® RC9000-10/RC8000

SW8010 System Utility

Maintenance Programs

4 RC Computer \



Keywords:
RC9000-10, RC8000, System Utility, Maintenance Programs

Abstract:
This manual describes a set of programs from the System Utility
package, which are used for system maintenance and administrative
purposes.

Date:
February 1989

PN: 991 11265

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-

ject to change by RC at any time without prior notice. RC is not responsible for typo-

graphical or arithmetic errors which may appear in this manual and shall not be re- ‘
sponsible for any damages caused by reliance on any of the materials presented.




System Utility, Maintenance Programs

Table of Contents

Lo BASCINOVE. ........ocevrecrrirecrcnreenereteresee e sesnesessessnesessestsasssssasssnnsssnsssnsnsses sessssees 1
1.1 INEEOQUCLION. ...ttt et saesesessesesanssssnsnssssessasssarmenessens 1
L2 Qb ettt e et s s et a st esesesrenens 1
1.3 FUNCHON....ceticecteeteeereteeeteeee ettt e e see e s et sesaseasaesseseseneessesesanas 1
1.4 Resource REQUITEMENLS..........ccvvuimivinceinieecniersecssessessesssessasrssmsansans 2
LS EXAMPIES......oimimiiiietcnte sttt ens 2
2. CRECKIO. ..ottt te s e seeeeeseesee st e aasseseesesaneamanensens 3
2.1 INETOAUCLION. ....ceeveeeeecectcetcettitsee et eete e eene s sessssssassesesseseseseesemarssseos 3
2.2 Callec..er e a ettt ee st e e st et res e enens 3
2.3 Reserving the DOCUMENL............cocueeminieneenseneinninsnssesss st seense srssnnns 4
2.4 OUIPUL....otttt e ees st s ssas st sas st nses s e sesse sensssns 4
JuCleAN. ...ttt ettt st e e e st et s a e et et oeeensenes 7
3.1 INETOAUCEION. ...ttt ste et ses e e srasess s sesessssemanssnns 7
3.2 EXAMPIE......uiiiicicrccecineisi sttt ssastesae sttt s ae e seeenned 7
B3 Gl ettt e e e een et eaese et e e se e st 7
B3i4 FUNCHOMN. ...ttt esest et ee st e sneseeeesesaesesnssessssesesssensesns 7
3.5 ETTOr MESSAZES......ouvrveciririncrniiiiiaseescresssssessessssssssssssessessessessessesssssssssssans 7
Q. DeletelinK...........coveeererirerercertee ettt et eeeeeeesaessesesn e e seseeseee e mer s e s 9
4.1 INELOAUCHION........cececeeeecectres ettt as s s e e esesesasssesesesesesesesesessmasnaens 9
4.1 EXAMDIES........oecteirinctciniccteicieceeaseisesssssssssssssass s tesassssssses s sssssaes 9
4.3 Calleceeeeecee ettt sttt e e st se s e eans 10
4.4 FUNCHION. .....cveveeeeetereeerereecrctereeesctese e setesesesesssessssssasasesssseessssssssssssssssssessesases 10
4.5 EITOr MESSALES.......ovovvcerirerenriicisinisesnsssss s sssssesnsesssssssssssssssssassssnns 10
S DESCEOPY. ....ovnvriririeriiirierenset et esressssssssss s e ses s s s b st st sssesenen senaens 13
S.1 INTOAUCHION....cooviveureereeterercriee et teaesetesssee s esessesesesssasesensesenenessnsessemesnes 13
S.2 Clluieeieestserctrtsete ettt s s s s e e e s st st n e e r s s e 14
S 3 DELAILS....co vttt se s e e ettt s ae e e en soeeas 16
5.3.1 SAVE.....oirieericeectter et s b e st et ne e e e e e n e e s s enas 16
5.3.2 L08d.c sttt s st s etes s s s s e eea 17
5.3.3 Bttt sesessasassetessessnsesassenenesassassssesesesssesessemmenonns 18
5.3:4 PACKOM.....eceeeeeeeetereetcnccce e esscaesessseseseesesenesesasesssesensssassssssessnsossssssssens 20
5.3.5 PACKOSL ...ttt s ssesereresese e ne e nen serens 20
5.3.0 KItOMN...oeeeeeeececeeeetetceecceseserctesscee oo eeessessesesssssessessssssesssses s eessssens 21
5.3, T KOSttt aeteccsassesesessssssasesas e sessesssens e sens soemene 21
S5.3BKItIADEL.......eeeett ettt et s oo e et s e se e sens 22
S539KINAME........oeerereerercecteecee ettt seeeseesassessets e s sesssssensssesem e sens 22
5.4 Error Messages and Warnings...........cecueeeicieeneesneeseessensensensescsscsneesons 23
5.4.1 LOGICAL StALUS.......couiuerrrircieiereiesirenseesssse s s s sasasensenssessensoseesens 23

Table of Contents



Table of Contents

System Utility, Maintenance Programs

5.4.2 Results from the MONITOL.........coeeeeenmreenereenresienrisseeserssssessssssssessssnnens 23
5.:4.3 WAIMINES. ....c.ovvrurerrrresaeneeeerereieiesssscsssastssssssnassssssssssssssssessesersssessssssnins 24
6. DESCSLAL.........ooeeeeiiiereeeenircceriseeeessees e st e s neesasessasesasassasesssassnssennesrne sessrn 25
6.1 INtrOAUCLION.......oviiericeereerecrieterieecrnsaseessee e esessssassesssessensessssssssessessesssmensans 25
6.2 Call...oeerreereecrerineetsi ettt sen et sse st ere s b b r b en e e rens s e anenaens 25
6.3 FUNCLION. .....ceveieeeeeireerterverversetensereessssessesessessessessensessessessessessessessassessresssansans 25
6.4 EXamPIEs........coviiiicc e 26
6.5 Error MESSAEES.....oucuiiurittcttttssn s 26
ToDESCLELL........oeeeeeeeeeeeeeeeerreeeeeereesrereeraessresessnssseebasstassseesaessensssnssrsessan srenses 27
7.1 INETOAUCHION. ...ttt re e easessessesee e sasesnesnessessensensesmensans 27
T2 Cllu.ceeeeireniiseereereieneieresrerissstertsnsesenssesrssessssessesnasessesesseserasssessesersssaten 27
7.3 EXAMPLES......c.overrererrenrerenscsennenciesciessesseseensissssstssusssssssssosssssssssssssssesssssssossens 28
< T80 ) T T 31
8.1 INITOAUCLION.......cotiieeieteeteeeteetetee sttt st et s et s e sassas st esssstesaesse st essamensnns 31
B2 Gl et sae b e b e e b b aeraeabeberabesaaran 32
8.3 FUNCHOMN. ..ottt eeses e sssssbs s s s asesesnssesessasessesesias 38
8.4 Storage ReqUIrEMENtS.........c.c.oeveeneemrmeenrccincnirinssciee st seseenee 45
8.5 MESSALES.....ccurimererieeeneeecarese ettt s e e e 45
8.6 EXAMPILES......ccoerireemierriereenecreniareesnnsseesesresisessensaessssesonencsssasesssessssesessenenses 45
Q. MARNSEAL ...ttt ses e ete s e esaeenesasesse e e s sresbensesssansasnsassesesnans 51
0.1 INtTOAUCHION. .o.c ettt sesnsseeesssressssssesesessssesssssssessssssessasmesato 51
0.2 Gl et e r s s b e e bt aepareneas 51
0.3 FUNCHION.....cevirieveeeeeerrierereeeerrneriseenesresessesestesssnsassnssnessesssnsssssossansnsonesssnsonsenias 51
0.4 EXAMPIES.......oovicriiictritniicnnitnsentesssi sttt sess s s e e seaes 52
9.5 Error MESSAES........ooovviiieiiiniiiiiinnsissicss st ssesassssmeseses 52
JOOMAKELIINK. .........ooveeeeeeeetereectreeetveerreeeeetesenvserntesssasessssssesssnessnrnssssnsnssrsnsnes 55
10,1 INtFOAUCHION. ....viveerieirceiicceciie et sre st e ens st esresesssessossaressemanres 55
10.2 EXaMPIES......ocoriiiiriciiiccnicctienescsn s ssssssssse st snnes 55
103 Calleiiiiecteetieete sttt bbb e st sassss b s s e sbsas e msssnssens 56
10.4 FUNCHIOMN. c.veiteritircietcierestetesesseresssts e stebessessssessasessassssessosessnssostesessessasessns 56
10.5 Error MESSages.........coviviiiiininiieitnenensissssssesesesessssssessesssessosesses 56
J1. MIOMUEESE.........eeoeeeeiceteeeecteeiecteeteeteere et eeseeseestessaessaessaensesssessensnessessesss esnren 61
11,1 INtrOAUCHION. ..ottt b seese st sss e e et s bt sae e e mnans 61
11.2 EXQAMPIES.....crieiiiieiceiceeircnstnti et ssisasastssnessesensnans 62
T1.3 Callceerecrrreerceceeeeeresreresreresresessesessossessasossarossrsossrsessosessensonersosersenssnroton 64
11,4 FUNCHOMN. ..o eteeeeeieesetescnercresssesaessessssssessessssesessessessasessensosonsasonssssntessssens 64
11.4.1 COMMANAS.......ooeerereeeeeeeieeee ettt e essesseseesesssesessssssesssssssnomeseans 64
L1482 INFO. e eeireeereeretreenreeieeseeeressssessoresnessssessesessesensosssncrsssersonsrssassasnsensomssnens 64
11,43 EYPEINL...ciirciiecrisierecsensisnsenstnsasasssssssssnssssssssssssssssssessssssssesssssssassassasasans 65
T1A 4 ENd....aeettctseisrrisesiebssnessssssssssssssessssssessosessessasonsasensessomasens 65
11.4.5 DUIMP....ooiiiiitiiincsniissris s iessasssse st sesasassssesssassesessssssmussecs 66
11.4.6 COTE......euoeeeeeeeeeeerrerteerereeseeiesaesssessesssessnsssessesssessssssesssensessessanessssssessenses 66
11.4.7 LocK......ccerveverervenees reereesereesersesesrererseneanoserseR e teaeraes e sertsRteRsa b et e be e s R et et res 66
T1AB INLEINAL........oeeeieeee ettt ses st s s e sressessnesanessasassssamsosnan 66
11.4.9 EXLEIMAL.......oeeeeereeinreieeieeteeetesresessessssesesnessssessesessessssessasenesssmensons 67
11.4.10 ATCA.......oeeeeeeeneereeeee et rtreese s esssaesssesssesessssssensassssssasessasasasaes 67
11.4. 17 CRAIN.....ceeerceecerertererieeceereneseae e ssesassernssessssssnsssssessssessessonersensons 68
11,412 BUL ..ottt tetetescesestssesessestsssstssessentosesssssssesessenssssnses sensns 68
11,413 VM uuuiucieeiteeecictircrcecnsseee s sessssess e rsesestsssesessessosssssssssaressonessasmasnens 69
11.4.14 FOTMAL.......cueeeereeeeeeeieeeteieereereereresssessessresnessnesaessssssassnersesssestesse sesasen 69
L1415 BXUTAu..ueieiieeirireecee sttt sssssss s s ssssessebesbasessssbasssssssnsossosssssasasaes 69 '



System Utility, Maintenance Programs

1114.16 LINES.....onncrereceneeneireneeee e neseeesessessesascssassessssssesesstsesssssssssssssesens 70
11417 Ottt sttt sttt et e s asasases s e msases 70
11.5 Resource REQUIrEMENtS............ccoeeureeureeuemnrenssscnesnineessensssssssesssnss sereees 71
11.6 Error MeSSages.........cociuviiminimiitniicniccsiicsesiessesesssecassosscssonssnnes 71
12, PRINEZOMES.........oovrviiiiniiirtn i icssscssteecsesaenses et tsessassesssssesesssmensans 73
12.1 INEFOQUCHION. c..eceuvenecncnenceeicn et seastseses st sttt etsssessssnssasssssamensans 73
122 Call.. st 74
12.3 FUNCHOMN.......oviiiiriiniececcncecseasnessesnssstasasessesssssssesassssssssesasssses 74
12.4 EXamPIEs........omtcciticsscsis e scecasnenseasesense st 74
12.5 ErTOr MESSAEES.....cvovieiiiiriniciniiiitnsesessessasssassesesesassssesssosssasssmmessas 75
130 SCAIUP.......ooeertc sttt e e s e e e s ne 77
13.1 INtTOQUCHION. ....covuieieieiecececieic sttt sessessesssssssssssesessamentans 77
13.2 Creating a Ne€W S-USETr CAtAlOg.........cccruurimemncururcreimennesenseseseneseas sesvans 77
13.3 Inserting entries in S-USEr CAtalOg........cocevveeereercercrecmreunensensenseasrseemnsans 77
13.4 Deleting entries in s-USEr Catalog.........coccevevrrrerererrerersrereresssesreseserensens 78
13.5 Listing entries in s-USEr Catalog..........c.cuveeeverernrenrennresnesessenssessensserens 78
13.6 EXaMPIE.....uiniiiiiicccctcct ettt s 78
14, SLCELISK.............oonettc et 81
14,1 SHCEHSE.......cocvrivrcencrmeneneenreeesenseastaesseassess s sstss s ssssssassanstssassassansens sossens 81
14.2 EXAMPIE......ocneitct et asssasssss st sas s v 81
14.3 SYNLAX.....ooititiiiit e esessse s ssestsnassasssesssesaes sesenen 81
14.4 SEMANLICS........couimiirirircrsriseeescaseseeseeesasessetsessese s sessssssssssssssassassessanstestens 81
14.4 Program OULPUL..........ceeriiiniemerencrsesereinerseseesstssssssessssessssassessesns srasees 82
14.5 Error MESSAGES.........oiuiuiminicrincceenceesesseeseeesssessssssssssessssssssssmmsnsons 83
Appendix A. References................occccoerevevnnenienieveneeieeeseeesseseessesensssesns 85

Table of Contents



System Utility, Maintenance Programs

Table of Contents



System Utility, Maintenance Programs Page 1

1. Basemove

1.1 Introduction

The problem of moving one directory in the directory hierarchy of
RC9000-10 from one name base to another, or in normal RC9000-10
terms of changing the entry bases of entries in one name base to entry
bases in another name base, is normally solved either by

- making a backup of all files concerned by the utility program save
and restoring them by the utility program load, all in processes with
the proper process bases and done with the proper modifiers, or by

- using the scope program in processes with properly selected process
bases.

The present program will do the job in a process with a proper standard
base (the maximal standard base will always do).

The program basemove changes the entry base of all catalog entries of a

specified name base to another entry base, or the entry base of entries
specified by name and base to another entry base.

1.2 Call

{outfile =) basemove |,
{ [name.<name>] from.<low>.<up> to.<low>.<up> }1-*

where

<name> ::= name of a catalog entry

<low> ::=
<up> :i= integer
1.3 Function

The program scans the main catalog, and whenever it finds an entry with
bases equal to the specified original bases, the bases of the entry are
changed to the specified target bases.

1. basemove



Page 2

1. basemove

System Utility, Maintenance Programs

A message is displayed for each entry found. The message states the
result of the change.

When the entire catalog has been scanned, a message is displayed

containing the number of entries found, and - if any - the number of
entries which could not be changed for various reasons.

1.4 Resource Requirements

The program needs about 15000 halfwords of memory.

1.5 Examples

Example 1 .

*basemove
***basemove call error

Example 2
*basemove from.750.800 to.700.740
c bases moved properly from. 750 800 to. 700 740
v bases moved properly from. 750 800 to. 700 740
area2 bases moved properly from. 750 800 to. 700 740
areal bases moved properly from. 750 800 to. 700 740
4 entries found and moved ok
Example 3
*basemove name.areal from.700.740 to.790.800 .

areal bases moved properly from. 700 740 to. 790 800
1 entry found and moved ok



System Utility, Maintenance Programs Page 3

2. Checkio

2.1 Introduction

Checkio may supervise all actions on a particular document. That is
performed in the following way: Assume that checkio is executed in a
job process called dev. Then all messages sent to dev are passed on by
checkio to the document supervised. The answer from the document is
passed back to the original sender process, which seems to be handling
the document in the normal way.

Checkio can easily print all messages and answers as they are passed on,
and you can later find out about parity errors from the document,
rereading etc.

2.2 Call

The process dev must be created with a size big enough to store the data
blocks passed by.

Checkio must be called with one parameter specifying the name of the
document to be supervised. The messages and answers are printed on
the current output of dev. A console communication to start dev may
look like this:

to s
new dev size 5000 run; if monitor older than 8.0
; mode 0 also

to dev
o lp ; print on the line printer
checkio té6 ; check the document té6

You will then see nothing from dev until some messages are sent to it
for instance from another job doing like this:

t=set mto dev 0 6 ; edit to the ’'magnetic tape’
; dev,

t=edit infile ; which acts as the magnetic
; file té6.

2. Checkio



Page 4

2. Checkio

System Utility, Maintenance Programs

Dev will now start listing the communication on the line printer. When ‘
you have finished using dev for supervising of t6, you can proceed like
this:

to s
proc dev break ; the remaining output from
; dev appears on the printer.
***% fp break
checkio printer ; select a new document etc.

2.3 Reserving the Document

Checkio cannot simulate those actions on a document which involve
reservation of the document, creation of it as an area process etc. So a
process which tries to reserve dev (the document) or create it as an area
process, and checks the result, cannot be supervised.

Processes running utility Programs and algol/fortran programs will not .
act this way: operations are sent and reserve process/crete area process

is done if necessary after the first operation.

To remedy the problem for these processes, checkio proceeds as follows

when the document does not exist: First a call of create area process is
attempted. If this does not succeed, checkio outputs the console
message

mount <document>

and performs the usual wait action. Then the operation is repeated
before the original sender gets his answer.

If the document rejects the message, checkio reserves the document and
repeats the operation before the original sender gets his answer.

If the original sender gets stopped before checkio has
received/delivered the data in i/o messages, checkio retries until the .
sender has delivered/received the data.

To supervise actions on an area process, a file descriptor of kind=6 and

document name = name of process executing checkio must be created
in advance.

2.4 Output

The output from checkio consists of one line for each message:
message <operation> <mode> <first addr> <last addr> <segment> <sender>
and one line for each answer:

answer <bits of logical status> <hwds> <characters> <file> <block>



System Utility, Maintenance Programs Page 5
If the answer is not transmitted back to the original sender, the reason is
printed as one of the lines
reserved by another process

not user/cannot be reserved
does not exist/not user of arees process

2. Checkio



Page 6 System Utility, Maintenance Programs

2. Checkio



System Ultility, Maintenance Programs Page 7

3. Clean

3.1 Introduction

The program removes all catalog entries with catalog base within the
‘ specified limits.

3.2 Example
The FP call
clean 2800 2899

removes all catalog entries with base within the limits 2800 2899.

3.3 Call
clean <lower limit> <upper limit>
where

<lower limit> ::=
<upper limit> ::= <integer>

3.4 Function

The catalog is scanned and all entries eith the catalog base within the
specified limits are removed.

3.5 Error Messages

***clean call
Left hand side in the program call.

3. Clean



Page 8 System Utility, Maintenance Programs
***clean param '
Parameter error in the program call.

***clean low > up
The lower limit specified is greater than the upper limit specified.

***clean limits off stand base
The specified limits are outside the standard base of the calling process.

***clean area procs missing
Create area process unsuccessful.

*¢*clean process too small

The calling process is too small

In case of any error, no entries are removed.

3. Clean



System Utility, Maintenance Programs Page 9

4. Deletelink

4.1 Introduction
The program removes links, i.e. external processes with links to LAN

device handlers, either on ADP (RC8000) or on LAN (RC9000-10)
controllers.

4.2 Examples

Example 1.
The call :
deletelink printer

will remove the link created in example 1 under the heading of makelink
and give the output

main : lanmaini :
link removed : printer dev. no : 9

links removed : 1

Example 2.
The call :
deletelink 43 44

will remove the links created in example 2 under the heading of
makelink and give the output

main : lanmainl :
link removed : ginl dev. no : 43 Llink removed : gout! dev. no : &4

links removed : 2

4. Deletelink



Page 10

4. Deletelink

System Utility, Maintenance Programs

4.3 Call
[<outfile>=] deletelink { [l.<lanno>] (<devspec>}1-* }1-*

{ <s><devname> }

<devspec> ::= { )
{ <s><devno> )
<s> = {'sp'/.}
<lanno> = number of LAN controller, default : 1

<devname> ::= name of external process
<devno> ::= device number of external process

4.4 Function

For every device parameter, whether it is specified by device name or by .
device number, the link, i.e. the external process and its link to a device
handler on the LAN controller specified, is removed.

A LAN number specification is valid until another LAN number
specification. If no LAN number is specified number one is assumed.

For each link, a line is produced as output :

Link removed : <device name> dev. no : <devno>

or

link not removed : <device name> dev. no : <devno> *<explanation>

If the link is specified by device number, <devname> will be empty.

If unsuccessfull, cf. below in ’Error Messages’ concerning the
* <explanation>. .

The program terminates by stating the number of links removed.

If an <outfile> is specified, it is used for output, else the current output
document is used.

4.5 Error Messages

Two kinds of error messages may be given, parameter warnings or
operational alarms.

Parameter warnings come from disobeying the call syntax, and they
take the form :

#+% deletelink <explanation>

where <explanation> may be one of : ‘



System Utility, Maintenance Programs

- 1.<1lanno> :
- unknown parameter : <-

Page 11

<actual parameter read>

. - >

In case of parameter warning, the fp mode bit 'warning’ is raised and the
program continues with the next parameter.

Operational alarms come from :

- dummy answer from the main process to the ’remove link’ request

and take the form :

* <explanation >

terminating the line in the output concerning the unlink request (link

not removed : <device name> ...).

The <explanation> is one of below :

-result 1

- could not be reserved
- does not identify a link -
malfunction

- does not exist

(e.g. the LAN numberss specified
does not specify a LAN
controller

(concerns the external process)
(e.g. the LAN number specified
does not specify a LAN
controller)

(e.g. the LAN controller
specified does not exist)

In case of an operational alarm, the fp modebit ok’ is cleared and the
program continues with the next parameter.

4. Deletelink



Page 12 System Utility, Maintenance Programs

4. Deletelink



System Utility, Maintenance Programs Page 13

3. Disccopy

5.1 Introduction
The program discopy is primarily intended for:

- binary copying of discpacks or parts of discpacks from one
discpack to anogher.

- save and load of backing storage files, using discpacks as backup
medium.

In addition to this the program contains facilities, which make it possible
to:

- include and exclude discs into and from the backing storage
system.

- label a disc.

- rename a disc.

The program can be used in two different modes:

- as an ordinary utility program.
- as a conversational program, which resides permanently
(’corelocked’) in core and reads its parameters from the current
. input zone. This gives you complete freedom to copy discs at
installations with only two discdrives.

The following subprograms are contained in the program disccopy:

save: used to save backing storage files on a disc.

load: used to load backing storage files from a disc.

bin: used for binary copying from one disc to another.

packon: includes an entire disc in the backing storage system.
packoff: excludes an entire disc from the backing storage system.
kiton: includes a single disc in the backing storage system.

kitoff: excludes a single disc from the backing storage system.
kitlabel: used to label a disc, ie. names are assigned to

’document’ and ’auxiliary catalog’ and an empty auxiliary
catalog is written.

kitname: assigns new names to ’document’ and ’auxiliary catalog’
of a disc (to be explained later).

5. disccopy



Page 14

S. disccopy

System Utility, Maintenance Programs

The program must run in an ’all’ process or in a ’new’process with a
function mask, which allows the process to call the privileged monitor
procedures for:

auxiliary catalog handling. - main catalog handling.
create peripheral process.

remove peripheral process.

auxiliary entry handling.

When executing in the conversational mode, the program demands a
process size of at least 80000 halfwords. Executing as normal utility
program, the program demands a minimum size of 2000bhalfwords.

5.2 Call

Utility Program Mode

When the program disccopy is used as a normal utility program, the call
syntax is as follows:

{save <savespec> }

disccopy (load <loadspec> )

{bin [<binary params>])

<savespec>::= <saveparams> [list. yes/no] [<criteria>] [<names>]

<loadspec>: := <loadparams> [list. yes/no]

2-2
<saveparams>::= {to. <devno> }
{[from. <docname>])
2-2
<loadparams>::= {to. <docname> )
{from. <docname>}
{ { system ) }
{scope.{ project ) }
{ { user ) }
<criteria> ::={ )
{ { system })
{ { project 1}
{base. { user 1)
{ { <lower>.<upper>)}
o-t
<names>: .= {<name>}

2-2
{to. <devno> [.all] )}

<binary params>::= { }

{from. <devno> [.all])

[<criteria>] [<names>]



System Utility, Maintenance Programs Page 15

. The programs packon, packoff, kiton, kitoff, kitlabel and kitname are
called as utility programs as follows:
[ {yes )]
( {no )]
packon devno.<devno> [ list. {nonsys } ]
[ {error } ]
[ {warning)} ]
packoff devno.<devno>
( {yes } ]
( {no } ]
kiton devno.<devno> [ 1list. ({nonsys } ]
[ {error } ]
[ {warning)} ]
kitoff devno.<devno>
. kitlabel <devno> <docname> <auxname> {slow/fast) <catsize>,

<slicelength> <size>
kitname <devno> <docname> <auxname>

<devno>, <lower>, <upper>, <catsize>, <slicelength>,
<size> ::= integer

<name>, <docname>, <auxname> ::.= name, max. 11 chars.

Conversational Mode

Conversational mode is entered by the call:
disccopy typein

Now the subprograms are activated as follows:
save <savespec>

load <loadspec>

bin

The programs packon, packoff, kiton, kitoff, kitlabel, and kitname are
activated as in utility program mode, i.e.

[ { yes )]
( { no )]

packon devno.<devno> [list.{ nonsys }]
[ { warning )]
( {

error 1]
etc.

When all your tasks are completed, you leave the conversational mode
by typing the command:

5. disccopy



Page 16 System Utility, Maintenance Programs

end .

5.3 Details

In this section details are given about the subprograms and their
parameters.

5.3.1 Save

This subprogram will select backing storage files as specified by the call
parameters <criteria> and <names> and save these entries and their
corresponding areas (if any) on the object disk.

Parameters:

to.<devno> .

The parameter specifies the object disk.

Files are copied to the disk with devicenumber <devno>. The object
disk must not be included in the backing storage system and the files
which are copied must not exist in the auxiliary catalog of the object disk
(no copying is performed if this is the case).

from.<docname >

The parameter specifies the source disk.

This parameter is optional. If source disk is specified, it must be
included in the backing storage system and only files which belong to
this disk are copied. If no source disk is specified, all files which satisfy
the conditions stated by <criteria> and <names> are copied.

<criteria>
scope: only files with the scope specified are saved. '
base: only permanent files (key > = z) with entrybases inside

the interval specified are saved (base.system is equivalent
to base.-8388607.8388605).

If no <criteria> are specified, default is scope.system.
<names>

A list of entrynames can be used to reduce the <criteria> parameter,
i.e. only files with name and scope/base as specified are saved.

list.{yes/no}

A listing of the files saved is produced on current output if list.yes is
specified. list.no is default.

Examples: ‘

5. disccopy



System Utility, Maintenance Programs Page 17

ex.l. All files which belong to ’disc’ and have userscope are saved
on the disk mounted on device 7 (but not included in the
backing storage system) by the following call:
save from.disc to.7 scope.user list.yes
A listning of the files saved is produced on current output.

Ex.2. By the following call, all backing storage files which fulfil:
-8388607<= lower entrybase <= upper entrybase <=
8388605 and entry permkey >= 2 are saved on the disk,
which is mounted on device 7:
save to.7 base.system

Ex.3. By the following call, the two backing storage files ncjfile1
and ncjfile2, which have system scope (default) are saved on
the disk, mounted on device 7:
save to.7 ncjfilel ncjfile2
5.3.2 Load
This subprogram will select files on the source disk as specified by
<criteria> and <names>. The selected files are loaded into the
backing storage system, i.e. non existing entries are created on object
disk and existing files on object disk are overwritten.
If a file is already included from a document different from the object
disk, load of the file is rejected and a message is written on current
output. In this case it will be necessary to rename the entry which causes
conflict and repeat the load.
Parameters:

to. <docname>

Specifies the object disk.
The object disk must be included in the backing storage system.

from. <devno>

Specifies the source disk.
The source disk must not be included in the backing storage system.

<criteria>, <names> and list

As for save.

Example:
All files of scope user on the disk, which is mounted on device 6 (but not
included in the backing storage system) are loaded to ’disc1’ (which
must be included in the backing storage system) by the following
command:

load from.6 to.discl scope.user

5. disccopy



Page 18

5. disccopy

System Utility, Maintenance Programs

5.3.3 Bin

This subprogram is used for various kinds of binary copying between
disks. The following remarks concern binary copying in general:

For safety reasons you should writeprotect the source disk (not
possible for some fixed media disks).

The object disk must not be included in the backing storage
system. You must explicitly perform kitoff on the object disk if this
is the case.

kitoff is implicitly performed on the source disk. During this
possibly the text:

notice: disc with maincatalog is removed.

will appear. If this is the case, it will be necessary to perform one
of the following actions (depending on the "programmode”) in
order to connect the maincatalog when the copying is terminated:
utility mode:

switch off the writeprotection and autoload the system.

conversational mode:

switch off the writeprotection and perform kiton on disk with main
catalog.

The same procedure must be used if the object disk during the
copying has replaced the disk containing the main catalog.
Remember to reinstall the main catalog disk first.

When the copying is terminated, the text:

copying terminated
number of segments copied: <segments>

is written on current output.

Bin with <binary params>.

When the subprogram is called with <binary params>, it is used for
copying from one disk to another, as described below:

Parameters:

from/to. <devno> [.all]

’all’-parameter present:
copying is performed from/to the physical disk, which contains the
logical disk with devicenumber <devno>.




System Utility, Maintenance Programs Page 19

no ’alP-parameter:
copying is performed from/to the disk (physical or logical) with
devicenumber <devno>.

Examples:

bin to.7 from.6 (logical disk -> logical
disk)

bin to.7.all from.6.all (physical disk -> physical
disk)

bin to.7 from.6.all (physical disk -> logical
disk)

Bin Without Parameters

When called without parameters, the subprogram bin is used for copying
of specified parts of disks or for copying between disks of unequal size
(examples of this are given below). If the subprogram bin is called
without parameters, it will ask for:

to device:

start segment:

from device:

start segment:
number of segments:

To every equestion, you must type in a number, terminated by 'NL’
(<devicenumber > respectively <segmentnumber>). In case you do not
know the size of the disk, just type in a too big integer.

Example 1:
In this example a 33 Mb disk is copied from device 6 to device 7.

to device: 7
start segment: 0
from device: 6
start segment: 0

4

number of segments: 3155

Example 2:

In this example is shown how to copy a 66 Mb disk on two 33 Mb disks.

to device: 6 (33 Mb)
start segment: 0

from device: 7 (66 Mb)
start segment: 0

number of segments: 43155

to device: 6

start segment: 0

from device: 7

5. disccopy



O

Page 20 System Utility, Maintenance Programs
start segment: 43155 ‘
number of segments: 43155

It is impossible to copy the entrie disk, but all slices containing data are
copied (the last 105 segments are not copied).

In the conversational mode, the subprogram must be explicitly activated
for each copying by typing the text:

bin

Sizes of Disks and Copytime

size size in segments copytime in minutes
33 Mb 43155 1 1/2 RC8000
66 Mb 86415 3 -
124 Mb 163989 6 -
‘ 133 Mb 174293 6 1/2 - ‘
| 248 Mb 328377 12 -
850 Mb 951510 35 RC9000-10
1.2 Gb 1600452 59 -
5.3.4 Packon

The program is used to include into the backing storage system an entire
disk (on RC8000 only RC83xx disk), i.e. all the logical disks it contains.
The remarks below for kiton are valid for each disk included by packon.
Parameters:

devno. <devno>

The device specified must be the device number of the physical disk to
be included.

list .

As for kiton.

5.3.5 Packoff

The program is used to exclude from the backing storage system an
entire disk (on RC8000 only RC83xx disk), i.e. all the logical disks it
contains. The remarks below for kitoff are valid for each disk excluded

by packoff.

Parameters:

devno. <devno>

The device specified must be the device number of the physcial disk to

be excluded. .

5. disccopy



System Utility, Maintenance Programs Page 21

5.3.6 Kiton

The program is used to include a logical disk in the backing storage
system. If the maincatalog has been removed and the auxiliary catalog of
the disk involved contains an entry with the same name <:catalog:>,
this entry is selected as maincatalog and the maincatalog is connected.
This is very convenient, as you need not autoload the system if the
maincatalog has been removed and you want to switch to a task which
demands the presence of the maincatalog (when in the conversational
mode).

Parameters:

devno. <devno>

The logical disk with devicenumber <devno> is included in the backing
storage system.

list

yes: all entries in the auxiliary catalog are listed on current
output during insertion in the maincatalog. If an insertion
causes trouble, the monitor result is listed, too.

no: no listing.

nonsys: listing of all non system entries, which have been inserted
in the main catalog.

warning: listing of entries, which have not been inserted due to
nameoverlap.

error: listing of entries, which caused trouble during insertion.
The monitor result is listed too.

Example:

kiton devno.7 list.yes

5.3.7 Kitoff

The program excludes a logical disk from the backing storage system. If
the disk involved contains the maincatalog, the maincatalog is removed
and the text:

notice: disc with maincatalog is removed

is written on current output.

If the program itself resides on the disk involved, the text:

5. disccopy



Page 22 System Utility, Maintenance Programs

notice: disc with program file is removed ‘
is written on current output. This causes no trouble if you run in the
conversational mode. If in normal utility mode, the program must be
reinstalled before further use.

If the file processor is found on the disk, the text:

notice: disc with fp is removed

is written on current output. In conversational mode it represents no
problem until the end command is given.

When the program terminates, it sends a finis message to the parent.

Parameters:
devno. <devno > ‘

The logical disk with devicenumber <devno> is excluded from the
backing storage system.

Example:

kitoff devno.6

il kdae o J J

"

5.3.8 Kitlabel /. i7 (0 cel prantd s

The program assigns names to ’document name’ and name of ’auxiliary
catalog’ of a logical disk and writes an empty auxiliary catalog on the

disk.

Parameters:

<devno>: devicenumber .
<docname>: documentname

<auxname>: name of auxiliary catalog

slow/fast: disk/drum, respectively (obsolete)

<catsize>: size of auxiliary catalog in segments

<slicelength>: segments/slice

<size>: disksize in slices

Example:

kitlabel 7 discl catdiscl slow 50 21 2045
- q Hiec cotdice glow 121 (69 (GuY

5.3.9 Kitname
The program is introduced as an ’ad hoc’ solution to a problem, which

arises if the program disccopy terminates during a save. During a save,
the object disk is included in the backing storage system with .

5. disccopy



System Utility, Maintenance Programs Page 23

workingnames for "document” and "auxiliary catalog" in order to avoid
confusion if nameoverlap occurs. These workingnames are dumped in
the chainhead of the object disk each time an entry is created on the
object disk. Normally, this causes no trouble as the original names are
rewritten when the program terminates properly. If, however, the
program terminates during the save, you will have to use the program
kitname if you want to reestablish the original names without erasing
the files saved on the disk.

Example:

kitname 7 discl catdiscl

5.4 Error Messages and Warnings
5.4.1 Logical Status

If the program disccopy finds it impossible to read or write a segment,
one of the following errormessages are written:

input from <name> segm: <segnumber> status
<bitpattern>

output to <name> segm: <segnumber> status
<bitpattern>

Where <bitpattern> is a logical statusword, describing the
read/write-operation, cf. [1], chapter 6.

The copying will ignore the segment and continue, though, with fp mode
bits warning.yes and ok.no, with following exceptions:

a. <bitpattern> = ..... ) 1.
b. <bitpattern> = .. ................ 1.....

a. means end of document, i.e. the object disk is too small.

b.  means receiver does not exist, i.e. the diskdrive is switched off, and
the like.

5.4.2 Results from the Monitor

The program responds to errors returned from monitorcalls by writing a
text describing the monitor procedure and the actual result value, e.g.

create peripheral process <name> result <number>

When executing in utility program mode, the program will terminate
and return to fp with modebits ok.no, warning.yes.

When executing in conversational mode, the program will continue
reading commands without touching the mode bits.

5. disccopy



Page 24 System Utility, Maintenance Programs

The list below describes all errormessages of this type. In parenthesis ‘
the numbers of the corresponding monitorprocedures are given.

create peripheral process (54)
delete bs (108)
delete entries (110)
prepare bs (102)
set catalog base (72)
create entry (40)
create aux entry (120)
insert entry (104)
insert bs (106)
When one of these errors occurs, please consult ref. [2] to get the
details.

5.4.3 Warnings

When running in utility program mode, the program will return to FP .
after normal termination with modebits ok.yes, warning.yes in case of
warnings.

Save

If you attempt to save an entry which already exists in the auxiliary
catalog of the object disk the following warning is written:

entry already exists in auxcat: <entryname>

and the entry is skipped.

Load

If an entry to be loaded is included in the backing storage system from a
document different from the object disk, the following warning is .
written:

entry already included from another document: <entryname>

and the entry is skipped.

Both

If one or more entries specified cannot be found in the catalog/auxiliary
catalog, the warning

*#* entries not found

succeeded by a list of the entries concerned is written.

5. disccopy



System Utility, Maintenance Programs Page 25

6. Discstat

6.1 Introduction

The program is a diagnostic tool for printing statistical information
maintained by a physical disk driver, serving a disk storage module
connected to an RC9000-10 computer.

The program may as well print directly from the core as from a file
containing a core picture.

6.2 Call

(outfile) = discstat ([clear.(<yesno>}] ,
[dump.<dumpfile>] (<disc>)1-*)1-+

<disc> ;= disc.<discname>/
addr .<discaddr>/
devno.<devno> [/
<discname> ::= name of disc process
<discaddr> ::= address of disc process
<devno> ;= device number of disc process

<dumpfile> ::= name of system dump file

<yesno> :i=yes / no, default: no

6.3 Function

The program sends a message to the autoload disk on the same physical
disk as the specified disk to collect the statistics. The disk may be either
a logical or a physical disk - in either case the statistics concern the
information created by a physical disk.

Please note that the disk will reset its statistics when the information has
been collected. Please note that a logical disk holding a logical backing

6. Discstat



Page 26 System Utility, Maintenance Programs

storage during normal use will be reserved by the anonymous process .
executing process functions - therefore the program uses the autoload
disk on the same physical disk.

If dump. <dumpfile> is specified it is supposed that the backing storage
area <dumpfile> contains a memory picture with memory address 0
equivalent to area address 0.

The disk addressed may be either a logical or a physical disk - in either
case the statistics concern the information created by a physical disk.

6.4 Examples

The following command extracts statistics about the disk to which the
disk processes named ’disc2’ and ’disc3’ are connected:

discstat disc.disc?2 disc.disc3 .

The following command extracts statistics about the disk with the
process description address 24678 from the memory dump in the file
named core8000:

discstat dump.core800024678

6.5 Error Messages

***discstat, syntax
syntax error in call

**2djiscstat, buffer claim exceeded
no message buffer available

***discstat, monitor result <result> .
a normal answer was not received from the disk driver. <result> is the
result delivered in the answer to the message.

sssdiscstat, create <result>
not possible to create a peripheral process for a reason given by
<result>.

s**discstat, status error <status>
<status> is the (decimal) statusword received from the disk driver.

s**doscstat disc missing <param>
no disk was specified in the call.

6. Discstat



System Utility, Maintenance Programs Page 27

7. Disctell

7.1 Introduction

When copying disks by the utility program disccopy, hard errors reading
the disk will be identified by the program as errors reading disk
segments given by the program as physical segment numbers on the
given physical disk.

The present program solves the problem of identifying the logical
context in which a physically numbered segment occurs.

The program may

- list the physical disks described in the monitor

- list the logical disks located on a given physical disk

- list the logical disk and the logical slice and segment number of a
given segment number of a given physical disk together with a

description of a possible area in which the segment belongs (name,
base, namekey, permkey, slicelength and slicelist of the area).

7.2 Call
{outfile =) disctell [<param>]

0.*
<param> ::= (physical }

{<physical disk no> {.<segment no>}0-*)

Explanation
disctell

gives a list of the possible parameters.

disctell physical

gives a list of the physical disks described in the monitor.

7. Disctell



Page 28 System Utility, Maintenance Programs

disctell (<physical disk no>}1-*

gives a list of the logical disks located on the disks <physical disk no>,
one by one.

disctell {<physical disk no>{.<segment no>)0-*}1-*)

gives the logical disk and slice number of the given segments, possibly
including name of area, size, bases, permkey, slicelength and slicelist of
the area with an indication of whether the segment is inside or outside
the used part of the slices of the area.

7.3 Examples

Example 1

*disctell physical

physical disc : device no. 27 kind: 6 process descr. addr. 30650
physical disc : device no. 29 kind: 6 process descr. addr. 30766
Example 2

*disctell 27 29
logical disc : device no. 28 kind :

o

wrk017035 process descr. addr. 30708

logical disc : device no. 54 kind : 6 disc process descr. addr. 34846
logical disc : device no. 30 kind : 6 wrk017035 process descr. addr. 30824
logical disc : device no. 55 kind : 6 disct process descr. addr. 34904
logical disc : device no. 60 kind : 6 disc2 process descr. addr. 35282
logical disc : device no. 62 kind : 6 disc3 process descr. addr. 35420
logical disc : device no. 63 kind : 6 discé process descr. addr. 35478
logical disc : device no. 64 kind : 6 disc5 process descr. addr. 35536

Example 3

*disctell 27.1000 27.86000
disc reserved for system purpose: wrk017035

device number 28
process descr. addr. 30708
segment number 1000 of 2000

segment no. 86000 is located on device 54 disc
on logical slice no. 999

entryname rtp35022p5

size 200

bases -8388607 8388605
namekey 119 on catdisk
permkey 3

7. Disctell



System Utility, Maintenance Programs Page 29

’ slicelength 84

slicelist
998 999 1000
number of lices 3

the segment is inside the area (segment no. 168 of the area
segment no. 84 of the slice)

Example 4

*disctell 86000

***disctell illegal device number

Example §
*disctell 30

. ***disctell device is not a physical disc

7. Disctell



Page 30 System Utility, Maintenance Programs

7. Disctell



System Utility, Maintenance Programs Page 31

8. Do

8.1 Introduction
The do language is intended for monitor and hardware testing and
. supervising, but it is designed so that it can be used as a general
programming language, in which the user can set register and memory
contents, execute monitor and FP procedures as well as slang
instructions, output any information about the memory in an easy
readable form etc.
Examples
The command:
do write 102.word.4 116
will output the contents of words 102, 104 and 116, i.e. the values of max
time slice, time slice and number of memory halfwords.
The command:
. do wl.w2 w2.w3.in.20 140.w3

will execute

wl:i= w2, w2:= w3 + 20, word 140:= w3.

8. Do



Page 32

8 Do

System Ultility, Maintenance Programs

The command: .
outfile=do w0.74, ; wl:= 74

w0.x0.0, ; wO:= word(w0)

wl.76, ; wl:= 76

z1.x1.0, ; zl:= word(wl)

do w0.in.2, ; wO:= w0 + 2

while wO.ne.zl, ; while wO < z1

w2.x0.0, w2:= word(w0)

write x2.peripheral.26 end,
, ; write 26 hwds of x2 with
, ; layout peripheral
od ; end inner do

will output the first 26 halfwords of the descriptions of all external
devices on outfile.

See also further examples section 8.6. .

8.2 Call

The program is called as follows:
<output file> = do <do command>

{<assignment>
{<write command>
{<monitor call>
{<fp call>
{<slang command>
{jump <value>

)
)
)
)
)
)
{clear }
<do command> ::= {<wait command> )
{(if <value> }
{(fi )
{do ) ‘l’
{while <value> }
{od )
{go <value> )
(og )
{exit )
<wait command> ::= wait (<integer> }

{<name> }
<value ::= <expression> {.<expression>) 0-*

<assignment> ::=

0.*
{<simple variable> <expression tail>) {.<name> )
{<array base> } {.<expression>)



System Utility, Maintenance Programs Page 33

(0}

<simple variable> ::= {w} (1)
{(z) (2)

{3)

<array base> ::= ({<integer> }
{<array name>)

{0)
<array name> ::= ({x} (1)
{y) (2)

{3}
<expression tail> ::= (.<operator> > <operand>)0-*
<expression> ::.= <operand> <expression tail>

{<integer> }
{<simple variable> }
{<indexed variable>}
<operand> ::= {ba )
{cc
{fp
{hn

— e —

<indexed varable> ::= <array name> . <integer>

{ in ) +

{ de ) -

{ le } shift left

{ ri ) shift right

{ or ) logical or

{ an } logical and

{ eq ) -
<operator> ::={ ne )} <

{ gr ) >

{ 1s ) <

{ ng ) <=

{ n1 } D=

{ mu ) *

{ di ) //

{ mo } modulo

[po} *k

<write command> ::= write <write action> {end }
{<end of do call>)

{<simple variable> {.<format>}0-*)
<write action> ::= {<base> {.<hwds> }o0-* }
{ { .<format>) )

<array base>
ba

cc

fp

hn

bittable

<base> ::=

o~ — - — — o~
— e ettt

8 Do



Page 34 System Utility, Maintenance Programs

{ <integer> )
<halfwords> ::= { <simple variable> )}
{ <indexed variable> }

<format> ::= { <simple format> )
{ <structured format> }

{empty } nothing is output
{word } word as signed integer
{halfwords } 2 halfwords
{octets } 3 8-bit groups
{sextets )} 4 6-bit groups
{octal } positive octal number
{binary } bit pattern
<simple format> ::= {text } 3 iso-characters
{code } slang instruction
{double } 2 words as double word
{groups } word,halfwords,octets,sixtets,octal
{all } code,octal,word,hal fwords,octets, text ‘
{binword } word and binary

{(words5 } 5 words/line
{halfwordslO0 } 10 halfwords/line
{name ) 4 words as text
{procname )

{procnames)

{buffer
{area
{peripheral
<structured format>::= {internal

{tail

{zone
{share )
{<mon. 2 format>)
{<mon. 3 format>)

L - )

<mon. 2 format> ::= note ‘
{ answer H

<mon. 3 format> ::= { chaintable }
{ entry }

<slang command>::= slang <value> {<instruction>)o-*
{w <word> } ,

{end }
{<end of do call>)

{ {0} Jo-*

{ {w) (1))
<instruction> ::= <code> { { . } (x} {2} )

{ {3) )

{ <word> )

8. Do



System Utility, Maintenance Programs

{
{
<word> ::= {
{
{

{

)

{0) )o-*
{w} (1) )
(x} (2) )

(3} )

<integer> )

<code> ::= <two letter mnemonic slang instruction>

<monitor call> ::

<mon. 2 call>

M
PR

P e e e g g g g - p— o pp— o~ p— - p— p— = p— - —— gt~ - = g g g~ g~

-~ p— p—

monitor procedure <integer>

set interrupt

process description
initialize process
reserve process
release process
include user

exclude user

send message

wait answer

walt message

send message

send answer

wait event

get event

get clock

set clock

look up entry

change entry

rename entry

remove entry

permanent entry

create area process
create peripheral process
create internal process
start internal process
stop internal process
modify internal process
remove process
generate name

copy

<mon. 2 call>

<mon. 3 call>

modify backing store )
select backing store )

select mask }
test log )
return status )

8. Do



Page 36

8. Do

System Utility, Maintenance Programs

set catalog base )
set entry base }
lookup head and tail }
set backing storage claims )
create pseudo process )
<mon. 3 call> :: regret message )
create backing storage }
insert entry }
remove backing storage )
permanent entry in, }
auxiliary catalog )
create entry look process )

— - - - p— - - - pr— o~ p_— p—

fp procedure <integer> )
finis message )
inblock current )
inblock }
outblock current }
outblock }
wait ready input )
wait ready output )
wait ready }
inchar current }
inchar }
outchar current )
outchar }
connect current input |}
connect input }
connect current output }
connect output )
stack input )
stack zone }
unstack input )
unstack zone )
outtext current }
outinteger }
outend current }
outend )
closeup current }
closeup )
parent message )
wait free input )
wait free output }
wait free )
break message }
terminate input )
terminate output }
terminate zone )

<fp call> ::=

- — o p— p— o~ p— p—p— p— p_— = p——p— g - p— pp— pr— o~ p——p— o~ p— - g p— pr— _— g gt~ g g

8.3 Function

The program processes the list of commands given in the program call.
All variables are placed so that they remain unchanged by successive
calls. A sequence of commands can therefore be executed in one or



System Utility, Maintenance Programs Page 37

several do calls, provided these calls are of same kind (all with or
without specified output file).

(Numbers in [ ] refer to the examples in section 8.6.)
w0, wl, w2, w3, z0, z1, z2, and z3 are names of simple variables [1,3].

x0, x1, x2, x3, y0, y1, y2, and y3 are names of arrays. An array name
followed by a point and an integer acts as an indexed variable [2,3,5,7].
The start address of an array depends on the context.

An expression is a list of alternating operands and operators separated
by points [1,2]. The list must begin and end with an operand. An
expression is interpreted from left to right. The result is an integer word.
The operands and their values are:

<integer> the integer value.

w0-w3,z0-23 the value of the variable.

x0-x3, indexed the word addressed by the value of the
corresponding w-variable increased by the index.

y0-y3, indexed the word addressed by the value of the
corresponding z-variable increased by the index.

ba the buffer address (first free hwd).

cc the current command address (the hwd after the
last free hwd).

fp the fp base.

hn the address of a word array containing the fp

h-names (h0-h99).

All operators are dyadic and have the same priority [24]. The notation,
the meaning, and the effect of the operators are (left and right refer to
the operands):

in increase left + right

de decrease left - right

le left shift (logical) left shift right

ri right shift (logical) teft shift (-right)

or or (logical) left or right

an and (logical) left and right

eq equal if left=right then -1 else 0
ne not equal if left<>right then - 1 else 0
gr greater if left>right then -1 else 0
ls less if left<right then -1 else 0
ng not greater if left<=right then - 1 else 0
nl not less if left>=right then - 1 else 0
mu multiply left * right

di divide left / right

mo modul o left mod right

po power left ** right

8.3.1 Assignments to Simple Variables

An expression where first operand is a name of a simple variable assigns
the result to the variable [38]. If the expression is followed by one or
more other expressions or names, the result of the last expression or the
first word of the last name is assigned to the variable [2,4].

8 Do



Page 38

8. Do

System Utility, Maintenance Programs

8.3.2 Assignments to Arrays

An array assignment consists of a start address (an integer or an array
name) followed by a list of expressions and names stored in consecutive
words. Expression values are stored as integer words, names as four text
words [5,7].

Four fields corresponding to the names x0-x3 are reserved for building
up arrays. Each field has a size of 34 halfwords. An assignment to one of
the names x0-x3 will place the array in the corresponding field, and
transfer the address of this field to the w-variable of same number.
When assigning to y-names the value of the corresponding w- variable
will be used as start address. (About the use of x- and y-arrays in
expressions, see 8.3, in write actions, 8.3.3, and in slang, 10.3.6). An
integer used as start address is interpreted as an absolute address in
memory.

8.3.3 Write Command

Output from the do-program is controlled by write commands. Current
output is used unless the call specifies another file, in which case current
program zone (h19) is used.

Notation:
write <write actions separated by spaces> end

The terminating word (end) may be omitted at the end of the parameter
list.

All output concerns memory contents. There are three kinds of write
actions:

1. simple variable write action
2. array write action
3. special write action

1. simple variable write action:

The write action consists of the name of the simple variable [9]. Initially
the format is integer word. This can be changed by one or more formats
(see later ) [10].

2. array write action:

The write action consists of a write base defining the start address [13].
The write base can be an integer using this as the start address, an
x-name using the value of the corresponding w- variable as start address,
an y-name using the value of the corresponding z-variable as start
address, or one of the constant operands, ba, cc, fp and hn, using this
value as start address. Initially the number of halfwords to be output is
two and the format is integer word. Halfwords and format can be
changed by placing parameters after the write base [13]. Halfwords can
be defined by an integer, a simple variable, or an indexed variable. For
each definition the number of halfwords will be output using the current

format. The format can be changed by one or more formats (see later). ’



System Utility, Maintenance Programs Page 39

Simple formats define how words or small groups of words should be
output. Each word or group of words is output in the same way [15]. A
structured format defines a relative start address and a structure of
several simple formats. Further it defines the number of halfwords to be
output [37], unless this is specified after the format.

3. special write action:
This acts as an array write action except for the write base which is a
name defining a special set of: start address, initial number of halfwords,
and initial format [16].

The special write actions are:

bittable the bittable placed at the top of the core store contains
one bit for each backing store segment (only used in
monitor 2).
Format: binary.

The simple formats are:

empty nothing is output

word signed integer

bytes two halfwords as positive integers

octets three 8-bit groups as positive integers

sixtets four 6-bit groups as positive integers

octal a positive octal number

binary binary number with points instead of zeroes

text three 8-bit groups as iso characters. Character values less
than 32 are output as spaces.

code slang instructions

double two words as a double word integer

groups a combination of word, halfwords, octets, sixtets, and
octal

binword a combination of word and binary

all a combinationof code, octal, word, halfwords, octets, and
text

wordsS five words on one line

bytes10 ten halfwords on one line

name four words as a text

procname a signed integer forllowed by a point and the name of the
process having the word value as process description
address

procnames  a binary word followed by the names of the internal
processes, the identification bits of which match the ones
in the word value.

The structured formats are:
(the words are output using simple formats corresponding to their
contents). In the paranthesis is specified the standardlength in halfwords
for monitor 2 and monitor3.

buffer a message buffer (24, 24)

area an area process description (20, 24)
peripheral a external process description (90, 100)
internal an internal process description (74, 92)
tail a catalog entry tail (20, 20)

zone a zone descriptor (50, 50)

share a share descriptor (24, 24)

note an fp note (22, -)

8. Do



Page 40

8 Do

System Utility, Maintenance Programs

answer an answer from external process (10, 10)
entry an area entry (-, 36)
chaintable a chaintable head and a part of the table (-, 66)

Only the last format of a sequence of formats is used. For all write
actions output takes place only after an explicit definition of halfwords
or at the end of the write action.

8.3.4 Call of Monitor Procedures

A monitor procedure will be called when its name appears in the
parameter list [35]. The call uses the variables w0-w3 as register values.
On return the registers are stored in these variables. The names of the
procedures can be found in the syntax description. New procedures will
be included when appearing. The first procedure has the following
effect:

monitor <s> procedure <s> <integer>: jd 1l<ll+<integer>

8.3.5 Call of File Processor Procedures

A file processor procedure will be called when its name appears in the
parameter list [18]. The call uses the variables w0-w3 as register values.
On return the registers are stored in these variables. The names of the
procedures can be found in the syntax description. New procedures will
be included when appearing. The first procedure has the following
effect:

fp <s> procedure <s> <integer>: jl w3 <fpbase>+<integer>

8.3.6 Slang Command
Notation:

slang <values> <instructions> end

Function:

Stores a list of instructions and word values in consecutive words
starting with the address defined by <value> [50]. An instruction starts
with a mnemonic code. Modifications are determined thus:

<s> w-name  working register
w-name relative mark and working register
<s> x-name index register
x-name indirect mark and index register.

Only the last modification of each kind is used. A word value starts with
the letter, w. The word value and the instruction discplacement are
determined as the sum of a zero and possible appearings of the values:

<s> integer + <integer
integer - <integer>



System Utility, Maintenance Programs Page 41

<s> y-name + <value of w-variable>

y-name - <value of w-variable>
<s> z-name + <value of z-variable>
Z-name - <value of z-variable>
8.3.7 Jump Command
Notation:

jump <value>

Function:
jumps to the address defined by <value> with link in w3. The variables

w0, w1, and w2 are used as register values. On return w0, w1, and w2 are
stored in these variables [58].

8.3.8 Clear Command
Notation:

clear

Function:

clears all variables and the buffer area by setting zeroes in the process
area not occupied by the file processor and the do-program itself.

8.3.9 Wait Command
Notation:

wait <s> <integer>
or

wait <s> <name>

Function:

An integer denotes the number of seconds (CPU=time) in which
dummy instructions are executed. A name is assumed to be a process
name and the do-program tries to reserve the process until it succeeds

doing this. If the name is not a process name it is looked up in the
catalog and its possible document name is used as process name [8].

8.3.10 If Command

Notation:

8. Do



Page 42 System Ultility, Maintenance Programs
if <s> <expression> .

Function:

If the expression is negative (true), the command has no effect. If it is
positive (false), commands up to and including the corresponding fi
command are skipped. This means that nesting of conditions is possible
[26].

8.3.11 Fi Command

Notation:

fi

Function: | .

No effect [26], but see the if command.

8.3.12 Do Command
Notation:

do

Function:

stacks a return point for the corresponding od command [39].

8.3.13 While Command

Notation: .

while <s> <expression>

Function:
If the expression is negative (true), the command has no effect. If it is
positive (false), commands up to and including the corresponding od

command are skipped and the command pointer is unstacked.
Unstacking the outermost command pointer has no effect [28].

8.3.14 Od Command
Notation:

od

8. Do



System Ultility, Maintenance Programs Page 43

’ Function:

Interpretation continues at the stacked command pointer [29], see do
command.

8.3.15 Go Command

Notation:

go <value>

Function:
The command is a procedure declaration head or a procedure call.
<value> defines the procedure number which must not be negative or
above a certain limit which for the moment is 30. The first appearance
of a command with a given number acts as the head of a procedure
. declaration [43]). The command pointer is saved and the procedure body
terminated by the corresponding og- command is skipped. Later
appearances of a go-command act as procedure calls [48]. The command
pointer is stacked and interpretation continues at the saved procedure
command pointer.
8.3.16 Og Command

Notation:

og

Function:

The command pointer is unstacked and interpretation continues at this
command pointer [46].

8.3.17 Exit Command
Notation:

exit

Function:

Termination of the program [33].

8.4 Storage Requirements

5730 halfwords plus space for FP.

8. Do



.

Page 44 System Utility, Maintenance Programs

8.5 Messages
Appearing on current output.

***do param <illegal parameter>
parameter in illegal syntactical position. The parameter is ignored.

**%do connect <i> <outfile>
<outfile> could not be connected for output because of a hard error.
The value of <i> determines the error:

1 no resources

2 malfunctioning

3 not user, non-exist
4 convention error

5 not allowed

6 name format error

The ok-bit is set to false and the program is terminated. .

***do no core
the memory area is too small. The ok bit is set to false and the program
is terminated.

***do core addr
attempt to use a storage word outside the memory area of the process.
The ok bit is set to false and the program is terminated.

***do format
error in the format table (error in the do-program). The ok bit is set to
false and the program is terminated.

***do niveau
the number of format niveaus is exceeded. The number is an assembly

option. Indicates possibly an error in the format table (error in the
do-program). The ok bit is set to false and the program is terminated.

8.6 Examples

(numbers in [ ] used for references in section 10.3).

8 Do



System Utility, Maintenance Programs

1

21

(31

(4]
()

61
N
(8
9
(10)
1
[12)
[13)
[14]
[15]
[16]

do w0. 17

do wl.cc.x1.0

do z2.cc.y2.2

do z3.longname
do x2.0.de.1.test.1.2

do w3.w2.in.10
do y3.w0
do wait lp
do write w0,
wl.bytes,
z2.octets,
23.text,
x2.code.2,
.name.8,
.word.4,
bittable.2

s ®a ws we we ws we

Page 45

wl:= 17;
wl:= current command;
wi:= word(wl);

N

2:= current command;
22:= word(z2+2);
23:= <:lon:>;
wW2:= address of w2-field;
word(w2):= 0-1;
words(w2+2:w2+8):= <:test:>;
word(w2+10):= 1;
word(w2+12):= 2;
w3:= w2+10;
word(w3):= wl;
wait until lp is ready;
write (out,w0,
<<hal fwords>, w1,
<<octets>, 22,
<<text>,z3,
<<code>,word[w2),
<<name>, words(w2+2:w2+8),
<<word>, words(w2+10:w2+12),
<<binary>,word(bittable));

The following example reads characters from current input and
determines the two types: digit and other.

nn
1181
(191
[20]
(21}
[221
[23)
[241

[251]
[26)

2n
[281
£29]
[30]
[31}
321

do,

inchar current,
20.w2 w2.10,
outchar current,
w2.20 outchar,
w2.32 outchar,
21.20.ng.57,
22.20.nl.48.an.21,

x0.other,
if 22 x0.digit fi,

outtext,
while 20.ls.122,
od,

w2.10.outend,
wi.hn.x1.40.in.fp,
write x1.zone

alp3z

begin
start:
inchar(i);
; outchar(10);
; outchar(i);
; outchar(32);
; digit:= i<=57;
; digit:= digit and
i>=48;
text:= <:other:>;
; if digit then text:=
<:digit:>;
outtext(text);
if 1<122 then
goto start;
outend(10);
in:= fpbase+h20;
write(<<zone>,in)
end alp3z

s ws wy wy

s wa

e

[33] do exit so this is not exeucted

The following example prints the
queue for the internal process, s.

process description and the event

8 Do



Page 46

8. Do

[341 do x3.s,

[353 process description,
[361 if wo.gr.0,

373 write x0.internal end,
(38 w0.in.14 w2.w0,

1391 do w2.x2.0,

[403 while w2.ne.w0,

[411 write x2.buffer end,
(42} od

(43} do go O,

[44] w0.in.1,

[45) write w0 end,
[46) og,

n clear,

[48] go0go0

s ms w5 Wmg wmy ws ws wp @y

.
’
.
.
-
’
.
s
’
.
’

System Utility, Maintenance Programs

begin
process description(<:s:>,proc);
if proc>0 then
begin write(<<internal>,proc);
head:= buf:= proc+14;
for buf:= word(buf)
while buf<>head do
write(<<buffer>,buf)
end end;

procedure go 0;

begin w0:= w0+1;
write(w0)

end;

clear;

go 0; go 0;

The following example assembles, prints, and executes a piece of code.

[49) do w2.fp,

[50]1 slang ba,
51 rs.w3 O,
1521 al w0 11,
1531 al.wl .4,

[54] ac w2 x2 0,
[55]) jl.w0.x0.8,
[56] end,

[57) write ba.code.10 end,
[58] jump ba,
591 write ba w0 wl w2 fp.0

Output from examples:

wl = 17
wl 2 10
z2 = 120 100 111
23 = lon
x2.234598
+0 63.w3(x3-1)
+2 test
+10 17
+12 2

bittable.262138
+0 ...... ARRRRRERERRRRELIS N

a other
1 digit
p other
3 digit
z other

s me wp Wy wma me we wa wp ws wy

w2:= fp base;
slang(ba);
begin save link;

wl:= 11;

wl:= ba;

W2:= -w2;

goto saved link;
end;
write(<<code>,words(ba:ba+8]);
jump(ba);
write(ba,word(ba),w0,w1, w2, fp);



System Utility, Maintenance Programs

x1.232350

-36 244789
=34 245301
-32 233474
-30 233474
-28 233474
-26 2048
-24 boss
-16 8900
-4 0
-12 0
-10 69
-8
-6 232034
<4 10 1
-2 0
+0 244791
+2 244793
+4 0
+6 0
+8 0
+10 0
+12 0

o

o

o

o

o

o

00000000

000000000

000000000
000000000
000000000

Page 47

8. Do



Page 48 System Utility, Maintenance Programs

x0.16804 1"'

-4 -8388607
-2 8388606
+0 0
+ s
+10 ......... Teaunn. 1...1111 4 143
-
+14 16818
+16 16818
+18 16822
+20 16822
+22 32304
424 262144
+26 3 1
R < J 111111111111 0 4095
+30 0
+32 L e i 128 0
LR R AR R R R R R AR R R RRRRRRREI
+36 32304
+38 37080 9 216 0 144 216 0 9 3246 00110330 ‘
+40 35992 8 3224 0 140 152 0 8 50 24 00106230
+42 0 0 0 0 0 O 0 0 0 0 00000000
+64 3 0 3 0o 0 3 0 0 0 3 00000003
+46 0
+48 34090
+50 0.
+52 116
+56 40448
+60 0
+64 1767260780000
+66 16818
+68 -8388607
+70 8388605
+72 -8388607
+74 8388605
+76 -8388607
+78 8388605
+80 0 0
+82 0 0 "I'
+84 0 0
+86 0 0
Wl = 1
wl = 2
ba.239824
+0 rs.W3 0 239824
+2 al w0 11

+4 al.wl -4 239824
+6 ac w2 x2+0
+8 jl. (-8) 239824

ba.239824
+0 236310

8. Do



System Utility, Maintenance Programs

Wl
w2

fp.

11
239824
= -231990
231990

Page 49

8 Do



Page 50

8. Do

System Utility, Maintenance Programs



System Ultility Maintenance Programs Page 51

9. Mainstat

9.1 Introduction

The program is a diagnostic tool for printing statistical information and
testoutput from an RC8000 or an RC9000-10 main process.

The program may print directly from the memory as well as from a file
containing a memory dump When printing directly from memory the
generation of testoutput is disabled for a moment.

9.2 Call

[<outfile> =] mainstat ,
{[test.<yesno>] [dump.<dumpfile>]{<main>)}1-*}1-*

<main> ::= main.<mainname>/
addr .<mainaddr>/
devno.<devno>/

<mainname> ::= name of main process
<mainaddr> ::= address of main process
<devno> ::= device number of main process
<dumpfile> ::= name of system dump file
<yesno> ::= {yes / no)

9.3 Function

If an outfile is specified, the program writes on outfile, else on current
output document.

If called without parameters, the program displays its own call syntax.
The main process, specified either by name, address otr device number,

are handled one by one.

9. Mainstat



Page 52

9. Mainstat

System Ultility Maintenance Programs

If dump.<dumpfile> is specified, it is supposed to contain a memory
dump with memory address 0 in area address 0, and the main processes
are searched in the dumpfile.

If testyes is specified, testrecords are displayed for all the main
processes.

For RC8000/FPA main processes, the program finds the receiver and
transmitter processes associated with the main process specified.

The program extracts and prints on current output the statistics, first
from the receiver process, then from the transmitter process description.

For other RC8000 main processes and for RC9000-10 main processes
the program acquires and prints the statistics from the main process.

If the call specifies output of the testrecords, the generation of
testoutput to the test buffer is disabled while the test mask and the test
buffer are inspected and enabled again with the same testmask (in case
of testrecords from the memory), even in case of abnormal program
termination.

The testrecords of the buffer are printed in FIFO order as indicated by
the buffer pointers.

9.4 Examples

Example 1

The following command extracts the statistics and the testrecords from
the RC9000-10 main processes named ’iocmainl’ and ’lanmainl’ and
prints it in the file "outfile’:

outfile = mainstat test.yes main.iocmainl main.lanmainl

Example 2

The following command extracts the statistics and the
testbuffer from the main process with the address 20786
in the memory dump contained in the file 'coredump’:

mainstat test.yes dump.coredump addr.20786
9.5 Error Messages

***mainstat, error in call
the call is not syntactically correct



System Utility Maintenance Programs Page 53

‘ ***mainstat, no testbuffer
the main process specified has no testbuffer

***mainstat, mainprocess unknown
the main process specified does not exist

***mainstat, main process not found

- the kind of main process specified and found is not
correct (neither 80 nor 20)

- the memory dump area could not be found or the
address points outside the memory dump area

- the address of the main process specified was not
found in the name table in the memory dump.

***mainstat main missing <param>
no main process was specified

9. Mainstat



Page 54 System Utility Maintenance Programs

o

9. Mainstat



System Utility Maintenance Programs “ Page 55

10. Makelink

10.1 Introduction

The program creates links, i.e. external processes with links to LAN
device handlers, either on ADP(RC8000) or on LAN (RC9000-10). The
link either allows access by many users (static) or access by one user
only, the calling process (dynamic).

10.2 Examples

Example 1

The call :

makelink printer.printer.rc93100200

will create a link, i.e. an external process, printer with a link to a LAN
device named printer on LAN controller no. 1. The link will be open
for access by all internal processes that are users of the main process on
an exclusive basis. The external process will be selected from the first
free ones, and the corresponding device number, as well as the name of
the main process will be displayed in the output from the program :
main : lanmaint :

link : printer dev.no : 9 ---> printer lan : rc93100200 connected

links created : 1

Example 2

The call

makelink 1.2 users.one 3270in.ginl.43 3270out.goutl.44

will create two links, i.e. external processes, ginl and goutl, with links
to 3270 input and 3270 output device handlers, respectively, on the LAN

controller no. 2. The links will only be open for access by the calling
process itself only, and they will vanish with the calling process, if not

10. Makelink



Page 56 System Utility Maintenance Programs

removed before. The external processes chosen will be numbers 43 and ‘
44, supposing they are free :

main : lanmain2 :
link : gin1 dev.no : 43 ---> 3270in index : 0
link : gout1 dev.no : 44 ---> 32700ut index : 0
links created : 2
10.3 Call

[<outfile>=] makelink ([l.<lanno>] {[users.({all/one}] ,
{<type>{<devspec>)1-*}1-*}1-*}1-*

<devspec> ::= {.<name>.<devno>)

{ .<name> } ‘

{buf.<buffers> )
{ .<devno>.<name>)
{ .<devno> }

<type> ::= console/printer/3270in/32700ut/
floppy/imc/streamer

<buffers> ::= integer, if O then default,
default : buffer claim

all/one ::= default : all
<lanno> ::= number of LAN controller, default : 1
<name> ::= {<devname>/<devname>.<landev>) {(.log}

<devname> ::= name of external process, default : wrk-name
<devno> ::= number of external process, default : first free
<landev> ::= name of LAN device

10.4 Function

For every <type> specification, one or more device specifications
follow, either in pairs (<name>.<devno> or <devno>.<name>) or in
singles (.<name>.<name>. or .<devno>.<devno>). For the types
console and printer, the <name> part must consist of the pair :
<devname>.<cspname>. Whenever a pair is met, it specifies both a
device name and a device number to be used, whenever a single is met,
it specifies either a device name or a device number to be used.

For each device specification, a link is created, using the main process

specified (a main process specification is valid until the next one) and
the ’users’ specification (which also is valid until the next one).

10. Makelink



System Utility Maintenance Programs Page 57

If the device specification is without a device number, the first free
external process will be used. If it is without a device name, a wrk-name
will be generated and used.

If a buf. <buffers> specification is met in an IMC type specification, the
value of <buffers> will be used as number of buffers to be allocated to
the port. The buffer specification is valid until the next buffer
specification, or until a new IMC type specification.

If no buffer specification is made, or <buffers> is not positive, the
number of free message buffers of the calling process is used as
<buffers>.

If no LAN number is specified, number one is supposed, i.e. the main
process "lanmain1’ is supposed.

In case of ’users.all’, the link will be generally available to internal
processes, in case of "users.one’ only to the calling process.

Two kinds of <type> parameters, the ’console’ and the ’printer’ types
must have an extra specification, the <landev> specification, right after
the <name> part of the <devnane> specification. The <landev>
parameter is used as name of the LAN device to be used by the device
handler. If the link is created, the program tries each three seconds in
approx. 1 minute to send a sense operation to the link. If it returns ok,
the link is considered connected, if not it is not connected, but the link
remains.

For the ’console’ type, an optional parameter ’log’ may follow the
device specification. Its function is: if the link is connected, and if a file
’slogarea’ exists, its contents are output to the device just connected.

The <type>’s ’3270in’ and ’3270out’ need a special commment : they
should be given in pairs, first the 3270 input and then, at the latest
before another 3270 input specification, the 3270 output specification
should be given. The reason is, that the two of them must use the same
device index of the device handler to which the link is requested, and the
program sees to it, if the above rule is obeyed.

For each link requested, a line is produced on current output, stating the
result of the request, either :

link : <device name> dev.no : <devno> ---> <type> <inf1> <inf2>
or:

no link : <device name> dev.no : <devno> +++> <type> *<explanation>
If successfull, <infl1> and <inf2> will be :

console/printer

<infl1> LAN device name as specifed in the call

<inf2> the text ’connected : +’ or ’connected : -’

imc

<infl> maxsendsize, i.e. the maximum number of characters to go
into each block to send or receive, incl. a possible header

10. Makelink



Page 58

10. Makelink

System Utility Maintenance Programs

character. Exceeding characters will be lost.

<inf2> number of buffers allocated to the port
3270in/32700ut

<infl> device index on the device handler
<inf2> nothing

others

<infl> nothing
<inf2> nothing

The program terminates, giving the number of links created.

If unsuccessfull, cf. below in ’Error Messages’ concerning the
* <explanation>.

If an <outfile> is specified, it is used as for the output, else the current
output document is used.

10.5 Error Messages

Two kinds of error messages may be given, parameter warnings or
operational alarms.

Parameter warnings come from disobeying the call syntax, and they take
the form :

*** makelink <explanation>
where <explanation> may be one of :

- outfile param connect impossible <actual parameter read>

- l.<lanno>: <- - - >
- users.<name>: <- - - >
- users.(all/one) : <- - - >
- <type>.(<name>/<integer>) <- - - >
- lan name missing : <- - - >
- unknown parameter : <- - - >

In case of parameter warning, the fp mode bit *warning’ is raised and the
program continues with the next parameter.

Operational alarms come from :

- problems indicated in the answer to the ’create link’ request

- dummy answer from the main process to the ’create link’ request
- dummy answer from the imc process to the ’alloc descr’ request

- problems creating the external process

and they take the form :

* <explanation>



System Utility Maintenance Programs

Page 59

terminating the line in the output concerning the link request (no link :

<device name> ...).

<explanation> is one of the below :

comment :

Problems indicated in the answer to the request :

- no free external process

- no free device handler

- unknown status

Dummy answer to link request :

- lan/ext. not user/not res.

- lan/ext. unintelligible

- lan/ext. malfuntion
- lan/ext. does not exist

(or the one specified is not free)

(the main process specified is not
a main process capable of
creating a LAN link)

(the calling process is not a user
or cannot reserve the process
representing the LAN controller
(only imc))

(e.g.the device number specified
does not exist)

(as 'unknown status’) (e.g. the
main process specified does not
exist)

Problems creating the external process :

- function forbidden

- calling process is not user
- name conflict

- no such device number

- reserved by another process

- name format illegal

(the calling process must have
function bit 4 = 1 shift 7 set)

(e.g. the device name exists with
the same name base)

(prevented by ’unintelligible’)

(prevented by 'no free external’)

(cannot occur)

In case of operational alarm, the fp modebit ’ok’ is cleared and the
program continues with the next parameter.

10. Makelink



Page 60 System Utility Maintenance Programs

10. Makelink



System Ultility Maintenance Programs Page 61

11. Montest

11.1 Introduction

This chapter describes the use and function of the program montest,
used to display monitor tables and other data structures in the monitor.

Section 11.1 is a short introduction to the program. Section 11.2 gives
the call conventions and Section 11.3 gives the function and the detailed
conventions for the various commands to the program. Section 11.4
gives the minimal resource requuements to run the program.

The program may execute in two different modes, either as

- a normal utility program taking its parameters from the call, or as
- a conversational program taking its parameter from current input
zone.

The program may switch from one mode to the other any number of
times, governed by commands in the call and in the current input zone.
The program may at any time transfer all of its segments to memory and
stay memory resident during further execution, thereby being
independent of the backing storage system and segment i/o.

The program may at any time switch to take the monitor information
from memory directly or from any backing storage file containing a
memory dump.

During display in the conversational mode of certain data structures
(internal, external and area process descriptions, message buffers and
chaintables) it is possible to

- stop further execution while the latest data structure is inspected.

- repeat the display of the latest structure

- direct current output to maybe continue writing in any file before
the next structure or before a repeat of the latest one

- redirect current output to the primary output to continue inspection
in the conversational mode

- leave the data structure to accept further commands.

The program is able to help the user by displaying the repertoire of

commands or by displaying information concerning the single
commands on request.

11. Montest



Page 62

11. Montest

System Utility Maintenance Programs

The program will interprete the commands, one by one, until the end of
the parameter list in the call is reached.

11.2 Examples

Example 1

The call

montest area user. myself

will display on current output all the area processes to which the internal
process ‘myself’ is a user.

Example 2

The call

montest buf sender. myself

will display all the message buffers in the message buffer pool in which
the internal process 'myself’ is recorded as sender.

Example 3

The call

montest typein

will make the program enter the conversational mode and the program
will take input from the terminal.

Now any command may be typed, e.g.

external devno.l0.used buf sender. myself

The program will now display the process description for the external
process with the device number 10. Following the display will appear the
prompt character:

>

telling that the program is ready for a directive. Now every empty
directive (RETURN) will make the next external process appear on the
screen followed by the prompt character, until all processes actually in
use have been displayed.

The directive

> o outfile




System Utility Maintenance Programs Page 63

will make the program write on the terminal:
* o outfile

connect current output to the file ’outfile’ and another prompt character
will appear.

The directive

>r

will cause the last external process description seen on the screen be
repeated, this time in the file ’outfile’. When done the prompt character
will appear on the screen again, ready for another directive.

The directive

>o0c¢

will make the output reappear on the screen. If the file just used should
be connected again, writing in the file will be continued, even in backing
storage files.

The directive

> f

will make the program quit the command ’external’ yet before all
processes have been displayed.

When the command ’external’ is left, either because all have been
displayed or because of the directive ’f’, another command is read from
current input, here the command

buf sender. myself

and the sequence starts all over until the command ’buf’ is left.

When no more commands are found in the line, another line is read
from current input. This time type:

end

and the program will leave the conversational mode and take the next
parameter in the call.

Since no parameter appear after the ’typein’, the program will
terminate.

Example 4

The command

commands

whether in conversational mode or not, will display the repertoire of
commands on current output, and the command

11. Montest



Page 64 System Utility Maintenance Programs

info <command> ‘

<command> being any of these, will display a short description of its
use.

11.3 Call
[<outfile> =] = montest {<command>)} 0-*

<command>= { commands

info <param>
typein

end

dump <param>

core lock
internal <param>
external <param>

- . -~ - gt p—— - - p_— p_—
e e et et et e St ! d e ! gl gt gt gt

area <param> .
chain <param>
buf <param>
veri <param>
format <param>
extra <param>
lines <param>
0 <param>

11.4 Function
If <outfile> is specified, current output is connected to <outfile>.

Now the program gets the next command with optional parameters and
executes it, until the end of the parameter list in the call is met.

11.4.1 Commands .
The command is

commands

with no parameters.

The program lists on current output the repertoire of commands.

11.4.2 Info

The command is

info <command>

where <command> is the name of one of the commands listed in 11.3.

11. Montest



System Utility Maintenance Programs Page 65

The program displays on current output a short explanation of the
parameter syntax and the function of the command.

11.4.3 typein

The command is
typein

with no parameters.

If the program is in the conversational mode, the command has no
effect.

If the program is not in the conversational mode, it enters the
conversational mode, i.e. reads the next line from current input zone
and gets the first command from the line. The program prepares a
return to the next command in the call to be executed when
conversational mode is left again.

In conversational mode, the display of records from each of the data
structures internal, external and area process descriptions, message
buffers and chaintables will be followed by the output of a prompt
character (the character >) on current input.

The first letter of the first parameter in next line in current input is
interpreted as one of the following directives:

r Skip the rest of the line in input and repeat the latest display
unchanged.
0 The next parameter in current input will be handled as a file

name, the rest of the line after the filename will be skipped.
Current output will be stacked for later continuation and
connected to the file specified. If the file does not exist, a
backing storage area of that name will be created. If the file
has been connected before, it is reconnected for continued
writing. (a maximum of 10 different files ready for
reconnection is allowed).

Now a prompt is output and the next directive may be given.

f The rest of the input line is skipped and the display of records
stops. The next command will be executed.

anything else or empty line:
The rest of the input line is skipped. The next record is

displayed. If the data structure is emptied, the next command
is executed.

11.4.4 End
The command is

end

11. Montest



Page 66 System Utility Maintenance Programs

with no parameters. .

If the program is not in conversational mode, the command has no
effect.

If the program is in conversational mode, the mode is left and the next
command in the call after the command ’typein’ is executed.

11.4.5 Dump

The command is

dump <dumparea>

where <dumparea> is the name of a backing storage file containing a
memory dump.

The program sets the memory dump mode, disconnects from a possible

file, connects to the file specified and reads the monitor key variables .
from the file. Any succeeding command concerning data structures in

the monitor will concern the data structures in the memory dump
contained in the file until the memory dump mode is left again or
another file connected.

11.4.6 Core

The command is

core

with no parameters.

The program will set the core mode, and get the monitor key variables
from locations in the memory.

Any succeeding command concerning data structures in the monitor will
concern the data structures in the memory until the memory dump .
mode is entered.

11.4.7 Lock

The command is

lock

with no parameters.

The program transfers all of its segments to memory and locks them, i.e.

the entire program stays memory resident until it terminates.

11.4.8 Internal

The command is .

11. Montest



System Utility Maintenance Programs Page 67

internal all/used/free/name.<name>

where

<name> ::= name of an internal process.

The program will display a number of lines from all internal process
descriptions, all used internal process descriptions, all free ones, or the

one specified by name.

The number of lines is by default all, but may be set otherwise by the
command ’lines’ (11.4).

11.4.9 External
The command is
external ( all / used / free / kind.<kind> /

main.<mainname> / user.<user> / reserver.<reserver> /
name .<name> / devno.<devno> / devno.<devno>.all )

<user> Pl

<reserver>; :=

<name> ::= name of an internal process
<devno> ::= positive integer

The program will display the external process descriptions specified.

all all external processes

used all external process
descriptions in use

free all not in use

kind.<kind> all external processes of the
specified kind

user.<user> all external processes with
<user> as user of the process

reserver<reserver>: all with <reserver> as reserver
of the process

main.<mainname> all external processes with the
specified main process as main

name . <name> the one with that name

devno .<devno> the one corresponding to the
device number

devno.<devno>.all the same and all succeeding

A number of lines in extension to the process descriptions may be
displayed, the number controlled by the command ’extra’ (13.4) and the
display format controlled by the command *format’ (13.4).

11.4.10 Area

The command is

11. Montest



Page 68 System Utility Maintenance Programs
area all / used / free / kind.<kind> / / user.<user> / .
reserver.<reserver> /main.<main process / name.<name>
The program will display the area processes specified. The specifications
equal the specifications for the command ’external’. A number of lines
in extension to the process descriptions may be displayed as for external
processes.
11.4.11 Chain
The command is
chain {all / docname.<name>)

<name> ::= name of a logical disk

The program will display the chaintables specified.

all all chaintables .

docname . <name> the one with the document name
specified.

11.4.12 Buf

The command is

buf {(all / used / free / / sender.<name> /
receiver.<name> / sender.<namel>.receiver.<name2> /
receiver.<name2>.sender.<namel> / addr.<integer> /
addr .<integer>.all}

<name> -
<name> L=
<name> ::= name of a process

<integer ::= positive integer

The program will scan the message buffer pool and display the message .

buffers specified.

all all message buffers in the
entire pool

used all message buffers of the pool
which are in use

free all message buffers of the pool
which are not in use

sender .<name> all the ones with <name> as
sender

receiver.<name> all the ones with <name> as
receiver

sender .<namel>.receiver.<name2>
receiver.<name2>.sender.<namel>
all the ones with <namel> as
sender and <name2> as receiver

11. Montest



System Utility Maintenance Programs Page 69

addr.<integer> the one with the address

specified
addr.<integer>.all the same and all succeeding
11.4.13 Veri

The command is
veri <first addr> [.<no of halfs>]

<first addr> ::=
<no of halfs> ::= positive integer

The program will display the contents of the words specified in a format
controlled by the command ’format’ (11.4.14).

<first addr> the word addressed by <first
addr>, i.e. if odd then <first
addr>-1

<no of halfs> : as many words as given by <no

of halfs>//2
The words specified should be kept below ‘first free’, i.e. the first
address of the first process created by s and certainly cpa of the process
must be above the words to be printed.
11.4.14 Format
The command is
format <format> { .<format> })o-*

where

<format> ::= ({integer/ octal / half / byte / bit /text/
all / code}

The programs sets a format used in the display by the commands ’veri’
(11.4.13) and ’external’ (11.4.9) or ’area’ (11.4.10) in connection with
‘extra’ (11.4.15).

The format is valid until changed by another format command. Default
is all except code and bit. ’All’ means all except code.

11.4.15 Extra
The command is
extra <integer>
where

<integer> ::= positive integer

11. Montest



Page 70

11. Montest

System Ultility Maintenance Programs

The program sets an internal value controlling the number of lines .
displayed in the extension of external and area process descriptions
(11.4.9 and 11.4.10).

The value is valid until changed by another ’extra’ command. Default is
zero.

11.4.16 Lines
The command is

lines <first line> [.<last line>]

where
<first line> ::=
<last line> ::= positive integer

The program will set the line interval displayed in internal process .
descriptions (11.4.8). The lines are numbered 1,2,3..., line no of last line

of bs claims.

First line will be set no lower than 1.

Last line will be set no higher than line no of last line of bs claims.

The values of first and last line are valid until changed by another ’lines’
command.

Default is (1, max integer).

11.4.170

The command is

o <name>

where

<name> ::= the name of a file descriptor

The program will stack current output for later reconnection and
connect it to the file with the specified name.

If the file does not exist, a backing storage area of that name will be
created.

If the file has been connected before, it will be reconnected for
continued writing (a maximum of 10 different files ready for
reconnection may exist).

The command is a command equivalent to the directive of the same
name described in 11.4.3, typein.



System Utility Maintenance Programs Page 71
. 11.5 Resource Requirements

The program may run in a process of only 11000 (RC9000-10: 12288)
halfwords, conversational mode or not.

In case the lock command (11.4.7) is used, the size must be at least
88900 (RC9000-10: 90112) halfwords.

The process will need only 3 message buffers and only 3 area processes,
unless the dump command (11.4.5) is used, in which case the process
needs 4 area processes.

11.6 Error Messages

The messages from the program should be self explaining,

11. Montest



Page 72 System Utility Maintenance Programs

11. Montest



System Utility Maintenance Programs Page 73

12. Printzones

12.1 Introduction

In the permanent part of the runtime system of ALGOL and
FORTRAN programs are placed a number of key variables to the
system, cf. ref. [1].

In the stack of running ALGOL and FORTRAN programs are placed
all the active zones of the program, chained together down the stack in
the reverse order of which they were allocated in the stack.

If context blocks or activities are allocated in the stack, descriptor
records for each context block or activity are allocated as well.

The present program prints values in these data structures either from a
program residing in memory or from a dumped memory image in a file,
provided the process has been stopped or the file contains an image of
the memory of a stopped process running an ALGOL/FORTRAN
program.

The program is intended for inspection of runtime system variables
and/or zone and share descriptors, context block descriptors and activity

descriptors in ALGOL and FORTRAN programs for debugging
purposes.

The program being inspected must have been translated by:

- the ALGOL compiler in SW8500/1, release 11.0, 1979.11.12 or
newer, or

- the FORTRAN compiler in SW8501/2, release 1.0, 1983.09.01 or
newer.

If the program to be inspected executes in an internal process, the
following must be fulfilled:

- the program must have been stopped by its parent

- the CPA of the calling process must permit read access to the
internal process to be inspected

12. Printzones



Page 74

12. Printzones

System Utility Maintenance Programs

- the address base of the calling process must permit read access to
the internal process to be inspected

- the internal process to be inspected must not be a process swopped
out.

If the program to be inspected is found in a memory picture in a file, the
file must contain the entire process dumped.

12.2 Call

The program is called:

[<outfile] = printzones [<procname>]
where

<outfile> ::=
<procname> ::= a name of at most 11 characters

12.3 Function

If an <outfile> name is specified in the call, the program connects its
output zone to a file of that name, i.e. if no such file exists, a backing
storage area is created and the zone is connected.

If no <procname> is specified the program uses the default name
’image’.

If an internal process exists of the name specified in <procname>, the
program connects its input to the process.

If no process exists, a file descriptor of the name is looked up in the
catalog. If it exists, the input zone is connected, otherwise the program
terminates with an alarm.

Now the key variables and the zone chains/descriptors are input and the
values printed.

12.4 Examples

Example 1
The call
printzones

will try to print from a file named ’image’.




System Utility Maintenance Programs Page 75

Example 2
The call

outfile = printzones dumpfile

will try to print on the file ’ourfile’ from a file named 'dumpfile’.

Example 3
The call

printzones £fgs274001

will try to print from a process named ’fgs274001’. If no such process
exists, it will try to print from a file of that name, and if that fails it will
terminate.

12.5 Error Messages

***printzones connect <outfile> <cause>

The program could not connect current output zone to <outfile> for
the reason stated in <cause>. The program continues with current
output connected as before the call.

***printzones call error as <explanation>
no run 0......
called from...

<explanation> = ’no file or process name’
The program was called with an integer as parameter.

<explanation> = ’internal process invisible’

The address base of calling process does not permit read access to the
internal process to be inspected, or the processes have some primary
store in common. In this case the process to be inspected is either an
ancestor not allowing read access through address base of calling
process, or it is a process swopped out of memory at present.

<explanation> = ’internal process unreadable’
The CPA of calling process does not permit read access to the internal
process to be inspected.

<explanation> = ’'no coredump area exists’
No file descriptor with the name given in <procname> exists.

In all cases the program terminates with the fp mode bits: warning.yes,
ok.no

12. Printzones



Page 76

12. Printzones

System Utility Maintenance Programs

give up 0 algolcheck
called from ...
*** device status <file>

stopped

process does not exist
The executing process has too few area processes or the file descriptor
given in <procname> describes a non existing area. The program
terminates with fp mode bits set: warning.yes, ok.no

block 2 recprocs6

called from ...

The file given by <procname> does not contain a dump of the entire
process to be inspected.

The program terminates with fp mode bits set: warning.yes, ok.no



System Utility Maintenance Programs Page 77

13. Scatup

13.1 Introduction

The program scatup handles the s-user catalog susercat.

The format of susercat is shown in ref [3].

The program may be used to :

- create a new s-user catalog

- insert entries in the s-user catalog

- list the contents of entries or all of the s-user catalog

The output from the program when listing entries from the catalog may
be used directly or after modification as parameters to a new call of
scatup to insert entries.

13.2 Creating a new s-user catalog

Syntax of call:

scatup newcat.(size) (disk name)1-*

13. Scatup



Page 78 System Utility Maintenance Programs

13.3 Inserting entries in s-user catalog .
Syntax of call:

( <disk name>. <slices>.<entries>)0-*
(perm. {<disk name>].<slices>.<entries>)
(temp. [<disk name>)].<slices>.<entries>)
(prio. <integer> )
(comm. <integer>
(buf . <integer>
(area. <integer>
(inter.<integer>
scatup insert.<name> (func. <integer>
(std. <lower>.<upper>
(max. <lower>.<upper>
(user. <lower>.<upper>
(addr. <integer>
(size. <integer>

(prog. <prog>

A S " L U N N N N g

Negative bases may be represented as n. <integer> as
well as -<integer>.

If no disk name is specified, the first disk will
be used.

The default values for the parameters are:
<first disk>.5.5

buf. 4 area.é6

std. 8388605.8388605

max. 8388605.8388605
user.8388605.8388605

size.12800 prog.fp

All others fields are set to zero.

13.4 Deleting entries in s-user catalog

Syntax of call:

scatup delete. (<name>)

13.5 Listing entries in s-user catalog
Syntax of call :

(cat )
scatup list. (<name>)

(all )

(names )

The options will list :

13. Scatup



System Utility Maintenance Programs Page 79

. entry zero

- the entry given
- all entries
- the disk names and the names of all entries

from the s-user catalog.

The following example will create and initialize an s-user catalog, insert
two entries and list them :

13.6 Example

susercat = set 21 0 4.0 0 0 11.0 O

scope user susercat

scatup newcat, 50, catsize
‘ disc ,

discl ,

disc2 )

disc3

scatup insert.adm,

,*itth*tt*ttt**i*

prio. 0 comm. O,

buf. 12 ares. 10,

inter. 0 func. 1776,

std . 0. 9,

user. 0. 9,

max . -8388607. 8388605,

addr. 0 size. 80000 prog.fp,

,resource slices entr slices entr,

temp.disc . 0. 0 perm.disc . 0. 10,
temp.disc1 . 0. 0 perm.discl . 1. 10,
temp.disc2 . 0. 0 perm.disc2 . 1. 10,
temp.disc3 . 0 0 perm.disc3 . 1. 10

scatup insert.maxbase,

'itt**ﬁt*titttﬁtﬁﬁﬁﬁi*

prio. 0 comm. O,

buf. 12 area. 10,

inter. 0 func. 1776,

std . -8388607. 8388605,

user. -8388607. 8388605,

max . -8388607. 8388605,

addr. 0 size. 200000 prog.fp,

,resource slices entr slices entr,

temp.disc . 0. 0 perm.disc . 4. 22,
temp.disci . 0. 0 perm.disc! . 1. 10,
temp.disc2 . 0. 0 perm.disc2 . 3. 2,
temp.disc3 . 0. 0 perm.disc3 . 5. 3

scatup list.names
end

13. Scatup



Page 80 System Utility Maintenance Programs

13. Scatup



System Utility Maintenance Programs Page 81

14. Slicelist

14.1 Slicelist
The utility program slicelist can provide you with a survey showing the

. slices constituting a backing storage file and, for RC82xx disks on
RC8000), how these are distributed on cylinders.

14.2 Example

If a user wants a survey of the slicenumber of his file ‘myfile’, then the
FP command

slicelist myfile

is sufficient. If he also wishes to know how the slices are distributed on
the cylinders, he will have to use the FP command

slicelist cylinder.yes myfile

(only for RC82xx disks on RC8000)

14.3 Syntax
1 -%
[<outfile> =] slicelist ( (<modifier>)1-* <filename> )
<modifier> ::= { cylinder )
{ segment } . (yes/no}
{ slice )

14.4 Semantics

<filename> The name of a file stored on an RC9000 disk or on an
RC82xx/RC83xx disk on RC8000.

14. Slicelist




O

Page 82 System Utility Maintenance Programs

be output. An occurence of a <modifier> applies to all
the following occurences of <filename>. Their initial
values and their associated surveys are described below.

cylinder (Only RC82xx disks). Default is cylinder.no. If
cylinder.yes is specified, a survey will be output showing
how the slices are distributed on cylinders. The
cylinders are numbered from zero, cylinder number
zero being the first cylinder of the logical disk on which
the file is stored.

|
|
<modifier>  The <modifier>s are used to determine the surveys to ‘

segment Default is segment.no. If segment.yes is specified, a
survey of the numbers of the first segments in each of
the slices constituting the file will be output. The
segments are numbered from zero, segment number
zero being the first segment of the logical disk on which
athe file is stored. The possible difference between the
numbering of segments on odd numbered cylinders and
even numbered cylinders is not taken into account. .

slice Default is slice.yes. A survey of the numbers of the
slices constituting the file is output. If slice.no is
specified, the survey is suppressed.

<outfile > The name of a file. If an <outfile> is present in the
program call, this file is used for program output
(including possible error messages) - otherwise the
current output file is used. If <outfile> is not found in
the catalog, a backing storage area of that name with
scope temp is created on the main disk.

14.4 Program Output

For each filename the corresponding catalog entry is output using the

same layout as the one used by the program lookup. Furthermore, some
characteristics for the logical disk and for the physical disk, on which the ‘
file is stored, are output:

logical disk
slicelength
the number of the first segment

physical disk
the address (in memory) of the process description
the number of segments per cylinder (only RC82xx)
the odd cylinder shift (only RC82xx)

Finally, depending on <modifier>, one or more of the following three
surveys are output:

- slicenumber
- the number of the first segment of each of the slices constituting the
file .

14. Slicelist



System Utility Maintenance Programs Page 83

- the distribution of the slices on cylinders (only RC82xx)

14.5 Error Messages

**%slicelist <outfile> cannot ne connected
the chosen output file could not be connected, the current output file is
used instead.

**%slicelist <filename> cannot be looked up
no entry in the main catalog corresponding to <filename> can be
found.

***slicelist <filename> is not a bs-area
the catalog entry corresponding to <filename> does not describe a
backing storage area.

**3slicelist <filename>, <devicename> intervention
the device <devicename>, on which the file <filename> is stored, is
not currently accessible due to some error.

***slicelist <filename>, <devicename> is not an RC92xx/
RC82xx/-rc83xx disk

the device <devicename> is not an RC92xx/ RC82xx/RC83xx disk, and
no slicelist can be produced for the file <filename>.

*#%slicelist param: <erroneous parameter> illegal

parameter error in the call of slicelist. The <erroneous parameter> is
printed.

An error message does not cause the program to terminate, the
program continues with the next parameter in the list.

14. Slicelist



Page 84 System Utility Maintenance Programs

14. Slicelist



System Utility Maintenance Programs Page 85

Appendix A. References

Disccopy

1)  System 3 Utility Program, Part one 991 02567
. 2)  Monitor Reference Manual 991 11259

Part of SW9890I-D, Monitor Manual Set

3)  Operating System s, Reference Manual Part of 991 11260
SW98901-D, Monitor Manual Set

Printzones

1)  Code Procedures and Run Time Organization of 991 11296
ALGOL Programs.

Appendix A. References



System Ultility, Maintenance Programs
PN: 991 11 265



