® RC9000-10/RC8000

SW8010 System Utility

Save, Incsave; Load, Incload

RC Computer

Keywords:
RC9000-10, RC8000, System Utility, Utility Programs, Save, Load,
Incsave, Incload, Tape Back-Up ‘

Abstract:

This manual describes the programs save, load, incsave and incload, all
part of the System Ultilities package, which are used for taking back-up
on magnetic tape.

Date:
February 1989

PN: 99111310

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-

ject to change by RC at any time without prior notice. RC is not responsible for typo- .
graphical or arithmetic errors which may appear in this manual and shail not be re-

sponsible for any damages caused by reliance on any of the materials presented.

System Ultility, Save, Incsave; Load, Incload

Table of Contents

FOTEWORd.........oooiirtttncecasrssssssss s esstssssssasssessss ssssanen 1
1. INtroduction, SAVe...............cccoeeiirereiieentnesernee e etete s s esse st reresnssenes 5
2 EXAMPIES........cooiiiiiiiinterte ettt ettt et 6
2.1 EXAMPIE L.ttt essesesassssssssssessssessesassens sesssnans 6
2.2 EXaMPIE 2.ttt st s e resres 6
2.3 EXAMPIE 3.ttt esassesa st s sesenan 7
24 EXamPlE 4.ttt ssasss s s saes esanans 7
2.5 EXAMPIE 5.ttt sa s sa s s 8
JLCall......o ettt st st 9
3.1 OULILE......eii ettt be s e seasaens 9
3.2 MoUNt Parameter........cuuiciiiiiiccnecaeeseenesesseesessssesesssssssssssssssesessessssenns 9
3.3 TAPE PaTamELer.........ccuriueeineereereireeireeisisse e seses s asses s s s asessssnas 9
3.4 Special Parameter............vcveeeeceureneinenneinsenseinsissessisssssssssssssssses s sessens 10
3.5 8aVE SPECIfIET ...ttt sss s s s s rrens 10
3.5.1 MOGIIT......cureeeercrimeceeenieiciceceie s sssss s essas st bes s s ses s sesans 10
3.5.2 DiSC SPECIfIET.......crireuirircreirecieeneeinessssississsetseastssiess st esssses e res b sensons 10
3.5.3 ENtry SPECIfier........cuiuieieiticiicicicncnceenerenenseeseese e sssseses s sassenns 10
3.6 Infile Parameter...........ccoocveuneveuncinceneincineireissinsrss s saessessessemensans 10
4. FUNCHION..........ooeieii ettt snns 11
4.1 Function, Outfile PATAMELEr.............covvvemeeeeeeeeiiirereneeeeeeeeeeeseesesesessesesees 12
4.2 Function, MOUNt PATameter..........cocevvvvveveerereerereereeeeeeeeseesesessessssesmssases 12
4.3 Function, Tape Parameter............cooveevemnrereensrsernnsssssmesssnsessiessomensen. 12
4.4 Function, Special Parameter............cccouovuernrnrerrnseeresnesesessesscssssssennns 13
4.5 Function, Save SPECIfier............cccueeveurinrerirenerrsiisisseressssesessesssessesemenenns 14
4.5.1 MOGIfIET ...ttt esssssss st ses s sessesres s neseene 15
4.5.2 DiSC SPECILIE.......coucvmirirececricirernisneaecseessesessesesessss s sres s ss s s sesanns 16
4.5.3 ENtry SPECIfier ...ttt siess s ssesssssesssssessssens 16
4.6 Function, Infile Parameter..............coovuueeereriesireueeesnnsnsessessessessesses sesnene 18
4.7 Alternative and Dummy Parameter Names............c.ccooovveueerereesnnnncee.. 18
S. Compatibility............ccooimiiiiiiiiciirnrreerecrre s rens seseas 20
6. Implementation Details...............ccconreeiirrninreecereececee e e 21
6.1 Use Of Save Catalog..........coeermerercrncnireerenisinestnsisssssssesessssesssossssssssans 21
6.2 Handling of Magnetic Tape........cccouvvverresrressnrnessssssessesssssssssmeenns 23
6.2.1 Mount Parameter..............cevcnrerineceninecsissninesnsesesesssssesssesssssmssnns 23
6.2.2 Tape Parameters............uivcurerrcnencurenisesncsinesnissssssssessessessssesssssssenns 24
6.3 Handling of Backing Storage Areas...........cccoeoeeeeueerernereererserensersensssssenen. 25

Table of Contents

Table of Contents

System Utility, Save, Incsave; Load, Incload

6.4 The Input_Output Strategy.........ccocoumvmvemimrenrerernieriseeecnisessessessesens seeens 26
6.4.1 Local Copy Transfer...........cvivincneonncncncncinceennenenensssessesssssssssnns 27
6.4.2 Trans Memory Transfer.............ccocovevnnnnecneneinincscseieten e 29
7. EXaCt FOTMALS............ooneiiiitirccnnecc s ssanesenns 31
7.1 Save Catalog FOrmat..........c..ocvvereeceircnnunenenincsietsesisesessssenssssssssess sesens 31
7.2 Magnetic Tape FOrmat............coc.coieuvcneenerneensceeeneescrsensssiseisseeseisssmsannes 33
7.2.1 Dump Label BIOCKS.........coccucrrrieeurirenernrersnsensssissssssssssssssesssesssmsenees 33
7.2.2 Save Catalog BIOCKS.........cccocuiumimremrenreneneenncenennesceeciseneresssssssssssssssssnses 34
7.2.3 SYNC BIOCKS........ovvrernincininininnaisnsnsisasssessessessssssasesesssassssssessessessssasens 34
7.2.4 Partial Catalog BIOCKS.......ccccceceeeureninernenercrerissssnssessesnassessssessesevnnne 35
7.2.5 Data Area BlOCKS.......cociiiciccncicicccceneiseecceeisesssssse s s 35
8. REQUINEMENLS..........ccooeeccetceccetenee et e s s s eseses st s sens 36
B.1 MEMOTY ...ttt estcss st sessesesstseseasesessasssssessssssessssesensessens 36
8.2 Area Process and Buffer Claim.........ccccovcevevenrccnencninneneceensesinen 36
8.3 Temporary Entries and Segments..........c..ocooecvrvrrrrernenreereerersesercreeneennne. 37
9. EXTor MeSSages...........ccocuimmiememniiceeneceeeneseeeesisisssssssssssesesesesemennaen 38
9.1 Parameter AlarM..........ccoucevieuiiieenereinisiniensiseesnsessessssssssssssssssssesesssmuesas 38
9.2 Parameter Warning........c.cccceeveerieurennnsieeneseesisesesstssssssssesssssssssssesssmsnans 39
9.3 Entry and Save Specifier Warnings..........c.ccccecoeuveverieeversssesrerensessemsennes 40
9.4 Save Specifier AlATM..........c.ovvcueemeeneenereceerineierssissssssssessssssesssssan sssees 40
9.5 Area Entry Warning.........eieieceernsenerceseesneseneesssssesssssesssssssssss seesses 41
9.6 Parameter Input Syntax Error Message............coccevevevrneinirnerenreerensenens 41
9.7 Area Process Warning........cc.ccvecrerecererncsieisesesnnssessssssssssssssssesesssessssens 42
9.8 Catalog Error MESSages...........ovuuiuiveevscuseeneereeneesemsesssessssesssssssassssssssenssesses 42
10. Further Examples.............ocooociirneecerececerie et s 44
10.1 EXaMPLE....uoiiiiittcniccti ettt tsese s snasses 44
10.2 EXaMPIE........cuoiiciireecncrectreneirceistestee s sasssss st et seseees 44
10.3 EXAMPIE.......onimireeiteccetcctstrctsesststes sttt b ssas s ses st 44
10.4 EXaMPIE.........o.ooiriiiniitices s casssaseesensesseasesssscssetsssssss srsses 45
11. Introduction, INCsave................ccooevninrienninneiectneee e 46
12. EXamples.............oriiniieeinrreineeseneseesenssssesssesssssessseseesesesssmeenes 47
12,1 EXAMPLE.....unniiiiiciceneectrtsrisessessrs st ses s sesas sessens 47
12.2 EXaMPIE......onniirieiriictcecicietsessssasssssss s essessssessss s sessesan sbases 47
12.3 EXAMIPLE......o.oieiiiciicinitcicneieetstcsesesatestsesessesssssssssesassenssanss saesens 48
13, Calll.....occ ettt st st s n s et 50
13.1 Tape Parameter..........cocuecmemeecerncuniseeiessisessessssssissssssssssesssessessmssesses 50
13.2 Special Parameter............cvcucrueeeoncenernseeneerssssssnssssssssssssssissesssessasseesorsenss 50
14, FUNCLION...........oconacnctiniecsensesaense e et sssssassasss s ssssesans 51
14.1 Tape Parameter.............oviirccneccenecineneneeciseesssssessssssenssssssesess s e 51
14.2 Function, Special Parameter...........ccccovcveineneincssisnronsunernseessenseessnnns 51
15. Compatibility.............coorvieicuiuriiiicirrereeneeeee s e 52
16. Implementation Details..................cccccocrvrninrnenenenereeeeeeeeececceee e 53
16.1 Use of the Save Catalog............coocevcverernrervervensersrssrisssssssinssnssessessessensannes 53
16.2 Handling of Magnetic Tape............cccovurrmrurrnrreneerensnssssessesserseemssnns 53
16.3 Handling of backing Storage Areas............ccccoeveeerververcerneernrersnnn sevnee 53
16.4 the Input/Output Strategy...........ceovererrerrnsrrererrermirirnensnssesasssssssemenenns 53

System Utility, Save, Incsave; Load, Incload

17. EXACt FOTMIALS............oocoieieiieiicicncscieeceisaeieesestesstsesssesssss s s semssenans 54
18. ReqUINEMIENLS...............oooieririeiiceeeeinecsesisss et se s s ssssnao 55
19. EXTOr MEeSSaes.........c.cooemimiuiiiineiireereeeeeses e senes st sssesesssemsennes 56
20. Further EXamples.............c.o.oooerinicenieinieieeeetce e sesssssessesssessnn ssaes 57
20.1 EXaMPIE......cooriiriiececniireisisiessestssississes st sssssssssssssesas sessens 57
21. Introduction Load....................coorvecnnninceeeeeneeees e esesessssseseenees 58
22 EXBMPIES...........oomiiiriircrcneesecnctntese e se s sesene s et e snens 59
22.1 EXaMPIE L.......ouuireierircrcicciecnrinssnnensssssssssssss s sasssssasssssenn sosnans 59
22.2 EXAMPIE 2......coeinninninnririecescoseeistssesssssassensenssesassnsesssssessssssssssosss senne 59
223 EXamPIE 3.ttt s tssssies e sses st e 60
224 EXample 4.ttt s e st sesan s e 60
230 Gl et et e 62
231 OULIlE.....c.eet ettt eses st e 62
23.2 MouNt Parameter...........cc.ouveeinernenrnernsinsesses s ssessessssssssesessessmmessens 62
23.3 Tape Parameter............c.cccucuuruneeueeeencrnrnsssssnsiss s sss s sasssssssssessensssens 62
23.4 Special Parameter............ocuevrereneenernssnminssensssesssessesssssssssssssssssesesernnne 63
23.5 L0ad SPECIfIET ..ot snssssssessssssessesssenes 63
23.5.1 MOGIfIEr ..ottt seesennns 63
23.5.2 DiSK SPECIfIET......u.curcvureerierireirersnrnsisssssisre e oo ses s esem e 63
23,53 et a st 63
23.6 Infile Parameter............cccovvmrrrromrnsrerensrnessesss e csecesseeseeesessasesesess eesenns 63
24, FUNCLION.............cvrtetrerecici st as s s st neeeeseeeseans 64
24.1 Function, Outfile Parameter............couoeveeeeremeeeeeeeeeeeeeeeeeesoeeseoooon 65
24.2 Function, MOUNt PATamMELErocoueveveeeeeeeeeeeeeeeeeeeeeeeee oo 65
24.3 Function, Tape Parameter............co.oueevreveernereeeciseneesseseeseeesessseemssn, 65
24.4 Function, Special Parameter............ccooveuuiveerueeeeneeessseessessseesseesesssnens 66
24.5 Function, Load SPeCIfier............co.oeererirerrereereecesinescreseeesesseessessms s 67
24.5.1 MOGIfIET.......oucieierceiecic ettt ass e sesseseseesesassees s sens 68
24.5.2 DiSK SPECIIET.......vereureectrrreteeeeteeec e cseees s ssesessesssessemss e 68
24.5.3 ENUrY SPECIIET.........cuieueeirienceereeserrensnestssses et sssesessesessesssssnnns 69
24.6 Function, Infile Parameter..............ooeeevereeeeeeeereeeeeeeeereeeeeseooeee oo 70
24.7 Alternative and Dummy Parameter Names............coevveeeererrerenennn.. 71
25. ComPatibility..............cocviurirneincicinenereenesesee et ee s e e 72
26. Implementation Details..................coovmrromrverrereneeeeeeeeeseeeeeses s e, 73
26.1 Use of the Save Catalog.............occeruemruerrenrrcnsrenernronesesseseeeesesessessssos 73
26.2 Handling of Magnetic Tapes........co..euuuevueeeurerenreenreseeneemenneesseesssssssons 75
26.2.1 MOUNLt PATameLeT.........coucuuereerreerensrnssensnssesesssssssssssssssseesesasssssmssenns 75
26.2.2 Tape Parameters.............cocvvmuemrmmmurnresrenrsessesssescesensesesssssssssesssessessens 75
26.3 Handling of Backing StOrage............co..uvuevueienieneeoerneesensssessssesss eevs 76
26.4 The Input/OUtput StrAtEY.........covvrumrrvmnrrrnererseernereseseessesesssseresssnses e 77
27. EXACt FOTALS...............ouireiecicerrnnernnenetsesssse s saesesenesesesnes e sssmssens 78
28. REQUITCIMENLS..............coivevereaencreereresestes st ssetsseseeessessesessesssssmessees 79
28.1 MEMOTY....uurtriinercnsisicesiseiecsnssssssssssss s sse s sssssnssessessessesesessess e enns 79
28.2 Area Processes and Message Buffer Claim...............cocooevevvererrernm..... 79
28.3 DiSK RESOUTCES.........cucuuiurenrrurrenrensens s ssesses s sescessessesesesssessssseesssssssssassene 79

Table of Contents

Table of Contents

System Utility, Save, Incsave; Load, Incload

29. EXTOr MESSAGES...........cvoviiriririreecinenenesssesssstssseesesssasssssssssessnssassasmaesens 81
29.1 Parameter AlArms..........cc.ccoveveunererreemrineeesseseerenssecsensssssessessesssssssessssnans 81
29.2 RESOUTCE AIAIMS.......cvcucueueircreireurisineeniessesseasistsesssessasssssssssssssssssssseses 82
29.3 Connection AlAIMS..........cceceemreurenrereeneneenenncrneesesssssessesssssssssssessesessssenns 82
29.4 Other AlAIMS........c.cuieeveueenenerernceenersssesssisssesessssessssassssssrssssssessssssesssnss 83
29.5 Parameter WAarning..........cceceeeeeeeureserearesiecsensassssessasssassessesessessses seseens 84
29.6 Area File Warning.........coceeccuverieecencrnrnrsninessessssensessssessssssssssssssns sesvns 86
29.7 Persistent I/O Warning...........cc.cccoeeeeeereeneseensessesssssssssssssssssesssssesimssenes 86
29.8 MONItOr AlATMN.......cucueriereneeceireiresressessnessesssssssssssssensssassessessssssmseens 87
29.9 Area Entry Warning............ceeceresercscemnecsssessessessesesssssssssessonss sasanes 87
29.10 Load Specifier Warning...........couueeeeuesececemesnesnsesmseneesessesssssssssenns 88
29.11 Load Specifier MESSAE.............criimiininrinesseniniincnsenesseneaseassasensens 88
29.12 Parameter Input Syntax Error Message.........cccooovuecrcneenrcrenersecnnnn. 88
29.13 Mode Shift MESSAE.........c.ccriurirrirerincnnissisacisesscnseascsssssssessessssssssssees 89
30. Further Examples............cccoooiiiiininrenennnnnnerensencneesisensseseessesssesee senens 90
30.1 EXAMPLE L....coneceeicccnicneeesceasessssssssesesssssssssssssssstssassassessesesenes 90
30.2 EXaMPIE 2.....ccoiiriniicincniceeneiseessesessasesses et sss sttt abasans 90
31. Introduction Incload...............ccccooieiiinnnirrcrsrr e 92
32 EXAIMPIES........oniiiiiiicrtrer ettt s s s et enes 93
32.1 EXAMPIE L.t cecrcreensisestssss st sessssssssss s sessssas ssaeens 93
322 EXAMPIE 2.ttt sttt s s anee 94
32.3 EXaMPLE 3.ttt sttt snes s srenans 94
33, €Al ettt et e emarenes 96
34 FUNCHION..........oeeitttictt et e ae e st bnas 97
35. Compatibility..........ccccoovomiiinreeece e e 98
36. Implementation Details..................ccoovivrrnerneiereieere s e 99
37.EXACt FOTMALS..........c.coiiininiiieiicninteee e srssesssssess s seae s 100
38. REQUITEMENLS.............oiiiiiiniiiicecceeenentesasenessasaesetesesetesssssesesesmanes 101
39. EXTOT MESSAZES........c.coemnicnreccnereceereeirst e ssassss s sebsesas e senemenes 102
40. Further EXamples..............cconnieerieeessrienessenssensesssessseseses enes 103
Appendix A. RefErences..............covrnrecrreeennneeeseee e sssessssssssone 105

System Ultility, Save, Incsave; Load, Incload Page 1

Foreword

In System Utility Package, SW8010/2, Release 1.0, 1984.10.01, four new
programs, save, incsave, load and incload have replaced the two
programs save and load (issued in the present package, though, with the
new names savel3 and load13).

The appearance of fixed media disks and the increase in disk storage
capacity together with the appearance of high throughput magnetic tape
stations make desirable backup utilities which operate fast and with
possible option to operate on recently updated parts of the filesystem.

In RCB000, special input/output operations have been developed to
reduce the transport overhead and to even render superfluous trans
memory data transport.

Built upon the principles of the wellknown save and load programs new
ones have been made, offering

- the same parameter structure

- the same multi volume, dual copy option

- the same low level demands on other users/total system
- the same freedom in choise of backup device

but with

- full magnetic tape speed performance

- possibility for backup on incremental basis

- drastically improved file relocation and reload

at the cost of a changed magnetic tape format. The changed format
implies that files saved with the previous save program cannot be loaded
by the new load program. For that purpose the old load program will be
issued, though, having the name load13.

The new program, save, is backwards compatible with the save program
in version 1, release 13.0 with regard to

- parameter syntax

ie. the function of the program and the parameter set is a superset
compared to previous one.

This means that any jobfile containing call of the program save will work
properly with the new release of save installed.

Foreword

Page 2

Foreword

System Ultility, Save, Incsave; Load, Incload

The two programs save and incsave equal their predecessor, save, in the
following points:

- outfile parameter works as for other utility programs

- infile parameter allowed anywhere in the parameter list in a nested
way

- no label check in the magnetic tape file before it is overwritten

- up to 32 tape volumes in two copies in one job

- the tapes in the two copies need not have the same length

- backing storage areas are protected during the save

- entries are saved in the same order they are specified

- the search in the catalog for entries specified by name is very fast

- change of scope even for entries saved with their base values

- extensive error and exception reporting

The main differences from earlier releases are:

- the tape format has changed completely

- the dumplabel record contains an identification of the back up

- a save catalog is created in a backing storage area containing a full
description of the backup made, including an entry for each file to
be saved

- as the backup proceeds, the entries in the save catalog become
updated with tape identification and position

- each volume tape in the sequence contains as the first data area
after the dump label record a copy of the save catalog, i.e. the
catalog is fully updated for all entries backed up so far.

- the program incsave leaves the save catalog as a permanent file
ready to be used for later relocation and reload of files as well as for
later documentation of the backup performed

- the possibility inherent in the RC8000/IDA disk controller for
transfer of backing storage areas from disk to tape connected to the
same controller without engaging the RC8000 bus and memory is
fully exploited in the two programs

- transfer of backing storage areas from disk to tape not connected to
the same RC8000/IDA disk controller bound to engage the data
bus and memory takes place by new record procedures performing
multi buffered "output of previously input" without in-memory
buffer data movement, thus decreasing the cpu load

- transition of mode of operation between the two i/o concepts is
done automatically dependent of the actual tape mounting and the
actual disk involved

- the program incsave offers a concept of incremental backup based
on levels and shortclock/latest changed

- the new program will need at least 6 area processes and at least as
many message buffers as area processes with a minimum of 6 and a
maximum of 11.

- output of filemarks, which becomes output of two filemarks and a
reposition in between, will only happen when a volume tape runs
full or when the backup is completed - in the previous release of
save it happended after output of the last block of each backing
storage area.

On the following pages the new manual for save, incsave, load and
incload appear.

System Utility, Save, Incsave; Load, Incload Page 3
Chapters 1 to 20 describe save and incsave; Chapters 21 to 40 describe
load and incload.

Chapters 1 and 2 are an introduction with examples.

Chapter 3 and 4 describe the conventions of call and the function of the
parameters.

Chapter 5 sums up the questions and answers concerning compatibility
regarding the programs save and load in earlier version as well as
regarding the new programs inbetween.

Chapter 6 and 7 are descriptions of implementation details and exact
formats, and are not prerequisites for normal use of the programs.

Chapter 8 and 9 describe the requirements of a job process in order to
be able to run the programs and the error messages comming from the
programs.

Chapter 10 gives further examples.

Chapter 11 to 20 are parallel descriptions of the program incsave.

Chapters 21 and 22 are an introduction to the program load with
examples.

Chapters 23 and 24 describe the conventions of call and the function of
the parameters.

Chapter 25 sums up the questions and answers concerning compatiblity
regarding the programs save and load in earlier version as well as
regarding the new programs inbetween.

Chapter 26 and 27 are descriptions of implemenation details and exact
formats, and are not prerequisites for normal use of the programs.

Chapter 28 and 29 describe the requirements of a job process in order
to be able to run the programs and the error messages comming from
the programs.

Chapter 30 gives further examples.

Chapter 31 to 40 are parallel descriptions of the program incload.

Foreword

Page 4 System Utility, Save, Incsave; Load, Incload

Foreword

System Ultility, Save, Incsave; Load, Incload Page 5

1. Introduction, Save

The program save transfers catalog entries and backing storage areas to
magnetic tape for:

- large or small scale backup of files
- shipment of files to other installations
- shipment of files to other name bases in the directory hierarchy.

The catalog entries and backing storage areas are transferred back to
disk by the program load (cf. (3)).

1. Introduction, Save
|
|
|

Page 6

2. Examples

System Ultility, Save, Incsave; Load, Incload

2. Examples

2.1 Example 1

All catalog entries and backing storage areas of scope temp are
transferred to the magnetic tape mtdp0001 file 2 by the call: .

save mtdp0001.2

In case

t = set mt62 mtdp0001 O 2

the same is obtained by the call:

save t.0

Using file descriptor name this way instead of magnetic tape name gives
a freedom to alter the file descriptors in the catalog and leave the
backup jobs unchanged.

In case the file name ’magtapename’ contains the text:

mtdp0001.2

the same job may look:

save in.magtapename

Using parameter files this way gives a freedom to leave the backup jobs
unchanged and just change the contents of the parameter file, e.g. the

file ‘'magtapename’ may be perodically changed to contain the names of
the actual magnetic tape pool used for multivolume backup.

2.2 Example 2

All catalog entries and corresponding backing storage areas specified in
the file ’savefiles’ are transferred to file number 2, overwriting the ones
saved in example 1, by the call:

save mtdp0001.2 in.savefiles

System Utility, Save, Incsave; Load, Incload Page 7

2.3 Example 3

All catalog entries with corresponding backing storage areas of scope
project, those of scope user on the disk named ’disc3’ and finally the
best entry with the name ’pap’ are saved after the ones in example 2 by
the call:

save mtdp000l.last scope.project,
disc.disc3 scope.user,

pap

2.4 Example 4

In an RC8000, suppose the two logical disks named ’disc5’ and ’disc6’
are placed on physical ida disks and device number 55 is an ida tape
station, all controlled by the same ida mainprocess.

You want to transfer to the tapes ’'mtdpoool’, mtdp0002’, ... all
permanent files (permkey=3) belonging to the two disks, no matter
their entry bases, in such a way that they may be reloaded from their
respective user processes.

Several files among the ones to be saved are very voluminous data files,
so you want to exploit the possibility of high density streaming backup.

In a process with system bases, the command

save mt62 mountspec.55 ,
mt841201.1., mt841202. mt841203,
segm.3 ,
disc.disc5.disc6 ,
scope.perm

will do the job.

The parameter segm.3 is not quite necessary since the default value for
the blocklength is 3 segments.

The job will run smoothly (no paging) in a job process of 50000
halfwords.

The chances of keeping the tape streaming at high speed, high density
with a blocklenth of 3 segments increase by a low overall system load on
the actual ida disk controller.

In a BOSS job, the ’device <device number of IDA main process>’
command in the job options (allowed by proper BOSS options will be
necessary

In a SOS job, the ‘mount <name of IDA main process>’ command in
the job prior to the save will be necessary.

2. Examples

Page 8

2. Examples

System Ultility, Save, Incsave; Load, Incload

2.5 Example 5

In RC9000-10, or in RC8000 if the disks ’disc2’ and ’disc3’ are not
controlled by the same ida mainprocess which controls the tapestation in
example 4 (maybe not ida discs at all), you will have to save the files
with a longer blocklenth to be able to keep the tape streaming in high
speed, high density, e.g. a blocklength of 21 segments:

save mt62 mountspec.55,
mt841201.1.mt841202.mt841203,
disc.disc2.disc3,

scope.perm

The process still having std base = system base, will have to have a
memory size of 90000 halfwords to progress smoothly.

Note, that the tape may be moved freely to another station of the same
type (high and low density meaning the same) during the job.

The chances of keeping the tape streaming in high speed, high density
(cf. 6.2) increase by blocklengths above 21 segments.

In connection with ida disks on RC8000 multiples of 21 segments are
favorable.

The chances increase, too, by decrease in the overall system load on the
system bus and the disks.

In RCB8000, note that tapes with long blocks (> = 4 segments at some
installations, > = 9 segments at others) must not be reloaded using tape
stations connected via RC8301 Device Controller and NCP.

Note further, that for tapes on RC9000-10, or for tapes on RC8000
mounted at stations connected via IDA801 Disc/Tape Controller, the
blocklength must not exceed 84 segments.

System Utility, Save, Incsave; Load, Incload Page 9

3. Call

1-2
[<outfile> =] save {[<mount param>] <tape param>)
[<special param>] [<save specifier>]
3.1 Outfile
<outfile>::= name of any filedescriptor
3.2 Mount Parameter
1-i

<mount param> ::= (mountspec. <device no>)

(release. {yes/no})

{<modekind>)
<device no> ::= <integer>
<modekind> ti= {mt62)

{mt32)

{mtl6}

{mt08)
3.3 Tape Parameter
<tape param> :i= <tape param>.<file no> ,

0-31
{ .<next volume>) [.label.<fpname>]

<tape name> =
<next volume> i = <name>/<filedescriptor>
<name> ::= name of magnetic tape
<file descriptor> ::= name of magnetic tape file descriptor
<file no> i:= <integer>/last
<fpname> :i= name obeying fp syntax

3. Call

Page 10

3. Call

System Utility, Save, Incsave; Load, Incload

3.4 Special Parameter

1-*
<special param> ::= { segm. <integer> }
{ list. {yes/no/<names>})

3.5 Save Specifier
1.*
<save specifier> ::= (<modifier>)
{<disc specifier>)
{<entry specifier>)
3.5.1 Modifier

“-*
<modifier> ::= ({changedisc {. <from disc>.<to disc>)
{newscope. <new scope>

— 2

<from disc> ::= all/maincatdisc/<disc name>
<to disc> ::= no/maincatdisc/<disc name>/0/1/2/3
<new scope> ::= no/temp/login/user/project

3.5.2 Disc Specifier

1-%

<disc specifier> ::= disc (.<from disc>)

3.5.3 Entry Specifier

0.*
<entry specifier> ::= <entry factor> {.<entry factor>)

<entry factor>::= <entry name>/scope.<scope>/docname.<docname>

<entry name> .= <name>
<scope> ::= temp/login/user/proj ect/own/system/perm/al.

3.6 Infile Parameter

Everywhere the delimiter <s> is allowed in the parameter list according
to syntax for FP commands, (cf. [2]), the parameter pair <s> in.<file>
is allowed and will be syntactically equivalent to <s>.

<file> ::= name of any filedescriptor.

System Utility, Save, Incsave; Load, Incload Page 11

4. Function

The program will save the catalog entries and possible backing storage
areas specified by <disc specifier> and <entry specifier> with the
modifications in <modifier> on the magnetic tapes specified in <tape
param>, ie. maybe in two copies and maybe extending over more
volumes.

The program interprets the parameter groups, one by one.

The tape is mounted according to possible <mount param> and
positioned to the file number(s) specified.

A version dumplabel record (cf. below) is output as the first block and
displayed on current output.

Each <entry specifier> starts a catalog scan, picking out the entries
specified, and the entries satisfying the current disc specifications are
saved after a possible change according to the actual state of modifiers.

During the save, succeeding magnetic tape volumes, as far as specified,
are mounted whenever actual volume is filled up.

At tape shift, a message is displayed on current output, specifying the
name of the tape just abandoned and the file and block count of the last
block before the ending tape mark.

The values of current entry- and segment count are displayed, too,
followed by the name of the continuing tape.

When the parameter list is emptied, the magnetic tape file is closed with
a couple of tape marks and a message is displayed on current output,
specifying the name of the tape, the current position and the total
amount of entries and segments saved.

Now the tape is released if so specified in <mount param>.
If two sets of tapes are specified they are treated in parallel, except for

different <mount param> and except for volume change, which allows
for tapes of different lengths in the two sets.

4. Function

Page 12

4. Function

System Ultility, Save, Incsave; Load, Incload

4.1 Function, Outfile Parameter .

<outfile> ::= name of any file descriptor

Current output zone is stacked and connected to the file specified at
program start.

Whether the program terminates through its final end or by a runtime
alarm, the current output zone is unstacked again.

4.2 Function, Mount Parameter

1-%

<mount param> ::= { mount spec .<device no>)
{ <modekind>)
{ release. (yes/no) }

The mount parameters may be repeated, but the last one of each name

will stand. ‘

mountspec. <device no>

A mount special parent message with the device number and proper
tape name will be sent each time a new volume in the set of tapes
specified in <tape param> is mounted.

Default: mounspec.0 meaning no parent message.

<modekind>

The modekind specified will be used for all volumes in the set specified
in <tape param> unless at least one of the tapes in the set is specified
by file descriptor, cf. below.

Default: mt62

release. {yes/no} '
If release.yes the tape in the set actually used at program termination

will be released, i.e. the reservation is cancelled and a release message is
sent to the operating system.

Default: release.yes

4.3 Function, Tape Parameter
<tape param> ::= <tape name>.<file no> ,
0-31
{ .<next volume>) [.label.<fpname>]

One tape parameter specifies a set of magnetic tapes, consisting of one
to thirtytwo tapes.

System Utility, Save, Incsave; Load, Incload Page 13

<tape name> ::= <next volume> ::= <name>/<file descriptor>
The name of the tape. If <file descriptor> is used, the name and
modekind are taken from the descriptor in the catalog.

The modekind of the last file descriptor used in the set of volume tapes
will be used for the entire set of tapes.

<file no> ::= <integer>/last
The file number of the first tape in the set where the save shall start.

The save will start in file number one in all succeeding volumes.

If the first tape is specified by <file descriptor>, its file count will be
added to <file no>.

If <file no> = last, the first empty file is searched along the tapes in the
set, even if they are specified by <file descriptor>’s.

label.<fpname>

If a label is specified, the name will be written as the last field in the
version or continuation dumplabel record, and it will appear on current
output.

4.4 Function, Special Parameter

1-.
<special param> ::= ({segm.<integer> }
{list. (yes/names/no})

The special parameters may be repeated, but the last one of each name
will stand.

segm. <integer>

Backing storage areas will be saved in magnetic tape blocks of
<integer> segments

If <integer> < = 1, segm will become 2.

In RC8000, for tape stations connected via RC8301 Device Controllers,
a blocklength greater than 4 segments, at some installations extended to,
e.g, 9 segments, will lead to program termination (device status
unintelligible). In RC9000-10 or in RC8000, for tape stations connected
via IDA801 Disc/Tape Controllers, the same will happen for
blocklengths beyound 84 segments (64 K characters to be exact).

Default: the value found in the file count of the programs own catalog
entry tail.

At installation, the value is 3.

The value may be changed, simply by

save = changeentry save save save <value> save save save.

4. Function

Page 14

4. Function

System Ultility, Save, Incsave; Load, Incload

The legal value interval for default value is 2 < = value < = 84. .
If the value is outside the legal value interval, the value 3 is used.

list. {yes/names/no)
If list.yes, the entries saved are listed in one of the forms:

<name> <modekind> <scope>.<docname>,
d.<shortclock> d.<latest changed>

<name> <modekind> <key>.<docname> <lower base><upperbase>,
d.<shortclock> d.<latest changed>

The shortclock, i.e. word 6 of the entry tail, is shown only for non
procedure entries with a contents key <> 0.

Generally, latest changed is the shortclock for the latest change to the
entry or its associated backing storage area recorded by the monitor.
The exact meaning used in the program is explained in 7.1.

If list.names, only the entry name is listed. .
If list.no, the entries are not listed.

Default: list.yes

4.5 Function, Save Specifier

1-*
<save specifier> ::= (<modifier>)
{<disc specifier>)
{<entry specifier>)

The elements of the save specifier are treated one by one, until the
parameter list is exhausted.

A modifier will modify the sate of current modifiers.

A disk specifier will cancel current disk specifiers and define a new set .
of disk specifiers.

An entry specifier will start a main catalog scan, picking out entries
specified belonging to disks currently specified and record them in the
save catalog with current modifiers.

Entries picked out which belongs to a disk specified in current disk
specifiers will be saved in a temporary save catalog together with its
specification (disk, scope) and its modification (changedisk, newscope).

If no entry specifier is found in the parameter list after a modifier or a
disk specifier or no save specifier is found at all, a default entry specifier
will be used.

After a block containing a version dumplabel record which is listed on
current output too, the save catalog and all the files in it are transferred
to the tape or tapes specified, in one or two copies, starting in the file

System Utility, Save, Incsave; Load, Incload Page 15

number specified and extending over as many volume tapes among the
specified ones as are needed.

Concluding the backup, a tape mark is output, i.e two tape marks are
output, giving an empty file.

4.5.1 Modifier

1-*

<modifier> ::= (changedisc {(.<from disc>.<to disc>))
{newscope.<newscope> }

A modifier is valid until changed by another modifier.

4.5.1.1 Changedisc

1-!

changedisc {.<from disc>.<to disc>)

An entry belonging to <from disc> will be changed as if it belongs to

<to disc>.

<from disc> ::= all/maincatdisc/ < disc name >

all means all discs

maincatdisc means the disk with the main catalog

<disc name> means the disk with that name

<to disc> ::= no/maincatdisc/ < disc name >

no means changedisc. <from disc>.<from disc>

0/1/2/3 means that the disk is selected by the monitor
at time of reload (the disk with the most
resources of the specified permanent key.

others as for <from disc>

Default: changedisc.all.no

4.5.12 Newscope

newscope. <new scope>

All entries will be changed to have the scope <newscope>
<newscope> ::= temp/login/user/project/no

If the entries are saved using a scope key (cf. specifier ’scope’) they will
be saved with the one denoting <newscope>.

If they are saved using bases they will be saved with permkey and bases
corresponding to <newscope>. <newscope> = no means no change
of scope.

Default: newscope.no

4. Function

Page 16

\
|
|
|
i
|
|
4. Function

System Ultility, Save, Incsave; Load, Incload

4.5.2 Disc Specifier
o o

<disc specifier> ::= disc {.<from disc>)

A disk specifier specifies one or more disks from where the entry
specifier will specify entries.

A disk specifier is valid until the next disk specifier, which will cancel it.

<from disc> ::= all/maincatdisc/<disc name>
The parameters have the same meaning as for ’changedisc’.

Default: disc.all
4.5.3 Entry Specifier
0-*

<entry specifier> ::= <entry factor> (.<entry factor>)

An entry specifier is composed of one or more entry factors of which .
three kinds exist, each of which specify an entry attribute.

If one kind of entry factor is repeated, the last one stands, except for the
factor <name>, where a warning will be given and the first name
stands.

The entry specifier specifies a set of entries, each of which have all the
attributes specified

<entry factor> :;:= <name>/scope.<scope>/docname.<docname>

Default: any name, any docname, scope.temp

4.53.1 Name

<name>
The attribute is the entry name.

All entries visible with this name have the attribute. The entry names ’c’,
v’ and ’primout’ cannot be specified.

Entries of name ’c’ or v’ with permkey = 0 and entries with name
’primout’ and permkey = 2 are considered to have no name attribute.

Changes the default for scope to ’the best name’.

Default: any name.

4532 Scope
scope.<scope>

<scope> ::= temp/login/user/project/own/system/perm/all

System Utility, Save, Incsave; Load, Incload Page 17

The attribute is the scope.
All entries with the scope specified have the attribute. The terms temp,
login, user and project have their usual meaning

own means one of above.

system means permkey = 3 and entry base = system base

perm means permkey = 3 and entry base inside or equal to the
standard base of the process

all means any permkey and entry base inside or equal to the

standard base of the process.

Entries specified by the attribute scope.perm or scope.all will be
listed on current output with permanent key and entry bases instead of
the scope name.

The entries are the ones "inside" the standard base of the job process
executing the save, i.e. the specification is well suited for backup on
system bases or backup on bases overlaying some project’s bases.

Each entry is reloadable only in a user process with bases corresponding
the entry bases.

The entire backup is, however, reloadable in a process having the same
bases as the one doing the backup.

Single files with unique names and/or document names are reloadable
in such a process, too.

Entries specified by any other scope will be listed on current output
using a scope name.

Such entries are reloadable in any process (scope.system only in a
process with maxbase = system base, though).

Concerning the target scope, cf. the modifier ‘newscope’.

Backing storage areas with entry bases outside project bases need a
special attention:

They will not be protected against other users write access during the
backup.

If other users perform writing in such an area during the backup, the
save program will be held up while the writing takes place, and then it
will continue.

If the size of the area changes during the backup, the program will
continue and give a proper message concerning the incident.

Note that if a filesystem is saved in such a way that more entries have
the same name and scope/bases, e.g. "newscope.user scope.own", they
cannot be separated at reload.

Default: name specified: the best name
no name specified: temp

4. Function

Page 18

4. Function

System Ultility, Save, Incsave; Load, Incload

The best name means the name with the best scope among the scopes
temp, login, user and project or 6ny scope visible changed into one of
above by the modifier ’newscope’.

4.53.3 Docname

docname. <docname>

The attribute is the document name of the entry. All entries visible with
a document name equal to <docname> have the attribute.

Changes the default for scope to <any visible scope>.

Default: any document name.

4.6 Function, Infile Parameter

Every where the delimiter <s> is syntactically correct in the parameter
list, the parameter pair <s>in.<filename> is allowed and syntacically
equivalent to <s>.

<filename> ::= name of any file descriptor
The infile parameter may be used in a "nested" way:

When <s> in.<filename> is met in the parameter list, current input
zone is stacked and connected to the file specified by the file descriptor,
and the parameter reading is continued in current input zone.

The parameter reading takes place using the special fp input alphabet
and according to normal fp parameter syntax (2), except the character
‘nl’ is equivalent to the character ’sp’, and except names of the types:
apostrophized name, generalized name and general text.

When the seperator ’em’ is met, current input zone is unstacked and
parameter reading continues from current input zone, except when
unstacked to the initial level, in which case parameter reading continues
in the fp command stack.

In case of illegal character or fp syntax error a syntax alarm is written on
current output zone, current input zone stack chain is emptied, listing
the chain on current output zone, and parameter reading continues in fp
command stack.

The fp command listing governed by the mode bit ’list’ will list the
parameters in the fp command stack, not the parameters in any file.

4.7 Alternative and Dummy Parameter Names

For compatibility reasons, some alternative parameter names are
allowed.

The mount parameters mthh, mtlh, mthl and mtll, are allowed, and are
equivalent

System Utility, Save, Incsave; Load, Incload Page 19
to mt62 (or mt32): mthh, mtlh
to mt16 (or mt08): mthl, mtll.
The mount parameters mto and nrz are allowed and equivalent to mtlh
and mtll, and mte and nrze are still allowed but do not have new names
(high density, even parity, low density, even parity).

The modifier ’changekit’ is allowed and is equivalent to ’changedisc’.

The changedisc parameter <from disc> = main is allowed and
equivalent to <from disc> = all.

The changedisc parameter <from disc> = any is allowed and
equivalent to <from disc> = all.

The changedisc parameter <to disc> = main is allowed and is
equivalent to <to disc> = maincatdisc.

The disk specifier ’kit’ is allowed and is equivalent to the disk specifier
"disc’.

The disk specifier parameters <from disc> = main and any are allowed
and are equivalent to <from disc> = all.

The special parameter reserve.<yes or no> is allowed but is without
any function because of the changed strategy concerning backing storage
areas (cf. 6.3).

4. Function

Page 20

5. Compatibility

System Ultility, Save, Incsave; Load, Incload

S. Compatibility

The program is backwards compatible with the program save in
SW8010/1, release 13.0 and earlier releases as far as

1) parameter names and parameter syntax, and
2) parameter function

concern, which means that any jobfile set up for use with the earlier
release will work the same way with the present release.

One should note, however, that tape stations do not necessarily agree on
the interpretation of "high density" and "low density" (cf. 6.2).

The main extensions compared with Version 1 are

1) the use of a save catalog to speed up relocation and reload of files,

2) the change to a tape format more suited to "stream" data to and
from the tape, and

3) the increase in ressource consumption as a consequence of changed
input/output strategy.

Because of these extensions, the tapes produced are not compatible with
the tapes produced by earlier releases of save.

It should be noted, then, that

- tapes produced by version 2, release 1.0 or 2.0 or release 3.0 and
newer of save must be loaded by version 2 of load of the same
release or newer.

- tapes produced by earlier releases of save must be loaded by earlier
releases of load (release 13.0 is included in version 2 of the package
by the name load13).

- tapes to be shipped to installations with earlier release of load only
must be produced by earlier release of save (release 13 is included
in version 2 of the package by the name save13).

The programs save, incsave, load and incload are parameter compatible
in the sense that any one of them may read any others parameter list.
Unused parameters known to be used by another of the programs will
simply be ignored.

System Utility, Save, Incsave; Load, Incload Page 21

6. Implementation Details

In the present chapter the implementation details concerning

the use of the save catalog
handling of magnetic tape
handling of backing storage areas
the input/output strategy

are given.

In the next chapter the exact formats are given. Knowledge of these
details is not necessary in order to use the programs save, incsave, load
and incload but it helps understand the way they work and the options
and possibilities offered by the programs.

6.1 Use of Save Catalog

The use of the save catalog is the core around which the programs save
and incsave are built, so the description is somewhat elaborate.

The programs save and incsave scan their parameter list once, including
parameters read from a, maybe in multilevel stacked, input zone.

After the special parameters, i.e. before the save specifiers, the program

save creates a temporary save catalog file with a wrk-name on the
disk with the most temporary ressources available, changes its
shortclock to describe the dumptime and connects it for output

incsave gets the shortblock from tail (6) of the main catalog entry
describing the incsave on the next lower level found in the catalog
and uses it for basetime, except for incsave on level 0 (zero) which
uses the time 0 (zero) for basetime

incsave creates a permanent (user) save catalog file with the name
’level’ concatenate levelnumer on the disk with the most permanent
resources available, unless already present, in which case the
existing one is used, changes its shortclock to describe the
dumptime and connects it for output.

6. Implementation Details

Page 22

6. Implementation Details

System Ultility, Save, Incsave; Load, Incload

Now a save catalog head describing the backup (cf. 7.1) is written in the
file and at this point zones to handle disk to tape output are laid out, cf.
6.2.

The parameter scan continues with the save specifier. Each time an
entry specifier is ready, main catalog entries are picked out of the main
catalog according to the entry specifier and checked with the current
disk specifier and, after evaluation of shortclock latest changed (cf. 7.1),
with the basetime (incsave).

Together with current modifiers the entry is prepared as a record with
zeroed tape position fields in the save catalog, cf. 3.1, and output to the
file when the block (1 segment) is full.

When the last entry specifier has been processed, a dummy record (all
zeroes) is prepared and output and the save catalog area is cut down to
actually used size.

When the tape (or tapes) has (or have) been prepared (cf. 6.2), the save
catalog is transferred to tape as the first data area after the version
dump label block.

Now the save catalog is connected for input and the entry records are
scanned from the start.

As many entry records as recorded as the maximal number in the dump
label block (7.2.1) are prepared for a partial catalog and the save catalog
records are updated with tape locations fields (7.2.2) designating the
current position of the tape (s) and written back to the save catalog
whenever the block (1 segment) is full.

For every area entry in the set prepared, an area process is prepared (cf.
6.3).

If successfully, the entry is listed on current output, if not the entry is
skipped with an entry warning on current output, and the first slice’
field of the record in the save catalog as well as the record in the partial
catalog is zeroed.

When all records are prepared, the last one from the save catalog is
written back to the file before the partial catalog is transferred to
tape(s) (cf. 7.2.3)

Should the tape(s) expire during transfer of the partial catalog and a
change to next volume take place, the save catalog then is fully updated
until the current partial catalog and ready to be transferred to the next
volume tape (cf. 7.2.2).

In other words: the save catalog on the last used volume tape in a
succession of tapes will contain the most updated save catalog except for
the permanent one left by incsave, which is fully updated.

After the transfer of the partial catalog, all backing storage areas
prepared successfully are transferred to tape one by one (cf. 7.2.4).

Now the area processes are removed and the save catalog scan is
continued, preparing the next partial catalog a.s.o. until all records in the
save catalog have been processed.

System Ultility, Save, Incsave; Load, Incload Page 23

Finally the use of the magnetic tapes is finished, writing a number of
tape marks, i.e. an empty file comes next. Proper accounts of the entries,
segments and slices saved are displayed on current output.

Before terminating (even after runtime alarm) the program

- save removes the save catalog file and the partial catalog file
- incsave just removes the partial catalog file

and unstacks a possibly stacked output zone and reconnects it to the file
as before the program was called.

6.2 Handling of Magnetic Tape

The handling of magnetic tapes is governed by

- the mount parameters

- the tape parameters

6.2.1 Mount Parameters

The magnetic tapes are prepared according to the mount parameters

- modekind abbreviation
- mountspec parameter

The modekind specified is converted into the mode word:

0

i o Ao S . -

\-—V_——R_)

L—— parity : 0 odd, 1 even
l_____——. density : 0 high, 1 low
trail : 0-7
speed : 0 low, 1 high

block gap length: 0 std, 1 long

The modeword is inserted into the proper zones and is used in all
communication with the external processes representing the tapes.

The modekind abbreviations give the following values of the fields in the

modeword:
(trail = 0, block gap length = 0):

6. Implementation Details

Page 24

System Utility, Save, Incsave; Load, Incload

modekind abbrev. speed density value* parity I
mt62 - high . odd
mt32 - high tL odd
mthh high high . odd
mtlh mto low high A odd
mte high .1 even
mt16 - low . odd
mt08 - low L. odd
mthi high low odd
mtll nrz low low odd
nrze low .. even

The fields of the modeword select between the following options for the
different tape stations:

RC9255/RC8344 RC9250 RC8343 RC3715
parity - - - odd

- - - even
density/ 6250 gcr 6250 ger
recording 3200 ddp 3200 pe
(bpi) 1600 pe 1600 pe 1600 pe 1600 pe

800 nrz

speed, high/ 75 100/50 100/50 45
(ips) low 25 25/12.5 45

If the parameter ‘mountspec’ is specified, a mount special message is

sent to the parent, specifying the device number where to mount the

tape and the name of the tape. The parent (operating system) will then .
tell the operator where and what to mount.

If the tape is not mounted in advance, two print messages:

enable <name of tape>

high <name of tape> or

low <name of tape>

are sent to the parent to be displayed in order to help the operator
select the proper density, if not selectable by program.

6.2.2 Tape Parameters

In the tape parameters up to 32 tape volumes may be specified in two

copies, each copy with its own mount parameters, its own starting file
number and its own label parameter.

6. Implementation Details

System Ultility, Save, Incsave; Load, Incload Page 25

The two copies are written in parallel, block by block, but a change of
tape to the next volume may well happen independently in the two
copies. Whenever a tape runs full (eot sensed), the outstanding blocks
are written to the tape, a tapemark is output, and if another volume is
specified, it is prepared as described in 6.2.1. If no more volumes are
specified, the program terminates with a runtime alarm.

The file number specification ’last’ needs an explanation:

The tapes in the copy are traversed, volume by volume, positioned after
filemark by filemark to find the first empty file (cf.7.2.1).

6.3 Handling of Backing Storage Areas

Whenever an area entry from the save catalog is ready to be inserted
into the partial catalog, steps are taken to protect the backing storage
area during the save.

The catalog base of the job process is changed to equal the entry base of
the area. If outside max base, to equal the max base, though.

An area process with the name of the entry is created. If the creation
fails, the entry is marked (first word of the entry, the “first slice’ field, is
zeroed in the save catalog record, cf. 7.1), and the entry is skipped with a
warning on current output.

Next, the area process is write protected (if the current monitor does
not offer write protection, the area process is reserved instead) unless
its base is outside the max base.

If the protection fails because the area process is already reserved by
another process, the entry is marked as above and skipped with a
warning on current output.

If the base of the area process created does not equal the entry base, i.e.
the entry base is outside max base and a better entry exists, the entry is
marked as above and skipped with a warning on current output, telling
that the entry is inaccessible.

If the area is the current output document, the entry is marked as above
and skipped with a warning on current output, telling that the entry is
current output file.

At last, the write access counter and the name table address of the area
process are read and the catalog base of the executing process is reset.

Now the entry is changed according to modifiers and inserted into the
partial catalog and listed on current output.

When the partial catalog is ready and has been transferred to tape (s),

all successfully prepared backing storage areas belonging to the partial
catalog are transferred to tape, block by block.

6. Implementation Details

Page 26

6. Implementation Details

System Utility, Save, Incsave; Load, Incload

Foreign write accesses to the area or change of entry size during save
may happen to areas not write protected (reserved), i.e. areas with an
entry base outside max base of the job process.

To avoid changes in system - or pseudo system files during save in a non
system process, the user will have to make special arrangements with the
owner of the files or the manager of the installation.

The area processes are removed one by one after the transfer of all the
areas in the partial catalog.

Concerning read and write accesses to any area during the save, the
following may be stated:

Foreign read access to an area during save will not influence the save.

Foreign write access to an area during the save will hold up the save
during the write and maybe damage the file saved but is possible only if
the area entry base is outside max base of the job process.

If the current monitor offers write protection, foreign read accesses will
not be affected by the save.

If the current monitor does not offer write protection, foreign read
accesses will be held up by the save unless the entry base is outside max
base of the job process.

Foreign write access during the save will be rejected, i.e. the program
trying to write will be held up (algol/fortran) or terminated (slang),
unless the entry base is outside max base of job process.

Using one of the entry specifiers scope.perm or scope.all, which are
intended for system backup, entries with a base equal to or inside the
standard base of the job process are specified.

Areas saved this way (as well as areas saved using temp, login, user,
project or own) will never be changed by other processes during the
save. Either they are protected during the save or they are skipped
because they are reserved by another process at the time of protection.

6.4 The Input_Output Strategy

The transfer of a backing storage area from disk to tape may take place
in one of two ways:

- the transfer takes place in an RC8000, and the area and the tape are
controlled by the same ida main process and the transfer takes place
locally in the ida801 controller without engaging the RC8000 bus
further.

- the takes place in an RC9000-10, or in an RC8000, but the area and
the tape are not controlled by the same ida main process or other
requirements are not fulfilled so the transfer takes place via the
RC8000 bus from area into memory and out to tape.

System Utility, Save, Incsave; Load, Incload Page 27

Transfer of an area starting in the first way may later change to the
other as a result of changed conditions.

6.4.1 Local Copy Transfer

If three conditions are fulfilled, the program (save and incsave) will start
all transfers as local copy operations:

- the transfer takes place in an RC8000
- only one copy of volume tapes specified
- the blocklength specified is an integer divisor in 21.

A local copy operation is a message specifying a transfer of segments
from a backing storage area to a magnetic tape file, cf. [1].

If all three conditions above are fulfilled, a target process to receive the
operations is chosen:

- if the tape process exists and has an ida mainprocess as a main
process, the ida main process is chosen

- if the tape process does not exist or its main process is not an ida
main process, any ida main process is chosen, if any exists

- if no ida main process exist, an illegal name is chosen.

The copy operations are sent and waited for and checked in a
multibuffered way exactly as normal output operations are.

The number of buffers used in the communication is chosen this way:

Release 3.0
Single buffered operation.

Before release 3.0
The fp area process is disclaimed.

Of the number of area processes claimed by the job process, four are set
aside for use with the program area itself, a possible output file, a
possible parameter infile and the save catalog.

Of the remaining area process claim, 1 is used for partial catalog and the
rest for possible area processes in the partial catalog.

The number of buffers to be used in the communication, then, is chosen
to equal this remaining number of area processes, (at most 9, though)
and the maximal number of entries in each partial catalog becomes one
less.

If the process does not claim enough area processes to have at least one
for entries in partial catalog, the program terminates with an alarm,
stating the minimal number of area processes needed (6).

The answers, cf. [1], are checked and they all lead to a call of the block
procedure where

6. Implementation Details

Page 28

6. Implementation Details

System Ultility, Save, Incsave; Load, Incload

- a normal answer, no device status error will just record the position
and the number of segments transferred returned in the answer and
remove the area process

- all other answers will cause all pending messages to be waited for
without check, and

- normal answer, device status error will record the position and the
number of segments transferred returned in the answer, repeat the
unfinished part of the transfer as described in 6.4.2 and resend all
the copy operations which were pending

- dummy answer will record the position as unchanged and

a) in case of result = 2 try to reserve the tape process and write
protect/reserve the area process

b) in case of result = 3 change to another target process, if the main
process of the tape process is found to be an ida process and
another one than the present target process.

- finished by a transfer of the area as described in 6.4.2 and a resend
of all the operations which were pending.

Note that result = 2, rejected in RC8000 may be caused by the user
process not being a user of the IDA main process, and the action will
not be able to change this.

In a BOSS job it requires a ’device <device no of IDA main process>’
job option (with BOSS options allowing it), in SOS it takes a ’mount
<name of IDA main process>’ command to become a user of the main
process.

Note that result = 3, unintelligible, may be caused by the choice of
blocklength and/or the slicelength of the disk involved.

To be able to start a local copy operation, the following conditions must
be fulfilled:

If slicelength <= 21 segments,
- blocksize is an integer divisor in slicelength

If slicelength > 21 segments,
- 21is an integer divisor in slicelength and
- blocksize is an integer divisor in 21

The action taken on result = 3 is not able to change any of these
conditions and the transfer will change to a trans memory transfer if one
of them is not fulfilled.

This communication method allows:

- the backing storage areas in the backup to be any mix of areas
belonging to or not belonging to ida disks controlled by the same
controller as the one controlling the tape, in case the tape is
mounted on an ida tape station.

System Utility, Save, Incsave; Load, Incload Page 29

- the backing storage areas in the backup to be any mix of areas
belonging to ida disks and areas belonging to other disks, no matter
what kind of tape station is used.

- the tapes in the backup to be mounted on any kind of tape station
giving the recording density wanted for the modekind specified no
matter which kind of disks are involved in the backup

- the tapes in the backup to be remounted on (moved to) any other
tape station giving the same recording density for the modekind
specified at any time during the backup no matter which kind of
disks are involved in the backup

- any device status, disk or tape, to be handled by the normal i/o
check and recovery actions, specially end of tape action with change
to next volume tape.

6.4.2 Trans Memory Transfer

If not all three conditions in the first paragraph of 5.4.1 are fulfilled the
transfers will be started and carried through as trans memory transfers.

In 5.4.2 is described how transfers started as local copy transfers may
change to trans memory transfers.

Trans memory transfers are carried out as multibuffered record
input/output without in memory data copying.

In case of blocklength greater than 21 segments, input as well as output
is double buffered, else both are triple buffered.

With double buffered input/output, three data buffers, with triple
buffered five data buffers, are allocated in memory, and by change of
block the descriptions are shifted in such a way, that the block output
will be the oldest block input, and the block input will overwrite the
latest block output.

Furthermore, the block output may be repeated for more output
documents in parallel, in this case maybe for the two copies of the
volume tape.

Finally, the block output to one or more output documents may be
blinded, here used to handle change of volume tape with output of save
catalog in one copy of the volume tapes without affecting the other.

The advantages of the method employed are

- standard inblock and outblock procedures are used with the normal
error recovery actions taken on transfers

- no need for in memory input buffer to output buffer data copying,
saving appr. 1 msec cpu time per segment of data

- a very high mean data transfer rate, increasing with an increase in
block length

6. Implementation Details

Page 30

6. Implementation Details

System Utility, Save, Incsave; Load, Incload

The disadvantage of the trans memory transfer compared to local copy
transfer is the heavy load on the system bus, increasing with an increase
in blocklength and with two copies, endangering the transfers to the
need of being repeated at data overrun and thus slowing down the
overall data transfer rate.

The data buffers for trans memory transfer are allocated in memory and
ready for use, even though transfers are started as local copy transfers,
so the memory and buffer resources demanded by the job process are
the same from job start until finish.

System Utility, Save, Incsave; Load, Incload Page 31

7. Exact Formats
In the present chapter the exact formats of

- the save catalog
- the magnetic tape blocks

are given.

7.1 Save Catalog Format

The catalog head is one block of an integral number of segments
containing the fields:

+0 : catalog base lower

+2 : catalog base r

+4 : standard base lower

+6 : standard base upper

+?0 s user zse lower

+ : user base upper

+12 : max base lower

+14 : mex base upper

+16 : number of disks in the backing storage system

+18 : max number of volume tapes (32)

+20 : number of copies specified

+22 : number of volume tapes specified in copy no 1

+24 : number of volume tapes specified in copy no 2

+26 : max number of segments in one block on the
‘ tape (segm)

+20 + 8 : name of disk no. 1 (8 hwds)

420 + 8 * 2 : name of disk no. 2 (8 hwds)

+20 + 8 * no_of_discs : name of disk no.

no_of_disks (8 hwds)
422 + 8 * no_of_discs : name of tape volume 1 copy no. 1 (8 hwds)

name of tape volume max (32) c no.1 (8 hwds)
name of tape volume 1 copy no. 8 hwds)

: name of tape volume max (32) copy no. 2 (8 hwds)

The save catalog entry records have a length of

- 58 halfwords when only one copy of volume tapes is specified.
- 64 halfwords when two copies of volume tapes are specified

7. Exact Formats

Page 32

7. Exact Formats

A record has the fields:

+14
+16

+24

The leading 34 halfwords are the catalog entry head and tail from the

main catalog.

The field “first slice’ may be zeroed at time of transfer to tape of the
partial catalog containing the entry if the backing storage area for some
reason is not transferred to tape (area process in accessible, reserved by

another etc. cf. 6.3).

The fields ’scope’, ’actual scope’ and ’new scope’ are scope keys
representing the scope specification used in the specifications of the
entry, the actual scope of the entry and the new scope to be given the
entry by current modifier.

System Utility, Save, Incsave; Load, Incload

first slice <12 + namekey <3 + permkey

: lower entry base
: upper entry base

: name of entry (
: modekind (size)
: document

TRIRTR

: shortclock latest changed
: volume count copy no. r
: file count copy no. 1 for partial catalog

: block count copy no. 1_for partial catalog
: volume count copy no. 2 for partial catalog
: file count copy no. 2 for partial catalog

: block count copy no. 2 for partial catalog

name of entry (1)
name of entry (2
name of entry (

)
3)
4)
1)
2)
3)
4)

o
NN N

document

tail (6)

tail (7)

tail (8)

tail (9)

tail (10)
scope

actual scope
new scope
disk number
new disk name (1)
new disk name (2)
new disk name (3)
new disk name (4)

The scope key has the following value range:

any scope visible
all

perm

system

own

project

user

login

temp

OOV P WNEO

The field ’disk number’ is the number of the disk to which the entry
belongs, numbered 1, ..., no of disks in the system.

The field 'new disk name’ contains the name of the new disk to which
the entry should belong according to current modifier.

The field ’shortclock latest changed’ has the meaning:

for partial catalog

System Utility, Save, Incsave; Load, Incload Page 33

permanent area entry shortclock latest changed in entry
(9) in auxcat

permanent bs entry shortclock from associated main
entry except:

1) main entry not found in main
cat => value: = 1

2) main entry not found in aux cat
=> entry dropped

permanent other entry shortclock in entry (13) in auxcat

temporary procedure entry shortclock at time of catalog scan

temporary other entry shortclock in entry (13) in main
cat

The fields 'volume count’, ’file count’ and "block count’ for copy no 1 and
2 designate the tape or tapes and positions of the sync block ahead of
partial catalog containing the entry.

Initially all zero, assigned values when the partial catalog is transferred
to tape.

7.2 Magnetic Tape Format
The volume tapes in each copy of the backup contain:

- aversion (volume 1) or a continue (later volumes) dump label block
as the first block in the file specified (volume 1) or file one (later
volumes).

- asave catalog in a number of blocks, updated until the latest output
of a partial catalog.

After the save catalog follows in one or more blocks a number of partial
catalogs each containing the same maximal number of entries except the
last one which may be shorter. Every partial catalog is preceeded by a
sync block of a length recorded in the dump label (7.2.1) containing all
zZeroes.

Every partial catalog is followed by another sync block (of a length
recorded in the dump label (7.2.1), and then by the data areas in one or
more blocks belonging to the backing storage area entries which may be
in the partial catalog. If no area entries exist in a particular partial
catalog, it is followed by the next partial catalog (preceeded by a sync
block). The last block of every data area is followed by a sync block (as
the one after the partial catalog). In each sync block of this kind is
recorded the catalog entry of the data area coming next (if any). If the
end of tape mark is passed, the last block on the tape, which may be a
block of any of the types mentioned above, is followed by a tape mark.
After the last block, sync block, partial catalog or data area, a number of
tape marks are written, securing that the next file is an empty file.

7.2.1 Dump Label Blocks
A dump label block is 100 halfwords long and is either of the types

7. Exact Formats

Page 34 System Utility, Save, Incsave; Load, Incload

- version dump label .
- continue dump label

The blocks contain a text record and a non text record each one
identifying the backup.

The text record is 58 halfwords long and contains the fields

- program name (save or incsave)

- current tape name and file number

- the text 'vers.’ or "cont.’ followed by the dumptime

- the text ’segm.’ followed by the maximal block length in segments

- the text ’label.’ followed by the label text specified in the call (save)
or

- the text ’level’ followed by the dump level number and the
dumptime for the next lower level incremental dump found at user
base in the main catalog (incsave)

- the characters <0> <0><0><0><0>

The text record appear on current output whenever written on tape. ‘

The non text record contains the fields:

+58 +0 : maximal block length in segments

+58 +2 : maximal no of entries in partial catalogs
+58 +4 : no of entries in the save catalog

+58 +6 : name of save catalog (1)

: name of save catalog (2)
: name of save catalog (3)
: name of save catalog (4)

+58 +14 : lower entry base for save catalog
+58 +16 : upper entry base for save catalog
+58 +18 : size of save catalog in segments
+58 +20 : shortclock for time (=tail (6) in save catalog
entry in main catalog)
+58 +22 : version
238 <3¢ : Tangth of aync. brock preceed ial catalogs (halfuord
+ + : length of sync ock prec ing rtial catalogs (halfwords)
+58 +28 : lenght of sync block following 8?:88 (hal fwords)

(only release 3.0 and newer)

7.2.2 Save Catalog Blocks

The save catalog on tape is a number of blocks of the maximal length
recorded in the dump label (7.2.1) each containing as many save catalog
entry records as permitted by the length of the blocks and the length of
the entries (7.1).

The fields of the entry records are described in 7.1.

7.2.3 Syne Blocks

Synchronization (sync) blocks determine the positions of partial catalogs
and have a length recorded in the dumplabel block (7.7.1).

The blocks contain all zeroes.
Other synchronization blocks mark the end of data areas, (including

partial catalogs). They contain either catalog entry of the next data area
or all zeroes.

7. Exact Formats

System Utility, Save, Incsave; Load, Incload Page 35

7.2.4 Partial Catalog Blocks

A partial catalog is a number of blocks containing at most as many entry
records as recorded in the dump label (7.2.1).

The entry records have a length of 34 halfwords and are identical to the
main catalog entry head and tail for the entry.

The first halfword field, first slice, may be zero, which means that
although the entry is an area entry, the backing storage area was not
transferred to tape (the area was inaccessible, could not be write
protected etc., cf 6.3).

7.2.5 Data Area Blocks
The data area belonging to an area entry record in a partial catalog is a
number of blocks each of the maximal length recorded in the dumplabel

(7.2.1) except the last one, which may be shorter.

The blocks are taken as an integral number of segments from the disk
area and transferred to tape without any change.

7. Exact Formats

Page 36

8. Requirements

System Utility, Save, Incsave; Load, Incload

8. Requirements

The job process will need ressources of the following types to be able to
run the programs save and incsave:

- memory
- message buffers

- area processes

- tempory entries and segments

8.1 Memory

As explained in 6.4.2, the main memory demands are allocated in the
stack from the start, and depend very much on the blocksize specified.

The following total process sizes have shown in practice to be sufficient
to allow fairly complicated executions without pagings in the central
loop for the given blocksize:

segments 40- 50000 halfwords 20000 halfwords minimum
segments 45- 55000 halfwords 25000 halfwords minimum
segments 55- 65000 halfwords 35000 halfwords minimum
segments 60- 70000 halfwords 40000 halfwords minimum
21 segments 90-100000 halfwords 70000 hal fwords minimum
42 segments 100-110000 halfwords 80000 halfwords minimum
63 segments 130-140000 halfwords 110000 halfwords minimum
84 segments 170-180000 halfwords 150000 halfwords minimum

O N WN

Note that beyound 21 segments per block the demand curve changes.

In case less than absolute minimum memory size is available, the
program terminates with a stack alarm.

8.2 Area Process and Buffer Claim

As explained in 6.4.1 and 6.4.2, the number of area processes available
determines the maximal number of entries in each partial catalog with a
certain minimum and to a certain maximum.

Furthermore this number determines the number of message buffers
needed.

System Utility, Save, Incsave; Load, Incload Page 37

The following table gives for 1 and 2 copies of volume tapes the minimal
number of area processes needed and upwards the number of message
buffers needed.

ninimum message buffers needed
area
processes 1 copy 2 copies
segm<=21 segm >21
6 6 8 5
7 7 8 5
8 8 8 5
9 9 8 5
10 10 8 5
11 11 8 5
>11 11 8 5

In case less than minimum area processes or message buffers are
available, the program terminates with an alarm stating the need.

8.3 Temporary Entries and Segments

The job process will need one temporary entry and some temporary
segments for each of the following purposes:

- infile parameter is used

- outfile parameter is used

- outfile is a temporary backing storage area or does not exist
- save catalog (incsave will need it as a permanent resource)
- partial catalog

In case of shortage of these ressources, the program will
- in the first two cases continue after a parameter warning
- in the third case terminate with the device status alarm

- in the last two cases terminate with a proper alarm message on
current output

8. Requirements

System Ultility, Save, Incsave; Load, Incload

9. Error Messages
Error messages from the program are written in current output zone.
The following kinds of error messages exist:

- parameter alarm

- parameter warning ‘
- entry specifier warning

- area entry warning

- parameter input syntax message

- area process warning

- area process alarm

- catalog error message

9.1 Parameter Alarm

At parameter alarm, the parameter list is emptied, listing the
parameters from current parameter and on in the alarm message.

The modebits are set: ‘warning yes, ok.no’.
Since the parameter list is emptied, the program terminates.

*** save alarm <text> <parameter list>

Text: Explanation:

mountspec param mount param not followed by . <integer >
tape param too many tape param specifies more than 32
volumes volumes

label param syntax label not followed by . <name>

tape param missing no tape parameter found

segm param syntax segm not followed by . <integer>

9. Error Messages

System Utility, Save, Incsave; Load, Incload

9.2 Parameter Warning

Page 39

The parameter warning skips current parameter, displaying it in the
error message and continues, setting the modebits: ‘warning yes, ok.yes’

save warning <text> <current parameter>

Text:

outfile param connect
impossible <cause>

infile param connect
impossible <cause>

mountspec param syntax

release param syntax

list param unknown

changedisc param syntax

newscope param syntax

newscope param unknown

disc spec param unknown

scope param syntax

Explanation:

The current output zone could not be
connected to the file specified for the
reason explained in <cause>.

The stacked output zone is unstacked
again and output continues.

The current input zone could not be
connected to the file specified for the
reason explained in <cause>.

The stacked input zone is unstacked
again and input continues, maybe from fp
command stack.

The parameter 'mountspec’ was not
followed by . <integer>.

the value remains the latest read or
default.

The parameter ’release’ was not followed
by .yes or .no.

The value remains the latest read or
default.

The parameter ’list’ was not followed by
.yes, .no or .<name>.

The value remains the latest read or
default.

The parameter ’changedisc . <from
disc>’ was not followed by . <name >
The value becomes <to disc> = no.

The parameter ‘newscope’ was not
followed by . <name>
The value is not changed

The parameter to newscope was neither
of temp/login/user/project/no
The value is not changed.

The disc specified in disk specifier was
unknown.

Previous disk specifier is cancelled, all
other disks specified in this disk specifier
become specified.

The scope parameter was not followed by
.<name>

9. Error Messages

Page 40

9. Error Messages

System Ultility, Save, Incsave; Load, Incload

No entries will be saved according to this .
entry specifier.

scope param unknown The scope specified was neither of
temp/login/user/project/own/
system/perm/all.
No entries will be saved according to this
entry specifier.

docname param syntax The ’docname’ parameter was not
followed by . <name >
No entries will be saved according to this
entry specifier.

name illegal The name specified in entry specifier was
’c’, ¥’ or ’primout’.
The entry is not saved.

name double defined A name was already specified. The new
name is ignored and the program .
continues with the current entry specifier.

save spec param unknown Syntactically the parameter would start a
save specifier, but the parameter is not
<s><name>.

The rest of the parameter list is read,
each parameter with this warning as a
result.

9.3 Entry and Save Specifier Warnings

The entry specifier is listed in the error message, the mode bits are set
‘warning.yes, ok.yes’ and the program continues with the next entry
specifier.

**#* save no entries found according to following specifier ‘

disc: <disc specifier >
entry: <entry specifier>

Explanation: no entries are found in the main catalog according to the
entry specifier.

9.4 Save Specifier Alarm

The modebits are set ‘warning.yes, ok.no’ and the program terminates.
*** save no entries saved according to any specifier

Explanation: although entries were found according to specifications,

none were saved because a partial catalog on disk could not be
connected (cf. 9.).

System Utility, Save, Incsave; Load, Incload Page 41

save nothing saved

Explanation: all entry specifiers have missed with the above ’no entries
found’ warning for each one as result.

9.5 Area Entry Warning
The warning appears in current output following the entry concerned.
The modebits are set *warning.yes, ok.yes’ and the program continues.

<entry>
*** warning: <entry name> skipped <cause>

Explanation: the area process could not be created, not be
protected/reserved or the area was inaccessible for the reason stated in
<cause>.

The entry but not the area has been saved.

The warning appears only if list.yes or list.name is specified.

Cause: Reason:

area claims exceeded catalog create area process failed
i/o error, state of document create area process failed

does not permit call create area process failed
entry not found create area process failed
entry not an area entry create area process failed
name format illegal create area process failed

reserved by another process set write protect/reserve failed

current output file the area is connected as current output
file

process does not exist, set write protect/reserve failed

process is not user of area set write protect/reserve failed

process

area process inaccessible area is inaccessible from executing
process

9.6 Parameter Input Syntax Error Message

This message is caused by a syntax error in the parameter list read from
a file connected to current input zone.

The parameter list must follow the syntax of an fp parameter list and
must be coded in the special fp input alphabet, cf. (9), with the exception
that the character 'NL’ is equivalent to the character 'SP’ and the
exception that parameter names of the types: apostrophized name,
generalized name and general text are not allowed.

9. Error Messages

Page 42

9. Error Messages

System Ultility, Save, Incsave; Load, Incload

The current parameter is listed in the error message and the zone stack
chain is emptied, listing the chain on current output the same way fp
does in a fp syntax error message.

The parameter reading is continued in the fp command stack.

The modebits are left unchanged.

##% save syntax <parameter>

* read from <file>
* selected from <file>

.

*** save reinitalized

9.7 Area Process Warning

The warning appears on current output following the entry concerned,
and is caused by the detection that either foreign write access or entry
changes have taken place during the transfer of the area to tape(s).

It can only happen to area entries with an entry base outside the project
base of the job process.

The mode bits are set *warning.yes, ok.yes’, and the program continues.
<entry>

*** warning <text> <name> <lower entry base> <upper entry
base>

The <text> is either of:

- write accesses to area during save
- area size changed during save

9.8 Catalog Error Messages

The error messages appear on current output before the first entries are
saved.

The messages concern the

- changing or creation of a permanent (incsave) save catalog
- the connecting to the save catalog

- the creation and connecting to a temporary partial catalog

The modebits are untouched and the program continues until output is
tried. Then the program terminates with a device status alarm.

*%¢ save <monitor proc> <name> <result>

System Utility, Save, Incsave; Load, Incload Page 43
Explanation: an existing permanent save catalog could not be changed
or could not be created/scoped.

If possible a temporary one is created.
If not created, the next error message will be as below.

The name of the monitor procedure and the result is shown together
with the name of the save catalog.

*** save connect <name> <result>

Explanation: either the permanent save catalog (incsave) could not be
connected, a temporary one (save) or a temporary partial catalog could
not be created and connected.

The result of the connection together with the name of the save/partial
catalog is shown.

9. Error Messages

Page 44

10. Further Examples

System Ultility, Save, Incsave; Load, Incload

10. Further Examples

10.1 Example

The file pip of scope user and all files with documentname pip and
scope user are saved on mtdp0001 file 1 by the call:

save mtdp0001.1 pip.scope.user docname.pip.scope.user

10.2 Example

All files of scope temp, login, user or project on the disks: disc, disc1 and
disc2 are saved changing their disk names:

disc becomes disc3
discl becomes disc?
disc?2 becomes discl

by the call:

save mtdp0001.1,
changedisc.disc.disc3.discl.disc2.disc2.discl,
disc.disc.discl.disc2,

scope.own ‘

10.3 Example
All files in the main catalog, except

- the main catalog itself

- the auxiliary catalogs

- files of name c or v with permkey = 0

- files of name primout with permkey = 2

- files belonging to other disks than disc, disc1 and disc2

are saved, disc by disk by the call:

save in. magtapes,

disc.disc scope.all,

disc.discl scope.all,

disc.disc2? scope.all '

System Ultility, Save, Incsave; Load, Incload Page 45

provided the executing process has standard base = system base and the
file 'magtapes’ contain a tape parameter, e.g.

mtdp0001.1.mtdp0002 . mtdp0003 . mtdp0004 . mtdp0005,
mtdp0006.1.mtdp0007 .mtdp0008.mtdp0009.mtdp0010

The files are saved in two copies, each copy containing at most 5
volumes.

10.4 Example

In example 1.4, the permanent files on two logical ida disks were saved
on a streaming tape unit on the same ida controller, using a blocklength
of 3 segments.

The chances of keeping the tape in streaming mode using this
blocklength increase if the tape is written with long block gaps, an option
available for RC8343 and RC8344 Streaming Tape Units (cf. 6.2).

As in example 1.1, filedescriptiors may be set in the catalog, specifying
the modekind wanted:

tl= set 2688.18 mt841201; long block gap,

; high speed, high density
t2= set 2688.18 mt841202;
t3= set 2688.18 mt841203:

Now example 1.4 becomes:
save mountspec. 55,
tl.1.t2.¢3 ,

scope.perm

The halfword, mode, specifying long block gap for the different standard
modes is determined this way:

long block gap, mthl = 2048 + 512 + 132 = 2692
long block gap, mthh = 2048 + 512 + 128 = 2688
long block gap, mtll = 2048 + 512 + 4 = 2564
long block gap, mtlh = 2048 + 512 + 0 = 2560

Tapes with long block gaps may be read by any tape station.

10. Further Examples

Page 46 System Utility, Save, Incsave; Load, Incload

11. Introduction Incsave

The program incsave transfers catalog entries and backing storage
entries, i.e. files, to magnetic tape for backup purpose in an incremental
procedure based on the concept of levels.

The backup of a file system in one level is based on the backup of the .
same file system on the next lower level, i.e. all backups on the same
level are based on the backup on the same next lower level.

A permanent save catalog identifying and describing the backup on the
level given is left in the file system of the job process in order to

- be the base of a backup of the same filesystem on the next upper
level

- offer documentation of the backup performed

- ease relocation and reload of files in the backup performed by the
program incload

The files in the backup are conveniently relocated and reloaded by the
program incload, but the program load may do it.

11. Introduction, Incsave

System Utility, Save, Incsave; Load, Incload Page 47

12. Examples

12.1 Example

All files of scope project, user, login and temp are transferred to the
tape mtdp0001 file 1 by the call:

incsave mtdp0001.1 level.0 scope.own

A level 0 backup of a file system is considered a total backup of the file
system, i.e. all files are saved, no matter their age.

A save catalog of name ’level0’ of scope user is left in the catalog (cf. 6.1
and 7.1) describing the backup made. Shortclock (word 6 of the entry
tail) in the entry ’level0’ contains the dumptime, on which incremental
backups on level 1 are based.

The parameter level.0 may be omitted, since zero is the default value.

12.2 Example

All files in the filesystem in example 1, which have been updated since
the backup in example 1 are transferred to the same tape, next file, by
the call:

incsave mtdp000l.last level.l scope.own

This level 1 backup of the file system will concern all files in the same
file system which have been updated or created since the level 0 backup.

A permanent save catalog of the name ’levell’ is left in the catalog,
describing the backup.

Now, as long as the level 1 backup is not too voluminous, you may
continue with level 1 backups in the next file and the next file a.s.o. or
you may use the same file for all level 1 backups.

At all times, then, the latest level 1 backup and the level 0 backup

together contains your filesystem as of the time for the level 0 backup
and all changes made since then, except file removals.

12. Examples

Page 48

12. Examples

System Ultility, Save, Incsave; Load, Incload

When the level 1 backup grows too voluminous, you may do a level 0
backup again. e.g. in file 1, or you may proceed on the next level in the
next file:

incsave mtdp000l.last level.2 scope.own

Now a permanent save catalog of the name ’level2’ is left in the catalog.
Together, the level 0, the latest level 1 and the latest level 2 backup
contain your file system as of the time of the level 0 backup with all
changes made since then, except file removals.

To relocate and reload the latest version of a file, you first try the level 2

backup, then the level 1 and the level 0 backup until the file is found,
unless you know in which level to look.

12.3 Example

Suppose a pool of tapes for level 0 backups are specified in the file
’levelOtapes’:

mountspec.55
mt62
mtdp0001.1. mtdp0002. mtdp0003...

and a pool of level 1 tapes in the file ’level 1tapes’:
mountspec.55

mt62

mtdp0101.last.mtdp0102.mtdp0103. ..
level.l

and a pool of level 2 tapes in the file ’level2tapes’
mountspec.55

mt62

mtdp0201.last.mtdp0202.mtdp0203. ..
level.2

and maybe more.

In a job process with standard base = project base of some project, all
permanent files belonging to all users in the project (login, user, project)
will be saved by the call:

incsave in.levelOtapes scope.perm

Now, with certain intervals level 1 backups are made by the call

incsave in.levelltapes scope.perm

When the level 1 backup grows too voluminous or the total amount of

level 1 backups threaten too overflow the tapes in the pool, a level 2
backup is made:

System Utility, Save, Incsave; Load, Incload Page 49

incsave in.level2tapes scope.perm

and so forth.

Whenever desired, the total level 0 dump can be made:
incsave in.levelOtapes scope.perm

defining the base for a new succession of incremental backups.

If the job process has its standard base = system base, the file system
specified becomes all permanent files in the main catalog.

12. Examples

DES——————————————.————

Page 50 System Utility, Save, Incsave; Load, Incload

13. Call

The program is called exactly as save, except for

- the additional special parameter ’level’:
- the ignored tape parameter ’label’.

13.1 Tape Parameter

The ’label’ parameter is allowed but ignored, so the syntax becomes the
same as for save.

13.2 Special Parameter

The parameter group becomes:

<special param> ::= { segm.<integer>)
{ 1list. {yes/no/names}}
{ level.<integer> }

13. Call

System Utility, Save, Incsave; Load, Incload Page 51

14. Function

The function is the same as for save, except the additional special
parameter determines the name of the save catalog to use.

14.1 Tape Parameter

The ’label’ parameter is ignored.

14.2 Function, Special Parameter
level.<integer>

Defines the backup level. If the integer specified exceeds 9, dumplevel
becomes 9.

Default: 0

An entry of scope user defining any next lower level with one of the
names level0, levell, level2, ..., level9 is looked up in the catalog.

If found its shortclock is taken as the base time for the backup, if not the
time 0 is taken.

A new save catalog of scope user and name <:level:> add ’backup level’
is looked up and changed/created with backup time ’now’ as shortclock.

14. Function

Page 52 System Ultility, Save, Incsave; Load, Incload

15. Compatibility

The programs incsave, save, incload and load are parameter compatible
in the sense that any one of them may read any others parameter list
and simply ignore unused parameters known to be significant to others.

15. Compatibility

System Ultility, Save, Incsave; Load, Incload Page 53

16. Implementation Details

16.1 Use of the Save Catalog

The save catalog is used in exactly the same way as for save, cf. 6.1,
except it is left permanent in the catalog with a known name, fully
updated concerning the positions of all files saved.

16.2 Handling of Magnetic Tape

Exactly as for save, cf. 6.2.

16.3 Handling of Backing Storage Areas

Exactly as for save, cf. 6.3.

16.4 The Input/Output Strategy

Exactly as for save, cf. 6.4.

16. Implementation Details

Page 54 System Ultility, Save, Incsave; Load, Incload

17. Exact Formats

Exactly as for save, cf. 7., especially 7.1 where ’shortclock latest changed’
is defined.

17. Exact Formats

System Ultility, Save, Incsave; Load, Incload Page 55

18. Requirements

As for save, cf. Chapter 8.

18. Requirements

Page 56 System Utility, Save, Incsave; Load, Incload

19. Error Messages

As for save, cf. Chapter 9, except the program name is incsave.

19. Error Messages

System Utility, Save, Incsave; Load, Incload Page 57

20. Further Examples

20.1 Example

In this example is suggested a way of performing incremental backups of
a filesystem, which fully exploits the possibilities inherent in the concept
of levels.

Suppose pools of tapes are defined in files pool0, pooll, ... and pool91,
pool 92,

Maybe a poool is just one file on a tape or one tape, maybe a pool is
multivolume tape specifications in two copies. Maybe the pools are
defined by file descriptors.

Suppose a filesystem is specified in the file 'filesystem’.

Start with a full level 0 backup:

incsave in.pool0 in.filesystem

Next, periodic level 9 backups should be made on an exponential
progression of tape pools (also called Tower of Hanoi progression, 1, 2,
1,3,1,2 1,4 .., pool 1 used every other time, pool 2 every fourth time,
pool 3 every eighth time, etc.):

incsave in.pool9l level.9 in.filesystem
incsave in.pool92 level.9 in.filesystem etc.

These level 9 backups are based on the level 0 full backup.

When the level 9 backup becomes too voluminous (too time consuming,
too tapeconsuming), a level 1 backup should be made in the level 1 pool:

incsave in.pooll level.l in.filesystem

Now the exponential series of level 9 backups should progress as
uninterrupted.

The level 9 backups now become based on the level 1 backup, which was
based on the level 0 full backup.

The progression of backups can be carried as far as desired.

20. Further Examples

Page 58

21. Introduction Load

System Ultility, Save, Incsave; Load, Incload

21. Introduction Load
The program load is used to

relocate and reload catalog entries and backing storage areas from
magnetic tape backups created by save or incsave.
relocate and read files from such tapes as a simple test of the tape

format. .

produce documentation of such backups from the save catalog.

System Utility, Save, Incsave; Load, Incload Page 59

22. Examples

22.1 Example 1

All catalog entries and backing storage areas saved in example 1 of
Chapter 2 are relocated and restored by the call:

load mtdp0001.2

in case

t=set mt62 mtdp0001 0 2

the same is obtained by the call:

load t.0

In case the file named 'magtapename’ contains the text:
mtdp0001.2

the same job may look

load in.magtapename

22.2 Example 2
All files saved in example 2 of Chapter 2 may be reloaded by the call
load mtdp0001.2 in.savefiles

A simple test of the backup made without actual reload of the files will
be done by the call:

load mtdp0001.2 load.no in.savefiles

A record of the files saved obtained from the save catalog on the tape
without actually reading the files on the tape may be done:

load mtdp0001.2 survey.yes in.savefiles

22. Examples

Page 60

22. Examples

System Utility, Save, Incsave; Load, Incload

The parameter in.savefiles is not necessary, but is just used here to
illustrate that load may read the parameter list of save.

22.3 Example 3

Among the files saved in example 3 of Chapter 2, the ones belonging to
the disks known to the job process doing load (the ones included in the
backing storage system at the time of load) will be loaded by the call:

load mtdp0001.last disc.all

The ones in the save which belongs to disks unknown at the time of load
will be loaded too, changing to the disk ’disc3’, which is known to the
job:

load mtdp000l1l.last disc.all.any changedisc.any.disc3

The ones belonging to disks unknown will be loaded to disks with the
most permanent resources by the call:

load mtdp000l.last disc.any changedisc.any.3

22.4 Example 4

The system backup in example 4, Chapter 2 contains all permanent files
fromt he disks disc5 and disc6, saved over 3 volume tapes.

Suppose a user wants to relocate and reload one file named 'myfile’ with
scope user.

The call

load mt62 mountspec.55,
mt841203.1 ,
myfile.scope.user

will do the job. If the file is located on one of the tapes prior to
mt841203, the program load will know it from the save catalog read
from the tape, and it will mount he correct tape, position directly to the
file, load it and stop.

If the file is located on the last tape, mt841203, actually mounted, it will
search it along the tape, load it when found and stop.

If the user wants to relocate and restore all files of scope below project,
the call:

load mountspec.55,
mt841203.1 ,
scope.user
scope.login

will do the job.

System Ultility, Save, Incsave; Load, Incload Page 61

Note that default modekind, mt62, is used. All files among the ones to
be loaded, which are located on the tapes prior to the one mounted, will
be relocated directly, i.e. the program will mount the first tape and, file
by bile, position to the file and load it. The files located on the last tape
will be searched along the tape and reloaded, one by one.

The call

load mountspec.55,
mt841203.1

will relocate and reload all files which are visible to the job process and
not protected (inside max base).

If the job process has std base = system base, the entire backup is
reloaded, as it would be by the call:

load mountspec.55,
mt841203.1 ,

scope.perm

In the last case, had the backup been made by ’scope.all’, the load would
pick out the permanent files (permkey = 3).

22. Examples

Page 62

23. Call

23. Call

System Utility, Save, Incsave; Load, Incload

[<outfile>] = load {[<mount param>] <tape param>}1-2
[<special param>] [<load specifier>]

23.1 Outfile .
<outfile> ::= mname of any filedescriptor
23.2 Mount Parameter
{ mountspec. <device no>)1-*
<mount param> i:= { release. {yes/no) }
{ <modekind> }
<device no> ii= <integer>
{ mt62 }
{ mt32)
<modekind> = { mtl6)
{ mt08)
23.3 Tape Parameter
<tape param> ::= <tape param>.<file no> (.<next volume>)}0-31

<tape name>

<next volume>
<name> MM
<file descriptor>::
<file no> :
<fpname>

[.label.<fpname>]

{<name>/<filedescriptor>)

name of magnetic tape

name of magnetic tape file descriptor
{<integer>/last)

name obeying fp syntax

System Utility, Save, Incsave; Load, Incload Page 63

23.4 Special Parameter

1-*
copy.{1/2))
<special param> ::= { vol.<integer>)
list. (<yest/no/names>})
load. {yes/no) }
survey. {yes/no) }
connect. {yes/no} }

— e o -

23.5 Load Specifier

1-%

{ <modifer>)
<load specifier> ::= { <disk specifier>)
{ <entry specifier>)

23.5.1 Modifier

1.*
{changedisc {.<from disk>.<to disk>)1-+}
{newscope.<new scope> }

<modifier>

<from disk>

{all/any/maincatdisc/<disk name>)
<to disk> ::= {no/maincatdisc/<disk name>/0/1/2/3)

<new scope>

{no/temp/login/user/project)

23.5.2 Disk Specifier

<disk specifier> ::= disc (.<from disk>)1-*

23.5.3 Entry Specifier

<entry specifier>::= <entry factor> (.<entry factor>}o-*

<entry factor> {<entry name>/scope.<scope>

/docname .<docname>)

<entry name> = <name>

<scope> = (temp/login/user/project/own
/system/perm/all)

23.6 Infile Parameter

Everywhere the delimiter <s> is allowed in the parameter list according
to syntax for FP commands (cf.[2]) the parameter pair <s> in.<file> is
allowed and will be syntactially equivalent to <s>.

<file> ::= name of any filedescriptor.

23. Call

Page 64

24. Function

System Ultility, Save, Incsave; Load, Incload

24. Function
The program will either

- relocate and reload the catalog entries and backing storage areas
specified by <disk specifier> and <entry specifier> after having
modified them according to the modifications in <modifier> from
the tape(s) specified in <tape param> mounted according to
<mount param>, or

- relocate and read as above to test the tape format, or

- relocate as above to produce documentation of the backup catalog
for the files specified.

The tapes specified may be the first or the second out of two copies of
maybe more volume tapes.

The program interprets the parameter groups, one by one.

The tape is mounted according to possible <mount param> and
positioned to the file number specified.

If a proper version dumplabel record is read as the first block it is
displayed on current output, and the program continues by transferring
the save catalog from the tape to a backing storage area.

Each <entry specifier> starts a save catalog scan, picking out the
entries specified, and the entries satisfying the current disk
specifications are transferred to a load catalog together with its save
modifiers. Now the load catalog is scanned, and each entry is relocated
and loaded after a possible change according to its modifiers.

During the reload, suceeding magnetic tape volumes, as far as needed,
are mounted whenever actual volume is used up.

At tape shift, a message is displayed on current output specifying the
name of the tape just abandoned and the file and block count at the last
block read before the tape shift is initiated. The values of current entry
count and segment count are displayed, too, and the name of the next
tape to read.

When the load catalog is exhaused, the program finishes with a message
on current output specifying the name of the current tape, the position
of the tape and the total amount of entries and segments read/loaded.

System Utility, Save, Incsave; Load, Incload Page 65

At last the program releases the tape if so specified in mount
parameters and writes on current output an account of the files loaded.

If two sets of tapes were used in the backup, the one specified is used
for the reload.

24.1 Function, Outfile Parameter.
<outfile> ::= name of any file descriptor

Current output zone is stacked and connected to the file specified at
program start.

Whether the program terminates through its final end or by a runtime
alarm, the current output zone is unstacked again.

24.2 Function, Mount Parameter

1-'
{ mount spec .<device no>)
<mount param> ::= { <modekind> }
{ release. {yes/no) }

The mount parameters may be repeated, but the last one of each name
will stand.

<mountspec. <device no>

A mount special parent message with the device number and proper
tape name will be sent each time a new volume in the set of tapes
speciefied in <tape param> is mounted. Default: mountspec.0 meaning
no parent message.

<modekind>

The modekind specified will be used with first read operation. In case of
mode error, the next mode is tried. When all modes have been tried
without luck, the program terminates with an alarm. Default: mt62.

release. {yes/no}
If release.yes the tape in the set actually used at program termination

will be released.
Default: release.yes

24.3 Function, Tape Parameter

<tape param>::= <tape name>.<file no> {.<next volume>)0-31
[.label.<fpname>]

One tape parameter specifies a set of magnetic tapes, consisting of one
to thirtytwo tapes.

24. Function

Page 66 System Utility, Save, Incsave; Load, Incload

The first tape is determined by the special parameters copy and vol, by .
default first copy, first volume. The tape thus selected, determines the
actual copy used by load, if two were used in the save.

<tape name> ::.= <next volume> ::= {<name>/<file descriptor>)
The name of the tape. If <file descriptor> is used, the name and
modekind are taken from the descriptor.

<file no> ::= <integr>/last
The file number of the first tape in the set where the load shall start.

The save will start in file number one in all succeeding volumes.

If the first tape is specified by <file descriptor>, its file count will be
added to <file no>.

If <file no> = last, the first empty file is searched along the tapes in
the set, even if they are specified by <file descriptor>’s, and the last
one before that, which contained a version or a continue dump label is
selected. If necessary the tape is mounted before it is positioned. .

label .<fpname>
The label text is read, but ignored.

24.4 Function, Special Parameter

survey . {(yes/no)
connect. (yes/no}

1-%
{ copy . {(1/2))
{ vol . {<integer>))
<special param>::= { list . {yes/no/names})
{ load . (yes/no})
()
({)

The special parameters may be repeated, but the last one of each name

will stand. ‘

copy. (1/2)

If two copies of volume tapes were specified in tape parameters the one
specified by copy will be used by load. If only one copy was specified,
that one will be used by load.

Default: 1

vol.<integer>

If more volumes of the copy were specified in tape params the one
specified by vol will be used by load as the first volume tape to mount.
Default: 1

list. {yes/no/names)

If 1ist.names, only the entry names will be listed on current output.
If 1ist.no, the entries are not listed.

If 1ist.yes, they are listed as for save.

Default: 1ist.yes

24. Function

System Utility, Save, Incsave; Load, Incload Page 67

load. {yes/no)

If load.no, the backup is read as if load.yes, but the entries and
backing storage areas are not inserted in the catalog or transferred to
disk.

Default: 1oad.yes

survey. {(yes/no})

If survey.yes, only the save catalog transferred to disk is read and all
entries specified in the call which are found in the catalog are listed as if
they were found on the tape(s).

Default: survey.no

connect. {yes/no)
If connect. no, the files are reloaded under working names to the target
disk and renamed, thus

- spending extra ressources during reload
- postponing the destruction of the possibly existing file until the new
one is actually reloaded.

If connect.yes, the files are reloaded with their real names, connecting
to possibly existing areas before reload, thus

- saving the need for extra ressources during reload
- riscing the contents of the possibly existing file in case of
termination before reload in completed.

Default: connect.no

24.5 Function, Load Specifier

*

1-
{ <modifier> }
<load specifier> ::= { <disk specifier>)

{ <entry specifier>)
The elements of the load specifier are treated one by one, until the
parameter list is exhausted.

A modifier will modify the state of current modifiers.

A disk specifier will cancel current disk specifiers and define a new set
of disk specifiers.

An entry specifier will start a save catalog scan, picking out entries.

Entries picked out which belongs to a disk specified in current disk
specifiers will be transferred to a load catalog with its save modifiers.
When all entry specifiers have been processed, the entries from the load
catalog will be reloaded after having been modified according to their
load modifiers.

If no <entry specifier> is found in the parameter list after a

modifier or a disk specifier or no load specifier is found, a default entry
specifier will be used.

24. Function

Page 68

24. Function

System Utility, Save, Incsave; Load, Incload

24.5.1 Modifier
1 -%
<modifier> ::= { changedisc {.<from disk>. <to disk>}1-*)

{ newscope. <newscope> b

A modifier is valid until changed by another modifier.

24.5.1.1 Changedisc
changedisc {.<from disk>.<to disk>}1-*

An entry belonging to <from disk> will be changed as if it belongs to
<to disk>.

<from disk> ::= {all/any/maincatdisc/<disk name>)

all means all disks known in the system
at time of reload

any means any disk not known in the
system at time of reload

maincatdisec means the disk with the main catalog

<disk name> means the disk with the name

<to disk>::= {no/maincatdisc/<disk name>/0/1/2/3)

no means changedisc. <from disk>.<from
disk>

0/1/2/3 means that the monitor will select

the disk at reload, i.e.the one with the
most resources of the specified
permanent key
others as for <from disk> exept 'any'.
Default: changedisc.all.no.any.no

24.5.1.2 New Scope

newscope. <new scope>
All entries will be changed to have the scope <newscope>

<newscope> ::= no/temp/login/user/project

If the entries are loaded using a scope key (cf. specifier <scope>) they
will be loaded with the one denoting <newscope>.

If they are loaded using bases they will be loaded with permkey and
bases corresponding to <newscope>. <newscope> = nO means no

change of scope.
Default: newscope .no

24.5.2 Disk Specifier

<disk specifier>::= disc {.<from disk>}1-*

System Utility, Save, Incsave; Load, Incload Page 69

Specifies entries which at time of save, maybe changed by changedisc
modifier, belonged to the disk or disks specified.

A disk specifier is valid until the next disk specifier, which will cancel it.

<from disk> ::= {al1/any/maiﬁcatdisc/<disk name>)
The parameters have the same meaning as for "changedisc’.
Default: disc.all.any

24.5.3 Entry Specifier
<entry specifier>::= <entry factor> (.<entry factor>)o-*

An entry specifier is composed of one or more entry factors of which
three kinds exist, each of which specify an entry attribute.

If one kind of entry factor is repeated, the last one stands, except for the
factor <name>, where a warning will be given and the first name
stands.

The entry specifier specifies a set of entries, each of which have all the
attributes specified

<entry factor> ::= (<name>/scope.<scope>/docname.<docname>)
Default: any name, any docname, any scope

24.53.1 Name

<name>
The attribute is the entry name.

All entries visible with this name have the attribute. The entry names ’c’
v’ and ’primout’ cannot be specified.

Entries of name ’c’ or v’ with permkey = 0 and entries with name
’primout’ and permkey = 2 are considered to have no name attribute.
Default: any name

24.53.2 Scope

scope. <scope>
<scope> ::= (temp/login/user/project/own/perm/all)}

The attribute is the scope.

All entries with the scope specified have the attribute.

The terms temp, login, user, project have the usual meaning

own means one of above.

perm means permkey = 3 and entry base inside or equal to the
standard base of the process

all means any permkey and entry base inside or equal to the
standard base of the process.

Entries specified at load by

24. Function

Page 70

24. Function

System Utility, Save, Incsave; Load, Incload

scope.perm or scope.all
are the ones which

- were given bases, possibly changed by newscope modification, which
are inside or equal to the standard base of the job process loading,
and for scope.perm with a permkey of 3.

It makes no difference, that the backup was done by scope.perm or
scope.all.

Entries specified at load by
default scope (any scope)
are the ones which

- if backed up by scope.perm or scope.all were given bases, possibly
changed by newscope modification, which are visible to and not
protected against the job process loading.

- if backed up by scope key were given scopes, possibly changed by
newscope modification, among the ones temp, login, user or project.

Entries specified at load by
scope key

are the ones which

- if backed up by scope.perm or scope.all were given bases, possibly
changed by newscope modification, which together with permkey
give the scopes specified

- if backed up by scope key were given scopes, possibly changed by
newscope modification, which are among the scopes specified.

Note that if a filesystem is saved in such a way that more entries have
the same name and scope/bases (flat filesystem), they cannot be
separated at load. They will all be loaded into the same file and the last
one wins.

Default: any scope

docname. <docname>
The attribute is the document name of the entry. All entries visible with
a document name equal to <docname> have the attribute.

24.6 Function, Infile Parameter

Every where the delimiter <s> is syntactically correct in the parameter
list, the parameter pair <s>in.<filename> is allowed and syntacitally
equivalent to <s>.

<filename> ::= name of any file descriptor
When <s> in.<filename> is met in the parameter list, current input

zone is stacked and connected to the file specified by the file descriptor,
and the parameter reading is continued in current input zone.

System Ultility, Save, Incsave; Load, Incload Page 71

The parameter reading takes place using the special fp input alphabet
and according to normal fp parameter syntax (cf. Ref (2)), except the
character 'nl’ is equivalent to the character ’sp’ and except names of the
types apostrophized name, generalized name and general text.

When the separator ’em’ is met, current input zone is unstacked and
parameter reading continues from current input zone, except when
unstacked to the initial level, in which case parameter reading continues
in the fp command stack.

In case of illegal character or fp syntax error a syntax alarm is written on
current output zone, current input zone stack chain is emptied, listing
the chain on current output zone, and parameter reading continues in fp
command stack.

The fp command listing governed by the mode bit ’list’ will list the
parameters in the fp command stack, not the parameters in any file.

24.7 Alternative and Dummy Parameter Names

For compatibility reasons, some alternative parameters are allowed.

The mount parameters mthh, mtlh, mthl and mtll are allowed, being
equivalent to

mt62 (or mt32): mthh, mtlh

mt16 (or mt08): mthl, mtll

The mount parameters 'mto’ and 'mte’ are allowed and equivalent to
‘'mtlh’ and 'mtll’.

The mount parameters ‘mte’ and ’'nrze’ are still allowed, but have no
new names (high density, even parity and low density, even parity).

The special parameter ’‘check.yes/no’ is still allowed, but has no
function.

The modifier 'changekit’ is allowed and equivalent to *changedisc’.

The changedisc parameter <from disk> = main is still allowed and
equivalent to <from disk> = all.

The changedisc parameter <to disk> = main is allowed and equivalent
to <to disk> = maincatdisc.

The disk specifier ’kit’ is allowed and equivalent to ’disc’.

The disk specifier parameter <from disk> = main is allowed and
equivalent to <from disk> = all.

Parameters known to be used by save, incsave or incload but not by load
are simply ignored.

24. Function

Page 72

25. Compatibility

System Ultility, Save, Incsave; Load, Incload

25. Compatibility

The program is backwards compatible with the program load in
SW8010/1, release 13.0 and earlier releases as far as

1) parameter names and parameter syntax, and
2) parameter function

concern, which means that any jobfile set up for use with the earlier
release will work the same way with the present releease.

One should note, however, that tape stations do not necessarily agree on
the interpretation of "high density" and "low density" (cf. 6.2).

The main extensions compared with earlier releases are

1) the use of a save catalog to speed up relocation and reload of files,

2) the change to a tape format more suited to "stream" data to and
from the tape, and

3) the increase in ressource consumption as a consequence of
changed input/output strategy.

Because of these extensions, the tapes read by this release are not
compatible with the tapes read by earlier releases of load.

It should be noted, then, that

- tapes produced by version 2 release 1.0, release 1.1 or 2.0 or release
3.0 and newer of save must be loaded by version 2 of load of the
same release or newer.

- tapes produced by earlier releases of save must be loaded by earlier
releases of load (release 13.0 is included in version 2 of the package
by the name load13).

- tapes to be received by installations with Version 1 release of load
only, must be produced by Version 1 release of save (release 13.1 is
included in version 2 of the package by the name save13).

The programs save, incsave, load and incload are parameter compatible
in the sense that any one of them may read any others parameter list.
Unused parameters known to be used by another of the programs will
simply be ignored.

é

System Utility, Save, Incsave; Load, Incload Page 73

26. Implementation Details
In the present chapter the implementation details concerning

- the use of the save catalog,

- the handling of magnetic tape,

- the handling of backing storage areas,
- the input/output strategy

are given.

Knowledge of these details is not necessary in order to use the
programs, save, incsave, load and incload, but it helps understand the
way they work and the options and possibilities offered.

26.1 Use of the Save Catalog

The use of the save catalog is the core around which the programs load
and incload are built, so the description is somewhat elaborate.

The programs load and incload scan their parameter list twice, including
parameters read from a, maybe in multilevel, stacked input zone.

First scan is to get the mount, tape and special parameters and to

- count the number of entry specifiers
- count the number of disks specified which are unknown to the
system.

Second scan is to build entry specifier tables, one of each entry
specification, with associated modifier tables.

When the tape specified is mounted, positioned and the proper
dumplabel read, the program

- incload searches the main catalog for a save catalog of scope user
with the name and shortclock given in the dumplabel record and
tries to connect it for input. If no success, it does as load

- load creates a temporary working name backing storage area and
transfers the save catalog from the tape mounted to the area and
connects it for input.

26. Implementation Details

Page 74

26. Implementation Details

System Ultility, Save, Incsave; Load, Incload

Now the program reads the save catalog head to

- get the description of the tapes specified in the save job
- position the save catalog to the first entry record (cf. section 7.1).

A temporary working name file is created and connected for output of a
load catalog.

The save catalog is scanned, record by record, until the all zero end
record is met, and the records, which satisfy the specifications in some
entry specifier, maybe after the modifications recorded in the save
catalog record, are transferred to the load catalog together with the
modifiers belonging to the entry specification.

The save catalog is disconnected, the load catalog cut down and
reconnected for input and a tempory working name file is created and
connected for output as a partial catalog (cf. subsection 7.2.3).

Now the load catalog is scanned, record by record, until all records have
been processed.

For each record which requires a new partial catalog, the proper tape is
positioned, maybe after a mount, and the partial catalog is transferred
from tape to disk.

An entry record requires a new partial catalog when the values of its
position fields change compared to its predecessor, or when its position
fields are zero but the predecessor had its counterpart as the last one in
the current partial catalog.

Now the partial catalog is searched for the counterpart (same name and
bases) of the current load catalog entry.

For each partial catalog entry, which is rejected but marked to carry
data, its data area on the tape is read in order to keep the position on
the tape updated.

When the counterpart entry in the partial catalog is found, the tape will
be in position for its possible data area.

Now the entry from the partial catalog is changed according to the
modifiers recorded in the load catalog and the entry is listed on current
output, unless the area is an area entry, but

- its data area was never saved (cf. section 6.3)

- a working name area entry of the scope wanted could not be created
on the target disk (connect.no) or

- an existing area entry of the name, scope and disk wanted
(connect.yes) could not be connected for output.

In this case an entry warning is listed on current output instead.
The data area is transferred from the tape and if a working name area

entry was the object file, it is renamed after a possible removal of the
existing entry.

¢

System Utility, Save, Incsave; Load, Incload Page 75

When all records of the load catalog have been processed, the use of the
magnetic tape is finished by

- sending a release message to the parent, if specified by release.yes

- writing accounts of the position on the tape just left, segments and
entries read from the tape during the job and segments and entries
actually loaded in the job.

Before terminating (even after runtime alarm), the program load
removes

- the save catalog
- theload catalog
- the last partial catalog

files, incload only the two last, and a possibly stacked output zone is
unstacked and reconnected to the file it was before the program was
called.

26.2 Handling of Magnetic Tapes
The handling of magnetic tapes is governed by

- the mount parameters
- the tape parameters

26.2.1 Mount parameters

The magnetic tapes are prepared according to the mount parameters,
modekind, mountspec and release, as for save, cf. subsection 6.2.1,
except that all modes will be tried sucessively in case of mode error.

26.2.2 Tape Parameters

In the tape parameters, one volume tape may be specified by name or
file descriptor or up to two copies of up to 32 volume tapes may be
specified.

If more tapes are specified, the special parameters ’copy’ and ’vol’,
maybe by default (copy one, volume one), determine the first volume
tape to mount. The tape, then, is mounted and positioned.

The file number parameter ’last’ needs an explanation: the tape is
positioned at file number 1, block number 0, and the first block is read.

As long as the block is not empty, the file number is increased by one,
the block number is zeroed and the first block is read. The procedure
may extend over more volume tapes. First time an empty file is met, the
search ends and latest file identified by continue or dumplabel record
becomes the tape and position to mount and position.

If the backup extended over more tapes and the rest of the set of
volume tapes used, from the one first mounted and on, are specified in

26. Implementation Details

Page 76

26. Implementation Details

System Utility, Save, Incsave; Load, Incload

the call, then, the last one actually used becomes the tape to mount first,
and the save catalog, which controls the relocation and reload, becomes
the most updated version to get from any tape.

From the tape pointed out to be the first one as described above, the
save catalog is transferred to a working name temporary disk area
(26.1), except for incload, which first tries to connect to an existing save
catalog of name, base, size and shortclock as recorded in the dump label
(cf. subsection 7.2.1).

The tape or set of tapes recorded in the save catalog head (cf. section
7.1) becomes the tape or set of tapes specified to the program, with the
one actually mounted as the current volume tape, and if it occurs in one
of two copies of volume tapes, if determines the copy to be used all over
in the reload.

If the reloading process extends over more volume tapes, a change of
volume tape to the next one in the set takes place at end of document
status, nothing input.

The save catalog in the next volume tape mounted is just bypassed, as it
is of no better use than the one already in use.

26.3 Handling of Backing Storage Areas

Whenever an area entry from the load catalog is relocated in its partial
catalog, steps are taken to allocate a backing storage area:

- if the special parameter connect.yes is specified, an entry of the
name and bases is looked up in the catalog. If it exists, no matter
what disk, it is tried to change its entry tail into the object one,
except for the document name. If sucessfull, the file is connected for
output. If not, or

- if the special parameter connect.no is specified, maybe by default, it
is tried to create an area entry with a working name, but with bases,
permanent key and entry tail as specified on the disk specified (if
new disk name = 0,1 2, or 3, the monitor chooses the disk with the
most resources of the specified permanent key). If sucessfull, the
area is connected for output. If not, a possibly created entry is
removed again.

Connection for output involves the creation and reservation of an area
process.

If any step fails, a proper message is issued and the entry is listed on
current output with a message, that the entry has been skipped.

If nothing failed, the area is transferred from tape to disk and the entry
is renamed.

If it cannot be renamed because of name overlap, the entry in the way is
renamed and another rename is tried. If still no success, the entry is
removed instead with a proper message on current output.

System Utility, Save, Incsave; Load, Incload Page 77

Since the area process is reserved during the reload, the following may
be said about foreign read - and write accesses to the area during the
reload:

connect.yes is specified:

Any continuing foreign read/write access to the area at the time of
connection are unaffected by the reload, but will cause the
reservation to fail and the entry to be skipped. Any foreign
read/write access to the area after the connection will be rejected
(i.e. read accesses from algol programs will be repeated until
success, all other accesses will terminate their programs) and not
affect the reload.

connect.no is specified, maybe by default:

The new area has a working name, and no foreign read/write access
is likely to happen. Any continuing foreign read/write access to the
old area at the time of removal/renaming are not affected by the
reload, but will cause the removal to fail and the entry to be
skipped.

Any new foreign read/write accesses after the renaming are ok,
since the reload is complete.

26.4 The Input/Output Strategy

The transfer of backing storage areas from tape to disk takes place
as described in section 6.4.2, Trans Memory Transfer.

Persistent parity errors in input from tape are ignored and the

missing tail of the harmed block is zeroed. For further details, cf.
29.8.

26. Implementation Details

Page 78 System Utility, Save, Incsave; Load, Incload

27. Exact Formats
Described in Chapter 7.

27. Exact Formats

System Utility, Save, Incsave; Load, Incload Page 79

28. Requirements

The job process will need ressources of the following types to be able to
run the program load or incload:

- memory
- message buffers

- area processes
- temporary entries and segments.

28.1 Memory

As described in section 8.1.

28.2 Area Processes and Message Buffer Claim
The job process will need at least
6 area processes

and in case the blocklength on the tapes is <= 21 segments, it will need
at least :

6 message buffers
else it will need only
4 message buffers.

In case less than minimum is available, the program terminates with an
alarm stating the need.

28.3 Disk Resources

The job process needs one temporary entry and some temporary
segments for each of the following purposes:

- infile parameter is used
- outfile parameter is used

28. Requirements

Page 80

28. Requirements

System Ultility, Save, Incsave; Load, Incload

outfile is a temporary backing storage area or does not exist
save catalog (not incload, if save catalog exists)

load catalog

partial catalog

If connect.no is specified, maybe by default, the job process will need
one temporary entry in the main catalog and for each object disk in the
reload and for each permanent key to be used on that disk, it will need
one entry and as many segments as the largest file to be reloaded on
that disk for that permanent key. If connect.yes is specified, no extra
resources will be needed for the areas to be reloaded.

System Utility, Save, Incsave; Load, Incload Page 81

29. Error Messages

Error messages from the program are written in current output zone.
The following kinds of error messages exist:
- parameter alarm

- resource alarm

- connection alarm

- monitor alarm

- other alarm

- parameter warning

- save specifier warning and message

- area entry warning

- parameter input syntax error message
- mode shift message

29.1 Parameter Alarms

At parameter alarm, the parameter list is emptied, listing the
parameters from current parameter and on in the alarm message.

The modebits are set:

'warning yes, ok.no'.

Since the parameter list is emptied, the program terminates.
Joad alarm <text> <parameter list>

Text: Explanation:

mountspec param syntax mount param not
followed by .<integer>

tape param too many volumes tape param specifies
more than 32 volumes

label param syntax label not followed by
.<name>

tape param missing no tape parameter
found

29. Error Messages

Page 82

i
\
1
29. Error Messages

System Ultility, Save, Incsave; Load, Incload

entry specifiers not parameter list not the

properly recorded same in two scans
(properly infile
changed)

29.2 Resource Alarms
At resource alarm, the program terminates with ‘warning.yes, ok.no’:

*## Joad area claim, at least needed: <needed>, claim: <claim>
**# Joad buffer claim, needed: <needed>, claim: <claim>

<needed> is the amount of resources needed, <claim> is the amount
claimed.

29.3 Connection Alarms

After connection alarm, the program continues just to terminate with a
’device status’ alarm concerning output to the area not connected.

The modebits then become *warning.yes, ok.no’.
*** Joad connect <filename> <cause>

where <filename> is the name of the area concerned and <cause> is
one of the following:

- NO resources
- malfunction

- not user, not exist
- convention error

- not allowed

- name format error

The area concerned will be either

- the save catalog (maybe a working name)
- the load catalog (working name)

- the partiel catalog (working name)

Explanation:

The area concerned could not be connected for output for the reason
stated.

*s% Joad <monitor call> <entry name> <result>

where <monitor call> is either of

- create entry

- permanent entry (maybe into auxiliary catalog)
- set entry base

System Utility, Save, Incsave; Load, Incload Page 83

- rename entry
- remove entry

<entry name> is the name of the entry concerned and <result> is the
result of the monitor call.

Explanation:

During reload of the entry concerned, the object entry is prepared by a
combination of the three first monitor calls (in case of connect. yes when
the object entry did not exist). The entry name will be a working name.

After reload of the entry, the object entry is renamed, maybe after
removal of the existing one (in case of connect.no). One of the monitor
calls returned a positive result for the reason stated.

After the warning, the entry is listed, followed by an area entry warning
without <cause>.

29.4 Other Alarms

All other alarms from the program concern the reading and contents of
dumplabels on tape and the transfer/bypassing of save/partial catalog
from tape and the contents of the save catalog head.

After the alarm the program terminates with 'warning.yes, ok.no’

The alarms have the common form:
*5% Joad <text> <name> <value> <text> <value>

Following an explanation for each possible <text>.

no dumplabel found on volume tape, file, block number:

On the first tape mounted, no proper dumplabel was found.

(blocklength <> 100 halfwords or not text starting with ’save’ or
’incsave’ or neither *vers.” nor ’cont.” dumplabel).

The name of the tape and the position is given as <name> and two
<value>s.

Incomplete save catalog transferred from tape:

The size of the save catalog recorded in the dumplabel did not agree
with the number of segments actually transferred or the transfer
suffered from persistent i/o troubles.

The name of the tape and the size of the save catalog recorded as well
as the number of segments actually transferred are shown in <name>
and <value>s.

The reason is i/o troubles and the alarm should not occur.

no proper dumplabel on volume tape, file, block number:
On a new volume tape mounted, no dumplabel was found, cf. above.

dumplabel incompatible on volume tape, file, block number:

The fields of the dumplabel record found on the next volume tape do
not agree with the ones found in the first volume tape mounted.

The new volume tape has been used for backup since the one in the first
volume tape mounted.

29. Error Messages

Page 84 System Utility, Save, Incsave; Load, Incload

The new volume tape name and the file number are shown in <name> .
and <value>s.

max no of volumes in save catalog incompatible with load program:

The maximal number of volumes tapes in one copy recorded in the save
catalog head is not the one used by the loading program (at present 32).
The name of the tape from which the save catalog came and the number
recorded there is shown in <name> and <value>.

incomplete partial catalog transferred from tape:

Not the number of segments in a partial catalog as recorded in the
dumplabel were transferred from tape or the transfer suffered from
persistent i/o troubles.

The name of the tape and the number of segments, recorded as well as
transferred, are shown in <name> and <value>s.

The reason is i/o troubles and the alarm should not occur.

incomplete save catalog bypassed on tape:

During bypass of a save catalog on the next volume tape mounted not as ‘
many segments as recorded in the dumplabel were bypassed or the
transfer suffered from persistent i/o trouble.

Reason as above.

29.5 Parameter Warning

The parameter warning skips current parameter, displaying it in the
error message and continues, setting the modebits:

‘warning.yes, ok.yes’

**# load warning <text> <current parameter>

Text: Explanation:
outfile param connect impossible ~ The current output zone could not
<cause> be connected to the file specified

for the reason explained in ‘

<cause>. The stacked output
zone is unstacked again and
output continues.

infile param connect The current input zone could not

impossible <cause> be connected to the file specified
for the reason explained in
<cause>.

The stacked input zone is

unstacked again and input
continues, maybe from fp

command stack.

mountspec param syntax The parameter 'mountspec’ was
not followed by . <integer>.
The value remains the latest one
read or default.

29. Error Messages

System Ultility, Save, Incsave; Load, Incload

release param syntax

list param unknown

load param unknown
survey param unknown
connect param unknown

changedisc param syntax

newscope param syntax

newscope param unknown

scope param syntax

scope param unknown

docname param syntax

name illegal

name double defined

load spec param unknown

Page 85

The parameter ’release’ was not
followed by .yes or .no.

The value remains the latest read
or default.

The parameter ’list’ was not
followed by .yes, .no or .<name>.
The value remains the latest read
or default.

The parameter displayed was not
followed by .yes or .no.

The value remains the latest read
or default.

The parameter 'changedisc’
.<from disk> was not followed by
.<name>.

The value becomes <to disk> =
no.

The parameter ’newscope’ was not
followed by . <name>.
The value is not changed.

The parameter to newscope was
neither of
temp/login/user/project /no.
The value is not changed.

The scope parameter was not
followed by . <name>.

No entries will be loaded
according to this entry specifier.

The scope specified was neither of
temp/login/user
/project/own/system /perm/all.
No entries will be loaded
according to this entry specifier.

The ’docname’ parameter was not
followed by . <name>.

No entries will be loaded
according to this entry specifier.

The name specified in entry
secifier was ’c’, v’ or ’primout’.
The entry specifier is not
recorded.

A name was already specified.
The new name is ignored and the
program continues with the
current entry specifier.

Syntactically the parameter would

29. Error Messages

Page 86 System Utility, Save, Incsave; Load, Incload

start a load specifier, but the .
parameter is not <s> <name>.

The rest of the parameter list is

read, each parameter with this

warning as a result.

29.6 Area File Warning

The warning concerns the transfer of the data blocks from the tape to a
backing storage area, or just reading the data blocks in case of load.no.

It appears on current output following the area entry concerned.
The modebits are set 'warning.yes, ok.yes’ and the program continues.
The warning will have the form

*#*load warning <expl> ‘
<entry> <size> transferred: <segs>

where <expl> will be one of:

- too many segments of area transferred from tape
- not all segments of area transferred from tape

<entry> will be the entry name
<size> will be the size given in the entry, and
<segs> will be the actual number of segments transferred.

In case of actually loading (load.yes), the entry loaded will get the size of
the actual number of segments loaded.

The reason for missing data blocks or having too many is that the entry
base of the original entry was outside the max base of the process doing
the save, and the entry was changed by someone else while the segments
of the area were transferred to tape, cf. 9.7. ‘
The size of the entry after the load will be the number of segments

actually loaded, while the remaining entry tail will look as before
someone else changed it during the save.

29.7 Persistent I/O Warning

The warning occurs when the transfer of an area from tape is bothered
with persistent i/o troubles.

The modebits are set ‘warning.yes, ok.yes’.
The warning is

load parity: persistent parity error in input from tape

29. Error Messages

System Ultility, Save, Incsave; Load, Incload Page 87

<tape name> file, block no <file> <block> loading to

<file name> last <no> halfwords of segments <no>-<no> would
be/are zeroed.

The trouble is parity error in spite of a number of retries reading the
same block from tape. The missing part of the block is zeroed and the
result depends on conditions:

load.yes, connect.no: the file is a wrk.... file and stays a wrk.... file, i.e. it
is not renamed and it is not recurred, it stays at the user’s disposal. The
text is "are zeroed".

load.yes, connect.yes: the file ends up with the original name, i.e. if it
existed in advance, it gets its new contents (with zero values in it). The
text is "are zeroed".

load.no: the file is not loaded at all and the text becomes "would be
zeroed".

If the file tranferred is the save catalog or a partial catalog, the program
terminates with one of the alarms:

incomplete save catalog / partial catalog transferred from tape.

In case of any other file, the program continues.

29.8 Monitor Alarm

After monitor alarm the program terminates with 'warning.yes, ok.no’
after having removed the entry concerned.

29.9 Area Entry Warning
The warning appears in current output following the entry concerned.
The modebits are set ’warning.yes, ok.yes’ and the program continues.

<entry>
*** warning: <entry name > skipped <cause>

Explanation:

The area process could not be created, not be reserved or the area was
inaccessible at save for the reason stated in <cause>.

The entry and the area have not been loaded.

The warning appears only if list.yes or list.name is specified.

Cause: Reason:

area claims exceeded create area process failed

catalog i/o error, state of document create area process failed

29. Error Messages

Page 88 System Ultility, Save, Incsave; Load, Incload

does not permit call .
entry not found create area process failed

entry not an area entry create area process failed

name format illegal create area process failed

reserved by another process reserve failed

not user, cannot be reserved reserve failed

does not exist reserve failed

29.10 Load Specifier Warning
The load specifier warning may occur just before program termination. .

The load specifier is listed in the error message, the mode bits are set
‘warning.yes, ok.yes’.

*** save no entries found according to following specifier
disk: <disk specifier >

entry: <entry specifier>

Explanation:

No entries are found in the save catalog according to the load specifiers
or the entries specified have been skipped, cf. above.

29.11 Load Specifier Message

The load specifier message may occur just before program termination.
The modebits are untouched.

The message is: .
nothing loaded because of <survey.yes/load.no>

Explanation:
No entries are loaded because survey.yes or load.no were used.

29.12 Parameter Input Syntax Error Message

This message is caused by a syntax error in the parameter list read from
a file connected to current input zone.

The parameter list must follow the syntax of an fp parameter list and
must be coded in the special fp input alphabet, cf. Ref. (2), with the
exception that the character 'NL’ is equivalent to the character *SP’ and
the exception that the name types apostrophized names, generalized
names and general text are not allowed. .

29. Error Messages

System Utility, Save, Incsave; Load, Incload Page 89

The current parameter is listed in the error message and the zone stack
chain is emptied, listing the chain on current output the same way fp
does in an fp syntax error message.

The parameter reading is continued in the fp command stack.

The modebits are left unchanged.

Joad syntax <parameter>

* read from <file>
* selected from <file>

*#** load reinitialized

29.13 Mode Shift Message

The message occurs when the mode specified by mount parameters or
by default does not agree with the mode set at the tape station where
the tape is mounted, as experienced at the first try to read the
dumplabel. The message will not set the mode bits.

The message is

* mode error on <tapename >, trying <next mode >

After the message, another try is made with the next mode in the set

mt62/mtlh, mte, mtlé/mtll, nrze,
mt32 , mt08, mthh , mthl

If still mode error, another mode message occurs.

When all modes in the set have been tried without success, the program
terminates with a *device status’ alarm with 'warning.yes, ok.no’.

29. Error Messages

Page 90

30. Further Examples

System Ultility, Save, Incsave; Load, Incload

30. Further Examples

30.1 Example 1

Continuing the example in 22.4, where the volume tapes mt841201,
mt841202 and mt841203 had been used for a backup of all permanent
files in the system (cf. section 2.4), written in high density, and a user
wants to, e.g. reload all of his user files. Suppose the ’high density’ at
backup time was 1600 bpi and now at load time the user may have
access to stations only where 1600 bpi is ’low density’.

The user does not know which tape was the last one actually used, so he
submits the job:

load mtl6 mt841201.last connect.yes scope.user

The job will mount the tape mt841201, search along the tapes until
mt841203, from where the save catalog is taken.

Since the user files wanted may be scattered all over the tapes, the job
may now require the first tape mounted (if still not mounted), position
from user file to user file and load them, require the second tape
mounted and so forth until the last user file is reloaded, which is where
the last tape will be abandoned.

If the tapes involved stay mounted throughout the job, no time is wasted
’going back’ on the tapes, since release.yes is specified by default.

The connect.yes parameter implies that any existing file will be directly
connected at reload, no matter what disk it belongs to, and that only the
resources needed for the not existing files are required.

30.2 Example 2

Consider the example in section 10.3, where all files in the system,
temporary or permanent, belonging to the disks ’disc’, *disc1’ and ’disc2’,
are backed up on two copies of tapes, each specified to hold 5 volume
tapes.

System Utility, Save, Incsave; Load, Incload Page 91

Suppose all permanent files belonging to a certain project is to be
reloaded from the second copy set of tapes, and that the fourth volume
is known to be the last one actually used in the backup.

In a process with std base = project base, the job

load in.magtapes copy.2 vol.4 scope.perm
will do the job.

The first tape to be mounted will be mtdp0009, which is the fourth
volume in copy set no.2, and the save catalog, which is taken from this
tape, will tell where on the tapes among the three first in the copy the
files wanted are saved.

The tapes are mounted in sequence and the files reloaded by direct
position and load, until the fourth volume. If it contains any of the
wanted files, the files are searched along the tape and reloaded in the
order they were saved, until the last one has been reloaded, which is
where the tape is abandoned.

As long as the stations involved are set in the density recorded on the
tapes, the program will read the tapes despite no specification of
modekind in the job.

If the four tapes involved are all mounted from the start, or at least

become mounted while the predesessor is being used, no time is waisted
during change of volume tape.

30. Further Examples

Page 92

31. Introduction Incload

System Utility, Save, Incsave; Load, Incload

31. Introduction Incload
The program incload is used to

- relocate and reload catalog entries and backing storage areas from
magnetic tape backups created by incsave.

- relocate and read files from such tapes as a simple test of the tape
format.

- produce documentation of such backup from the save catalog
resident in the file system.

The program may do the same for tapes created by save, only the save
catalog used will be taken from the tape in the same way as by the
program load.

System Utility, Save, Incsave; Load, Incload Page 93

32. Examples

32.1 Example 1

In the example in section 12.1, all 'own’ files are backed up in a level 0
backup, i.e. total backup, on the tape mtdp0001 leaving a permanent
save catalog by the name ’level(’.

Suppose the job process has the same user bases as the backup job had.
The job

incload mtdp0001.1 survey.yes

will list all files described in the save catalog, without reading anything
on the tape but the dumplabel and the save catalog,

The job
incload mtdp0001.1 load.no

will do the same, but the tape will be read, partial catalog by partial
catalog, data area by data area, without actually loading any file.

The job

incload mtdp0001.1

will actually reload all the files in the backup, while the job

incload mtdp000l.1 scope.user

will reload the user files by direct position and load, file by file.

In a job process with any other user base, but with bases which make the
save catalog visible, the jobs will do the same. Files loaded, though, will
end up with the new user scope.

In a job process with bases, which make the save catalog invisible, the

job will degrade to act as if the program load was used, i.e. get the save
catalog from the tape and reload the files as they are met along the tape.

32. Examples

Page 94

32. Examples

System Utility, Save, Incsave; Load, Incload

32.2 Example 2

In the example in section 12.2, a level 1 and a level 2 backup of the same
file system were made on the base of the level 0 backup in 12.1, all along
the tape ‘'mtdp0001°.

If you want to reload a certain user file on the same user bases in the
latest edition’ saved, but you dont know in which level to look, you
submit the job:

incload mtdp000l.last scope.user.myfile

Now the job will reload the file, if it is found in the level 2 save catalog.

If not, only the catalog has been searched, and the program will print the
warning:

**# incload no entries found according to...
<load specifier>
and terminate with ‘warning yes.ok.yes’.

Now, from the output from this job, you know in which file the latest
level 1 backup is found, say file no 3, and you submit the job

incload mtdp0001.3 scope.user.myfile

with the same possible results as above.

If still not found, you submit the job

incload mtdp0001.1 scope.user.myfile

Note that the same jobs with survey.yes specified would make a survey
of the save catalog alone and come up with the same warning and

'warning.yes, ok.yes’ bits set if the file is not found in the save catalog.

Conditioned by the warning and ok bits, the job might continue with the
next survey or with an actual reload from present file.

32.3 Example 3

In the example in section 12.3, incremental backups in different levels
are made with std base of job process = project base of the project for
which the file system backed up consists of all permanent files with
bases inside the project base.

The backups are placed on tape volumes specified, level by level, in files
named ’levelOtapes’, "level1tapes’ - etc.

Suppose you want to reload all files belonging to a certain user in their
latest editions.

In the users job process, submit the jobs:

System Utility, Save, Incsave; Load, Incload Page 95

incload in.levelOtapes scope.user
incload in.levelltapes scope.user
incload in.level2tapes scope.user
etc.

If the level 0 dump is the latest backup, stop here, If the level 1 dump is
the latest backup, stop here, and so forth.

A simple lookup of the files ’level(’, 'levell’, ’level2’ etc., will show which
one contains the latest backup.

If the backups were made in a job process with std base = system base,
the same jobs would work, provided no files ’level(’, ’levell’, ’level2’, ...
existed of bases better than system bases.

For each job, with a ’better’ save catalog than system, the program

would act as the program load and pickup the save catalog from the tape
instead.

32. Examples

Page 96 System Utility, Save, Incsave; Load, Incload

33. Call

The program is called exactly as the program load.

33. Call

System Utility, Save, Incsave; Load, Incload Page 97

34. Function

The function is the same as for the program load, except the save
catalog recorded in the dumplabel of the first tape mounted will be
looked up in the main catalog and connected if found.

If it is not found or cannot be connected (covered by a better name), the
save catalog is taken from the tape exactly as for the program load.

34. Function

Page 98

35. Compatibility

System Ultility, Save, Incsave; Load, Incload

35. Compatibility

The programs incsave, save, incload and load are parameter compatible
in the sense that any one of them may read any others parameter list
and simply ignore unused parameters known to be significant to others.

System Ultility, Save, Incsave; Load, Incload Page 99

36. Implementation Details
Described in Chapter 26.

36. Implementation Details

Page 100 System Utility, Save, Incsave; Load, Incload

37. Exact Formats
Described in chapter 7.

37 Exact Formats

System Ultility, Save, Incsave; Load, Incload Page 101

38. Requirements
Described in Chapter 28.

38. Requirements

Page 102 System Utility, Save, Incsave; Load, Incload

39. Error Messages

As for load, except the program name is ’incload’.

39. Error Messages

System Utility, Save, Incsave; Load, Incload Page 103

40. Further Examples

In the example in section 20.1, a file system is backed up periodically in
level 9 backups.

The base of the level 9 backups is initially the full level 0 backup, later it
becomes a level 1 backup and maybe even later it becomes a level 2
backup, and so forth.

Suppose a user wants to 'go hunting’ for the latest backup of his file
‘'myfile’ of scope user.

First, a simple lookup of the files ’level0’, ’levell’, ..., ’level9’ tells which
level contains the latest backup.

Starting with that level and going ’backwards’, the user perfomrs surveys
of the save catalogs. All he has to know is the name of the pool of tapes,
or just a single tape in the pool latest used for each of the levels.

Suppose ’level9’ contains the latest backup and only level 1 backups
were made since the level 0 full backup.

Suppose ’pool92’ contains the latest level 9 backup,
’pooll’ contains the latest level 1 backup and
’pool0’ contains the full level 0 backup

The job:

incload in.pool92 survey.yes scope.user.myfile
if warning.no

(incload in.pool92 scope.user.myfile
finis)

if ok.no

finis

incload in.pooll survey.yes scope.user.myfile
if warning.no

(incload in.pooll scope.user.myfile
finis)

if ok.no

finis

incload in.pool0 survey.yes scope.user.myfile
if warning.no

(incload in.pool0 scope.user myfile
finis)

if ok.no

finis

40. Further Examples

Page 104 System Ultility, Save, Incsave; Load, Incload
message myfile not found .
finis

will ’hunt down’ the file and load it if found.

40. Further Examples

System Ultility, Save, Incsave; Load, Incload Page 105

Appendix A. References
1) RC8000/IDA801 Main process 991 09773
2) System Utility, User’s Guide, Part One 991 11263

Part of SW8010I-D System Utility Manual Set

Appendix A. References

System Ultility, Save, incsave; Load, incload
PN: 991 11 310

