the original Motif application code, the ported client reused 97% of the original callback
code, 50% of the original custom widget code, and 66% of other toolkit interface-related code. In
total, 80% of the application code from the Motif based version was reused.

Most software developers would not consider these statistics very impressive. Indeed, the goal
for code ported without modification should be higher than 99%. But given the memory
constraints which necessitated moving from a toolkit to a lower layer API, the success of reusing
80% of the code is attributed to maintaining the toolkit design methodology (and API, where
possible) of intrinsics, widgets, and callbacks.

The final X client was reduced to 179 KB and allocated far less runtime memory than the original
Motif client. It should be emphasized that the author is not encouraging the naive claim "Look
Mom, No Toolkit!" Using a toolkit is the preferred approach. Without the Xt toolkit intrinsic
layer and Motif widgets, we sacrificed such important features as complex text editing,
accelerators, and resource management. Since resource management was removed, native
language support for this and other local X clients had to be provided using xstr, a string
extraction preprocessor. In hind site, the lack of resource management is the weakest link in the
design of the replacement toolkit. But we did succeed in the goal to reuse some the custom
widgets and almost all of the original application callback routines to provide a user interface
similar to the Motif version.

Successful Strategy for Maximum Portability

The following strategy is offered as a checklist to be reviewed when designing software
applications that can be ported within and between the API layers described in the previous
sections. The checklist should be viewed as a starting point rather than an exhaustive list. Some
of the items mentioned below are only relevant for X client applications.

Requirements Phase:

1. Identify Customer requirements
~ Required Window System?
~ Required GUIs?

UniForum 1991 Conference Proceedings, Dallas, Texas 67

Required foreign language support?

Identify Application requirements (API)

Window system features?

Prebuilt user interface widgets?

2D bitmapped graphics? (Xlib)

3D graphics, segment editing, transforms, pan and zoom (PHIGS+)

Review GUI style guides and certification checklists for required user interface features
(2113].

Review Inter-Client Communication Conventions Manual (ICCCM), an MIT X Consortium
Standard, for conventions to be followed in the areas of selections, cut buffers, window
management, session management, and resources [12].

Design Phase:

1. Design the application to meet the above requirements. Successful design is achieved if the
application can be ported between GUIs with minimum redesign and maximum reuse of
code.

Design the application using an external control model. Partition the application into user
interface components (widgets) and application callback routines. The importance of this
should not be underestimated. It is the key to portability between GUIs.

When possible, design user interface components from combinations of the standard
widgets that are supplied with a toolkit. If additional custom widgets are needed, design
them using the same toolkit API that interfaces with the standard widgets.

Identify areas of the application that are system-specific. System-specific now includes
window system and GUI dependencies as well as machine and operating system
dependencies. Partition these into modules that can be replaced easily when porting.

Identify the common features between different GUIs. Partition the application code so that
these common features are handled in common blocks of portable code. For example,
identify the X resources that are common to a standard widget (for example, the Text
widget) in different GUI widget sets.

Avoid convenience functions that are not common to different GUI toolkits when there is a
standard method that can be used for both. (Or alternatively, supplement one GUI toolkit
with convenience routines from another. This can sometimes be done with simple cpp
macros.)

Consider implementing the application using a combination of different APIs. For
example, the application may require a PHIGS+ output model when outputting to and
picking graphics structures from the application workspace. However, a standard GUI
interface (Motif or OPENLOOK Toolkit) could be used to supply the basic input model and
the PHIGS+ output routines could be called from within the application callback routines.

To increase portability in the short term, the application programmer should consider X
server extensions accepted by the X consortium if they provide application requirements not
met by the standard X core protocol. In the long term, keep an open mind to technology
like the UI server which may offer programming solutions to GUI portability problems.

UniForum 1991 Conference Proceedings, Dallas, Texas

Conclusion

This paper described several layers of APIs that could be used for designing or porting

applications with graphical user interfaces. A strategy for designing portable applications was

presented that emphasized the following points:

e Portability is increased when standards are utilized as the building blocks of a graphical user

interface (GUI).
The toolkit external control paradigm, which partitions application code into widgets and
callback routines, encourages modular separation of the GUI from the application-specific
code. This separation facilitates porting the GUI to use other toolkits or environments
without toolKkits.
Development of GUI X server extensions could increase an X applications interactive
performance, as well as decrease network traffic. The portability of applications using any
extensions depends on the availability of extended X servers.

Bibliography

1. "Panel Discussion: Are We Anywhere Near a Universal Graphic Language?”, Proceedings
of the IFIP Working Conference on Graphic Languages, May 22-26, 1972.

OSF/Motif Style Guide Revision 1.0, Prentice Hall, Inc., (1990).

OPEN LOOK Graphical User Interface Functional Specification, Sun Microsystems, Inc.
(1989).

Richard Probst, "Blueprints for Building User Interfaces, OPEN LOOK Toolkits", Sun
Technology, (Autumn 1988).
"Smile When You Say GUI", Computer Aided Engineering, (Sept 1990).

OPEN LOOK Graphical User Interface Trademark Guide, available from AT&T, OPEN
LOOK GUI Trademark Quality Control Manager, 60 Columbia Turnpike, Room 129B-
A208, Morristown, NJ 07962, (201) 829-8996.

OSF/IMotif Trademark Certification Checklist Level 1, Revision 1.0, available from Open
Software Foundation, Attention: Motif Desk, 11 Cambridge Center, Cambridge, MA
02142.

X/Open Portability Guide, Version 3, Prentice-Hall Inc., (1988).

Glenn Widener, "International Language Support in X11 Release 5: Building a Standard for
Heterogeneous Network ~ Computing Using Standards for Homogeneous
Internationalization.”, UniForum Proceedings (1991).

Alan Southerton, Many Paths to X Window Programming, UnixWorld, Volume VH
Number 5, (May 1990).

TekColor Color Management System Programmers Manual, Tektronix Inc., Part Number
061-3799-XX.

David S. H. Rosenthal, Inter-Client Communication Conventions Manual, Version 1.0, MIT
X Consortium Standard.

UniForum 1991 Conference Proceedings, Dallas, Texas

Author’s Biography

Education

Bachelor of Arts Degree in Mathematics and Physics from Whitman College in 1977. Master of
Science Degree in Computer Science from Washington State University in 1981.

Employment Experience

Currently Paul Shearer is a Software Engineer with the Interactive Technologies Division at
Tektronix, Inc. His experience includes the design and implementation of UIMS prototypes for
Tektronix workstations. Previous X experience includes participation in the implementation of
two X servers on the Tektronix 4319 workstation and XN11 X Terminal. The paper presented
refers to current work experience porting the the TekColor Editor graphical user interface from
the Motif toolkit to a X terminal local client interface built on top of Xlib.

Paul has also worked for Bell Laboratories as a Member of the Technical Staff in the Residential
Networking group prototyping videotex applications.

Trademarks

UNIX is a registered trademark of AT&T in the USA and other countries,

X/Open is a trademark of the X/Open Company Limited.

The X Window System is a trademark of MLL.T.

Open Software Foundation, OSF, OSF/Motif, and Motif are trademarks of The Open Software
Foundation, Inc.

OPEN LOOK is a trademark of AT&T.

TekCMS and TekColor are trademarks of Tektronix Inc.

Microsoft is a registered trademark of Microsoft Corporation.

OS/2 is a trademark of the International Business Machines Corporation,

Presentation Manager is a trademark of the International Business Machines Corporation.

PostScript is a registered trademark of Adobe Systems Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

W

Porting Between
Open Look™ and
OSF/Motif GUI's

Paul E. Kimball

Digital Equipment Corporation
800 W. El Camino Real
Mountain View, CA 94040
(415) 691-4756

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

Porting Between OPEN LOOK™ and OSF/Motif™ GUI's

Paul E. Kimball

Digital Equipment Corporation
Independent Software Vendor Group

Abstract

One of the many choices faced by the UNIX™ software developer is the choice of a graphical
user interface (GUI). Over the last two years, two proposed "standard” graphical user inter-
faces have emerged by consensus and are now vying for attention: OSFIMotif™ and OPEN
LOOK™. This paper explores the difficulties encountered in building an application which could
support either user interface style. The approach discussed involves the use of separate toolkits
to implement the OSF/Motif and OPEN LOOK styles. First, the differences and similarities be-
tween the two styles and their supporting toolkits are summarized. Differences in individual
widget functionality as well as overall application logic are considered. Generally-applicable
workarounds for common application situations such as menus, pop-ups and graphics areas are
proposed. Finally, other areas which require customized treatment are described. QOut of this
study, the reader should arrive at a clearer understanding of what is required in building a GUI-
portable application.

1.0 Introduction

The application programmer developing for the UNIX workstation environment is besieged with choices when
considering a software development platform. One of the many issues to be faced is the choice of a graphical user
interface (GUI). Out of the olio of available GUI's, two proposed "standard" graphical user interfaces have
emerged by consensus and are now vying for attention: OSF/Motif™ and OPEN LOOK™. Forced to choose be-
tween the two, an application supplier is faced with the risk that regardless of the choice, some group of users will
not be satisfied. It would be a relief to the programmer if an application could be developed and supported which
could port with relative ease from one user interface to the other.

Is this really possible? In fact, OPEN LOOK and OSF/Motif share striking similarities at a number of levels.
Both are available as X-based toolkits implemented using the MIT X Toolkit Intrinsics. Based on the same Intrin-
sics, both toolkits may be manipulated and accessed using the same native application programming interface
(API) and methodologies. There is also an astonishing degree of similarity in the set of user interface tools pro-
vided by the two widget sets. Even visually, there are correspondences between applications built with either
toolkit. These similarities suggest that with careful coding, an application can be built which is at least reasonably
GUI-independent.

At the programming level, however, the differences to be considered can be formidable. Areas which must be
given attention when porting an application include:

o Individual widget callback and resource semantics

e Widget creation semantics and order in which tools are created

o Private window manager protocols which affect on-screen action
e Proprietary API extensions

73

UniForum 1991 Conference Proceedings, Dallas, Texas

* Binding of context-sensitive help

¢ Internationalization
This paper is a preliminary survey of the issues to be faced in building a GUI-portable application.

2.0 Approach

Three distinct approaches are available to the developer attempting to support both GUI's. First, it would be
possible to implement either one or both with straight X1ib (or other) graphics library functions. While this ap-
proach offers the greatest degree of control over the final product and its appearance, it necessitates an intimate
understanding of every aspect of visual appearance and behavior in both styles, and requires the most work.

Another possible solution to the double-GUI dilemma is a single toolkit supporting both GUI’s. Such a toolkit
has been built by Solbourne Computer; from a viewpoint of general usability, its dependence on C++ puts it at
somewhat of disadvantage, since most current commercial software is written in "C", FORTRAN or one of the
other more popular languages. This situation is bound to change over the years, and such a multi-style toolkit defi-
nitely deserves consideration if a new application is being developed.

This project considered the third alternative: using two different toolkits, each supporting its own GUI style.
Since "C"-based toolkits supporting OSF/Motif and OPEN LOOK styles are widely available, this approach offers
the possibility that it could be implemented readily, if sufficient correspondence is found between the two styles
and their components.

There exist at least two native toolkit implementations of the OPEN LOOK style. The first is produced by
AT&T, and is based on the MIT X Toolkit Intrinsics, The second is Sun Microsystems’ XView toolkit. XView is
layered on the X Window System, and features a SunView-like programming interface.

The definitive toolkit implementation of OSF/Motif is based on the MIT X11R4 Toolkit Intrinsics. This toolkit
is offered, with minor variations, in both source or binary distributions on a number of platforms. Vendor-specific
distributions of the software add miscellaneous features, but the basic toolkit in all commercial implementations is
essentially the same as that which is offered by OSF.

The mutual dependence of the AT&T and OSF toolkits on the MIT Intrinsics made a comparison between
these two toolkits most attractive. On the assumption that it would be easier to support two toolkits which share a
common API and philosophy, further consideration of the XView implementation was dropped for the purposes of
this paper.

The study was developed in three sections. First, the distinguishing features of both styles were outlined. Sig-
nificant areas of similarity as well as significant differences were determined. Next, the toolkit implementations of
the two styles were compared to determine major API differences and similarities.

A toolkit API consists of the routines, data types and other publicly-defined symbols and procedures used to
access and control a toolkit. Both toolkits considered in this paper use the MIT X Toolkit Intrinsics as a technol-
ogy base, and the same high-level routines can be used to manipulate the widgets in each toolkit. In many cases,
one-to-one comparisons of the widgets implementing a particular user interface tool were possible. Both toolkits
also define toolkit-specific convenience routines, data types and symbolic constants. Convenience routines are
used to perform functions which are outside the scope of the MIT Intrinsics (e.g. managing a clipboard) or provide
a simpler interface to complex widget manipulations then the prototypical XtSetValues/XtGetValues mechanism
defined by the Intrinsics. API issues considered were:

¢ The purpose and semantics of individual widget resources

¢ The purpose and semantics of individual widget callbacks

* The functions of analogous convenience routines, where provided
* The order in which widgets are instantiated in a tree

UniForum 1991 Conference Proceedings, Dallas, Texas

3.0 Background

Any comparison of these two popular GUI's is complicated by the fact that they evolved very differently.
OSF/Motif is first and foremost a toolkit, while OPEN LOOK is a specification for a user-interface style.

OSF/Motif is a set of software tools and an application programming interface specification, which together
define the user-interface segment of the OSF Application Environment Specification. As a product provided by
OSF, Motif includes a number of distinct components:

e The OSF/Motif Style Guide
o A widget set which, by default, implements the Motif visual and syntactic style

e The Motif implementation of the X Toolkit Intrinsics (in Version 1.0 only; V1.1 uses the vanilla
MIT R4 Intrinsics)

e A set of utility routines for the manipulation of compound strings, which encode language-specific
text for use in international applications

o A clipboard facility and routines to support asynchronous cut and paste operations between applica-
tions

e The Motif Window Manager (mwm) application

e A presentation-layer development facility, consisting of the Motif Resource Manager (mrm), User
Interface Language (UIL) and UIL compiler (uil) application

Because OSF/Motif is relicensed by a number of vendors, vendor-supported implementations may support ad-
ditional tools or capabilities as well.

OSF/Motif merges code and technologies from several predecessor toolkits. The widget set itself is practically
a direct merge of the Digital XUI and Hewlett-Packard Xw widget sets. Those who are familiar with either of these
toolkits will notice many similarities in style, resources and widget usage. The clipboard, compound strings and
user-interface language also have their ancestry in the XUI toolkit. Overall, the appearance and behavior owes
much to a joint HP/Microsoft style submission, and is compatible with Presentation Manager style where feasible.

The style guide for OSF/Motif permits a great deal more behavior than it specifies, and cannot be viewed as a
definitive specification. While defining a number of common dialog controls and features specifically, it often
grants permission to wax creative when appropriate to an application or its intended use. A number of recommen-
dations are made regarding facilities which an application should provide for usability, e.g. context-sensitive help.
But the exact visual format or method for supplying these facilities is often left up to the programmer. The latitude
found in the style guide is mirrored in the widget set itself. Though all the widgets implement the OSF/Motif style
as a default, enough resources are provided to pretty much make Motif look like anything desired. It is also one of
the largest toolkits currently available, providing a great range of data-management features and visual richness.

OPEN LOOK itself is not a widget set, but a detailed specification defining the visual appearance and behavior
of workstation applications. The functional specification for the OPEN LOOK visual style was developed by Sun
Microsystems and describes which user-interface tools are presented to the user (e.g. Menu Buttons, Check Boxes,
Menus), but it explicitly does not state how these tools are to be implemented by the programmer.

A toolkit based on the X Toolkit Intrinsics represents only one option for building applications which conform
to the OPEN LOOK Style. This is the chief distinction between OPEN LOOK and other X-based graphical user
interfaces (GUI’s). While OSF/Motif is defined by its widget set, as much as by its style guide, OPEN LOOK is
defined independently of its implementation.

This paper considers the OPEN LOOK style as implemented by the AT&T OPEN LOOK GUI X-based toolkit.
The AT&T offering includes a number of separate components, each of which is important in implementing the
style:

e The OPEN LOOK Style Guide and Functional Specification
o A widget set which implements the OPEN LOOK style

o Utility routines for converting units of measurement, manipulating text buffers and other miscellane-
ous functions

UniForum 1991 Conference Proceedings, Dallas, Texas

¢ The AT&T implementation of the X Toolkit Intrinsics (in Version 2.x only; V4.0 uses the vanilla
MIT R4 Intrinsics)

¢ The OPEN LOOK Window Manager (o1wm) application
* The OPEN LOOK Workspace Manager (o1wsm) application

» The OPEN LOOK File Manager application

Compared to other styles such as DECwindows or OSF/Motif, OPEN LOOK is much more highly codified.
Adherence to the OPEN LOOK style demands close cooperation between the widget set and other elements in the
workstation environment, including the OPEN LOOK Window Manager, Workspace Manager and File Manager
applications. The distinguishing features of the OPEN LOOK application toolkit follow from this.

To start with, OPEN LOOK widgets export fewer user-settable resources and callbacks than those found in
other toolkits. This follows from the highly-specified nature of the OPEN LOOK style. Fewer resources per wid-
get offer less possibilities to "break” the OPEN LOOK style by mistake. Also, certain global resources such as
foreground and background color are intended to be set by the user through the Workspace Manager, and the
toolkit cautions against setting these at the Intrinsics level.

The average OPEN LOOK widget has more built-in policy and performs more codified layout chores than does
its counterpart in Motif. This makes the support/enforcement of the OPEN LOOK style practically automatic in
many cases. Departures from the style are in fact difficult to implement. Many of the OPEN LOOK Shells go so
far as to create their own subtrees of widget children, lest you try to give them the "wrong” ones by mistake, and
thus violate the style.

At the present time, the OPEN LOOK toolkit offers fewer data management features than Motif; comprehen-
sive support for clipboards, user-interface builders and internationalized text is not provided. Still, the detailed
codification of bebavior will be considered an advantage by those wishing to support a "standard" style.

4.0 Elements of OPEN LOOK and OSF/Motif Style

This section examines major elements of the current OSF/Motif and OPEN LOOK styles. I have necessarily
emphasized certain similarities perhaps more than the creators of the respective Style Guides would wish. As an
apology, I offer that the programmer must necessarily look for similarities before discovering differences, if there
is to be any hope that a GUI-independent application can be built.

4.1 Controls

Both styles define a fundamental set of user-interface controls. Each control performs some atomic user-
interface function, e.g. setting the value of a variable, invoking an application function or accepting a single-line
text entry. Usually, a number of controls are displayed simultaneously to implement a dialog with the user. There
is a fair degree of correspondence between the basic controls defined by OPEN LOOK and OSF/Motif styles (see
Figure 1); however, the two styles insist on referring to analogous controls by different names. Mastering the vo-
cabulary is one of the chores facing the programmer. The style-defined names for analogous user interface objects
are described in the sections below.

4.1.1 Static Text or Images (Motif Label, OPEN LOOK Read-only message or Caption)

Most applications have contexts in which a static piece of text or image data must be displayed as a label or
message. Such a message usually features no input semantic of its own, but simply maintains its own appearance.

4.1.2 Buttons (Motif Button, OPEN LOOK Button)

Buttons are user-interface tools which appear something like the buttons one would find on an everyday elec-
tronic appliance, and are usually invoked by clicking a pointer button while the cursor is inside the area of the
button. This gives the user the impression of having "pressed” the button. Buttons are used in several ways: to
trigger application functions, to display application menus, to pop up secondary windows, or to toggle application
settings "on" or "off". The visual style of a button and its label indicates the context in which it is employed.

UniForum 1991 Conference Proceedings, Dallas, Texas

Static Text This is a Message

Buttons (ves) (_No) (&) [+
Toggle Buttons M cream sugar

Nonexclusive Toppings: | Hot Fudage
Toggle
Buttons

{ whinped Cream |

Exclusive
Toggle Pick One: [Coffee] Tea | Milk
Buttons
Valuator Temp,°C: ——D——’
| e)
Gauge Fuel:] 1 1 1 1
E Ve F
Text Editing Enter your Weight: 125
(single line)
Porpoises have been seen =
Text Editing to nibble on starfish and
(multiline) other small antipasti
hefore sitting down to a =
Whales 5 ;
Scrolling [Porpoises] By onnais
List Seals
walruses
Sealions 25

Figure 1 - OPEN LOOK and OSF/Motif Controls

4.1.3 Nonexclusive Toggle Buttons (Motif Check Button, OPEN LOOK Check Box or Nonexclusive Settings)

Toggle buttons maintain an internal state, which may be "on" or "off". They can occur singly, in order to con-
trol discreet application settings, or may be grouped together to indicate related settings. OPEN LOOK makes a
semantic and visual distinction between settings, which group sets of related parameters, and check boxes, which
simply represent individual controls that may be on or off. Items in settings are represented as rectangular buttons.

UniForum 1991 Conference Proceedings, Dallas, Texas

4.1.4 Exclusive Toggle Buttons (Motif Radio Button, OPEN LOOK Exclusive Settings)

When toggles are grouped, they may exhibit exclusive or non-exclusive behavior. If exclusive behavior is in
force, only a single toggle in a group may be "on" at any time. This is desirable when a single option must be
selected from a set of mutually exclusive choices, e.g. numbers representing baud rate.

4.1.5 Valuators (Motif Scale, OPEN LOOK Slider or Gauge)

A valuator allows a user to select a single value from a range of values displayed along a linear scale. The user
selects a value by positioning a slider along the the scale. The OPEN LOOK style additionally defines a read-only
valuator called a Gauge.

4.1.6 Scroli Bars (Motif Scroll Bar, OPEN LOOK Scrolfbar)

A scroll bar visually represents the selection of a range of values from within a larger range of values displayed
along a linear scale. Scroll bars are commonly used when an application displays some portion of a larger data
area, e.g. a part of a text buffer, and must indicate to the user which piece is visible relative to the larger whole. By
dragging a slider along the scroll bar, the user can ask the application to display different portions of the larger data
area. Scroll bars in both styles provide mechanisms which allow the user to drag the slider continuously with the
pointer, or move it in discreet increments. The OPEN LOOK scroll bar also presents a pop-up menu of scrolling
options which can be added to by the application.

4.1.7 Text Input Fields (Motif Text Entry, OPEN LOOK Text Field)

In cases where free-form input is desirable, a user may enter textual data from the keyboard. In some cases this
will be a single line: in others it will be a multiple-line text input area. Both styles define much the same semantics
for text editing.

4.1.8 Scrolling List (Motif List Box, OPEN LOOK Scrolling List)

Scrolling lists present a group of related items and allow the user to select one or more of them. The OPEN
LOOK definition of list behavior is much more complex than the Motif definition, and includes semantics for edit-
ing the list from the user interface, and controlling the bebavior of hierarchical lists - essentially, list of lists. The
OPEN LOOK list also presents a pop-up menu of list options which can be added to by the application.

4.2 Application Layout

The prototypical application layout in both styles is similar, though not identical. Every application has at least
one primary window (Motif Main Window, OPEN LOOK Base Window) and may have one or more associated
auxiliary windows (Motif Dialog Boxes, OPEN LOOK Pop-up Windows).

4.2.1 Window Manager Decoration

Many of the stylistic elements of the application primary window are provided by a window manager applica-
tion; this is true in either environment. In particular, this includes window title bars, headers, resize handles, deco-
rative borders, window management menus and controls, pushpins and other decoration. Both o1wm and mwm are
ICCCM-compliant, and implement the standard protocols and properties described therein. However, both also
implement private protocols which control window decoration, resize controls, the OPEN LOOK pushpin, etc.
These protocols are controlied in both toolkits by resources of the VendorShell. A similar set of resources are
available to control resize handles and decoration.

4.2.2 Client Area Layout

Both styles suggest that an area at the top of the application window be used to present a set of application
menus. Apart from this, each style defines several optional areas, as shown in Figure 2. Both endorse an optional
message area at the bottom of the application window.

4.2.3 Paned windows

A pane is a sub-area within the application client area, within which a specific portion of the application data is
viewed, or a dialog carried out. Both styles endorse the use of panes. Panes may be resizable, and since they often
are used to display a view into a larger virtual space, may be equipped with scroll bars to adjust the area seen

78 UniForum 1991 Conference Proceedings, Dallas, Texas

inside the pane. In cases where panes provide multiple views of the same data, OPEN LOOK specifies a number
of operations which can be performed upon panes to split, combine and resize them.

Window Window

Menu Header Menu Tite Bar Minimize
| Button { i

Button
@ Title - Centered
Window

Maximize
it TEG)
(Optional)

‘7 Button
=
Pane ‘ 4
Resize
Border
= '
oI 7

Menu
Bar

Command 1

Work
L Region
Resize [y Footer (optional) (Paned)
Comer
44 Dande
Figure 2 - OPEN LOOK and OSF/Motif Application Layout
- 4.3 Menus

Menus are an alternative for grouping controls together in cases where one or more functions are invoked fre-
quently. Usually an item on a menu triggers some program function, and selecting from a menu can be thought of
as entering a program command. Menus may also contain items which pop up dialog boxes, toggle application
settings on and off, or invoke additional cascaded menus. Both styles endorse similar menu constructs.

Most applications present a set of menu buttons positioned at the top of the client area, each of which invokes
an associated pull-down menu (see Figure 2); this stylistic element is endorsed by both OPEN LOOK and Motif.
Motif refers to this set of menu buttons as the menu bar, while OPEN LOOK refers to it as a control area. Though
OPEN LOOK does not specifically restrict the use of this area to presenting menu buttons, that is the use shown in
almost all current examples of the style. The most general program options appear in these buttons, and lead the
user to other more specific choices presented on pull-down menus. Both style guides suggest a similar set of stan-
dard menu choices, which are appropriate and consistent for many applications.

In either style, pull-down menus are activated by selecting the appropriate menu button. The associated menu
then appears on the screen, and allows the user to select an item within it. Both styles support "click-move-click”
and "press-drag-release” syntax for selecting items from pull-down menus. The major difference between the two
styles is that OPEN LOOK requires menus to be invoked with the MENU button on the pointer, while OSF/Motif
invokes them with the SELECT button. This difference is transparent to the programmer. Items on pull-down
menus may themselves trigger additional menus in a menu cascade. A menu choice which triggers another pull-
down menu is indicated in either style by a small arrow next to the item label.

Pop-up menus are invoked in either style with the MENU button on the pointer, and can be popped up any-
where in the client area. They present commonly used functions or options associated with the area under the cur-
sor, or the currently-selected object, and are used in contexts in which they would save significant pointer move-
ments, or provide a more intuitive interface.

Both styles offer a type of menu which always displays its current default choice. OSF/Motif refers to this as
an option menu; OPEN LOOK calls it an abbreviated menu button. The currently selected choice is displayed in a
small text area. When the area is selected with the pointer, the complete menu of options is popped up. A new
selection may be then be made, which replaces the old selection in the display area. Option menus are usually
found in dialog boxes, along with other controls.

UniForum 1991 Conference Proceedings, Dallas, Texas 79

Motif provides menu traversal using the arrow keys on the keyboard, and two other shortcuts. Mnemonics are
single-character keystrokes which activate a visible menu choice. They can be used to traverse a tree of pull-
down menus. The mnemonic used to activate a given menu item is underlined in the label for that item. Accelera-
tors are keyboard sequences which invoke a menu item whether it is visible or not.

4.4 Pop-up User Interface Tools

Dialog boxes are auxiliary windows associated with a main window, the purpose of which is to carry out some
specific, usually transient, interaction with the user. A dialog box groups a set of related controls, each of which
implements part of the dialog.

Motif defines a number of convenience dialog boxes for use in certain common contexts. Motif Message dia-
logs convey timely information (warnings, emror messages, informational messages, etc.) to the user in response to
conditions discovered by a program. The visual rendition of these boxes depends on the nature of the message dis-
played.

Other predefined dialog boxes are brought up under user control, to enhance a specific dialog with the user.
Examples include the entry (or prompt) dialog, which accepts text input, and the file selection dialog, which allows
the user to peruse the file system and specify a filename.

Apart from these standard dialog boxes, OSF/Motif guidelines are very generous on layout and ordering of
controls in dialog boxes. A common feature of many dialog boxes is a set of buttons along the bottom, which may
be used to confirm or cancel the dialog interaction. One of these may be designated as the default button, which is
invoked by the <Return> key and is visually distinct from the other buttons.

OPEN LOOK defines four distinct types of pop-up window. Nofice Windows are analogous to the Motif Mes-
sage Box, and convey information to the user. Command Windows accept user input and are roughly analogous to
the Motif entry dialog. Help Windows are popped up when the user requests interactive help, and display an en-
larged view of the screen area in question, together with an informative message. There is no analog to help win-
dows in Motif. Property Windows are the most general pop-up, allowing the user to set application controls. Like
Motif dialogs, OPEN LOOK Pop-up windows present buttons along the bottom, one of which is the default.

4.5 Button and Key Bindings

Both styles define a set of "standard" keyboard bindings for commonly-used user interface functions. Either
style allows these default bindings to be revised to suit the end user or application programmer.

4.6 Context-Sensitive Help

Both styles endorse context-sensitive help. In OPEN LOOK, help is invoked by placing the pointer over the area
of the screen for which help is desired. This may be a control, a graphics area or an application layout area. The
HELP sequence is then entered, and help is displayed regarding the area being pointed at. Therefore, the “"context”
in which help is defined is determined by the area of the screen being indicated. OPEN LOOK defines a recom-
mended presentation for help messages. A help window is popped up, containing a magnified view (complete with
magnifying glass) of the the screen area, together with a helpful message.

In OSF/Motif, help is invoked in one of two ways. Applications are advised to supply a "Help" menu choice
on the top menu bar for an application. Several recommended choices are defined for this menu. In the more
general case, help is invoked by prssing the HELP button on the keyboard and invoking a widget. Motif does not
define any particular presentation for help.

5.0 Comparison of X Toolkit Widget Sets

The OSF/Motif widget set was first released in 1989 under license from the Open Software Foundation. The
information in this paper is taken primarily from the Version 1.0 release. Version 1.1, based on the MIT R4
intrinsics, has just been announced as this is written in September, 1990. Such information is available at this time
has been used in a few places. Only minor changes are anticipated in the toolkit and API. The toolkit is available
as a source code distribution from the Open Software Foundation, and is also distributed in binary format by a

UniForum 1991 Conference Proceedings, Dallas, Texas

number of system vendors, including DEC, HP, IBM and SCO, who support it on their respective hardware and
operating system platforms.

AT&T’s OPEN LOOK GUI X Toolkit, an X Toolkit Intrinsics-based implementation of the OPEN LOOK look
and feel, has been available since 1989. Information in this paper is taken primarily on the Version 2.0 release
which was announced in early 1990. Version 4.0 is due out in late 1990; such information as is currently available
on this release has been incorporated where relevant. There is no Version 3.0; the non-sequential release number
reflects the fact that the V4.0 toolkit will be based on on the R4 intrinsics. The widget set is available in source
code on the UNIX System V Release 4 distribution, and can also be had from AT&T in a binary distribution for
AT&T architecture and Intel 80386 machines.

This section discusses specific similarities and differences between the two toolkit implementations.

5.1 Widget Sets

The widget sets supported by the two toolkits are shown in Table 1, which displays each widget next to its
closest analog in the other toolkit. Specifics will be discussed in the following sections.

5.2 Units of Measurement

Widgets normally accept all dimensional data in integer pixel coordinates. Both toolkits endorse the use of a
real-world coordinate system in order to mask differences in display resolution or pixel size, but they go about it
rather differently.

Motif widgets can accept and report measurements in several altemnate units, selected by the XmNunitType re-
source: 1/1000ths of an inch, 1/100th millimeters, decipoints and font units. Because XtSetArg cannot set a float
value for a resource, these are all integer values. Widgets intemally convert between the values they report, and
the integer pixel coordinates used to communicate with the X server.

The OPEN LOOK widgets accept and report values in integer pixel coordinates. A set of convenience routines
is provided to allow an application to convert pixel measurements to points or millimeters, as either integer or
floating-point values. Thus conversion is done internally by the Motif widgets and externally by the OPEN LOOK
toolkit. For the sake of portability, probably the right way to handle unit independence is to manage it within the
application code.

5.3 Widget Tree Structure

The structure of the application widget tree is important if resources will be declared in class or user resource
files. The fully-qualified name of a given widget resource is constructed from the names of all the widget’s ances-
tors up to the application shell. If the widget tree constructed from either toolkit can be kept roughly homologous,
resource file maintenance can be streamlined. Unfortunately, this is not always possible. Examples where ho-
mologous structure cannot be maintained include cascading menus, the OPEN LOOK Caption and the upper levels
of application primary windows.

5.4 Shell Behavior and Instantiation

The two toolkits diverge on the issue of the proper treatment of shells. Shell widgets are used in both toolkits
to parent menus, pop-up windows and other user-interface tools which demand a new window independent of any
other. The windows associated with shell widgets are always children of the server RootWindow, and may be seen
and controlled by window manager applications. In order to control window manager behavior, shells export re-
sources which correspond to the window manager properties defined by Xlib. Shells are not managed like ordi-
nary widgets, but are created as pop-up children with the Intrinsics routine XtCreatePopupShell. The Intrinsics
define the routines XtPopup and XtPopdown as the mechanism for posting/unposting shells.

Because of the unique status of shells, the two toolkits treat them differently. Motif attempts to hide them by
instantiating two varieties of "hidden" shell - the XmMenuShell and XmDialogShell. Hidden shells are instanti-
ated by the Motif widget creation convenience routines. For example, when XmCreatePopupMenu is called, the
Motif toolkit automatically creates a hidden shell, creates the XmRowColumn menu pane as a child of the hidden
shell, and retums the widget ID of the XmRowColumn. This must be accomplished in a convenience routine, as
XtCreateWidget provides no mechanism for the automatic creation of a parent. Motif shells may also be instanti-
ated with XtCreatePopupShell.

UniForum 1991 Conference Proceedings, Dallas, Texas

Table 1 - OPEN LOOK and OSF/Motif Analogous Stylistic Elements and Supporting Widgets

Style Element
Controls, Display and Data Entry
Static Text or Image Label

Push Button

Toggle Button

"N-of-Many" Toggle Button

"One-of-Many" Toggle Button

Scale

Gauge

Scroll Bar

Single-Line Text Entry
Multiple-Line Text Editing

Command Line
Scrolling List

Menus

Application top menu area (menu bar)
Menu Button triggering pulldown menu

Pull-down menu
Pop-up menu

Option Menu

"Standard" Pop-up windows
Message Boxes

File Selection Box

Selection Box

Prompt Box

General pop-up window
Layout Control

"Standard" primary window layout
Scrolling layout

Paned window layout

Simple fixed layout
Row/Column layout
Constraint-Driven Layout
Control Panel

Miscellaneous

Client Graphics Area

3D Omamental Frame

Motif widget
XmLabel

XmPushButton

XmArrowButton
XmDrawnButton
XmToggleButton

XmToggleButton
(+XmRowColumn)

XmToggleButton
(+XmRowColumn)

XmScale

no analog

XmScrollBar

XmText

XmText
(+XmScrolledWindow)

XmCommand

XmList
(+XmScrolledWindow)

XmRowColumn

XmCascadeButton

XmMenuShell
(+XmRowColumn)

XmMenuShell
(+XmRowColumn)

XmRowColumn

XmMessageBox
XmFileSelectionBox
XmSelectionBox
XmSelectionBox
XmDialogShell + manager

XmMainWindow
XmScrolledWindow
XmPanedWindow
XmBulletinBoard
XmRowColumn
XmForm
XmRowColumn

XmDrawingArea
XmFrame

OPEN LOOK widget

StaticText
Caption
OblongButton

CheckBox
FlatCheckBox
Nonexclusives
(+ RectButton)
FlatNonexclusives
Exclusives

(+ RectButton)
FlatExclusives
Slider

Gauge (V4.0)
Scrollbar
TextField
TextEdit (V4.0)

no analog
ScrollingList

ControlArea
MenuButton
MenuShell

MenuShell

AbbrevMenuButton

NoticeShell

no analog

no analog

no analog
PopupWindowShell

FooterPanel + Form
ScrolledWindow
no analog
BulletinBoard
ControlArea

Form

ControlArea

Stub
no analog

UniForum 1991 Conference Proceedings, Dallas, Texas

Hidden shells pop themselves up when their child is managed. In the preceding example, if the child XmRow-
Column is managed, its parent XmDialogSbell pops up. When the child is unmanaged, the XmDialogShell pops
itself down. The benefits of this approach are twofold. A single mechanism (XtManageChild/XtUnmanageChild)
now suffices to post/unpost any widget, regardless of whether it is a pop-up widget or not. Also, the application
need not explicitly instantiate the shell if the convenience routine is used.

OPEN LOOK shells are instantiated with XtCreatePopupChild, and are the first widget to be instantiated in a
pop-up window or menu. Having this distinction, shells in the OPEN LOOK toolkit are given a major role in en-
forcing style. Shells automatically create their own manager children, which are used as layout areas inside the
pop-up window. For example, the MenuShell creates a child Form and the Form’s own ControlArea child. The
manager children are used to parent any controls placed within the shell; the widget ID’s of these managers are
exported as resources by the shell itself. The advantage of this approach is that it follows the spirit of the MIT
Intrinsics while enforcing the proper choice of manager to'support the style appropriate to a particular pop-up tool.

These differences have several impacts on the programmer. First, the order in which widgets are instantiated
will be different, depending on which toolkit is used. This is an inconvenience, but the differences here can easily
be hidden by encapsulating menu or dialog box creation in an application library routine. Second, if the names of
widgets are used in resource files, care must be taken to be sure that the proper widget is referenced. As an exam-
ple, if a widget name is specified to the Motif routine XtCreatePopupMenu, the name is received by the
XmRowColumn menu pane. If the analogous OPEN LOOK construct is created by calling XtCreatePopupShell to
instantiate a MenuShell, the shell itself receives the name. In cases like this, the asterisk notation in resource files
is helpful.

5.5 Controls

There is no room in this paper to present all the detailed comparisons made between each widget and its coun-
terpart. Most differences revolve around the number and use of widget resources. Widgets were determined to be
functionally equivalent if they:

o Support essentially the same user-interface abstraction
o Provide a similar set of manipulation resources and/or convenience routines.

 Provide a similar set of callbacks, from which an "adequate” common subset can be defined
The major findings in comparing widgets from the two toolkits are presented below.

5.5.1 Static Text or Image Labels

To present static textual information, the XmLabel and StaticText widgets serve roughly the same function and
are equivalent in functionality. If a static image label is required, the XmLabel can display an application-supplied
pixmap. To handle images, AT&T examples instantiate the undocumented Button superclass, which accepts an
XImage. The fact that this widget remains undocumented is a bit troubling, yet it actually approaches a closer
match with the XmI abel than does the StaticText widget.

For labeling controls, the OPEN LOOK toolkit provides the Caption widget. This is actually a manager widget
which parents the child control and presents the text label next to it. The advantage of this widget is that it inter-
acts with the ControlArea widget to enforce alignment of labels and controls in accordance with the OPEN LOOK
style. There is no exact analog for this widget in the Motif toolkit; XmLabels in Motif are usually siblings of the
controls which they annotate.

5.5.2 Push Buttons

The XmPushButton and OblongButton are roughly equivalent in action and resources. Motif also provides the
XmArrowButton and XmDrawnButton visual variants of the XmPushButton, which support the same actions and
resources.

5.5.3 Toggle Buttons

The Motif XmToggleButton and OPEN LOOK CheckBox are functionally equivalent. OPEN LOOK makes a
semantic distinction between the CheckBox, which is a generalized toggle, and the RectButton (discussed below)
which toggles choices within a group of related items.

UniForum 1991 Conference Proceedings, Dallas, Texas 83

5.5.4 Exclusive and Non-exclusive Groups of Toggle Buttons

The Motif XmToggleButton and OPEN LOOK RectButton are both toggle buttons that maintain a state, and
support very similar resources and semantics. RectButtons are always parented by an Exclusives or Nonexclusives
manager widget, which enforces the button layout peculiar to the OPEN LOOK style. Also, RectButtons support
several appearance resources which are used to reflect changes in application state or the combined state of several
related toggle buttons.

Exclusive behavior is enforced in Motif by making the XmToggleButtons children of an XmRowColumn.

5.5.5 Valuators

The Motif XmScale and OPEN LOOK Slider widgets are generally equivalent in action and resources. Ver-
sion 4.0 of the OPEN LOOK toolkit implements the Gauge widget. There is no direct analog for this in the Motif
toolkit; for portability the best approach would be to use the Motif XmScale widget as an output-only widget.

5.5.6 Scroll Bars

The Motif XmScrollBar and OPEN LOOK Scrollbar widgets are generally equivalent in action and resources.
5.5.7 Single-Line Text Entry

The Motif XmText and OPEN LOOK TextField widget are generally equivalent.
5.5.8 Multiple-Line Text Entry '

The Motif XmText and OPEN LOOK TextEdit (V4.0) widget are generally equivalent in function and actions.
The Motif widget does not provide scroll bars of its own; scrolling behavior is implemented by making the Xm-
Text widget a child of an XmScrolledWindow. Certain resources of the XmText are passed to its parent to control
behavior, and the convenience routine XmCreateScrolledText is provided to automatically create both the XmText
child and its XmScrolledWindow parent. A similar set of convenience routines is provided in both toolkits to set,
get and edit the displayed text.

5.5.9 Command Line Editor

The Motif widget set provides a widget which implements the command-line entry area used in a primary win-
dow. There is no direct analog for this in the OPEN LOOK widget set.

5.5.10 Scrolling Lists

The Motif XmList and OPEN LOOK ScrolledList widgets implement a similar user interface function, but
there are important differences in their implementation which must be addressed. Because these tools implement a
fairly complex dialog with the user, numerous convenience routines are provided in both toolkits to position the
list, add items, delete items and retrieve the selected item or items. The Motif widget supports convenience rou-
tines which are declared in the widget header files. In the OPEN LOOK implementation, the addresses of the
analogous convenience routines are exported as resources by the ScrolledList widget.

The Motif widget does not provide scroll bars of its own; scrolling behavior is implemented by making the
XmlList widget a child of an XmScrolledWindow. Certain resources of the XmList are passed to its parent to con-
trol behavior, and the convenience routine XmCreateScrolledList is provided to automatically create both the Xm-
List child and its XmScrolledWindow parent.

5.6 Menus

5.6.1 Menu Buttons and Pull-down Menus

The Motif XmCascadeButton and OPEN LOOK MenuButton are functionally equivalent, but present proce-
dural and structural differences which must be addressed by the programmer. The OPEN LOOK widget automati-
cally creates an associated MenuShell, Form and ControlArea. The widget ID of the ControlArea is exported as a
resource of the MenuButton widget, and must be retrieved with XtGetValues so that it can be used to parent button
children.

UniForum 1991 Conference Proceedings, Dallas, Texas

5.7 Application Layout

The greatest divergence between toolkits is found in the manager widgets which implement layout control.
Consequently, these present the programmer with some of the greater challenges.

5.7.1 Simple Fixed Layout (Bulletin Board)
The Motif XmBulletinBoard and OPEN LOOK BulletinBoard widgets are functionally equivalent.
5.7.2 Constraint-Drive Layout (Form)

The Motif XmForm and OPEN LOOK Form perform much the same function as managers, enforcing relative
position of their children with respect to one another. The relative positioning of children is defined by constraint
resources set on the children themselves. Unfortunately, there is little similarity between the constraints defined by
the two widgets. This is an area requiring customized treatment.

5.7.3 Row/Column Layout

Both toolkits provide a manager widget which orders its children in neat rows and/or columns. This is most
often used to provide order in menus or pop-up dialog boxes. The properties of the Motif XmRowColumn and
OPEN LOOK ControlArea widgets are similar, and they are both used to parent a set of choices when employed in
menus. However, the OPEN LOOK widget interacts with any Caption children in order to enforce the alignment
of controls and captions used in OPEN LOOK pop-up windows.

5.8 Application Drawing Area

Both toolkits provide a generalized widget which can be used for this purpose. The Motif XmDrawingArea
and OPEN LOOK Stub widgets are actually very different, but may be treated as functionally equivalent if the
application defines its own translations for the widgets.

5.9 Context-Sensitive Help

AT&T’s toolkit supplies the help registration function OlRegisterHelp, which is used to associate an
application-supplied help message with a particular window, widget or gadget. When help is invoked with the
pointer indicating a registered object, the help facility opens the stylized OPEN LOOK help window. The proto-
typical help window is supplied courtesy of the (undocumented) Help widget, and displays the help message to-
gether with an enlarged view of the screen area for which help was requested. The help facility may also be vec-
tored to an application-supplied help routine; in effect, the application receives a callback when help is requested.
In this case it is up to the application to provide an appropriate visual interface to help services.

Each widget in the OSF/Motif widget set supports a help callback list, invoked when the help sequence is acti-
vated with focus in that widget. A default help sequence is defined for some widgets; for others it is up to the
programmer to define a translation which calls the routines in the belp callback list. This means that different
programmers may build different conventions for invoking help. Moreover, the exact format for displaying help is
not defined by the OSF/Motif Style Guide. It is up to the programmer to determine the "proper” use of the help
callback, and define an interface to an application-supplied help facility.

This is an area requiring customized treatment, since conformance to the OPEN LLOOK help style is considered
mandatory by the OPEN LOOK specification.

5.10 File Selection

Both styles define a "standard” file selection menu, and the choices on these File selection and management are
treated similarly by the two toolkits.

The OSF/Motif toolkit provides a file selection widget that displays the files in a directory, allowing the user to
traverse the directory tree and select a file. The selected filename is returned in a callback to the application. Mo-
tif applications should use the file selection widget to ensure stylistic conformity.

OPEN LOOK filenames may be retrieved in a command window; since no toolkit-specific widget is provided
for this purpose, this is an area requiring customized treatment. Applicaitons running in the OPEN LOOK envi-
ronment should also be prepared to interact with the OPEN LOOK File Manager application. Files needed by an

UniForum 1991 Conference Proceedings, Dallas, Texas 85

application are selected in the File Manager window, and then dragged to the application window. Communica-
tion with the File Manager is accomplished through properties.

5.11 Namespace collisions

It would be nice to be able to build an application and link both toolkit libraries at compile time, such that a
run-time choice of user interface style could be made. This is only possible if there is no fatal conflict between
exported symbols defined by the two toolkits. A preliminary review of the namespaces reserved by the toolkits
shows no overlap; the naming convention followed by each toolkit are shown in Table 2. Bold letters indicate
literal characters that invariably appear in the symbol. Capitalization is important and follows the conventions
shown.

Version 1.0 of Motif and Versions 2.x of the OPEN LOOK toolkit rely on customized implementations of the
Intrinsics library (1ibXt .a). Without a great deal of effort, this effectively precludes the reliable use of these
releases together. By the time this paper is published, the latest releases of both toolkits will be based on the stan-
dard R4 Intrinsics, and could be linked against the MIT libraries. This issue should be revisited at that time.

Table 2 - Naming Conventions
Symbol Type OSF/Motif Convention OPEN LOOK Convention

Resource name symbolic constant XmNresourceName XtNresourceName

Resource class symbolic constant XmCResourceClass XtCResourceClass
Toolkit-specific symbolic constant XmSYMBOLIC_CONSTANT OL_SYMBOLIC_CONSTANT
Toolkit-specific data type XmType OIType

Widget class XmWidgetClass WidgetClass

Class pointer used in XtCreate Widget xmWidgetClass WidgetClass widgetClassWidgetClass
Widget header file <Xm/WidgetClass.h> <WidgetClass.h>

Convenience routine XmRoutineName OlIRoutineName
Widget-specific creation routine XmCreateWidgetClass n/a

Widget-specific convenience routine XmWidgetClassRoutineName OlIWidgetClassRoutineName

6.0 Conclusions

The good correspondences between the OPEN LOOK and OSF/Motif styles and toolkits indicate the general
feasibility of applications supporting both GUI’s. This work has defined situations requiring special treatment and
a number of areas for further study. Some general principles for building GUI-independent code are derived be-
low.

» Do design from the start to support both styles, and choose user interface constructs accordingly.

e Do insist on the standard MIT Intrinsics, as this will make it possible to add user-written widgets
where necessary, and possibly will make run-time choice of GUI a reality.

» Do use toolkit-specific convenience routines where helpful, particularly to manipulate complex wid-
gets, such as the text and list widgets.

¢ Do encapsulate toolkit-specific code inside application library routines. Only build the library of
tools that you need to implement your user interface.

¢ Don’t use "exotic” resources and callbacks unless absolutely necessary.

¢ Do adopt the style definition of the more tightly-defined style, as long as it does not break the less-
tightly defined style.

UniForum 1991 Conference Proceedings, Dallas, Texas

e Don’t fight the style implemented by the widget set. Wherever possible, let the widget set itself
enforce/support the style for the application. Not only is this more in keeping with the philosophy of
"standard" styles, it also allows the programmer to avoid a lot of detailed programming.

¢ Don’t fight the window manager. Window managers implement a portion of the look and feel inher-
ent in a GUI specification. Unless there is an overwhelming reason to override this behavior , it is
recommended that the default behavior of these window managers remain unchallenged. This
means, specifically, that application developers should give up notions about the "proper” placement
of pop-up tools, "correct” sizes for application windows, and "right" stacking order. The ICCCM is
required reading.

7.0 Items requiring additional study

A number of issues remain to be resolved. First, new releases of both toolkits will be available by the end of 1990;
these must be evaluated. In particular, the OPEN LOOK toolkit will implement 3D appearance in this release, and
new resources are expected to control this behavior. The entire issue of internationalization has not been explored
in any detail. Procedural issues surrounding keyboard traversal, cursor handling and interclient communication
have yet to be addressed. Detailed consideration of pop-up interface tools is also not yet complete at the time of
publication.

8.0 Acknowledgements

I would like to thank Lindsey Robinson, Chuck Price and the ISV Program at Digital Equipment Corporation for
the time and space to work on this, as well as the loan of a DECstation and significant information on Motif and
DECwindows/XUI. Thanks also to Marcel Meth (now at Lotus Development Corp.) for his long and thoughtful
hours discussing and comparing toolkits, and to Steve Humphrey at AT&T, for generously providing information
on the OPEN LOOK toolkit.

This paper was entirely composed and typeset on a DECstation 3100 using DECwrite, an X Toolkit-based
WYSIWYG editor and document processing system produced by Digital Equipment Corporation. Figures and il-
lustrations were also developed in DECwrite. Screen images were dumped with the MIT xwd utility and then con-
verted to 256-greyscale PostScript images by a version of xwud which was modified for the purpose. Drafts were
rendered in PostScript and printed on a Digital Equipment LPS40 network laser printer.

9.0 References

The OSF/Motif manuals provide detailed information on the Motif style and programming interface, and are pub-
lished as a five-volume set by Prentice-Hall:

1. OSF/Motif Style Guide, Revision 1.0
Prentice Hall, 1990 ISBN 0-13-640491-X

2. OSF/Motif User’s Guide, Revision 1.0
Prentice Hall, 1990 ISBN 0-13-640509-6

3. OSF/Motif Programmer’s Guide, Revision 1.0
Prentice Hall, 1990 ISBN 0-13-640525-8

4. OSF/Motif Programming Reference, Revision 1.0
Prentice Hall, 1990 ISBN 0-13-640517-7

5. OSF Application Environment Specification User Environment Volume, Revision A
Prentice Hall, 1990 ISBN 0-13-640483-9

UniForum 1991 Conference Proceedings, Dallas, Texas 87

The source books describing OPEN LOOK style are the Style Guide and Functional Specification produced by
Sun Microsystems, listed below:
6. OPEN LOOK Graphical User Interface Style Guidelines
Addison-Wesley, 1990, ISBN (0-201-52364-7
7. OPEN LOOK Graphical User Interface Functional Specification
Addison-Wesley, 1990 ISBN 0-201-52365-5
Programming documentation on the AT&T OPEN LOOK toolkit is included in the UNIX System V Release 4
manual set. Relevant volumes:
8. UNIX System V, Release 4, OPEN LOOK Graphical User Interface User’s Guide
Prentice Hall, 1990 ISBN (-13-931916-6

9. UNIX System V, Release 4; Programmer’s Guide: OPEN LOOK Graphical User Interface
Prentice Hall, 1990 ISBN 0-13-931908-5

10. UNIX System V, Release 4; OPEN LOOK Graphical User Interface Programmer’s Reference
Manual
Prentice Hall, 1990 ISBN (-13-931924-7

AT&T has also established a trademark certification effort. Elements of the OPEN LOOK style required for certi-
fication are described in the following volume, available from AT&T:

11. AT&T OPEN LOOK Graphical User Interface Trademark Guide
American Telephone and Telegraph, 1989

10.0 Trademarks

UNIX is a registered trademark of AT&T

OPEN LOOK is a trademark of AT&T

DECstation, DECwrite and DECwindows are trademarks of Digital Equipment Corporation
OSF/Motif is a trademark of the Open Software Foundation

"X" and X Window System are trademarks of the Massachusetts Institute of Technology
PostScript is a trademark of Adobe Systems, Inc.
Presentation Manager is a trademark of Microsoft, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

The Use of Erasable
Optical Disk Technology
for
Data Archival in a UNIX

Internet Environment

Mark A. Clark

LTV Aircraft Product Group
P.O. Box 655907 M/S 31-06
Dallas, TX 75265-5907
(214) 266-5612

89

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

The Use of Erasable Optical Disk Technology for Data Archival in a Unix
Internet Environment

Mark A. Clark
Senior Process Control Engineer

Nondestructive Test Lab
LTV Aircraft Products Group
(214) 266-5612

Copyright 1990, LTV Aerospace and Defense Company

Recent developments in storage media have created new possibilities for
the critical task of archiving data files in computerized data acquisition
environments. In particular, the recent commercial availability of erasable
optical media allows for the development of archiving systems which allow
for greater data security, longer storage 1ife and much faster retrieval of
archived files than the traditional magnetic tape archive.

This paper describes the implementation of a data archiving system with
over 2 gigabytes of mass storage capacity using both magnetic and erasable
optical disks on a DEC Microvax II computer system under the Ultrix
operating system. This machine serves as the central host for the LTV
Quality Network, which includes eight Unix hosted, multi-axis robotic
ultrasonic test systems used for the non-destructive testing of aircraft
components. These ultrasonic test systems generate an average of 20 to 30
megabytes of inspection data per day. Government specifications require
that the data wused in evaluating the acceptance by Quality Assurance of
these aircraft parts be retained for at least 5 years. In the past, data
archival was performed on the local UT machine, with the data being stored
on magnetic tape cartridges. This practice required a significant amount of
CPU resources on each ultrasonic test system, which effectively precluded
the use of the machine for its intended purpose during the time required for
the tape backup. The manual tape backup system was replaced in 1989 by a
remote backup system* which copies ultrasonic data files across the Internet
to the Microvax II system in the NDT Lab, where it was centrally archived to
magnetic tape cartridge on that system. The project described in this paper
provides the next step in the evolution of this function.

* as described in: Clark, Mark A., "Remote Backups of Internet Hosts
Through FTP," 1990 Uniforum Conference Proceedings

UniForum 1991 Conference Proceedings, Dallas, Texas

Design Goals

As this project was begun, the disk space available for on-line storage
of data files (that is, data files available tor immediate download to the
production ultrasonic systems) was limited to the space on the ’h’ file
system of our RA81 disk drive on the MicroVax. (about 320 Megabytes) This
file system was also needed for wuser files and software applications
software on the Vax. In practice, we were able to store seven to ten days
worth of on-line data on this file system. Thus, one of the chief design
goals for the project was to increase the on-line storage area
dramatically.

Another goal was to provide quick access by the wultrasonic machine
operators to archived data files. (those which are no longer on-line) The
old method for this was that the UT operator would call the NDT Lab on the
phone and tell us that he needed a certain file. We would then have to find
out what tape cartridge that file was on, mount the tape in the tape drive
and then copy the file from tape to the on-line storage directory from which
the UT operator could then download it to his local system. Reduction of the
amount of system and manpower resources vrequired for archiving and
retrieving data was, therefore, a prime consideration.

The third major design goal of the archival system was to increase the
reliability of the archived data. Erasable optical media is more stable than
either magnetic disk or magnetic tape media and is less susceptible to
environmental factors such as heat and magnetic fields.

Design Choices

The selection of the Maxtor Tahiti disk drive as our erasable optical

disk drive was not difficult. At the time we placed the order for the
hardware for this system, it was the only erasable optical disk drive that
was actually on-the-shelf ready to be sold. (although Fujitsu and Sony were
close behind) The Tahiti drive with the 1.2 gigabyte platter will allow the
creation of a file system on the MicroVax of 424 megabytes per side.

Because of our need to maximize the amount of on-line storage of data
files on the system, we selected the Fujitsu 2263S SCSI magnetic disk drive

which will allow the creation of a file system of 624 megabytes on our Vax
under Ultrix.

To ease the chore of system configuration, we wanted to purchase a disk
controller board that would control both the magnetic disk drives for the
on-l1ine storage area and the erasable optical drives for the archival area,
while using an available device driver. The U.S. Design Q-STOR/QT model 1108
SCSI Host Adapter for the Q-Bus was selected because of its success in
controlling Maxtor Tahiti drives on MicroVaxen under VMS. We were the first
known site to attempt using this hardware under Ultrix on a MicroVax, which
led to a Tittle gotcha discussed Tater. This board appears to the operating

UniForum 1991 Conference Proceedings, Dallas, Texas

system as if it is a DEC KDA50-Q disk controller board which allows the use
of standard RA series device drivers. Each 1108 board will control four
connected SCSI devices.

Because of the importance of maintaining operation even in the event of
the failure of a component of the system, we elected to use a "no single
point of failure" approach, that is, we bought two of everything. Two
controller boards, two Fujitsu drives and two Maxtor Tahiti drives. This
way, the failure of any single piece of hardware in the system will allow us
to continue operation with the remaining hardware until that component is
repaired.

Hardware Confiquration and Installation

Installation of the controller boards and disk drives in the MicroVax
was fairly straightforward. The CSR (control/status register) address of the
1108 boards were set to the addresses recommended by DEC for the second and
third KDA50 controllers on a MicroVax II. The only other hardware settings
required were the SCSI ID number settings on the disk drives.

Operating System Modifications

Kernel configuration and compilation on the MicroVax was accomplished
through the /etc/doconfig script provided with the system by DEC. This
script basically automates the editing of the configuration files and then
makes the kernel in the standard way. Most recent Unix releases provide
equivalent friendly reconfiguration programs for modifying the hardware
setup of the system. Shown below is an excerpt from the configuration file
of the MicroVax showing the csr address and driver information for the two
disk controllers and the disks created for them.

adapter

controller

controller csr 0160334 vector ugintr
disk drive 0

disk drive 1

disk drive 2

disk drive 3

controller

controller csr 0160340 vector ugintr
disk drive 0

disk drive 1

disk drive 2

disk drive 3

UniForum 1991 Conference Proceedings, Dallas, Texas

Note that the /etc/doconfig program creates four disks for each
controller because that is the maximum number of drives that can be slaved
from a single controller. Below is a portion of the message that is seen
when the MicroVax 1is booted. Note that, here, only the disks detected at
boot time are shown. The two spare disk drivers per controller are not made
available for use by the system unless they are physically present on the
system at boot time.

real mem 16769024

avail mem = 13763584

using 210 buffers containing 1676288 bytes of memory
MicroVAX-II with an FPU

Q22 bus

klesiu0 at uba0

tmscpl at klesiuO csr 174500 vec 774, ipl 17
tms0 at tmscpl slave 0

uda0 at uba0l

uq0 at uda0 csr 172150 vec 770, ipl 17

ra3 at uq0 slave 3

udal at uba0l

uql at udal csr 160334 vec 764, ipl 17

ra4 at ugl slave 0

ra5 at uql slave 1

uda2 at ubal

ugq2 at uda2 csr 160340 vec 760, ipl 17

ra8 at uq2 slave 0

ra9 at uq2 slave 1

File System Creation

In creating the file systems for the magnetic and optical disk drives,
we felt that, to simplify application development, it was highly preferable
to have the entire disk be a single large file system. The procedure for
doing this is to use /etc/newfs to create an ’a’ file system for each of the
disks. Then the /etc/chpt program (which appears to be Vax specific, but
most other systems probably have an equivalent command) is used to change
the partition size of the ’a’ file system to the maximum block length for
the disk. Finally, the /etc/newfs program is run again to create a new ’a’
file system of the desired size. Note that, if you wish to create a single
maximized partition for a disk drive, the partition must be the ’a’ file
system. This is because default file system sizes are determined from the
file /etc/disktab. The /etc/chpt program stores the non-default partition
table on the ’a’ file system, which must, of course, exist in order for this
to work. The output of these commands as it appears when run on one of the
Tahiti drives is shown below:

UniForum 1991 Conference Proceedings, Dallas, Texas

ndtvax.mark # newfs -n rra9a ra80
Warning: 186 sector(s) in last cylinder unallocated
/dev/rra9a: 15872 sectors in 37 cylinders of 14 tracks, 31 sectors
8.1Mb in 3 cyl groups (16 c/g, 3.56Mb/g, 1216 i/g)
super-block backups (for fsck -b#) at:
32, 7008, 13984,

Note that the first time /etc/newfs is invoked for the ’a’ file system,
it shows the file system size as 8.1 megabytes. This is because this is the
size listed for the *a’ partition in /etc/disktab. The /etc/chpt command is
used both to determine the maximum number of blocks available on the disk
and to alter the partition table to set the ’a’ partition to the total disk
size. The first step is to 1invoke /etc/chpt with the -q option. The top
block of the last available file system on the disk (’h’ 1in this case) is
the maximum blocks available.

ndtvax.mark # chpt -q /dev/rra9a

/dev/rra9a
Current partition table:
partition bottom top size overlap
a 0 15883 15884 c
b 15884 49323 33440 o
c 0 904990 904991 a,b,d,e,f,g,h
d 131404 166663 35260 c,h
e 166664 201923 35260 c,h
f 201924 904990 703067 c,h
g 49324 131403 82080 c
h 131404 904990 773587 c,d,e,f

Next, /etc/chpt, given the starting and ending block numbers of the
file system, changes the partition table on the ’a’ file system itself.
The output of /fetc/chpt shows the new partition table of the disk.

---- print new partition table
---- partition (file system) a
---- starting block number
---- ending block number
---- device special file

|
o
904990 /dev/rra9a

o-—__..-—.—

|
||
||
||
|
||
-v —p

ndtvax.mark # chpt a
/dev/rrada
New partition table:
partition bottom top size overlap
a 0 904989 904990 b,c,d,e,f,qg,h
b 15884 49323 33440 a,c
c 0 904990 904991 a,b,d,e,f,qg,h
d 131404 166663 35260 a,c,h
e 166664 201923 35260 a,c,h
f 201924 904990 703067 a,c,h
g 49324 131403 82080 a,c
h 131404 904990 773587 a,c,d,e,f

UniForum 1991 Conference Proceedings, Dallas, Texas 95

When /etc/newfs is run again for the ’a’ file system, the partition
table on the new file system overrides the default partition table in

/etc/disktab.

ndtvax.mark # newfs -n rra9a ra80

Warning: partition table overriding /etc/disktab

Warning: 348 sector(s) in last cylinder unallocated

/dev/rra9a: 904976 sectors in 2086 cylinders of 14 tracks, 31 sectors
463.3Mb in 131 cyl groups (16 c/g, 3.56Mb/g, 1600 i/g)

super-block backups (for fsck -b#) at:

32, 7008, 13984, 20960, 27936, 34912, 41888, 48864, 55840, 62816,

69792, 76768, 83744, 90720, 97696, 104672, 111136, 118112, 125088,

132064, 139040, 146016, 152992, 159968, 166944, 173920, 180896, 187872,

194848, 201824, 208800, 215776, 222240, 229216, 236192, 243168, 250144,

257120, 264096, 271072, 278048, 285024, 292000, 298976, 305952, 312928,

319904, 326880, 333344, 340320, 347296, 354272, 361248, 368224, 375200,

382176, 389152, 396128, 403104, 410080, 417056, 424032, 431008, 437984,

444448, 451424, 458400, 465376, 472352, 479328, 486304, 493280, 500256,

507232, 514208, 521184, 528160, 535136, 542112, 549088, 555552, 562528,

569504, 576480, 583456, 590432, 597408, 604384, 611360, 618336, 625312,

632288, 639264, 646240, 653216, 660192, 666656, 673632, 680608, 687584,

694560, 701536, 708512, 715488, 722464, 729440, 736416, 743392, 750368,

757344, 764320, 771296, 777760, 784736, 791712, 798688, 805664, 812640,

819616, 826592, 833568, 840544, 847520, 854496, 861472, 868448, 875424,
882400, 888864, 895840, 902816,

Mounting the file system and running /bin/df shows the space available
on the new file system.

ndtvax.mark # mount /dev/ra9a /opt2

ndtvax.mark # df

Filesyste Total kbytes kbytes %

node kbytes used free used Mounted on
/dev/ra3a 7423 6104 577 91% /
/dev/ra3g 38847 31947 3016 91% /usr
/dev/ra3h 361590 219000 106431 67% /usr/users
/dev/rada 624870 475170 87213 84% /magl
/dev/raba 624870 487730 74653 87% /mag2
/dev/ra8a 424173 182594 199162 48% /optl
/dev/ra9a 424173 9 381747 0% /opt2

In the case of the erasable optical drives, the above file system
creation procedure must be followed every time new media is mounted 1in the
drive. This is a pretty common occurrence in our installation, so the
following script was written to automate the function:

9% UniForum 1991 Conference Proceedings, Dallas, Texas

'k*k*************
program: optinit - initialize erasable optical media

author: Mark A. Clark
#
clear
echo
echo ’ °
echo *This program allows the superuser (only) to initialize the’
echo ’erasable optical disk media used in the archiving of ultrasonic’
echo ’data files on this system. It should be used with extreme caution’
echo ’as initializing media which contains data will result in the loss’
echo ’of that data.’
echo ’ °’
echo ’ °’
case $1 in
1|optl|/optl|/optl/|ra8a|rra8al|/dev/ra8a|/dev/rra8a)

drive=rra8a

»

Optical Disk Initialization Program (rev. 1.0, 8/17/90) (mac)’

2|op%é|/opt2|/opt2/|ra9alrraga|/dev/ra9a|/dev/rra9a)
drive=rra9a
*))
echo ’Device number may be 1 for optl or 2 for opt2. ’
echo ’ °
echo -n ’Enter Device number or [Enter] to cancel: °
read inword
case $inword in
1)
drive=rra8a
2) 2
drive=rra9a
*) 2
echo ’optinit: operation cancelled.’
sleep 1
exit 1
esac
esac
echo *
beep
echo ***** WARNING WARNING WARNING WARNING WARNING ****’
echo -n ’This process will erase all contents of target media in /dev/’
echo $drive
echo -n ’Are you absolutely sure that you wish to proceed? (y/N) °’
read reply
echo ’ °’

UniForum 1991 Conference Proceedings, Dallas, Texas 97

case $reply in
ylY)
newfs -n $drive ra80
chpt -v -pa 0 904990 /dev/$drive
newfs -n $drive ra80
fsck /dev/$drive

echo ’ ’
echo -n ’Operation Complete, Press [Enter] to continue ... °
read reply
*) 2
echo ’optinit: operation cancelled.’
sleep 1
esac

FekkkhkkhkhkkhkhkhkkhkhkhkhkkkkhkkkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkhkhkrhhkhkhkRhkhkhkhkhkkhkhkkkkhkkhkikkddhkikk

Archival System Software

The rbackup program, detailed in a previously published paper, was
modified for this project to copy the data files to a staging directory.
From there, the files are first copied to the /optl directory and then moved
to the /magl directory, 1leaving the staging directory empty. This insures
that all data entering the on-line storage area is mirrored to the archive
area. Also modified for this system were the programs which run on the UT
systems and allow the UT operators to download data files from the MicroVax.
An additional program allowing the operators to request data files from
archive via Internet mail was written and added to their menu interface.

File Aging

The ’aging’ program automates the aging of ultrasonic data in on-line
storage on the MicroVax. First, the size of the /magl file system is tested.
If this size is above the percentage 1imit set in the fssize.awk script
(currently 90 percent) then the oldest one days worth of data files are
moved over to the /mag2 file system. This check is then repeated until the
file system is below the limit. This process is then repeated for /mag2,
but, in this case, the oldest files are removed from the disk. The /optl
file system is checked against the same size 1imit so that a warning can be
mailed when the media needs to be changed on the Tahiti. Data and control
flow charts of this process are shown below:

98 UniForum 1991 Conference Proceedings, Dallas, Texas

Aging Process

Control Flow

move oldest
one days
data to /mag2

/opt1

> 90%
?

move oldest
one days
data to bit
bucket

mail message to
administrator

Data Flow

Aging

UniForum 1991 Conference Proceedings, Dallas, Texas

Listed below are the scripts which perform these functions:

Je 3 o e e e e e e e e e e e ke sk e ke ke ke Tk e e e T e e ke sk ok ok ke e ok ok ke e 3k vk e e e ok e ke sk sk e e o o s e e Tk Tk T T de g ke e e e kK Rk
program: aging

author: Mark A. Clark
purpose: provide file aging and transfer for archive system

This Bourne shell script is normally started by cron but can be
run interactively by root.

parameters: called by cron (normally) or interactively (by root)

e s e I W 3 A e e W I W

HOME="/usr/users/Tocal/aging’
check /magl file system to see if it is full

while ($HOME/fssize /magl)
do

move oldest one day worth of files to the next file system, then check
again

$HOME/move /magl /mag2
done

check /mag2 file system to see if it is full

while ($HOME/fssize /mag2)
do

move oldest one day worth of files to trash and check again

$HOME/move /mag2 /user/BUCKET
done

check /optl file system to see if it is full
if $HOME/fssize /optl
then

send mail telling me to change media
/usr/ucb/mail mark < $HOME/alertme

fi

clean up after yourself

rm -f $HOME/*.tmp
rm -f /user/BUCKET

UniForum 1991 Conference Proceedings, Dallas, Texas

The ’aging’ script, listed above, is the main driver for file aging on
the Vax. In order to determine whether the file system contents is above the
defined 1imit, the fssize script is called.

module: fssize

author: Mark A. Clark

Called by the ’aging’ script. Returns 0 if the file system
passed in as $1 is full, otherwise returns 1.

(note: the term ’full’ in this case means larger than the
amount allowed by the ’1imit’ variable in the fssize.awk
program.)

#
#
#
#
#
#
#
#
#
#
#
#

set up default directory
HOME="/usr/users/local/aging’

df $1 | grep /dev/ | awk -f $HOME/fssize.awk > $HOME/flog.tmp
if /usr/bin/fgrep -s ’file system full’ $HOME/flog.tmp
then
exit 0
else
exit 1
fi

The fssize script calls the fssize.awk program.

module: fssize.awk
#

author: Mark A. Clark
#
BEGIN {

note:

the ’1imit’ variable can be changed here as circumstances dictate.

it is, of course, to our advantage to keep as much data on-line as
possible.

known bugs: If the file system gets above 100% this doesn’t work.
Awk fails to grok that 100 is greater than 90 for some reason.

Timit = 90
$5 > 1imit {print "file system full" ; }

UniForum 1991 Conference Proceedings, Dallas, Texas

The move’ script, which calls the awk program 'move.awk,’ moves the
oldest one days worth of data files from the directory passed in as $1 to
the directory passed in as $2.

module: move

author: Mark A. Clark

purpose: move one days worth of data files from directory passed
in as $1 to directory passed in as $2

e Tk e 3 3k e e Ik

set up default directory

HOME="/usr/users/local/aging’

put parameters where awk can get at ’em

/bin/echo $1 $2 > $HOME/directories

generate directory listing in reverse time stamp order, oldest first
/bin/1s -1tr $1 > $HOME/files.tmp

/bin/awk -f $HOME/move.awk $HOME/directories $HOME/files.tmp >
$HOME/move . cmd

/bin/sh $HOME/move.cmd

module: move.awk

#

author: Mark A. Clark

#

#

input: piped directory listing of source directory
#

output: Unix ’mv’ command to stdout
#

#

#

BEGIN {

initialize log file name

LOGFILE = "/usr/users/local/aging/flist")}

NR==1{ FROM = $1; T0 = $2°)

NR == 3 { olddays = $6)

for each subsequent record, do comparisons on directory 1isting
NR > 2 && olddays == $6 { print "mv "FROM"/"$8" "TO)}

102 UniForum 1991 Conference Proceedings, Dallas, Texas

Results

The completed system has generally met the original design goals that
were set for it. The 1248 megabytes of on-line storage area on the Fujitsus
translates to approximately 3 months worth of ultrasonic data files produced
by the production machines. Each side of an archive platter on the Tahitis
will hold between three and four weeks of dita. If the need arose, four
additional SCSI devices are available and already configured into the
kernel. This would allow us to expand by adding Fujitsu, Tahiti or most any
other SCSI type drives at will.

The 1108/Tahiti combination is reported to work very well under VMS on
a MicroVax. We do experience a problem under Ultrix which appears to be
related to the fact that VMS does not have mountable file systems as such,
the way Unix has. The optical platter must be inserted in the Tahiti drive
before the system is powered up, otherwise the 1108 board will not recognize
that the Tahiti exists. Once the system is up and running, it must be
powered down before the media can be released again. This means that,
instead of merely unmounting the file system and ejecting the platter, we
have to shut the Vax down and cycle power on the Tahiti before the media
will eject. This has not, so far, been a major inconvenience because our
system doesn’t require too frequent media changes. In some applications it
would be a real pain. U.S. Design is aware of this problem, but, as of this

writing, we have received no time estimate from them on when a solution will
be available.

Acknowledgments

In addition to myself, the project described in this paper is the

result of the efforts of my friend and co-worker, Fred M. Burns, whose help

and expertise were, as always, invaluable to the completion of the archiving
system.

Unix 1is a trademark of AT&T Bell Labs.

DEC, Ultrix, Microvax, Microvax II, and Vax, are trademarks of Digital
Equipment Corporation.

Maxtor Tahiti is a trademark of Maxoptics Corporation.

Fujitsu is a trademark of Fujitsu Limited.

Q-STOR/QT s a trademark of U.S. Design Corporation, a Maxtor Company.

UniForum 1991 Conference Proceedings, Dallas, Texas

104

UniForum 1991 Conference Proceedings, Dallas, Texas

CD-ROM and UNIX:

Making CD-ROMs Usable
Under the Multi-user UNIX
System Environment

Thomas K. Wong

Sun Microsystems, Inc.
M/S 5-44, 2550 Garcia Ave.
Mountain View, CA 94043
(415) 336-6750
twong@eng.sun.com

105

UniForum 1991 Conference Proceedings, Dallas, Texas

106

UniForum 1991 Conference Proceedings, Dallas, Texas

CD-ROM and UNIX: Making CD-ROMs Usable Under the Multi-
user UNIX System Environment

Thomas K. Wong

Sun Microsystems, Inc.
2550 Garcia Ave
Mountain View, CA 94043
Email: twong@eng.sun.com

1. INTRODUCTION

CD-ROM technology (Compact Disc - Read Only Memory) is increasingly significant for inexpen-
sive distribution of software and large volumes of data. Production costs of CD-ROMs are under $2 in
quantity and each CD-ROM can store up to 650 Megabytes of data.

One of the two major problems ! that may slow down the acceptance of using CD-ROMs in the
UNIX system environment is the slow access time and the low data transfer rate of the CD-ROM devices.
While the poor performance of CD-ROM devices in the single user environment such as PCs may be
acceptable, it may at times become intolerable under the multi-tasking and multi-user UNIX system
environment.

This paper describes the design and a prototype implementation of an ISO 9660 CD-ROM cache file
system for the UNIX system environment to overcome the poor access performance of the CD-ROM dev-
ice under a heavy use situation. The CD-ROM cache file system reduces the impact of the slow random
access time and the low data transfer rate of the CD-ROM devices by caching the most recently accessed
data and directory information on a local file system.

Under the CD-ROM cache file system, CD-ROMs can be shared by many users without significant
degradation in access performance. Another pleasant side-effect of the CD-ROM cache file system is that a
CD-ROM disk mounted as the CD-ROM cache file system appears to be "writable”, and "corrections” to
the CD-ROM disk can be made easily.

2. PERFORMANCE PROBLEM OF THE CD-ROM FILE SYSTEM

The existing generation of CD-ROM devices has a very slow average access time and very low data
transfer rate. For example, the average access time of a CD-ROM drive is about half a second, and the
maximum data transfer rate is about 150K bytes per second.

However, when a CD-ROM drive is lightly accessed, the CD-ROM file system performance is found
to be acceptable. This is because most CD-ROM access patterns follow the principle of locality of refer-
ence, that is, the next access to the CD-ROM drive will be very close to the current location. As a result,
the average CD-ROM access time under a light use situation is in the 20ms to 30ms range instead of the
expected half a second.

To illustrate the effect of the principle of locality of reference, consider the following tests: "ls -1"
and "wc *"2 on the /manual_pages/man! directory in the SunCD Demo Disc-1.0. The directory contains
467 "man" files, with of a total 71536 lines, 273306 words and 1552333 bytes.

! The other problem is that the ISO 9660 CD-ROM Standard does not fully support the UNIX file system semantics.
see Reference[x].

2 we is a UNIX command to display a count of lines, words, and characters of a file

UniForum 1991 Conference Proceedings, Dallas, Texas 107

Sun SparcStation 1 with UNIX file system on a SCSI disk

command

user time

sysiem time

real time

cpu util

disk io

page fault

time Is -1

0.5s

1.0s

0:06

22%

18

5

time ws *

4.0s

3.5s

0:16

45%

546

544

Sun SparcStation | with CD-ROM file system

command

user time

system time

real time

cpu util

disk io

page fault

time Is -1

0.4s

0.6s

0:05

19%

2

2

time ws *

4.0s

2.0s

0:16

36%

468

468

The result shows there is no noticeable difference in execution time of the above tests between a
CD-ROM drive and a SCSI drive. This is also true when running most programs directly from the CD-
ROM.

If the above tests are repeated when there is another process accessing the CD-ROM drive at the
same time, the performance changes drastically.

Sun SparcStation | with CD-ROM file system under heavy use

command

user time

system time

real time

cpu util

disk io

page fault

time Is -1

0.4s

0.7s

0:11

10%

1

1

time ws *

4.0s

1.5s

9:43

0%

468

468

This is because when a CD-ROM drive is heavily accessed, the principle of locality of reference no
longer applies. The slow access time now becomes the bottleneck. As a result, the command "wc *" takes
close to 10 minutes to complete instead of the usual 16 second if the CD-ROM drive is not under heavy
use.

Under the multi-user, multi-tasking UNIX environment, it is not possible to know in advance the
access load of a CD-ROM device. Therefore, the response time of the CD-ROM file system under such
environment may either be acceptable or intolerable. This unpredictability of response time discourages
the sharing of CD-ROM devices, especially the exporting of CD-ROM file systems under NFS. Unless this
performance problem can be overcome, CD-ROM devices will be treated just like a tape device, and will
be used mainly as a distribution medium.

3. PROPOSED SOLUTION TO OVERCOME THE PERFORMANCE PROBLEM

There are many solutions to overcome this performance problem. The simpliest solution is to copy
the contents of a CD-ROM disk to a local disk, using tar(1) or cpio(l). If it is known in advance that the
contents of a CD-ROM will be accessed heavily, this may be the only viable solution. The only problem is
to find the disk storage space to hold the data copied from a CD-ROM disk.

Because of the 600M byte storage capacity, there is a tendency shown by the CD-ROM disk publish-
ers to pack the CD-ROM disk with more information. It will be getting more and more difficult to find the
local disk space to store the contents of the CD-ROM disk, particularly when only some data may be
needed to be on-line all the time. A general solution or policy is therefore needed to use the disk space
more effectively.

Another solution is to have multiple CD-ROM drives all use the same copy of the CD-ROM disk.
The purpose is to distribute evenly the CD-ROM accesses to each CD-ROM drive. This approach is simi-
lar in concept with the replicated file system. The biggest drawback is the extra expense of acquiring mul-
tiple CD-ROM drives and multiple copies of the same CD-ROM disk.

Another approach is to use a large Random Access Memory (RAM) bufter cache that is shared by all
of the CD-ROM drives in a system. CD-ROM data are first copied to the RAM buffer cache. Subsequent
accesses to the same piece of data will be retrieved from the RAM buffer cache, thus reducing accesses to
the CD-ROM drive. The major drawback, besides the added cost expense of the RAM buffer, is that the
data in the RAM buffer cache does not get preserved between each reboot of the system.

UniForum 1991 Conference Proceedings, Dallas, Texas

All of the above approaches lead to a very simple and low cost solution, namely, to use the local disk
space as a cache to store the most recently accessed data retrieved from the CD-ROM drive. The first
access to a CD-ROM will automatically store the data retrived from the CD-ROM on a local disk. Subse-
quent accesses to the same piece of data will be retrieved from the local disk instead of from the CD-ROM
drive. The benefits of this approach are:

(1) Low Cost

No additional hardware is required - all that is needed is a local disk.
(2) Scalabilty

The local cache can be a small inexpensive SCSI disk or an expensive IP1 disk. This solution is

therefore good for both the low cost desk top systems as well as expensive large servers.

(3) Data Persistency
Data in the local cache persist across a system reboot

(4) Allow update
Since CD-ROM data is first retrieved from the local cache, updating the local cache has the same
effect as updating the CD-ROM disk. As a result, the CD-ROM disk appears updatable.

4. DESIGN GOAL OF THE CD-ROM CACHE FILE SYSTEM.

The purpose of this paper is very specific - to solve the poor access performance of CD-ROM file
systems under heavy use . The solution proposed is to use the cache file system concept. However, the
concept of a cache file system is very generic, and can be applied equally well to, say, using a local cache
to cache a NFS file system to reduce the network traffic.

The fact that CD-ROMs are read-only makes implementing a CD-ROM cache file system relatively
simple because we don’t have to worry about the cache coherence problem. In view of the objective of this
paper, the prototype CD-ROM cache file system will work only with the ISO 9660 Format CD-ROM disks,
and the 4.3 BSD ufs as the local file system. Other design goals of the CD-ROM cache file system are:

(1) To maintain UNIX file system semantics.

(2) To overcome the poor access performance of CD-ROM under heavy load.

(3) To support updates to the CD-ROM cache to make the CD-ROM disk mounted as a CD-ROM cache
file system appear writable.

(4) Must be flexible to allow many CD-ROM caches stored on a local file system. The number of CD-
ROM caches that can be stored on a local file system should only be limited by the available disk
space.

(5) Should allow selectively pre-caching the contents of a CD-ROM disk to a CD-ROM cache.
5. THE CD-ROM CACHE FILE SYSTEM DESIGN AND IMPLEMENTATION

5.1. The CD-ROM Cache File System
The CD-ROM cache file system (CCFS) consists of two components:
(1) the ISO 9660 CD-ROM file system.

(2) adirectory (CD-ROM Cache) in a local 4.3BSD ufs file system that is used to store the most recently
accessed data retrieved from the ISO 9660 CD-ROM file system.
There is one CD-ROM cache for each mounted ISO 9660 CD-ROM file system. Since a CD-ROM
cache is a directory, a local ufs file system can be used as CD-ROM caches for many CD-ROM disks.
CCFS is not a user visible file system type. It is activated automatically as part of the mount opera-
tion if the mount point (directory) of a ISO 9660 CD-ROM file system is a matching CD-ROM cache (see
section 5.2).

UniForum 1991 Conference Proceedings, Dallas, Texas

5.2. The CD-ROM Cache

The CD-ROM cache is a directory in a local ufs file system. Each CD-ROM cache contains a ".pvd"
file that identifies the CD-ROM cache. The ".pvd" file contains a copy of the primary volume descriptor of
the ISO 9600 CD-ROM disk.

When a CD-ROM cache is the mount point of a ISO 9660 CD-ROM file system, the contents of the
".pvd" file is then compared with the Primary Volume Descriptor of the ISO 9660 Format Disk. If they
match, CCFS is activated automatically.

The CD-ROM cache also contains a sub-directory that is either a duplicate of the root directory of
the CD-ROM disk, or a complete duplicate of the whole directory tree (including all files and directories)
on the CD-ROM disk.

Every directory in a CD-ROM cache that is replicated from the CD-ROM disk also contains one
additional new file, named "...". The "..." file is a copy of the ISO 9960 CD-ROM directory file for this
directory. Files or directories that have never been referenced are stored as hard-links to the "..." file, that
is, the contents of these files or directories are the same as the content of the "..." file,

For example, if a CD-ROM disk contains the following directory structure:

Then the contents of a CD-ROM cache under the path /CD-ROM/cd! of a UFS file system is:

(/CD-ROM/cd1)

7N

where file "a" and "b" are hard-linked to file "..." in directory /CD-ROM/cd1, if they have not yet been
referenced. Otherwise, they will contain the data copied from the CD-ROM disk. Similarly, file "d", "e",
and "f" are hard-linked to the file "..." in directory /CD-ROM/cdl/c, only if they have not been referenced
before.

Under this scheme, every file on the CD-ROM disk will be in the CD-ROM cache. If a file cannot be
found in a CD-ROM cache, it will not be found on the CD-ROM disk either. If a file or a directory has
never been referenced, it will be stored as a hard-link to the file "..." in the same directory. The hard-link
of each unreferenced file in the CD-ROM cache will be replaced automatically by CCFS with a
corresponding file or directory from the CD-ROM disk the first time it is referenced. Therefore, there is no
storage space overhead under this scheme for any unreferenced files in the CD-ROM cache.

f

UniForum 1991 Conference Proceedings, Dallas, Texas

5.3. Creating a CD-ROM Cache
The initcache command is provided to completely replicate the directory tree of the 1ISO 9660 CD-
ROM disk, with each data file hard-link to the "..." file in the same directory.

For a CD-ROM disk with 132 directories and 6870 files, the initcache command takes approximately
8 minutes to complete. Since many CD-ROM disks have even more files and directories, it is not uncom-
mon for the initcache command to take an hour to finish. The reason that the initcache command takes so
long is because creating a new directory and doing a hard link are done synchronously under ufs.

A quicker way to create a CD-ROM cache is to used the "makecache"” option in the mount command,
which creates a CD-ROM cache with only the root directory level of the CD-ROM disk getting replicated.

For example, using the same CD-ROM disk as described in section 5.1, the "makecache™ option of
the mount command will create:

(/CD-ROM/cd1)

where file "a", "b", and "c¢" are all hard-linked to file "...". The directory "c" will be created with another
level of information filled in only if it is referenced.

5.4. Accessing the CD-ROM Cache

The CD-ROM cache can be accessed in two ways: under the UFS file system or under the CD-ROM
cache file system.

Since the CD-ROM cache is a regular subtree under UFS, nommal ufs operations also apply to the
CD-ROM cache. Files can be accessed, created, modified, or deleted. If files are created, they will have a
user-id and group-id of the person who creates the file.

However, some of the operations on the files in the CD-ROM cache may not make sense because of
these anomalies:

(a) Files that are hard-linked to the "..." file are meanless under UFS. This is because they have never
been referenced. Only the CD-ROM cache file system knows how to retrieve data from these files
correctly.

{b) Some files may have holes in them. This is because some parts of the files have never been refer-
enced before and have not been filled up with the data from the CD-ROM disk.

Accessing the CD-ROM cache under CCFS will eliminate the above anomalies. Files that are hard-
linked, when referenced, will be converted automatically to a regular file or a directory, depending on the

information stored in the file "...". Data are cached automatically on demand on a per page basis. Holes in
a file automatically get filled in one page at a time with the contents from the corresponding files on the
CD-ROM disk.

A newly created file written into a CD-ROM cache will appear as if it exists originally on the CD-
ROM disk. Each page of a file that is modified in the CD-ROM cache will appear overwriting the data
page of the corresponding file on the CD-ROM disk.

Cached files may be deleted in the CD-ROM cache. In this way, the matching files on the CD-ROM
disk will be whiteout. A "whiteout” file can be made visible again (unwhiteout) by simply using a hard-
link (In(1V)) to link the same name to the file "..." in the same directory.

If enough data from the CD-ROM drive has been cached into the CD-ROM cache, the CD-ROM
cache can be accessed directly under UFS, and the CD-ROM drive can be freed up for other purposes.

UniForum 1991 Conference Proceedings, Dallas, Texas 111

5.5, Cache Space Management

The user can specify a space limit in the /etc/fstab on the amount of disk space that a CD-ROM
cache can consume. Upon reaching the limit, the data file caching capability of the CD-ROM cache file
system is disabled. The CD-ROM cache file system then functions exactly the same as the ISO 9660 CD-
ROM file system.

Another utility is provided to scan thru a CD-ROM cache to remove files that have not been refer-
enced recently (user defined) to reclaim the disk space from the CD-ROM Cache.

5.6. CCFS Implementation

The prototype implementation of the CD-ROM cache file system was done on Sun’s implementation
of UNIX, SunOS.3 SunOS supports multiple file systems simultaneously through the use of a virtual file
system (vfs) abstraction. By using this mechanism, the use of the CD-ROM cache file System is tran-
sparent to the application using the file system. The vfs mechanism in UNIX System V Release 4 is similar
1o the one currently in SunOS, and other implementations of UNIX.

Even though the cached CD-ROM file system (CCFS) is not visible in the user level, it does exist as
a separate vfs object with its own vfs and vnode operations. The relationships among CCFS, HSFS, and
UFS are depicted as follows, with arrow denotes the flow of data.

CCFS

UFS HSFS

The CCFS implementation follows the same implementation technique used by other virtual file sys-
tems, and is surprisingly simple. Most of the time, CCFS behaves like a file system switch by redirecting
most vfs or vnode operations to either the UFS or HSFS layer for processing. There are two CCFS vnode
operations that are quite different from other virtual file systems. They are the lookup operation and the
getapage operation.

5.7. CCFS vnode lookup operation

The purpose of the lookup operation is to associate the name of a file with a vnode, the intemal
representation of a file in the SunOS kemnel.

In addition, the CCFS lookup operation is also responsible for converting any unreferenced file in the
CD-ROM cache into a file with exactly the same file attributes as the corresponding file on the CD-ROM
disk.

Once invoked by the vfs layer, the CCFS lookup operation simply redirects the lookup operation to
the UFS layer to search the CD-ROM cache. If the UFS lookup operation returns failure, the CCFS lookup
operation will also return failure. This is because of the CD-ROM cache design - if a file is not found in
the CD-ROM cache, it will definitely not exist on the CD-ROM disk.

If the UFS lookup operation succeeds and retums a vnode, the returned vnode is then checked to see
if the file is an unreferenced CD-ROM cache file. Under the CCFS design, a CD-ROM cache file is
unreferenced if it is a hard-link to the "..." file. Under UFS, if a file is a hard-link to another file, the link

3 SunOS is a trademark of Sun Microsystems, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

count field in the inode area embedded in the vnode will be greater than one. Most of files in a UFS file sys-
tem have link count equal to 1. This hint is therefore very important in reducing the number of files needed
to be checked as unreferenced files, because only regular data files with link-count greater than 1 need to
be checked.

To check whether a file is unreferenced, the UFS layer is called to lookup the "..." file (this should be
fast because the "..." file should have already been in the directory name cache.) The vnode returned from
this UFS lookup is then compared with the vrnode returned from the previous lookup. If both vrodes are the
same, the file is an unreferenced CD-ROM cache file.

To convert the unreferenced CD-ROM cache file into a file with the same file attributes as the
corresponding file on the CD-ROM disk, the "..." file is searched for the unreferenced file name, by using
the lookup operation in the HSFS layer. The file attributes (including the length of the file) for the unrefer-
enced file is then used to create the cache file in the CD-ROM cache.

For those files that are created as part of the lookup operation, CCFS stores additional information in
the UFS inode area. They are:

(a) The ic_flags field is set to indicate that this inode belongs to a CD-ROM cache file and has a
corresponding file on the CD-ROM disk. If this file has been modified, this field is also used to indi-
cate that the space occupied by this file should not be reclaimed by CCFS.

(b) The ic_gen field is used to store the i_number of the "..." file in the same directory. UFS will incre-
ment this field when this inode is freed and reused by another file. Thus, CCFS will not be confused
by deleting a file and recreating another file with the same name because the ic_gen number will not
have a correct i_number for the "..." file.

(¢) The ic_spare[0] is used to stored the offset in the "..." file that contains the directory record describ-
ing the corresponding file on the CD-ROM disk. This field is also used to identify the corresponding
file on the CD-ROM that is cached by this file.

5.8. CCFS vnode getapage operation

The getapage operation is the page fault handler for the CD-ROM cache file system. The getapage
operation must handle the page faults from three kinds of file:

(1) HSFS files
These files originate from the CD-ROM disk but are not put into the CD-ROM cache by CCFS. This
is possible if CCFS has stopped caching data in the CD-ROM cache because the CD-ROM cache has
reached the assigned storage space Limit.

(2) UFS files
These are files that are newly created by users in the CD-ROM cache. They are not duplicates of any
files on the CD-ROM disc.

(3) CD-ROM cache files
These files are duplicates of files on the CD-ROM disk.

The page fault handling for HSFS and UFS files is very straight forward. The UFS getapage or the
HSFS getapage operation is called to retrieve the data page. Under SunOS, each page is identified by a
vnode and an offset within the vnode. CCFS simply switches the page identity with the CCFS vnode.

The page fault handling for CD-ROM cache files is slightly more complicated. All unreferenced
data pages of a CD-ROM cache file are represented as holes. When referenced, these holes in a CD-ROM
cache file must be filled with the data pages of the corresponding file from the CD-ROM disk.

To handle a page fault that maps to a hole in a CD-ROM cache file, the CCFS page fault handler first
pages in the data page from the CD-ROM disk using the HSFS getapage operation. Ideally, the data page
should be switched with a new identity with the CCFS vnode, and the page marked as dirty. A dirty page
will eventually get flushed out to the disk by the pageout demon of the operating system.

Unfortunately, this strategy does not quite work. If the system crashes after the disk storage space
for the page is allocated but before the data page is written to the disk, CCFS will mistakenly think the data
on the disk is valid. In order to avoid this confusion problem, the data page is first written to the disk

UniForum 1991 Conference Proceedings, Dallas, Texas 113

synchronously, then followed by allocating the disk space. These two steps substantially increase the over-
head of the caching data from the CD-ROM disk into the CD-ROM cache.

6. CCFS Performance

The performance tests in section 2 are repeated on a CD-ROM cache created using the initcache
command:

Sun SparcStation I with CD-ROM cache file system
command user time | system time | real ime | cpuutil | #diskio | # page fault
time Is -1 0.5s 0.9s 0:06 25% 3 3
time ws * 3.8s 7.6s 1:27 13% 1486 467
time ws * (again) 4.0s 3.2s 0:15 45% 321 314

The performance result of "Is -1" is similar in all three file systems. However, the CD-ROM cache
file system takes 1 minutes 27 second in the first run to complete the "wc *" command versus the 16 second
for ufs file system and the cdrom file system under light use. Even though this may sound discouraging, it
is anticipated that with the added concurrency provided by a multi-threaded OS kernel, the performance
should be greatly improved and should be comparable with the performance of the ufs file system and the
cdrom file system under light use. On the other hand, once a file is cached in the CD-ROM cache, the next
execution of "wc *" command takes about the same time as expected from a local disk.

7. CONCLUSION

This paper describes the design and a prototype implementation of an ISO 9660 CD-ROM cache file
system that allows a CD-ROM disk to be shared by many users without significant degradation in access
performance. In addition, corrections can also be made to a CD-ROM disk mounted under the CD-ROM
cache file system. While the overhead is still high the first time the data is cached into the CD-ROM cache,
it is expected that the overhead will be substantially reduced under a multi-threaded OS kemel.

8. ACKNOWLEDGEMENT
The author would like to thank Mark Smith for his review of this paper.

9. REFERENCES

[1] ISO 9660 - Information processing - Volume and file structure of CD-ROM for information inter-
change

Wong, TK., "CD-ROMs and UNIX Systems: The implementation of a CD-ROM Disc Format and
File System For SunOS Systems", Uniforum 1990 Proceeding, pp 229-237.

Klieman, S. R., :Vnodes: An Architecture for Multiple File System Types in Sun UNIX", USENIX
Conference Proceedings, Atlanta, Georgia, (Summer 1986)

McKusick, MK, Joy, W. Fabry R., " A Fast File System for UNIX", ACM TOCS, 2,3, August
1984, pp 181-197.

Kozlow, J.D., "CD-ROM File System Performance Results", Internal Sun Document

UniForum 1991 Conference Proceedings, Dallas, Texas

L

Rethinking The Information
Security Paradigm
For Workgroup Computing

Christopher J. Riddick
Simpact Associates, Inc.
12007 Sunrise Valley Dr.
Reston, VA 22091
(703) 758-0190 x2156
uunet!nssl!cjr

UniForum 1991 Conference Proceedings, Dallas, Texas

116 UniForum 1991 Conference Proceedings, Dallas, Texas

Rethinking The Information Security Paradigm
For Workgroup Computing *

Christopher J. Riddick
Program Manager
Simpact Associates, Inc.

Abstract

Workgroup computing requires information security that accommodates workgroup
members’ needs to access restricted data on a task-specific basis. This requires
rethinking the existing information security paradigm which presents obstacles to
workgroup members efficiently accessing such data in need-to-know cases. This
paper looks at the challenges of implementing information security for
workgroups. It offers a workflow model, based on current developmental work
in a UNIX' environment, of how security can be accomplished.

The Workgroup

For the purposes of this paper, a workgroup
shall be defined as any collection of users
performing functions with a single objective as
the end result. For example, the staff of an
engineering project could be considered a
workgroup with the end result of their efforts
the successful completion of a specific project.
As another example, temporary associations of
people formed when a purchase order is filled
out can be considered a workgroup. The
requestor completes a purchase request and
forwards the form to a manager for approval.
Management verifies the need and signs the
form. Itis then passed to purchasing who first
assigns a formal purchase order number and
verifies that funds are actually available for the
purchase. The purchase order is sent to a

" Copyright 1990, Simpact Associates, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

buyer who locates the best price and makes the
purchase. When the purchased item arrives at
shipping and receiving, it is logged as received
and sent to the requestor specified on the
purchase order. The invoice is sent to
accounts payable for payment to the vendor.

There are several goals of workgroup
computing. One goal is to facilitate the
performance of the tasks within a workgroup.
This may be through the automation of some
or all functions, and it may also be through the
management of workgroup information.
Another objective of workgroup computing is
to make information readily available to the
members of the workgroup. As information is
required for a workgroup task, the system must
be able to provide the information in a timely
manner.

A name frequently used for workgroup
computing is cooperative computing. This
implies that members of the workgroup are
cooperating on tasks to reach a common goal.
It is important that workgroup members do not
duplicate effort or waste time when operating
on the workgroup information. Workgroup
computing should help to make it possible to
perform workgroup tasks in an efficient
manner.

Review of Information Security

Mayerfeld and Troy identified three states for
information in conjunction with their model for
risk management: storage (both operative and
stored data), transfer (data in transit), and
transformation (active programs) [1]. These
states successfully characterize the forms
information may take in an information system.

Security is defined to be the procedures and
mechanisms used to satisfy the three security
criteria for information in an information
system: confidentiality, integrity, and
availability. Confidentiality is the degree to
which information is protected from harmful
disclosure. Integrity is the protection of
information from unauthorized modification.
Availability is the guarantee that the
information is available when needed.

A security violation is any event that causes a
harmful disclosure, an unauthorized
modification, or a loss of availability of the
information protected by the system.

The Concept of Workflow

A definition of workgroup has been presented
which specifies functions performed by a

collection of users. This is not simply a list of
functions to be performed by the workgroup.
Rather, a workgroup may have associated with
it a set of workflows which define not only
the tasks to be performed, but the order in
which they are to be performed, the subjects
who will perform them, and the data on which
they are to be performed.

A workflow is a sequence of activities
performed in a predefined order. Each activity
consists of a function performed upon a set of
objects under the direction of a single subject.
A function takes the information system from
an initial state to a completion state such that
arrival at the completion state automatically
invokes the next activity in the workflow. A
workflow is complete when all activities have
been completed and the system has arrived at
a final state.

Functions may be performed on a monolithic
host, or they may be performed in a distributed
processing system on client or server nodes.
The key principle is the adherence to a well-
formed transformation of specified objects
from one state to another.

To specify a workflow, it is necessary to
identify each state through which the
information system will pass during the
workflow. For each state transition, a function
to accomplish the transition must be identified.
A responsible subject associated with the
function is also required. The subject may
actually perform the function, or it may
authorize the system to perform the function
on its behalf.

Every workgroup has a set of workflows
associated with it. The workflows are
specified by profiles created by the system
administrator. The workflow manager is an
automated function residing on a workgroup

UniForum 1991 Conference Proceedings, Dallas, Texas

server that mediates access to, and invocation
of, the workflows. Subjects are restricted to
the set of workflows which they can invoke,
and the workflow manager ensures that 2
subjects are identified, authenticated, and
authorized before permitting them to invoke
workflows.

When a subject is required to perform a
specific function during a workflow, the
system grants the subject the necessary
permissions to complete the function. No
action on the part of the system administrator
or the subject is necessary to gain the needed
access rights to data objects required for a
given function.

The workflow manager must be trusted to
enforce the workflow profiles stored in its
database by the workflow administrator. Also
implied is the authentication of subjects to the
workflow manager and to the file servers
containing the objects. Objects are stored on
file servers without security labels. The
authentication does not determine the access to
the object. The workflow profile defines the
access rights of subjects to the objects based
upon the current state of the workflow.

Access rights are dynamic. As the workflow
progresses (as the workflow manager changes
state), access rights may change in accordance
with the profiles.

The Security Problem

A workgroup can be a static or a dynamic
grouping of people participating in a common
task. Workgroups transcend normal
organizational boundaries. Workgroups can
involve people from different administrative
departments within a company. This variety in

UniForum 1991 Conference Proceedings, Dallas, Texas

composition of a workgroup is a key benefit of
workgroup computing. Unfortunately, it is
also a definite problem for information
security.

Traditional security models presume that
access control using a lattice model meets the
needs of a computer system. The lattice model
places users (subjects) down one side of a
matrix and data (objects) across the top of the
matrix. The elements of the matrix are filled
in with attributes defining access rights of a
subject to a given object. The Bell-LaPadula
*.property enforces these access controls by
prohibiting a subject from writing to an object
of a lower security classification than the
subject itself [2]. Most security controls in
computer systems and networks use some
variation of the *-property in enforcing the
system’s security policy.

It is the premise of this paper that the Bell-
LaPadula model is inadequate to meet the
information security requirements of
workgroup computing. Specifically, that
model of security is based upon rigid security
levels, and the computing system is structured
to allow only authorized subjects access to the
information. On the surface, this appears to be
a sound approach. Upon reflection on the
concept of workgroup computing, the model
falls short of two important goals of the
workgroup: making required information
readily available to those who need it, and
eliminating duplication of effort.

The security challenge is to protect information
while allowing workgroup members efficient
access on a need-to-know basis when required
by a task. The result is a need for an
information security approach that is dynamic
to accommodate each workgroup member’s
changing need for information.

The concept of personnel clearances is not
relevant in this case. In essence, all people are
cleared for all information, but access is based
upon need-to-know. Information is not
labelled. No classification or categories are
associated with the information.

An example shows how a traditional
information security approach is inadequate for
a workgroup. A personnel manager stores
sensitive resumes on a file server labelled for
restricted access by the personnel department
only. A sales manager needs to hire a new
salesperson and wishes to review resumes.
The sales manager does not have access rights
to the sensitive resume database. Under the
current security model, either the sales
manager must be given access rights to the
resumes, or the selected resumes must be
manually copied to a location to which the
sales manager has access. This manual copy
must be accomplished by a trusted third party
to ensure that only the required resumes were
copied to the new location, resulting in wasted
effort.

The sales manager has only a task-specific
need to see resumes, not an on-going reason to
access resumes or other information (i.e.,
salaries, reviews) maintained on the personnel
file server. The personnel manager does not
want to grant permanent or unrestricted access
to the resumes. Workgroup information
security needs to accommodate the sales
manager’s task-specific requirement for direct
access to the resumes while still protecting the
confidentiality and integrity of the personnel
database.

The Clark-Wilson Integrity Model

Clark and Wilson introduced the notion that

Bell-LaPadula was inadequate to meet the
objectives of commercial information security
in [3]. Clark and Wilson present the concept
of well-formed transactions and they state that
separation of duty must be based on the
control of subjects’ access to these
transactions. They introduce Constrained
Data Items (CDIs), which are the data items
within the system to which the integrity model
must be applied. Integrity Verification
Procedures (IVPs) confirm that all of the
CDIs in the system conform to the integrity
specification at the time the IVP is executed.
Transformation Procedures (TPs),
corresponding to the principles of the well-
formed transaction, change the set of CDIs
from one valid state to another.

To maintain the integrity of the CDIs, the
systtm must ensure that only a TP can
manipulate the CDIs.

Not all data is constrained data. There may
also be data not covered by the integrity policy
which are subject only to discretionary
controls. These data are called Unconstrained
Data Items (UDIs). UDIs are important
because they represent the way new
information is entered into the system. Certain
TPs may take UDIs as input values, and may
modify or create CDIs based on this
information. For example, information typed
by a user at the keyboard is a UDI; it may
have been entered or modified arbitrarily.

Clark and Wilson go on to define a set of rules

to enforce this security policy. These rules are

specified below:

Cl: (Certification) All IVPs must properly
ensure that all CDIs are in a valid state

at the time the IVP is run.

C2: All TPs must be certified to be valid.

UniForum 1991 Conference Proceedings, Dallas, Texas

El:

E2:

C3:

E3:

C4:

Cs:

That is, they must take a CDI to a valid
final state, given that it is in a valid
state to begin with. For each TP, and
each set of CDIs that it may
manipulate, the security officer must
specify a "relation”, which defines that
execution. A relation of the form:
(TPi, (CDIa, CDIb, CDIc, ...)), where
the list of CDIs defines a particular set
of arguments for which the TP has
been certified.

(Enforcement) The system must
maintain the list of relations specified
in rule C2, and must ensure that the
only manipulation of any CDI is by a
TP, where the TP is operating on the
CDI as specified in some relation.

The system must maintain a list of
relations of the form: (UserID, TPi,
(CDIa, CDIb, CDIc, ...)), which relates
a user, a TP, and the data objects that
TP may reference on behalf of that
user. It must ensure that only
executions described in one of the
relations are performed.

The list of relations in E2 must be
certified to meet the separation of duty
requirements.

The system must authenticate the
identity of each user attempting to
execute a TP.

All TPs must be certified to write to an
append-only CDI (the log) all
information necessary to permit the
nature of the operation to be
reconstructed.

Any TP that takes a UDI as an input
value must be certified to perform only

UniForum 1991 Conference Proceedings, Dallas, Texas

valid transformations, or else no
transformations, for any possible value
of the UDI. The transformation should
take the input from a UDI to a CDI, or
the UDI is rejected. Typically, this is
an edit program.

E4: Only the agent permitted to certify
entities may change the list of such
entities associated with the other
entities: specifically, the associated
entity associated with a TP. An agent
that can certify an entity may not have
any execute rights with respect to that
entity.

A Workflow Security Model

The previous definition of a workflow maps
conveniently onto the Clark-Wilson Integrity
Model. The objects of the workflow are
equivalent to the CDIs. The workflow
functions are the TPs. The workflow profiles
are the relations specified by Clark-Wilson.

With this mapping of the integrity model over
our workflow definition, we are able to use the
rules defined by Clark-Wilson to determine the
security mechanisms required for our
workgroup to ensure the proper enforcement of
workflow security according to the Clark-
Wilson model.

Clark-Wilson specifies the requirement for
identification and authentication of the
subject before permitting the execution of a TP
(rule E3). Rules C2 and El identifies the
requirement to maintain a database of relations
between TPs and CDIs. Rule E2 requires a
database relating specific subjects to each of
the relations between TPs and CDIs. We will
call this the authorization database. Each

121

relation in the database will be called a
workflow. Finally, rule C4 requires an audit
trail to which all TPs must append workflow
reconstruction information.

An Application of the Workflow
Security Model

A prototype implementation of the Workflow
Security Model is under development by the
author and his colleagues. The services
provided to the workgroup consist of a trusted
authentication server which also maintains the
workflow database. The state of a given
workflow is maintained by a workflow
manager executing as a certified process in a
secure server. Our prototype authentication
server and workflow manager runs on an Intel
386-based PC executing SCO Unix V3.2 with
the C2 security features activated.

Rule E3 authentication is provided via the
Kerberos? authentication system [4]. The
tickets used in the Kerberos protocol also serve
as the vehicle for assuring that a TP will only
be able to operate on a CDI within the
constraints imposed by the authorization rule
E2. File servers will not grant access to a CDI
unless a ticket indicating a valid TP is
presented according to rule E1.

Since all TPs must first receive a service ticket
from the authentication system, it is possible to
maintain a log of all transactions on the CDIs.
Thus, the certification rule C4 is enforced.

The client-server processing model enforces
the C2 rule in which a transaction takes a CDI
to a final state before the next transaction may
commence. Data and a function request is
presented by the client to the server. The
server only returns a result upon arrival at a

122

final state of processing for the requested
function.

Rules C1, C3, and C5 are enforced through
offline audit tools and verification techniques.
Rule E4 is enforced via a combination of
authentication of the certification agent and an
authorization database maintained by the
authentication server. The certification agent
is not authorized to perform TPs on CDIs (i.e.,
invoke a workflow). However, it can be
assumed that the process of certification is,
itself, a workflow which falls under the
jurisdiction of the integrity rules and
enforcement procedures. Therefore, the
certification agent is only authorized to
perform the certification process defined under
the certification workflow.

The UNIX operating system was selected as
the base platform for implementing the
workflow manager and security services
because of the existence of the de facto
standard Kerberos authentication system and
the ability of UNIX to handle multiple
processes and communications protocols.
Although a workgroup computing system could
be implemented on a single host machine, the
use of a network of clients and servers
provides greater flexibility in the configuration
of workgroups.

Since all transactions performed on the
network are required to be well-formed and
under the control of the workflow manager, the
principal network security concern is the
provision of a reliable, secure path between the
client and the server. The authentication
protocol used in our implementation provides
a session key which enables the encryption of
all packets between client and server. The
UNIX-based workflow manager and
authentication server can also enable the use of
non-UNIX clients and servers such as MS-

UniForum 1991 Conference Proceedings, Dallas, Texas

DOS or OS/2 workstations.

Conclusions

Workgroup computing requires security that
can be enforced on a task-specific basis which
ensures the integrity and confidentiality of the
workgroup data without imposing rigid access
controls. Commercial applications of
workgroup computing are driven primarily by
the need to provide members of a workgroup
access to the data they require to perform their
function without the intervention of security
administrators or the violation of access
controls.

A model for workflow security was derived
from the Clark-Wilson commercial integrity
model and was applied to the workgroup
environment using existing client-server
applications and a de facto standard
authentication system.

UNIX is a trademark of AT&T Bell Laboratories.

References

Mayerfeld, H.N.; Troy, E.F.
"Knowledge-based modelling of System
Usage For Risk Management”,
Proceedings of the 11th National

Computer Security Conference, Oct
1988.

Bell, D.E. and LaPadula, L.J., “Secure
Computer Systems: Mathematical
Foundations and Model”, M74-244,
Mitre Corp., Bedford, MA. 1973 (NTIS
AD-771543).

Clark, D. and Wilson, D., "A
Comparison of Commercial and
Military Security Policies”, IEEE
Symposium on Security and Privacy,
QOakland, CA, 1987, pp 184-194.

Miller, S.P., Neuman, B.C., Schiller,
J.I, and Saltzer, J.H., "Section E2.1,
Kerberos Authentication and
Authorization System”, Project Athena
Technical Plan, Massachusetts Institute
of Technology, 1988.

Kerberos is a trademark of the Massachusetts Institute of Technology.

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

L

Why Isn’t My Data Portable?

Michael J. Andrew

Digital Equipment Corporation

2465 Mission College Blvd.

Santa Clara, CA 95054

(408) 496-3481
mick@budgie.enet.dec.com,
uunet!decwrl!budgie.enet.dec.com!mick

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

Why Isn’t My Data Portable?

Michael J. Andrew

ULTRIX Resource Center
Digital Equipment Corporation
Santa Clara, CA 95054
mick@budgie.enet.dec.com

ABSTRACT

This paper discusses the problems in porting applications between the various
computing platforms available today. In particular, rather than discussing code
portability, which is becoming reasonably well understood, this paper concen-
trates on the specific problems of data portability. Most emphasis will be placed
on porting between various flavors of the UNIX operating system, but considera-
tion will be given to VMS, MS-DOS and MVS. Although technical in nature, the
paper has been written with the intent to be read and understood by programmers
and non-programmers alike, and to explain why the seemingly simple idea of
portable data and files is, in reality, not a simple matter at all.

1 Introduction

The problems of porting application code between various flavors of the UNIX operating system, and between dif-
ferent operating systems are becoming well understood. This is mainly because the programmers of the world
have been required to move applications from one platform to another due to commercial market pressures. A
prime example of this today is the migration of many PC applications to the UNIX market. An experienced pro-
grammer who has partaken of porting efforts usually has attained an "eye” for code segments which may cause
problems when moved from one platform to another. It is certainly a fact that the creation of portable code is now
seen as one of the major requircments of most new product specifications, even if that product is initially targeted
for a single operating system and specific underlying hardware. Nevertheless, it is observed that issues of data file
portability are not always subject to the same scrutiny as the issues of code portability. Now that networks are
becoming commonplace, and shared files across heterogeneous environments are a reality, the difficulties in ac-
cessing those shared files are becoming more apparent, and strategies to deal with the problem must be found. It is
both those difficulties, and some of the available strategies for overcoming them, which are presented below.

TRADEMARKS UNIX, System V are trademarks of AT&T AOS is a trademark of Data General
VAX, VMS, ULTRIX are trademarks of Digital Equipment Corporation 68000 is a trademark of Motorola
IBM, MVS are irademarks of International Business Machines Corporation 80386 is a trademark of Intel Corp.
NFS, SPARC are trademarks of SUN Microsystems MS-DOS is a trademark of Microsoft Corp.

UniForum 1991 Conference Proceedings, Dallas, Texas

There arc four broad approaches to the data portability problem, each with associated advantages and drawbacks;

e Ignore the problem
This has the advantage of being simple and cheap, at lcast in terms of programming resources. However, it
probably restricts the application to a particular platform.

Writc a data conversion utility

The feasibility of writing a converter is proportional to the complexity of the data being converted. This is a
useful method when data files do not nced to be shared concurrently, or which are subject to a onc time reloca-
tion or copy from onc platform to another.

Disadvantages arc that a new converter must be written for cach data file, or existing converters changed when
the format of the contents of the file is modified. Also, one converter necds to be written for cach onc-way
conversion between two platforms, which usually means a minimum of two programs for cach file to be con-
verted, in order to facilitate two-way transport of files.

Convert data "on-the-fly" at execution time.

Increasc the intelligence of the application to manipulate the content of the same data file no matter what the
underlying hardware platform and opcrating system. This has the advantage of making the application data
files portable over a wide range of platforms. The problem with this approach is that it is hard to implement in
the first instance, and even harder to reverse enginecr into cxisting applications. Furthermore, all future cn-
hancements to the application must takc into account the data portability considerations. Also, the costs in
CPU cycles for on the fly conversion is paid every time data is rcad or written.

Allow an external agent to take care of the data for you.

This external agent is usually in the form of a databasc manager. This has the advantage of freeing the appli-
cation from worrying about the data portability issuecs. Data is fed to the DBMS and is received in the format
which is natural for the exccution platform. Associated disadvantages of this approach are the learning curve
for dealing with the DBMS, performance issucs, cost, availability on your required platforms and the addition
of an external agent into the confines of your application environment.

2 Disks and Files
2.1 Hardware basics

A hard disk is the usual repository for the data files we will consider. To the user or programmer, the data on disk
is stored in files. Each filc has one or more names by which it may be referred. It is up to the operating system (o
keep track of filenames, and the location of files on the disk. We shall not concern ourselves with the mechanics
of this process. The format of the data as it physically resides on the disk is usually in equal sized chunks called
blocks. Each block contains a fixed number of data items, the 1’s and 0’s which represent the data, called bits.
Any transfer to and from the disk to the host computer is done by passing data blocks. There is also other data
present on the surface of the hard disk, to perform tasks such as error-correction and rotational timing, but we shall
not concern ourselves with these; we shall concentrate entircly upon the data which is visible from insidc user ap-
plications. To speed throughput of the computer when dealing with data, the bits arc grouped together and passed
around the machine in parallel, and operated upon simultaneously. This grouping normally takes place in ordered
sets of 8, 16 or 32 bits. The 8 bit quantities are called bytes. Historically, machincs have been built with some
number of bits in a byte other than 8, but they arc becoming rare, and we shall not examine them explicitly. Be-
cause a byte is the smallest manipulable group of bits, the data blocks on disk always consist of a whole number of
bytes. Data read from disk is stored in the computers memory. These bytes in memory are referred to by their
address. For our purposcs, this is a number which starts at zero and increases by one for cach succeeding byte of
memory. Thus a byte is the smallest addressable unit of storage. When the program wishes to operate on data in
memory, the data valuc is usually copicd from a specified memory address into special locations within the CPU,
called registers. It is the sizc of the data path from memory o the registers which defines the machines wordsize.
This is usually an cven number of bytes Most of today’s computers have a wordsize of 32 bits, or 4 bytes. Such
machines are called 32-bit machines. The wordsize of the machine is normally the determining factor of the size of

UniForum 1991 Conference Proceedings, Dallas, Texas

integers which the machine can represent and efficicntly manipulate. The figurc below shows a simplistic repre-
sentation of this arrangement. Each small rectangle represents one byte of storage.

[T T T] <y
TTT] [T T
(LTI [
LI L[] (I I
Registers [[[DI[[I]] [[I]:[[[l]]]

\ Address x+2

R Address x+1 ~— ,
\

Address x

Disk Blocks

Computer

2.2 Files and Records

So far we have described the physical aspects of the machine. Blocks on disk are all very well, but manipulating
these would be very cumbersome for a user or a programmer. What we need is a logical structurc imposed on
those blocks. This structure is provided as a service of the operating system, and is called a filesystem. The data
blocks are grouped together into separate objects which can be given names. Each group of blocks is called a file,
and its name is called a filename. Now the user or programmer necd not be concemed about individual blocks on
disk, but is able to create unique files of information which can be accessed by name, both at the user lever or from
within an application.

2.2.1 Filenames

It is the operating system which has complete control over the format of the names which are valid. It is also the
operating system which defines the layout of the filesystem, be it a flat namespace (such as on MVS) or based on a
hicrarchy of directories (MS-DOS, VMS, UNIX). In the latter case, the way in which the hierarchy is represented
in a filename is different. For instance

/system/dirl/subdir/myfile.c in UNIX,
C:\system\dirl\subdir\myfile.c in MS-DOS
system: [dirl.subdirlmyfile.c in VMS

are all equivalent names for "myfile.c” within similar directory structures. The case of the characters is significant
in some operating systems, but not others. The following C language statements may or may not refer to the same
file, depending on the underlying operating system or the implementation of the C library.

open ("myfile.c", ...);

open ("MYFILE.C", ...);

open ("Myfile.c", ...);

If the language itself is also case-insensitive, then the problem is compounded.

UniForum 1991 Conference Proceedings, Dallas, Texas

The question of the meaning of special characters can have intriguing effects on the meaning of filenames from
one platform to another. The file creation routine below,

creat ("C:\system\dirl\subdir\myfile.c", ...);

will crcate a file myfile.c deep in the directory hierarchy under MS-DOS, but will create a file called
C:systemdirlsubdirmyfile.c in the current directory under most UNIX implementations.

Problems are also caused by the different characters which are allowed in the various namespaces. UNIX will
allow almost any character except ’/’ to be present in a filename. In VMS and MS-DOS only a handful of special
characters are allowed, and the period character has a special significance in dividing up the filename. The length
of the filename is subject to varying restrictions on different operating systems. This is particularly troublesome
when porting betwcen UNIX variants. In UNIX System V Release 2 and 3, filenames and directory names are
restricted to 14 characters; excess characters are silently truncated.

2.2.2 Records

Just as the data blocks on disk are grouped together into files for the convenience of the user, the data blocks which
comprise each file are not usually accessed as whole blocks. Instead, the data within them is accessed in many
smaller groups of bytes called records. Each record is an ordered set of (usually related) data items, such as charac-
ters, integers, floating point number, etc. These items arc called fields. In a single file there may be all the same
kind (i.c. format) of record, or many different kinds; or there may be no records at all, just a long continuous
stream of (literally) byte sized information. It is (usually) the programming language which defines and provides
the link between records, files and the operating system.

Consider the following pictorial representation.

Application Program

Language interface
A [
\

Library Routines

\ 4

Operating System

;

Note the explicit inclusion of a layer which is normally implied by default, namely the programming language
interface. It might seem obvious, but it is worth emphasizing that the only interface the application programmer
has to the outside world is that provided by the actual semantics of the language. This is a very important observa-
tion. Most languages define the I/O interface explicitly, as part of the language. For example

COBOL READ file
Pascal readln ()

FORTRAN read ()
format ()

UniForum 1991 Conference Proceedings, Dallas, Texas

It is interesting that the C language docs not define any I/O statements. The only interface C provides is that of the
function call. It is up to the language implementors to provide callable functions which will access data files.
(There is a well-defined defacto standard interfacc which is known as "standard I/0", and almost all C implementa-
tions come with a library which supports it.)

Different languages provide for differcnt kinds of files. Most of these originated with the COBOL language, de-
veloped for solving business problems. The common kinds of files are described below.

2.2.3 File Types

A byte-stream file is one which has no underlying structure imposed on it by the language. It is simply an ordered
set of bytes of any length. Once such a file is opened, any number of bytes may be read from it. After each read,
the current file position is updated to point to the next byte after the last one transferred.

All the other file forms are based around records.

Sequential files come in various flavors, but are essentially an ordered set of one or more kinds of records. The
records may be of fixed length, or of varying length. Usually the auributes of fixed or varying record length,
together with the length itself, must be specified at file creation ime. When a sequential file is opened, it is only
possible to read linearly through the file, record by record. To go back and retricve an earlier record, the file must
.be closed, re-opened and read again.

Relative files are collections of records which may be read sequentially, but which may also be accessed in a "ran-
dom" fashion, usually by using the record number. It is thus possible to read the 4th record, then the 22nd, then
the 8th, and so on.

Indexed files are collections of records which may be read sequentially, but may also be accessed in an arbitrary
fashion using a special token of information, usually called a key or index. Depending on the operating system, the
key may be a field within a record, or may be specified separatcly when the record is added to the file. A file may
have several different keys, giving the programmer different orderings in which to retrieve the records.

The important thing to realize is that these filctypes are all artifacts of the programming language being used. It is
up to the language implementors to provide the appropriate file access semantics and thus create the illusion (to a
user or a program) of a file with an underlying structure. Being aware of the existence of this transformation is
crucial to understanding many of the problems of file and data portability.

It is a combination of the programming language, callable library routincs and the operating system which provide
the translations between the two representations. Some operating systems (such as MVS , VMS and AOS) pro-
vide implementations of the various file types at the operating system level.. This makes things easier for the lan-
guage implementors. Others, such as UNIX and MS-DOS, provide only a byte-stream interface. It is then up to
the language implementors to provide librarics of code which implement the various file structures on top of the
basic interface provided.

If the file structure is provided by the operating system, the disk blocks which are used to perform this filesystem
and filetype bookkeeping are usually not accessible to the applications programmer. Such blocks are often only
accessiblc by the operating system itself, or by specially provided low level access programs, for such things as
disk image dumps (that is, a litcral bit by bit snapshot a disk). As an cxample, for indexed files some opecrating
systems (such as VMS) store the data records and key information together within the same physical file. Other
implementations choose to make two files, a data file and an index file.

Hercin lies a major part of the portability problem. Historically, it was the hardware vendors who provided both
the compilers for various languages, and the operating system for their hardware. Although they each implement
what is ostensibly the same source level version of a language, the actual format of the files underneath is usually
entirely different. The representation of varying length scquential records created by a syntactically identical CO-
BOL program on, say, Data General’s AOS operating system is not the same as that on Digital’s VMS. Even if the

UniForum 1991 Conference Proceedings, Dallas, Texas

data file was physically accessible from one machine to the other, the content of the file would be meaningless to
the other operating system.

On UNIX systems, the story is both better and worse. The UNIX operating system does not support any kind of
file other than a simple byte-stream. There is no primitive OS operation to "fetch a record”, because there is no
concept of a "record”. This might raise the question as to how such a bland interface can be useful in the world of
commercial data processing? The good news is that the application is now free to impose its own structurc on the
data within a file. This ensures that the structure will be visible to the application no matter what UNIX system the
file is accessed on. Furthermore, if the file is moved to a non-UNIX platform in which the operating system sup-
ports a byte-stream file format, then the same code can continue to access the file as on the UNIX platform. This
is all well and good, but observe that it is now up to the application programmer to create and maintain the code to
provide the file structure required. It does not need a great stretch of the imagination to see that supporting com-
plex file structures such as variable length records, and (worse still) indexed files can greatly increase both the size
and complexity of an application. Note also that if each application uses a different implementation method for file
formats, then there can be no simple interchange of these files among different applications.

This has led to the existence of commercial product offerings which are libraries of file access routines which sup-
port the filetypes discussed on a variety of platforms, UNIX and MS-DOS in particular.

3 Data Fields

3.1 Representing Numbers and Characters

Now we shall turn our attention to the components of records, namely the fields. Each field represents some data
item, and is composed of one or more bytes (ficlds smaller than one byte will not be discussed).

The eight bits within a byte can have a total of 256 different combinations. We could assign a numerical value to
these combinations in any way we care (o, but the logical assignment is to follow the mathematical base-2 (binary)
numbering scheme

PPl 2ss

It should be fairly clear how this scheme expands to larger integers, by grouping bytes together. For example, the
number 1,000,000 is represented in 4 bytes on a 32 bit machine, as 000000000001 11101000010001000000.

We can represent numbers up to 4,294,967,295 in this manner. But what about representing text characters? For
these we invent an alternative relationship between the bit pattern in cach byte and single text characters. This
gives us a possible 256 representable characters, which allows us to represent the alphabet in both upper and lower
case, the digits 0 to 9, and a bunch of special characters, such as 1@#$%"&. Some values are allocated to represent
actions to do with the printed page, such as "new-line", "new page” and "carriage return”. (Clcarly we have a
problem if we wish to represent more than 256 characters, such as in Asian languages. The discussion of the spe-
cial requirements for such character sets is beyond the scope of this paper). Two different methods of encoding the
character in a byte have emerged to be in common use today; Extended Binary Coded Decimal Interchange Code
(EBCDIC) used mainly in IBM mainframe products, and American Standard Code for Information Interchange
(ASCII), used by almost all other computer products (PCs and UNIX in particular). An example of the mapping of
bytes in these two character sets is shown below.

132 UniForum 1991 Conference Proceedings, Dallas, Texas

Numeric ASCII EBCDIC
Value character character

107 k ,

108 1 %
193 undefined A

o foffofofa[d] 053 5 undefined

It is crucial to see the difference between the (ASCIT) character representation of numbers, such as the "5" above
represented by the bit pattern 01010011, and the numeric integer S represented in a byte as 00000101, or in a 32-
bit word as 000000000000000000000000600000101.

3.2 Integers

We have scen two ways of representing numbers; one using the mathematical base-2 value of bits in the byte, and
the other using one of the character encoding schemes. Consider the number one million, represented as follows;

32-bit binary 00000000 00011110 10000100 01000000

ASCII bytc values 00110001 00110000 00110000 00110000 001 10000 00110000 00110000
character value 1 0 0 0 0 0 0

EBCDIC byte valucs 11110001 11110000 11110000 11110000 11110000 11110000 11110000
character value 1 0 0 0 0 0 0

Notice that we need more storage to store the number in the text-based form than in its "natural” form. Beccause
the mapping of numecric characters to the byte representation in somewhat arbitrary, calculations cannot be casily
performed on the text form as it can on the mathcmatical form. Consider the sum 1000000 + 1 in the two represen-
tations

32-bit binary 00000000 00011110 10000100 01000000
00000000 00000000 00000000 00000001
00000000 00011110 10000100 01000001

00110001 00110000 00110000 00110000 00110000 00110000
+ 00110000 00110000 00110000 00110000 00110000 00110001
= 00110001 00110000 00110000 00110000 00110000 00110010

In the binary version everything makes arithmetic sensc, whereas the text version makes no sense arithmetically.
It is simpler to design hardware 10 add the bits arithmetically than as text, and such hardware will also perform
these arithmetic operation several orders of magnitude faster. This is why it is usually more cfficient and preferable
to use the natural representation for numbers in order to perform calculations.

3.3 Representational Problems

In the examples above wc have already introduced representational ambiguitics. The first is caused by the multiple
mecaning (or overloading) of the valuc in a byte. If we look at a byic of data on a disk, does it represent a text
character, or part of an arithmetic number? The truth is that it is impossible to know simply by cxamining data
with no contextual information.

The sccond representational problem is that of multi-byte numeric values. Remember, each byte in memory is
accessed by its unique address. If scveral bytes are conceptually joined together to represent a single object such as

UniForum 1991 Conference Proceedings, Dallas, Texas

a number or a text string, we must decide which byte is to hold which part of that value, and what the address of
the object should be. In the case of text strings or the textual representation of numbers, the characters are as-
signed to increasing addresses from left to right. The character string "Uniforum 1991" takes thirteen characters
(we must include the space), with the "U" in the lowest address, and the final "1" in the highest. The digits are text
characters, not a binary number. If the memory address of the "U" was 1000, then the address of the "1" would be
1012. The address of the complete thirteen character object is (by definition) the lowest memory address, or 1000.

Representing arithmetic numbers is not so obvious. We shall examine representing numbers on a 32-bit machine.
Each different bit pattern of the 32 bits represents a differcnt integer value. The range of number which can be
represented is O through 4,294,967,295 (we need not consider negative numbers to illustrate the issues at hand).
Our problems begin when we try to choose the order of the bytes within the word. This is probably the most well-
known of the data portability problems, and certainly the most confusing; it is usually referred to as byte-ordering.

Consider a 32-bit word at address 1000; this contains 4 addressable bytes, at addresses 1000 through 1003. Sup-
pose we represent the number we wish to load from memory in the following picture, where the value in each byte
is simple represented as a single number. The address of the 4-byte word is the lowest address of its bytes, namely
1000. To make things clearer (hopefully!), rather than showing the bit pattern within each byte, we'll simply give
cach byte a numerical value, from 1 to 4 in ascending address order. Furthermore, we shall take liberties with the
base-2 numbering mathematics, and pretend that the 4 byte values (1,2,3,4) together equate to the 32-bit number
(1234). Do not confuse this with text character strings representing numbers, as in the preceding discussion.

4
3
1003
2
1
1000
Address
H L
Register
Memory

We now have the question, should the value of "1" go in the left hand byte, or the right hand byte? The answer
first of all depends on how we view the register picture. A natural way to do this is to consider the 32 bits within it
as corresponding to the natural representation of a binary number. That is, the most significant bit is on the left,
and the Icast significant bit is on the right. So the answer is, if byte 1000 is the low order byte it should go in
position L, with 1 through 3 following it to the left, or if it is the high order byte, then it should go in position H,
with the other bytes following to the right. Thus we have two answers, the number 1234 or 4321, depending on
how our machine allocates integer words; low order byte at low order address, or high order byte at low order

address
: 4 3 2 1
3
1003 H L
2 low address is low order byte
1
1000 1 2 3 4
Address
H L
Memory low address is high order byte

134 UniForum 1991 Conference Proceedings, Dallas, Texas

The unfortunate problem for the industry today is that both architectures are commonplace. If the low order byte
goes in the low order address ("little" byte value at "liutle” address value), then the architecture is said to be little-
endian. If the opposite is the case, then it is big-endian. Below is a list of the "endian-ness" of some of today’s

computers
Big-endian Little-endian
68000 VAX
IBM 370 80x86
SPARC MIPS
MIPS

(Note that the MIPS processor appears on both lists. This is because the chip has a hardware switch to run in either
mode. In itself this does not easily solve any portability problems for us though, as will become clear.)

Let us now return to our example. Lets look at the two cases together, and draw memory increasing from right to

left
4 3 2 1
H Little-Endian U
1 2 3 4
1 2 3 4
1000 1003
H L
Big—Endian
Memory
Locations Register

Now we see how the term byte-swapped arises; the little endian hardware appear to have "swapped" the bytes!
On closer inspection however, we remember that the bytes in memory are pictured in order of increasing address
from left to right. There is no particular reason to represent the memory this way, other that the fact that it seems
more natural for most users of the Arabic numbering system. The computer does not understand such nuances,
and if we draw memory increasing from right to left, then it would be the big-endian register which appeared byte-
swapped.

From the example above, the reader may conclude that the big-endian representation feels more “"correct” than
little-endian. The following example shows an inconsistency of the big-endian representation, and helps provide a
rationale for the evolution of both representations. It also exhibits the endian problem for 16 bit integers.

First consider the integer value 8, in a 32-bit register. To store the value as an 8-bit quantity at memory location
1000 is simple.

Address 1000

UniForum 1991 Conference Proceedings, Dallas, Texas 135

Now, suppose we wish 10 storc the same value as a 16-bit quantity, also at address 1000. The picture below shows
the answer for both little and big-endian.

: N

8
8 0
Address 1000 Address 1000
Little—endian Big—endian

Finally, for a 32-bit integer,

0008 0008

/7

0 0
8 0
Address 1000 Address 1000
Littlc-endian Big—cndian

Notice that in the little-cndian case the bytes of the register always go into the same memory location relative to
the start address of the numeric value, whercas for the big-endian casc the memory order varics according to the
size of the integer object.

The most important observation to make is that the phenomenon of byte swapping is caused by the loading and
storing of data from memory locations 1o CPU registers. No "swapping” is taking place when loading data from
disk files, or from nctwork packets. When data is exchanged between memory and disk, the bytes remain in in-
creasing address order. The next example will underline this point.

Consider a byte-stream file consisting of multiple records cach containing two data fields; a text name field and a
numeric data ficld (say, an cmployee number in a payroll record). Wc’ll just consider a four character name for
simplicity, and continue representing cach byte of a numeric ficld with a single digit. (remember that the actual file
is just a sequence of byte values. The names in the example arc ASCII text strings, and the numbers are 4-byte
numerical values, and nor strings. To help reinforce this point, the numerical value of each byte will be represented
as ialicized digits).

Supposc our employee data is:

John 1234
Mick 0042
Eric 2001

If we create the file on a big endian machine, the data in the disk file will be represented as follows:

136 UniForum 1991 Conference Proceedings, Dallas, Texas

Johnl234Mick0042Erica001
On a littlc-endian machine the bytes will look like this:

Johnd4321Mick2400EriclO02

The following picture shows why. Imagine creating the data structure (as defincd carlier) at some address x.

I 1234 I 4
3
\’ 5
1 B — Jl ol hin]1}2] 3|4
. , I
Big—endian h
Q
J
Address x
‘ 1234 I 1
2
\’ 3
4 [d nlnla]3]2]1
Little—endian I »
O ——
J

Address x

The files still represent the same logical data. But when created on two different endian machines, the files are
physically differcnt. When the text valuc "John" was loaded into memory, the "J" went into the lowest address, x,
and the "n" into x+23. The numeric value is loaded at address x+4, and occupics the next 4 bytes. As we have seen,
the ordering is machine dependent. To write out the record, we code a statement to write out the record to disk,
and memory locations x to x+7 are written out to the disk file A byte for byte comparison of the files will show a
difference for bytes 4-7, 12-15 and 20-23. This is a real difference, and is the root of most data portability prob-
lems. If we take the big-endian file to a little endian machine and run a simple report program on it, the following
data will be printed (it is intcresting to note that exactly the same output will be produced on the big-endian ma-

chine, when given the little-endian file to work with);

John 4321
Mick 2400
Eric 1002

This is clearly a big problem in a heterogeneous environment, even when the operating systems are the same, as in
the case of UNIX. In fact, in an environment where NFS is used to share files, this can cause serious problems if
data files such as this are shared without regard for the underlying machine architecture.

If one were presented with this file and a description of its fields, but with the byte order information omitted, there
is no way to know how to correctly interpret its contents; is John’s employce number 1234 or 43217 This is
precisely the problem with interpreting data in NFS mounted filcs.

3.4 Field Layout in Records
Another portability problem which is cspecially acute among UNIX platforms, is the issue of the layout of fields

within records. Most languages require that the fields are ordered in the record in the same order as declared in the
language statement. However, the actual placement of each ficld with regard to byte boundaries is often left by the

UniForum 1991 Conference Proceedings, Dallas, Texas 137

language 1o be implementation-defined. This allows the language implementor maximum freedom to allocate the
fields in either the most efficient form for speed of access on the particular platform, or for efficiency of saving
space. The usual reason for different allocations is due to the addressing capability of the hardware. Some archi-
tectures do not support the addressing of a 32-bit integer on an odd byte boundary, or even on any address not
divisible by 4. Consider the following C structure (32-bit machines):

struct s {
char c;
int i;

b

The structure itself will normally be aligned at the most restrictive level, usually a 4-byte or 8-byte boundary. De-
pending on the hardware, there may be 0, 1 or 3 bytes of unused space, or padding, between the char and the
int. In the case above, O pad bytes will result in the integer being on an odd byte boundary, 1 pad byte puts it at
an cven byte boundary, and 3 pad bytes puts it at a 4-byte boundary.

As a result, the same record declaration on different platforms can result in different record lengths. Even if the
programmer has taken steps to ensure the code will port correctly to another platform, by using compile-time siz-
ing constructs such as the sizeof operator, the structure padding problem is still present, and worse yet, not detected
or flagged by the compiler, because no syntactic or semantic error is present. Consider the following C-like code
fragment

while (records to write)
{
write(fd, (char *) s&rec, sizeof (rec));

}

If writing 10 such records as defined in structure s above, the records will be of length 5, 6 or 8, and the file
created will be of length 50, 60 or 80 bytes. The problem with sharing this file is obvious.

4 Solutions

The intent of this paper is to exhibit the problems of data file portability, and in doing so answer the question posed
by the title. There are many different ways to solve or work around these problems, and the detailed exposition of
these are beyond the scope of this paper. It is reasonable, however, to give a brief description of the techniques
available with which to attack some of the problems described; the next sections will attempt to explain these
approaches.

We shall examine two of the solutions proposed in the introduction. One is the translation approach, where data
files are transformed by a program (or programs) from the representation on one machine to the representation on
another. The other we shall call the "intelligent application" approach, whereby there is a single copy of the data,
and it is up to the application to interpret that data as appropriate. The techniques used by either approach are
often identical. In particular, the translation program could be considered to be a program of the "intelligent appli-
cation” class itself, performing operations on an input file, and writing data to an output file. Both have advantages

and drawbacks.

4.1 Common data representations

Using the "intelligent application" approach requires that all data in files be stored on disk in a common format or
representation. The choice of that format is determined by the answer to the following questions: Is it physically
possible to convert from all platforms to the common representation? How expensive in terms of compute re-
sources will that conversion be? Is there any loss of information in the conversion? The order of importance of
these questions may well depend upon both the application itself, and the target environments being considered.
For instance, financial traders would probably be somewhat upset if numerical information was rounded or trun-
cated during a trip around different machines.

138 UniForum 1991 Conference Proceedings, Dallas, Texas

4.1.1 ASCII representation

One of the simplest forms of common representation is to use ASCII byte stream files. All numeric data, integers
or floating point, are converted to the ASCII representation of the number. Different fields can be separated by a
special character, or a fixed field length, and record delimiter characters can also be introduced. Using this tech-
nique yields files which are almost universally portable. The drawbacks of this choice are several; the size of the
data can greatly increase over the "natural” representation; the time taken to convert between ASCII and the inter-
nal representation can become significant, depending upon the application.

Now there is no byte swapping issue, as the numeric values from memory arc stored as sequences of ASCII char-
acters 0 - 9 on disk. One can invent many alternative formats for the disk data. One could choose fixed length
fields for the names and numbers, and thus save having to recognize the delimiting characters. The trade-offs must
be balanced by the application designer. The ease of creating the output and parsing the input is one of the most
important in this case.

A good real-world example of the use of this technique is found in many database implementations. The actual
format of the data within the on-line database files is hidden from the user, and is normally implemented to best
make use of the available hardware resources on the execution platform. However, when database data files are
transported from one machine to another, they are usually translated to a special format, by a process commonly
known as exporting the data. These exported data files are usually in ASCII format. This file can then be relo-
cated to another machine and read in, or imported, with no loss of information. There are mappings form ASClII to
EBCDIC representations, allowing these files to be passed from smaller machines to IBM mainframes and vice
versa. Any execution overhead due to the translations in this process can be tolerated, as it is not an operation
which is performed frequently.

4.1.2 Explicit Byte Order

Another common representation is to specify the byte order on disk, as being little-endian or big-endian, regardless
of the execution hardware. A good example of this is the "network standard byte order” imposed in the header
packets of the Internet Protocol Suite. All 16- or 32-bit numbers found in Internet network packet headers are in
big-endian format, regardless of the originating platform. This is handy for big-endian machines, which can then
pass on the data directly from memory data structures to the network. Little endian machines draw the short straw,
and have to swap the bytes explicitly if the numbers are being generated within the application in their machine-
natural form. Fortunately, this operation is relatively cheap.

To return to our employee example, we could choose big-endian as our intermediate format, and specified exactly
four byte fields for name and number. The output file would then be in a well-defined format no matter what
machine it was created on. Good programming practice would dictate that the actual conversion from internal to
external representation be performed by a user-written library routine, for example:

strncpy (&emp.name, "Michael”, 7);
emp.number = 42;
write emp_record(&emp);

4.1.3 Self describing data

Another useful technique is to write data records in which each data item is preceded in some manner with infor-
mation specifying the format of the following data. For instance, one could specify that each data field in a record
is preceded by two 16-bit numbers; the first could specify the data type of the itcm, and the second its length. The
conceptual layout of our employee record would then be

| string: 7|Michael|integer:4|1234]|

It is easy to see that there can be an infinite number of variations on this theme. The data type specification could
potentially be expanded to include complex data structures, and even expanded dynamically. The disadvantage of

UniForum 1991 Conference Proceedings, Dallas, Texas 139

this method is that it incrcases the size of the data to be cxchanged, and impacts exccution speed duc to the encod-
ing or decoding of the data strcam.

It is an implementation of this scheme which is used for passing data in the Network Computing System (NCS)
remote procedure call mechanism developed by Apollo, in the carly 80°s. In this implementation, there is a set of
data type definitions which cover most of the basic data types, such as 16 and 32-bit integers in big-cndian form or
litle-endian form, various floating point representations, and so on. When data is passed across the network, it is
written in the natural form of the sending machine, lcaving it up to the recipicnt to translate the data as appropriate.

4.2 Alignment of fields within data structures

Besides considering the format of each individual field, we must also address the layout of the ficlds in the record.
The safest way to avoid problems with layout differences on different machincs is to avoid writing out data to disk
as exact copies of the data in memory. This means avoiding constructs such as

struct s employee;

write(fd, (char *) semployee, sizeof (struct s));

Unfortunately, the alternatives to to this very useful and common practice are awkward and inefficient, so the usual
practice is to resort to the workaround of attempting to explicitly specifying the layout of the structure. This is
achicved by defining explicit data values where the compiler (on some machin¢) may insert padding. This usually
means censuring that all data items are aligned at a byte boundary which is a multiple of the data object’s size; a
32-bit integer must be aligned on a 4-byte boundary, a 16-bit integer on a 2-byte boundary, and so on.

For example
struct s { struct sl {
char cl; char cl;
int i; char padl (3]
char c2; becomes int i;
short s; char c2;
}; char pad2([1];

short s;
}i

It is also interesting to note that the layout of the fields themselves can affect the total size of the structure. By
arranging the structure as

struct s {

int i;
short sy
char cl;
char c2;

b

we incur no padding at all (or so we hope!). A heuristic for wasting the lcast space is to place the data items in the
structure in descending size order. However, in a large data structure the grouping of related data items together
may be deemed more important for readability and maintainability than saving a few bytes here and there, The
example above indicates other deficiencics of this approach. The explicit padding makes the declaration less read-
able; the padding must be declared properly to ensure no further alignment is donc by the host compiler; there is
no guarantee that one day, some new architccture will align things differently, making it impossible to declare a
structure which maps to the required alignment. In the real world, however, the benefits of adopting this approach
arc usually found to be sufficient to outweigh the potential drawbacks.

140 UniForum 1991 Conference Proceedings, Dallas, Texas

4.3 Translation Programs

For any cxecution platform, there is a "natural” layout for data; e.g. little-endian or big-cndian, IEEE floating point
format or some other, structure elements aligned on even boundarics versus some other alignment. There is also a
"natural” file format, namely the one provided by the language and operating system of exccution. It is clearly a
simple task to read or writc data in the natural format of the machinc. The hard part is to rcad or write it in a
non-natural form. This can require the programmer to jump through a number of hoops, many of which have just
been described.

A translation program usually executes on cither the data file source machine or the destination machine. Thus it
is usually cither reading the data file or the writing that file in the natural rcpresentation of the cxecution machine.
This fact can be used to make the program easicr to write, but it probably makes the program itself non-portable!

As the complexity of the data in the file increascs, the conversion process 100 becomes more tricky. For instance,
if the format of the next field, or next record depends on some data alrcady read (or worse, still to be read, or in
another file), then at some point the task of writing the utility raiscs to an cqual level of complexity as writing the
application itsclf. At this point, the only practical way to proceed is to fix the application to become "intelligent”.
We shall close this section with a particularly nasty example of how context dependent data can occur in two com-
mon languages, using a union in C, and a REDEFINES in COBOL.

struct {
union {
char name([4];
int value;
} item;

01 REC.
03 ITEMI1.
05 NAME PIC XXXX.
03 ITEM2 REDEFINES ITEM1.
05 VALUE PIC 9(9) USAGE IS COMP.

In this example, the data stored in the C union item, or the COBOL ITEM1 or ITEM?2, occupies the same bytes
of the record. One of the items is a character string, and the other a machine dependent integer. Only if the data
valuc in this record is an integer should the bytes be swapped when transferring 10 an opposite format machinc. To
determine whether this is the case may be very hard indeed, or cven impossible for practical purposcs.

5 Conclusion

This paper has posed the question as to why data files arc not easily portable from onc machinc to another. We
have scen that there arc many differcnt answers to this question, and that any particular filc may contain more than
onc of the problems described above. Although the problems are many, it has been shown that scvcral solutions
and workarounds do cxist. This is confirmed in the computer marketplace itsclf, where many applications arc ca-
pable of exchanging the same data filcs from platform to platform, or concurrently accessing shared files in a net-
work of heterogencous machines.

The architecting of portable data files is best done when an application is designed, and cven then there are traps
for the unwary and uninformed. Hopefully this paper has gone some way towards cnsuring the rcader will be
aware of the traps and informed of the solutions.

UniForum 1991 Conference Proceedings, Dallas, Texas

142

UniForum 1991 Conference Proceedings, Dallas, Texas

L

System Administration
Using Artificial Intelligence

Elste L. Yip

NCR Corporation
9900 Old Grove Road
San Diego, CA 92131
(619) 578-9000

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

System Administration Using Artificial Intelligence

Elsie Yip
NCR Corporation
Systems Engineering - San Diego
9900 Old Grove Road
San Diego, CA 92122

1.0 Introduction

The decade of the 1990’s will bring drastic changes to the information
processing environment. A key element to this transition is the move from an
environment that consists of closed, proprietary, vendor-specific systems to open,
vendor-independent systems, communicating with each other via industry standard
protocols.

While this change offers the user total flexibility to incorporate and integrate
different technologies to cater to the specific needs, effective system administration
becomes the critical element to success.

In the closed, proprietary environment, a system administrator acquired the
skills through the training provided by a specific vendor. In the open, multi-vendor
environment of the future, a system administrator requires training from different
vendors, on multiple disciplines. In addition, the administration of the
interconnections between the numerous hardware and software components further
adds to the complexity of the task.

Making matters worse, today’s technology is evolving at an unprecedented
pace. Knowledge acquired can become obsolete even before training has been
completed. This makes it necessary for any system administrator to "refresh" his or
her skills constantly. From the business perspective, the penalty in productivity for
constant training and the threat of lost investment through attrition all add to the
calamity.

Hence, the challenge to the .system administrator of the 1990’s can best be
described as a constant challenge of rapid knowledge acquisition. This paper
examines how the artificial intelligence technology can bring a remedy to this
challenge.

UniForum 1991 Conference Proceedings, Dallas, Texas 145

2.0 Basic Concepts on Artificial Intelligence

The field of artificial intelligence began in the 1940’s. Similar to other
disciplines of computer science, the objective of this technology is to facilitate the task
of problem solving that can be more productively handled by computers than humans.

While other computer science disciplines solve problems through the
manipulation of data, artificial intelligence solves problems by the manipulation of
knowledge. Though both data and knowledge represent information, there is a
fundamental difference between the two.

The information contained in data is passive and self-contained. Problem
solving by data manipulation is achieved by algorithms built external to the data.
The information contained in knowledge is active and includes the information on
how the different items of data logically relate to each other.

The difference between data and knowledge can be easily demonstrated in the
problem of selecting a candidate among a number of job applicants. The data
describing each candidate’s educational background and job history provides a passive
description of the candidate’s credentials. However, the data by itselfis insufficient
to solve the hiring problem without the knowledge of the recruiter.

The additional information required to solve this problem lies in the recruiter’s
thought process. Based on the understanding of the qualifications needed for the
specific position, a recruiter will selectively look for the pertinent data from the
applications (often subconsciously), correlate the information to compare with the
requirements to see if there is a fit.

In general, knowledge can be represented by a continuum: everyday common
sense on one end of the spectrum, clearly defined facts on the other end, and
judgement in between. Judgement is the elusive knowledge that comes with the
accumulation of experience based on past decisions. Most problems solved by humans
will involve all three facets of knowledge. While facts are black and white, judgement
and common sense are often depended upon to resolve most problems, which involve
some unknown and uncertainty.

Artificial intelligence provides a framework to efficiently acquire, organize and
retrieve this knowledge for problem resolution. In many cases, an explanation can
also be provided to justify the thought process and information applied to reach
resolution.

Artificial intelligence has been successfully applied in a number of areas:
natural language processing, speech recognition and expert systems. The concept of
expert systems is further explored in the following section.

UniForum 1991 Conference Proceedings, Dallas, Texas

3.0 Expert Systems

Expert system applications address problems that require knowledge from
human experts. The applications emulate the problem solving process of human
experts: problem isolation, searching for relevant information to support problem
classification, matching the optimum solution to the problem, and verification of the
fix.

Expert system can significantly increase the availability of the expertise,
providing up-to-date knowledge when and where it is needed. By encapsulation of
the knowledge from a human expert, it also prevents the loss of expertise due to
attrition or retirement in an organization. The knowledge from multiple experts can
also be consolidated and validated, and integrated if it pertains to different fields.

An expert system application consists of two independent components: the
knowledge base and inference engine. The knowledge base consists of the data, rules
and techniques to solve the problem. The inference engine consists of the control
mechanism to traverse the knowledge base to come up with the solution. Some
inference engines also have uncertainty factors built into them, so that each
conclusion drawn has a confidence level associated with it.

Though their designs are closely tied, the inference engine and the knowledge
base remain two independent entities. This independence allows the knowledge base
to be updated quickly and easily without altering the basic architecture of the
inference engine. This attribute is especially desirable to applications that require
rapid updates, as in the knowledge base required for system administration.

The advantages of the independence of the two components can be
demonstrated by an expert system application for hardware diagnosis. When a new
peripheral device is added to a system, the only update required is adding the
pertinent data on the new device’s characteristics to the knowledge base. The
inference engine and the rest of the knowledge base can remain intact.

UniForum 1991 Conference Proceedings, Dallas, Texas 147

4.0 Development of Applications

From the late 1950’s through the 1970’s, languages to build artificial
intelligence applications required unique training on programming techniques, which
was often described as a brain washing exercise. Both development and execution
of these applications demanded so much system resources that they required
specialized, dedicated, heavy-duty mainframes to run efficiently. Hence, applications
that were developed in that period were limited to the resolution of highly complex
problems with very narrow scopes, e.g. geological survey.

By the late 1980’s, with the advent of more powerful computers and
development tools, expert system applications can now be easily developed and run
on a variety of low to medium range of computers, including personal computers.
This significantly reduces the investments required to develop and support these
applications. The ability to run expert system applications on general purpose
platforms further integrates the use of expert systems with other disciplines of data
processing

Many of these tools include an intuitive, graphical user friendly interface to
reduce the training necessary for development, as well as user interaction. The
progress in this area has significantly reduced the intimidation of this technology on
the user community.

The combination of lower hardware cost and ease of development has brought
about a proliferation of expert system applications in the 80’s, as demonstrated by
Figure 1.0.

In the coming decade, not only is the dramatic growth in the number of expert
system applications anticipated to continue, the scope of these applications will also
be vastly diversified to be integrated into the day to day information processing
environment. The use of expert system applications may become a de facto, standard
component in data processing, similar to the availability of spreadsheet and word
processing applications in the business environment.

148 UniForum 1991 Conference Proceedings, Dallas, Texas

2500

2000 R R R R R R R R R R TR LR RREEE
1500 R R T R R PP
1000 O T T T LTI

500 e ittt aieitiaieiaimaeiecaeecciacaieccsacecesanntocecatoteceietesacans

81 82 83 84

Harmon & Sawyer, Creating Expert Systems

FIGURE 1.0 FIELDED EXPERT SYSTEM APPLICATIONS

5.0 System Administration Functions

As discussed in previous sessions, the information processing environment in
the 1990’s will make the role of system administration significantly more critical and
complex.

Many of the system administrator’s labor intensive tasks, e.g. file backup, can
be and will be automated without the use of the artificial intelligence technology.
This first step of productivity improvement will be necessary to free up resources to
concentrate on the more technically oriented tasks which will require expert
knowledge. In the rest of this section, an expert system application to assist a system
administrator to achieve high system availability is examined.

UniForum 1991 Conference Proceedings, Dallas, Texas 149

System availability is one of the key requirements for information processing
environment of the 1990’s. Beyond the previous efforts to enhance the reliability of
the system components through more stringent development process and quality
control, the systems in the future will include self diagnostics for preventive
maintenance. The ability to predict system failure so that corrective actions can be
initiated to maintain high system availability, sometimes referred to as preventive
maintenance, will soon become a mandatory system attribute.

While some system faults are totally unpredictable, many of them have
identifiable symptoms before the eventual failure impacts the user. This provides
a perfect opportunity for an expert system application.

An expert system application can achieve preventive maintenance by
monitoring system error logs to detect the relevant symptoms, compare the nature
and frequency of these symptoms to a predefined set of criteria to determine the what
and when of the problem’s potential occurrence. Built into this application is the
capability to alert a system administrator of such potential faults. In addition, advice
will be provided on how corrective actions can be taken to circumvent the problems.

In an extensively networked enterprise environment, requests for support can
be automatically routed to the responsible party. Escalation of problem reporting to
external support organizations can also be achieved. For example, an excessive
frequency of retries to a disk may indicate that the device will soon faii. The local
system administrator will be notified to begin backing up or moving files. In
addition, the enterprise’s system administrator or the external support can be notified
to order a replacement device which can be installed in off hours to avoid impacting
the users.

Similar to hardware faults, software (both kernel and application) faults that
trigger system messages can be intercepted and deciphered to identify problem areas.
Hence, instead of getting a system message on the system console, a system
administrator can rely on the expert systems to assess the problem and make
recommendations on corrective actions. As in the previous scenario, messages can
be routed to the appropriate organization for effective management.

A third and more subtle indicator of system availability is system
responsiveness. To maximize system availability, a system has to provide users with
the needed resources in a timely fashion. A system running with degraded
performance with poor response time is perceived to be marginally better than a
system that is unreliable.

UniForum 1991 Conference Proceedings, Dallas, Texas

In this area, an expert system application can monitor and analyze the
pertinent system performance statistics to provide a system administrator with
timely information on the utilization of the various system resources. If a system
resource is consistently utilized beyond an acceptable threshold, the expert system
application can provide recommendations to the system administrator on actions to
be taken to relieve the bottleneck. By carefully managing system resource utilization,
severe response time problems can be avoided.

In addition, based on the same performance statistics, the expert system
application can offer advice on capacity planning and support what-if analysis that
can help the system administrator project future needs.

Figure 2.0 gives an overview of such an expert system application for system
administrator.

Expert System Application For
System Availability

System Remote Remote
Administrator Administrator Support

User Interface

e Monitor o Check Threshoids o Recommend

e |ntercept o Alert e Correct
Error Kernel Application Performance
Log Messages Messages Statistics

FIGURE 2.0 Expert System Application For System Availability

UniForum 1991 Conference Proceedings, Dallas, Texas 151

6.0 Conclusion

In this paper, the opportunity to use the expert system technology to assist a
number of system administration tasks was explored. The 1990’s will see a beginning
of integration of artificial intelligence with the other components of information
processing. It will eventually provide the framework to build knowledge into an
integral part of any enterprise system, redefining the boundary between the user and
the machine.

152 UniForum 1991 Conference Proceedings, Dallas, Texas

t A Comparison of
Network Queueing Systems

David Wright
Hewlett-Packard Company
3404 East Harmony Rd.
Fort Collins, CO 80525
(303) 229-6307
dww@hpfcla.hp.com

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

A Comparison of Network Queueing Systems

David Wright
Hewlett-Packard Company

Introduction

Many computer vendors today are touting Workgroup Computing and interoperability in a heterogenous
environment. However, many of the capabilities they provide are limited and not practical for the end-
user. The majority of tools provided are for the application developer, such as distributed computing
environments, and the end-user must wait for applications to take advantage of networked environments.
Users are hungry for tools that allow the various machines on the network to work together to solve a
problem without requiring expertise on many different machines. Simple tools that provide access across
the network to run a user program are a first step toward Workgroup Computing.

One such tool is a network queueing system that provides batch capabilities through the network. A
network queueing system allows users to run programs in a "batch” manner, where the programs are
usually run in the background rather than interactively, and jobs are queued when resources are not
available. A network queueing system operates in a network of heterogenous computer systems,
providing a common user interface which allows the user to access different machines without being
confronted by the differences in operating systems and environments.

There are several network queueing systems in existence today that run under UNIX®, including PROD
from Los Alamos National Labs, and MDQS from the US Army Ballistic Research Lab.* The two most
prevalent, though, and available from major computer vendors, are NQS and Task Broker. NQS
(Network Queueing System) is available in the public domain with proprietary versions available from
Cray, Convex, and others. Hewlett-Packard offers a different system called Task Broker that provides
network load balancing in addition to batch queueing. NQS is a de facto standard in the supercomputer
world, while Task Broker is becoming entrenched in workstation/server environments.

The reason the two tools are prevalent in different environments stems from their design philosophies.
NQS adds network extensions to a mainframe batch model, where the goal is to provide fair share
scheduling of scarce resources. Emphasis is placed on managing local resources through the use of
standard batch system quotas, with network extensions providing the routing of requests through the
network. In addition, NQS offers a large number of user options that provide flexibility for different user
needs on general purpose computers.

Task Broker, in contrast, is designed for a distributed environment of workstations and servers. The
primary goal is to distribute user jobs to the network node best suited to run the job. The load balancing
scheme is programmable, allowing users to match jobs with the most appropriate resources while taking
advantage of the idle machine cycles available on the network. Instead of asking the user to specify
options to control the job and data flow through the network, Task Broker transparently transfers the job
and its data to a server, and transfers the output back to the client node upon completion.

User and vendor demand for interoperability between network queueing systems has led to the creation
of an IEEE POSIX (Portable Operating System Interfaces) standards committee that is tasked with creating
a standard for network batch systems. These efforts are on-going, but expect to generate a standard that
supports users of either a centralized or distributed computing model. Originally NQS-based, the
standard work now reflects the need for interoperability between all network queueing systems.

* UNIXis a trademark of AT&T.

UniForum 1991 Conference Proceedings, Dallas, Texas 155

This paper examines the similarities and differences between NQS and Task Broker. It shows why each
system is best suited to a particular usage of network compute resources, and why each has become
prevalent in that kind of environment. It further examines the on-going work of standards committees in
the area of network queueing systems, and describes the current status of these efforts.

The Need for Network Queueing Systems

Due to the volatility of both technology and vendors in the computer industry, many computing
environments have evolved into a heterogenous mix of computer hardware, applications software, and
operating systems. Users are faced with the need to integrate the various components into usable
systems while protecting their existing investments. Computer vendors are responding with promises of
distributed processing solutions that operate in mixed-vendor environments, but in many cases the
technologies provide only part of the solution. These technologies are slow to gain acceptance for several
reasons, including the lack of open systems standards, and the difficulty level associated with their
implementation.

One reason for the slow migration to distributed computing environments is that the majority of tools
available are designed for the application developer. Tools such as Remote Procedure Calls (RPC’s) must
be designed into an application to make effective use of network resources and data. Directory services
that provide location and routing independence are services used by other tools and applications, not
typically by the end-user. In most cases, the end-user must wait for the solutions to propagate from
vendor tools into their applications. But end-users have immediate need for tools that allow the various
network machines to cooperate to solve a problem rather than waiting for the full solution from
application developers.

A initial step toward Team Computing is a set of tools that allow the user to make more effective use of
network compute resources. UNIX® developers have built in commands such as rsh and rlogin (remote
shell and remote login, respectively) which provide connectivity to other network machines, but UNIX®
has not addressed such problems as selecting the correct machine, transferring application data to and
from the selected machine, or conflicting resource needs of multiple users.

A network queueing system is a tool that provides batch capabilities across the network. Users run
programs in a batch manner, where the jobs are usually run in the background rather than interactively.
Jobs may run on network machines other than the local machine, and as the name implies, a network
queueing system provides queueing of jobs when appropriate resources are not available. The primary
difference between a network queueing system and mainframe batch systems of the 1960’s and 70’s is
network access -- jobs may be processed on network machines other than the local mainframe.

There are two prevalent network queueing systems available today: NQS (Network Queueing System),
and Task Broker. NQS, developed by Brent Kingsbury et al at NASA, is available in the public domain
from COSMIC. NQS is the de facto standard for batch job entry in the supercomputer market, with
enhanced, proprietary versions bundled with Cray and Convex machines. Task Broker takes network
queueing a step further, providing programmable load balancing amongst available batch servers. Task
Broker is offered by Hewlett-Packard on heterogenous workstation platforms, and is becoming quickly
entrenched in workstation/server environments.

What is NQS?

NQS (Network Queueing System) is a UNIX®-based queueing mechanism designed to support both batch
(non-interactive) and device (eg., printer, plotter) processing. It was developed at NASA to support
processing on a heterogenous set of networked UNIX® machines, so the user could see a single interface
across the different architectures. Primary design goals included(1]:

= Support processing of shell scripts requiring only CPU resources and a command interpreter (eg.,

/bin/sh),

156 UniForum 1991 Conference Proceedings, Dallas, Texas

©= Support processing of device requests (eg., line printer),
Provide resource quotas for batch requests and queues,

-
rz Support remote queueing and routing of requests in a network,

i

Provide access control for queues.

To support these goals, NQS implements three basic types of queues: batch queues, device queues, and
pipe queues. Batch queues accept and execute batch requests; device queues accept and execute device
requests; and pipe queues transfer requests to other batch, device, or pipe queues, usually at remote
network machines. When a user submits a request, the submittal command specifies the name of the
queue (an administrative default may also be used). For example, a batch request may be submitted to a
local batch queue for processing, or it may be submitted to a pipe queue for subsequent transfer to a
remote queue for further processing.

NQS treats batch queues and device queues differently. Batch queues are assigned resource limits to
manage fair usage of limited resources. A given server may have multiple batch queues, each with
differing limits on file space, memory, CPU time, core and data segment sizes, etc. The user submits to
the appropriate queue matching the job’s resource needs. Device queues do not have resource limits,
but rather a set of associated devices. The administrator sets up a queue-to-device mapping, and the user
specifies the queue for a device request.

Pipe queues provide the mechanism for transferring either batch or device requests to other queues on
(usually) remote machines. Pipe queues require the creation of network server processes to transfer
requests and handle a multitude of possible failures. The destinations for a pipe queue are also allowed
to reject pipe queue requests, similar to a batch or device queue rejecting a user’s request.

The processing model for NQS is similar to the familiar batch model from the 1960’s. The user submits a
request to a specific queue with a set of options specifying execution limits, priority, etc. If the specified
queue is a pipe queue, the request is propagated across the network until it reaches a batch or device
queue. The queues that accept and execute requests reside at the server in a client/server model (the
client and server may be the same machine). The specified queue (or the one at the end of the pipe
queues) may accept or reject the request based on factors such as queue type versus request type, queue
resource limits, user access control, etc. Once accepted, the request is queued for processing, with each
queue limited administratively to how many concurrent requests it may execute.

The program executed once the request is removed from the head of the queue is the shell script
provided by the user in the submittal command. NQS assumes a user login exists on the serving
machine, and executes the request shell script in the user’s home directory in a selected shell. Standard
out (stdout) and standard error (stderr) from the job are returned to the submitting directory upon
completion. The shell script may also contain NQS options to set submittal options (eg., queue the job
later), execution limits (eg., maximum CPU time), and user notification (eg., send mail upon job
completion).

While the user may set execution limits on individual jobs, the NQS administrator sets up batch queues
each with their own associated limits. For example, a queue may be assigned limits for job nice values,
per process CPU time limits, and program size limits. The user may specify more restrictive limits than
the queue defaults, but requests specifying less restrictive limits are rejected. Both inter-queue and intra-
queue priority mechanisms are provided, with all entries in a higher priority queue completed prior to
execution of entries in a lower priority queue.

Access control within NQS is also controlled by the administrator, who can set individual queues as
unrestricted, or limited access by user or group. A user may submit a job to any unrestricted queue, or to
any queue where the user is in the user or group access list.

UniForum 1991 Conference Proceedings, Dallas, Texas 157

What is Task Broker?

Task Broker is also a UNIX®-based network queueing mechanism. It was developed as an internal tool
for Hewlett-Packard by Gary Thunquest, and is now offered as a product on multiple workstation
platforms. Task Broker was developed as a tool for an integrated circuit design group to offload
compute-intensive simulation and verification jobs from designer’'s workstations to the best available
network resource. These resources might be a set of compute servers, or perhaps idle workstations. Task
Broker was designed with the goal of selecting the "best” network resource for a job. Primary features
include[2]:

7 Load Balancing: Task Broker provides programmable mechanisms for brokering the selection of the
best resources to achieve network load balancing.

r Transparent Data Access: Task Broker transfers files to and from the selected server, or performs
Network File System (NFS) mounts of client file systems to the selected server.

o= Fault Tolerance: Task Broker understands what to do if the network goes down, or if either a client
or server machine goes down.

rz Distributed Queueing: Task Broker provides a distributed queueing mechanism with no critical point
of failure or centralized queue bottleneck.

Task Broker provides network load balancing through a programmable bidding mechanism. When a user
submits a job request, each network computer that might be able to run the job is asked to submit a bid
based on its current ability to execute the job. Each bid may be either a pre-defined constant, or the
output of a program specific to a server and service that calculates a bid based on dynamic factors. The
highest bid is selected, and Task Broker transparently transfers the job and its data to the selected server
for execution.

Task Broker uses named services rather than the user-defined shell scripts required by NQS. Within the
Task Broker environment, there are “producers” of services (servers) and "consumers" of services
(clients)[3]. The user at the client machine provides Task Broker with an installation-defined name for an
application in the submittal command. For example, a software developer might request a "cc_service" to
run a large compile (user-defined programs can easily be run in a "shell_service"). Task Broker translates
the name into a set of possible servers, and requests a bid from each member of the set. At each
potential server, Task Broker decides whether to actually bid on the job based on a number of factors
such as current load, number of jobs already running, available resources, etc. If a Task Broker server
decides to bid, it runs a pre-defined program for the named service to calculate the bid (the bid may also
be a pre-defined constant). The bid is returned to the Task Broker client machine that originally received
the user request, where the highest bid is selected.

Upon selection of the "best" server, Task Broker makes the appropriate data files available at the server
where the service will execute. Since the server selection process is dynamically provided by Task Broker,
data access must also be provided automatically and transparently. Task Broker transfers any files
requested by the user to the selected server, and performs any NFS mounts requested by the user. The
user specifies files to be transferred to the server prior to execution, files to be transferred back to the
client machine after execution, and any file systems to be mounted. Task Broker automatically selects the
server, and performs the file transfers or file system mounts requested by the user.

The server selection process provided by Task Broker is essentially a greedy algorithm that selects the best
network computer to run a job at that time. This approach results in increased network resource
utilization, and therefore increased overall job throughput. When a job can not be immediately placed
(the number of client requests exceeds network server capacity), the request is queued at the client
machine. When a Task Broker server completes a service, it solicits queued requests from the various
clients, and selects the request it is best suited to run based on the bidding programs.

UniForum 1991 Conference Proceedings, Dallas, Texas

Task Broker differs from NQS in its queueing strategy by having requests queued at the client machines
from which they were submitted rather than at the server machine where they will execute. The purpose
behind the distributed queues is to avoid central bottlenecks and potential single point failures. If a server
becomes congested or unavailable, Task Broker, through its normal job placement process, routes
requests to other server machines without user intervention. The only jobs affected by a server crash are
those currently being executed.

Task Broker relies on direct communication between client and server machines when negotiating job
placement and transferring data. The advantage of such a network protocol is that it supports
robustness. Task Broker has built in recovery capabilities for cases when either the client, server, or
network goes down. For example, if the server machine crashes while transferring files prior to job
execution, the client will retry the transfer, and eventually select another server if the machine does not
reboot.

Differences Between NQS and Task Broker

As described above, NQS and Task Broker are both network queueing systems that provide job execution
across a network of heterogenous machines. Beyond that point, though, they are quite dissimilar. The
primary emphasis within NQS is to provide background processing on fully utilized machines. The role of
the queueing system is to prevent jobs from monopolizing scarce compute resources. This is achieved
through prioritized sets of queues, each with associated execution limits (CPU time, program sizes, etc.).
Although NQS works well in many environments, it has primarily taken root in environments with
centralized computing resources that fit this emphasis. For example, supercomputer vendors such as
Cray and Convex have extended NQS to provide greater control over specialized resources[4](5], and
NQS is the de facto standard in the supercomputer arena.

In contrast, Task Broker has a smaller emphasis on compute resources, and a smaller set of execution
limits associated with its services (eg., CPU time). Instead of preventing jobs from using scarce compute
resources, Task Broker looks to leverage the unused compute cycles on the network. It views the
network as a heterogenous set of compute resources that require load balancing, and the role of the
queueing system is to match each job to the best available resource. This is achieved through the
programmable bidding mechanism described above. Task Broker works well in many environments but is
best suited to:

7 A set of client machines accessing a pool of high-end servers which require load balancing.

= A distributed environment of specialized computers, where users need occasional access to specific
resources.

> Achieving as much concurrency as resources permit in the running of a set of similar jobs such as
Monte Carlo simulation, variation of parameter analysis, or large make’s.

Task Broker is quickly becoming entrenched in the workstation arena where these types of distributed
environments are most likely to be found. For pools of high-end servers, selecting the best compute
resource is usually based on machine load and number of tasks being serviced, with the overall goal of
load balancing the server pool. For specialized compute resources, the algorithms used to select the best
resource may be based on resource availability, easiest access to data (move the program to the data
rather than the data to the program), or organizational reasons (eg., sharing an expensive server with
other groups). For concurrent tasks, the distribution tends to be among groups of similar workstations,
recovering unused compute cycles by running the tasks in the background at reduced priority.

Another major difference between NQS and Task Broker is their approach to user control. NQS has a
large set of options available on the command line to allow the user significant flexibility in controlling
where and how the job will be run. For example, on the submittal command line (gsub), NQS allows the
user to specify the queue where the job is to be placed, when to run the job, what to do with
stdout/stderr, what the execution limits are, when to notify the user via mail about job status, and what

UniForum 1991 Conference Proceedings, Dallas, Texas 159

shell to use to interpret the batch request shell script. With this large set of options, and further
extensions by supercomputer vendors, the user has control over the job, including where it runs and how
the queueing system will manage it. The implicit intent is to provide user flexibility for a wide range of
needs.

Task Broker takes a different approach, offloading control from the user to the system itself. In order to
reap the benefits of transparency(6), the Task Broker philosophy is that the network and its division of
resources should be hidden from users, in a similar manner to virtual memory masking the boundaries
between primary and secondary storage. Task Broker assumes that selecting the best network resource
for a job is the responsibility of the system, not the user. Not only does the algorithmic approach result
in higher overall throughput, but it relieves the problems a user faces when working in a large, distributed
compute environment. The user is no longer faced with knowing and understanding the myriad of
network resources potentially available for a task.

Task Broker also provides an important addition to the NQS functionality: it provides the file transfers or
file system mounts required for a job to run on another network node. While NQS requires the user to
transfer data either within the request shell script (assuming appropriate privilege for a rcp or similar
command) or external to NQS prior to submittal, Task Broker assumes that getting the data there is part
of the system’s responsibility. Task Broker supports file transfers in both directions between client and
server, and also automatically mounts client file systems using NFS on the selected server.

Arguments abound as to which is the better approach: extended user flexibility versus transparent access.
Those espousing user control are quick to point out that there are always reasons for a user to select the
network server for a job (the user can access more information than a pre-programmed approach). For
optimal performance of the queueing system on a single job, the user many times will be able to make a
better decision.

Those in favor of transparent access generally point out that the algorithmic approach results in
throughput gains not on a single job, but on all jobs submitted to the system. In addition, knowledge of
the network need not reside with each user, but can be programmed into the system. This is especially
important for novice computer users who simply use the computer as a tool (eg., a mechanical engineer
using design and analysis tools), and do not want to understand UNIX® and its workings. Even
experienced users will have some difficulty keeping abreast of changes made throughout large networks
of heterogenous computing resources.

Other functionality differences exist between NQS and Task Broker. As previously stated, the two
systems employ different queueing models. NQS maintains centralized queues at server machines, while
Task Broker uses queues distributed at each client. Distributed queues make it much harder for a user to
see when a particular job will run next, but they are an effective mechanism to handle server failures.
NQS includes administrative commands[7] to allow requests to be moved from one queue to another to
help manage this problem.

Less apparent, but important differences lie in the networking capabilities of each queueing system. The
NQS emphasis is on managing queues and jobs on a specified computer. For example, NQS requires a
user to track where on the network a job is in order to get its status. Task Broker, on the other hand,
maintains job status locally on the client due to its direct communications between client and server.
Having the queueing system manage job status is easier for the user, but Task Broker will not function in
situations where direct communication paths are not available,

The most obvious difference in network functionality exists in the administrative aspects. Qmgr, the NQS
administrative tool, executes on the local machine to manage queues. The administrator must log in to
each network machine to manage or modify the configuration, using an extensive set of subcommands.
Task Broker, in contrast, is configured by a configuration file read by the daemon at each node.
Administrative commands to enable/disable services, show queue or service status, etc., may be run from
any computer on the network (with appropriate privilege). Single point network administration like Task
Broker is desirable in larger, distributed networks for ease of use. Management of configuration files that

UniForum 1991 Conference Proceedings, Dallas, Texas

define the Task Broker offerings at each node, though, also needs to be provided from single network
nodes to more effectively manage the network.

A final difference is access control and user mapping across network nodes. NQS administratively
restricts queue access to sets of users and groups. While effective for user authorization (neither NQS
nor Task Broker perform user authentication), this method plus the execution mechanism of running the
user’s login shell creates the need for global mapping of users across network nodes. While common in
smaller networks, there are obvious limitations to such a mapping on a large scale basis. For example,
current practice for a supercomputer offering cycles to users across the country is to set up a user id and
and home directory for each user, or set of users, which becomes cumbersome for larger numbers of
users.

Task Broker supports global mapping if it exists, or- allows jobs to be run as a virtual user. While this
obviates the need for global mapping of users, it may not be enough to provide adequate accounting on
server machines. Task Broker does not execute user’s login shells on the server; rather, it allows the
configuration to define a path to any executable program for the service. This allows services to be either
user programs or third party applications, and adminstrators can ensure that the service tasks they run are
tested, "trusted” programs.

In summary, NQS and Task Broker are network queueing systems best suited to different environments.
NQS has become the de facto standard for supercomputers because of its emphasis on resource and
execution limits, and its flexible user interface. Task Broker is used more in larger, distributed
environments where its load balancing and transparency are most effective. Both systems offer the
capability to run jobs across the network in differing fashions depending on user needs.

Standards for Network Queueing Systems

One important criteria that should be considered when evaluating products for heterogenous
environments is adherence to standards. Products that demonstrate compliance with standards offer the
best opportunities for interoperability in a mixture of varied hardware and software platforms. Users
interested in protecting existing and future investments do not want to purchase proprietary solutions
available only on a limited set of platforms.

Standards for network queueing systems are currently in the development stage. Users may view this as
a problem, because the likelihood of differing solutions (eg., NQS and Task Broker) is increased.
However, it may also be viewed as an opportunity for users to develop standards that meet their needs.

The only standards work for network queueing systems this author is aware of is in the IEEE POSIX
(Portable Operating Systems Interfaces) arena. Originally part of the IEEE 1003.10 Supercomputing
Applications Environment Profile committee, the subcommittee started in 1987 to examine needs for
batch processing for supercomputing applications. Standardized commands such as &, at, and nohup
were quickly rejected as not meeting the needs of a full batch system[8]:

r= Controlled processing of production work in a network of computers,
rz Optimum usage of resources,
17 Equitable sharing of resources,
rz Simple user access,
r¥ Sophisticated administration:
¢ Optimum workload scheduling,
e Load leveling across network,

e Automatic or manual operation.

UniForum 1991 Conference Proceedings, Dallas, Texas 161

After examination of existing queueing systems such as PROD, CTSS, and MDQS (the forerunner to
NQS), the group settled on a standard base of NQS, with the goal of eliminating known deficiencies such
as a "cumbersome and inconsistent administrator interface” and "limited networking functionality”[8].

The primary participants of this subcommittee expended significant effort into extending NQS into a more
usable network queueing system. New commands were added, and efforts were made to integrate the
various proprietary features of existing NQS installations. While primarily populated by supercomputer
vendors, the group also included workstation vendors (eg., Intergraph, primarily interested in device
queueing), and users (eg., NASA Ames, the originators of NQS). This group generated a draft standard
based on existing NQS implementations, plus extensions desired by users.

The standard was modified many times during its development and eventually a change from a standard
base of NQS occurred for several reasons:

= NQS was found to be limited in ability to provide related services such as resource management,
file transfer, and security "due to its rigid design and coding structure,"[9]

= The NQS network protocol was unable to handle the extensions required by the draft standard and
vendor-supplied added functionality, and thus required redefinition,

= Hewlett-Packard introduced Task Broker, the first network product to match jobs with the most
appropriate available resource. The group felt this functionality important considering the growth of
networking capabilities, and wanted to ensure the standard did not preclude such a product.

A new model for a draft standard was adopted by the committee, which had spun off into its own POSIX
group, IEEE 1003.15. The model[9] outlines a standard that is primarily concerned with command line
interface and resultant action, and does not specify an underlying implementation (such as NQS). This
model, and the subsequent standard under development, define the basic functionality required by a
network queueing system while leaving vendors room to provide capabilities required by different
environments.

The POSIX standard is under development, and optimistic predictions forecast balloting in the first half of
1991. Still under development are a networked administrative interface and the entire network protocol.
Definition of a programmatic interface to commands, and resource control issues will be addressed in
future standards[10]. Interested parties are welcome to attend and contribute at POSIX meetings.

Summary

This paper has compared two network queueing systems, NQS and Task Broker, describing and
contrasting their primary features. Through these comparisons, it has shown why they are best suited to
different computing environments. This paper has also described the on-going efforts in the standards
arena for network queueing systems.

Tools such as network queueing systems are an important first step toward the realization of true Team
Computing. While the future of distributed computing environments will probably evolve from tools
developed for applications developers, there are usable, smaller steps that can be taken to help end-users
better utilize network resources in the short term. NQS and Task Broker are just two examples of Team
Computing in its infancy.

References

[1] Kingsbury, Brent, "The Network Queueing System", COSMIC Program # ARC-11750,
August 1986.

[2] Thunquest, Gary, "Qless: A Queue-less Remote Task Spooling System", Hewlett-Packard
internal documentation.

UniForum 1991 Conference Proceedings, Dallas, Texas

[3] Thunquest, Gary, "A Methodology for Building a Distributed IC Design Tool Using Qless”,
Proceedings of the 1988 Design Technology Conference, june 1988.

[4] "CONVEX CXbatch Concepts”, CONVEX Computer Corp., Document No. 710-000003-201,
February 1989.

(5] "Introduction to NQS", Cray Research Inc., Document No. 5G-2018 C.

(6] Walker and Popek, "Distributed UNIX Transparency: Goals, Benefits and the TCF Example”,
Proceedings of UNIFORUM 1989, January 1989.

(7] "Network Queueing System”, FORTRAN User’s Guide, Multiflow Computer Corp.

[8] Evans, Dave, "Batch Standard”, Cray Research Inc., Minutes, 1EEE P1003.10, July 1989.
[9] "The POSIX Batch Model”, Minutes, IEEE P1003.10, April 1990.
[10] "Scope for P1003.10 Batch Proposal”, Minutes, IEEE P1003.10, April 1990.

UniForum 1991 Conference Proceedings, Dallas, Texas

164

UniForum 1991 Conference Proceedings, Dallas, Texas

U

A Study of
Version Control Systems

Brian O'Donovan

Dept. of Computer Science
Trinity College, Dublin
Republic of Ireland

+353 91 51271
odonovan@cs.tcd.ie

Jane B. Grimson

Dept. of Computer Sciences
"Trinity College, Dublin
Republic of Ireland

+353 1 772941
grimson@cs.tcd.ie

John Haslett

Dept. of Statistics
Trinity College, Dublin
Republic of Ireland
+353 1 772941
jhaslett@uaxl.tcd.ie

UniForum 1991 Conference Proceedings, Dallas, Texas 165

166

UniForum 1991 Conference Proceedings, Dallas, Texas

A Study of Version Control Systems

Brian O’ Donovan
Jane Grimson

Dept. of Computer Science
Trinity College
Dublin
Rep. of Ireland

John Haslett

Dept. of Statistics
Trinity College
Dublin
Rep. of Ireland

ABSTRACT

RCS is one of the most commonly used version control systems
under UNIX. We have developed a system called Distributed RCS
(DRCS) which allows geographically dispersed users to have shared
access to a common set of RCS files. In order to gain a better under-
standing of how to optimize the performance of DRCS we undertook
a very comprehensive study which aimed at characterizing the typical
pattern of accesses to a version control system. This paper summar-
izes the results of that study. These results are equally useful to the
developers of any system which involves version controlled files.

1. Introduction

The authors of this paper have been involved in a project to build a distributed ver-
sion control system suitable for use in Wide Area Networks.!'2 The first release of
this system has already been implemented. In order to make sensible choices about
how to improve the overall performance of this system it was first necessary for us
to gain some insight into typical access patterns to a version control system. Since
there was no adequate data available in the literature we decided to perform our
own study to determine the typical accesses to a version control system.

UNIX® is a trademark of AT&T
VAX®, VMS® and DEC/CMS® are trademarks of Digital Equipment Corporation
NSE® is a trademark of Sun Microsystems Incorporated

UniForum 1991 Conference Proceedings, Dallas, Texas

The main part of this paper is divided into four sections. We start with an introduc-
tion to version control systems. This is followed by a quick overview of Distri-
buted RCS. The next section summarizes the results of the study which we per-
formed in order to characterize the pattern of accesses to a version control system,
it also compares out results with the results of previous similar studies. Last but not
least we describe what future work we intend to do in this area.

2. Version Control

The UNIX file system does not support versions. This means that it is only possible
to read the current contents of a file; the contents at any time in the past are lost
once the file is written to. In some applications such as software development, it is
vital to maintain a copy of old versions of the files. Since the UNIX file system
does not support versions, many UNIX software developers use a specialized ver-
sion control system. A version control system is a special type of database which is
geared towards storing multiple versions of source files while they are under
development. When the user "checks-in" a file to the version control system the
current contents are stored in a special library file along with an identifying version
number. The user can later retrieve any version of the file by performing a "check-
out” on the appropriate version number. As well as storing the contents of each
version the version control system will store additional information about each ver-
sion such as the creation date and author. Many systems also have a feature called
branching wherby two or more development paths (called branches) may be
stored within one library file : typically branches are used to store distinct variants
of the

The first version control system developed for UNIX systems was called the Source
Code Control System (SCCS).3:4 The initial system has been substantially enhanced
and SCCS is still widely used. More recently a system called the Revision Control
System (RCS) has been developed.5’6*7 RCS has a much more user friendly user
interface than SCCS and it is growing in popularity. Part of the reason for the
popularity of RCS is the fact that it is available from the Free Software Foundation
(GNU). Software developers working on VAX/VMS frequently use a package
called DEC/CMS8 which is essentially an enhanced version of SCCS that runs
under the VMS operating system.

All three of these version control systems represent the stored versions in terms of
the changes (delta) between this version and a neighbouring version. This delta
storage scheme can result in significant savings in storage requirements as compared
to storing each version explicitly. Both CMS and SCCS use a scheme called
merged deltas which involves storing the change commands interspersed with

UniForum 1991 Conference Proceedings, Dallas, Texas

the text itself. RCS uses a scheme called reverse deltas which involves stor-
ing the plain text representation of the most recent version and a seperate set of
changes required to regenerate each of the old versions. The reverse deltas
scheme is more efficient when retrieving the most recent version, but the merged
deltas scheme is more efficient when retrieving an old version. A study6 has
revealed that the reverse deltas scheme has best overall performance because
the most recently created version is retrieved much more frequently than any old
version.

If a specialized version control system is being used, other applications must
interact with it by performing explicit "check-ins" and explicit "check-outs. In gen-
eral this entails making changes to the applications. A more recent trend is to
develop an enhanced file system 9,10 which incorporates version management facili-
ties. Existing applications can run unchanged and will always read the most recent
version. Application wishing to access other versions of the file may do so by way
of additional system calls.

Another recent trend has been for an increasing number of developers to use an
Integrated Programming Support Environment (IPSE). Many of these environments
provide a version control service as part of the overall package. Some of these sys-
tems call upon a specialized version control system to provide the version control
service but others such as NSE!! and DSEE!2: 13 provide their own version control
sub-system.

3. DRCS

The authors of this paper have developed a system called DRCS!2 (Distributed
RCS) which is implemented as an enhancement to RCS. DRCS can be used to pro-
vide shared access to a common set of RCS files for a development team who are
spread over a wide area network.

In addition to all of the standard RCS features, DRCS allows users to create replica
files at remote nodes. The original DRCS file is the master replica ; all subsequent
copies are slave replicas. Users may use any of the RCS commands on their local
replica of the DRCS file and (apart from performance) they will not notice any
difference from standard RCS. When a user requests a copy of a particular version
of a DRCS file, the system will first look to see if that version is stored locally, if
the version is not available locally it will send a request for the data to the site con-
taining the master replica. All requests to update the DRCS file must be passed to
the master site for synchronization purposes.

UniForum 1991 Conference Proceedings, Dallas, Texas 169

Because it is aimed at use in a wide area network, DRCS is very careful to minim-
ize the amount of communication required. If a new version is created the system
will notify all of the replicas about the new versions existence, however, the actual
content of the new version will not be propagated unless someone actually requests
a copy of it at the remote site. As an additional performance enhancement, DRCS
will whenever possible transfer the new version in terms of the changes that need to
be made to an old version. This is because transmitting the changes will require
less data than transmitting the entire contents of the new version.

In a local area network it is normal to provide shared access to version controlled
files by using a distributed file system. However, cost and performance issues pre-
clude the use of a distributed file system in a wide area network. DRCS minimizes
the communication costs by making intelligent use of replication. DRCS also
minimizes the performance penalty involved in using a wide area network by allow-
ing communication between nodes to take place asynchronously whenever possible.
DRCS was developed with uucp type networks in mind but it can be easily
configured to use any available communications protocol. In fact DRCS sites do
not even require a direct link because DRCS can be used to share files between any
two sites that have a mail connection.

One of the benefits of the way that DRCS is implemented is that it can be used to
share files between two heterogeneous systems. It has been installed and tested on
VAX systems running ULTRIX and Sun systems running SUN-OS, which com-
municate using both uucp and TCP/IP communications protocols. It should be trivi-
ally easy to install it on any other variant of UNIX.

A company named MKS has ported RCS to run on IBM PCs and compatible com-
puters.!4 This software is available for both MS-DOS and OS/2 operating systems.
We are currently investigating the possibility of extending this work by porting
DRCS to the IBM PC so that DRCS can be used to share version controlled files
between a network of IBM PCs and/or UNIX machines.

4. Access History

A number of researchers have studied the access patterns of conventional file sys-
tems. The results of this research have been very useful in helping the developers
of file systems to optimize their design in response to “typical” access patterns. If
the performance of version control systems is to be optimized there is a need for
similar studies of the access patterns of version control systems. The following list
summarizes the existing studies which have analyzed the typical use of a version
control scheme.

UniForum 1991 Conference Proceedings, Dallas, Texas

David Leblang’s paper about DSEE!? included some figures conceming the
efficiency of the delta representation scheme used.

Mark Rochkind carried out an analysis > of some SCCS files on an IBM 370
system. This study analyzed the size of the SCCS files, the number of ver-
sions per file and the efficiency of the delta representation scheme used.

Walter Tichy analyzed the access histories of two RCS systems.7 This study
repeated some of the analysis that Rochkind had done but it also analyzed, the
relative frequency of reads and writes, the frequency of access to old versions
and the frequency of use of the branching feature.

None of the existing studies attempted to analyze some of the issues which are
important with regard to optimizing the performance of a version control system
such as : the time between subsequent accesses to a file, the extent to which files
are shared between users, the interleaving of reads and writes and the extent to
which there is a locality of reference describing which files are likely to be accessed
next. In addition, the previous studies were limited to a small number of systems
and did not asses the effect of different application environments.

We decided that there was a need for a much more extensive study of the access
patterns of a version control system. To ensure a comparability with the earlier
results published by Tichy we used the same access histories as he studied. In order
to see if his results were also applicable in other environments we collected access
histories from four other systems. Three of the systems studied used the DEC/CMS
system and the other three used RCS. The six systems traces studied were
identified as follows.

tichy one The record of the accesses to RCS files on the arthur node.
This system was one of those studied in Tichy’s earlier
research. The application environment consisted of university
researchers.

The record of the accesses to RCS files on the mordred
node. This system was one of those studied in Tichy’s earlier
research. The application environment consisted of university
researchers.

development The record of accesses to the DEC/CMS files used by a com-
mercial software development group.

UniForum 1991 Conference Proceedings, Dallas, Texas

laboratory The record of accesses to the RCS files used by researchers at
a commercial research laboratory.

sources The record of the access to the DEC/CMS files containing the
source code for stock control software used by a manufactur-
ing site. These DEC/CMS files were accessed whenever
maintenance was required on the software.

scripts The record of the access to the DEC/CMS files containing the
DCL routines (shell scripts) used for system management
tasks at the same manufacturing site as used the sources
system. These DEC/CMS files were accessed whenever the
system management scripts were to be run (on a periodic
basis) or whenever the routines needed to be updated due to a
change in system management policy.

In total these access histories contained records of over 70,000 accesses to over
7,000 files. They represent a broad mix of the applications to which a version con-
trol system might be put. The complete results of the analysis are too lengthy for
inclusion in this paper : hence they will be published in a forthcoming Ph.D. thesis
by Brian O’Donovan. The following points summarize the important findings of
this study.

File Size: We found that the average size of the most recent revision of
the files in the development system was 15.7KBytes but the median size
was only 4.5KBytes. We noticed a trend for files to grow in size between ver-
sions. Files grew an average of 1.6Kbytes (median 0.13Kbytes) between the
first and second version.

Deltas: Representing the versions of a file in terms of their deltas is very
efficient. The average overhead involved in storing all old versions in the
development system is 27% of the space required to store the most recent
version only : this compares with an overhead of 467% required to store all
old versions explicitly. It is possible to store 10 versions of a file with an
average overhead of only 40% more space than storing the latest version of a
file. On average the delta representation of a file occupies only 22% of the
space required to store all of the versions explicitly : this compares with 33%
for a conventional Lempel-Ziv type compression. 1>

Versions: While there was an overall average of 3.75 versions per file,
approximately half of all files had only one version. When files with only one
version were excluded from the analysis we found that the average number of
versions per file was 6.78.

UniForum 1991 Conference Proceedings, Dallas, Texas

0ld Versions: On average 1.88% of reads from multi-version files
(1.44% of all reads) were reads of old versions. However, there was a wide
variation between systems with regard to how often old versions of files were
read. Only 0.05% of reads to multi-version files in the scripts system read
old versions, while 13.68% of reads to multi-version files (8.60% of all reads)
in the tichy one system read old versions. There was a certain consistency
between the systems with regard to which old version was accessed : the ver-
sion immediately preceding the current version was twice as likely to be
accessed as the versions before that again.

Branches: There was also a wide variation between systems with regard to
how often the branching feature was used. In the laboratory, scripts
and sources systems the branching feature was never used and in the
development system the branching feature was hardly ever used (less than
0.2% of all accesses were to branches). On the other hand 1-3% of all
accesses to the systems analyzed by Tichy (tichy one and tichy two)
were accesses to branch versions. Some informal discussions with users of
version control systems revealed that most users avoided using the branching
feature because they felt it to be too complex : the users of the systems
analyzed by Tichy included the developers of RCS who were presumably very
knowledgable about RCS and how to use the branching feature.

Read/Write Ratio: The read/write ratio averaged out at 2.21, however
the ratio varied significantly from system to system. The development and
laboratory systems had approximately the same number of reads and
writes but the scripts system had approximately 10 times as many reads as
writes. In no system was there significantly more writes than reads.

File Lifetime: While we could not make an accurate measurement of
the file lifetime, there was evidence to indicate that the vast majority of files
had an active lifetime in excess of the period of our study (almost 3 years).

Locality: There was a certain amount of locality of reference but there
was no well defined working set. Approximately 20% of all accesses were to
the file in the top position in the LRU stack, while approximately 30% of all
accesses were to files in the top five positions in the LRU stack. There did,
however, seem to be a large amount of sequentiality in the access patterns (i.e.
files tended to be frequently accessed in the same sequence). On average 35%
of times when a file was accessed for a second or subsequent time, the next file
to be accessed was the same as the file which was accessed after it the last
time.

UniForum 1991 Conference Proceedings, Dallas, Texas 173

Time between Accesses: We found that the probability distribution
curve for the time between subsequent accesses to a file was a Weibull distri-
bution 16 with a B factor of less than 0.5. This means that the likelihood of a
file being accessed in the near future decreases rapidly as the time since the
last access increases. This is consistent with the intuitive belief that the files
accessed in the recent past are also likely to be accessed in the near future.
The median time between subsequent writes to the same file varied between 50
days for the development system to over 6 months for the tichy one,
tichy two and sources systems. The median time between subsequent
reads to the same file varied between 1 and 3 days for most systems, the
exception was the sources system where the median time between reads
was 19 days (this may have been due to the fact that many of the command
scripts were used on a monthly basis).

Write Read Interleaving: For many of the files the accesses alter-
nated between writes and reads. This means that if the last access to a file was
a write there is a 94% probability that the next access to the file will be a read.
However the reverse is not always true, if the last access was a read this gives
us no clear indication of whether the next access will be a read or a write.

Data Sharing: In general we encountered a very high level of data sharing
although there was a variation in the amount of data sharing from system to
system. Inthe scripts and sources systems, over 90% of the files were
read by more than one user. The probability of a file being shared seemed to
increase in proportion to the number of accesses to the file with an average of
between 10% and 40% of all accesses (reads and writes) being by a user other
than the primary user of that file.

We would like to compare our results with the results of the previous studies of ver-
sion control systems. However, none of the previous studies looked at locality of
reference for a file system or version control system, hence we will compare our
results on locality with the results of a study by Kearns et al.!7 which analyzed the
extent of locality of references to a relational database system. In order to highlight
how references to a version control system are different from access to a standard
UNIX file system we will also compare our results with the results of a study by
Ousterhout et al.!® which studied the accesses to various BSD UNIX file systems.
This study is often regarded as the definitive characterization of typical accesses to a
UNIX file system. The following points summarize the difference between our
findings and the results of previous studies :

File Size: Tichy reported that the average size of the latest version of the
RCS files on his system was 5.5Kbytes (5.9KBytes when single version files
were excluded). This is significantly less than the average size of 15.5KBytes

UniForum 1991 Conference Proceedings, Dallas, Texas

which we measured, however, the fact that the median size of our files was
only 4.5KBytes probably indicates that a small number of large files are dis-
torting our average. Rochkind measured the size of his files in lines rather
than bytes, we could not therefore make a direct comparison with his results.
Neither of these studied the growth of subsequent versions of the same file,
however Tichy’s observation that the latest version of multi-version files is on
average larger than a single version file would tend to support our findings.
Ousterhout reported that UNIX files have a median size of 2.5 Kbytes, this
means that version controlled files are on average larger than the average
UNIX file.

Deltas: Rochkind reported an average overhead of 37% required to store
the deltas for old versions : since he also reported an average of 4.88 versions
per file this works out at an overhead of 9.5% per extra version. Tichy
reported an average overhead of 34% required to store the deltas for old ver-
sions : since he also reported an average of 3.10 versions per file this works
out at an overhead of 16.2% per extra version. Leblang reported an overhead
of 1-2% per version required to store the deltas for old versions, however his
scheme also involved blank compression and it is not therefore directly com-
parable. While we found that an average overhead of 27% was required to
store the deltas for old versions in the development system, we also found
that the average overhead per extra version was inversely correlated with the
number of versions in the file. We found an average overhead of 14.4% for
one extra version, but an average overhead of only 7.7% per extra version for
files with 5 versions and an average overhead of only 4.6% per extra version
for files with 10 versions.

Versions: Rochkind reported an average of 4.88 version per file, approxi-
mately 40% of his files had only one version, when files with only one version
were excluded he reported an average of 7.5 versions per file. Tichy reported
an average of 1.39 version per file, approximately 80% of his files had only
one version, when files with only one version were excluded he reported an
average of 3.10 versions per file. The systems which we studied had an aver-
age of 3.75 versions per file, approximately 50% of them had only one version,
when files with only one version were excluded we found an average of 6.78
versions per file. Our findings are closer to what was found by Rochkind than
what was found by Tichy, however this is probably due to the relative maturity
of the systems when they were studied (as time passes the number of versions
per file tends to grow).

01ld Versions: Tichy reported that 6% of reads to the RCS files he stu-
died were reads of old versions. He also stated that he felt that accesses to old
versions would be much more common in a non-academic environment. Our

UniForum 1991 Conference Proceedings, Dallas, Texas 175

experience is the exact opposite, the systems used in a commercial environ-
ment had a much lower rate of access to old versions. Incidentally, our results
give even stronger support to the use of reverse deltas as used by RCS rather
than merged deltas as used by SCCS.5

Branches: Tichy reported that an average of 2-3% of all accesses involved
branch versions. However, we found that there was practically no use of
branching in any of the other four systems we studied.

Read/Write Ratio: Tichy reported a read/write ratio of 2.27 for the RCS
files he studied. Ousterhout et al. reported a read to write ratio of approxi-
mately 2.34 for a conventional file system. Both these figures are pretty close
to our average figure of 2.21.

File Lifetime: We could find no previous analysis of the lifetime of
version controlled files. However, Qusterhout reported a median lifetime of
approximately 3 minutes for files in a conventional UNIX file system. This
seems to be in sharp contrast with the fact that the files we studied seemed to
have lifetimes measured in years rather than in minutes.

Locality: Kearns et al. reported that there was a substantian amount of
locality in a typical program’s references to data in a relational database sys-
tem. For example he measured that between 96% and 99% of all accesses to
the database system were to the data blocks in the top two positions on the
LRU stack. He reports very little sequentiality of reference. While we did
find a certain amount of locality of reference we found that only 24% of refer-
ences were to the files in the top two positions in the LRU stack. However,
we also found that there was a substantial amount of sequentiality of reference.

Other Factors: We are not aware of any previous study that has
analyzed the Time between Accesses to the same file, Write Read
Interleaving or Data Sharing.

We intend to use the results of our analysis to build a simulation model which will
assess the impact on the performance of DRCS of using various replication stra-
tegies. However, before we even build this complex model we can already see how
some of the results of our study might influence how we adapt the replication con-
trol mechanisms of DRCS. By making these adjustments we can improve overall
performance and hence reduce cost. '

The fact that files tend to be repeatedly accessed in the same sequence, means
that the previous access history can be used to predict which file is likely to be

UniForum 1991 Conference Proceedings, Dallas, Texas

accessed next. There might be a performance benefit in pre-fetching files
based upon this prediction.

e The fact that the time between accesses follows a weibull distribution with a B
factor less than 0.5 leads us to conclude that the least recently used files are
also the least likely to be used in the near future. We could use this informa-
tion to decide that certain files should have their replicas completely purged.

e It is wastefull of disk space to store replicas which will never be accessed.
The fact that old versions are very rarely accessed might lead us to consider it
safe to delete replicas of old versions since they are unlikely to be ever read.

e The fact that the branching feature is rarely used would lead us to conclude
that it is reasonable to ignore branch operations when optimizing performance.

5. Future Work

DRCS has been implemented in prototype form and is available to anyone
interested in trying out its capabilities. It is hoped that users will provide feedback
about possible enhancements to the system. This feedback will be used in conjunc-
tion with the data about typical accesses patterns presented in this paper to generate
plans for the future development of DRCS. Possible enhancements that have
already been identified include

e Changes in the replication control policy
¢ Improvements in security

e Porting DRCS to IBM PCs

6. Conclusions

In recent years there has been much research into version control systems. As a
result their concepts and potential benefits have become well understood. This
should mean that version control systems will be more widely used in the future.
The general improvement in communication technology has made it possible for a
geographically dispersed group of developers to work together as one cohesive pro-
ject team. It is therefore our opinion that geographically dispersed project teams
will become much more common in the future. These teams will need tools that
facilitate data sharing in a wide are network environment : the DRCS system

UniForum 1991 Conference Proceedings, Dallas, Texas 177

described in this paper is such a tool and should be widely used in the future.

It is now becoming universally recognized, that the full benefit cannot be derived
from a version control system unless it is well integrated with other tools such as a
configuration manager. As a result there should be an increase in the number of
integrated Programming Support Environments (IPSEs) 19:20.21 3n4 enhanced sys-
tems interfaces (such as PCTE) 22:23 which will provide version management facili-
ties as part of a much wider service. There will, nevertheless, still be a constant
demand for traditional stand-alone version control systems both to handle non-
standard applications and to be integrated with other utilities as part of a larger
package.

As version control systems are likely to be widely used in the future it is important
that their performance should be optimized. The research described in this paper
has totally characterised the typical pattern of accesses to a version control system.
This knowledge should help the developers of future version control systems in
their efforts to optimize system performance.

7. Acknowledgments

The authors would like to thank the various members of the Department of Com-
puter Science in Trinity College who provided helpful suggestions. We would also
like to thank Walter Tichy who gave us access to the original RCS code and to the
data he used in his earlier study. Last but not least we would like to thank Digital
without whose financial support this research would not be possible.

References

1. Bran O’Donovan and Jane Grimson, ‘‘Development of a Distributed Revision
Control System,”” Proc. UKUUG Summer '90 Conference, pp. 207-214, Lon-
don, UK, 9-13 July 1990.

Brian O’Donovan and Jane Grimson, ‘‘A Distributed Version Control System
for Wide Area Networks,”’ Software Engineering Journal, vol. 5, no. 5, pp-
255-262, September 1990.

M.J. Rochkind, ‘‘The Source Code Control System,’’ IEEE Trans. on Software
Engineering, vol. SE-1, no. 4, pp. 364-370, December 1975.

Eric Allman, ‘‘Unix text file management tools,”” UNIX Review, vol. 7, no. 3,
p- 72(6), March 1989.

Walter F. Tichy, ‘‘RCS : A Revision Control System,’’ in Integrated Interac-
tive Computing Systems, ed. P. Delgano and E. Sandwell, pp. 345-361, North-
Holland, 1983.

UniForum 1991 Conference Proceedings, Dallas, Texas

W.F. Tichy, ‘“‘Design Implementation and Evaluation of a Revision Control
System,”’ Proc. of 6th Intl. Conf. on Software Eng., pp. 58-67, Tokyo, Japan,
13-16 September 1982.

W.F. Tichy, ““RCS - A System for Version Control,”’ Software : Practice and
Experience, vol. 15, no. 7, pp. 637-654, July 1985.

Digital, Guide to VAX DEC/Code Management System, Digital Equipment
Corporation, Maynard, Mass., April 1987.

Ellis S. Cohen, Dilip A. Soni, Raimund Gluecker, William M. Hasling, Robert
W. Schwanke, and Michael E. Wagner, ‘‘Version Management in Gypsy,”’
SIGPLAN Notices, vol. 24, no. 2, pp. 201-215, February 1989.

David G. Belanger, G. David Bergland, and Mike Wish, ‘‘Some Advanced
Research Directions for Large Scale Software Development,”’ Bell Systems
Technical Journal, vol. 67, no. 4, pp. 77-92, August 1988.

Theresa Barry, ‘‘Sun Microsystems shows CASE Network Environment,”’
Datamation, vol. 33, no. 22, pp. 144-148, 15 November 1987.

D.B. Leblang and R.P. Chase, ‘‘Computer-Aided Software Engineering in a
Distributed Workstation Environment,”” ACM Sigplan Notices, vol. 19, no. 5,
pp- 104-112, May 1984.

David B. Leblang and Robert P. Chase, ‘‘Parallel Software Configuration

Management in a Network Environment,”’ IEEE Software, vol. 6, no. 4, pp.
28-35, November 1987.

Jim Vallino, ‘‘MKS RCS 4.2.c (Product Review),”” PC Technical Journal, vol.
6, no. 10, pp. 132-135, October 1988.

Terry A. Welch, ‘A Technique for High-Performance Data Compression,”’

IEEE Computer, vol. 17, no. 6, pp. 8-19, June 1984.

James R. King, Probability Charts for Decision Making, Industrial Press Inc.,
New York, USA, 1971.

John Keams and Samuel DeFazio, ‘‘Locality of Reference in Hierarchical
Database Systems,’’ IEEE Trans. on Software Engineering, vol. SE-9, no. 2,
pp- 128-134, March 1983.

J K. Ousterhout, H. DaCosta, D. Harrison, J.A. Kunze, M. Kupfer, and J.G.
Thompson, ‘‘A trace-driven analysis of the UNIX 4.2BSD file system,”” ACM
Operating Systems Review, vol. 19, no. 5, pp. 15-24, December 1985.

Maria H. Pendeco and E. Don Stuckle, ‘““PMDB - A Project Master Databse
for Software Engineering Environments,”” Proc. 8th ICSE, pp. 150-157, IEEE,
London, August 1985.

John Kador, ‘‘Change Control and Configuration Management,”’ System
Development, May 1989.

Interactive Development Environments, Software Through Pictures User
Manual, 4.0, Interactive Development Environments, Guildford, Surrey, UK,

UniForum 1991 Conference Proceedings, Dallas, Texas

September 1988.

Gerard Boudier, Femando Gallo, Regis Minot, and Ian Thomas, ‘‘An Over-
view of PCTE and PCTE+,”’ Sigplan Notices, vol. 24, no. 2, pp. 248-257,
February 1989.

Ian Thomas, ‘‘PCTE Interfaces: Supporting Tools in Software Engineering
Environments,”’ IEEE Software, vol. 6, no. 6, pp. 15-23, November 1989.

UniForum 1991 Conference Proceedings, Dallas, Texas

An Object Model

for Distributed Systems

James Waldo
Hewlett-Packard Company
250 Apollo Drive
Chelmsford, MA 01824
(508) 256-6600
waldo@apollo.hp.com

181

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

An Object Model for Distributed Systems

Jim Waldo, Ph.D.
Cooperative Object Computing Operation
Hewlett—Packard
250 Apollo Drive
Chelmsford, Ma. 01824
...decvax!apollo!waldo

Abstract

In this paper we describe a basic object model that allows the construction of distributed systems. The object model
specifieshow objects are identified, located, and how messages are sent from one object to another. Alsodiscussed is how
the system conserves resources by allowing automatic activation and deactivation of objects. We further show how
certain parts of the object model are necessary for interoperability, while others can be changed. We discuss how we allow
such changes to be made without access to the source of the system. Finally, we discuss the status of the project, and the
directions for our future research in this area.

Introduction

Distributed systems promise a future in which a combination of machines of various power (and cost) can
function together in a way that makes everyone more productive without requiring anyone to spend more on hardware
than is necessary. However, programming distributed systems has turned out to be difficult and error prone, and hence the
promise of distributed systems has yet to be fulfilled.

Object oriented systems have shown a way to cut down on software costs by allowing developers to make use of a
natural design metaphor, reuse existing code, and cut down on the costs of changing and maintaining software systems.
However, the object metaphor has yet to be fully exploited in the realm of distributed systems.

Before these two technologies can be combined, we need an object model that supports distributed computing.
Most object based systems assume that communication between objects takes place in a single address space or at worst
within a single machine. However, for true distributed systems to exploit object oriented techniques, the objects being
used must be able to exist and communicate on different machines, perhaps with different architectures.

This paper will describe an object model that is designed to solve just such problems. The model is centered
around supplying the basic mechanisms for object oriented programming in a distributed environment. We take those
mechanisms to include:

Object identification;

Object location;

Sending a message from one object to another;

Activating an object (including restoring its state from persistent store)
when needed to process a message; and

UniForum 1991 Conference Proceedings, Dallas, Texas 183

deactivating an object (including writing its state to persistent store) when
the object is no longer needed;

In addition, we assume that such a system must be extensible, allowing the introduction of multiple different sorts of
objects that correspond to the basic object model but that differ in other ways one from the other.

This paper will describe a system we are implementing that is based on an object model for distributed systems.
The system, based on the Network Computing Architecture, is designed to allow objects residing on different machines
(perhaps with different architectures) to identify, locate, and send messages to one another. Most of the complexity of the
network and object schemes are hidden from the application programmer, allowing the building of applications without
the usual complexities of distributed programming being introduced.

The paper will describe the identification and location scheme, and give details about how the messaging system
isbuilt ontop of these. It will be shown how the system can scale from networks of two machines to those that connect all
of the machines in an enterprise of as many as 10,000 machines. We will also discuss the requirements placed on any
object model to allow that model to fit within the system, and show how object models that differ in ways other than those
that form these requirements can be added to the system without changing (or, for that matter, even having access to the
source of) the original system. Finally, we will show how the design allows different object models to be introduced and
work within the overall system given that those object models meet a small number of constraints.

Object Identification

In approaching the construction of an object model that can be used for the construction of distributed systems, the
first problem is determining the best way to identify objects in such an environment. Two paths to a solution immediately
come to mind. On the first, each objectis identified by a name, represented by an arbitrarily long string, that can be nested
in a hierarchical fashion to insure uniqueness. The second approachis to assign to each object a unique identifier of some
fixed length.

The first solution, that of naming, is initially attractive for a number of reasons. Names are a natural way of
identifying objects, and are easy for the ultimate users of the system (people) to use. The namespace of arbitrarily long
strings is large enough to deal with as many objects as we might wish. Further, the hierarchy that is used to name the object
might also, at first blush, serve as an aid in the location of that object, thus allowing us to solve two of our problems with a
single approach.

This initial attractiveness, however, does not bear serious scrutiny. While arbitrarily long names allow for a
namespace that is potentially infinite, they also introduce serious complexity in interpreting those names. When passing
identifiers from one machine to another in a possibly heterogeneous network, it is difficult to pass variable length
parameters as identifiers. The first problem has to do with possible conflicts in character sets, making it difficult to insure
that there will be any marked character that can be guaranteed as a terminator. Nor can one assume the ability to pass the
length as the first parameter, as the integer formats can vary from one architecture to another. Further, the overhead
involved in parsing arbitrarily long strings is not something that you want to have as part of your base identification
scheme.

Nor does the promise of using the possible hierarchy in the naming scheme to help locate objects pan out. This
would only work if objects were guaranteed not to move, and if machines were never taken out of the network. Neither of
these possibilities are realistic. So the best that the name could provide would be a hint as to where the object might be in
terms of where the object was created. While we will see in what follows that this can be a powerful aid in the locating of
objects, it can be provided in ways that do not require the parsing of arbitrarily long strings in the location scheme.

The final problem with a naming approachto object identification is the problem of insuring uniqueness when two
name domains are merged. Unless great care was taken before the merge, there can be no guarantee that the names in the

UniForum 1991 Conference Proceedings, Dallas, Texas

two merged domains are disjoint. The only way to guarantee uniqueness is to change the names, perhaps prefixing them
with a unique domain identifier, at the time of the merge. This, however, would require not only going through all of the
objects in both domains and renaming them, but also going to the internal state of all objects in both domains to look for
references to other objects and changing the names used in the reference. It is not clear that such a process would be
possible; even if it were, it would be prohibitively expensive in both terms of time and computing resources.

Because of these problems, we took the approach of using fixed length object identifiers that would be assigned to
objects on creation and used from then on to identify those objects. The problem that confronted us wasto come up witha
method that would generate an identifier that would be guaranteed over all time and space, of a length that would allow a
sufficient number of identifiers to be created to suffice for the size systems that we envision over the next decade.

The problem was to come up with an identification scheme that could be localized to each machine (potentially in
the world) but that would guarantee the uniqueness of the identifiers generated, evenif those identifiers were generated by
two machines that had never been in contact. The solution was to use Universal Unique Identifiers (UUID) as defined by
the Network Computing Architecture (NCA)[1,2]. These identifiers are 128 bit, fixed length entities. The first 48 bits of
the UUID are anidentifier of the machine on which the UUID was generated; while the architecture is neutral on how this
identifier is chosen, the obvious choice is to use IEEE network identifiers. This has the advantage of freeing the scheme
from any particular hardware vendor, and using information that is likely available to the machine in virtue of it being part
of a network.

Most of the rest of the UUID is used to store a time stamp, with the granularity of 10 milleseconds, that indicates
the time of creation. This combination of machine identity and time of creation is, we believe, sufficient to uniquely
identify the object. Note that this scheme does not require clock synchronization throughout the network, as the time
stamp is relative to the machine.

There is the possibility, on this scheme, of two objects getting the same UUID. If the clock on a machine is set
back, and an object is created at just the wrong time, the combination of machine—id and timestamp could appear asecond
time. To guard against that, we also have a sequence number in the UUID, that is incremented every time the machine is
reset in such a way as to affect the clock.

It should be noted, by the way, that the result of having two objects with the same object identifier would not be
catastrophic (although it would be hard to track down). The result would be confined to the two objects that had the same
UUID, and the problem would be the impossibility of being able to distinguish between them. While such a result would
be confusing, it would be totally localized.

Object Location

One of the reason for identifying objects is to allow them to be located no matter where they were created or
subsequently moved within the system. We will now tum to how this location is accomplished in the system.

The base of our location scheme is alocal location service, that is responsible for finding any object that exists on
the machine in which it is running. Oversimplifying for a moment, this object (for in our system all services are provided
by objects) keeps a database of all of the objects that exist on that machine. Included in this database is the location of the
persistent data that is associated with the object, and the location of the code that can be used to manipulate that object.
This object finding object listens for message requests on a well known network port on every system. Thus the problem
of finding an object reduces to the problem of finding the object locater on that system.

Giventhe technique we have chosen to identify objects, we would need only minimal location support if we could
assume that objects did not move from their machine of creation and that the set of machines on the network only
expanded. Since the object identifierincludes anidentifier of the birth machine for the object, all that would be required in

UniForum 1991 Conference Proceedings, Dallas, Texas 185

such a static situation would be access to a database that could map from these machine identifiers to network address of
the location service on that machine. Given this mapping, an object could be found simply by sending a message to the
local location object on that machine asking for the location (i.e., the network address) of that object.

However, objects do move and machines do get taken out of networks. it is, therefore, necessary to add further
mechanisms to find those objects that are no longer located on their birth machines.

The approach we have taken is intrinsically object oriented, in that at each level of attempting to find an object
some other object is asked. If the object can find the requested object, an answer is returned. If not, that object (not the
original requesting object) can ask another object to help in the location task. This continues until either the object is
found, or there is no one left to ask. In the latter case, the original requestor is told that the object cannot be found.

The first level at which any object is looked for is the local location service on the machine on which the
requesting object resides. This approach s taken for two reasons. First, it is assumed that a large minority if not a majority
of object interactions will take place on a single machine, even when that is not required. Secondly, going to the local
location service allows the request for finding an object to always begin at aknown place. Otherwise, the location services
might have to get involved to find the first object to request a location, that clearly would not be possible.

If the object whose location is being requested is not local to the machine, the local location service on that
machine will request location aid from the next entity in the location hierarchy. This is the Object Region Broker, or
ORB. The ORB is responsible for mapping from all of the machines in an object region to the addresses of the local
location services on that machine, and of keeping track of all of the objects that were bom on machines within the object
region that have moved to other machines. An object region is an administrative entity, and is designed to contain all and
only the machines that commonly communicate with each other. It is expected that object regions will vary in size from a
minimum of about 10 machines to a maximum of 1,000.

When an ORB is asked for the location of an object, it first looks to see if it is responsible for the machine on which
the object was created. Ifit is, it looks in its table of moved objects to see if the object has moved out of the regionortoa
new machine within the region. If the object appears in this table, the table will also contain the identifier of the machine to
which the object was moved. The ORB will then ask that machine to deal with the location request.

If no entry appears in the ORBs table but the ORB does own the machine on which the object was bomn, the ORB
will send the location request to the local location service on the birth machine. It is expected that this will be the second
most common case of location (after the case of location resolution by the local location service on asingle machine) since
it is assumed that the majority of the objects created will not be moved from their birth machine.

If the object was not created on a machine that is owned by the ORB, the ORB will send a message to the ORB that
owns the birth machine of the object being sought. To do this requires that the ORB find the network address of the ORB
that currently owns that birth machine. The ORB gets this information by making a request of the Locater of Object
Regions, or LOR.

The LOR is aserver that grants access to the information held in a database that maps the identifiers of all machines
in the larger network universe to the network address of the ORB that governs that machine. This universe is expected to
be up to 100,000 machines, and thus would include all of the machines in an enterprise, perhaps connected viaa wide area
petwork. Given the number of entries in this database, the information contained in each entry needs to be kept to a
minimum. The current scheme calls for an entry of about 24 bytes per entry; thus the global database would be 2.4
megabytesifthe number of machines never exceeded the number expected by the design requirements, and would only be
24 megabytes if the number exceeded those requirements by an order of magnitude.

In fact, the database used by the LOR will grow to somewhat more than the above sizes would indicate since other
information must be kept in the LOR. As well as keeping information allowing amapping of all machines to their current
ORB, the LOR database will include a set of entries that serve as machine tombstones. As part of the administrative task of

UniForum 1991 Conference Proceedings, Dallas, Texas

removing a machine from the system, a different machine can be assigned the role of being the “birth” machine for all of
the objects that were actually owned by the machine being retired. This is required since the location scheme keys off of
the birth machine of the object to be located—if that birth machine is removed from the location databases, there isno way
to find the objects that were born on that machine. By allowing another machine to act as the surrogate birth machine, the
location services can continue to function correctly even when objects survive longer than their birth machine.

It should be noted that, while a particular ORB and the global LOR are conceptually single entities, the design
allows and the system implements all of them as replicated objects to increase availability. The objects work on
distributed and replicated databases. Given the slowly changing nature of the databases, they are currently not guaranteed
to be strongly consistent. However, as traces are left at various points during moves to allow the tracking of an objecteven
when the ORB and LOR databases are out of date, the weak consistency of those databases should not result in the
inability to find an object that has been recently moved.

This location scheme requires that the act of moving an object include updating of the location information about
the object. When an objectismoved, the ORB that governs the birthmachine of the object is alwaysinformed. If the object
is moved from its birth machine, the ORB simply adds an entry into its relocation tables, noting the new location of the
object. If the object is moved from a machine that is not its birth machine to another machine within the object region, the
existing entry in the ORB database (created when the object was first moved) is simply updated. When an object moves
outside of its birth object region, the machine id of the new location is entered into the birth ORB database, along with a
sequence count. Moves of an object once that object has been moved out of its birth ORB immediately cause the ORB of
the object region the object is being moved from to have a tombstone entered. That ORB then sends a message to the
object’s birth ORB to update with the new location, along with a sequence number indicating the move sequence. The
tombstone is not removed until the birth ORB acknowledges the receipt of the move call and updates its own database
with the new location of the object. The possible delays in updating the birth ORB, caused by network problems or
machine crashes, are the base cause of the sequence number for all such moves, as the ORB may reject amove update if it
has received a higher sequence move update for that object, indicating that the object has been moved again.

While all of the details make the location scheme appear rather complex, whenlooked atinamore general way itis
in fact simple and extensible. At eachlevel of the location scheme from the local case on up, the location service involved
can either find the object whose location is being requested or can hand the location request off to some other object. If
neither of these is possible (i.e., the LOR is unable to find a birth machine or birth machine surrogate) the location services
can answer that the object cannot be found.

The extensibility of the system is implicit in the strategy of only answering that the object cannot be found if there
is no other object to whom the request can be directed. Thus if we wished to scale the system beyond the enterprise level,
all that would be required would be to add to the LOR an identifier of another object (perhaps a Locater of Object Region
Locaters) that could handle the next level of request. Adding this next layer would be transparent to the otherlayers of the
location services.

This ability to extend also points out a basic philosophy concerning the cost of the location requests. It is assumed
that objects will most often communicate with other objects that are close by. Thus the cost of locating an object grows in
direct proportion to the distance away of the object—Ilocation of an object on the same machine is cheap; within the same
object region somewhat more expensive, and outside the object region more expensive still. Note that this philosophy is
not required—we could cut the expense of finding objects that are far away at the price of increasing the expense of objects
that are close. At this point, we have no way of proving that our assumption of communication frequency being inversely
proportional to object distance. While we feel that the assumptionis sensible, if we find through experience that it is false
we can and will change the location services accordingly.

Sending a message

UniForum 1991 Conference Proceedings, Dallas, Texas 187

The actual sending of a message from one object to another is, in its simplest form, just the issuing of a Remote
Procedure Call (RPC). In fact, most of the hard work that is required to send the message, including type checking,
parameter marshalling, and data format conversion of individual parameters, is left up to the underlying RPC system, that
in our implementation is the Network Computing System. Hence we will not discuss those mechanisms here.

Whatis of interest is the way we have combined message passing and location, Most RPC systems require that the
issuing of a RPC call be separate from the locating of the destination of the call; further, few RPC mechanisms have
anything approaching the notion of an object as the destination of a call. The system we have built includes the locating of
an object in the making of the call, hiding the fact that the object is remote from the programmer.

Thus, from the programmer’s point of view, the sending of a message to a remote object looks like a regular
function call. Within the RPC stub that is generated by the RPC compiler and included into the program are the calls to the
location service that find the object, the calls to marshal the parameters to the call, the calls to the RPC mechanism that
make the call, and the calls that unmarshall any return values to the call. Thus the programmer does not need to know any
of the particulars of the system to make the call, and the actual mechanisms that are used are hidden from both the
programmer and the code written by the programmer.

Of course, the system does not precede every message send with a call to the location services. Internally the
location of an object is stored once it has been found, and it is this location that is first tried when an object sends amessage.
If the object tends to be long-lived (i.e., tends to be active for long periods of time) the location that is cached can be the
actual location of the object. The more usual case, however, is that the location of an object that is guaranteed to be active
on the machine on which the target object lives is stored. This will be discussed more fully in the section on object
activation and deactivation.

This not only simplifies the programming process, but allows the system to be changed in the future without
requiring change in any of the code that uses the system. The worst possibility facing the developer is the need to
recompile an application that uses the system; as shared libraries become more common even that requirement can be
avoided, allowing the system to change without requiring change or even recompilation of applications that make use of
the system.

Activating and Deactivating an Object

Conceptually, the message delivery system is such that objects are always available for the processing of
messages. However, to actually keep all objects active at ail times would be prohibitively expensive in terms of system
resources. Remember that we are assuming a system of 10,000,000 objects on 100,000 machines. Keeping an average of
100 objects active at all times on all machines and assuming that the usual object will be contained in its own process
would swamp most existing machines and Unix implementation. Even if keeping all objects active at all times were
feasible, it would not be a wise use of resources, as it is expected that most objects, like most data files, will be accessed
intensively for relatively short periods of time, and then not accessed for other periods of time. Thus efficient use of
resources requires that we be able to activate an object when necessary, and deactivate that object whenit seems likely that
it will not be receiving any more messages for some time.

Rather than require that objects be told explicitly to become active, we have taken the approach of activating an
object whenamessage is sent to the object and that object is not then active. While this appears to be an obvious strategy, it
does require that messages get sent to some third party rather than directly to the object whose services are being
requested.

Fortunately, the location services described earlier provide an excellent object to act as the third party. Location,
remember, is the process of translating from an object id to a network address. The usual network address that will be
returned by the location services will be the address on which the local location service is listening for messages.

UniForum 1991 Conference Proceedings, Dallas, Texas

When amessage arrives for an object that lives on the machine on which the local location service is running, the
local location service object consults a table of active objects to see if the requested object is currently active. If it is, the
message is just forwarded to that object. Otherwise, the local location service will fork a process and exec a system
supplied proto—object.

This proto—object will then call back to the local location service, telling it the network address on which it is
listening. The local location service will then send the proto—object a list of the object files that constitute the code that
manipulates the object, and a string that we generally expect to be the name of the data file that has been registered as the
repository for the object’s persistent state. How the list of files that constitute the code that manipulates the object is
determined is discussed in the next section. The proto—object will then load the indicated code into the process space it
occupies, and call a required initialization routine, supplying it the string that had been passed by the location services.
Note that the persistent dataneed not all be stored in a single file—that is up to the routine that is part of the object that will
restore the persistent state. All that is required is that the routine that restores the object’s state from persistent storage be
able to do so from the information supplied by the string handed in during the activation process.

When this is finished, the object can now said to be active. It then sends a message to the local location service,
telling it that messages to the object may be redirected to it.

Deactivation can occur either by a direct request from some remote object or by a request from the local location
services. For example, someone using an object could send a deactivate request when finished with the object. The local
location service also keeps track of how often messages arrive through it for the object, and can request that an object
deactivate itself if no messages have come through for a period of time. The length of time is determined by a
configuration parameter that can be changed at runtime.

Deactivation requests are generally issued as optional on the part of the object being deactivated. On receipt of
such a request, the object may either honor the request, saving any changed persistent state to long term storage and
freeing up its process space, ordeny the request. The denial may be because the object is in the middle of doing something,
orbecause the object feels that it is likely to receive additional requests for service inthe near future. Again, itis part of the
object oriented flavor of the system that deactivation is intemal to the object. All the system requires is that the object be
able to be deactivated; it does not dictate how that deactivation occurs or when it occurs.

However, the system does require that an object be able to honor a forced deactivation request. Such a request is
necessary to guard against rogue or simply rude objects, who inappropriately hog system resources or who have lost
control over their own actions. The forced deactivation protocol will have the local location service first tell the object that
it is about to be deactivated. After a short period of time, that will allow the object to save itself to persistent store, the
process that contains the object will be killed by the local location service, that is able to do that because of its status as the
parent of the process. While this approach opens the door to an impatient local location service causing object corruption
(by shutting down an object while that object is in the middle of saving its persistent state), it is necessary in a world where
object creators make mistakes.

Since this scheme allows objects to be deactivated and activated without the objects that might be trying to contact
those objects being informed, the usual model of contacting an object will be via the local location services on the machine
on which the object resides. While it is possible for an object to advise other objects sending it messages to send those
messages directly to the object, any object attempting suchdirect communication would be subject to atimeout wait if the
object being sent the message is deactivated. Such a waitis not, it should be pointed out, catastrophic, as the sending object
cansimply resend the message in such a way that the location services are again invoked, that will send the message to the
local location service and reactivate the object.

Binding Code and Data

Objects have been traditionally defined as data and the code that manipulates that data. While this is conceptually
true, there are very few object implementations that actually copy the code that manipulates an object for each object.

UniForum 1991 Conference Proceedings, Dallas, Texas 189

Instead, objects are grouped together based on the code that manipulates the data within those objects, and that code is
shared.

In adistributed system, we want to use the same sort of technique, but new complexities are introduced. We need
to have the code that manipulates the data shared by all of the objects, but there may actually be different versions of that
code on different machines, depending on, for example, the machine architecture.

As withmost object models, we use the notion of the class of an object to bind data and code. The class of an object
determines the operations that can be perforied by the object. The term operation is being used in a technical sense here;
it means (roughly) the identification of a call that can be made on an object along with the call signature (i.e., the set of
parameters). In fact, there is a temptation to say that the real semantics behind the abstract notion of a class is that a class
uniquely defines the set of operations that can be performed on an object and the semantics of those operations.

Such a definition, while attractive, will not suffice in a distributed environment of machines that can differ in
instruction set, object code format, and data representation. Since objects can potentially be moved from from one
machine to another, there needs to be a finer grained way of binding data to code than the simple identification of class as
the set of operations and their semantics.

To see this, suppose that we wish to move an object, call it O, from machine A to machine B. We have noideaif A
and B are the same sort of machine. To move the object, we must move the data that comprises the persistent state of the
object and bind that data with the appropriate code to allow manipulation of that data.

Given the abstract notion of class that we are discussing to bind data and code, we are presented with only alimited
number of alternatives. One alternative is to move the data from machine A tomachine B, butleave the class identification
to code on machine A. Doing this would require that any time we actually perform an operation on object O the code
would run onmachine A, since we have no guarantee that the code will run onmachine B. Itis not clear that this counts as a
move, since machine A would be the "location” of the object when it was actually being manipulated. This would more
properly be labelled a move of the persistent state of the object rather than a real move of the object.

We could also try moving the code to the target machine along with the object’s persistent data. However, this
assumes that the same code could run on all machines, that cannot be assumed in the environment we are talking about.
Evenifit were possible to make this assumption, such an approach would lead to duplication of code, as every object that
is moved would have to have it’s own copy of the code that manipulates that object.

A better solution is to require that the code for the class of an object be installed on the machine the object is to be
moved to. However, in so doing we find that the original notion of an object’s class needs to be extended. Knowing that
there exists code on amachine that can be used to manipulate an object on that machine only allows us to move the object if
the persistent data for the object can be read by that code. This may mean that the two machines have the same data format
(or, more precisely, that the two instances of the code can interpret the same set of bytes the same way) or that part of the
code on each machine can turn the data into some format that can be interpreted by code on the other machine.

While the two situations are logicallv equivalent, they have decidedly different consequences in the real world. If
the data can be interpreted by the code on the two machines in exactly the same way, the move of the data can be done
without the intervention of the object by simply copying the bits from the source machine to the target machine. If, on the
other hand, the data can simply be massaged by code on each of the machines to allow interpretation, the code for the
object needs to be actively involved in the copy or move from one machine to another.

The solution we took, therefore, was to distinguish between two sorts of class. The first notion can be defined as
follows:

A class, Cl, is the same as a class, C2, iff
1) every operation in C1 is an operation in C2, and vice versa;

UniForum 1991 Conference Proceedings, Dallas, Texas

2) the semantics of the operations in C1 is identical to the semantics
of the corresponding operation in C2; and

3) The data format of an object’s persistent state for C1 is bit—for-bit
identical to the data format of an object’s persistent state for C2.

If two classes meet the above definition, we say that those classes are instances of the same implementation class,
and copies and moves of an object from machines that have installed on them the same implementation class can be done
by doing a byte copy of the persistent state of the object. The second notion of a class that we have included is defined as
follows:

A class, C1, is the same as a class, C2, iff
1) every operation in C1 is an operation in C2, and vice versa;
2) the semantics of the operations in C1 is identical to the semantics
of the corresponding operation in C2; and
3) The data format of an object’s persistent state for C1 can be
translated into a format understood by C2 using well known
operations of C1.

If two classes meet this second definition, we say that those classes are instances of the same abstract class, and
copies and moves of an object from machines that have installed on them the same abstract class (but not the same
implementation class) can be done by doing a copy that involves the objects themselves massaging the object’s persistent
data,

Clearly the notion of animplementation class is more specific than that of an abstract class. We therefore store only
the implementation class identifier with an object, and access a system—wide database that allows mapping of an
implementation class into an abstract class.

The notions of implementation class and abstract class do not, obviously, contain all of the relations conceming the
operations and data formats thatmight hold between two objects. Additional relations might include the ability to convert
from one class to another (even though the two classes might have different operations) without loss of data or, perhaps,
the permanent conversion from one class to another without the ability to convert back. Such relations, however, are
considered more specialized than those that we wished to introduce into our base object model. While they could be added
inamore specialized model built on our system, they do not form part of the base model that defines when communication
can take place.

Extending the object model

In the system we have described thus far, we can separate the requirements made on objects into two basic
categories. In the first category are the requirements made for the purposes of identifying and sending messages to
objects. The second set of requirements center on the ability to activate and object, deactivate an object, and bind the
persistent state of an object with the code that manipulates that object.

We consider the first set of requirements to be absolutely basic, as they define the bottom most communication
mechanism that is used in object interactions. The second set of requirements, however, are not so basic. Two object
systems that agree on the way in which objects are identified and how messages are sent might disagree onhow objects are
activated ordeactivated or how the code that manipulates an object’s state is connected to that state could still interact. The
object infrastructure we have constructed allows for the addition of alternate object models that differ in the second
dimension.

To see how we have accomplished this requires that we look inside the entity that we have referred to as the local
location service. This entity is actually made up of an object manager (OM), that encapsulates the full object model

UniForum 1991 Conference Proceedings, Dallas, Texas

described thus far, and a manager of object managers (MOM), that is the actual recipient of messages directed to the local
location services.

The MOM receives messages directed to objects, and asks the OMs that it knows about if the object the message is
directed tois owned by that object manager. Ifit s, the object manageris handed the message, to deal with asit sees fit. The
object managers that the MOM knows about are determined by the contents of a configuration file, that tells the MOM
where the code for the various object managers is located, and the name of the initialization routine for each of the object
managers. When the MOM is started, it reads through the configuration file, dynamically loading the code for each object
manager and calling on that manager to initialize itself.

This allows the addition of new object managers, encapsulating other object models, to the basic system. These
object managers must export a small set of operations that allow them to work with the MOM, but beyond that are
unconstrained in the way they model objects. These managers can be added at any time simply by changing the
configuration file of the MOM and restarting the local location services. Thus the system can be extended to new object
models without changing the underlying system or having access to the source code that was used to create the system.

Current status and future direction

We have implemented a system that embodies the object model described above, and it is currently undergoing
internal alpha test. The system is being used as the base for a distributed object management facility for the next
generation NewWave product on Unix.

Current research continues at both the base object level, and at enriched object models that can be built on top of
this base level. A central concem at the base level centers onsecurity. Current client/server based security mechanisms do
not scale well to the sort of peer to peer communication scheme embodied in our distributed object model. Nor is it clear
how a security system based on objects should interact with the underlying security provided by the file-based operating
system.

Researchonenriched object models centers around the extensions needed to the base object system outlined in this
papertomeet the need of various users and application tasks. Forexample, it is unclear that an object model that is suitable
to office automation is also suitable for a software engineering environment. Research into how the base model can be
extended into these domains, and what interoperation between the extended models can be retained, is ongoing.

A third area of research concemns the relationship between this object model, which is centered on object oriented
systems, and that needed for object oriented programming.

Bibliography

[1] Zahn, et al., Network Computing System Reference Manual, Prentice—Hall 1990 [ISBN 0-13-617085-4].
[2] Kong, et al., Network Computing System Reference Manual, Prentice—Hall 1990 [ISBN 0—13-617085-4]

Note

Unix is a trademark of AT&T.

192 UniForum 1991 Conference Proceedings, Dallas, Texas

Author Biography

Jim Waldo has been an engineer with Apollo Computer (now a division of Hewlett— Packard) for the past five
years, working in the areas of object oriented programming, user environments, and distributed systems. An early user of
the C++ programming language, he has published and talked extensively on the uses of object oriented programming
languages and techniques in production settings. He is currently a Consulting Engineer in the Cooperative Object
Computing Operation of Hewlett—Packard, where he is the lead architect of the system described in this paper.

The paper is intended for engineers, technical managers, and others interested in the future merging of distributed
systems and object oriented technology.

UniForum 1991 Conference Proceedings, Dallas, Texas 193

UniForum 1991 Conference Proceedings, Dallas, Texas

U

Perspectives on NFS File
Server Performance
Characterization

Bruce E. Keith

Digital Equipment Corporation
129 Parker Street PK03-1/D18
Maynard, MA 01754

(508) 493-8889
keith@oldtmr.enet.dec.com

UniForum 1991 Conference Proceedings, Dallas, Texas 195

UniForum 1991 Conference Proceedings, Dallas, Texas

Perspectives on NFS File Server Performance Characterization

Bruce E. Keith

Digital Equipment Corporation
Systems Engineering Characterization Group, Unix-Based Systems and Software
129 Parker Street PKO3-1/D18
Maynard, Massachusetts 01754
keith@oldtmr.enet.dec.com

Copyright 1990 Digital Equipment Corporation

ABSTRACT

Two major approaches to Network File System (NFS1) file server per-
formance characterization exist today. One approach, denoted the
"synthetic-workload, single-client” (SWS) approach, uses an NFS work-
load abstraction in terms of an NFS operation request mix and an NFS
operation request rate as input to a load generator utility running on a
single, or small number of NFS clients [LEGATO89), [SHEIN89]. An-
other approach, used within Digital Equipment Corporation and denoted
the "actual-workload, multiple-client” (AWM) approach, is to execute an
actual workload on multiple NFS clients. In both approaches, various
performance parameters are monitored while an NFS load is applied to
the server.

This paper discusses the results of an initial evaluation of the SWS ap-
proach’s ability to generate server and network loads and associated
client response that are equivalent to those generated by the AWM ap-
proach. The paper further discusses the fundamental reason for investi-
gating file server performance: helping a computing facility answer the
question "How will our application (workload) perform using this file
server?”

1 INTRODUCTION

Network File System (NFS1) file servers are key components in today's distributed computing
environments. During a computing facility's NFS file server selection process, the individuals
making the selection decision need to know how a given NFS file server configuration performs
so that comparison can be made among servers from different vendors. Ultimately, the individu-
als need to know how well the computing facility’s particular application, or workload, will per-
form using a given server configuration.

There have been two major approaches to NFS file server performance characterization to date.
One approach, denoted the "synthetic-workload, single-client" (SWS) approach, requires a com-
puting facility to develop an ad hoc benchmark that is considered representative of the comput-
ing facility's workload (application). The benchmark is then executed on a single (or small num-
ber of) client(s) of the NFS file server under test, which in turn impose(s) a load on the file server
under test. Thus, the single client emits NFS requests as if it were a larger number of clients.

1NFS is a trademark of Sun Microsystems, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas 197

Another approach, denoted the "actual-workload, multiple-client” (AWM) approach, involves the
simultaneous execution of an actual workload on multiple clients of the NFS file server under
test, which in turn impose a load on the file server supporting the clients.

In both approaches, client and server performance are measured while the load is applied to the
server, with performance typically expressed in terms of the clients’ resultant response time and
throughput and the server’s corresponding resource utilization.

Refinements to the SWS approach have been made recently by [LEGATO89] and [SHEIN89].
These refinements are:

1. Abstraction of a file server's workload in terms of its NFS operation mix and NFS operation
request rate.

2. Development of utilities that can generate an NFS load based on input expressed in terms
of this workload abstraction.

This paper discusses the results of an initial evaluation of the refined SWS approach to NFS file
server performance characterization. Speciﬁcallg, the paper discusses the ability of the refined
SWS approach, as instantiated by the nhfsstone® NFS load generating program [LEGATO89], to
generate server loads and client response that are equivalent to those produced by the AWM
approach used within Digital Equipment Corporation over the last 3 years.

1.1 NFS Functionality

NFS provides the ability to share file systems transparently in a heterogeneous environment of
processors, operating systems, and networks. Sharing is accomplished through a cooperative
mechanism in which a computer system, denoted a "server," exports (or offers) some or all of its
file systems to other computer systems on a network. A "client" is any other computer system on
the network that references any of the file systems exported by the server. A given computer
system may act as either a server, a client, or both.

Once a client has remotely mounted a file system exported by the server, the client can then
access the server's file system as if it were locally available on the client. This eliminates the
need to copy files from one system to another before a client can reference a file. Consequently,
only one copy of a file need be maintained on the server rather than several copies of the file on
several different computer systems.

Internally, an NFS client makes requests of the server for files within an exported file system
through the NFS protocol. The NFS protocol defines specific types of operations that a client
system may request of a server [SANDBERG85].

1.2 SWS Approach

The types of operations defined by the NFS protocol provide the key to one of the significant
refinements made by [LEGATO89] and [SHEIN89] to the ad hoc benchmark, SWS approach.

Both [LEGATOB89] and [SHEIN89] abstract an NFS file server’s workload in terms of a mix of the
types of NFS operations expressed as a percentage of the total number of requests made by all
of the clients supported by the server. The abstraction is further extended by both authors to
include the rate at which the NFS clients make requests of the server. Thus, [LEGATO89] and
[SHEIN89] suggest that an NFS server's actual workload can be abstracted in terms of an NFS
operation mix and an NFS operation request rate. Both NFS operation mix and NFS operation
request rate are quantities that can be readily determined through the nfsstat NFS statistics re-
porting utility.

2nhfsstone source code is a copyrighted product of Legato Systems, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

The second significant refinement from [LEGATO89] and [SHEIN89] is the development of utili-
ties to generate an NFS load based on the NFS workload abstraction of an NFS operation mix
and an NFS operation request rate. The utilities are executed on an NFS client to generate a
load on an NFS server.

The nhfsstone utility is a suitable choice for an NFS load generating tool. Thus, the nhfsstone
NFS load generating utility developed by Legato Systems, Inc. was used as the SWS approach
to NFS file server performance characterization within this evaluation.

The nhfsstone utility requires the following input parameters:

o An NFS operation mix file containing the results of an execution of the nfsstat NFS statistics
reporting utility.

An NFS operation request rate.
A list of remote file systems to serve as targets for the generated NFS requests.

Either the length of time for which the utility is to generate the synthetic load or the total
number of NFS requests that are to be generated by the utility.

Upon completion of execution, the nhfsstone utility reports the actual NFS operation mix gener-
ated, the elapsed execution time, the total number of NFS operation requests generated, the
resultant NFS operation request rate, and the average service time for all of the generated NFS
operation requests. Consult [LEGATO89] for a description of additional output generated by the
utility.

Thus, the SWS approach characterizes NFS file server performance in terms of NFS request
service times and NFS request throughput experienced on an NFS client.

1.3 AWM Approach

The AWM approach to NFS file server performance characterization used within Digital Equip-
ment Corporation during the past 3 years applies a real user-level task workload to ULTRIX?
NFES diskless client workstations, which in turn apply a load to the NFS server. As many as 50
ULTRIX NFES diskless client workstations have been configured on a private Ethernet and sup-
ported by a single ULTRIX NFS file server.

As the workload is applied to progressively larger numbers of client workstations, user-level task
service time and throughput are measured on the client workstations. Server resource utilization
is simultaneously measured in terms of CPU utilization and disk and network interface /O op-
eration rates. Further, network utilization is simultaneously measured on the Ethernet.

The workload applied to the client workstations emulates a software engineering environment in
which a single software engineer is assigned to each NFS client workstation. Each client work-
station executes a unique, repeatable sequence of user-level tasks (commands) selected from a
common pool of the most frequently executed user-level tasks encountered in a software engi-
neering environment. Thus, the workload is not a lock step workload in which each workstation
executes the same task at the same time. Rather, the workload follows typical usage patterns in
which individual users collectively execute a variety of user-level tasks at a given point in time.

Hence, the AWM approach characterizes NFS file server performance in terms of user-level
task service times and throughput experienced on NFS clients. The AWM approach also char-
acterizes NFS file server performance in terms of the associated utilization of server and net-
work resources required to provide a particular degree of user-level task response.

3ULTRIX is a trademark of Digital Equipment Corporation.

UniForum 1991 Conference Proceedings, Dallas, Texas

2 EVALUATION METHODOLOGY

2.1 Focus

The focus of the initial evaluation of the SWS approach as implemented by the nhfsstone NFS
load generator utility was to determine nhfsstone’s ability to duplicate NFS file server utilization,
network utilization, and client response levels previously measured by the AWM approach. Fur-
ther, the evaluation was to determine if the SWS approach could be used as a substitute for the
AWM approach as an NFS server sizing method. The evaluation was not intended to be a cri-
tique of the nhfsstone load generator utility itself.

The following primary questions were addressed by the evaluation:

1. Is the NFS operation mix of an actual workload invariant with respect to scaleability? Spe-
cifically, is the NFS operation mix generated by a single NFS client equivalent to the NFS
operation mix generated by "N" clients? This is the fundamental assumption of the SWS ap-
proach that provides the basis for using a single client to simulate "N" actual clients.

2. Does the NFS operation request rate of an actual workload increase linearly with respect to
scaleability? Specifically, is the NFS operation request rate of "N" clients equivalent to the
average NFS operation request rate of one client multiplied by "N"? This point addresses
the issue of how a server responds as its load (client NFS operation request rate) increases.

3. Is the workload offered by the nhfsstone load generator equivalent, in terms of server and
network utilization, to the offered load generated by the AWM approach. Further, can the
load offered by "N" actual clients be simulated by adjusting nhfsstone’s NFS operation re-
quest rate while holding the operation mix constant?

4. Do NFS operation service time trends, as reported by nhfsstone, have a relationship to the
user-level task service time trends measured by the AWM approach?

5. Whatissues, if any, exist concerning the usage of the nhfsstone load generator utility?

2.2 Strategy

The evaluation strategy was to configure an NFS file server that had been previously character-
ized by the AWM approach. The client NFS operation mix and operation request rates meas-
ured during the previous characterization of the server were used as input to nhfsstone. Server
and network resource utilization were measured while nhfsstone applied the load to the server
for a 1-hour interval. The client NFS operation mix and operation service times reported by
nhifsstone were recorded and verified with parallel measurements made by the nfsstat NFS sta-
tistics reporting utility on the nhfsstone platform.

2.3 Metrics and Tools

Wherever possible, standard ULTRIX and UNIX* system performance monitoring utilities were
used to monitor server and nhfsstone platform performance. Table 1 summarizes the perform-
ance metrics and associated performance monitoring utilities used during the evaluation.

4UNIX is a registered trademark of American Telephone and Telegraph.

200 UniForum 1991 Conference Proceedings, Dallas, Texas

Performance

Monitoring Tool Metric

vmstat e Average server CPU idle time
e Simultaneous average and maximum server disk I/O opera-
tion rates
netstat e Average and maximum server network interface packet
rates
nfsstat ¢ NFS operation request mix and rate
nhfsstone e Average NFS request service time
LAN Traffic Monitor e FEthernet network utilization
Table 1 Metrics and Tools
2.4 Testbed

Table 2 summarizes the hardware and software used during the evaluation. A private Ethernet
network was used to interconnect the NFS server and clients. Note that a local disk was used
for the ULTRIX operating system on the nhfsstone platform so as not to place the load of an
additional diskless client on the server during testing.

AWM/SWS SWS Approach
Approach AWM Approach nhfsstone
File Server Diskless Clients Platform
System DECsystem® 3100 DECstation® 3100 DECstation 3100
Memory 24 Megabytes 16 Megabytes 16 Megabytes
Disks 3RZ55’ N/A 1 RZ55
Software ULTRIX V3.1 (RISC) ULTRIX Worksystem ULTRIX Worksystem
Software V2.1 Software V21
(RISC) (RISC)

Table 2 Testbed

gDECsystem and DECstation are trademarks of Digital Equipment Corporation.
An RZ55 disk is a 332 Megabyte SCSI disk drive.

UniForum 1991 Conference Proceedings, Dallas, Texas

201

3 RESULTS

3.1 Summary of Findings

The following list summarizes the findings of the evaluation, with further detail in the following
sections.

1. NFS operation mix was found to be invariant with respect to scaleability. Thus, the assump-
tion that a single client can simulate "N’ actual clients in terms of a constant NFS operation
mix was validated. Additionally, nhfsstone accurately reproduced the requested operation
mix.

2. NFS client operation request rate was found to be non-linear with respect to scaleability,
due to server response degradation. This implies that a rate other than "N" times the aver-
age NFS operation rate of one client must be specified as input to nhfsstone for each level
of clients (load) in order to simulate the actual load. This prohibits nhfsstone from being a
total replacement for the AWM approach.

3. Average server and network resource utilization levels were equivalent between the AWM
approach and the SWS approach, however maximum resource utilization levels were signifi-
cantly lower with the SWS approach than with the AWM approach.

4. A relationship between the NFS operation service times of the SWS approach and the user-
level task service times of the AWM approach was found. Thus, nhfsstone results can serve
as a rough, ballpark indicator of client application performance.

5. No major configuration or capacity issues arose concerning the nhfsstone platform through-
out the evaluation.

3.2 Invariance of NFS Operation Mix

NFS operation mix was found to be invariant with respect to scaleability by inspection of meas-
ured data obtained through the AWM approach. The NFS operation mix varied no more than
two percent across the range of clients. Thus, the fundamental assumption of the SWS ap-
proach that a single synthetic client can simulate "N" actual clients in terms of NFS operation
mix for a given actual workload was validated.

Invariance of NFS operation mix is an important property since a server’s response will vary as
NFS operation mix is varied. Since NFS file server performance characterization is primarily in-
terested in the server's response to increased load for a given NFS operation mix (workload),
any change in server response due to variance of NFS operation mix would skew the desired
characterization results.

A server's response changes as NFS operation mix is varied since not all NFS operation types
are equally expensive in terms of the work that the server must accomplish to process the NFS
request [BRIGGS88]. The underlying issue is that, since an NFS server is stateless, the server
must relegate any modified data to non-volatile storage before notifying the client that the re-
quested operation was completed [SANDBERG8S5]. For example, [BRIGGS88] reports that NFS
operations involving file system changes are much slower in terms of server response than op-
erations that can be resolved from various caches on the server.

Figure 1 presents a bar graph of NFS operation mix for those NFS operation types utilized by
the actual workload. The fsstat, link, readdir, and rename NFS operations each constituted less
than 1 percent of the total NFS operation mix.

202 UniForum 1991 Conference Proceedings, Dallas, Texas

NFS OPERATION MIX

Percent

AWM Approach
100 PP
N . ’{/ . -
. 1 Client 4 Clients % 8 Clients 12 Clients
80 o
16 Clients 20 Clients [/| 23Clients
60 -
40 —
20 - i
il
il
1B
0 L NIED T ‘e
CREATE GETATTR LOCKUP READDIR REMOVE SETATTR
FSSTAT LINK READ READLINK RENAME WRITE
NFS Operation Type

Figure 1 NFS Operation Mix

3.3 Non-linearity of NFS Operation Request Rate

NFS operation request rate was found to be non-linear with respect to the number of clients by
inspection of measured data obtained through the AWM approach. The non-linearity is attribut-
able to server response time degradation and a second-order effect of this degradation. In par-
ticular, the actual workload, reacting to slower server response, is unable to generate NFS re-
quests as quickly. The net effect of both these issues is that NFS operation call rate increases
due to increased numbers of clients, but individual client call rate decreases due to increased
service time at the server.

Figure 2 illustrates a graph which plots an “ideal" NFS request rate and the actual NFS request
rate versus the number of active NFS clients as measured through the AWM approach. The
"ideal" NFS request rate is defined by the case where the NFS operation request rate of "N" cli-
ents is equivalent to the average NFS operation request rate of one client multiplied by "N". In
this situation, an "ideal" or "responsive" server [KLEINROCK75] responds to increased client re-
quest rates with no performance degradation whatsoever.

The difference between the "ideal” and "actual” server curves is attributable to the aforemen-
tioned reasons. The difference implies that a rate other than "N" times the average NFS opera-
tion rate of one client must be specified as input to nhfsstone for each level of clients (load) in
order to simulate the actual load. This means that degradation of NFS operation rate of the
workload per unit of load (clients) due to server response degradation must be known empiri-
cally and supplied as input to nhfsstone through the requested NFS operation rate, in order for
nhfsstone to duplicate the actual workload. This prohibits nhfsstone from being a total replace-
ment for the AWM approach.

UniForum 1991 Conference Proceedings, Dallas, Texas 203

204

NFS OPERATION REQUEST RATE

AWM Approach

Requests / Second
60

O—© Ideal Regquest Rate
50

+ —+ Actual Request Rate
40 —
30 -
20 —
10 —
0 1 T T T

0 5 10 15 20 25

Number of Clients

Figure 2 NFS Operation Request Rate

Figure 3 illustrates NFS request service time as measured by nhfsstone. The specified
nhfsstone input parameters were set according to the results of the AWM approach, which im-
plicitly contained a measure of server response degradation.

NFS REQUEST SERVICE TIME VERSUS RATE
Avg Svc Time (msec) SWS Approach
50
40 —
30 0_\6 G/M’—‘M
20
10
0 L] T T T 1 | T
0 5 10 15 20 25 30 35 40
NFS Request Rate (Operations / Second)

Figure 3 NFS Request Service Time

UniForum 1991 Conference Proceedings, Dallas, Texas

3.4 Equivalence of Server and Network Resource Utilization

Nhfsstone generated average server and network resource utilization levels that were compara-
ble to those obtained through the AWM approach. The average load offered by "N" actual cli-
ents was successfully simulated by adjusting nhfsstone’s NFS operation request rate while hold-
ing the NFS operation mix constant. The resultant average load and associated server and
network utilization levels can be used to investigate server performance issues by holding NFS
operation mix and request rate constant, varying the server configuration, and observing
changes in NFS request response time.

However, nhfsstone did not produce maximum utilization levels that were comparable to those
experienced with the AWM approach. The maximum utilization levels produced by nhfsstone
were significantly lower than those experienced with the AWM approach. This can bias the aver-
age NFS request service times reported by nhfsstone in that the average service times reported
can be lower (more optimistic) than what would be obtained with an actual workload. The rea-
son is that maximum resource utilization levels increase NFS request service times.

The reason for the absence of maximum resource utilization levels in the load generated by
nhifsstone lies in the manner through which nhfsstone allows the NFS operation request rate to
be specified. The NFS operation rate is specified as a constant when, in reality, NFS operation
rate varies as a workload is executed. Thus, the load and resource utilizations generated by
nhfsstone are much smoother than what occurs in practice.

For example, at the 23-client level, the NFS clients in the AWM approach requested an average
of 37 NFS operations per second over the entire test interval of one hour. However, during a
10-minute peak period of activity within the total test interval, the clients requested 58 NFS op-
erations per second from the server.

Figures 4 through 7 present graphs of percentage server CPU idle, server disk I/O rate, server
network interface 1/O rate, and network utilization for average and maximum values achieved
with both the AWM approach and the SWS approach.

AVERAGE SERVER CPU PERCENTAGE IDLE
Percent CPU Idle
100
O—© AWM Average
80 — + —+ swWs Average
o4 T TTEeE
40 —
20 —
0 T T J T
0 5 10 15 20 25
Number of Clients

Figure 4 Average CPU Idle

UniForum 1991 Conference Proceedings, Dallas, Texas 205

SERVER DISK I/0 RATE
Operations/Second

100

O—© AWM Average - — SWS Average

80 — XX AWM Maximum [&:[=] SWS Maximum

60— .-l"““
lll-""'x.

PR o B
.-'.G'-‘-'-Ia

10 15
Number of Clients

Figure 5 Server Disk I/O Rate

SERVER NETWORK INTERFACE I/Q RATE
Packets Per Second

600

O—© AWM Average 4 — SWS Average

500 -
XX AWM Maximum [J:F] SWS Maximum

400 -

““.x..,..‘....x‘l“,-‘

.
.t

300 X

200 -

100 —

10
Number of Clients

Figure 6 Server Network Interface I/0 Rate

UniForum 1991 Conference Proceedings, Dallas, Texas

NETWORK UTILIZATION
Percent Maximum Measured Over 3 Second Interval

100

O—© AWM Average -+ — SWS Average

80 ¥ X AWM Maximum [J:E] SWS Maximum

60 —
40 e X

20 —

0 5 10 15 20 25
Number of Clients

Figure 7 Network Utilization

3.5 Relationship of Client Response Trends

In order to serve as an indicator of client application performance, average NFS request service
time reported by nhfsstone must relate to the average user-level task service time reported by
the AWM approach. To investigate the presence of a relationship, the normalized average NFS
request service time reported by nhfsstone was plotted with the normalized average user-level
task service time measured by the AWM approach for the range of clients tested. Figure 8 illus-
trates the resuitant graph.

UniForum 1991 Conference Proceedings, Dallas, Texas 207

NORMALIZED SERVICE TIME

O—© SWS Average

+ -+ AWM Average

T T
10 15
Number of Clients

Figure 8 Normalized Service Time

The values of the points on each curve of the graph in Figure 8 were normalized by dividing
each of the curves’ respective data points by the value of the respective curve at the 1-client
level. The desired effect was that the y-axis value of each curve at the 1-client level had a value
of 1, to facilitate comparison. The measured average service time values of nhfsstone’s NFS
requests were on the order of 28 to 37 milliseconds while those of the AWM approach’s user-
level tasks were on the order of 8 to 12 seconds.

The graph suggests that a relationship exists between the average NFS request service time
reported by nhfsstone and the average user-level task service time reported by the AWM ap-
proach. Thus, average NFS request service time as reported by nhfsstone appears to be a
rough indicator of application performance, and in this case, a ballpark indicator of user-level
task service time measured through the AWM approach.

It should be noted that NFS request service times as reported by nhfsstone form an upper
bound on client NFS-related degradation since nhfsstone attempts to defeat data buffer, file at-
tribute, and directory name lookup caches that exist on the client [SANDBERGS85]. These
caches help reduce the number of NFS requests that the client must issue for the client applica-
tion to accomplish its work.

In the initial evaluation documented herein, the exact nature of the relationship between the av-
erage NFS request service time of nhfsstone and the average user-level task service time of the
AWM approach could not be determined. One factor that influenced this outcome was that the
average NFS request service time of nhfsstone and the average user-level task service time of
the AWM approach are not independent variables, thus preventing the determination of a statis-
tical correlation. Another factor was one of measurement precision in that NFS request re-
sponse was measured on the order of milliseconds by nhfsstone while the AWM approach
measured user-level task response on the order of hundredths of seconds. A test procedure that
resolves both of these issues has been identified and will be included in future work.

UniForum 1991 Conference Proceedings, Dallas, Texas

The determination of the nature of the relationship serves as an ideal starting point for future
work. Given that response trends are typically exponential, the relationship here could very well
be exponential. Further, Figure 8 suggests that the relationship might be sinusoidal.

3.6 nhfsstone Platform Issues

No major issues were uncovered during the evaluation concerning the usage of nhfsstone. A
16-Megabyte DECstation 3100 was easily able to duplicate server and network utilization levels
associated with 23 clients executing the actual workload and beyond. At no point during the
evaluation was the platform unable to deliver the requested load using 12 nhfsstone subproc-
€sses.

Server filesystem layouts and the number of server disks can be significant performance factors
when configuring a server, however, this was not the case during this initial evaluation. For ex-
ample, comparable results were obtained when nhfsstone referenced three file systems on the
server as when four file systems were referenced on the server.

4 CONCLUSIONS

Nhfsstone produced average server and network utilization levels that were comparable to
those experienced with the AWM approach. This proved the validity of the NFS workload ab-
straction in terms of an NFS operation mix and an NFS operation request rate. Further,
nhfsstone accurately generated requested NFS operation mixes and NFS operation request
rates during the evaluation.

The average NFS loads generated by nhfsstone can be used to investigate server performance.
Changes in average NFS request service time can be observed while modifying the configura-
tion of the server and holding NFS operation mix constant. Graphs similar to Figure 3 which plot
NFS operation service time versus NFS operation request rate for a constant NFS operation mix
can be used as a means of comparison among various servers and server configurations.

Graphs which plot both NFS operation service time and NFS operation request rate take into
account the fact that the actual service time associated with a high server NFS processing rate
may not be as acceptable to a computing facility as the lower service time encountered at a
lower server NFS operation processing rate. Additionally, NFS operation service time trends can
serve as a rough, ballpark indicator of client application performance. Thus, graphs that plot
both NFS operation service time and NFS operation request rate will assist a computing facility
in answering the question "How will our application perform using this file server?” However, the
answer will be approximate rather than exact.

The maximum server resource utilization levels produced by nhfsstone were not comparable
with those obtained with the AWM approach. This can cause the average NFS request service
time reported by nhfsstone to be optimistic (low). Optimistic response indications further obscure
the relationship between the service times reported by nhfsstone and the AWM approach. This
optimism is offset by the pessimistic nature of nhfsstone in defeating various client caches which
tends to increase service times. The degree to which the pessimism balances the optimism
could serve as an area for future work.

Nhifsstone complements, but does not replace, the AWM approach to NFS file server perform-
ance characterization given the non-linearity of NFS operation request rate identified in Section
3.3. In order for nhfsstone to exactly duplicate an actual workload, the non-linear degradation of
a workload’'s NFS operation request rate must be known in advance and implicitly supplied to
nhfsstone through its requested NFS operation rate input parameter.

UniForum 1991 Conference Proceedings, Dallas, Texas 209

The AWM approach continues to have merit in that, in addition to providing user-level client re-
sponse information, the approach also tests large scale software and hardware interoperability.
Further, the AWM approach does not require prior knowledge of a workload's NFS operation
request rate degradation to associate client NFS request rate levels with given numbers of cli-
ents.

4.1 Possible Future Work

Several areas of future work are possible. As previously mentioned, the relationship between
average NFS request service time as reported by nhfsstone and user-level task service time as
reported by the AWM approach should be further investigated. The ability of nhfsstone to repli-
cate other actual workloads should also be investigated.

Measurements of NFS operation distributions (mixes) associated with several computing envi-
ronments should be made and distributed within the industry so that these NFS operation distri-
butions can be consistently used to characterize an NFS server's performance in different com-
puting environments. A checklist of NFS setup parameters (e.g., NFS timeout interval, etc.)
should be defined to ensure that a consistent environment is established when servers are char-
acterized with the various NFS operation distributions.

The nhfsstone utility might be further enhanced to more accurately reproduce actual workloads
in terms of maximum server resource utilization levels. This would improve the accuracy of the
average NFS request service time reported by nhfsstone so that more accurate predictions of
client application response could be made. Rather than taking a single NFS mix and operation
request rate as input, an enhanced version of nhfsstone might accept several mixes and request
rates as input so that it could dynamically change the generated load during execution. Alterna-
tively, an enhanced version of nhfsstone could generate a distribution of NFS operation request
rates within limits set by the user. Both of these enhancements would assist nhfsstone in ex-
panding its role into an actual workload abstraction/capture/replay tool targeted towards more
accurate prediction of client application response than its current role as a load generator.
These enhancements would aliow nhfsstone to grow into a tool that would allow a computing
facility to more accurately answer the question "How will our application perform using this
server?"

5 ACKNOWLEDGMENTS

I am indebted to many people for their various contributions to this evaluation: Charlie Briggs
and Chet Juszczak for their encouragement, insights, and comments; Paul Kotschenreuther for
his comments and role as chief sounding-board; Santa Wiryaman for his comments and auto-
mation of the evaluation process; Judy Piantedosi for her assistance in test environment setup
and WYSIWYG document preparation wizardry; Muhammad Ashraf and Doug St. Clair for their
statistical prowess; Lucy Patton and Angela Richard for their technical writing critiques; all of
those in USS-SECG Lab Services for their fast and accurate response to test equipment and
configuration requests; and last but not least, Lee Allison, Paul Kruger, and Linda Chasey Vin-
cent of USS-SECG management for their strong and constant support of this evaluation.

UniForum 1991 Conference Proceedings, Dallas, Texas

6 REFERENCES

[BRIGGSS8] Briggs, Charles, "NFS Diskless Workstation Performance”, Digital Equip-
ment Corporation Technical Report, February 24, 1988.

[KLEINROCK75] Kieinrock, Leonard, "Queueing Systems Volume 1: Theory", Wiley-
Interscience, 1975.

[LEGATO89] nhfsstone NFS load generating program, Legato Systems Inc., Palo Alto,
CA 94306.

[SANDBERGS85] Sandberg, Russel, et al., "Design and implementation of the Sun Network
Filesystem", USENIX Summer Conference Proceedings, pp. 119-130,
June 1985.

[SHEIN89] Shein, Barry, et al., "NFSSTONE - A Network File Server Performance
Benchmark", USENIX Summer '89 Conference Proceedings, pp. 269-274.

7 BIOGRAPHY

Bruce Keith is a Principal Software Engineer in the Low End Systems Systems Engineering
Characterization Group at Digital Equipment Corporation. Since joining Digital in December
1986, he has been leading a project concerning the performance characterization of ULTRIX
NFS file servers. Prior to joinin% Digital, Bruce developed systems software spanning UNIX,
VMS®, RSX-1 1M8, and TOPS-10" operating environments for timesharing, academic, and tech-
nical OEM businesses. Bruce received his BS degree in Computer Science from Worcester
Polytechnic Institute.

8RSX—1 1M, TOPS-10, and VMS are trademarks of Digital Equipment Corporation.

UniForum 1991 Conference Proceedings, Dallas, Texas

212 UniForum 1991 Conference Proceedings, Dallas, Texas

L

Enterprise Transaction
Processing

Terence Dwyer

UNIX System Laboratories
190 River Road

Summit, NJ 07901

(201) 522-5039

attunix!tjd

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

ABSTRACT

Traditionally, Transaction Processing (TP) has been performed on centralized
mainframe computers running proprietary operating systems, and proprietary TP system
software. In the last several years, we have seen the emergence of TP software,
including high performance Relational Database Management Systems (RDBMS), e.g.
[INFORMIX] and [ORACLE], and TP Managers such as TUXEDO® System /T
[AT&T], for computers running the UNIX® Operating System. However, the real
promise of transaction processing on UNIX-based computers lies not in the ability to
provide the "stand-alone” TP model common to proprictary systems, but in the ability
to provide the hub of an integrated, distributed Enterprise Transaction Processing
(ETP) System. This paper describes the hardware and software architecture of an ETP
System. Such a system will enable proprietary TP users and vendors to capitalize on
the trends toward decentralized computing, to migrate to UNIX-based TP systems, and
to protect their investment in proprietary TP systems.

1. INTRODUCTION

Figure 1 shows a typical ETP system configuration. This configuration is composed of the following
components:

« Tier-1: Personal Workstations (WS)
» Tier-2: UNIX TP Servers (UTPS)
» Tier-3: Proprietary TP Servers (PTPS)

The Tier-1 WS machines, running a variety of proprietary operating systems (e.g. MS-DOS™, OS/2™,
MACOS™, eic.) as well as the UNIX Operating System, are connected to a network, perhaps a Local
Area Network (LAN), as shown in Figure 1. These machines are used to provide user interface
processing. They allow the possibility of the attachment of hundreds of users to each UNIX TP Server,
and offer the possibility of a wide variety of new interfaces for TP applications, including Graphical
User Interfaces (GUI), in addition to the traditional forms-oriented TP-input paradigm.

Tier-2 consists of a networked set of powerful mid-sized computers running the UNIX Operating System
and TP system software, such as TP monitors and RDBMS systems. The network connecting Tier-2
machines could be a LAN (perhaps the same one to which the Tier-1 machines are connected, as shown
in Figure 1), or a Wide Area Network (WAN). The Tier-2 machines provide distributed TP services in
the UNIX environment, including access to a variety of TP applications using the high performance
RDBMS systems now available on UNIX platforms. In addition they link the workstations to the
proprietary machines.

Tier-3 machines are mainframe class computers running proprietary operating systems and proprietary
TP monitors such as IBM’s CICS [IBM-1]. Today, such machines do the bulk of TP processing for
most corporations, and contain a large investment in programs and stored data. Access to these
programs and data will be required as corporations move to TP Systems based on computers running the
UNIX Operating System. Increasingly, Tier-3 machines will take on the role of proprietary TP servers.
Figure 1 depicts a single Tier-3 machine with point-to-point connections from two Tier-2 machines. The
exchange of data between Tier-2 and Tier-3 machines is likely to be carried over special networks
supporting the proprietary protocols required to interface to Tier-3 machines.

Thus, an ETP system is composed of a collection of heterogencous machines (and attendant operating
systems), ranging from the personal computer to large proprietary mainframes. The Tier-2 (UNIX-
based) machines play the central role in this system, providing local TP services to the workstation
community, and connecting them to proprietary environments.

UniForum 1991 Conference Proceedings, Dallas, Texas 215

UNIX-MINI

UTPS

PROPRIETARY-HOST

PTPS

Figure 1. ETP Architecture

The TP platform software of the ETP system is the "glue” which binds together the hardware tiers into a
unified TP System. As such, it provides communications, transaction, and administrative services to
applications programmers and administrators, and may exist on all tiers. Key to the integration of an
application across the tiers is the existence of a common TP Application Programming Interface (TP-
API) for intermodule communication and transaction control. At the workstation level TP-API provides
for the communication of input requests to the Tier-2 machines. At the Tier-2 level, TP-API provides
for the reception of workstation input and the invocation of Tier-2 application services, or the
forwarding of the requests on to Tier-3 machines. At the Tier-3 level, TP-API provides for the
execution of TP service requests received from the Tier-2-machines. Goals of TP-API include
consistency of syntax and semantics, location transparency of invoked modules, and transaction
semantics on executed actions throughout the levels.

Subsequent sections of this paper expand on the architecture of ETP. Because of its central importance,
this paper begins in Section 2 with a more complete description of Tier-2. Section 3 shows how Tier-1
is incorporated in ETP. Section 4 provides considerations for the inclusion of Tier-3 (i.e. proprietary
TP) systems into ETP. Section 5 reports on the status of the construction of a commercial grade ETP
system.

2. TIER 2: THE UNIX TP HUB

We start with Tier-2, the "middle tier” of the ETP System. [Landis] provides good insight why UNIX-
based computers provide excellent functionality to play the middle role in ETP. This level consists of a
networked set of powerful minicomputers running the UNIX Operating System. The use of a set of
minicomputers offers several advantages including:

UniForum 1991 Conference Proceedings, Dallas, Texas

- the growing price advantage of machines smaller than mainframes
- the ability to mix heterogeneous machines, each suitable for particular tasks

- the ability to integrate several department size TP applications, each running on
dedicated hardware, into a single application domain.

It should be noted that Tier-2 is more than a switcher of workstation requests to Tier-3 machines. Tier-
2 machines themselves contain executable application code and shared databases. As TP applications
are made available on Tier-2 machines (either new applications, or migration of Tier-3 applications to
Tier-2 machines), many of the requests initiated from Tier-1 machines, or originating from within Tier-2
itself, may be completely satisfied at Tier-2. Tier-2 machines thus contain important, potentially
"mission critical”, resources for the corporation. As such, they are accorded the security and
administration (¢.g. backup) due traditional mainframe TP resources.

The TP environment for Tier-2 can be provided by an extension of TUXEDO® System/T. As described
in [Andrade], TUXEDO System /T provides a powerful client/server model suitable for building high
performance TP systems on Symmetric Multiprocessor (SMP) computers running the UNIX Operating
System. Features of the System /T architecture include a high performance, shared-memory based name
server, called the "Bulletin Board" (BB), and interprocess communication via System V messages.
Requirements for the extension of such an architecture to a distributed Tier-2 architecture include:

- Communications Support for inter-machine client/server interactions
+ Distributed Transaction Support (DTP)
+ A TP oriented APL.

+ Centralized Administration

Figure 2 depicts a two node, Tier-2 system built upon this extended architecture.
2.1 Communications

Extension of System /T to the distributed case can be implemented by:

1. the distribution of the "Bulletin Board"

2. the extension of the messaging system

2.1.1 Name Server Distribution The performance constraints of TP systems require a fast method for
determining client/server rendezvous. The shared-memory implementation of the BB in the SMP
implementation of TUXEDO System /T fulfills this requirement. In the distributed case, it is desirable
for each node to retain this fast access. One way to do this is to replicate the BB on all of the nodes.
However, the BB contains two types of information: name-to-address mapping, and statistics. The
former is used to provide location independence for client-server requests, and the latter is used for both
administrative purposes and for load balancing. The name-address mapping information represents
(relatively) stable information in a TP system, while the statistics are much more volatile.

The propagation of the BB’s stable data can be accomplished through a special set of distributed
administrative server processes called "Bulletin Board Liaison" (BBL) processes. Statistics, on the other
hand, are kept locally at each site, and are made available administratively. These statistics are too
volatile to be propagated throughout the system, and are not used as the basis of load balancing.
Instead, a round robin method is used at each site to balance service requests originating from that site.

2.1.2 Inter-Machine Messaging As described in [Andrade], System V messages have very good
properties for TP systems. In particular, they provide for a priority-based, reliable datagram service
upon which efficient client/server interactions may be built. Using System V’s networking facilities and
providing a generalization of the name space for message queues, it is possible to provide a robust

UniForum 1991 Conference Proceedings, Dallas, Texas 217

UTPS UTPS
CLIENT|| BBL CLIENT|| BBL
A B B
§| SYsEMT | ; SYSTEM/T
m d ! 5
BULLETIN BOARD | § 9 | BULLETIN BOARD '
— € e :
SERVER| |SERVER SERVER| |SERVER

Figure 2. Tier-2, Two Node System /T Configuration

inter-machine messaging facility. The key implementation vehicle is a set of cooperating bridge
processes which act as message forwarders. Since the bridges utilize reliable transport mechanisms,
such as Systems V’s TLI, the effect is to provide a "reliable datagram” service between client and server
processes on different machines.

As in the SMP case, services are requested by name. To application programmers, the network is
invisible (as are message queues in the SMP case). When a client requests a service, System /T selects
a server by using the local copy of the BB, and then sends its request message to the selected server,
using the bridges when the server is not co-located with the client. Likewise, System /T routes the reply
to a service request to the originating client, whether it be local or remote.

22 DTP

The distribution of client/server interactions across the Tier-2 machines heightens the need for
(distributed) transaction control. Transactions [Bemstein] provide a method to encapsulate a set of
actions into a single atomic unit of work. This unit of work either wholly succeeds or has no effect.
The results can be used to advance a set of distributed, logically related resources, e.g. data base
systems, from one consistent state to another. One way to provide transactions for the Tier-2 machines
is to implement the model of transaction control described in [X/OPEN-1]. In this model, a Transaction
Manager (TM) coordinates transactions throughout a set of computers by providing communications
paths with transaction semantics, and by interfacing to Resource Managers, e.g. DBMS systems, for the
purpose of transaction control. In order to do this, the TM:

1. Generates Global Transaction Identifiers
2. Tracks sites participating in the transaction

Executes a two phase commit protocol when the application signals that all of
the work is done

4. Executes a recovery protocol when a site is restored to operation after an outage
System /T has been extended to provide the transaction facilities according to the X/Open model. In

addition to the library routines which provide the application transaction management functions, the
implementation of transaction control is as a special set of administrative server processes (not shown in

218 UniForum 1991 Conference Proceedings, Dallas, Texas

Figure 2) which coordinate commit and recovery. These processes utilize data structures both in volatile
and persistent memory.

23 TP-API

The use of a set of computers at Tier-2 places additional requirements on the application. For example,
requests which effect permanent resources on multiple sites need to be grouped into transactions. If the
computers have heterogeneous cpu architectures, it will be necessary to convert data types as data is
exchanged. The following facilities are required of an API suitable for the high performance distributed
TP interactions which occur within Tier-2:

- Transaction control
- Client/Server Communications

- Presentation Services (data conversion)

System /T provides these functions to applications running on Tier-2 through a TP-API called the
Application Transaction Manager Interface (ATMI).

23.1 ATMI Transactional API The transaction control functions of ATMI allow an application to
delimit a series of requests as comprising a single unit of work, called a transaction [Bernstein].
Generically, they consist of the procedures to begin work, signal completion of work, and undo work.
In ATMI the functions which provide these services are called tpbegin(), tpcommit() and tpabort(),
respectively.

23.2 ATMI Client/Server Communications API The client/server communication functions of ATMI
allow the invocation of distributed services by name. Providing requests by name provides location
independence of the requester from the server, thus allowing the server to be relocated without
compromising the requester’s ability to direct requests to it. Useful request/response paradigms include:

« synchronous calls
« asynchronous calls

+ one-way calls

Synchronous calls block until the results are returned and are used when the requested results are
required immediately, Asynchronous calls may be used to improve throughput when an application has
several operations which may be performed in parallel. One-way calls are used when the results of the
operations need not be known by the requester. In ATMI these services are provides by the functions
tpcall() and tpacall().

Figure 3a depicts the standard stacking paradigm of request/response interactions. Here, SERVER 1
receives a request, does some processing, and calls SERVER 2 to do some more processing. While
SERVER 2 is processing, SERVER 1 is blocked, waiting for its reply. When this is received, SERVER
1 replies to the requester. Efficiencies may be gained in TP applications by providing facilities for a
"bucket brigade" style of processing, as depicted in Figure 3b. In particular, if SERVER 1 has no more
processing to do after calling SERVER 2, it can drop out of the request processing, and pass
responsibility for responding to the requester to SERVER 2. SERVER 1 then becomes free to handle
other requests. ATMI provides this paradigm via the function tpforward().

2.3.3 Communicating Transactions A key concept in the ATMI model is that transactions accompany
communications. For example, if a client begins a transaction, and then communicates with a server
(e.g. by issuing a tpcall() function), the work done by the server becomes part of the transaction started
by the client. Likewise, if the server makes requests of other servers, their work is also encapsulated by
the transaction. In effect, transactions are propagated to all called services, whose work is then either
committed or rolled-back when the originator calls tpcommit() or tpabort(), respectively.

UniForum 1991 Conference Proceedings, Dallas, Texas

REQUESTER SERVER 1 SERVER 2

Figure 3a: Stacked Requests/Replies

REQUESTER SERVER 1 SERVER 2

N\ a

Figure 3b: Forwarded Request/Reply

2.3.4 ATMI Presentation Services While it is desirable to allow for Tier-2 to be comprised of
computers of different cpu architectures, it is also desirable:

1. to minimize those differences for application programmers

2. perform conversions only as necessary

The messages sent between requesters and servers by ATMI calls are images of "typed buffers”
[X/Open-1]. A typed buffer is a buffer with an associated string-named handle, called its "type". A
typed buffer is created via a call to the function tpalloc(), and is destroyed by a call to the function
tpfree(). When a message is sent, the type of the associated buffer is used to select a conversion
function. Likewise, the type is used to invoke an "unconversion” procedure when the message is
dequeued in the server. Typically, the supplier of a type, e.g. a system’s programmer, provides its
conversion routines, so that its user, e.g. an application programmer, can use it in client/server calls
without regard to the architectures of the communicating machines.

System /T provides several built-in types, including character arrays, null terminated ASCII strings, C
structures, and an attribute-value abstract data type called a Field Manipulation Language (FML) buffer.
This latter type is a kind of heap data structure, in which elements are referenced by name. Built-in
types, except character arrays, are automatically converted when passed between machines of dissimilar
architecture. Character arrays are passed through without any conversion. Applications are free to add
their own buffer types, but in so doing must supply the associated conversion functions.

System /T calls conversion functions only when source and destination machines are of different
architecture, as indicated in a configuration file. Thus, if all of the machines at Tier-2 are of the same
architecture, no conversion will be done for exchanged data.

2.4 Administration

Although Tier-2 consists of a network of machines, it is often required that they be administered as a
unit, allowing an administrator to tend to the entire system from a single terminal. Such administration
would typically consist of booting or shutting down the system, monitoring its performance, adjusting
parameters, making backups, etc.

3. TIER 1: INCORPORATING WORKSTATIONS

There are several reasons to incorporate workstations in a TP environment. One of the most important
is to offload CPU processing for a human interface. The asynchronous terminal, the traditional UNIX

UniForum 1991 Conference Proceedings, Dallas, Texas

input device, imposes a significant burden on the UTPS for TP applications. The reason for this is that
each input character requires the servicing of an interrupt. Additionally, most TP input is forms-
oriented, and since forms packages most often read the screen in "raw mode”, the forms handler, an
application program, must be scheduled by the operating system on a per-character basis. The CPU
overhead to accommodate such processing is enormous, perhaps consuming as many cycles as the rest
of the software combined, including application, dbms, networking protocol and operating system logic.

Workstations, on the other hand, can be used as block mode devices, a type well suited for TP system
input. In this mode, an entire message is received with one interrupt. In addition to relieving the UTPS
of per-character processing, the cpu and memory provided by the workstation can be used to provide
alternate forms of interface, including GUIs.

The model of workstations assumed in ETP is that workstations are intelligent devices (i.e. ones with
cpu and memory) that are requesters of TP services. They need not be machines running the UNIX
Operating System, but must be capable of generating the protocol required to talk to a Tier-2 machine.
In the ETP model, workstations are assumed to contain no shared or persistent resources, such as
databases, do not themselves offer any services, are personally administered, and have no security
features.

3.1 Gateway to Tier-1

An important goal for ETP is to allow the connection of the large numbers of users typical of
proprietary TP systems to Tier-2 machines. The offloading of the cpu cycles for the forms interface is
not sufficient to provide this connectivity. It is usually the case that each user logged on to a UNIX
system has one or more processes attached to his or her terminal. The context associated with these
processes, including memory, file descriptors, process table slots, etc., is unacceptably large. What is
required is a method of connecting many TP terminals with much less context. One way to provide the
needed functionality is by providing a special gateway process, called the Workstation Gateway (WSG)
to provide communications with the workstation community.

Figure 4 shows the architecture of WSG. WSG is a multistated process, which provides connectivity for
many workstations with a minimum amount of context per workstation. Its primary job is to act as a

surrogate client for the "real” client software modules, which are executing on the workstations. As a
surrogate for many workstations, WSG cannot afford to block while waiting for replies to service
requests, and must be specially constructed to handle the blocking calls of its connected workstations.

3.2 Workstation TP-API

One way to integrate the tiers of ETP is to provide the same TP-API on them, when practical. Unlike
Tier-3 machines, workstations have not traditionally been used for TP applications, and do not have
existing TP-APIs. A natural choice then is to provide the Tier-2 TP-API on Tier-1 machines. However,
as workstations serve only a requester role in ETP, the API provided on them need only be the "client
side” of TP-API. For Tier-2 configurations running TUXEDO System /T, this means providing the
client calls of ATMI, called WS-ATMI, for the workstation machines. WS-ATMI includes transaction
demarcation and control functions (tpbegin, tpabort, and tpcommit), typed buffer manipulation functions
(tpalloc and tpfree), and service request functions (tpcall and tpacall). The client/server paradigm of
Tier-2 is thus extended to Tier-1 machines via a uniform API for service requests. As a set of library
routines, WS-ATMI may be used with a variety of forms and graphics packages executing on the
workstations to inject inputs into, and receive outputs from Tier-2 machines.

3.3 WS Transactions

The role of workstations in transaction control needs particular attention. Since workstations are
considered to be personally administered, and thus may be turned off for extended periods, they should
not be counted upon to provide transaction coordination for two-phase commit [Bernstein]. Instead,
when an application on a workstation calls commit, transaction coordination needs to be delegated to a
Tier-2 machine.

UniForum 1991 Conference Proceedings, Dallas, Texas

context

SERVER SERVER SERVER

Figure 4. Workstation Gateway (WSG) - Multi-stated Client Surrogate

3.4 Tier-1 Administration

Although workstations themselves are considered to be personally administered, their connection to an
ETP system should be subject to the administration of that system. In particular, an ETP administrator
should be able to determine activity to/from the workstation, enable/disable its connection to the system,
and advise it of abnormal conditions (e.g. imminent ETP system shut-down). A natural way to do this
is to have WSG provide surrogate administrative services.

4. TIER 3: INCORPORATING PROPRIETARY TP SYSTEMS

As mentioned in the Section 1, the bulk of commercial TP processing is currently handled by proprietary
TP systems. As TP users and TP vendors incorporate UNIX based solutions, there will continue to be a
need to access the programs and data on proprictary TP systems. Overall, the approach taken to
accommodate Tier-3 machines into an ETP system is to provide gateways from Tier-2 machines to
Tier-3 machines. Within a given ETP system it is entirely likely that multiple heterogeneous proprietary
systems may need to be incorporated. Such a scenario is depicted in Figure 5. In this figure, two Tier-2
machines (UTPS-1 and UTPS-2) are connected to three Tier-3 machines (no Tier-1 machines are
shown). UTPS-1 is connected to two 370-compatible mainframes (PTPS-1 and PTPS2), each running an
instance of the CICS Transaction Monitor [IBM-1]. UTPS-2 is connected to PTPS-2, and in addition is
connected to PTPS-3, a Tandem computer running the PATHWAY Transaction Monitor [Tandem].

4.1 Gateway to Tier-3

In the ETP model, Tier-3 machines are considered to be servers. The basic paradigm of
request/response is extended from Tier-2 to Tier-3 via UTPS-PTPS Gateway processes (UPGWs),
depicted in Figure 5. By advertising proprietary services on Tier-2 machines, UPGWs can act as
surrogate servers for the "real" servers, which reside on the proprietary system. Requests for proprietary
application services, which appear o the system to be processed on Tier-2, are really forwarded by the
UPGWs 1o servers on the proprietary system. To do this, the UPGWs need to have access to mappings
of local service request name to proprictary server name, and a method of transforming data to the

UniForum 1991 Conference Proceedings, Dallas, Texas

USER USER

UTPS-1 ' CLIENT I UTPS-2 CLIENT
I 4

R (2 (0 P
SEEE SN _[/ L _BULLETIN BOARD |
[UPGW | [UPGW] [UpGW] [UPGW]
LU6.2 3270 Emulation 3270 Emulation Tandem-TP

UPGW UPGW

| SERVER | | SERVER

[SERVER | SERVER |

PTPS-1(CICS) PTPS-2(CICS) PTPS-3(PATHWAY)

Figure 5. Multiple Heterogeneous Tier 3 Systems

format of the proprietary systems.

The actual method of interface to the proprietary system is cncapsulated within each UPGW. For
gateways which interface to the proprietary system via terminal emulation, only a Tier-2 side gateway
need be written. In this case, servers on the proprietary side are really terminal-bound processes, and the
gateway needs to convert inputs and outputs to terminal format via a mapping language. Such a case is
shown between the Tier-2 machines (UTPS-1, UTPS-2) and the PTPS-2 machine in Figure 5, where the
protocol is 3270 emulation. For gateways which interface to the proprietary system via a program-to-
program interface, for example IBM’s LU6.2 [IBM-2], it is likely that a peer gateway on the proprietary
side needs to be provided to yield the request/response paradigm available on Tier-2. This case is
depicted in Figure 5 for the PTPS-1 and PTPS-3 machines, each of which has a gateway partner for the
gateways on the connected Tier-2 machines. Of course, it should be possible to mix both program-to-
program and terminal emulation encapsulations, even to the same machine, within one application.

4.2 Tier-3 API

The location transparency of requests originating on Tier-1 and Tier-2 machines means that Tier-2
processes should not be aware that their requests are processed on a proprictary mainframe. The service
could migrate from Tier-3 to Tier-2, and the requesting module should sce no difference.

Several choices for an API on the Tier-3 machines themselves are present:

UniForum 1991 Conference Proceedings, Dallas, Texas 223

+ Provide the same API as in server modules of Tier-2.

+ Accommodate the semantics required of Tier-2 interactions, but in a syntax more
natural to the proprietary system, e.g in its native TP API.

Unlike the workstation case, where there are not existing APIs for TP, the proprietary TP systems have
APIs for TP. So, the choice here is not an obvious one (i.e. provide the same API as on Tier-2), and
may depend on many factors, including the ease of implementation and the acceptance of a new API on
the proprietary machine. Whatever the choice, automatic conversion of data formats is highly desirable.

4.3 Tier-3 Transactions

It is also highly desirable to have transaction semantics available across the Tier-2/Tier-3 boundary. For
example, this allows Tier-2 and Tier-3 database updates to be bound into an atomic unit of work. The
protocol for transaction control with a Tier-3 System will depend on that system, and, in general, will be
proprictary. For those proprietary systems whose protocols are compatible with the two-phased commit
with presumed abort protocol [Mohan], the interface to transaction control can be provided by the XA
interface described in [X/Open-2]. To do this, all or part of the proprietary system could be regarded as
a Resource Manager, and XA calls are made on the Tier-2 system by the UPGW (or other
administrative processes) to drive the transaction protocol. The implementation of XA for the
proprietary system is split between the invoking Tier-2 machine and the associated Tier-3 machine.
Note that it is likely the case that transaction semantics would only be supported for gateways whose
protocol is program-to-program.

4.4 Administrative Integration

It is also highly desirable to provide the administrator of an ETP system with tools to determine the
status of the Tier-3 machines which are incorporated into the ETP system. A natural way to provide
this is to have the gateway processes also serve as administrative surrogates for the Tier-3 machines. In
this case, each UPGW is responsible for booting any software needed on the Tier-3 system for
interactions with the Tier-2 system. Likewise, UPGW is the vehicle by which Tier-2 informs Tier-3 that
Tier-2 is shutting down. Finally, UPGW also responds to administrative requests as to the status of the
Tier-3 System. In this latter regard, it will generally be impossible to keep transparency, and the Tier-2
System will need a method to allow commands specific to the proprietary system to be passed through
via UPGW to the proprietary system.

4.5 UPGW Instantiations

In addition to pairwise instantiations for particular proprietary TP systems, two instantiations of UPGW
are of particular interest:

ISOTPGW. As ISO/TP [ISO/TP] moves towards reality, vendors will begin to
make it available in their proprictary environments. Such a protocol then
becomes the preferred method for interacting with proprietary systems,
Basically, a generic gateway type, ISOTPGW, will be able to accommodate
interactions with all ISO/TP conforming proprietary systems, although some
customization may be needed for administrative purposes.

UUGW. A particular instance of a Tier-3 System might not be a proprietary TP
system at all, but rather another Tier-2 System. Since Tier-2 systems have a
well defined input port, the WSG described in section 3.1, an instance of UPGW,
called UUGW, can be constructed by using the implementation of WS-ATMI for
a UNIX workstation. Its partner is the WSG. A set of such gateways working
in the opposite directions can provide complete connectivity between the two
ETP "domains”. The result is that it is possible to create a very large TP system
composed of domains of administratively autonomous ETP systems. The
domains are joined at the Tier-2 level. The construction of such large systems
begins to require the application of more advanced techniques, including the use

UniForum 1991 Conference Proceedings, Dallas, Texas

of a standards-based naming service and the incorporation of standards-based
administrative services.

5. ETP Status

The work reported in [Andrade] describes a method of building an SMP TP System on the UNIX
Operating System. Release 4 of TUXEDO System/T [AT&T], currently available from a variety of
hardware and software vendors, extends this work to provide a full, networked Tier-2 TP System. As in
the SMP case, no modifications of the UNIX Operating System were necessary to produce the Tier-2
system. The development of a full three-tiered ETP system is currently in progress, and will be
available in a forthcoming release of the TUXEDO System. The construction of very large systems
based on Tier-2 Gateways (UUGW) is under investigation.

6. SUMMARY

An architecture which integrates multiple levels of computer processing into a complete TP system has
been presented in this paper. The architecture provides for the migration of proprietary TP solutions to
those centered around a network of computers running the UNIX Operating System, and allows users to
take advantage of the trend towards decentralized operations, while protecting their investment in
proprictary TP systems. Elements of this architecture are currently available, and others are under
development.

7. ACKNOWLEDGEMENTS

I would like to thank the members of the TUXEDO project for their ongoing efforts in the realization of
the ETP architecture described in this paper. Mark Carges, Jane Dwyer, Howard Elder and Glenn Rose
provided valuable comments on drafts of this paper.

8. REFERENCES

Andrade J. Andrade, M. Carges, and K. Kovach, "Building a Transaction Processing System on
UNIX Systems", 1989 UniForum Conference Proceedings, pp. 167-176.

AT&T AT&T, "TUXEDO® System Release 4.0 Product Overview”, 1990.

Bernstein P.A. Bemstein, V. Hadzilacos, and N. Goodman, "Concurrency Control and Recovery in
database Systems”, Addison-Wesley, 1987.

IBM-1 IBM, "Customer Information Control System CICS/DOS/VS, Application Programmer’s
Reference Manual (Command Level)", SC33-0077-5, Sixth Edition, July, 19876.

IBM-2 IBM, "Systems Network Architecture, Format and Protocol Reference Manual,
Architecture Logic for LU Type 6.2", SC30-3269-3, Fourth Edition, December, 1985.

INFORMIX INFORMIX, Inc., "Informix-SQL Users Guide", October, 1986.

ISO-TP ISO/TC 97/SC 21C N 2274, "Information Processing Systems-- Open Systems
Interconnection -- Distributed Transaction processing -- Part 3: Protocol Specification,"
March 1988.

Ken Landis, "UNIX Calms Wall Street Chaos", CommUNIXations, August, 1990, p.22.

C. Mohan, B.G. Lindsay, R. Obermarck, "Transaction Management in the R* Distributed
database Management System,” ACM Transactions on Database Systems, December 1986,
vol. 11, no. 4, pp. 378-397.

ORACLE ORACLE Corporation, "SQL Language Reference Manual Version 6.0", February, 1990.
Tandem Tandem Computers, "Introduction to NonStop SQL™", March, 1987.

X/Open-1 X/Open Company Limited, Transaction Processing Working Group, "Interim Reference
Model for Distributed Transaction Processing”, July 7, 1989.

UniForum 1991 Conference Proceedings, Dallas, Texas

X/Open-2 X/Open Company Limited, Preliminary Specification, "Distributed Transaction Processing:
The XA Specification”, April, 1990.

UniForum 1991 Conference Proceedings, Dallas, Texas

L

International Language
Support in X11 Release 5:
Building a Standard for
Internationalized
Heterogeneous Network

Computing

Glenn Widener

Tektronix, Inc.

P.O. Box 1000 MS 60-850
26600 SW Parkway
Wilsonville, OR 97070
glenn@orca.wv.tek.com

227

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

International Language Support in X11 Release S:
Building a Standard for Internationalized Heterogeneous Network
Computing

Glenn Widener
Interactive Technologies Division
Tektronix Inc.
glennw@orca.wv.tek.com

ABSTRACT

The X Consortium has recently adopted a new version of the Xlib and Xt C
programming interfaces. This paper gives an overview of the X internationalization
architecture and the relevant changes to Xlib and the Xt toolkit intrinsics planned
for Release 5 of X11. The paper also discusses some of the requirements and design
issues that lead to the design for X internationalization, as well as issues that are
not addressed in the new X standard. In particular, problems with multilingual
support and heterogeneous network environments are discussed.

Xlib now supports the ANSI C internationalization architecture, and is based on the
ANSI C setlocale() function which configures the C system library for locale-specific
processing. Xlib provides new interfaces for obtaining localized text from the
keyboard, drawing localized text with X fonts, obtaining localized resource values,
and communicating localized text to other clients of the same X display. The current
locale (configured by calling setlocale()) is used by Xlib to determine the required
keyboard input methods, fonts, resource files, and codeset conversions to implement
the new Xlib functions in a locale-specific manner. The Xlib implementor and
system administrators are responsible for supplying locale definitions that are
consistent with the locale definitions supplied for the host C system libraries, and
for mapping them to locales and codesets used for communication with clients
executing on other hosts.

This paper presents the concepts behind the design of X input methods and text
drawing. Asian input methods and the model for obtaining the fonts required for a
given codeset are described. Issues regarding support of multiple locales and
displays and font availability in a heterogeneous environment are discussed.

X INTERNATIONALIZATION GOALS

The existing X Window System Version 11 standard, supported by the MIT X Consortium,
provides only minimal support for native-language text processing. In general, localization

UniForum 1991 Conference Proceedings, Dallas, Texas

requirements (that is, adaptation to the language and customs of a customer in a non-U.S.
locality) must be addressed by the X11 client developer.

Late in 1989, the X Consortium member companies reached a concensus that the time had
come to introduce internationalization technology to X. Internationalization ("i18n" for
short) is defined by the X/Open Portability Guide, Issue 3, as "The provision within a
computer program of the capability of making itself adaptable to the requirements of different
native languages, local customs and coded character sets." In simpler, more practical terms,
internationalizing is making a computer program adaptable to different locales without
program source modifications or recompilation. In most standards-based implementations,
i18n means that the programming interfaces to which an application are written are
independent of the locale in which the application runs, and that the libraries implementing
those programming interfaces are adaptable at runtime to any locale of interest, typically by
loading a database that defines the behavior for the desired locale. This database includes
such things as error messages in the native language, character types (e.g., "isalpha"), the
format for printing a date or numeric value, and collation sequences. Localization, therefore,
is this process of adapting the library to the locale.

The reality of internationalization is that a standard programming interface that covers all of
the localities in the world does not yet exist. In defining the goals of X i18n for Release 5,
the X Consortium specifically elected not to consider the requirements of certain locales,
particularly those that require contextual text rendering and bidirectional text support, such
as Hebrew and Arabic, or vertical text rendering in Asian countries. These omissions were
based on the perceived complexity of these problems, the desire to obtain a basic i18n
architecture as soon as possible, and the lack of a strong market requirement for these
locales by most Consortium member organizations. Other locale dependencies, such as
displaying cascaded menus right-to-left when the text rendering direction is right-to-left, or
using different graphical icons in different locales, are best addressed in user interface
toolkits, which are not currently part of the X standard.

DESIGN CONSTRAINTS AND APPROACH

As a change to an existing, widely used system which is in the process of standardization,
the design of i18n in X must live within certain constraints. Because the X protocol is
undergoing ANSI standardization, it was concluded that no protocol changes were
permissible. For example, the protocol specifies the ISO 8859-1 character set (“Latin-1",
ASCII plus Western European characters) for many text values such as Atoms, font names,
and color names. While changing this to a locale-independent encoding would be useful, it
was not allowed. Further, it was desired for the first phase of i18n that no protocol
extensions would be required. This contributed to the omission of vertical text support, since
the X11 protocol does not support vertical text drawing.

The X i18n design team concluded that the right approach to i18n was to modify and extend
the C-Xlib interface so that any Xlib client code could be made locale-independent, and in
turn to modify the Xt toolkit intrinsics to use the 118n Xlib interface. The specification for
these changes should be completing public review in January 1991, with the objective of

230 UniForum 1991 Conference Proceedings, Dallas, Texas

implementing the new standard in Release 5, to be available in 1991.
INTERNATIONALIZATION STANDARDS: THE LOCALE MODEL

The best known and most widely implemented standard for i18n is ANSI C. Because of this
widespread usage and the lack of any widely used alternative technology, the X Consortium
concluded that it was appropriate to base X i18n on ANSI C.

ANSI C introduces to the C language the notion of a "locale", which is the run-time
environment of a computer program defining the locale-specific behavior of that program.
Each locale is identified by a name, which is passed to the ANSI C setlocale() function.
Setlocale() initialize the locale for all locale-dependent C system library calls, globally for
the calling process. The name typically incorporates a language, a geographical territory, and
a codeset (the coded character set in which text is processed).

A key feature of the locale model is codeset independence: application code should not make
any assumptions about how characters are encoded. Even in the same locale, each C library
implementor is free to choose a different encoding. Later in this paper, we will discuss the
consequences of this freedom for heterogeneous network computing, particularly in the X
environment.

The burden for implementing locale-specific processing thus falls on the vendor of the C
library, and on system administrators who define locale-specific processing characteristics
using the database-driven facilities provided by the C library vendor. Many terminal-based
applications have been internationalized for Western Europe and the Far East using this
system.

The Consortium decided that X could use the setlocale() function directly as the means of
configuring X library functions for a locale. The goal is that the application can freely pass
text strings between C library functions and X functions. Direct use of setlocale() was
motivated by a desire for simplicity, and to avoid duplicating interfaces that could be
expected to be supplied by other system software.

Avoiding duplication may prove difficult in one area — the implementation of the definition of
the locales inside Xlib. Xlib functions must have access to the complete definition of the
codeset of the locale in order to map characters to font glyphs. However, there are few
standards in existence for the tools to define C library locales and codesets or the databases
those tools produce. As a result, the sample Xlib implementation must provide an
independent mechanism for codeset definition that is portable to any C environment, yet
allow host software vendors who are supplying both the C library and the X library to
integrate this mechanism into their existing C library locale definition system.

The Release 5 Xlib sample implementation will provide a general, portable mechanism for
localization, and a number of sample locale databases. For systems that do not support
ANSI C, the sample implementation will provide a minimal setlocale() implementation,
sufficient to support X localization.

UniForum 1991 Conference Proceedings, Dallas, Texas

MORE DESIGN CONSTRAINTS: API COMPATIBILITY

Upward binary and source compatibility of the Xlib and Xt application programming interfaces
is required. Several Release 4 Xlib functions pass the Latin-1 protocol strings mentioned
above directly to or from the caller. The i18n design has to take into consideration both
existing Xlib implementations that strictly obey the specification of Latin-1 for these
functions, and existing Xlib implementations on non-ASCII-based systems that convert

between the host codeset and Latin-1. The latter implementations, while strictly non-
compliant, correctly anticipate the X i18n design! At this writing, this compatibility problem
is avoided by

 narrowing the character set specification to a portable subset of the ASCII character set,
called the "X Portable Character Set",

» assuming that these characters are encoded the same in all locales on a given host (not
necessarily as ASCII), and

* leaving the behavior for other characters implementation-defined.

While this assumption about identical encoding of a basic character set in all locales is not
guaranteed by ANSI C, it is true for all implementations of which the Consortium is aware
and is proposed for the "Portable Filename Character Set" in a new POSIX draft under
review. One can imagine the chaos that would result if ASCII characters commonly used in
filenames were encoded differently in different locales! But the fact is, even with the
proposed POSIX restriction, this chaos can still exist in a heterogeneous networked file
system, if all systems do not use an ASCII-based encoding for filenames.

ARCHITECTURE OF AN INTERNATIONALIZED X CLIENT
Figure 1 summarizes the basic architecture of an X11 client, and identifies the major

subsystems in which localization will be implemented and the major localization features
managed in those subsystems.

232

UniForum 1991 Conference Proceedings, Dallas, Texas

An X11 client

RTL Menus, 5
toolkits (Bitmaps ’

Xt Resource

input method,
chars->glyphs

ANST-C
X server |C-system library

character types, date, oS
messages, collation 8-bit filenames

Xlib

: keyboards, |

E! English, R5 118N

J: Japanese, OS 18N
... other localized messages,

loaded from file system R4 X, OS

Figure 1 - Internationalized X Client
Architecture

ANSI C defines the primary programming interface to the C-system library, although many
implementations offer additional interfaces, particularly for localization of error messages and
other text that is usually embedded in non-internationalized clients. The X/Open Portability
Guide, Issue 3 is an ANSI C based industry standard which offers message localization.
Note that an X client will have a choice of using system library or X resource interfaces for
localization of messages. As of this writing, the X resource mechanisms are split between
Xlib and Xt. At this writing, a proposal from the author is under review within the X
Consortium to move the Xt resource loading conventions into Xlib, so that a consistent
mechanism is available for all clients, including those not based on the Xt intrinsics. X
toolkits, and Xlib itself, will use X resources to obtain localized messages.

X TEXT PROCESSING

Within XIlib, the locale affects only processing of text. To understand how X text processing

UniForum 1991 Conference Proceedings, Dallas, Texas

is internationalized, let’s first examine the X Release 4 text processing model, without full
i18n, then describe how 118n text is to be processed in X.

Figure 2 shows an X client which starts up, reads some command line options, possibly
some text from files, and opens a connection to the display through Xlib. It will typically
create an X resource database from textual resource values kept in files and on the X server.
Resources include such things as named colors, menu labels, fonts, and bitmaps. In Release
5, these resources will be loaded from a file whose name is constructed from the locale name
set by setlocale() and whose contents are in the codeset of the locale.

@ files

[

X Client 1 X Client 2 X Client 3:
X Window

Manager

Xlib

A

]
window properties

X Server

/ keyboard
]

Figure 2 - Text Processing in X

In creating its windows, the client puts a number of textual properties such as window and
icon names on the window for the benefit of the window manager.

UniForum 1991 Conference Proceedings, Dallas, Texas

Once the necessary resources have been processed, the client initialized, and its X windows
created, the client can begin accepting text from the keyboard and printing text in windows,
using a font provided by the server and selected by a resource value. The next two sections
will describe how this is internationalized.

Finally, X supports a general mechanism of selections, that allows data to be passed
between clients under the control of graphical selections by the user. This data includes any
permanently visible text. Both this text and the window properties should be communicated
in the multi-character set encoding "Compound Text", defined in Release 4. Release 5 Xlib
will contain utility functions to convert localized text to/from Compound Text.

TEXT INPUT 118N

To obtain text typed at the keyboard, the X client removes each successive hardware-
dependent KeyPress event from the Xlib event queue and passes it to the Xlib routine
XLookupString. This function returns a 32-bit hardware-independent "KeySym" value that
represents the glyph on the keycap, and, if meaningful, a string that corresponds to the
pressed key. Depending on context, the client will either use the KeySym to trigger key-
driven actions or append the string to a text buffer.

On English keyboards there is a one-to-one correspondence between keystrokes and
characters (ignoring case). Unfortunately, it is almost the only language where this is the
case! Most European languages require support of diacritical marks, which typically require
two or three keystrokes to generate a single character. X11 Release 4 allowed Xlib
implementors to support diacritical marks and other "Compose sequences", internally to the
XLookupString function.

Asian writing systems based on the Chinese ideographic character set, which has thousands
of characters, present far more complex input problems. Typically, users must input a
phonetic form, such as Hiragana or Katakana in Japan, then use an interactive, highly
sophisticated interface called an "input method" to convert a sequence of phonetic characters
into ideographs. The method is interactive because in general the conversion cannot be
accomplished without human intervention. Typically, the input method offers the user a
choice of several possible equivalent ideographs, and the user selects the desired one, in a
"pre-edit” dialog.

A large amount of research is ongoing in Asian countries to improve the efficiency of input
methods, applying Al technology to reduce the frequency with which the user is forced to
select the desired ideograph. These input methods are large, complex programs, and
typically are shared between multiple applications using some form of inter-process
communication.

However, in a windowed environment, it is desirable that the overall user interface appear
seamless, with the pre-edit dialog being conducted in close proximity to the text entry point.
Ideally, the phonetic pre-edited text would appear at the text insertion location, rendered
identically to the surrounding text. This is called "on-the-spot" pre-editing. Because of the

UniForum 1991 Conference Proceedings, Dallas, Texas 235

complexity of having the application render the pre-edit text, many designs have used a
separate window or a sub-window of the client’s window to display the pre-edit dialog.

A new input routine, XmbLookupString, extends XLookupString to support complex input
methods. The client creates an opaque "XIM" object in the current locale to represent the
input method, creates an "IC" (Input Context) object to represent a particular text input
dialog, and calls XmbLookupString with the IC and each successive KeyPress event. Prior
to calling XmbLookupString, the client will interact with the XIM and IC to configure the
input method for the desired pre-edit style from among those that the input method supports,
and to set various user interface resources so that the input method user interface is
consistent with the application user interface. In addition, if the client wishes to support “on-
the-spot" pre-edit, it must supply the IC with callback functions that implement the pre-edit
text rendering.

The input method API is more complex than can be described here. In some architectures
the input method will intercept the key events before they arrive in the client’s input queue,
or will need to steal certain non-key events prior to client event dispatch. Interested readers
should obtain the input method specification listed in the references to learn more about input
method architectures supported by X i18n. Figure 3 should give an idea of the potential
complexity.

UniForum 1991 Conference Proceedings, Dallas, Texas

X application X IM Manager

_ _other (on-the-spot mode)
‘e evegtf pre-edit
evihts callbacks
FilterEvent DrawText
ent tejxt
pre-edit
Xlib text
event converted
v
queue LookupString XIM text
pre-edit
and final text
A
x Server application lnput

This is some

application text Method

being entered

Server

input
status

/ / keyboard

Figure 3 - 118N Text Input

TEXT DRAWING 118N

Release 4 X makes a basic assumption that a codeset (an encoding in which text is
processed and stored) is the same as a charset (an encoding in a font). Clients assume that
they can open a single X font specified by the user and call Xlib text drawing functions with
the font and an arbitrary text string. This assumption is tolerable for Western European
languages, but becomes impractical in writing systems with a very large number of
characters, such as the ideographic writing systems of the Far East, or in writing systems
where there is not a one-to-one correspondence between each "coded character” and a
single glyph used to image that character. For many languages in the latter class, such as
Arabic or Thai, the glyph used for a character depends on the surrounding text, so that text

UniForum 1991 Conference Proceedings, Dallas, Texas 237

rendering is context-dependent. Even Western European languages can be context-
dependent if ligatures are needed, or if accented characters are represented in the stored text
as two separate characters, the accent and the alphabetic character.

To address these languages, Xlib i18n introduces the concept of a "font set”, represented by
an XFontSet opaque object. A new set of Xlib routines to draw text and obtain text metrics
takes an XFontSet instead of a single font. Clients create an XFontSet within the current
locale, based on a list of "base font names" specified by the user. Conceptually, a base font
name identifies a family of fonts of a similar typeface, each font containing a set of glyphs
useful in a particular locale or set of locales. X uses a structured font name format called "X
Logical Font Description”, which identifies each font property such as typeface, point size,
style, or character set by a specific field. A typical base font name specifies all properties
except the character set, allowing the locale definition in Xlib to determine which character
sets are required.

Ideally, only one base font name would be required to support all locales. However, current
practice is to assemble a set of fonts from a variety of sources to cover a given locale. For
example, Japanese is frequently supported by one 8-bit font for ASCII, another 8-bit font for
Japanese phonetic characters, and a 16-bit font for Kanji. Each might require a separate
base font name to be identified. The base font name list is ordered, and Xlib follows a
specified algorithm to search the list to obtain a font for each required character sets. A
system administrator could specify one base font name list that covered many locales, with
Xlib opening only the needed fonts.

By isolating the client from the actual fonts, character sets with greater than 2A16 characters,
such as Traditional Chinese, can be supported. Also, server memory resources can be
conserved by splitting a large character set into multiple fonts, with a font being loaded into
the server only if a character from that font is actually rendered.

PROBLEMS WITH APPLYING THE LOCALE MODEL TO X
MONOLINGUAL OR MULTILINGUAL?

Implicit in the locale model are several assumptions about i18n. One of the most important
is that a given process handles a single locale throughout its life. True multilingual text
processing, in which one can process a single text stream containing text in arbitrary multiple
languages, taking all language dependencies into account, is not supported. While in theory,
the program could call setlocale() at any time to process text in multiple locales in a single
program invocation, for most C library implementations setlocale() is a heavyweight call, on
the assumption that applications will call it once at program initialization time. Some limited
multilingual support is provided by some vendors, for example, mixed English and Japanese
text, by defining a "super-locale” which allows encoding Latin and Kanji characters in a
single text stream. However, there is no provision in this model for handling locale
dependencies that are independent of the character set, such as the format for printing a date
or locale-specific collating sequences. The ANSI C locale model supports multilingual only if

238 UniForum 1991 Conference Proceedings, Dallas, Texas

the language can be inferred from the character.

A major perennial debate in X i18n is whether X should be emphasizing monolingual support
as a clear, achievable near-term objective, or moving ahead toward the more ambitious goal
of true multilingualism, Most vendors have felt that at least 90% of their customer needs are
addressed by monolingual support. An increasing number of users and vendors, however,
are asking for true multilingual support.

Unfortunately, standards groups in other areas than X have not yet begun to address the
requirements of multilingualism, and the basic technologies for multilingual text processing
are still in their infancy. The X Consortium’s charter generally prevents it from standardizing
new, unproven technologies. The Consortium concluded that for Release 5, the advantages
of following the ANSI C locale model outweighed the existing customer demand for
multilingual text processing.

However, consensus is now building that the locale model is inadequate in the long term, and
that X should provide an alternative model that can support full multilingualism, at least
within X. At the very least, Release 5 118n should not interfere with clients that wish to
implement multilingual text.

At this writing, a multilingual model is not fully defined, and no decision to include one in
Release 5 has been made. This author believes that most requirements can be addressed by
supporting a "tagged text" format, based on the multi-codeset encoding "Compound Text"
currently defined by X for inter-client text interchange. Each individual locale segment would
be preceeded by a tag that identifies the locale. This model has the additional advantages
that the standard vehicle for inter-client text interchange would support full multilingualism,
and that clients would not have to convert text strings communicated from another client to a
locale in order to render them at the display, Clients may parse a tagged Compound Text
format and maintain the text internally in a "structured text" form. Structured text manages
text as a list of objects, each object containing a text segment with attributes (e.g., font,
style, point size, and locale). Traversal is efficient, and new attributes are easily added.

LOCALE CONTEXT BINDING

Even if we ignore the needs of true multilingualism, we still have to consider the possibility
of differing locales being set simultaneously in a system.

The X programming model is context-rich, with many programmer-visible objects such as
displays, windows, graphics contexts, text input contexts, and fonts. One of the fundamental
design decisions for X i18n was whether the locale should be strictly global and managed
entirely by the client, as in ANSI C, or whether it should be bound to one or more X objects.
For example, should one create a FontSet object in the current locale, validate the font
availability for the locale and base font names at creation time, and ignore future changes to
the global ANSI C locale, or should the validation of font availability be performed at drawing
time, based on the locale at drawing time? In general, one can examine a whole hierarchy of
possible locale context bindings:

UniForum 1991 Conference Proceedings, Dallas, Texas

» per-process (global via setlocale())

» per-display (one locale for all clients of a display)

» per-client connection (one locale for each client of a display)
» per-top-level window (or Xt Shell widget)

» per-subwindow (per Xt widget)

« per X text resource (XIM, Input Context, XFontSet)

« true multilingual (mixed locales in a single text stream)

In X, a single process may open connections to multiple displays. An example would be an
interactive inter-office message system. Each display represents a different user, and each
user should be free to define a locale to match his preferences. Thus, one cannot make the
assumption that a given process will operate in a single locale, even if one assumes that
there are no multi-lingual users!

The user paradigm in a windowed environment that is most analogous to a process in a shell-
based terminal environment is the top-level window. Thus, one can argue that to provide the
same level of user-visible locale granularity in X as ANSI C provides in a terminal
environment, a locale should be associated with each top-level window. This would support,
for example, a user whose native language is Japanese and who is reading mail written in
Chinese and in English. All error messages and dialogs would be in Japanese, but the user
could instruct the mail reader program to display each message in its native language in a
separate top-level window. But then why should the client be forced to show each message
in a separate top-level window, instead of in subwindows of a single top-level window?

In ANSI C, if a program needs to operate with more than one locale, it must manage the
locales itself, calling setlocale() each time it changes locale context, since the only context in
the C library is global to the process. If a multi-locale X client is also multi-threaded, it
cannot depend on any global state, and must have some means of binding the locale to
objects that are passed explicitly to the lower-level toolkit libraries. Since both the Xlib
display object and windows/widgets are passed explicitly throughout X, they are good
candidates for locale association.

The compromise reached in the X i18n design was to bind locale to the XIM (Input Method),
XFontSet, and resource database objects, but provide no model for binding locale to displays
or windows. This approach keeps the programming interface simple, particularly for
validating font and input method availability for the locale, while giving multi-threaded multi-
display applications a means of managing locales for the most important user data. At the
same time, it makes no assumptions about typical locale granularity at the user interface.
The Xlib context manager can be used by a client to associate locales or other locale-
dependent objects with windows.

240 UniForum 1991 Conference Proceedings, Dallas, Texas

HETEROGENEOUS NETWORK ISSUES

In addition to mechanisms to manage locales within the client, there must also be
conventions for announcement of the locale by the user. In ANSI C, most clients will allow
the C library implementation to select the locale by passing an empty string to setlocale().
Most implementations take the locale name from the environment variable LANG. As we
have seen above, even when each user uses only a single locale, that locale needs to be
announced at the display for the benefit of multi-display clients. The Release 4 Xt intrinsics
have support for localized resources, and provide a convention where the locale name is
taken from a program command line option, else a resource value which can be defined at the
server, else the C library’s environment variable. This announcement hierarchy has been
adopted as a recommended convention for Release 5 Xlib, but is not directly supported by the
API. The author’s aforementioned resource loading mechanism proposal would directly
support the Release 4 Xt intrinsics conventions in Xlib.

There is a serious flaw with this design, however. Today there are no standards for locale
names; each C library vendor must define their own naming conventions for locales. As a
result, in a heterogeneous network, such as the one shown in Figure 4, the only way to
announce the locale at the display is if the local system administrator can define a set of
matching locale names on all machines in the network. The X Consortium has declined to
address this problem, since it affects far more than just X. Unfortunately, it appears that at
the present time there is no standards organization which sees such heterogeneous network
interoperability as part of its charter.

DEC (XPG3, 1S08859-1) IBM (EBCDIC)
X Client 1 X Client 2 X Client 3
Xlib Xlib Xlib

1 —]

X Display X Display || X Client 4
Tek X Terminal HP Workstation| xjib
(ASCll+Tek Supp.) (HP Roman)

Figure 4 - A Heterogeneous X Network

UniForum 1991 Conference Proceedings, Dallas, Texas 241

TEXT COMMUNICATION IN THE X PROTOCOL

Even if the user manages to announce matching locales to clients running on different
systems, the implementations of the locale may still not match; in particular, the codesets
may be completely different. For text processing within the client, this is no problem, and
CompoundText addresses the needs of inter-client text communication across a
heterogeneous network. But when the text must be rendered at the display using the fonts
provided by the display vendor, problems again arise.

Figure 4 shows an X client running on an IBM mainframe, whose locales are based on
EBCDIC instead of ASCII, talking to a Hewlett-Packard display, which provides fonts
encoded in proprietary HP charsets. For the client to be able to use these fonts, the Xlib
locale definition must be able to map the codeset to the font charsets. However, it is
impractical for all Xlib implementations to have knowledge of a variety of proprietary
charsets. A solution would be to define a database of mappings from "X standard charsets"
(as defined by the Compound Text specification) to proprietary charsets, stored at the
display and read by the Xlib implementation. As of this writing, no such protocol has been
defined by the Consortium.

CONCLUSIONS

With X11 Release 5, it will become practical to develop internationalized X applications that
can meet the local requirements of a large percentage of the world population. The
development of the new X11 i18n standard has revealed a number of interesting and
important problems which must be solved to meet the processing requirements of the
remaining major world languages, to address the needs presented by the increasing amount
of inter-cultural communication, to support the growing percentage of the population with
multilingual skills, and to realize all of these capabilities in a heterogeneous networked
environment.

ACKNOWLEDGEMENTS
The author is indebted to each contributor to the X Consortium "mltalk" discussion group for

their knowledge of and insights into internationalization and the X Window System, and for
their tireless efforts to achieve consensus on a workable standard for X internationalization.

REFERENCES

Public Review Draft X11 RS Internationalization Specifications (available from the X
Consortium):

Xlib Changes for Internationalization: X Locale Management and Localized Text
Drawing, Glenn Widener, Tektronix, Inc.

UniForum 1991 Conference Proceedings, Dallas, Texas

Inpur Method Specifications, Vania Joloboff, Open Software Foundation, and Bill
McMahon, Hewlett-Packard Company.

X11 R4 Specifications:

X Window System C Library and Protocol Reference, Robert W. Scheifler, James Gettys,
Ron Newman, Digital Press, 1988.

X Toolkit Intrinsics - C Language Interface, Joel McCormack, Paul Asente, Ralph Swick,
Digital Equipment Corp.

Inter-Client Communication Conventions Manual, David S. H. Rosenthal, Sun
Microsystems.

Mulrilingual Word Processing, Joseph D. Becker, Scientific American, July 1984.

ANSI C X3J11/88-159, ANSI C X3J11 committee (December 7, 1988).

X/Open Portability Guide, Issue 3, December 1988 (XPG3), X/Open Company, Ltd,
xpg3@xopen.co.uk, Prentice-Hall, Inc. 1989. ISBN 0-13-685835-8. (See especially Volume
3: XSI Supplementary Definitions)

IEEE" Standard Poriable Operating System Interface for Computer Environments (POSIX),
IEEE Std. 1003.1-1988, New York, New York:IEEE.

UniForum 1991 Conference Proceedings, Dallas, Texas 243

UniForum 1991 Conference Proceedings, Dallas, Texas

Author Index

Anderson, Rita M.

Beyond the ABI: Attaining "Shrink Wrapped" Software erersrense ettt e b s s e nereronerenessaen 13
Andrew, Michael J.

Why Isn’t My Data Portable?c.oovereommeieeesessnsseoneceeseseesesesmssesssssssssessssses s sessseesssesseeeeeenessssseesese 125
Clark, Mark A.

The Use of Erasable Optical Disk Technology for Data Archival in a UNIX Internet Environment 89
Dwyer, Terence

Enterprise Transaction Processing Seebetet ettt e e e et e ae s e s e s bt eaeabesentsaesbesensenerenens 213
Engeihardt, Kenneth

Porting System/370 Cobol Applications to UNIX-based COMPULETS ... eeee e ess s e s 29
Grimson, Jane B.

A Study of Version Control Systems ... et e a bt e s et r e n s e nsensnanen 165
Haslett, John

A Study of Version COntrol SYSIEMScocc.cerveeeueeeeneemmeeeeeseeessssssesssssesssssssssseos s seeesesesesessessens ...165
Keith, Bruce E.

Perspectives on NFS File Server Performance Characterization ..o 195
Kimball, Paul E.

Porting Between Open Look and OSF/Motif GUIScveeeeeeeeesoeeseoeeeeeeeeoeoeoeeeoeoeoeeeoeoeeeeoeeeeoeoeoeeoeoeooeo 71

Kiuchi, Mark
Porting System /370 Cobol Applications to UNIX-based COMPULEESoooovvveomoooooo 29

Ma, Jonathan Z.
Multimedia Document Workstation: Future Data Terminal EQUIPMENL ...t eeseseesssesssnens 39

O’Donovan, Brian
A Study of Version Control SYSEEIMSeeevevveerveoseeeemmnseeeeossessessesssseeeess oo eses oo seseeeeseeeeeesseoeeseseeeeeoeoeee . 165

Riddick, Christopher J.
Rethinking the Information Security Paradigm for Workgroup Computingoveueemeeerercreesresresresressons 115

Shearer, Paul
Selecting a Graphical User Interface Strategy for Maximum Portabilityccoirveeeereiieie e 55

Smith, Ronald G.
Application Development in the ANDF MOdelcowecuuuureomnnneieemeneeeeensessesssessssssessesses oo os oo eeeesseeeeseeenn 1

Waldo, James
An Object Model for Distributed Systems e e b et n st b e e e e e bbb s s e s retsneesenes 181

245

UniForum 1991 Conference Proceedings, Dallas, Texas

Widener, Glenn
International Language Support in X11 Release 5: Building a Standard
for Internationalized Heterogeneous Network Computing

Wong, Thomas K.
CD-ROM and UNIX: Making CD-ROMs Usable Under the Multiuser UNIX System Environment

Wright, David
A Comparison of Network Queueing Systems

Yip, Elisie L.
System Administration Using Artificial Intelligence

UniForum 1991 Conference Proceedings, Dallas, Texas

Keyword Index

ABI
Beyond the ABI: Attaining "Shrink Wrapped" Software (4nderson)

application development
Application Development in the ANDF Model (Smith)

archival
The Use of Erasable Optical Disk Technology for Data Archival
in a UNIX Internet Environment (Clark)

byte-order
Why Isn’t My Data Portable? (Andrew)

cache
CD-ROM and UNIX: Making CD-ROMs Usable
Under the Multiuser UNIX System Environment (Wong)

CD-ROM
CD-ROM and UNIX: Making CD-ROMs Usable
Under the Multiuser UNIX System Environment (Wong)

Cobol applications
Porting System /370 Cobol Applications to UNIX-based Computers (Kiuchi and Engelhardt)

distributed systems
An Object Model for Distributed Systems (Waldo)

expert systems
System Administration Using Artificial Intelligence (Yip)

graphical user interface
Selecting a Graphical User Interface Strategy for Maximum Portability (Shearer)

internationalization
International Language Support in X11 Release 5: Building a Standard
for Internationalized Heterogencous Network Computing (Widener)

interoperability
Enterprise Transaction Processing (Dwyer)

multimedia document
Multimedia Document Workstation: Future Data Terminal Equipment (Ma)

network
A Comparison of Network Queueing Systems (Wright)

Network File System
Perspectives on NFS File Server Performance Characterization (Keith)

UniForum 1991 Conference Proceedings, Dallas, Texas

object-oriented programming
An Object Model for Distributed Systems (Waldo)

ODA and ODIF
Multimedia Document Workstation: Future Data Terminal Equipment (Ma)

Open Look
Porting Between Open Look and OSF/Motif GUIs (Kimball)

optical
The Use of Erasable Optical Disk Technology for Data Archival
in a UNIX Internet Environment (Clark)

OSF/Motif
Porting Between Open Look and OSF/Motif GUIs (Kimball)

performance
Perspectives on NFS File Server Performance Characterization (Keith)

portability
Why Isn’t My Data Portable? (Andrew) ...

queueing
A Comparison of Network Queueing Systems (Wright)

security
Rethinking the Information Security Paradigm for Workgroup Computing (Riddick)

shrink wrapped
Beyond the ABI: Attaining "Shrink Wrapped" Software (Anderson)

software distribution
Application Development in the ANDF Model (Smith)

software engineering
A Study of Version Control Systems (O’Donovan, Grimson and Haslett)

System/370 applications
Porting System /370 Cobol Applications to UNIX-based Computers (Kiuchi and Engelhardt)

system administration
System Administration Using Artificial Intelligence (Yip)

transaction processing
Enterprise Transaction Processing (Dwyer) ...

user interface management system
Selecting a Graphical User Interface Strategy for Maximum Portability (Shearer)

version control
A Study of Version Control Systems (O’Donovan, Grimson and Haslett)

workflow
Rethinking the Information Security Paradigm for Workgroup Computing (Riddick)

UniForum 1991 Conference Proceedings, Dallas, Texas

X Window System
International Language Support in X11 Release 5: Building a Standard
for Internationalized Heterogeneous Network Computing (Widener)

UniForum 1991 Conference Proceedings, Dallas, Texas

250 UniForum 1991 Conference Proceedings, Dallas, Texas

Plenary and Panel Speaker Index

Airaghi, Larry
Enterprise Solutions

Akima, Noboru
International Commercial Usage of UNIX.

Alcoff, Ed
Experiences in Managing TCP/IP Networks with SNMP-Based Tools

Alleborn, John
Transparent Interoperability for Software

Ambort, Doug
TCP/IP to OSL: Handling the Transition

Bailey, Dan
Distributed Databases..

Biel-Nielsen, Kim
International Commercial Usage of UNIX

Biniskiewicz, Joseph
UNIX in the Microcomputer Sales Channel

Blatnik, Greg (Chair)
Future Evolution of X Window Displays

Bohdanowicz, Rick (Co-Chair)
File Server Architecture for the *90s

Bonin, William (Chair)
Global Computing in the 1990s

Bonner, Joe (Chair)
Experiences in Managing TCP/IP Networks with SNMP-Based Tools

Boron, Don
Enterprise Solutions

Brady, Kevin
UNIX System Security..

Brown, Dr. Lin
Application Portability — Is it Real or is it the Holy Grail?..........c.cccccennecnecne

Bush, Dick
Client/Server Networking Alternatives

UniForum 1991 Conference Proceedings, Dallas, Texas

Card, David (Chair)
Future Trends

Carpovich, John
Commercial Requirements for Imaging

Chadwick, David
UNIX System Capacity Planning: Where’s the Data?

Chelluri, Dr. Sivaram (Chair)
UNIX System Capacity Planning: Where’s the Data?

Chilley, Carl (Chair for "An Insider’s View...")
An Insider’s View of Open Systems Standards
Open Systems Challenges in the OLTP Market

Chisholm, John (Chair)
Client/Server Networking Alternatives

Cirnillo, Carl
UNIX System Management in a Distributed Computing Environment

Clearman, Steve
Building and Realizing Value for Your Company

Cohen, Stanley
Transparent Interoperability for Software

Compton, Kevin
Creating a Mass Market for UNIX

Conway, Ron (Chair)
UNIX Multiuser Systems and PC LAN Integration: A Flexible Network Solution

Cooney, Bob
TCP/IP to OSI: Handling the Transition

Csvany, Helene
The Politics of Implementing Open Systems

Cubbage, Paul (Chair)
Open Systems — Impact and Analysis

Cunningham, Peter
Open Systems: Interoperability Solutions

Currid, Cheryl
Enterprise Solutions

Dai, Cynthia
Commercial Requirements for Imaging
Document Image Processing - An Emerging UNIX Market

Davis, Bob
UNIX Multiuser Systems and PC LAN Integration: A Flexible Network Solution

UniForum 1991 Conference Proceedings, Dallas, Texas

Davis, Steve

Document Image Processing = An Emerging UNIX Market.......... ehereetenereesesesesete st seatsters st es e neb et e st ek eabane 266
De Backer, Walter

Open Systems: Interoperability Solutions ..o reebeeteresererare e rer e et e e enr s ta e b beben 269
de Raeve, James

Shrink-Wrapped Software: IS ANDF the ADSWEL? ..o s 270
Dei Maggi, Al

High Availability and Fault Tolerance: How Much Protection is Enough? ... 264

Dejean, Jean-Pierre
EDLErPriSE SOIULIONScoceieirinirentricaisiinetneriesebierssossssss sttt s ettt e s s e bbb s bbbt b0 262

Deninger, Paul (Chair)
Building and Realizing Value for Your COmMPAanY ...t sssssssnsissinsesess 264

Dunlop, Dominic
Application Portability — Is it Real or is it the Holy Grail? ..o 270

Ensroth, Keith
UNIX System Management in a Distributed Computing Environment..............coovvincinninnnninininns 268

Erramouspe, Jeff (Chair)

High Availability and Fault Tolerance: How Much Protection is Enough? ... 264
Estrin, Judy
Future Evolution of X Window Displays ... s ssesssssssssssns 264

Fabbio, Robert
UNIX System Management in a Distributed Computing Environment................ccoooninnininnncnccnen 268

Faneuf, Ross

GUI Development Productivity Tools eeebeereesestestesserTereseTt et s e sttt et e e se st et s et e e Rt sas s 265
Fardal, Randy
Experiences in Managing TCP/IP Networks with SNMP-Based Tools............ooenenemmuririnrmninnenennnieniseenensiaee 268

Fisher, Curt
UNIX in the Microcomputer Sales Chanmel...................cciiiie et ssaess 264

Fisher, Ron
Building and Realizing Value for Your COMPARY ...ttt sssstssessasisssiasins 264

Florio, Mike (Chair)
Document Image Processing — An Emerging UNIX Market reerreeeee et et et et et s et et et e e b e b e s s b e s 266

Flynn, Terry
UNIX System Capacity Planning: Where’s the Data? ... 267

Gaseor, Tony
UNIX System Capacity Planning: Where’s the Data? ... 267

UniForum 1991 Conference Proceedings, Dallas, Texas 253

Gibson, Brian (Chair)
UNIX System Management in a Commercial Environment

Glover, Dave
UNIX System Capacity Planning: Where’s the Data?

Goldstein, Ira
Open Systems: Interoperability Solutions

Graham, Jef
Commercial Requirements for Imaging

Gray, Pamela
The Politics of Implementing Open Systems

Green, Andy
UNIX in the Microcomputer Sales Channel

Griffiths, Peter (Chair)
Shrink-Wrapped Software: Is ANDF the Answer?............

Grossi, Brian
Open Systems — Impact and Analysis

Hald, Alan
Creating a Mass Market for UNIX

Harker, John (Chair)
UNIX as an MS-DOS Server
TCP/IP to OSI: Handling the Transition

Hartman, Ber!
Distributed Databases

Henry, J. Shirley
High Availability and Fault Tolerance: How Much Protection is Enough?ccoooovivemriveenereseecererennenns 264
UNIX in Commercial Markets

Hey, Dr. Angela
Document Image Processing - An Emerging UNIX Market

Hicks, Roger (Chair)
International Commercial Usage of UNIX

Hospers, Keith
Open Systems Challenges in the OLTP Market

Howard, Laura
UNIX as an MS-DOS Server

Hudson, Jeff
Client/Server Networking Alternatives

UniForum 1991 Conference Proceedings, Dallas, Texas

Hurwitz, Judith (Chair)
The Politics of Implementing Open Systems

Isaak, Jim
Application Environments: Are Six Better Than One?

Jordan, Trisha
UNIX System Security

Kaewert, Doug
File Server Architecture for the *90s

Kirk, Martin
UNIX System Management in a Commercial Environment

Kirzner, Rikki
An Insider’s View of Open Systems Standards

Kluger, Larry
UNIX System Management in a Commercial Environment

Knapp, Susan
UNIX System Management in a Distributed Computing Environment....

Konner, Maggie
UNIX in Commercial Markets

Krakauer, John

The UNIX System - The Missing Link: What We Have in Common
is Heterogeneous Networks & UNIX .

Lachman, Ronald
Building and Realizing Value for Your Company

Ladermann, Dan
UNIX Multiuser Systems and PC LAN Integration: A Flexible Network Solution....

Lambert, Mike
Open Systems: Interoperability Solutions

Lanfr, Bill
Experiences in Managing TCP/IP Networks with SNMP-Based Tools...

Langlais, Dave
Client/Server Networking Alternatives

Lee, Ed (Chair)
GUI Development Productivity Tools

Lehman, Dr. Philip
File Server Architecture for the *90s

Levich, Steve (Chair)
Open Systems Challenges in the OLTP Market

UniForum 1991 Conference Proceedings, Dallas, Texas

256

Lycklama, Heinz (Chair for "Open Systems...")

Client/Server Networking AILErNAtiVescccccueeueiereeiernieciesisssssesesessessstessesessessssessssessssessssessssssossssessesssssssososaes 268
Open Systems: Interoperability SOIULIONScovuiiieeernencriinnerressnenssseessssststssstesstesesssesssssssssesssassssssssses 269
Lynch, Dan

0S/2 vs. UNIX...Which WILL I ChOoSe?cccovnruerieriorirenrereersassasssssesissssssssssssssssssssssssssssessessassssessessessessessssensnns 266
Lyon, Bob

UNIX System Management in a Commercial ERVIFonmento.ccoevieriieerinieieeeeiereneeseeereieesessseseesesessnes 263

Lytton, Nina (Chair)

Creating a Mass Market for UNIX ... ettt ee st serss e sessns e s s et vsssesseassesssesessasssssane 261
McCabe, Georgia (Chair)

Commercial Requirements for IMAGINGc.voorvveevrvecnrireeneeriestseesesseressesessesessssssessessssessraessssessessssessssssessssses 265
McCarthy, John

0S/2 vs. UNIX...Which Will I CROOSE?oreriririerenrnissirsssisciesetesissssssssinssessesssssssssstasssssssssstasisssssssessssessessans 266

McCready, Scott
Document Image Processing — An Emerging UNIX Market.........cccoouiieiiniiinieniinneceiieretevceie e enesnens 266

Mace, Thomas
Transparent Interoperability for SOMtWATe...............ccoioirivreereee e e s st sessssenssseeresas 270

Malisewski, Steve
Creating a Mass Market for UNIX ... icerneinetscsseeentsesessssssse s oresssssassssnsessssssssssasssssnsteseresssoss 261

Marshak, David (Chair)
Multimedia and UNIX ...ttt serseesesse s secssssassssascassassasessensessesen 265

Menter, E. Scott
UNIX System Management in a Commercial Environmentccooovivinnnneninencncencnnesnsnsnsseessesssssissenes 263

Michels, Doug

Creating a Mass Market For UNIX o iieirerennroenessessmsmssenseorsisresessssassssssssentosessssssssssessssssssnsssssesses 261
An Insider’s View of Open Systems Standards ... sis e isssetesesessssssesessssssssesessssssans 269
Morrow, Alex

Application Portability — Is it Real or is it the Holy Grail?cccoveiiiinnenienreeereeressessence e sennns 270
Nelson, Bruce (Co-Chair)

File Server Architecture fOr the P90coeiiririeieiiieciccniesricte e e et s e s s s sess s as s eesse s s sessanns 265
Nevens, T. Michael

Global Computing in the 1990s..............covinrnernircreneseersesstsessssesssseressasessessssssssssssessasssssssessassasssesssssassssnens 261
O’Neil, Jeff

An Insider’s View of Open Systems Standards ... essessssissssesessasssesenas 269

Osaka, Sherri (Chair)
DiStribUted DAtADASES...........covvereeriiiiiiciciteise et ssasstestese st este e sesseeessesessessesnsesensssessensentesseseesseseasessensensssrnns 266

Ozsvath, John (Chair)
EREErPriSe SOIULIONScoou ettt tese s eeas ettt se s s as s s e s et s et srs ensaebossrssesssseseasaeseassessresssenaens 262

UniForum 1991 Conference Proceedings, Dallas, Texas

Peleg, Raanan
High Availability and Fault Tolerance: How Much Protection is Enough?

Pena, Ray
UNIX in Commercial Markets

Pliner, Dr. Michael
Open Systems - Impact and Analysis

Rash, Bill
Future Trends

Rauch, Wendy (Chair)
Application Environments: Are Six Better Than One?

Realini, Carol (Chair)
0S/2 vs. UNIX..Which Will F CROOSE? ..ottt st sssasens 266

Ressler, Mike
UNIX System Security

Riemitis, Pat
Shrink-Wrapped Software: Is ANDF the ANSWET?cooiineninsnsnnssssssesesensesens s 270

Rogers, Kris
Creating a Mass Market for UNIX

Rose, Greg
International Commercial Usage of UNIX

Rourke, Pete
UNIX in the Microcomputer Sales Channel

Rubin, Craig (Chair)
UNIX System Security

Salama, Ben (Chair)
The UNIX System — The Missing Link: What We Have in Common
is Heterogeneous Networks & UNIX

Schaffer, Mark
UNIX System Security

Schulman, Marc
Global Computing in the 1990s

Sennett, Wayne (Chair)
Transparent Interoperability for Software

Shaffner, George
Global Computing in the 1990s

Shaw, Peter
Future Evolution of X Window Displays

UniForum 1991 Conference Proceedings, Dallas, Texas

258

Sherr, David
The Politics of Implementing OPen SYSLEMSovuuvveieecomeemeneeseesseeeseessseessesssesseeseeeeees e eeeeoon 266

Shipley, Dale
UNIX System Management in a Distributed Computing EnVironment...................oooovvooooovooeoooooooo 268

Simon, Ron
UNIX @S 8N MS-DOS SEIVE............oooeceeeeeetieeeeee e eeee e eeeeeeeeeeeeseessesssssessesese s s et e eeeeeee e eeeeeseeseeseeeeseeeo s 267

Sippl, Roger (Chair)
UNIX in Commercial MArKELS...................oeooimieeeeeeeeeeeeeeeeeeeeseeseesessesseeeeeees e et s e e e e et ee e es e 262

Smith, Michael

UNIX Multiuser Systems and PC LAN Integration: A Flexible Network Solutionoooevoovvvevoeoooo 267
Spencer, Lloyd

TCP/IP to OSI: Handling the TraNSItION.ooevveuereevvaeneeceeasnseeeeeseeeeoseeseesseseeeesessessssesseeses s e oo esssssosesons 269
Stearns, Gary

File Server Architecture fOr the *90Scoovuueiueiveeeveiotiiosceecseeeeeeeeeeeeesesesseesseessessessees e seeeeeee e e s s oo eons 265
Story, Tony

Open Systems Challenges in the OLTP MAarket.....................oovuuevmoimeneeeeeeeeeseeeseeeeceeseeeeeee oo oo 263
Thorsen, Lynn

Future Evolution of X Window DISPIAYScoo.ciuveiueiveceeceeco oo eeeessesese s e esees s e eseee oo oo 264
Tilson, Michael

Shrink-Wrapped Software: Is ANDF the ADSWEL?cooooouuiveieeeeeenerseeseresseeeeeeeeessees s e se s s s 270
Tory, David

Open Systems ~ IMPACt ANA ANALYSISccooevvuerrvereeeeeceeeeeceeceeees e ses st sseseseeeeee e sess e e s eeoo 261
Tung, Sayuri

TCP/IP to OSI: Handling the TranSition....................oo.euiveoooeeeseeeeeeeeeeeoeeeos oo eee oo esee oo oo oo seeoo 269
Trimm, Jerry (Chair)

UNIX in the Microcomputer Sales Chanel......................ooeucieeeceereeeeeeeseeeseeeesseesseees e 264

Uhlir, Peter
UNIX 88 @D MS-DOS SEIVETourveeereeiesieseeeeeeeeeseesssessiesseeseessessoes s e e e e eeee e e e e e 267

Unwin, Geoff
Global Computing in the 19905..............coovriueivurereeesieeiteeeeeeceeeeeee s s ss e ees e s ee e ee e e eeeee e oo eeeeeeeeees s eeoe 261

Van Fleet, Donna
FUBUEE TIEIUAS ...ttt eeeee s s e s sttt eeeeee oo ees e eseeeseesoe 262

Vedoe, Cheryl
FULUPE TICNAS ..ottt sttt e ssse e sesa e e se s s s e e s s e e e e eee e eeeeeee e ee s 262

UniForum 1991 Conference Proceedings, Dallas, Texas

Vitovitch, Geraldine M. (Chair)
UNIX System Management in a Distributed Computing Environment

Wai, Gilbert
Multimedia and UNIX

Walden, Simon
Shrink-Wrapped Software: Is ANDF the ANSWEI?............cooiiiiiiiiiinieieteeseecei e sessresessssesssessesesssessssossssssssas 270

Wasiolek, Eric
Distributed Databases

Waters, Martin
Building and Realizing Value for Your Company

Watson, Bob
GUI Development Productivity Tools

Weinberger, Peter
Future Trends

Weiner, Bruce (Chair)
Application Portability — Is it Real or is it the Holy Grail?............cccoevvrieiecieie e 270

Wellman, William
The UNIX System — The Missing Link: What We Have in Common
is Heterogeneous Networks & UNIX

Wettlaufer, Jay
Open Systems — Impact and Analysis

Wheeler, Thomas
0S/2 vs. UNIX..Which WIll T CROOSE?.........ocuvrrnrrererieeeesinniessisssssssses st ssssssasesssssssssssssssssssassessessessesssssenessmsees 266

Williams, John
Application Environments: Are Six Better Than One?

Williams, Rusty
Future Evolution of X Window Displays

Wilson, Doug
UNIX in Commercial Markets

Wilson, Ted
GUI Development Productivity Tools

Wolf, Karl
Multimedia and UNIX

Young, Percy
Application Environments: Are Six Better Than One?

UniForum 1991 Conference Pro . edings, Dallas, Texas

UniForum 1991 Conference Proceedings, Dallas, Texas

UniForum 1991
Plenary and Panel Session Descriptions

The following plenary and panel sessions are organized in the order presented at the UniForum Conference, with the
panel sessions grouped under five tracks: Commercial, Futures, MIS, Networking and Portability.

PLENARY SESSIONS

Open Systems — Impact and Analysis

Paul Cubbage (Chair)
Dataquest
San Jose, CA

Brian Grossi
Alpha Partners
Menlo Park, CA

Dr. Michael Pliner
Verity, Inc.
Mountain View, CA

David Tory
Open Software Foundation
Cambridge, MA

Jay Wettlaufer
Visix Software, Inc.
Reston, VA

Creating a Mass Market for UNIX

Nina Lytton (Chair)
Open Systems Advisor
Boston, MA

Kevin Compton
Businessland, Inc.
San Jose, CA

Alan Hald
MicroAge, Inc.
Tempe, AZ

Global Computing in the 1990s

William Bonin (Chair)
Hewlett-Packard Co.
Cupertino, CA

T. Michael Nevens
McKinsey & Co.
San Jose, CA

Marc Schulman
UBS Securities, Inc.
New York, NY

UniForum 1991 Conference Proceedings, Dallas, Texas

Steve Malisewski
Compaq Computer Corp.
Houston, TX

Doug Michels
The Santa Cruz Operation
Santa Cruz, CA

Kris Rogers
Merisel, Inc.
Inglewood, CA

George Shaffner
X/Open Co. Ltd.
Reading, Berkshirs, UK.

Geoff Unwin
Hoskyns Group Plc
London, England, U.K.

The panel represents the views of sys-
tems manufacturers and applications
software vendors, as well as the invest-
ment community. The panelists will ex-
amine open systems from these aspects:
What are open systems? How and why
are they evolving? Who benefitsand how
(users, ISVsand systems vendors)? What
is the impact on the software industry?
What is the impact on the venture capital
community? What are likely future di-
rections? What should be a standard (and
what should not)?

This plenary session is targeted at those
interested in increasing the success of the
UNIX system at the low end. It answers
the following questions: How does UNIX
stack up against DOS, Windows, OS/2
and PC LANS? What is needed for
greater market penetration? What will
the benefits be? How and when will these
benefits be realized?

The age of global computing is here. As
businesses expand worldwide operations,
information management is an increas-
ingly critical factor in global competi-
tiveness. And the global marketis chang-
ing rapidly. Political changes in Eastern
Europe, the accelerated integration of the
European community and the economic
emergence of Asia are all factors with
which today’s IS professional must con-
tend. This panel of experts will explore
these issues and provide practical advice
to IS professionals who must meet the
challenges presented.

UNIX in Commercial Markets

Roger Sippl (Chair)
Informix Software, Inc.
Menlo Park, CA

J. Shirley Henry
Tandem Computers, Inc.
Cupertino, CA

Maggie Konner
International Data Corp.
Framingham, MA

Enterprise Solutions

John Ozsvath (Chair)
McDonald’s Corp.
Oak Brook, IL

Larry Airaghi
Proctor & Gamble Co.
Cincinnati, OH

Don Boron
Timken Co.
Canton, OH

Future Trends

" David Card (Chair)
International Data Corp.
Framingham, MA

Bill Rash
Intel Corp.
Santa Clara, CA

Donna Van Fleet
IBM Corp.
Austin, TX

Ray Pena
Bank of America
Concord, CA

Doug Wilson
Kodak Legal Systems
Billerica, MA

Cheryl Currid
Coca-Cola Foods
Houston, TX

Jean-Pierre Dejean

Nielsen Advanced Information
Technology Center
Northbrook, IL

Cheryl Vedoe
Sun Microsystems, Inc.
Mountain View, CA

Peter Weinberger
AT&T UNIX System Laboratories, Inc.
Summit, NJ

Today’s powerful hardware platforms,
combined with high-performance data-
base engines and application tools, are
enabling users to build and run their most
critical OLTPapplications on UNIX. But
commercial users must consider a vari-
ety of issues before they switch from
proprietary and mainframe-based sys-
tems to open systems applications. This
session will explore the challenges and
benefits of UNIX for commercial com-
puting from a varicty of perspectives,
including those of an industry analyst,
manufacturer, value-added reseller and
end user.

User executives will discuss their com-
panies’ enterprise-wide needs and pri-
orities for open systems solutions. Each
will address the following issues: Whatis
your vision of open systems and what are
the critical dimensions of an “enterprise
solution”? Where and how do UNIX and
derivative operating systems fitin? Where
is migration realistic? Where is coexist-
ence mandated? What are your most ur-
gent priorities for action by the computer
industry? The session is designed for
users who wonder if UNIX and open
systems can meet the needs of a global
enterprise.

Where is UNIX technology headed?
Which standards will be important?
Where is academia headed? What does
the evolution of microprocessors, net-
works, image processing and multimedia
mean to users, developers, vendors and
DP/MIS managers? This session should
be of benefit to both users and those in-
volved in developing products for open
systems.

UniForum 1991 Conference Proceedings, Dallas, Texas

COMMERCIAL

Open Systems Challenges in the OLTP Market

Steve Levich (Chair)
Sequent Computer Systems
Beaverton, OR

Carl Chilley

X/Open Co. Ltd.
Reading, Berkshire, UK.,

UNIX System Security

Craig Rubin (Chair)
AT&T Bell Laboratories
Summit, NJ

Kevin Brady
AT&T UNIX System Laboratories, Inc.
Summit, NJ

Trisha Jordan
Sun Microsystems, Inc.
Mountain View, CA

Keith Hospers
Independent Technologies, Inc.
Fremont, CA

Tony Story
IBM Corp.
Austin, TX

Mike Ressler
Bellcore
Piscataway, NJ

Mark Schaffer

Secure Computing Technology Corp.

Arden Hills, MN

UNIX System Management in a Commercial Environment

Brian Gibson (Chair)
Sequent Computer Systems
Beaverton, OR

Martin Kirk

X/Open Co. Lid.
Reading, Berkshire, U.K.

Larry Kluger
Sun Microsystems, Inc.
Mountain View, CA

UniForum 1991 Conference Proceedings, Dallas, Texas

Bob Lyon
Legato Systems, Inc.
Palo Alto, CA

E. Scott Menter
Lehman Brothers
New York, NY

How do open systems compare to pro-
prietary systems in terms of available
high-performance OLTP capabilities?
This panel will explore the required
functionality for open systems OLTP,
what’s available now and what’s coming
in the near future. Views of end users,
ISVs and vendors will be represented,
along with an update from X/Open on the
progress of transaction processing stan-
dards.

This panel will address the motivation
for additional UNIX system security,
discussimplications security places upon
the end userand describe work in progress
by both standards committees and R&D
organizations. In addition, topics such as
network security and other security fea-
tures required by end users will be ad-
dressed.

UNIX system management tools, includ-
ing software installation and distribution,
on-line backup and restore, batch job
control and user account management,
must all work in a heterogeneous envi-
ronment and within a consistent man-
agement framework. What technology
meets these requirements today? Should
standards be set now or would standard-
ization prevent desired growth and de-
velopment?

High Availability and Fault Tolerance: How Much Protection is Enough?

Jeff Erramouspe (Chair)
NCR Corporation
West Columbia, SC

Al Dei Maggi
Sequent Computer Systems
Beaverton, OR

J. Shirley Henry
Tandem Computers, Inc.
Cupertino, CA

Raanan Peleg
Hewlett-Packard Co.
Cupertino, CA

Building and Realizing Value for Your Company

Paul Deninger (Chair)
Broadview Associates
Fort Lee, NJ

Steve Clearman
Geocapital Partners
Fort Lee, NJ

Ron Fisher
Phoenix Technology
Norwood, MA

Ronald Lachman
Interactive Systems, Inc,
Naperville, IL

Martin Waters
Locus Computing Corporation
Inglewood, CA

UNIX in the Microcomputer Sales Channel

Jerry Trimm (Chair)
TBS Services, Inc.
Santa Clara, CA

Joseph Biniskiewicz
Ingram Micro D
Santa Ana, CA

Curt Fisher

Sun Microsystems, Inc.
Mountain View, CA

FUTURES

Andy Green
The Santa Cruz Operation
Santa Cruz, CA

Pete Rourke
MicroAge
Tempe, AZ

Future Evolution of X Window Displays

Greg Blatnik (Chair)
Dataquest
San Jose, CA

Judy Estrin
Network Computing Devices
Mountain View, CA

Peter Shaw

Advanced Graphics Engineering
San Diego, CA

264

Lynn Thorsen

Evans & Sutherland Computer Co.

Salt Lake City, UT

Rusty Williams
IBM Corp.
Austin, TX

The introduction of fault-tolerant and
highly available UNIX systemsinthe past
years has increased their credibility for
mission-critical commercial applica-
tions. This panel will discuss the issues
surrounding the use of these systems,
focusing on the cost of fault tolerance
and high availability, and its benefits to
the commercial enterprise.

The goal of this panel will be to present
entrepreneurs with timely, real-world
insights into the business considerations
of competing in the open systems/UNIX
marketplace. The question of how best to
build the future value of anentrepreneur’s
shareholdings will be addressed by CEOs
of UNIX software or service companies
and a leading venture capitalist.

This panel will discuss the changes that
must be made in order to be successful
selling UNIX in today’s market. Several
viewpoints will be presented that em-
phasize the changes in thinking and in-
frastructure required by the retail com-
puter resellers when moving to UNIX-
based solutions.

This panel will examine future X Win-
dow Display enhancements and evolu-
tion, including X Window terminals, PCs
and workstations. Topics will include
video extensions to the X Window Sys-
tem (vex), 3D (PEX), blending, interna-
tionalization, font handling and the use
of alternate input devices.

UniForum 1991 Conference Proceedings, Dallas, Texas

GUI Development Productivity Tools

Ed Lee (Chair)
Hewlett-Packard Co.
Corvallis, OR

Ross Faneuf

Digital Equipment Corp.

Nashua, NH

Multimedia and UNIX

David Marshak (Chair)

Patricia Seybold’s Office Computing

Group
Boston, MA

Gilbert Wai
Informix Software
Menlo Park, CA

Bob Watson

Sun Microsystems, Inc.

Mountain View, CA
Ted Wilson

Hewlett-Packard Co.
Corvallis, OR

Karl Wolf

Sun Microsystems, Inc.

Mountain View, CA

Commercial Requirements for Imaging

Georgia McCabe (Chair)

Eastman Kodak Co.
Rochester, NY

John Carpovich

U.S. Navy Publishing & Printing

Washington, D.C.

Cynthia Dai

Sun Microsystems, Inc.

Mountain View, CA

Jef Graham
Hewlett-Packard Co.

Wokingham, Berkshire, U K.

File Server Architecture for the 90s

Rick Bohdanowicz (Co-Chair)

Novell, Inc.
Sunnyvale, CA

Bruce Nelson (Co-Chair)

Auspex, Inc.
Santa Clara, CA

Doug Kaewert
Sun Microsystems, Inc.
Mountain View, CA

UniForum 1991 Conference Proceedings, Dallas, Texas

Dr. Philip Lehman
Transarc Corp.
Pittsburgh, PA

Gary Stearns
Hewlett-Packard Co.
Fort Collins, CO

The recent success of several graphical
user environments for UNIX (the X
Window System, OSF/Motif and Open
Look) would appear to have solved end
users’ major objection to the system:
ease of use. However, applications that
utilize these technologies have been slow
to appear. This panel will discuss various
approaches to accelerating the develop-
ment of applications with GUIs for UNIX.

This panel will focus on the opportuni-
ties for multimedia applications in the
UNIX environment, particularly on the
potential business uses of audio and
video technologies. Presentations will
include demonstrations of current multi-
media applications and a sneak preview
of what the next generation of applica-
tions will look like.

Historically, imaging-based products
have emerged from a number of distinct
high-end markets: high-volume docu-
ment management, medical diagnosis,
engineering, CAD/CAM and publishing/
printing. Today, with the emergence of
open, low-cost, image-capable systems,
these distinctions tend to blur. Given this
state of affairs, just what is the imaging
market?

This panel presents and discusses four
different approaches to file server archi-
tecture from the perspective of the lead-
ing network computing technologies:
NetWare, NFS, AFS and LanManager.
The common thread is how each ap-
proach incorporates high-performance
file-level UNIX interoperability.

Document Image Processing — An Emerging UNIX Market

Mike Florio (Chair)

Document Technologies, Inc.

Mountain View, CA

Cynthia Dai
Sun Microsystems, Inc.
Mountain View, CA

Steve Davis

Digital Equipment Corp.
Marlboro, MA

MIS

Dr. Angela Hey
Areva International
Belmont, CA

Scott McCready
International Data Corp.
Framingham, MA

The Politics of Implementing Open Systems

Judith Hurwitz (Chair)

Patricia Seybold’s Office Computing

Group
Boston, MA

Helene Csvany
Roadway Express
Akron, OH

Distributed Databases

Sherri Osaka (Chair)
Informix Software, Inc.
Menlo Park, CA

Dan Bailey
Rust International Corp.
Birmingham, AL

Pamela Gray
Marosi Ltd.
Ascot, Berks, UK.

David Sherr
Shearson Lehman Hutton
New York, NY

Berl Hartman
Sybase, Inc.
Alameda, CA

Eric Wasiolek

Ingres Corp.
Emeryville, CA

0S/2 vs. UNIX...Which Will I Choose?

Carol Realini (Chair) John McCarthy
Legato Systems, Inc. Forrester Research
Palo Alto, CA Cambridge, MA
Dan Lynch Thomas Wheeler
Interop American Express
Mountain View, CA Phoenix, AZ

266

In many respects, the document image
processing segment parallels the devel-
opment of the UNIX market, with im-
portant decisions regarding standards,
platforms and performance issues being
discussed and proposed. X Windows may
also play an important role in this
emerging market.

This session is geared to data process-
ing managers who are considering
implementing open systems or UNIX in
a traditionally proprietary environment.
Issues ranging from convincing top
management of the safety of open sys-
tems and UNIX to finding ways to inte-
grate these systems with proprietary
systems will be addressed. See how others
have successfully implemented open
systems in their organizations.

Distributed data base applications are
one of the key technologies for the
1990s to manage corporate data effi-
ciently. This panel will explore issues
critical to the success of distributed data-
base applications, including implement-
ing distributed databases in heteroge-
neous environments, the need for distrib-
uted transaction monitors, security con-
siderations and requirements, and data-
base usability and administration.

What issues do MIS managers face
when making the decision between
0S/2 and UNIX, or deciding to use
both? Each panel member will review
the strengths and weaknesses of both
platforms. Is there an obvious winner?
What are the key success factors in
different application and business
environments? Each panel member
will take a firm stand.

UniForum 1991 Conference Proceedings, Dallas, Texas

UNIX as an MS-DOS Server

John Harker (Chair)
The Santa Cruz Operation
Santa Cruz, CA

Laura Howard
Sun Microsystems, Inc.
Billerica, MA

Ron Simon
Microsoft Corp.
Redmond, WA

Peter Uhlir
Locus Computing Corp.
Inglewood, CA

UNIX System Capacity Planning: Where’s the Data?

Dr. Sivaram Chelluri (Chair)

AT&T
Lisle, IL

David Chadwick

Performance Awareness Corp.

Naperville, IL

Terry Flynn
Amdahl Corp.
Sunnyvale, CA

Tony Gaseor
AT&T Bell Labs
Naperville, IL

Dave Glover
Hewlett-Packard Co.
Roseville, CA

International Commercial Usage of UNIX

Roger Hicks (Chair)
Open Systems Consultant
Auckland, New Zealand

Noboru Akima
Information Technology
Promotion Agency
Tokyo, Japan

NETWORKING

Kim Biel-Nielsen
Uniware danmark a/s
Vedbaek, Denmark

Greg Rose
Software Pty. Ltd.

Chippendale, New South Wales,

Australia

The increasing power of UNIX on mi-
crocomputer platforms has caused nu-
merous network vendors to create UNIX-
based MS-DOS network solutions. How
have vendors taken advantage of the
UNIX platform in creating their solu-
tions? Did they write their own file sys-
tems? Do usersknow it’s UNIX? Do they
care? And what are the benefits from the
portable nature of UNIX application
across platforms?

Currently no UNIX system vendor pro-
vides enough performance management
functionality and certainly no two vendors
provide equivalent functionality. Panel
members will discuss the implementa-
tion of performance data gathering fa-
cilities in several different versions of
the UNIX operating system.

In larger, high-profile marketplaces,
UNIX has been seen strictly as a tech-
nical operating system. However, in
many other countries computing has
evolved in a different environment and
UNIX has become widely used for
commercial applications. This panel will
look at this commercial UNIX usage in
international marketplaces.

UNIX Multiuser Systems and PC LAN Integration: A Flexible Network Solution

Ron Conway (Chair)
Altos Computer Systems
San Jose, CA

Bob Davis
Novell, Inc.
Sunnyvale, CA

Laura Howard
Sun Microsystems, Inc.
Billerica, MA

UniForum 1991 Conference Proceedings, Dallas, Texas

Dan Ladermann
The Wollongong Group
Palo Alto, CA

Michael Smith
3Com Corp.
Santa Clara, CA

This panel will look at the business ben-
efits of integrating UNIX multiuser sys-
tems and PC LANs. Leading UNIX and
DOS networking experts will discuss how
UNIX/DOS network integration leads to
a flexible network computing environ-
ment. Additional speakers will discuss
the implementation of UNIX/DOS net-
work solutions in their environments.

Client/Server Networking Alternatives

John Chisholm (Chair) Dave Langlais

John Chisholm Co. The Wollongong Group

Menlo Park, CA Palo Alto, CA

Dick Bush Heinz Lycklama

Auspex, Inc. Interactive Systems Corporation
Santa Clara, CA Santa Monica, CA

Jeff Hudson

Netframe, Inc.

Milpitas, CA

One of the more significant impacts of
the client/server computing architecture
is the emergence of new niche markets
for computing elements. This includes X
Windows terminals, file servers, database
servers and image servers. This panel
will discuss the implementation of Net-
work File Systems, SQL servers, Remote
Procedure Calls, X Window support and
other alternatives.

Experiences in Managing TCP/IP Networks with SNMP-Based Tools

Joe Bonner (Chair) Randy Fardal

Hewlett-Packard Co. Retix

Fort Collins, CO Santa Monica, CA

Ed Alcoff Bill Lanfri

The Wollongong Group Synoptics Communications, Inc.
Palo Alto, CA Mountain View, CA

The UNIX System — The Missing Link:
What We Have in Common is Heterogeneous Networks & UNIX

Ben Salama (Chair) William Wellman
Interactive Systems Corp. Rush-Presbyterian-St. Luke’s
Naperville, IL Medical Center
Chicago, IL
John Krakauer
HealthCare Compare Corp.

Downers Grove, IL

This panel, consisting of network man-
agers for large multivendor networks that
have been using SNMP-based tools, will
share their overall objective in managing
multivendor networks, how SNMP tools
have assisted in achieving their goals,
and what advantages and shortcomings
exist with SNMP tools.

UNIX provides the key part of the solu-
tion when faced with the challenge of
interconnectivity. See how UNIX is the
glue for networks of dissimilar comput-
ing equipment and why UNIX is the
common platform for critical applica-
tions that enable companies to commu-
nicate with existing proprietary systems.

UNIX System Management in a Distributed Computing Environment

Geraldine M. Vitovitch (Chair) Robert Fabbio

AT&T UNIX System Laboratories, Inc. Tivoli Systems Inc.
Summit, NJ Austin, TX

Carl Cirillo Susan Knapp

AT&T Sun Microsystems, Inc.
Lincroft, NJ Billerica, MA

Keith Ensroth Dale Shipley

K-Mart Corporation Veritas Software Co.
Troy, M1 Santa Clara, CA

Panelists will cover a broad range of
distributed UNIX system computing
environment topics, including configu-
rationrequirements, operating costs, data
integrity, system and network reliability,
administrator/user training and user in-
terface needs, and distributed application

support.

268 UniForum 1991 Conference Proceedings, Dallas, Texas

TCP/IP to OSI: Handling the Transition

John Harker (Chair) Lloyd Spencer
The Santa Cruz Operation Sun Microsystems, Inc.
Santa Cruz, CA Mountain View, CA

Doug Ambort Sayuri Tung
The Wollongong Group Retix
Palo Alto, CA Santa Monica, CA

Bob Cooney

NARDAC
Washington, D.C.

PORTABILITY

Open Systems: Interoperability Solutions

Heinz Lycklama (Chair) Ira Goldstein
Interactive Systems Corporation Open Software Foundation
Santa Monica, CA Cambridge, MA

Peter Cunningham Mike Lambert
UNIX International X/Open Co. Ltd.
Parsippany, NJ Reading, Berkshire, UK.

Walter De Backer
Commission of the
European Communities
Luxembourg, Luxembourg

An Insider’s View of Open Systems Standards

Carl Chilley (Chair) Doug Michels
X/Open Co., Ltd. The Santa Cruz Operation
Reading, Berkshire, UK, Santa Cruz, CA

Rikki Kirzner Jeff O’ Neil
Dataquest Arco Oil and Gas Co.
San Jose, CA Plano, TX

All U.S. government agencies and de-
partments are required to conform to the
Government Open Systems Intercon-
nection Protocol (GOSIP). What is still
needed are OSI network packages with
simplified end-user administration, good
third-party application support, and the
interoperability and price performance
value that TCP/IP network alternatives
currently offer.

The 1990s are being called the decade
of the open systems environment, Inter-
operability is a key issue. In this panel
session, two vendors currently providing
interoperability solutions will describe
them and how they plan to coexist. Two
end users will describe how they use or
plan to use these interoperability tech-
nologies to provide distributed applica-
tions.

The open systems movement has
spawned a seemingly endless list of
standards-seiting bodies, including
NIST, OSI, POSIX, COS, MAP/TOP,
ANSI and X/Open. Do we really need
all of these groups? Given the number
of groups, can’t they work a little faster?
This panel will provide an overview of
current projects of the various stan-
dards-setting bodies and tackle the issue
of whether all these activities are useful.

UniForum 1991 Conference Proceedings, Dallas, Texas

Transparent Interoperability for Software

Wayne Sennett (Chair)
Motorola, Inc.
Universal City, CA

John Alleborn
Merrill Lynch & Co., Inc.
New York, NY

Stanley Cohen
The Atrium Report
Cambridge, MA

Thomas Mace
88open Consortium, Ltd.
San Jose, CA

Cheryl Vedoe
Sun Microsystems, Inc.
Mountain View, CA

Application Portability — Is it Real or is it the Holy Grail?

Bruce Weiner (Chair)
Mindcraft, Inc.
Palo Alto, CA

Dr. Lin Brown
Sun Microsystems, Inc.
Mountain View, CA

Dominic Dunlop
Migration Software System
Cholsey, Wallingford, UK.

Alex Morrow
Lotus Development Corp.
Cambridge, MA

Application Environments: Are Six Better Than One?

Wendy Rauch (Chair)
Emerging Technologies Group, Inc.
Dix Hills, NY

Jim Isaak

IEEE Technical Committee (POSIX)
Digital Equipment Corporation
Nashua, NH

John Williams
General Motors
Troy, MI

Percy Young
Burlington Coat Factory
Lebanon, NH

Shrink-Wrapped Software: Is ANDF the Answer?

Peter Griffiths (Chair)
The Instruction Set, Ltd.
London, England, U.K.

James de Raeve

X/Open Co. Ltd.
Reading, Berkshire, UK.

Pat Riemitis
Open Software Foundation
Cambridge, MA

Michael Tilson
The Santa Cruz Operation Canada
Toronto, Ontario, Canada

Simon Walden
Uniplex

Hemel Hampstead, Hertfordshire, U.K.

Users today talk about networking their
entire enterprise transparently, regard-
less of systems architecture or operating
system. How close are we to achieving
total transparent interoperability? This
panel will explore various solutions, the
feasibility of each and how transparent
interoperability will affect the industry.

Open systems promises application
portability. This panel will discuss how
well open systems can deliver on that
promise and what programmers must do
themselves in order to make applications
portable. Topics covered include oper-
ating systems, programming languages,
graphical user interfaces and tools to
help verify application portability.

This panel will discuss many of the
similarities/differences between appli-
cation environments and whether the dif-
ferences are significant. It will also dis-
cuss the method used to combine stan-
dards for particular application areas, as
well as user techniques for planning and
evaluating open systems architecture and
handling existing nonstandard software.

One solution to the problem of UNIX
system binary compatibility is the ar-
chitecture-neutral distribution format
(ANDF). ANDF provides for distribution
of semi-compiled software which is fi-
nally compiled on a target machine at
runtime. Will ANDF be the solution to
the problem of UNIX software distribu-
tion?

UniForum 1991 Conference Proceedings, Dallas, Texas

L

e UniForum

The international Association of UNIX Systems Users

2901 Tasman Drive « Suite 201
Santa Clara, California 95054

UniForum is a registered trademark of UniForum.
UNIX is a registered trademark of AT&T.

