Oracle Forms 4.0
and 4.5 Hints

' 4

© Dansk Data Elektronik A/S
December 1995

—m

Table of Contenst

1 ODJECHIVE. ...t 1
2 Programmatic AQVICEcoviiriiiiiiie i 3
2.1 Generic Procedures and Triggers...........ccovvviviiiiieiiiiiceee e 3
2.1.1 Register Procedures...........ccccooccoiiiiiiniiiiniiceceeee 5
2.1.2 Careful using ROWtYpeoooiiiiiiieee 5
2.1.3 Changing the Makefile..............ccoooiii 6
2.1.4 Calling f40runm from a Program.............ccccccconiniiiineiennnn. 7
2.1.5 Get Shell Variable - a User-exit.............cccccovviiiiiiinnnen, 8

2 K111 1= £ TOUUUU T U U UUPUUUUR SRR 12
2.3 BUHONS ... 13
2.4 Parameter ListSoovveeiiiiiiii 13
2.4.1 Relations between BIOCKSccccccciiiiiiiiiiiiiiiii, 14

25 ALBIES ... 15
2.6 LiSt HeMS ..o 15
2.7 List-0f-Values (LOV)ouuuiiieeie e 16
2.8 ManNAgeMENL.......coooiiiiieiiei e 16
28.10racle Forms 4.0 Tables.............cccooeiiiiiiiiiiee 16
282UseSCCSOrRCS ... 22
2.8.3 Simplify the Systemccccciii 23
2.8.4 Extract Common Code from Oracle Forms 23
2.8.5 Adapt a Naming Convention..............ccccoceiviiiiiiiniinnnnnee 24
2.8.6 Make the Oracle Forms Tables big enough...................... 24
2.8.7 Migrating from SQL*Forms version 3.0cccoe 25
2.8.8 Running in Character Mode.................cccccocc, 26
2.8.9 Looking for FOMMS........ooeiiiiiiiiiiiiie e 26
2.8.10 Transport to / from MS-WIindows............cccccccceviiniennnn. 26
2.8.11 Trigger execution SeqUenCe...........ccccceeeereinniiiieeenennne. 26

2.9 NaVIgation.........oooiiie e 27
2.9.1 Prepare for Mouse Navigation..................cccoo . 28
2,10 TUNING....etieeeeee ettt e e e e e s 28
2.10.1 Direct Reference...........ccooooiiiiiiiiiiiiiiiee e 28
2.10.2 Save System Variable Overhead 28
2.10.3 Use EXplicCit CUrSOrScooeeiiiiiiiiiiiciieee e 28
2.10.4 Be careful using Default Where / Order By Clauses....... 29
2.10.5 REUSE CUMSOTIS.....uuuuiiiiiieeieiiieeeeeieeeee e 30

2.10.6 Response time Logging..........ccovvuiiieeieiiiiiiiiieeeeeeee. 30

2. 11 TransactionSoooviiiiiiiii 35
2.11.1 Select Transaction Strategyccccccceeevirviiiiiiiiininnnen, 35

2. 12 THCKS .o 36
2.12.1 Allocate Global Variablesccccccccceiiiiiiiiiiicc, 36
2.12.2 SECUMY....coiiiiiiii 37
2.12.3 Getting Alerts from the RDBMS.................cccoiiiinnn. 37

2. 13 DEDUGGING ... 39
2.14 Flexible Presentation...................cccc 40
2.14.1 Existing Posibilities e 40
21411 Alert Objects ... 40
2.14.1.2 Application Objects..............oooeeiii 41
2.14.1.3 Block ObjJeCtS.......cc.evvieiiiiiiiiceee e 41
21414 Canvas Objects ..., 41
2.14.1.5Forms Objectsooomiiiiiiiiieie e 41
21416 ltem Objectsoovviiiiei e 41
2.14.1.7 LOV ObJeCtSceviiiiiiiiieeiiieee e 41
2.14.1.8Menu Objectsoooeeviiiiiiiii 42
2.14.1.9 Radio Button Objects..................cccs 42
2.14.1.10 Relation Objects ..., 42
2.14.1.11 View Objects........cccooviiiiiiiiiiiicciieeeeee e 42
2.14.1.12 Window Objects.............ccooooiii 42

2.14.2 Load PropertiestoaTableccccooeeiiiiiiiiiee 42
2.14.3 Get Properties fromthe Table 45

S LayoUt AQVISEeiiiiiiiiii e 48

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 1

—m

Development Environments in DDE - Oracle Forms
version 4.x

The present paper is written as a contribution to the debate about which
ingredients are applicable to a development environment in order to
develop good and robust bug fixed programs.

From version 1.1.12 to 1.1.16 of this document remarks on Oracle Forms
version 4.5 are also supplied. Spelling errors are corrected in version
1.1.17 and 1.1.18.

1. Objective

The objective is to make as good use of the features in Oracle Forms
version 4.0 as possible, and prevent developers from falling into the same
traps as others did before them.

As forms applications are often used by skilled as well as non-skilled
users, you may observe the following elements of userfriendliness:

Simplicity A user interface composed of simple elements
allows the user to keep the general view of the
elements, not to be confused by an abundance of
choices.

General View Allow the user to keep the general view of the
application, even if the user needs to manipulate
some details for some periods of time.

Adapting As many presentation parameters as possible
should allow themselves to be adapted at runtime, to
fit the actual need. This is however not to used as an
excuse for distributing non-reasonable default
settings.

Oracle, Oracle7, PL/SQL, SQL*Forms, SQL*ReportWriter, Oracle Forms, Oracle
ReportWriter, ORACLE Case, Oracle Forms and Oracle Report are registered trademarks
of Oracle Corporation.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4 X Development 1.1.18.1 Page 2

_m

Intuitive The user interface should be able to reason what
semantic function, the user is in fact processing. And
it should be clear how different legal actions are to
be activated.

Forgiving Any user initiated event changing or destroying
information, should have an inverse function to lift
them again. Without this capability the user will not
dare to try yet undiscovered parts of the application.

Fast Any legal action should be activated with very few
user initiated events. If an action takes more than
about one second, the user interface should give the
user an idea of the course of the execution.

Oracle Forms 4.5 adds a number of features providing improved produc-
tivity and performance to Forms 4.0, some of which are:

* New developer productivity features like a Object Navigator to find

the object in question rapidly as well as an PL/SQL debugger.

* Better integration with MS Windows since OLE2 and VBX custom
controls are supported.

Better reusability of code through property clases and object groups.

Better GUI control through better mouse awareness, combo boxes
and tool bars.

Intergrated timing and debugging through PECS (Performance Event
Collection Service).

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 3

—m

2. Programmatic Advice

The following list of advice is by no means complete, and skilled
developers will be able to find cases, where the advice is not very
applicable. Still, | suggest the advice should be discussed among Oracle
Forms developers.

2.1 Generic Procedures and Triggers

Instead of writing complex triggers, develop some generic procedures,
and call these from the triggers. This should increase the possibility of
reusing the code, saving execution time, storage and development effort.

The following example is selected from Steve Muench - Oracle
Corporation.

Suppose we have two different fields being foreign keys to the emp table,
then we could write two ON-VALIDATE-FIELD triggers like this:

begin
select ename
into :blockl.first_ename_ field
from emp
where empno = :blockl.first empno_field;
exception
when no_data_found then
Message('This employee does not exist!');
raise form_trigger failure;
end;

And

begin
select ename
into :block2.second_ename_ field
from emp
where empno = :block2.second empno_field;
exception
when no_data_ found then
Message('This employee does not exist!');
raise form_trigger failure;
end;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 4

l..IIlIllIlIIIIIlIIlIIIIIIIIIlIIII.IIlIllllIllIllIlIIIIIIIIIIIIIIIIIIIII.IIIIIIIII I::::;l

Instead of developing a generic routine to test the matter:

procedure Validate Employee (
fp_EmpNo in Number,
fp EName out Char) is
cursor sel _emp is
select ename from emp
where empno = fp EmpNo;
begin
open sel_emp;
fetch sel_emp into fp EName;
if sel emp%notfound then
Message('This employee does not exist!');
raise form_trigger failure;
end if;
close sel_emp;
end;

The two validate triggers may now look like this:

validate Employee (:blockl.first_empno_£field, :blockl.first_ename_field);
QalidateiEmploye;(:block;.secondiempno_f;eld, :biock2.se;ond_ena;e_field)i
You may want to use the fact that the first parameter in the trigger call

should be the contents of the field in which the cursor is right now. In
that case the trigger call could look like this:

Validate_Employee(Name_In(:system.cursor_field), :blockl.first_ename_field);

vValidate Employee(Name_In{ :system.cursor_field), :block2.second_ename_£field);

You may wonder why the second parameter is not changed accordingly.
This is due to the fact that we expect a value to be returned from the
procedure.Also you might want to implement generic routines handling
different argument types.

This may be accomplished by calling the procedure by name instead of by
value / reference.

Dansk Data Elektronik A/S

Martin Jensen

m_

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 5

_—m

procedure Validate Employee (
fp Field in Char,
fp Block in Char) is
fp EmpNo emp.empno%type;
fp EName emp.ename¥type;
var Char (61) ;
cursor sel_emp is
select ename from emp
where empno = fp EmpNo;
begin
fp_EmpNo := Name_ In(fp Field);
open sel_emp;
fetch sel _emp into fp EName;
if sel_emp%notfound then
Message('This employee does not exist! ');
raise form trigger failure;

end if;
close sel emp;
var := fp Block||'.'||Get_Block_Property(fp_Block, FIRST_ITEM);
var := fp Block||'.'||Get_ Item Property(var, NEXTITEM);
Copy(fp EName, var);

end;

The call of the procedure could look like this:

Validate Employee(:system.cursor_field, :system.cursor block);

2.1.1 Register Procedures

Try to label the generic procedures in some for validation and some for
user interface purpose that could reside on the client side in the form,
and those checking database integrity and propagating changes
(db_proc) that could reside in the database (Oracle7).

2.1.2 Careful using Rowtype

In the PL/SQL procedures and triggers, you have the possibility of
declaring variables spanning a whole row, which is very convenient in
generic procedures.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 6

ﬂm

Note, however that you might get errors if the underlying table is changed
without regenerating the form.

2.1.3 Changing the Makefile

Oracle recommend that the makefile for relinking Oracle Forms modules
supporting user-exits and SQL*Net drivers, are taken as an example
rather than used as it is. This often leads to tough debugging sessions
because an adapted makefile is not automatically updated whenever a
new version of Oracle Forms is installed.

It is therefore advisable to change the makefile a little, to support the
usage of a generic makefile, in order to minimize the potential problems as
well as maintenance efforts.

The following changes are thus recommended to
$ORACLE_HOME/forms40/lib/sqlforms40.mk, after a copy has been
taken:

* Add -I$(ORACLE_HOME)/forms40/lib as a C-compiler option in
order to be able to run the makefile from a dictionary different from
the forms40 /lib dictionary. Two positions have to be changed and
the resulting line will look like:

$(CC) -c $(CFLAGS) -I. -I$(ORACLE_HOME)/forms40/lib $*.c
* Change the definition of EXIT to:
EXITS=iapxtb.o $(OTHERXIT)

In order to be able to specify other exits on the command file,
without having to add the files to the makefile.

You may also add lines to the makefile supporting the linking of
C-programs calling f40runmx directly.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 7

—m

callfrm: S(EXITS)
@$ (ECHO) $(CC) S (LDFLAGS) -0 $@ $@.c \
$ (SSLIFTAB) \
S (EXITS) \
$ (P2CSPECWODIANA) \
$(ISTUIC) \
$(UI10) \
$(UIICXD) \
$ (SSLLIBS) \
$ (FORMS40LIBS) \
$ (SSLLIBS) \
$ (NNLIBS) \
$ (VGSLIBS) \
$(DELIBS) \
$ (PLSLIBS) \
$ (CALIBS) \
$ (MMMLIBS) \
$ (TK2UIMLIBS) \
$(ZOMLIBS) \
$ (SQLPLUSLIBS) \
$ (PROLIBS) \
$(TTLIBS) \
$(CLIBS) \
$ (MOTIFLIBS)

2.1.4 Calling f40runm from a Program

It is possible to call f40runm directly from a C program, either to hide
the database account, or to reuse an already open database connection.

#include <sys/types.h>
#include <std.h>
#include <stdio.h>

/* #include <ifzcal.h> */
extern int ifzcal();

main(argc,argv)
int argc ;
char *fargvl];

{

int res;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 8

l..II--IIllIIIIlllIIllllllIII--I-IIlI.IllIIIIIIIlllIllll.llllllll.lllllllll- I::::I

res = ifzcal ("f40run module=timertst
userid=system/manager", 44) ;
printf ("Exiting, returncode is: %d\n", res);

}

Figure: "callfrm.c"

2.1.5 Get Shell Variable - a User-exit

Here we shall demonstrate how to make a user-exit in C, to copy a shell
variable into a forms variable. And how the user-exit might be used from a
form.

First create the source of the user-exit getenvr.pc:

Je ke e dede ok e e e e de e e sk vk e ke e e e v e e ke e e e v de v vk e % % I e e ok 3 e e 3k 3 A e ek e e e g ok o gk e gk e ke ke ke ke ke ke ke

/

GETENVR will get the value of the <envr-name> and store it in the
<field-name> with the maximum length of <max-length>
GETENVR is called with the following syntax for the parameter string p:

USAGE (in forms 4.0): USER-EXIT('GETENVR envr-name field-name max-
length!')

13. May 91 - MJ - DDE

dhkkdkhkdkhkhkikkkhkhkhkhhdhhkhhhrhkrhArAhkAAXAAXAEAEXLALEAXEEAEA AT AT ALk Ak rkkkkkkrhkhdkdx */

#include <stdio.h>
#ifndef IFUXIT

include <ifuxit.h>
#endif

/* #include <usrxit.h> is now obsolete on sqglforms 40 */

#define MAXARGS 128
#define ARBUFSIZ 512

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR formname [30); /¥ form variable name /

VARCHAR varvalue [128]; /* Variable to store value */
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA.H;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 9

I..IIIIIIllIIIIlllIIIIIIllIllIIIIIIIIlIIIlIIIlIllIllIllIlIIlllIIIIIIIIIIIIIIIIIIIIIIII I!::::!I

char *wordb [MAXARGS] ; /* Holds pointers to the blank separated */

/* tokens in the string passed to GETENVR */
int getenvr(p, paramlen, erm, ermlen, gry)

char *p; /* Parameter string */
int *paramlen; /* ptr to param string length */
char *erm; /¥ Error message if doesnt match */
int *ermlen; /¥ Ptr to error message length */
int *qry; /¥ ptr to query status flag */

{

int listsiz; /* Number of values */
. . * *
int 1i; /" Temp counter /
char arbuf [ARBUFSIZ]; /* To hold string that is passed */
int maxlen; /* The max length to copy */
char *cpoint; /* Temp counter */

EXEC SQL WHENEVER SQLERROR GOTO sqglerr;

remblank(p); /* Remove leading, trailing, and and double spaces

strncpy (arbuf, p, ARBUFSIZ-1);

/* get envrname, fieldname and maxlen in wordb(]

listsiz = countargs(arbuf);

if (listsiz != 4) /* Check for 4 arguments
return IAPFTL;

strncpy (formname.arr, wordb[2], 30); /* Store the form-name
formname.len = strlen(formname.arr);

sscanf (wordb (3], "%d", &maxlen); /" get the maxlen

strncpy (varvalue.arr, getenv(wordb[1l), maxlen) ;/* Get and store env */
if (strlen(varvalue.arr) == 0) return IAPFAIL;
varvalue.len= strlen(varvalue.arr);

EXEC TOOLS SET :formname values (:varvalue);/* Store value in form */

/*EXEC IAF PUT :formname values (:varvalue); is obsolete */
return IAPSUCC;

}

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 10

l..IllIIIIIIIIlIIIIIIIIlIlIlIllllllIIlllIIlIlIlIIllllllllIIIlIIIIIII.IIII!IIIIIIIIIII IC:::;I

sglerr: /* General error exception */
sqlca.sglerrm.sglerrmc[sglca.sglerrm.sglerrml] = '\0';
sgqliem(sglca.sqglerrm.sqglerrmc, &sglca.sqglerrm.sglerrml);
return IAPFAIL;

/* countargs -counts arguments in string and sets pointers in wordb([] */

to point to individual, null-terminated tokens. Relies */

/ on string having no leading, trailing or double blanks. */

int countargs (textp)

char *textp;

{

int numargs;

char *sp;

extern char *strchr();

for (numargs = 0, sp = textp; numargs < MAXARGS && sp; numargs++) {

wordb [numargs] = sp;
sp = strchr(textp, ' ');

if (sp)
*sp = '\0';
textp = ++sp;
}

}

return (numargs) ;

/* Remove leading, trailing, and and double spaces */

int remblank (textp)

char *textp;
{

register char *pin = textp;

. * .
register char pout = pin;
register char c;

while (*pin == ' ') pins+;
for (; c = "pin; ++pin) {
if (¢ == ' ") |
*
pout++ = ' ';
. * .
for (++pin; (c = pin) && c == ' '; ++pin) ;
if ('c) pout--;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 11

_m

if (o) |
if (¢ = ')

*pout++ = C;
else
--pin;
} else
break;
}

*pout = '\0’;

}
Figure: "The getenvr.pc User exit"

Append an entry in the iapxtb table, by editing the iapxtb.c source table.

The iapxtb.c file should contain the following entry:
#include <ifuxit.h>

extern int getenvr();

externdef exitr iapxtb[] = { /¥ Holds exit routine pointers */
"GETENVR", getenvr, XITCC,

(char ¥) 0, 0, 0 /* zero entry marks the end */

Yo

Relink f40runx and f40runmx with the new user-exit:

OTHERXIT=getenvr.o make -f sqlforms40.mk f40runmx

The following trigger will use the user-exit to get the environment name
stored in the field ENVR, and store the environment value in the field VAL.
If it succeeds, the trigger step will validate the VAL field:

User Exit('getenvr '||Name In('ENVR')||' VAL ']||
Get Item Property ('VAL', MAX LENGTH));

if form_fatal then

Message('GETENVR USAGE: env_var form_var max len');
elsif form failure then

Message('Envr >'||Name In('ENVR')||'< does not exist');
else

Go_Item('VAL');

Next Item;
end if;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 12

_m

Note that all literal text in English has been moved from the user-exit to
the calling trigger, to make it easier to translate. You may even copy
values into fields other than character fields, just remember to validate.

2.2 Timers

In order to do some internal periodical actions, the use of timers is
handy. Create e.g. in a when-new-form-instance trigger a timer:

declare
timer_id Timer;
begin
timer id := Create Timer('TEST TIMER', 10000, REPEAT)

if Id Null(timer_id) then
Message('Error creating the TEST_TIMER timer');
raise form_trigger_failure;
end if;
end;

Create an when-timer-expired trigger to define the actions to fire when
one of the timers expire, e.g. to update a field showing current time:

declare
a time Char(20);
begin
:global.timer name:= Get_ Application_Property(TIMER_NAME) ;
if :global.timer name = 'TEST_TIMER' then
a_time := Substr(:system.current datetime, 13, 99);
Message('Time: '||a_time, NO_ACKNOWLEDGE) ;
:forms_app.local time := a_time;
else
Message ('Another timer did expire: '||:global.timer_name) ;
end if;
end;

Verified to work for Oracle Forms 4.5 as well.
Note however, that even as timers do expire when the forms is in query

mode, they will not expire during an alert or when the operator is in
progress of selecting a menu item.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 13

—m

Likewise, if a timer is requested to expire extremely often (like once
every millisecond), the execution of the corresponding trigger would
neither be stacked, nor recursivly executed.

2.3 Buttons

You may create buttons in your canvas. You will however need to attach
actions to the buttons using when-button-pressed triggers on a per
button

basis.

Unfortunately you cannot develop more generic when-button-pressed
triggers, say on the form level, since information on which button is most
recently pressed is not generally available.

2.4 Parameter Lists

In order to be able to do more sophisticated parameter passing between
forms, reportwriter modules and Graphics applications, the notion of
parameter lists is introduced. Create e.g. in a when-new-form-instance
trigger a parameter list:

declare
pl_id ParamlList;
begin
pl id := Create Parameter List('PARAMETER TEST');
if Id Null(pl_id) then
Message('Error creating the PARAMETER_TEST parameter list') ;
raise form trigger_failure;
end if;
end;

Then before calling another module, add some elements into the
parameter list:

declare
pl_id ParamList;
begin
pl _id := Get_Parameter List('PARAMETER_TEST');

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 14

_m

if not Id Null(pl_id) then

Add Parameter(pl_id, 'PARAM TIME', TEXT_PARAMETER,
To Char(:local_date, 'DD-MM-YYYY'));

Add_Parameter (pl_id, 'PARAM USER', TEXT PARAMETER, user) ;
Call Form('paramtst', NO_HIDE, DO_REPLACE, NO_QUERY ONLY, pl_id);
Delete_ Parameter(pl_id, 'PARAM TIME');
Delete Parameter(pl_id, 'PARAM USER');

end if;

end;

Then in the called form when-new-form-instance trigger, read the
parameter values:

declare
pl_id ParamList;
pl_type Number;
pl_value Char(30);

begin
Get Parameter Attr('DEFAULT', 'PARAM TIME', pl_type, pl_value);
:text_date := pl_value;
Get_Parameter Attr('DEFAULT', 'PARAM USER', pl_type, pl_value) ;
:text user := pl_value;

end;

Note that the name of the parameter list is DEFAULT.

2.4.1 Relations between Blocks
Use relations rather than 'master - detail' options in 'default block'.

The relations are not 'safe’' though, even if the foreign fields in the

detail are protected against update, because an update of the master key
does not either restrict or cascade - it simply changes, leaving
unreferenced details.

Also locking a detail for update does not lock the appropriate master.
Another user could be deleting the master, as it is not locked.

And relations only support delete cascade on one level, so we should use
reference integrity and requery instead.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 15

—m

Note that if some of the primary key columns may be null, then the join
condition becomes rather complicated. So keep all primary key columns
not null whenever possible.

2.5 Alerts

In Oracle Forms 4.5, it is possible to define alerts and to populate alert
messages in seperate windows. The following PL/SQL block will change
the message of an existing alert object (TEST_ALERT), and make it
appear to the user.

declare
alert_id Alert;
alert_result Number;
alert message Varchar2(80);
begin
alert_id := Find Alert('TEST ALERT');
if Id Null(alert_id) then
Message('Alert TEST_ALERT does not exist!');

else
alert message := 'This is a text (E0A =ed)';
Set_Alert Property (alert_id, ALTER_MESSAGE_TEXT, alert_message) ;
end if;
end;

Note however, that until the user acknowledges the message, no
processing is done by Forms. Even timers will not expire in this period.
That is, timers will expire during alerts, but the associated action will be
processed after the alert - and only once per timer! (This has been
verified in Oracle Forms version 4.5.5).

2.6 List Items

List items are indeed very useful. You may programaticcally add elements
to and delete elements from a list. Only remember that the function
Get_List_Element_Count returns a character string, where we think
to_number could be applied.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 16

_m

By the way, in version 4.5.5 the Get_List_Element_Count function
returns '1', if the list is empty.

2.7 List-of-Values (LOV)

List of value objects may be defined in order to assist the operator
selecting an appropriate value (or tupple). And the values forming the list
may be received from an SQL-statement in a record group.

Such a statement will normally extract valid values from a given column,
such as: select distinct job from emp order by job. But more complex
SQL-statements may be composed, like the following:

select distinct job from emp

union

select 'Unknown' from dual

union

select distinct job||'-'||to_char(deptno) from emp

The selected value are returned from the LOV object into the designated
field / variable, where a post-change trigger may do some actions.

2.8 Management

2.8.1 Oracle Forms 4.0 Tables

Like in SQL*Forms 3.0, the 4.0 version supports the possibility of having
the total form stored in the database. This is still a superb way to make
cross references and management on a lot of forms. It is however
increasingly difficult to read the forms tables, because more products are
involved and because the datatypes LONG and LONG RAW are used.

The table structure of the forms tables is described in Appendix F of the
forms Reference Manual. (Table prefix is frm40_).

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 17

—m

Also the Tool! Kit tables are used for module definitions, PL/SQL code, and
long text and images. (Table prefix is tool__).

Also the Resource Object Store (ROS) tables are used for literals of any
sort. (Table prefix is ros). The program rosstr delivered on request, may
dump the rosstrings in a readable format.

Also the Virtual Graphical System (VGS) ststem is used in order to
support color and font information. (Table prefix is vg).

A number of deviations between the forms table definition and the one
described in appendix F have been located, they are listed below: Manual
Version: A11989-1 July 1993, Oracle Forms version: 4.0.11.0.1.

* Column frm40__app.appmname is varchar(255) instead of

varchar(30).

Column frm40__ app.appfname is varchar(255) instead of
varchar(30).

Column frm40__ app.appnislang is new varchar(40) to store NLS
information.

Column frm40_ blk.blktowner is varchar(61) instead of varchar(30).
Column frm40__ grp.grpname is varchar(30) instead of varchar(80).
Column frm40__itm.itmcopy is varchar(61) instead of varchar(80).
Column frm40__itm.itmquality is new number.

Column frm40__lov.lovname is varchar(30) instead of varchar(80).
Column frm40__lov.lovgroup is varchar(30) instead of varchar(80).

Column frm40__ mnuapp.appnlslang is new varchar(49) to store NLS
information.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 18

——m

Column frm40__mnuitm.itmname is varchar(50) instead of
varchar(40).

Column frm40__mnuitm.itmtxt is new varchar(80).
Column frm40___namelist.nlvar is new varchar(80).

Column frm40__ window.winicontit is renamed to wincontvw.

Oracle Forms 4.5 still support an Oracle based repository although the
structure has changed a lot from version 4.0.

The Forms tables are from version 4.5 not documented any more, and
may be subject to changes. The tables form however a unique source for
maintenance oriented operations, and are thus listed below:

Be careful, most of the tables do not have proper primary key, reference
or not null definitions. The OWNER columns is the name of the actual
Oracle account holding the form (In upper case in the FRM45 tables and
in lower case in the PECS tables). MODID is the module id uniquely
defined.

Table DE__ATTACHED LIBS:
OWNER Varchar2(30),
MODID Number (10,0),
ITEMID Number(10,0),
LIBNAME Varchar2 (255),
LOCATION Varchar2(30));
Primary key on (OWNER, MODID, ITEMID) ;

Table FRM45 BINDVAR:
OWNER Varchar2(32),
MODID Number(9,0),
ITEMID Number,
NEXTBPOS Number,
PLSQLBV_EP Number,
TOTAL_BINDVAR Number) ;

NONUNIQUE index on (MODID, ITEMID) ;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 19

I..IIlIlIIIIIIIIIIlIIlIIIIIlIIIIIIIlIlIIllIlIIIIIIIIlllIIIIllIlIlIllIIIIIIIIIIIIIIIIIIIIIIII I[:::;I

Table FRM45 BUFFER:
OWNER Varchar2(32),
MODID Number (9,0),
STARTADDR Number,
STARTREF Number,
DATATYPE Number,
LONGID Number) ;
NONUNIQUE index on (MODID) ;

Table FRM45_GRP:
OWNER Varchar2(30),
MODID Number (9,0),
ITEMID Number (9,0),
GRPNAME Varchar2 (30),
GRPFLAG Number) ;
Primary key on (MODID, ITEMID) ;

The frm45__ object table describes all forms related objects. NAME is the
actual name of the object, OBEJCTTYPE its internal type, and SCOPE1,
SCOPE2 and SCOPES3 defines the scope hierarchy for the object. Scope1
would be canvas-name, block-name, formstrigger-name or null. Scope2
would be field-name, blocktrigger-name or null. And scope3 would be
fieldtrigger-name or null.

Table FRM45__OBJECT:
OWNER Varchar2(32),
MODID Number(9,0),
ITEMID Number,
NAME Varchar2(32),
OBJECTTYPE Number,
SEQUENCE Number,
RAWLEN Number,
TEXTLEN Number,
CHUNKNO Number,
SCOPEID Number,
SCOPE1 Varchar2(32),
SCOPE2 Varchar2(32),
SCOPE3 Varchar2(32),
RAWDATA Raw (250),
TEXTDATAl Varchar2(2000),
TEXTDATA2 Varchar2 (2000),
TEXTDATA3 Varchar2(2000),
TEXTDATA4 Varchar2 (2000),
PROGRAMUNITID Number) ;
NONUNIQUE index on (MODID, ITEMID);

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 20

I..IIIIIIIIIlIIlIllIllIIIIIIIIIIlIlllllIIIIIIlIIIlIlIlIIlIllIIIIIIIIIIIIHIIIIIIIIIIII!::::l

Table PECS__CLASS:

CLSID Number(9,0), /¥ class id - unique for each class /
CLSTYP Number (9,0), /* class type - i.e. forms, reports, etc. */
CLSNAM Varchar2(30), /* class name */
CLSVER Varchar2 (30), /* version of this class */
CLSCOM Varchar2 (32), /* class comment */
CLSOWN Varchar2(32), /* owner for this class */
CLSDAT Date) ;

NONUNIQUE index on (CLSID) ;

Table PECS_ DATA:
EXPID Number (9,0), /* owning experiment id for this event */
RUNID Number (9,0), /* run number for this event instance*/
CLSID Number(9,0), /" owning class id for this event */
EVTTYP Number (9,0), /* type of event (trigger, proc, etc.) */
DATTYP Number, /* type of data (matched, mismatched, point) */
DATID Number, /* data id - unique for this experiment */
DATCOM Varchar2(32), /¥ comment */
ELATIM Number, /* elapsed time */
CPUTIM Number, /* cpu time */
ARG1 Number(9,0), /* used for lookup of various form */
ARG2 Number (9,0)); /* names (block, item, etc.) %/

NONUNIQUE index on (CLSID);

NONUNIQUE index on (EXPID) ;

Table PECS__EVENTS: a static code table
CLSTYP Number(9,0),/* default value: -3 */ /* class for this event */
EVITYP Number(9,0), /* type for this event */
EVINAM Varchar2 (32), /* name for this event ~/
EVTCOM Varchar2(32)); /* comment for this event */

Types are:
1: Application

2: Form

3: Block

4: Field

5: Key

6: Trigger
7: PLSQL

8: Commit
9: ExeQuery
10: LoV
11: Page

12: 20Trigger
13: Procedure

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 21

I..lllllllIIlllIlIIIlIIllIllllllllIllIIlllIIIIIIlIlIlIllIIIIIIIIIIIIIIIIIIIIIIIII It::::l

15: Alert
17: Editor
18: Window
19: Canvas
21: ProcLine
22: TrigLine

Table PECS__EVENT TYPE: a static code table.
EVTID Number,
EVTTYP Varchar2(32));

1: Duration
2: Point

3: Invalid
4: Invalid

Table PECS__ EXPERIMENT:

EXPID Number (9,0), Yl experiment id - unigque for each experiment /
EXPOWN Varchar2(32), /* oner of this experiment */
EXPNAM Varchar2(32), /* Name of the experiment */
EXPCOM Varchar2 (255)); /* Comment for this experiment */

NONUNIQUE index on (EXPID);

Table PECS__ PLSQL:
MODID Number (9,0),
PRCID Number,
LINNUM Number,
LINTXT Varchar2(255),
LINTYP Number) ;
NONUNIQUE index on (MODID, PRCID);

Table PECS__ RUN:
EXPID Number (9,0),
RUNID Number (9,0),
RUNDAT Date,
RUNCOM Varchar2(32));
NONUNIQUE index on (EXPID) ;

Table PECS__SUMMARY:

EXPID Number (9,0), /* experiment id */
CLSID Number(9,0), /¥ class ia ¥/
CLSTYP Number (9,0), /¥ class type ¥/
MODID Number (9,0),

EVTTYP Number(9,0), /¥ type of event */
EVTNAM Varchar2 (32), /* name of the event */
SUMTYP Number, /* summary event (matched,mismatched,point */
SUMCOM Varchar2 (32), /* comment */
SUMCNT Numberxr(9,0), /* occurrences of this event */
ELAAVG Number(9,4), /* average elapsed time */

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 22

II.-IlllllIIIIIIIlIllIIIllIIlllllIl-lllllIlIIllIIIIIIIIIIlIlIIIIIIIIII.IHIIIIIIIIIII I[:::;I

ELAMIN Number(9,4), /% minimum ... ¥/
ELAMAX Number(9,4), /* maximum ... */
ELASTD Number (9,4), /¥ standard deviation ... */
CPUAVG Number(9,4), /* average cpu time */
CPUMIN Number(9,4),
CPUMAX Number (9,4),
CPUSTD Number (9,4),
ARG1 Number (9,0), /* used for lookup of various form */
ARG2 Number(9,0), /** names (block, item, etc.) **/

BLKID Number(9,0),

ITMID Number (9,0),

BLKNAME Varchar2 (32),

ITMNAME Varchar2(32));
NONIQUE index on (CLSID);
NONUNIQUE index on (EXPID);

2.8.2 Use SCCS or RCS

In order to identify the different forms and libraries, it is advisable to assign
a global variable - say SCCS_VERS, the string @(#) %\M% %\|% %\&H%
(Without the '\\'). And then let the sccs system control and expand the
symbols of the .fmt and .mmt files. Unfortunately though default text is

not stored as literals in the .fmt files, but in hex format, so the sccs string
must be stored elsewhere.

We recommend you to create a program unit like this:

function Get_Sccs Version return Char is
begin

return '@(#) %\M
end;

o\°

$\I% $\&H%';

And a when-new-form-instance trigger like this to save the value for
inspection at runtime:

begin

:sccs_vers := Get_Sccs_Version;
end;

When a new version of the form should be generated the following actions
must be performed:

Martin Jensen Dansk Data Elektronik A/S

m—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 23

_m

Make the '.fmt'
file ready for an update.

f40desm # Make the changes
in the designer.
f40genm script=yes # .fmb -> .fmt

Check in and out
in the SCCS system
f40genm parse=yes # .fmt -> .fmb
f40genm generate=yes # .fmb -> .fmx

The function will then reflect the actual version of the form:

function Get_Sccs_Version return Char is
begin

return '@(#) sccs.fmt 1.1.1.1 4/26/94';
end;

You may also get the versions using what:

$ what sces.”
sccs. fmb:

sces.fmt 1.1.1.1 4/26/94°';
sccs. fmt:

sces.fmt 1.1.1.1 4/26/94";
sccs. fmx:

sces.fmt 1.1.1.1 4/26/94

2.8.3 Simplify the System

Use a single big code table (zip, country, ...), instead of many small
ones. This keeps the code manipulation forms down to one, and the select
statements may be reused much more easily.

2.8.4 Extract Common Code from Oracle Forms

If a number of forms have to have the same external capabilities, such as
spawning reports, tracing SQL statements, checking mails, etc; then an
associated menu application may just do it, since it runs in the same

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 24

__m

process (with the same Oracle session) as the forms process. See the
chapter later in this document.

2.8.5 Adapt a Naming Convention

In order to distinguish local PL/SQL variables from database object
names, always prefix the local PL/SQL variables with something. (like
local for local PL/SQL variables, fp_ for formal parameters, ...)

2.8.6 Make the Oracle Forms Tables big enough

It is sometimes advisable to keep the forms applications loaded in the
forms tables, as you may use the referencing mechanism, or want to use
the tables for maintenance purpose.

But as the forms tables are not created with any special storage
parameters, you may increase database fragmentation and decrease
forms development performance. A SQL*Plus script alt_frm.sql is
available to put more reasonable parameters on the tables. If your forms
tables is in use already, you may export them compressed, import them,
and then run the script. Or you may wish to recreate the tables:

sglplus $SYSTEM_PASS
@?/guicommon/tk2/admin/sgl/tooldrop
@?/guicommon/tk2/admin/sql/rosdrop
@?/guicommon/vgs/admin/sql/vgdrop
@?/forms40/admin/sql/frmédrop

@?/guicommon/tk2/admin/sql/toolbild
@?/guicommon/tk2/admin/sql/rosbild
@? /guicommon/vgs/admin/sql/vgbild
@?/forms40/admin/sqgl/frmabild

@?/guicommon/tk2/admin/sql/toolgrnt <oracle users
@?/guicommon/tk2/admin/sql/rosgrnt <oracle users
@?/guicommon/vgs/admin/sql/vggrnt <oracle users>
@?/forms40/admin/sql/frmégrnt <oracle user>

exit

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 25

ll..IIllIIIIIIIIIIIIllIIIIllIIIIIIlIIIIIlIlIIIIlIIIIIIIIIIIIIllIllIIIIIIIIIIIIIIIIIIIIIIIIIIIII |!::::;I

2.8.7 Migrating from SQL*Forms version 3.0
Version 4.0 differs from version 3.0 a great deal.

*

It allows usage of Windows oriented techniques to facilitate a rich
user interface, such as fonts, colors, images, buttons, radio buttons,
etc.

It incorporates more features to make it easier to integrate with
other tools through parameter lists, record groups, etc.

It introduces more objects such as Master-Detail Block Relations and
List of Values to make the form more easy to maintain.

The internal structure of the database tables as well as the
equivalent definition files have also changed substantially.

Also the syntax in the user exits on how to exchange information with
the running form has changed - check the manuals og see the
getenvr.pc example in this document. <ifuxit.h> should be included
instead of <usrxit.h>, and EXEC TOOLS must be used instead of
EXEC IAF.

If the syntax of setting and retrieving information from the actual
form is not changed according to the manual, the following kind of
error will appear linking f40runx:

1ld:
/wd/sqll5/DR/1ib/1libsgl.a(sqlgfo.o): jump relocation out-of-range,

bad object file produced, can't jump from 0x845558 to 0x101838e4 (iapprs)

/wd/sqll5/DR/1ib/1libsqgl.a(sglpfo.o): jump relocation out-of-range,

bad object file produced, can't jump from 0x8458e4 to 0x101838e8 (iappfo)

It is rather simple to transform a version 3.0 SQL*Form to version 4.0. You
simply has to call f40genm with the option upgrade=yes. Please
remember however to take the hint Prepare for Mouse Navigation
serious. Afterwards run f40genm with the insert=yes option in order to
store the form in the database.

Martin Jensen

Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 26

_m

2.8.8 Running in Character Mode

Of course, running the form in character mode makes the form present
itself somehow different from the windows-orientated look-and-feel. You
may have to set the environment variable term to t3, though.

It is however, possible to execute the very same form in character mode
as well as in the windows environment.

Buttons may be acticated by navigating to them, and then pressing select.

The feature of recording keystrokes and executing forms using the very
same strokes only works in character mode.

2.8.9 Looking for Forms

The environment variable ORACLE_PATH may now be used to specify a
list of directories where f40run[m] will look for a given form. The
environment variable FORMS40_PATH is not used.

Oracle Forms 4.5 also supports the use of the variable FORMS45 PATH ,
but before ORACLE_PATH.

2.8.10 Transport to / from MS-Windows

Although the binary files (.fmb, . mmb and .pll) should be hardware
platform independent, you may get error FRM-40030 (File filename is not
a Oracle Forms 4.0 file) message. As the underlying modules might be of
different versions. In this case use either the script files or extract the
module from the database itself.

Remember to generate any library before any form or menu.

2.8.11 Trigger execution Sequence

A number of trigger events in forms 4.5 allows you to trap various events,
but you would have to know the sequence in which some of the events
are fired in order to utilize the mechanism.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 27

_m

Suppose triggers have been written for PRE-LOGON, POST-LOGON,
PRE-LOGOUT, POST-LOGOUT, PRE-FORM, POST-FORM and for
WHEN-NEW-FORM-INSTANCE.

If we call the first form (it must logon to the database), and we simply

enter and leave again, the following sequence of trigger-execution would
be observed: PRE-LOGON, POST-LOGON, PRE-FORM, WHEN-NEW-
FORM-INSTANCE, POST-FORM, PRE-LOGOUT and POST-LOGOUT.

Assume however, that the POST-LOGON trigger does check that the
application is only used between 7 am. and 6 pm.

declare
a_check Varchar2 (1) ;
cursor check access is
select 'x' from dual
where to_number (to_date(sysdate, 'hh24'))between 7 and 18;
begin
open check access;
fetch check access into a_check;
if check_access%notfound then
raise form trigger failure;
end if;
close check_access;
end;

Observe that if the exception is raised, then forms will terminate
immediately without raising other events. (Not even ON-LOGOUT!)

2.9 Navigation

Make a choice on whether or not the operator should control navigation.
Skilled users usually fancy free navigation.

This issue should not be misused to let the operator bother about blocks,
pages,

Martin Jensen Dansk Data Elektronik A/S

—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 28

—m

2.9.1 Prepare for Mouse Navigation

Be sure not to execute any procedure to validate, compute, or perform
any other semantic action when a navigation event is raised (such as
going to next field, pre- or post-field, ...) because these events will be fired
differently if the operator is going to run the same application in a non-
character mode environment.

2.10 Tuning

2.10.1 Direct Reference

Instead of referring a variable like :variable, always (if possible) prefix
with the block name :block.variable, to let forms find the variable faster.

2.10.2 Save System Variable Overhead

If the same PL/SQL block needs to read a system variable over and over,
it is faster to save a local copy of the system variable once, and then do
the referencing.

2.10.3 Use Explicit Cursors

If you know that a certain select does not return more than one row, use
an explicit cursor, because an implicit cursor will always execute two
fetches in order to get the NO_MORE_ROWS flag back.

Example: Assume we want the name of the president in a PL/SQL block.
Using an implicit cursor, this could be done like this:

Martin Jensen Dansk Data Elektronik A/S

e

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 29

—m

declare
EName emp.enamestype;
begin
select ename into EName
from emp
where job = 'PRESIDENT';
if EName = 'JENSEN' then ...
exception
end;

Unfortunately this example does not react properly on conditions like more
than one president, or none at all. And even if only one exists in the table
two fetches have to be performed according to the ISO standard, to see if
in fact more rows could be availabel.

Instead, use an explicit cursor:

declare
cursor president is
select ename from emp where job = 'PRESIDENT';
EName emp.ename$type;
begin
open president;
fetch president into EName;
if president%found then
if EName = 'JENSEN' then ...
if end;
close president;
end;

2.10.4 Be careful using Default Where / Order By Clauses

Using the default where/order by clause for blocks, be sure that the
database supports the specified statement to prevent massive sorting.
Also make sure that this facility is not used as an access prevention
mechanism - because it is possible to get around the mechanism!

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 30

—m

2.10.5 Reuse Cursors

How is it possible to reuse cursors in Oracle Forms? Often PL/SQL
procedures and triggers will be invoked many times in a Oracle Forms
session, how can we keep the cursors in these procedures open, so we
do not have to re-parse them each and every time the procedure is
called?

Actually Oracle Forms and PL/SQL is already handling this issue to a
certain degree. Explicit and implicit cursors from PL/SQL procedures are
not closed immediately when the programmer specifies the close call.
Oracle Forms will keep a cache of open cursors, and if a cursor open
request comes in, and the cursor is already there, no opening or parsing is
done. The cursor is simply re-executed.

If no empty slots are found in the cursor cache, one of the not used
cursors is closed, and the slot is reused for a new SQL-statement.

The number of entries in the cursor cache seems to be equal to the
open_cursors init.ora parameter. This is unfortunate, since it makes it
difficult to tune the size on a per-program-basis.

If you analyze your form with the -s option, the number of cursors reported
exclude the cursors used in the PL/SQL procedures, as well as any
recursive cursors used by the kernel to parse the actual SQL-statements.

Please also note that the term implicit in the -t option has nothing to do
with implicit statements in PL/SQL, but only references the implicit
generated SQL-statements to query, insert, delete and update blocks with
underlying tables.

The advice is therefore to issue a close cursor call for every open call,
not being worried about loss of performance as a result of this.

2.10.6 Response time Logging

Often there is a need to establish some material on what the response
times are for different functions in the application. Either the customer

Martin Jensen Dansk Data Elektronik A/S

m—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 31

I..llIIIllIlIlll-IIlIIlIllllIIIlIllIIIlIllllIlllllIIllllIIIIIIIIIIIIIIIIIIIIIII- I[:::!I

wants to log certain information in order to check the real values against
those in the contract, or the developer wants to do some serious testing.

Unfortunately Oracle Forms does not include facilities to do timings on
local events, so we should have to extend Oracle Forms with 2 user exits
start_time, and get_time found in the iaptrace.pc file:

#include <stdio.h>
#include <time.h>
#ifndef IFUXIT

include <ifuxit.h>
#endif

/* #include <usrxit.h> is obsolete under sqglforms 4.0 */
#include <sys/times.h>

extern int start_time () ;
extern int get_time() ;

EXEC SQL BEGIN DECLARE SECTION;
varchar msg_val[100];

char formfld[61]; /* Store block.field here ¥/
char form name{30];

char from_ form fld([é61];
char trig name[30];
char id[30];
long micro;
EXEC SQL END DECLARE SECTION;
EXEC SQL INCLUDE SQLCA.H;

static char trace vers[]= "@(#) iaptrace.pc 1.1.5.1 5/18/94";
/* dekdkhkdkhhhkhhhkkkkkrkhkkhhkkkkkkhkhhkhkhkhkkkhkhkhhkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhkhhkhhkhkkhkkhkkhhkhthkkx

* start_time is called with the following syntax for parameter string p:

* start_time

* get_time form field trigger fieldname mode

If mode include 'f' a message is written back to <fieldnames>.

* If mode include 'b' a log record is inserted in the FORMS_LOG table.
*

dededede e dededede ek d Rk ke hkkhkkhkkkhkdkkkdkhkhkdkkhkhkhhhikkkhkkhkkkhkkhkhkhkhhkhkhkhkhkdkkhhhhihkkk */

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 32

_m

#define MAXARGS 7
#define ARBUFSIZ 512

char *wordb (6] ;
static long start_clock;

int start_time(p, paramlen, erm, ermlen, query)

char *p; /¥ parameter string */
int *paramlen; /* Ptr to param string length */
char “erm; /* Error message i1if doesnt match */
int *ermlen; /¥ Ptr to error message length */
int *query; /* Ptr to query status flag */

char msg([80];
int len;
struct tms the_ tms;

start_clock = times(&the_tms);
return IAPSUCC;

int get_time(p, paramlen, erm, ermlen, query)

char *p; /* Parameter string */
int *paramlen; /¥ Ptr to param string length */
char *erm; /* Error message if doesnt match */
int *ermlen; /¥ Ptr to error message length */
int *query; /* ptr to query status flag */
{

extern int countwords() ; /* Puts "words" into an array */
extern char *cpystr(); /¥ Copies one string to another */
extern char *upper(); /* Makes a string uppercase */
extern char *remblank(); /* Get rid of extra whitespace */
extern int strcmp(); /* Compares two strings */
int listsiz; /* Number of values */
int i; /* Temp counter */
char arbuf [ARBUFSIZ]; /* To hold string that is passed */

char msg[80];

char mode [10];

int len;

double df;

short to_forms, to_base;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 33

I..lIIllIIIIIllIIllIIllIIlllllIlllIlIllIIllIIIIIlIllIIIlllIllllllllllllllllllll.ll. I::::;I

struct tms the_tms;
EXEC SQL WHENEVER SQLERROR GOTO sqglerr;

remblank(p);
strncpy (arbuf, p, ARBUFSIZ-1);
listsiz = countargs(arbuf);

if (listsiz < 1) {
EXEC TOOLS MESSAGE 'get time: Not enough arguments!';
return IAPFTL;

if (listsiz >= MAXARGS) {
EXEC TOOLS MESSAGE 'get time: Too many arguments!';
return IAPFTL;

strepy (form_name, wordb [1]) ; /* get formname string */
strepy (from_form_fld,wordb(2]); /* get fieldname string */
strepy (trig_name,wordb(3]) ; /* get fieldname string */
strepy (formfld, wordb [4]) ; el get fieldname string */
strepy (mode, wordb [5]) ; /* get mode string */
to_forms = (strchr(mode, 'f£') != NULL);

to_base = (strchr(mode, 'b'} != NULL);

strcpy (id, cuserid (NULL)) ;
micro = times(&the_tms) - start_clock;

micro *= 10000;

if (to_forms) (

df = micro ¥ 1.0 / 1000;
sprintf (msg_val.arr,"%s, Field: %s.%s, Trig: %s, Sec: %.6f",
id, form_name, from_ form fld, trig_name, df);
msg_val.len = strlen(msg_val.arr);

EXEC TOOLS SET :formfld VALUES (:msg val);

if (to_base) {
EXEC SQL

insert into forms_log (
stamp, user_name, form name, field name, trigger_name, micro_sec)

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 34

I..IIIIIIIlIIIIllIIIIllIIIlIlIIIIIIllIIlIIIIIlIIIIIIIIIIlIIlllIllllIIlllIIIIIIIIIIIIIIIIIIIIIIIIII I!::::!I

values
(sysdate, :id, :form_name, :from form_ fld, :trig name, :micro);

return IAPSUCC; /* Yes, return success code */

sqlerr:

sqlca.sqglerrm.sglerrmc [sglca.sglerrm.sglerrml] = '\0';
sqliem(sglca.sglerrm.sglerrmc, &sglca.sqglerrm.sqglerrml);
return IAPFAIL;

Figure: "The User Exit Rutines in iaptrace.pc'
Note that the log records will be committed when the form commits.

The Forms_Log table can be created with the following statement:

create table forms_log (
stamp Date not null,
user_name Char (30),
form name Char(30) not null,
field name Char(61),
trigger_name Char(30) not null,
micro_sec Number (10));

Two forms procedures are shown (Start_Timer and Read_Timer) - using
the user exits, which should be made known to Oracle Forms:

procedure Start_Timer is
begin

User Exit ('START_TIME');
end;

procedure Read Timer (trig name Char, mode val Char) is

begin
:global .micro := 'Nothing';
User Exit('GET TIME '|| :system.current_form ||' ||

:system.cursor_field ||' '|]| trig_name ||' :global.micro '||
mode_val);

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 35

_m

if Instr(mode _val, 'f') > 0 then
Message(:global.micro);
end if;
end;

Figure: "Start_Timer and Read_Timer"

Now the procedures may be called from the trigger you want to time:

Start_Timer;
begin

end;
Read_Timer('KEY-COMMIT', 'fb');

In Oracle Forms 4.5, the PECS system (Performance Event Collection
Service) offers the possibility to generate a statistics log, that could be
loaded back into the PECS % tables for analysis. If the PECS tables are
installed in the system account, and you still get an table does not exist
error message trying to load the statistical information, there is a good
chance that grants to the actual user have not been performed. In this
case you may have to execute the forms45/pecs/pecsgrnt.sql SQL*Plus
script.

2.11 Transactions

Make a choice on whether or not the operator should control transactions.
Or in other words: Does the operator or the application control the logical
transaction by having control over commit and rollback.

2.11.1 Select Transaction Strategy

Be careful using the ON-LOCK trigger. Oracle recommend the use of the
trigger in single user cases, where locking is not a hot issue. The ON-
LOCK trigger may however also be used to change the locking and
reservation mechanism of Oracle Forms.

Martin Jensen Dansk Data Elektronik A/S

m—

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 36

——m

Sometimes when many users have to change values in common rows in
the database through Oracle Forms, you will find that the fastest users
may be locked by users who for some reason did not release the
reservation of the essential records yet.

Why not try to change the philosophy so the fastest users get through. If a
user tries to commit changes, where the values once retrieved have
changed in the meantime, then the user should receive an Data changed
by another user - Requery and change message.

1. Find the block where the changed philosophy should be
implemented.

2. Make sure that Oracle Forms does not reserve the rows when they
are changed by the operator, by specifying the ON-LOCK trigger to
null or something else.

3. Save the original value you are about to change.

4. |nthe PRE-UPDATE event, select the record to see if the record still
matches the stored value, or fails.

2.12 Tricks

2.12.1 Allocate Global Variables

Note that it is possible to generate global variables in Oracle Forms at
runtime. If you want to save some key values for later use, you would not
know in advance how many variables to allocate. Here is a little example
on how you might save the first field in every record as well as the rowid
from the current block.

declare
var Char (30) ;
field Char(30);
rowidvar Char (30) ;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95

Oracle Forms 4.X Development 1.1.18.1 Page 37

B — 7)

begin
field := Get_Block_Property(:system.cursor_block, FIRST_ITEM) ;
rowidvar := :system.cursor block||'.rowid';
first record;
for i in 1 .. 100 loop
if Name In(field) is null then exit; end if;
var := ':global.empno_'||:system.trigger record;
Copy(Name In(field), var);
var := ':global.rowid '||:system.trigger record;
Copy (Name In(rowidvar), var);
Next Record;
end loop;
end;

Note that | have limited the number of saved records, but there is no fixed
upper limit on how many global variables a form may allocate - Only the
amount of memory will put the limit.

2.12.2 Security

Oracle Forms 4.5 allow the programmer to extract the used Oracle
username, password and connect string with get_application_property, in
order to be able to spawn new sessions on the same account. Note
however that the programmer must be sure to deal carefully with this
information, and that users may request a verified guarantee stating that
these functions (if used) are to be trusted.

2.12.3 Getting Alerts from the RDBMS

In Oracle7 it is possible to set up an alert (not to be mistaken from a forms
alert!) telling all interested clients that a certain event did happen. Now
here we shall see how the operators may be notified.

Assume a trigger have been placed to catch changes to the salary column
of the emp table, like this:

create or replace trigger emp_sal_change
after insert or delete or update of sal on emp
for each row
declare

string Varchar2(80);

Dansk Data Elektronik A/S

Martin Jensen

m—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 38

l..IIIIIIIlIlIIIlIlIIIIIIlIIIIIIIllllIIIIIIIl-IlIIllllIIIIIllIllllllllllllllllllllll- I[:::!I

begin
if updating then
string := 'Updating emp '||To_Char(:new.empno)| |
', old sal: '||To_Char(:old.sal)||' changed to: '||To_Char(:new.sal
else
if inserting then
string := 'Inserting emp '||To_Char(:new.empno)||', new sal: '||To_Char(:new.sal
else
string := 'Deleting emp '||To_Char(:old.empno)||', old sal: '||To_Char(:old.sal
end if;
end if;
dbms_alert.Signal('emp_sal_alert',K string);
end;

It is certainly not good programming style to include language dependent
text in the messages, but as an example ... Note that the trigger will
signal an alert called emp_sal_alert with a proper message. Note also
that alerts instead of pipes are used since we would only like to get the
signal if the transaction changing the salery column actually commits.

A client may now show interest in this specific RDBMS alert with the
register call. We also need a timer to check is an alert has arrived.
Unfortunately we would have to do this in a polling fasion, since there is
no concepts of threads in Oracle Forms. It will however not be very
expensive to do the polling, since only little database activity is involved.

The when-new-form-instance trigger may look like this:

declare
timer_id Timer;
begin
dbms_alert.Register('emp_sal_alert');
timer_id := Create_Timer('CHECK TIMER', 10000, REPEAT);

if Id_Null(timer_id) then
Message('Error creating the CHECK TIMER timer');
end if;
end;

Now when the CHECK_TIMER timer expire, we need to see if any
emp_sal_alert alerts are pending, so we set the timeout parameter to 0.
Note that the Waitany procedure is used to allow for other alerts as well.

The when-timer-expired trigger may look like this:

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 39

—m

declare
alert_message Varchar2(2000);
alert name Varchar2(2000);
status Number;
alert_id Alert;
alert result Number;

begin
:global.timer name := Get_ Application Property(TIMER NAME) ;
if :global.timer.name = 'CHECK TIMER' then

dbms_alert.Waitany(alert name, alert message, status, 0);
if status = 0 then
alert_id := Find_Alert('EMP_SAL ALERT');
if Id Null(alert_id) then
Message('Alert EMP_SAL ALERT does not exist!');

else
Set_Alert_ Property(alert_id, ALERT MESSAGE_TEXT, alert_message) ;
alert _result := Show_Alert(alert_id);
end if;
end if;
else
Message('Another timer did expire: '||:global.timer name) ;
end if;

end;

2.13 Debugging

Using the debug switch in frm4run (-d) will only tell when the different
triggers are fired. For more complex forms it is even more interesting to
see when the different procedures are called. In order to be able to follow
the procedure calls a little PL/SQL script ondebug has been invented. It
will insert a message line after the first begin in every procedure of a
particular form in the Oracle Forms tables.

If the forms_ddl routine is present, you may also create two developer
buttons Trace_On and Trace_off, and let the when-button-pressed call
forms_dlI('alter session set sql_trace = true'); and forms_dlI('alter

- session set sql_trace = false');.

Remember though, that DDL statements will issue an implicit commit, so
always precede the forms_dll calls with Commit_Form.

Martin Jensen Dansk Data Elektronik A/S

m—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 40

—m

2.14 Flexible Presentation

Oracle Forms 4.x is rather static in its view for possible presentational
changes. In other words - If the designer does not implement with flexible
presentation issues in mind, the customer is likely not to be able to
adjust any presentational issues at all in a Oracle Forms based system.

If however the programmer wants to allow some degree of presentational
freedom (without violating the integrity of the application), how should he
or she act?

It is well known that more dramatical presentational changes, like adding
fields on the fly, cannot easily be done at runtime in forms. Note however
that many properties of existing object may be changed at runtime. This
will allow a system to read in local presentational settings from file or
database, and to issue appropriate set_xxx_property calls in the
beginning of each form, in order to allow local customers to change the
presentation of the forms, without having to ask the developers to
maintain many different presentational variants of the same forms.

Unfortunately the get_xxx_property and set_xxx_property procedures,
are not symmetric since the property we can get, cannot in all cases be
used directly in the set procedure. As an example the get_item_property
of DISPLAYED will give the character strings 'TRUE' or 'FALSE', but in the
set_item_property procedure, the symbols PROPERTY_TRUE or
PROPERTY_FALSE must be used.

2.14.1 Existing Posibilities
First we will look at the existing possibilities in Oracle forms 4.5.

2.14.1.1 Alert Objects

The alert message may be changed at runtime, unfortunately there is no
equivalent way to extract the existing value of an alert message.

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 41

—m

2.14.1.2 Application Objects

The cursor style may be changed at runtime, and equivalent ways to
extract the existing value exist. The display height and width are
unfortunately not settable properties.

2.14.1.3 Block Objects

The default where clause and order by clause may be changed at runtime.
Likewise may the navigator style and optimizer hints may be changed.
The number of records to display and records to fetch are unfortunately
not settable properties.

2.14.1.4 Canvas Objects

The height and width as well as visual attributes may be changed at
runtime.

2.14.1.5 Forms Objects
Neither the character cell height nor the width may be changed at runtime.

2.14.1.6 Item Objects

Properties like auto hint, case restriction, current record attribute, if
the item is displayed or not, echo, if the item is enabled at all, fixed
length information, the format mask, height and width, name of a
corresponding icon, label text, position and visual attributes may be
changed at runtime.

But properties like alignment, editor name and position, hint text, type of
the item and the query length cannot be changed at runtime.

2.14.1.7 LOV Objects

Properties like auto refresh, the size and position may be changed at
runtime.

Martin Jensen Dansk Data Elektronik A/S

m—

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 42

_E

2.14.1.8 Menu Objects

Properties like checked, displayed, enable and the label may be changed
at runtime.

2.14.1.9 Radio Button Objects

Properties like displayed, enable, label, size, position and the visual
attributes may be changed at runtime.

2.14.1.10 Relation Objects
The property auto query may be changed at runtime.

2.14.1.11 View Objects

Properties like display position, position on canvas, size and visibility
may be changed at runtime.

2.14.1.12 Window Objects

Properties like position, size, remove on exit flag and visibility may be
changed at runtime. The title can however not be changed at runtime.

2.14.2 Load Properties to a Table

First let us collect the properties of items, since they are relatively
easy to start with.

The following procedure will visit all blocks and all items of a form, in
order to ask another procedure to examine the properties of an item.

Note that item-id is used in order to cope with duplicate item names
across blocks.

procedure Save_Properties is
form_name Varchar2(30);
block_name Varchar2 (30) ;
item name Varchar2(30);
item_id Item;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 43

l..IIlIIIllIIIIIIIIIIIlIllllllllIIlIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.- It:::;l

begin
form_name := Get_Application_ Property(CURRENT_FORM NAME) ;
block name := Get_Form Property(form_name, FIRST_BLOCK) ;
loop
Save Obj_Prop(form name, block_name, 'BLOCK');
item name := Get_Block_ Property(block_name, FIRST_ITEM);
loop
item id := Find Item(block_name||'.'||item_name);
if not Id Null(item_id) then
Save Obj_Prop(form_name, block name||'.'||item_name, 'ITEM');
item name := Get_Item Property(item id, NEXTITEM) ;
exit when item name is null;
end if;
end loop;
block name := Get_Block_Property(block name, NEXTBLOCK) ;
exit when block name is null;
end loop;
commit;
end;

The following routine will get as many settable properties from the item in
question as possible - and pass them on to the next routine.

Note that as long as Get_Item_Property(<item>, ITEM_TYPE) does not
work (error 40738 is issued from Oracle Forms 4.5.5), only general
properties may be selected. This error is said to be corrected in version

4.5.6.

procedure Save_Obj_ Prop (form_name Varchar2,
obj name Varchar2, obj_type Varchar2) is

item_id Item;
item_type Varchar2 (30);
prop value Varchar2(200);

begin
if (obj _type = 'ITEM') then
item id := Find Item({ obj_name);
if not Id Null(item_id) then
item type := Get Item Property(item id, ITEM TYPE) ;
if (item type in ('BUTTON', 'CHECKBOX')) then
prop value := Get_Item Property(item_id, LABEL);
Save_Prop_On Db (form_name, obj_name, obj_type, 'LABEL', prop_value);
end if;
prop_value := Get_Item Property(item id, DISPLAYED);

Save_Prop_On_Db(form_name, obj_name, obj_type, 'DISPLAYED', prop_value);
-- Get other General Properties of Items like AUTO_HINT, ENABLED, HEIGHT,

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 44

l..lIlIIIlIIlIIIlllllIlIlIIIIlIIIIIIllIlIIIIIIIIlIlllIlIIllIIllIIIIIIIIIIIIIIIIIIIIIIII- I!:::::I

-- MOUSE_NAVIGATE, NAVIGABLE, VISUAL_ ATTRIBUTE and WIDTH.

end if;
elsif (obj type = 'BLOCK') then
prop_value := Get_Block Property(item_name, CURRENT_ RECORD ATTRIBUTE) ;

Save_Prop_On_Db (form_name, obj_name,
obj_type, 'CURRENT RECORD ATTRIBUTE',prop_value);
-- Get other General Properties of Blocks like DEFAULT_ WHERE,
NAVIGATION_STYLE,
-- OPTIMIZER_HINT,
end if;
end;

And now the routine to actually update the forms_properties table:

procedure Save_Prop_On Db (p_form name Varchar2,
p_obj_name Varchar2, p_obj type Varcharz,
p_prop_type Varchar2, p_prop_value Varchar2) is

1 prop_value Varchar2(200);
cursor check if prop_there is
select prop_value from forms_properties
where form name = p form name
and obj name = p_obj_name
and obj type = p obj type
and prop name = p_prop_type;
begin
open check_if prop_there;
fetch check_if prop_ there into 1_prop_value;
if check_if prop there%FOUND then
if (1_prop_value != p_prop_value) then
update forms_properties
set prop_value = p_prop_value
where form name = p_ form_ name
and obj name = p_obj name
and obj type = p obj type
and prop name = p_prop type;
end if;
else
insert into forms_properties
(form_name, obj_name, obj_type, prop_name, prop_value) values
(p_form_name, p_obj name, p_obj_type, p_prop_type, p_prop_value);
end if;
close check if prop_there;
end;

Martin Jensen Dansk Data Elektronik A/S

_

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 45

—m

The forms_properties table does look like this:

create table forms properties (
form_name Varchar2(30) not null,
obj name Varchar2 (61) not null, /* to account for block.item */
obj_ type Varchar2(30) not null,
prop name Varchar2(30) not null,
prop_value Varchar2(200)) ;

2.14.3 Get Properties from the Table

Now the user or administrator may modify or add the values in the
forms_properties table.

And the forms application may ask for some of its objects to be reshaped
according to the possibly changed properties. Here all ltem objects in the
EMP block are reshaped:

Get_Properties (
Get Application_ Property(CURRENT_ FORM_NAME),
"EMP.%', 'ITEM', '%');

The Get_Properties procedure may look like this:

procedure Get Properties (p_form name Varchar2,
p_obj name Varchar2, p_obj_type Varchar2,
p_prop_type Varchar2) is

1 obj_name Varchar2(61);

1 _obj_type Varchar2(30);

1 prop_type Varchar2(30);

1 prop_value Varchar2(200) ;

cursor scan_prop_from db is
select obj name, obj_type, prop_name, prop_value
from forms_properties
where form name = p_form name
and obj name like p_obj_name
and obj_type like p_obj_type
and prop name like p_prop_type;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 46

I..IllllllIIIIIIlIIIIIIIlIIIIIllIIIllIlIIlIIllllIIlIIIIIIIIlIIIIIIIIIIIIIIIIIIIIIIIII. I!:::!I

begin
open scan_prop_from_db;
loop
fetch scan_prop_ from db
into 1 _obj_name, 1_obj_type, 1_prop type, 1 prop value;
exit when scan prop_ from db%notfound;
Set_Prop_In_Form(l1_obj_name, 1_obj_type, l_prop_type, 1l _prop_value);
end loop;
close scan_prop_from db;
end;

For all fetched rows in the property table, the Set_Prop_In_Form
procedure is called, and it may look like this:

procedure Set Prop In Form (p_obj name Varchar2,
p_obj_type Varchar2, p_prop_type Varchar2, p_prop value Varchar2) 1is
item id Item;

begin
if (p_obj_type = 'ITEM') then
item _id := Find Item(p_obj_name);
if not Id Null(item_id) then
if (p_prop_type = 'DISPLAYED') then
if (p_prop_value = 'TRUE') then
Set_Item Property(item_id, DISPLAYED, PROPERTY_ TRUE) ;
else
Set_Item Property(item_id, DISPLAYED, PROPERTY_FALSE);
end if;
elsif (p_prop_type = 'AUTO_HINT') then
if (p_prop _value = 'TRUE') then
Set_TItem Property(item_id, AUTO_HINT, PROPERTY TRUE) ;
else
Set_Item Property(item_ id, AUTO_HINT, PROPERTY_FALSE);
end if;
end if;
else
Message('Could not find item >'||p_obj name||'<');
end if;
elsif (p obj type = 'BLOCK') then
if (p_prop_type = 'DEFAULT WHERE') then
Set_Block_Property(p_cobj_name, DEFAULT WHERE, p prop_value);
elsif (p_prop_type = 'CURRENT_RECORD_ATTRIBUTE') then
Set_Block Property(p_obj_name, CURRENT_RECORD ATTRIBUTE, p_prop_value);
end if;
end if;
end;

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 47

_m

Note that it is rather awkward to set the boolean values, since we do need
to call the Set_xxx_Property procedure with the right constants.

Also note that the call
Set_Item_Property(item_id,DISPLAYED,PROPERTY_FALSE);, may raise
the error 41014 in forms version 4.5.5, (cannot set attribute of null canvas

item <nnn>).

Martin Jensen Dansk Data Elektronik A/S

16. oktober 95 Oracle Forms 4.X Development 1.1.18.1 Page 48

_m

3 Layout Advise

1. In general, do not load the screen with too many fields. Put the
secondary fields on another page or on a pop-up page.

2. Fields corresponding to each other should be located together.

3. If afield contains a code of some sort, then the actual code should
be looked up automatically.

4. Fields that accept abbreviated input, may expand their contents
when the field is validated.

Ex.: "Y' gets expanded to 'Yes'.

5. If some fields (usually key fields) have influence on the contents of
fields on another screen, then these key fields should be visible on
the related screens as well.

6. Remember to add the list_of value function to all applicable fields,
especially the foreign key fields. You may want to develop the
list_of value screen yourself instead of using the default, which is
hard to customize.

Martin Jensen Dansk Data Elektronik A/S

