° RC9000-10/RC8000

SW8010 System Ultility

User’s Guide, Part One

RC Computer

Keywords:
RC9000-10, RC8000, System Ultility, Utility Programs, User’s Guide

Abstract:
This manual describes the File Processor, which is the job control
program, part of the System Ultility package.

Date:
Januar 1989

PN: 991 11263

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-
ject to change by RC at any time without prior notice. RC is not responsible for typo-
graphical or arithmetic errors which may appear in this manual and shall not be re-
sponsible for any damages caused by reliance on any of the materials presented.

System Utility, User’s Guide, Part One

Table of Contents

L INEPOAUCHION..........oeittt e neaseses s s s es st snaes 1
1.1 The File PrOCESSOL.......cccurieeurirereriecieicisiessisessissassete s e ssisssssssnseseses sesssenes 1
L2 FIIES ettt sttt st nee 1
1.3 The FP Command Reading and Execution...........c.ccoccevevcerecnenncnccrnnnnnn. 2
1.4 A Simple Example of FP Commands........c.ccoccueerencuncneesenescninssnensens 3
1.5 Compound Commands...........ccceueuunimeinemeicicnecereeeesesseseessiste e menssenns 4
1.6 Creation of File Names.........cccvoiviirveiurinenineeetnesesseeess s 4
1.7 Further Examples and Remarks..........ccccoverevcnivcnncencncnnesinneieennns 5
1.8 Reselection of Current Input or OUtpUL........c.cocoeeureceerereeerrenerierierennes 6
1.9 System File Names.........cccooviicinccnienrerceneeiecsee s snisssssenes 7
1.10 Positionable and Unpositionable Media............cccooererverrrrrerrerecrrnnnen 8
2. Command Language...............ccocoreiimnrineneeeeneeisieneneeesesnereneeneseseaeseens 9
2.1 Meta LangUAEE..........cooceurueeeecmeeneecenieineniesesesssa e sssssessesssssessssesesseseens 9
2.2 Syntax for FP Commands..........ccccceueevemevemurereunerensenenensisssssssssssess sesnns 10
2.2.1 Basic Terms. Classification of Characters...........ccccocevovvvvrerrerrerercvnnn. 10
2.2.2 Comments, New Lines, Spaces and Separators..........ccccocceererrrrrrnnneee. 10
2.2.3 Command Reading and Brackets..........c.cccovurvrrervenrenerrnererecnseemennns 11
2.2.4 The Simple CommAaNd.........ccccecccueireurerirmrmrrnrnrssieseissesesesesesesesesmaesans 11
2.2.5 Result File Name and Program Name..........ccccooveeeveeinecreenrennneennens 11
2.2.6 Parameters and MOdIfiers.........cccovevvrrvcvinensrnennessrssss e 11
2.2 T TEXLS....octr ettt seast sttt bens saenas 12
228 INLEEETS....cuvietictirricr et rease st st asstsases stebans 12
2.2.9 Modifications of the SYNtax..........cccceverrerrerrusrerrernssrssrssseneeee e 13
2.3 Semantics of FP Commands...........cocevuuvecrinninsnsenrnsnniessesensesenesessns seenns 15
2.4 Format of the FP Command StackK.........cccccoeurruercernennerensiesererensene e 16
2.4.1 EXaMPIE.......uriirencicicieceies sttt s sttt s s sen srasens 16
2.5 The Action on End Medium...........coovuvuveeinrneeereninenesnenseresesessensens sreones 17
2.6 The Action on Syntax EITOTS.........ccovevererennensisinsrennenisinssssssssesses s 17
3. Job And Operating System..............ccccoouvirerrnineneceiniereneceeseser e 19
3.1 Job And Parent........ccuierueercnensinineneesieeistnsssees st ssssssesssssssesessesasns 19
3.2 Parent MESSAEES........cvuuiiimininincnscnessecsnessee st ssssssssassessssssessesans 19
3.3 Job Start, Initialization Of FP.............oooivieiceieeeeeeeeeeeeeeeeesseeeseeseeanns 19
3.4 JOD TermMINatioN.......ccucciueucererirecirennistsesnesssiesssessessesessssessessssessess seseens 20
3.5 Break ACHIONS.......cruremeeeieeeeienrestsssesssisissssssassassessessssessessesssssssesmsssnns 20
4. The Execution of FP Commands...............ccocoonuverrennrevnrenresnseeennennnns 23
4.1 Current Input and Output, Zone Stacking..........ccevevererverererrrerirrs sverens 23
4.2 The MOde Bits......c.ccvvemieerercrnecerinrsiseenesestrss s sssssss st sessssesesen srssans 24
4.3 Command Reading..........cccuiuiimiivcmrenncreineenenceneiseisessessessessssessassssssenes 25
4.4 Program Loading.........coeeereeurivemninerneneneiresisissseisesesssssessssesssssessssssmesses 25

Table of Contents

Table of Contents

System Ultility, User’s Guide, Part One

4.5 Program Termination............cucuiimenesecsecsnemerunessessesneesssssssssssssssssnsanns 25
" 4.6 Resource ReqUIr€mMEnts............ccocuveuevicunenennierreninerenenstsssssssssssmunnees 26
S. References to Files..............coovcinieinicniniece e 29
5.1 Document Name of @ File.........cccoeoevermnneninrcnieeseeeseeeeseve v 29
5.2 File Descriptor, File Name.........ccccoovunmininsenninninrenisssssesseses s 29
5.3 The Constituents of a File DeScriptor..........cccccoccuvemvevnnernsrreneeresiennne. 30
5.4 Catalog ENtIes........oiimieccreieicecesiseeeiseisese et sssesssssssssssssssssssasens 31
5.5 Formation of the File DeSCriptor..........occvuvireunreneenrressnressnsesesnesensnnes 31
5.6 ENtIY Tails....c.cevereeeeeiniirerecrece s tsssenssts s asssessssssssssas seasens 32
6. The FP Input/Output SyStem..............cocoouricrercererrenesenensssssessssseemennns 35
6.1 Text Files and EM Characters...........ccocouvurrreeeresnsneinsesisssesesessessesessesns 35
6.2 Connection Of @ File.........ccouieiiincniriisrnceisecnesisesssssessesessens sesenns 35
6.3 Termination of the Use of @ File........c.ccoevevvereinevernrnrcerieiecenneeeeeseennn. 37
6.4 Data Transfers, Status WoOrd...........cuoueevocireeeeeeeeeeeeeeeeeeeeseeeeseemneres 37
6.5 Standard RECOVETY ACHIONS.........cocueuueurimcireniererenneessessssssssssssesssessessnes 39
6.6 Errors on Current Input or OUtPUL.....c.ccocuveuerrerreeneereeneensirninesesrisemenenns 42
Appendix A: References.............cccocveivnninieininininininnieienreerssssessesssemenans 43
Appendix B: Tables.............cccoovinnncinceineeeeiese e aese et e 45
B.1 MOAE-KINGS......ooiriiicirictnieteisisire ettt be s sesesss s ssssosan 45
B.2 Standard File Names and File Descriptors.........c.ccceeevesiiuererrnnsrrmnnenn. 46
B.3 Contents KeYs......uiicciireceereretenseeiessteestsessasssssssssssesess ssenan 47
B.4 Error MESSAEES.........cuciiiiiiiiciiiiceeeneanecsessesstsesessesssssssssesssssssssasassenes 48
APPENdixX C: INAEX.........cviiieeeieierieneceeese e esse s nesensasssnsseees 51

System Utility, User’s Guide, Part One Page 1

1. Introduction

1.1 The File Processor

The File Processor - in the sequel called FP - is a control program which
together with the operating system controls the execution of the user’s
programs and the access to his files.

When an RC9000-10 computer with the basic software installed is ready
for use, the system programs are stored partly in memory, partly on the
backing storage. The Monitor program and the nucleus of the operating
system BOSS are memory resident while the remainder of the programs
are stored on the backing storage, usually consisting of one or more disk
files. The execution of a job is controlled by commands to two control
programs: the operating system and FP. FP may be used in connection
with various operating systems - in the sequel we assume that the
operating system BOSS is used.

1.2 Files

A file is an unbroken string of data such as a roll of paper tape, one deck
of cards, a data area on the backing storage, the data between two tape
marks on a magnetic tape reel. A job uses many different files - beside
the files containing the input and output data we have the files
containing the user’s programs and files in the software system
(containing compilers, editors etc.).

The files can be divided into different types according to their relation
to the job:

Standard files of the job

(1) The job file specifies the tasks of the job. It is entered into the
computer as described in ref. (7). The job file contains (except for
’go’ jobs) a heading job specification which is interpreted by BOSS.
The rest of the job file is forwarded by BOSS to the job as the
primary input file.

(2) The current input file is a file from which the job reads commands
to FP and various other input. During the job several files may in
turn be selected as current input file. At job start the primary input
file is selected as current input.

1. Introduction

Page 2

1. Introduction

System Utility, User’s Guide, Part One

(3) The current output file is a file used for output from the job.
During the job several files may in turn be selected as current
output file - the file selected at job start is called the primary
output file.

(4) Primout is a backing storage area used by BOSS in the spooling of
the output printed on the primary output file. After the
termination of an on-line job this area is available and contains the
data printed on primary output during the job.

In ALGOL/FORTRAN programs the current input and output files are
available via the standard zones IN and OUT. (These zones should be
used for character input/output only).

System files

A number of files mainly on the backing storage are permanently
available to all jobs. These files contain compilers, utility programs and
standard library programs.

The paper tape reader, the line printer (and the card reader, if any) are
usually considered to contain files, owned by and accessed through
BOSS.

Private files

The user’s programs and data files may be stored on any media available
in the system. The various types of files are described in (7) chapters
5-6.

FP and the utility programs refer to files by means of names. A file
name is a small letter followed by at most 10 digits or small letters.

1.3 The FP Command Reading and Execution

The job execution is governed by the commands which FP reads from
the current input file. Each command is executed as the call of one or
several programs.

In detail FP acts according to the following:

1) FP reads a command from the current input file. The command
may be a simple command or a compound command consisting of
several simple commands enclosed in brackets.

2) The simple commands are executed one by one. The execution of
a simple command means that a program file is loaded into
memory and entered. Each program terminates by returning to FP
which then executes the next simple command.

3) When the list of simple commands (read as described in 1) is
exhausted FP resumes the command reading from the current
input file.

System Ultility, User’s Guide, Part One Page 3

Remarks:

ad2) The program called by an FP command may be one of the
user’s own binary programs or a utility program which can
perform tasks like: editing a text file into another text file,
compilation of a source text into a binary program, reselection
of the current input or output file, termination of the job, etc.

ad3) The current input file is used not only by FP but also by the
programs called by the FP commands. The programs can
therefore read ahead in the current input file before FP starts
reading commands again - they may in fact even select another
file as current input.

The command reading and execution is more detailed described in
chapter 4.

1.4 A Simple Example of FP Commands

An FP command consists of one or several simple commands. A simple
command is a text line (terminated by an NL character) and has either
the form

<result file> = <program name> <parameter list>
or
<program name> <parameter list>

Our example is the example in section 1.1.1 in (7). By removing the job
specification we get the primary input file:

p=algol

begin real a,b;
read(in,a,b);
write(out,a**b);

end

P

2 10

finis

FP reads the command ’p=algol’ and executes it by starting the ALGOL
compiler. The compiler takes input from current input (as no special
input file is specified) and reads from the point where FP stopped i.e.
starting with ’begin..’. The reading stops when the ALGOL source
program is completed i.e. after ’end’. The object program is stored in a
backing storage area named ’p’ and the compiler terminates by
returning to FP which resumes the command reading and thereby reads
the command ’p’. This command is executed as a call of the ALGOL
object program which reads the two integers 2 and 10 from current input
(by the call of procedure READ on the zone IN). After output of the
result the program returns to FP which in turn reads the command
finis’ and thereby the utility program finis is called and terminates the
job.

1. Introduction

Page 4

1. Introduction

System Utility, User’s Guide, Part One

1.5 Compound Commands

A compound command to FP consists of an opening bracket ’(’ followed
by one or several FP commands (which may again be compound
commands) and terminated by a closing bracket ’). As stated above a
compound command is read by FP as an entity. Afterwards the simple
commands in the compound command are executed one by one.

The primary input file

(

p=algol

P

finis

)

begin real a,b;
read(in,a,b);
write(out,a**b);

end

2 10

has essentially the same effect as the one above but now FP starts by
reading the entire compound command (the first five lines) and next the
commands are executed. The first command calls the ALGOL compiler
which continues reading from current input where FP stopped. When
the translation is done the next command ’p’ calls the translated

program which reads the integers 2 and 10 as it continues reading where
ALGOL left the file. Finally the command ’finis’ is executed.

1.6 Creation of File Names

Files are referred to by means of names. New file names can be
’declared’ by means of the utility program SET. By the FP command

pip=set 40 3

an area by the name ’pip’ containing 40 segments is created on the
backing storage. The parameter 3’ specifies that the area should be
placed on the disk with the most permanent resources. The command
pip=set 40

creates an area on the disk with the most temporary resources.

By the FP command

pap=set mtlé mt471100 0 3

the name ’pap’ is declared as pointing to file number 3 on the magnetic
tape reel mt471100 (mt16 = magnetic tape, 1600 bpi, PE).

Besides these explicit ways of creating a file we have also an implicit
creation of files:

System Utility, User’s Guide, Part One Page 5

If a non existent file is specified as output file for a utility program (or if
the file specified is protected) the utility program creates an area on the
backing storage and uses it for the output.

In the earlier examples the call of the ALGOL compiler
p=algol

created the backing storage area ’p’ to hold the translated program. An
area created implicitly by the call of a utility program is in most cases
placed on the disk with the most temporary resources, e.g. the
ALGOL/FORTRAN compilers.

Remark: If the access to a magnetic tape is initiated in an
ALGOL/FORTRAN program by means of the standard procedures
OPEN and SETPOSITION, the name of the tape reel is used (mt471100
above) but a ’file name’ as ’pap’ above is not needed.

1.7 Further Examples and Remarks

The program text and the data are often too large to be conveniently
included in the primary input file. Consider the input to FP:

p=algol ptext

if ok.no

finis

if warning.yes

(p=algol ptext list.yes
finis)

p pdata

finis

The first line is executed by FP as a call of the ALGOL compiler which
takes input from the file ’ptext’ (input is not taken from current input
because this file is specified). After compilation the utility program IF is
called. It tests the ’ok bit’ which has been set by the compiler. If there
were severe errors in the compilation (input file not found, no room for
the output), the "ok bit’ is 'no’ and the job is terminated by the following
‘finis’ command - otherwise the "ok bit’ is yes’ and the program IF skips
the next command ’finis’. Next IF is called once more and tests the
‘warning bit’ as set by the compiler. If the *warning bit’ is ’no’, the next
command (in the brackets) is skipped.

Let us assume that there are syntax errors in the program. Then the next
command is not skipped and FP executes the two simple commands in
the parenthesis. The first causes an extra compilation but now with a
listing of the program. After compilation the job is terminated by the
finis’ command.

Next assume that the program was accepted by the compiler. Then the
compound command is skipped by IF and FP reads the command ’p
pdata’. This command is executed as a call of our program ’p’. The
parameter ’pdata’ has the function that ’p’ takes input from the file

1. Introduction

Page 6

1. Introduction

System Utility, User’s Guide, Part One
’pdata’ (more precisely: the file ’pdata’ is current input while the
program ’p’ is running).
Finaly the job terminates by the ’finis’ command.

This example assumes that the files named ’ptext’ and ’pdata’ are
available to the job. There are many ways of obtaining that, for instance:

(1) The files are permanent files on the backing storage.

(2) The files are available as magnetic tape files. In this case the
names ’ptext’ and ’pdata’ must be declared by FP commands like

ptext=set mtl6 mt471100 0 1
pdata=set mtlé mt471100 O 2

which declare the names ’ptect’ and ’pdata’ to describe file
numbers 1 and 2 respectively on the tape mt471100.

(3) The files are on paper tapes which are loaded prior to job start by .

load commands to BOSS in the job’s specification (7), chapter 3.

(4) The files are kept on backing storage when used - on magnetic
tape when not used: the software admits the so called login files on
the backing storage, which are retained as long as the user is
logged in at a terminal but cancelled at logout time. If the
installation has sufficent login ressources the user may start the
operations from a terminal with a job which loads the files from
magnetic tape to the backing storage by calling the utility program
LOAD. The files are now available until the terminal is logged out.
If new versions of the files are produced they must be output to
magnetic tape by a job which calls the utility program SAVE.

1.8 Reselection of Current Input or Output

The utility program I selects a new file as current input file in such a way
that reading from the ’old’ file may later be continued (at the point
where reading stopped) by a call of the utility program END (I performs
a ’stacking’ - END an ’'unstacking’ of the current input file).

The command

i commds

selects the file named ‘'commds’ as new current input file. When FP
resumes the command reading, the commands are input from ’commds’
(unless current input has changed again in the meantime).

The compound command

(i cola

pip
end)

System Utility, User’s Guide, Part One Page 7

has the effect that the file ’cola’ is current input while the program ’pip’
is running: the first command selects ’cola’ as current input the second
calls ’pip’ and the third switches current input back again. Note that FP
does not read from the file cola’.

The utility program o selects a new file as current output file.
Consider the FP commands:

o specialout

p pdata

oc

convert specialout

The first command calls o which creates an area ’specialout’ on the
backing storage and selects it as current output file. Next the program ’p’
is called and produces output on ’specialout’. The second call of o selects
the primary output file (denoted by ’c’) as current output again. The call
of CONVERT tells BOSS to print the contents of the file ’specialout’.

Warning:

If an ALGOL/FORTRAN program compilation with listing is
performed while a backing storage area is selected as current output file,
the listing and the binary program may be competing for the room on
the backing storage. If the program file does not exist in advance, the
area for the listing (the current output) should be given a size sufficient
to hold the program text (and the error messages). This is done by
commands like

listout=set 40

o listout

p=algol ptext list.yes
oc

1.9 System File Names

The following names are used for system purposes but they may be used
as names for private files too, as long as the private use does not conflict
with the system use expected in the job:

boss, ¢, fp, primout, s, terminal, v
printer, punch, reader
and other names of devices.

The names c and v describe the primary output and input files.
The name of a system program may in principle be used as name for a
private file but this will make the system program inaccessible for the

user. Besides the bulk of system program names standard names for
certain files on peripheral devices may be set up as given in appendix B.

1. Introduction

Page 8

1. Introduction

System Ultility, User’s Guide, Part One

1.10 Positionable and Unpositionable Media

Files on magnetic tape or backing storage admit a ’positioning’
operation i.e. upspacing or backspacing on the tape station, selection of
another segment on backing storage. A similar operation does not exist
on the paper tape reader, the paper tape punch or the line printer. This
fact is important because a file, when connected, is ‘taken from the
beginning’ (the only exception being the unstacking to a former current
input file).

A couple of examples will illustrate the problem:

The names ’textl’ and ’text2’ denote two text files. If ’f3’ is a name
pointing to a magnetic tape file the commands:

f3=copy textl
f3=copy text2

have the effect that ’textl’ is output to the file and next the tape is
backspaced and ’text2’ output erasing the output just made. Contrary to
that the commands

tpe=copy textl
tpe=copy text2

will produce two paper tapes containing ’text1’ and ’text2’ respectively.
p pap p g P y

If the data for the binary algol program ’p’ is a backing storage area (or
a magnetic tape file) named ’pdata’ the commands

P pdata
P pdata

will yield the same output twice. Contrary to that the commands

p trf
p trf

cause two calls of the program with (usually) different input as each
command will request the operator to load the next of the user’s paper
tapes as input for the program.

The primary input and output files are maintained by BOSS as
unpositionable files i.e. one will never get the same part of the primary
input file twice during the job and the data written on primary output
will never overwrite earlier parts of the output.

System Utility, User’s Guide, Part One Page 9

2. Command Language

2.1 Meta Language

In the previous section we showed some examples of FP commands. In
this section we will describe the syntax of FP commands by means of a
modified Backus notation. The new meta-language element introduced
is

{ <string 1>)
{ ...)
{ <string N>)

With one or more strings above each other. The meaning is that any of
these strings may appear at this place in the construction. A sequence of
these strings in any order is denoted by:

{ <string 1>) a-b

(...)

{ <string n>)

where a and b give the minimum and the maximum number of strings in
the sequence. The symbol * in the place of b means just a large number
of times (determined by limitations in core storage or the like).

In the special case of a=0, b=1, the notation

[<string 1>]

[...]

[<string N>]

will be used.

2. Command Language

Page 10 System Utility, User’s Guide, Part One

2.2 Syntax for FP Commands

The syntax for legal FP commands will be described in words as well as
in the modified Backus form. In most cases the verbal explanation will
be a preliminary explanation of the meaning of the definitions given in
the modified Backus form. However, the sections 2.2.1 and 2.2.9 will
only be in verbal form, and the sections 2.2.7 and 2.2.8 will contain
explanations of terms which are context dependent and therefore
difficult to explain in the Backus form.

2.2.1 Basic Terms. Classification of Characters.

In the syntax to follow, the term letter will mean one of the letters a...4,
A..A, and digit will mean one of the digits 0...9.

A delimiter will be one of the special characters period (.) or slash (/). .

A bracket is either a right hand bracket or a left hand bracket, i.e. either

) or (.

A visible ISO character is either a NL, a SP, or a character within the
value interval 32 < character value < 127. All other characters with a
value < 128 are considered to be blind.

2.2.2 Comments, New Lines, Spaces and Separators
Two special syntactic elements may need a special discussion:

{ <NL>)
<new line> ::= { ;<text not containing NL><NL>)
{ *<text not containing NL><NL>)

which means that comments may be inserted between semicolon or
asterisk and newline. .

<s> ::= { <SP> J1-*
{ ,<text not containing NL><NL>)

which means that whenever one space is allowed, either a komma
possibly followed by some kind of comment may be used to divide a long
simple command into several text lines, or that several spaces may be
used. This may facilitate the reading of complicated commands.

A separator is either a new line, a space, a bracket, the equality sign, or

a delimiter.
{ <new line>)
{ <bracket>)
<separator> ::= { <s> }
{ - }
{<delimiter>)

2. Command Language

System Utility, User’s Guide, Part One Page 11
. 2.2.3 Command Reading and Brackets

Whenever the command reading is started, FP will input one command
terminated by a new line.

A command may be either one simple command or a sequence of
commands enclosed in brackets. New lines may be inserted in front of a
command or in front of closing brackets. Brackets may be nested.

<FP-input> ::= <command><new line>

<command> ::= (<new line>)}0-* {<simple command>)
{<compound command>)

<compound command> ::=
{<command>}1-* {<new line><command>)o0-* ,
{<new line>)0-*
2.2.4 The Simple Command
A simple command is the name of a program, possibly preceded by the
name of a result file as the left hand side of an equality, and possibly

followed by a list of parameters. Parameters are separated by spaces.

<simple command> ::= [<result file> =] <program> (<s><param>)}o-*

2.2.5 Result File Name and Program Name

The result file and the program are described by names, which consist of
at least one letter followed by at most 10 letters or digits.

<result file> ;.= <name>

<program> : i= <name>

. 0-10

<name> 1= <letter>{<letter>)
{<digit>)

2.2.6 Parameters and Modifiers

After the program name a set of parameters may follow. The
parameters are sequences of texts and/or integers concatenated with
delimiters. The possible part after a delimiter is called the modifier, a
term which is recursively defined. A parameter may consist of a single
integer or text item.

{ <text>)}
<param> ::= {) [<delimiter><modifier>]
{<integer>)

. <modifier> ::= <param>

2. Command Language

Page 12

2. Command Language

System Utility, User’s Guide, Part One

2.2.7 Texts

Texts may have several forms. They may be names starting with at least
one letter. They may be apostrophized names, which may start with a
digit, but where an apostrophe signals that a sequence of digits and/or
letters should be treated as a name. They may be generalized names,
which may start with a digit but should contain at least one letter not too
far from the start of the text. At last, texts may be general texts, where a
sequence of characters must be included in quotes. The character
sequence may contain capital, as well as small letters, digits, special
signs, and spaces, except quotes and NLs.

(<name>)
{<apostrophized name>)
<text> ::= (<generalized name>)
{ <general text> }

1-11
<apostrophized name> ::= ' (<letter>)
{<digit>)

<general text> ::= "<a sequence of at most 95
visible ISO characters neither
containing NL nor ">"

2.2.7.1 Generalized Names

A generalized name is a sequence of at most 11 letters and/or digits
containing at least one letter. The sequence of digits in front of the first
letter must not yield an apparent value > 16 777 215. The term apparent
value will be described below. The notion generalized name makes it
possible for FP to read names as e.g. 023sub5509 without requiring an
apostrophe.

2.2.8 Integers

Integers may be written as usual, i.e. in radix 10, as well as in other
radices. A radix is separated from the value to be used by means of a
colon. The digits to be used in integer reading must be sensible, i.e. they
must be less than the radix. Letters may be used as digits when for
instance hexadecimal (radix 16) integers are read. Integers may be
signed, but the sign must be placed in front of a possible radix. The sign
will be used on the resulting integer.

<integer> ::= [+ {{<radix>:)}0-* (<legal digit>)1-*)
[-

]
]

<radix> ::= {(<legal digit>}1-*

System Utility, User’s Guide, Part One Page 13

The terms legal digit and apparent value are dependent on the
implementation and on their context.

2.2.8.1 The Apparent Value

Integers are represented in 24 bits. Let the term the apparent value
mean the value that you get when reading a digit sequence. This
apparent value must not exceed 16 777 215. However, apparent values
>8 388 607 will be treated as negative integers, i.e. with a value
= -(16 777 216 - apparent value).

2.2.8.2 Legal Digits

A legal digit is a digit symbol with a value not exceeding the value of the
radix. A digit symbol is either a digit or a letter. The digits 0..9 have the
values 0..9, and the letters a..4 have the values 10..38. In integer reading,
the initial radix is 10, thus allowing precisely the digits 0..9 as legal digits.

2.2.8.3 Leading Zeroes

In principle leading zeroes do not distort the apparent value. However,
as the syntax accepts generalized names, a sequence of more than 11
digits not following a plus (+), a minus (-), or a radix symbol (:), will be
classified as an illegal generalized name.

2.2.8.4. Examples of Legal Integers

8388607 will be read as decimal + 8 388 607
-123456 - " . - 123 456
-16:f - " - 15
+16:ffffff - " - -1
-l16:.ffffff - " . +1

40:abc - " - + 16 452
100:a:8:12:123 -" . + 123
16777214 - " . -2

Note that in case of a faulty radix <=0, all digits and letters will become
illegal, thus the attempt of representing 83 as 16777206:123 will result in
a syntax alarm.

2.2.9 Modifications of the Syntax

In order to facilitate reading and typing of long and complicated
commands, the following five modifications of the principal syntax
described above have been included.

2.2.9.1 Blind Spaces

The separating syntactic entity <s> may be inserted freely in front of or
after names, texts, separators, and integers.

2. Command Language

Page 14

2. Command Language

System Utility, User’s Guide, Part One

2.2.9.2 Missing Unquote at the End of a Command

General texts may be terminated by a NL in stead of a terminating
quote. If a NL is used as terminator, the NL is considered to terminate
the general text as well as the (simple) command.

2.2.9.3 Missing Spaces in Front of Special Characters
A missing separator in front of a sign, an apostrophe, or a quote is
considered to be a space.

2.2.9.4 Missing Space after Unquote

A missing separator after a terminating quote of a general text is
considered to be a space.

2.2.9.5 FP Cancel

If a question mark (?) appears outside comments and outside general
texts, it will cancel everything that has been typed in the current
command, whether it is compound or simple. This is a way of getting out
of a bracket structure in online mode. FP will resume input immediately
after the question mark.

System Utility, User’s Guide, Part One Page 15

2.3 Semantics of FP Commands

The command (simple or compound) read by FP is stored in the FP
command stack (a part of the memory area for the job). Next the simple
commands are executed one by one. The simple command

[<result file> =] <program> <parameter list>

is executed as a call of the program named <program>. The program
will usually examine the simple command which caused the call of the
program in order to get the parameter list and find the name of a
possible result file.

The use of result file and parameters depends on the program in
question but as general rules we have:

Result file:

For most utility programs this name specifies an output file. If no file
with this name exists or if the file found is protected, an area on the
backing storage is created and used for the output. For some utility
programs (SET, ENTRY) the result file name specifies a catalog entry
which is to be created or changed. In the call of a translated
ALGOL/FORTRAN program the result file name has only the function
that it is available from the program by a suitable call of procedure
SYSTEM.

Parameter list:

The parameters in the parameter list specify input files, various modes
of operation for the program etc. For programs requiring text input (i.e.
compilers, assembler) we have the convention that input is taken from
current input if no input files are specified and otherwise from the
specified files. If the first parameter (following the program name) in
the call of a translated ALGOL/FORTRAN program is a single name
(not followed by a point), the file given by this name is used as current
input for this program (compile time option). If the parameter is a
single integer the program overwrites FP (Also compile time option, cf
(5), 10.3).

A translated ALGOL/FORTRAN program may examine the parameter
list by means of the procedure SYSTEM.

2. Command Language

Page 16

2. Command Language

System Ultility, User’s Guide, Part One

2.4 Format of the FP Command Stack

The FP command stack consists of items each containing a separator
and the succeeding name, text, or integer (if any).

The heading word of an item has the format:
<separator> shift 12 + <length>
The separator is an integer with the values
-4: -2: end of command list
0: 2: right hand (or end-) bracket

4: 6: left hand (or begin-) bracket
8: new line

space (<s>)
equality (=) .
periode (.) or slash (/)

The length is an integer with the values

0: 2: nothing follows (i.e. end command list)
4: 10: the next separator follows

an integer follows

8*n+10: a name, apostrophized named, or generalized name
follows
a general text follows (n =1, 2, ... , 7)

Integers are stored in 24 bit words, and names are stored as 8 bit

characters with 3 characters per word, supplemented with at least one
NUL character to fill up the item.

2.4.1 Example

The command .
pip = prog avs.2:11 2.muks "BIG ONE"

appears as follows in the FP command stack:

stacktop + 0: 2 shift 12 + 10 new line, name follows

+ 2: pip ; name, 4 words

+10: 6 shift 12 + 10 ; equality, name follows
+12: prog ; name, 4 words

+20: 4 shift 12 + 10 ; space, name follows
+22: avs ; name, 4 words

+30: 8 shift 12 + 4 ; period, integer follows

+32: 3 ; Integer, one word

+34: 4 shift 12 + 4 ; space, integer follows
+36: 2 ; integer, one word

+38: 8 shift 12 + 10 ; period, name follows
+40: muks ; name, 4 words

+48: 4 shift 12 + 18 ; space, general text follows.

System Ultility, User’s Guide, Part One Page 17

+50: BIG ONE ; general text, here: 8 words
+66: 2 shift 12 + 2 ; new line, nothing follows
+68: -4 shift 12 + 0 ; end command stack

The item which terminates the simple command (here new line) is not
available using the procedure SYSTEM in ALGOL/FORTRAN.

2.5 The Action on End Medium

Whenever an end medium character is encountered during command
reading, FP will unstack current input to the previously selected file and
resume input from here. No message will be issued during the
unstacking, if it performs smoothly. The end medium character is
considered to be blind. As usual unstacking the primary input file is
blind.

This rule has been implemented in order to take care of a missing end
terminating a currently selected input file. It may be used to augment
large commands ending with the construction ,<NL> or with an
open ended bracket structure.

2.6 The Action on Syntax Errors

Whenever a syntax error is found during command reading, FP will
issue a message which may take one of two forms, either

***fp syntax:

<at most 14 characters up to the error>
read from <the name of the input file>
unstacking to <the file which selected it>

or

***fp syntax:
<at most 14 characters up to the error>
read from primary input

If the syntax error has been found in a file which is not the primary
input file, FP will unstack the current input file, forget about what has
been read up to the error, and try to read from the previously selected
current input file.

If, however, the syntax error has been found in the primary input file,
and if FP has found at least 3 consecutive syntax errors, i.e. without
finding one syntactically legal command, the job will be terminated with
the alarm message

***fp job termination

Otherwise FP will read up to the next new line character, and start
interpretation from there.

2. Command Language

Page 18

2. Command Language

System Utility, User’s Guide, Part One

These rules have been introduced in order to prevent infinite looping in
error messages whenever edit commands or program texts are
accidentally selected as command reading files. On the other hand, if
syntactically correct commands have been read, the programmer should
not be punished by only being allowed a limited number of errors during
one session.

The mode bits OK and WARNING (see section 1.7.) are not affected by
syntax errors. They keep the value set by the previously executed
command.

System Utility, User’s Guide, Part One Page 19

3. Job and Operating System

3.1 Job And Parent

The phrase ’the operating system’ is somewhat ambiguous as several
operating systems may be present. A BOSS job may in fact act as an
operating system and start a "child’ job inside its own memory area.

We will use the term parent to denote the operating system for the job
considered.

3.2 Parent Messages

A job communicates with its parent by sending parent messages. A
parent message is sent when the job needs the help of the operator
(mounting of magnetic tapes etc.) or when an action from the parent is
needed (the job is through and to be removed, etc.).

Most parent messages are sent automatically by FP and the other
programs when needed (e.g. mounting of magnetic tapes), some parent
messages like

FINIS, MOUNTSPEC, TIMER, CONVERT

are sent by calling special utility programs. cf. (8) for a complete list of
the parent messages.

3.3 Job Start, Initialization of FP

At job start the parent inputs FP (or rather a part of FP) to the
foremost part of the job area and starts the initialization of FP with
information about primary input and output. During the initialization
of FP the job creates catalog entries named v and c describing the
primary input and output files respectively (if such entries are already
present at job start they are removed by the job, unless they point to the
proper files, in which case no new v and c are created). The initialization
ends by connecting the primary input and output files as current input
and output files and the FP command reading is entered.

3. Job and Operating System

Page 20

System Ultility, User’s Guide, Part One

The above initialization is activated by FP itself in case of

- troubles reading from primary input

- troubles writing on primary output

- troubles writing a device status alarm on current output, cf 4.5

- the job is restarted with an answer to a parent break message,
cf. 4.5

or forced by the command INIT.

If this reinitalization is done more than 10 times, the job is terminated,
sending a FINIS parent messages, cf. 3.4 or a ’troubles with ¢ or v’
parent message, cf. B.4.

At job start the parent imposes three catalog bases on the job: standard
base, user base and max base. These bases determine which files on the
backing storage the job may access and how the catalog entries created
by the job are placed in the catalog (ref. (7), 5.2).

The resource claims of the job are fixed at job start. The housekeeping
of the backing storage, message buffer and area process claims during
the job execution is done by the monitor (and the actual values may be
found in the monitor’s process description of the job process, cf. (2)).
The other resources are maintained by the parent all the time.

Before entering any program FP zeroes all modebits, except ’initmess’,
which is set ’true’, and ’bswait’, which is set ’true’ if the name of the
parent is ’s’, (in case of reinitialization "ok’ and ‘warning’ are set, cf. 4.2),
masks off the overflow/underflow interrupts (integer overflow, floating
point overflow/underflow) and removes area processes and pending
answers as mentioned in 4.5.

3.4 Job Termination

When the job is terminated by the FP command FINIS, the following
happens: the current output buffer is emptied, the entries v and ¢ are
removed and a ’finis’ message is sent to the parent. The finis message
causes BOSS to remove the job and afterwards scan the catalog and
remove all temporary catalog entries belonging to the job which just
finished. The operating system may remove the job without request
from the job (a time limit is exceeded, the job is killed by the operator
etc.). In this case BOSS performs a ’provoked break’ on the job (see
below). If the FP code is intact (which is normally the case) an error text
is printed on current output (***break 8) and a ’break’ message is sent
to the parent (alias BOSS) who removes the job.

3.5 Break Actions

In some severe error situations the FP break routine is entered. The
break routine outputs an error text on current output, empties the
buffer and sends a ’break’ message to the parent. When BOSS receives
the break message it makes a partial clearing after the job and if the job
has not used all of its run time and not read all of its primary input file

3. Job and Operating System

System Utility, User’s Guide, Part One Page 21

the job is restarted with a fresh FP (ref. (8), section 3.4). The error text
is:

***break <cause> (<instruction counter>)
(<break 10 reason>)

The integer <cause> explains why the break routine was entered:

cause = 0: Internal interrupt

Caused by attempt to execute an illegal instruction (may for instance
occur in an ALGOL/FORTRAN program with index error and
translated with ’index.no’).

cause = 2: Integer overflow
cause = 4: Floating point overflow/underflow

cause = 6: Parameter error in monitor call

This error is provoked by the i/o system if there are not ’enough
message buffers’ - it may also be caused by for instance a wrong
parameter to one of the monitor procedures in an undebugged code
procedure.

cause = §: Parent break
Breakpoint caused by the parent, cf. above.

cause = 10: Zone stack error

The break routine was entered because of troubles during stacking or
unstacking of a zone (cf. the next chapter). The zone stack error may
occur for various reasons. The most common is

***break 10 1

caused by resource limitations (lack of entries or segments on the
backing storage). In details we have the following possibilities:

reason = (:
The zone has too many shares - erroneous zone stacking in the utility
program.

reason = 1:
The job does not have the resources (entries or segments) on the
backing storage for stacking the zone.

reason = 2:
i/o troubles during zone stacking.

reason = 3:
The entire buffer area does not comprise a multiple of 512 storage
halfwords - erroneous zone stacking in the utility program.

reason = 4:
Same as reason = 3 but during a zone unstacking,

reason = 5:

The zone unstacking cannot proceed because a previously stacked zone
is not found in the catalog,

3. Job and Operating System

Page 22 System Utility, User’s Guide, Part One

reason = 6:
i/o troubles during unstacking of the zone.

3. Job and Operating System

System Utility, User’s Guide, Part One Page 23

4. The Execution of FP Commands

The reading and execution of FP commands are performed by the
command reading routine, the program loading and the program
termination routine in FP. By setting the mode bits the programmer
may modify the function of these routines in various ways.

4.1 Current Input and Output, Zone Stacking

The FP commands are read from the current input file. At job start,
after a break or by a reinitialization of FP, the primary input and output
files are selected as current input and output files.

The current input and output files may be reselected during the run (cf.
section 1.8). The selection of a new current input file by the I command
uses a zone stacking where the actual contents of the data buffer are
stored in an area on the backing storage (the stacked zone) before the
new file is connected. The reselection of the former file by the END
command is the opposite process - a zone unstacking - where the former
contents of the data buffer are restored from the stacked zone.

Many of the utility programs use zone stacking for internal purposes.
The programmer need normally not care for that, but if the resources
(entries and segments on the backing storage) needed for the zone
stacking are not present it may, however, result in a ’break 10’ in
unexpected situations.

The current input and output files are available for character input and
output respectively from ALGOL/FORTRAN programs via the
standard zones IN and OUT (cf. sections 1.2 and 1.8).

Warning: Block oriented input/output procedures (INREC, OUTREC)
or the procedures OPEN and CLOSE should not be applied to the
zones IN or OUT as this may have a serious influence on the function of
FP. If a certain file is wanted as current input while an
ALGOL/FORTRAN program is running, the file should be given as
parameter in the program call (cf. section 2.3). If a certain file is wanted
as current output the O command is at hand.

4. The Execution of FP Commands

Page 24

System Ultility, User’s Guide, Part One

4.2 The Mode Bits

FP contains 24 mode bits each of which has the value ’yes’ or 'no’. The
mode bits are numbered 0, ..., 23. They are set by the MODE command
and tested by the IF command. Furthermore FP sets some of the bits at
each program termination.

The bits with numbers 0 to 11 may be used by the programmer as ’flags’,
the other bits have special functions. These special mode bits have
names. At present the following special mode bits are in use:

bit 23: list
Governs the ’list mode’ of FP: In the list mode each FP command is
listed on current output just prior to execution (cf. section 4.4).

bit 20: pause
If this bit is ’yes’ the break routine of FP is entered after program
termination (cf. section 4.5).

bit 19: error
If this bit is 'yes’ and a program terminates unsuccessfully (with ’ok no’
or 'warning yes’), the FP break routine is entered (cf. section 4.5).

bit 18: ok

bit 17: warning
The ok and warning bits are set by FP at program termination reflecting
the success of the program just executed.

bit 16: if
Used internally by FP.

bit 15: listing

This bit is tested by assembler and compilers. If it is ’yes’ the source
program is listed unless ’list.no’ is stated in the FP command calling the
assembler (compiler).

bit 14: initmess

If this bit is 'yes’ and FP reinitializes itself, either because of the reasons
mentioned in 3.3 or forced by the command INIT, the FP version and
release identification is listed on primary output just after connection.

bit 13: bswait

If this bit is set, and the I/O system (FP or ALGOL/FORTRAN)
during output to a backing storage area needs extra disk resources, the
parrent message

bs <disk name> <segments> 0

will leave the wait bit set, i.e. the process will wait for the resources to be
given.

At job start and after a ’break’ all the mode bits have the value 'no’. The
mode bits ’ok’ and 'warning’ are set by FP at each program termination,

4. The Execution of FP Commands

System Utility, User’s Guide, Part One Page 25

the other mode bits may be changed by the MODE command. A call of
the command INIT, or a severe error which causes a reinitialization of
FP but not a ’break’, cf. 3.3, sets the ’ok’ and 'warning’ bits but the other
mode bits are left unchanged.

4.3 Command Reading

The FP command reading is entered at job start or whenever all the
simple FP commands read so far have been executed (command stack
empty). It proceeds as follows:

An FP command (simple or compound, cf. chapter 2) is read from
current input, syntax checked and stored in the FP command stack in
the job process.

The FP command stack pointer is set and the FP load program routine
is entered.

If an EM character is found during the command reading, the current
input file is unstacked and the command reading continued.

The FP action on syntax error is described in 2.6.

4.4 Program Loading
The FP program loading routine proceeds as follows:

The FP command stack pointer is upspaced and if the command stack is
exhausted, the command reading routine is entered.

The program name in the actual simple FP command is looked up in the
catalog and it is checked whether the file is a binary program file
(contents key, cf. section 5.3).

If the ’list bit’ is ’yes’ the command is listed on current output.

If the program name is found in the catalog to be a binary program, the
program is loaded into memory and entered.

If the program name is not found in the catalog, if the name does not
describe a program file or if the loading of the program causes troubles
(memory area suze too small, i/o troubles), an error text is printed on

current output and the FP program termination routine is entered
(instead of the program) as after an unsuccessful execution.

4.5 Program Termination
A program can terminate in four different ways:

1) Exit to the FP program termination routine.
2) Termination caused by hard error on a file (i/o troubles).

4. The Execution of FP Commands

Page 26

System Utility, User’s Guide, Part One

3) Exit to the FP break routine.
4) Exit to FP job finis.

In the two last cases the ’break’ or ’finis’ action as described in chapter 3
is performed and the FP code, which is currently in the job memory
area, does not return to normal operation: the parent may remove the
job or load a fresh FP.

In case of break, though, if an answer to the parent message is received
and the job is restarted, FP goes on to reinitialize itself. If ’error’ or
’pause’ is ’yes’, FP will exit from reinitialization via end program into FP
break routine again. If both bits are 'no’, FP will go from reinitialization
to command reading, cf. program termination routine below.

If the termination is caused by i/o troubles, an error text *** device
status... identifying the file and the error is printed on current output
and the FP program termination routine is entered with ’ok.no’ and
‘warning.yes’. (Hard errors on current input or output causes further
action before the program termination routine is entered).

The FP program termination routine has the following function:

The ’ok’ and ’warning’ bits are set as signalled by the program. If the
’pause’ bit is 'yes’ or if the ’error’ bit is 'yes’ and either the ’ok’ bit is 'no’
or the ‘'warning’ bit is ’yes’ the FP break action is entered.

Remark: The IF and MODE programs make an anomalous exit to FP
which bypasses the actions described so far.

The overflow/underflow interrupts are masked off.

A NULL character is printed on current output. If current output is
connected to a character oriented device (terminal, printer, punch), the
data buffer is output. If the current input zone has been stacked by the
program for internal purposes, the zone is unstacked. (The I program
tells that the current input zone should not be unstacked by setting the
I-bit’: bit 1 shift 0 in the give up mask’ in current input zone).

The area processes in the monitor are scanned. If the job is user of an
area process the area process is removed.

The event queue of the job process is scanned and pending answers not
belonging to the current input file are waited for. If the command stack
is empty, the FP command reading else the FP load program routine is
entered. (The terms: area process, event queue, answer are explained in

(1) and (2)).

4.6 Resource Requirements

The File Processor needs a minimum memory area of 3640 storage
halfwords (plus space for the command, at least 10 halfwords, cf. 2.4.1)
in order to be able to operate. The memory area is used as follows:

4. The Execution of FP Commands

System Utility, User’s Guide, Part One Page 27

2616 storage halfwords are occupied by the resident FP code, buffers for
current input and output and ’process descriptions’ for primary input
and output.

A variable part (usually small) is used for the command stack.

1024 further storage halfwords are used by FP between execution of the
programs.

When a program is executed, a storage area of the size:
job size - 2616 - command stack size

is available for the program. This storage area must be at least 1024
halfwords.

Besides storage area the programs and FP need other system resources
like message buffers, area processes, segments and entries on the
backing storage etc. Note that many utility programs perform one or
several zone stackings each of which uses an entry and one or two slices
on backing storage.

The standard resources of a BOSS job are usually chosen to be enough
to execute any of the utility programs.

4. The Execution of FP Commands

Page 28 System Ultility, User’s Guide, Part One

4. The Execution of FP Commands

System Utility, User’s Guide, Part One Page 29

5. References to Files

5.1 Document Name of a File

All data transfers in RC9000-10 are under supervision of the monitor:
the transfer of a data block is initiated by a call of the monitor
procedure ’send message’ and the completion of the transfer is awaited
by a call of the monitor procedure ‘wait answer’. An ’i/o message’ sent
by a ’send message’ is addressed to a process which is so to say the
monitor’s representative of the data file. The i/o messages are sent
automatically by the i/o system. The name of the process (representing
the data file) is called the document name of the file.

Corresponding to the different types of peripheral equipment, the
monitor has various types of processes: the line printer corresponds to a
process named ’printer’, the paper tape reader to a process named
'reader’, the paper tape punch to a process named ’punch’, the console
and terminals to processes with names like ’consolel’, ’terminal3’,
‘Ohenrik31’ etc. A magnetic tape station corresponds to a process
carrying the same name as the magnetic tape reel, which is currently
mounted on the station.

The backing storage is treated in a special way because one single device
(a logical disk) is divided into several files (data areas). An area on the
backing storage is identified by its name and this area name becomes
the document name when the area is used for input/output: the i/o
system prepares the access to the area by calling the monitor procedure
‘create area process’ with the area name as parameter. This results in an
area process to which the i/o messages are addressed.

Remark: Each logical disk has a name which distinguishes it among
other logical disks. This name is of interest to the programmer in other
connections, for instance when a new area is created. The use of the
term ’document name’ in the monitor manual to denote this device
name should not be confused with the above concept of document name
for a file.

5.2 File Descriptor, File Name

The software has two i/o systems, the ALGOL/FORTRAN i/o system
and the FP i/o system. The first one is used by translated

3. References to Files

Page 30

5. References to Files

System Utility, User’s Guide, Part One

ALGOL/FORTRAN programs, the second one by FP itself and the
assembler coded utility programs. The two i/o systems differ in the way
the programmer has to specify files.

The information needed in order to connect a file forms a file
descriptor. It includes (among other things) the document name of the
file.

When a file is connected by the FP i/o system, the file name is used to
specify the file (cf. chapter 1). This file name is the name of a catalog
entry containing the file descriptor for our file. The use of the catalog
entry is described in section 5.5.

When an ALGOL/FORTRAN program connects a file, the document
name is given in the list of parameters (or in the zone) to the
procedures OPEN and SETPOSITION.

5.3 The Constituents of a File Descriptor

Document name:
The significance of this name is explained above.

Kind:

This integer selects the actions to be taken by the i/o system when the
file is connected, when the use of the file is terminated and if special
situations should occur during a data ransfer (see the next chapter for
further details). Each kind corresponds roughly to a type (or a class of
types) of peripheral equipment.

Mode:

This integer specifies a certain hardware mode (e.g. density on magnetic
tape, blind input form a terminal) or a code conversion (e.g. conversion
from flexo to ISO code by paper tape input). The mode is a part of the
i/o message which starts the transfer of a data block and the mode
specified is contained in each i/o message.

File count:

Integer, relevant for magnetic tape only. A magnetic tape reel is divided
into files numbered 0, 1, 2, ... by tape marks. Usually the file number 0
contains an ISO label identifying the tape reel ref. (7), 6.1.

Block count:

Integer, relevant for backing storage and magnetic tape. The blocks are
numbered 0, 1, 2, 3... By specifying a block count different from zero, the
’subfile’ starting at this block is obtained.

Contents key:
Integer, specifying the intended use of the contents of the file (e.g. text
file, binary program etc.). A list of the values is given in appendix B.3.

Entry point:
Integer, relevant for binary programs only. Specifies the entry point
address relative to the start of the program.

System Utility, User’s Guide, Part One Page 31

Load length:

Integer, specifies for a binary program the number of halfwords which
should be loaded into memory before the program is entered (for a
program using segmentation only a part of the program needs to be
loaded).

The combination of mode and kind is called the mode-kind. For each
kind only certain modes can be used. The commonly used modekinds
are listed in appendix B.1.

5.4 Catalog Entries

The monitor maintains a file catalog on the backing storage. This
catalog is itself a backing storage area named ’catalog’ and consists of
records called catalog entries. Changes in the catalog i.e. creation,
change or removal of catalog entries are done by the monitor on request
from internal processes (e.g. the job, BOSS) calling the special monitor
procedures ’create entry’, ‘change entry’, ‘rename entry’, ‘remove entry’
etc. The use of these ’catalog procedures’ are subject to certain
restraints as described in (1), (2) and (7).

A catalog entry consists of a 7 word entry head and a 10 word entry tail:
when a catalog entry is created or changed, the name and the entry tail
is specified (and based on this, the monitor computes the entry head).
The utility programs SET, SCOPE, a.o. create or change catalog entries
by calling the relevant monitor procedures. The entry name and tail in
these monitor procedure calls are taken from the parameters in the SET
or SCOPE command.

By means of the sign of the first word in the entry tail, the monitor
distinguishes between two types of catalog entries. If the first word is
non-negative the entry is an area entry, otherwise the entry is a non-area
entry. The area entries are used by the monitor in the management of
the backing storage. Each area entry defines a data area where the size
and physical location is determined by means of the entry head and the
first five words of the entry tail. The first word in the entry tail contains
the number of segments in the area, the next four contains the name of
the logical disk on which the area is located.

5.5 Formation of the File Descriptor

The connection of a file by the FP i/o system starts with a catalog
lookup for the file name. The tail of the entry found is used to form the
file descriptor as follows:

a) Document name, mode, kind:

al) Area entry. If the entry is an area entry the file name is used as
document name and the values
mode=0, kind=4
as mode-kind. This means simply that we are going to connect the
data area determined by the area entry.

5. References to Files

Page 32

5. References to Files

System Utility, User’s Guide, Part One

a2) Non-area entry: Document name, mode and kind are taken from ’
the first five words of the entry tail as follows:
word 1 : 1 shift 23 + mode shift 12 + kind
word 2-5: document name
b) The rest of the file descriptor:
The rest of the file descriptor is determined by word 6-10 in the
entry tail. The use of this part of the entry tail depends on the
value of the left byte of word number 9 (the contents key)
bl) Contents key <> 4 and < 32:
word 6 : not used
word 7 : file count
word 8 : block count
word 9 : contents key shift 12 + entry point
word 10: 1load length
b2) Contentskey = 4 or > = 32: ‘
The file is an ALGOL/FORTRAN procedure.
The values
file count = block count = 0
are used. Entry point and load length are irrelevant, as FP does
not interpret the file as a program file. The five last words in the
entry tail are used (by the ALGOL/FORTRAN compilers) as
follows:
word 6 : procedure code entry specification
word 7-8: procedure parameter specifications
word 9 : contents key shift 12 + start ext. list
code segm. shift 12 + halfs in own memory
word 10 : area.
Further details are found in (4). .
5.6 Entry Tails
By collecting the information above, we find that there are four types of
entry tails:
1. Area entry, not ALGOL/FORTRAN procedure:
word 1 : number of segments in the area
word 2-5 : name of logical disk
word 6 : shortclock
word 7 : file count
word 8 : block count
word 9 : contents key shift 12 + entry point
word 10 : load length

System Utility, User’s Guide, Part One

Page 33

Remark: The area entries are characterized by word 1 > = 0. The name
in word 2-5 is not used by FP when the file is connected, but the entry
name is used as document name. The value of contents key is <> 4 and

< 32.

II. Area entry describing ALGOL/FORTRAN procedure:

word 1
word 2-5
word 6
word 7-8
word 9
word 10

number of segments in the area

name of logical disk

procedure code entry specification

procedure parameter specifications

contents key shift 12 + start ext. list

code segments shift 12 + halfs in own memory
area

Remark: Further details are given in (4).

III. Non-area entry, not ALGOL/FORTRAN procedure:

word 1
word 2-5
word 6
word 7
word 8
word 9
word 10

1 shift 23 + mode shift 12 + kind

: document name
: not used

file count

: block count
: contents key shift 12 + entry point

load length

IV. Non-area entry describing ALGOL/FORTRAN procedure:

word
word
word
word
word
word

O NN

1 shift 23 + mode shift 12 + kind

document name

procedure code entry specification

procedure parameter specification

contents key shift 12 + start ext. list

code segments shift 12 + halfs in own memory
area

5. References to Files

Page 34 System Utility, User’s Guide, Part One

5. References to Files

System Utility, User’s Guide, Part One Page 35

6. The FP Input/Output System

6.1 Text Files and EM Characters

The i/o system is concerned with the proper transfer of the data only,
and not with the meaning of the contents of the data blocks. This fact is
important in dealing with text files, where the appearance of an EM
character signals the end of the text. As the i/o system does not examine
the individual characters, the EM character does not cause any ’end text
signal’ from the i/o system but the program which is processing the text,
has instead to discover the EM character by inspecting each character in
the input.

An EM character need not be present, but the file may instead just
finish (e.g. file mark on a magnetic tape). In this situation the i/o system
simulates the input of a data block containing an EM character and in
this way the program still gets the proper information about the text
end.

The utility programs write a terminating EM character in text files on
backing storage or magnetic tape but not in text files on other media. It
is advisable to do so whenever the output of a text file is terminated.

6.2 Connection of a File

The connection of a file is based on a file descriptor (obtained from the
file name as described in the previous chapter). The connection includes
initialization of various tables (zone and share descriptions) and some
sort of initialization of the process associated to the file. The i/o system
is able to operate under the primitive operating system s as well as the
advanced operating system BOSS. In the latter case some of the devices
(terminals, tape reader, card reader, line printer) are spooled and the
'i/o conversation’ goes via pseudoprocesses (ref. (2), 2.80). The i/o
system is suited to deal with this type of processes too.

The connection proceeds according to the kind specified in the file
descriptor:

Kind = 0:

(Internal process). The maximum buffer length is set to 512 halfwords
(768 characters) and the existenc e of the process is checked.

6. The FP Input/Output System

Page 36

System Utility, User’s Guide, Part One

Kind = 2:
(Clock process). Not allowed.

Kind = 4:

(Backing storage area process). The maximum buffer length is set to 512
halfwords (768 characters). If the process is not already present, the
area process is created. The connection may also, depending on the
circumstances, include creation of the area.

kind = 6:

(Disk process). As for area process, except no area or area process is
created. Instead the existence of the disk process with executing process
as user is checked.

Kind = 8:
(Terminals). The maximum buffer length is set to 104 halfwords (156
characters) and the existence of the process is checked.

Kind = 10:

(Paper tape reader). The maximum buffer length is set to 36 halfwords
(54 characters). The process is reserved and input messages are sent
until ’empty reader’ is sensed. Then a ’load reader’ message is sent to
the parent and the mounting of the tape is awaited by attempting a
block input once every second until a non-empty block is obtained. If the
reader was reserved by another process, a ’wait for reader’ message is
sent to the parent and the job awaits the reader by making an attempt to
reserve it once every second until the reservation is successful. (Under
BOSS the major part of these actions are dummy).

Kind = 12:

(Paper tape punch). The maximum buffer length is set to 80 halfwords
(120 characters). The process is reserved and 100 NULL characters
(blank tape feed) are output.

Kind = 14:
(Line printer). The maximum buffer length is set to 80 halfwords (120
characters) and the process is reserved.

Kind = 16:

(Card reader). The maximum buffer length is set to 80 halfwords (120
characters). Apart from that the connection proceeds as for kind = 10
(paper tape reader).

Kind = 18:

(Magnetic tape). The maximum buffer length is set to 512 halfwords
(768 characters) and the process is reserved. If the process is not
available for the job, a ‘'mount tape’ message is sent to the parent. If the
file is to be used for output and the tape is not write enabled, a write
enable message is sent to the parent. Finally a ’set mode’ and a ’position’
message is sent to the process -the latter starts the positioning to the file
and block count given in the file descriptor.

6. The FP Input/Output System

System Utility, User’s Guide, Part One Page 37

6.3 Termination of the Use of a File

When the use of a file is terminated, the process is released in order to
make it available to others, and the area process (if any) is removed in
order to retain the area claims. On a punch (kind = 12) a tape feed of
100 NULL characters is output. For magnetic tape output two tape
marks are written after the last block and the tape is positioned after the
first one.

Note that a ’release message’ is not sent to the parent when a magnetic
tape file is terminated and hence BOSS (if it is the parent) will keep the
magnetic tape on the station so that a new mounting is not needed if the
tape is used later in the job. The release message to the parent may be
sent by a RELEASE command. In this way the station is made available
for mounting of another tape reel (cf. (7), 6.1).

6.4 Data Transfers, Status Word

When the transfer of a data block is checked, the outcome of the
transfer is expressed by the number of storage halfwords transferred and
a 24 bit status word. The 12 leftmost status bits are generated by the
monitor which takes most of the bits directly from the hardware, the
other bits are generated by the i/o system. The two i/o systems
(ALGOL/FORTRAN and FP) use the same status bits ((5), chapter 2).

The meaning of the bits is as follows:

1 shift 23:
(Intervention). The device was in the local mode.

1 shift 22:
(Parity error). A parity error was detected during the transfer.

1 shift 21:
(Timer). The operation was not completed within a certain time defined
by the hardware or the monitor.

1 shift 20:
(Data overun). The RC9000-10 system bus was overloaded and could
not transfer the data.

1 shift 19:
(Block length error). A block input from magnetic tape was longer than
the buffer area allowed for it.

1 shift 18:

(End of document). Means various things on the different types of
devices: data transfer outside the backing storage area was attempted,
the end of tape reel was sensed on magnetic tape, the paper tape reader
was empty, the paper tape was exhausted on the punch, the paper supply
was low on the printer, the input hopper was empty on the card reader.

6. The FP Input/Output System

Page 38

System Utility, User’s Guide, Part One

1 shift 17:
(Load point). The load point was sensed after an operation on magnetic
tape.

1 shift 16:

(Tape mark or attention). The attention/escape key was pushed during
i/o to the terminal, a tape mark was sensed or written on the magnetic
tape.

1 shift 15:
(Writing enabled). The magnetic tape was write enabled.

1 shift 14:
(Mode error). A wrong mode (density) was selected on the magnetic
tape station.

1 shift 13:
(Read error). I/O error on disk or read error on the card.

1 shift 12:
(Card rejected). The card was rejected by the card reader.

1 shift 11:
(Checksum error). Checksum error detected by the invar/outvar system.

1 shift 10:
(Bit 13). Not used.

1 shift 9:
(Bit 14). Not used.

1 shift 8:

(Stopped). Less than wanted was output to a file of any kind or no data
was input from a backing storage area or disk process. The bit appears
for instance if the job was stopped (swopped) during the data transfer.

1 shift 7:

(Word defect). The number of characters transferred to or from a
magnetic tape is not divisible by the number of words transferred, i.e.
only a part of the last word was transferred.

1 shift 6:

(Position error). The position on the magnetic tape (file and block
count) reported by the monitor differs from the position expected (e.g.
an unexisting position was specified in a positioning, by mistake the
magnetic tape was used for two purposes at the same time and the
present one was output).

1 shift 5:

(Process does not exist). The document name does not correspond to
any process. For backing storage this may indicate that the area does
not exist or that the job does not have the resources to create the area
process (area claim too small).

1 shift 4:
(Disconnected). The power on the device was switched off.

6. The FP Input/Output System

System Utility, User’s Guide, Part One Page 39

1 shift 3:
(Unintelligible). The operation attempted is illegal on that device (e.g.
input from a printer).

1 shift 2:

(Rejected). The job is not allowed to use the process as it should be
reserved first (the device was not claimed in the job specification, the
area is protected against output from the job. Can also occur if the file
by mistake was used for two purposes at the same time and then
released by the termination of one of the uses).

1 shift 1:

(Normal answer). None of the status bits 1 shift 5 to 1 shift 2 are set, i.e.
the monitor has accepted the operation and the device has attempted to
execute the operation.

1 shift 0:
(Give up). The standard recovery actions could not succeed, i.e. hard
error on the transfer.

If a hard error on a file causes a program termination, a ’device status’
error text containing the status word of the unsuccessful transfer is
printed. The status bits are given by the labelling texts in the brackets
above (the bits 1 shift 1 and 1 shift 0 are ignored in printing the error
text).

If the error is caused by hardware malfunction, the FP end program
routine reports the error not only to the programmer (by the ’device
status’ text) but also to the parent by sending a ’status’ message. The
parent may then attend the operator (BOSS displays the status message
on the main console).

6.5 Standard Recovery Actions

The FP I/O system has a standard recovery routine which is entered if
an anomalous status word appears. The recovery proceeds according to
the kind specified. All situations not covered are treated as hard errors.
A hard error causes the FP i/o system to give up, i.e. termination of the
program and output of an error text on current output (see above). If
the hard error is on the current input or output file, special measures
are taken before the error text is output (cf. section 6.6).

Kind = 0:

Intervention: Ignored.

End of document during input: Ignored.

End of document during output: A ‘change’ message is sent to the
parent. Upon the receipt of the answer from the parent, the remaining
part of the data block is output.

Stopped: The remaining part of the data block is transferred.

Kind = 4:

(Backing storage area).

Data overrun: The transfer is repeated.

End of document during input: If nothing has been transferred, the
input of two halfwwords containing three EM characters is simulated,

6. The FP Input/Output System

Page 40 System Ultility, User’s Guide, Part One

else the bit is ignored. @
End of document during output: The area is erlarged and the transfer is
repeated. If the area cannot be enlarged because of empty claims for the

disk, a parent message

bs <disk name> <segments> 0

is sent, specifying the size of the expansion tried. If the mode bit ’bswait’
is set, the wait bit of the parent message is set, giving the user an
opportunity to add to the disk claims of the process before starting it
again.

Stopped: If the end document bit is not present, the remaining part of
the data block is transferred.

Process does not exist: The area process is created and furthermore
reserved if the operation is output. After this the transfer is repeated.
Rejected during output: The area process is reserved and the transfer is
repeated.

Rejected during input: Hard error.

Kind = 6: o
(Disk process).

Data overrun: The transfer is repeated.

End of document during input: As for area process.

End of document during all other operations: Hard error.

Stopped: May appear at all operations. The operation is repeated except
if it has been overruled by the end of document action or the two actions
below.

Process does not exist: An area process is created and the action
proceeds as for area process.

Rejected: If the disk process does not exist or the calling process is not a
user, it is a hard error. If the operation is initialize, cleantrack or output
the disk process is reserved for exclusive access. If this is not possible it
is a hard error. Now the operation is repeated.

Note that if the process does not exist, an area process will be created
only if an entry of the process name exists in the main catalog. If not so,
it is a hard error.

Kind = 8:

(Terminals). .
Timer during input: Ignored.

Tape mark or attention (attention/escape key pushed): Ignored as the

action on the stopped bit triggers the necessary repetition of the

transfer.

Stopped: The transfer of the remaining part of the data block is

repeated.

Kind = 10:

(Paper tape reader).

Intervention: Ignored.

Parity error: Ignored. (The monitor replaces the invalid character by a
SUB character).

End of document: If the number of halfwords transferred is zero, the
input of an EM character is simulated.

Load point: Ignored.

Tape mark or attention: Ignored.

Read error: Ignored

Card rejected: Ignored. .

6. The FP Input/Output System

System Utility, User’s Guide, Part One Page 41

Kind = 12:

(Paper tape punch).

Intervention: Ignored.

End of document: A ’change’ message is sent to the parent.

Upon the receipt of the answer from the parent, the remaining part of
the data block is output.

Stopped: If the end of document bit is not present, the remaining part of
the data block is output.

Kind = 14:
(Line printer).
Same actions as for kind = 12.

Kind = 16:
(Card reader).
Same actions as for kind = 10.

Kind = 18:

(Magnetic tape).

Intervention: Ignored.

Parity error: The tape is repositioned and the operation is repeated up
to five times. In case of output the bad spot on the tape is erased.

Data overrun: Treated as parity error (no erase).

Block length error: Treated as parity error (no erase).

Load point: Ignored.

Tape mark: The expected position on the tape is recalculated as the
tape mark may indicate shift to another file, and next the position error
bit is recalculated by comparing the position obtained with the one given
by the monitor. If a tape mark is read, the input of an EM character is
simulated.

Writing enabled: This bit is checked during the action on the stopped bit
but does not in itself cause any special action.

Stopped: If the writing enabled bit is set (tape write enabled) the output
transfer is repeated. Otherwise a write enable message is sent to the
parent and the mounting awaited. When the answer from the parent is
received the process is reserved, the tape is positioned and the transfer
is repeated.

Word defect: Treated as parity error (no erase).

Position error: Not output: as parity (no erase).

Output: Hard error if anything was transferred (but the presence of the
tape mark bit may cause a recalculation of the position which removes
the error). If nothing was transferred, the action is as for parity.

Process does not exist: A 'mount tape’ message is sent to the parent.
When the answer is received, the process is reserved, the tape is
positioned and the transfer is repeated.

Rejected: The process is reserved and the operation is repeated.

If anything goes wrong during a recovery action (reservation impossible,
area claim exceeded, no segments available for extension of the area,
etc.), the error is classified as a hard error.

Some of the utility programs have private recovery actions different

from the standard ones (especially programs dealing with files which are
not text files).

6. The FP Input/Output System

Page 42 System Utility, User’s Guide, Part One

6.6 Errors on Current Input or Output

Hard errors on current input or output are treated in a special way
because of the key role played by these files.

Hard error on the current input file:

The primary output file is selected as current output file. The ’device
status’ error text is printed. The primary input file is selected as current
input file and the chain of stacked current input zones is abandoned.
The remaining part of the FP command stack (if any) is skipped.

Hard error on the current output file:
The primary output file is selected as current output file. The ’device
status’ error text is printed.

Hard error on the primary input or primary output file:
FP reinitializes itself, cf. 3.3. o

6. The FP Input/Output System

System Utility, User’s Guide, Part One

Appendix A. References

Page 43

Part numbers in references are subject to change as new editions are
issued and are listed as an identification aid only. To order, use package
number.

1)

2)

3)

4)

5)

6)

7

8)

For RC8000:
Monitor, Part 1 System Design

For RC9000-10:
RC9000-10 System Software
Part of SW9910I-D, System Overview

For RC8000:
Monitor, Part 2 Reference Manual

For RC9000-10:
Monitor Reference Manual
Part of SW98901-D, Monitor Manual Set

Monitor, Part 3 Definition of External
Processes

Code Procedures and Run Time Organization
of ALGOL Programs

ALGOLS8 User’s Manual, Part 1
Part of SW8585I-D, Compiler Collection
Manual Set

ALGOL 8 User’s Guide, Part 2
Part of SW8585I-D, Compiler Collection
Manual Set

BOSS User’s Guide
Part of SW81011-D, BOSS Manual Set

Parent Messages in BOSS
Part of SW81011-D, BOSS Manual Set

PN: 991 03577

PN: 991 11255

PN: 991 03588

PN: 991 11259

PN: 991 03435

PN: 991 11296

PN: 991 11279

PN: 991 11280

PN: 991 11275

PN: 991 11277

Appendix A. References

Page 44 System Utility, User’s Guide, Part One

Appendix A. References

System Utility, User’s Guide, Part One Page 45

Appendix B. Tables

B.1 Mode-kinds

The list contains the commonly used mode-kinds together with the
abbreviations used by the ENTRY, SET, LOOKUP and SEARCH

programs.
Abbr. Mode Kind Use of the mode-kind
ip 0 0 i/o via internal process
bs 0 4 backing storage
tw 0 10 typewriter
tro 0 10 tape reader, odd parity
tre 2 10 tape reader, even parity
trn 4 10 tape reader, no parity
trf) 10 tape reader, flexo code
trz 8 10 tape reader, no parity, nulls read
tpo 0 12 tape punch, odd parity
tpe 2 12 tape punch, even parity
tpn 4 12 tape punch, no parity
tpf 6 12 tape punch, flexo code
tpt 8 12 tape punch, teletype code
lp 0 14 line printer
crb 0 16 card reader, binary
crd 8 16 card reader, decimal
crc 10 16 card reader, EBCDIC
mté62 mtlh mto 0 18 mag.tape, 6200 bpi, GCR, or low speed, high density, odd
mte 2 18 mag. tape, low speed, high density, even
mt16 mtll nrz 4 18 mag. tape, 1600 bpi, PE, or low speed, low density, odd
nrze 6 18 mag.tape, low speed, low density, even
mt32 8 18 mag.tape, 3200 bpi, PE
mt08 12 18 mag.tape, 800 bpi, NR2
mthh 128 18 mag.tape, high speed, high density
mthl 132 18 mag.tape, high speed, low density

Appendix B. Tables

Page 46

System Ultility, User’s Guide, Part One

B.2 Standard File Names and File Descriptors

The software may be expanded with a number of standard file names
corresponding to commonly used files on peripheral devices. A standard
file name is the name of a catalog entry containing a file descriptor (cf.
chapter 5) of the file in question. The standard file names may be set up
by any job, and they presume that the peripheral devices have the
standard names e.g. reader, printer, punch, as it is normally the case.
Most of the standard file names coincide with modekind abbreviations
but this does not cause any conflict as the use of the mode-kind
abbreviations is ’a private agreement’ between the four programs SET,
ENTRY, LOOKUP and SEARCH.

At present the following standard names may be set up:

File name documentname mode kind mode-kind abb.

term terminal 0 8 tw

tro reader 0 10 tro
tre reader 2 10 tre
trn reader 4 10 trn
trf reader 6 10 trf
trz reader 8 10 trz
tpo punch 0 12 tpo
tpe punch 2 12 tpe
tpn punch 4 12 tpn
tpf punch 6 12 tpf
tpt punch 8 12 tpt
lp printer 0 14 lp

crb cardreader 0 16 crb
crd cardreader 8 16 crd
crc cardreader 10 16 crc

Appendix B. Tables

System Utility, User’s Guide, Part One Page 47

B.3 Contents Keys

10
11
13
14
15

16
17
20
21
22
23
29
30
31
>=32

Text file

Card text

Binary program to be loaded by FP i.e. a utility
program, a translated ALGOL/FORTRAN program etc.
Directly executable program. FP itself is of this
type.

Translated ALGOL/FORTRAN procedure.

Stacked zone (cf. section 4.1).

Program file in logical blocks with the block
length in the first word of each logical block.
Dumped core area.

‘Self contained’ binary program, i.e. a program
which can be loaded by FP, instead of FP, as well
as instead of s. The program BOS, which is loaded
when BOSS is started, is of this type.

Virtual core in ALGOL, initialized context data.
Files written by ACP or FTS.

COBOL, object program.

COBOL, data file.

Update mark in RC8000 SHIPPING

Program to be loaded by the RC8000 loader/paging
system.

RTP 3502 files

Reserved by GIER simulator.

Files belonging to the bs-system,

Files belonging to the sq-system

Files belonging to the isq-system.

Files belonging to the sys80 system.

CMCL files, RC8000 TAS

Files compressed by the program lib

Reserved for various installations.

Reserved for special purposes in the ALGOL/FORTRAN
system.

Appendix B. Tables

Page 48

Appendix B. Tables

System Utility, User’s Guide, Part One

B.4 Error Messages

The list contains only the error messages from FP itself. An error
message from a utility program has the form

¥** <program name> <text>

The meaning of the error text is found in the description of the
program.

FP can output the following error messages:

***break <cause> <instruction counter/break 10 reason>

The break routine of FP was entered because of some severe error (see
list of causes in section 3.5). BOSS restarts the job with a fresh FP and
continues with the next line in the job file. With the operating system ’s’
you may just restart the process, and FP will reinitialize itself.

*breakpoint <testoutput>
Private test output from a utility program. The program continues after
printing of the test output.

***device status <document name > <status word >

Hard error on the file specified. The status bits are given by text lines
(cf. section 6.4). The actual program is terminated with ’ok no’ and
‘warning yes’. If the file is the current input file, the current input and
output files are switched back to the primary input and output files. If
the file is the current output file, the current output file is switched back
to primary output. If the file is primary input or primary output file, FP
reinitializes itself up to 10 times before giving up and sending a FINIS
message.

***fp call <program>
The name specified was not the name of a program file (cf. section 4.4).
FP continues with *ok no’ and *warning yes’.

***fp cancel

A line was cancelled during the command reading because of the
appearance of a CAN character (cf. section 2.2). FP continues the
command reading.

***fp connect <program>
The program file could not be connected (cf. section 4.4). FP continues
with ’ok no’ and "warning yes’.

***fp init troubles

In the FP initialization (or reinitialization) the creation or connection
of/to the files ¢ or v could not succeed and the job is terminated. For a
BOSS job the error message is displayed on the main console (the error
message is actually a parent message).

***fp job termination
The job was terminated because 3 syntax errors in sequence were found
in the input to FP, or FP reinitialized itself 10 times.

System Ultility, User’s Guide, Part One Page 49

***fp name <program>
The program name was not found in the catalog (cf. section 4.4). FP
continues with "ok no’ and ’warning yes’.

***fp reinitialized

The FP initialization was entered because of some severe error, as a
result of the command INIT or because the job was answered and
restarted after a break. (cf. sections 3.3 and 4.5).

**+fp size <program>

The memory area could not hold the program or the entry point was
outside the program (cf. section 4.4). FP continues with ’ok no’ and
‘warning yes’.

***fp stack <last few characters input>
Overflow of the FP command stack.

***fp syntax <last few characters input>
Syntax error in the input to FP cf. 2.6.

***fp troubles withcorv

The job was terminated because

- of hard error on current input and FP reinitialized itself more than
10 times

- troubles with creating or connecting the file ¢ (primary output)
when writing a "device status" alarm, and FP reinitialized itself more
than 10 times. For a BOSS job the message is printed on the main
console.

Appendix B. Tables

Page 50 System Ultility, User’s Guide, Part One

Appendix B. Tables

System Ultility, User’s Guide, Part One Page 51

Appendix C. Index

The entries below refer to chapter or section numbers.

area (on backing storage) 1.6, 5.1
area process 5.1

area entry 5.4, 5.6
attention 6.4
backing storage 1.1, 1.6, 5.1
backing storage area 1.6, 5.1
block count 5.3
block length error 6.4
break 3.5
break message 3.5
breakpoint B.4

c .3

call of program 3, 4.4

card reader

card rejected
catalog

catalog base
catalog entry
change message
checksum error
claims

command reading
command stack
compound command
connection of a file
contents key
current input
current output

ol
w

HEFUAENDRFEFWOAORULVWLWUOOH W
~
W

MR WNULPWWALDWE S
P
o

=
<o
o

w
[

data area
data overrun
device status
disk
disconnected
drum
document name

G - -

HaPOREO
woow
-

EM character

end of document
entry (in catalog)
entry head

entry point

error

oo ouoo o
WS
(S,

(o))

file
file count
file descriptor

w0 =
w w N

Appendix C. Index

Page 52

Appendix C. Index

file name
finis message

head (of entry)

i-bit

in

initmess bit
intervention

job file
job start
job termination

kind

line printer
list bit
listing bit
load length
load message
load point

mode

mode bit

mode error
mode-kind
mount message

non-area entry
Ok-bit

out
overflow

paper tape punch
paper tape reader

parent

parent message
parameter list
parity error
pause bit
position error
precision mode
primary input
primary output
primout

process does not exist

read error
rejected
release message

shortclock
stack zone
status

status bit

System Ultility, User’s Guide, Part One

w

[9)]

w

N O

)]

[e AR NNV, B S R = e} w W = (oA N0 Sl P S
&N s L s o0

AL OoONPE O

w =

A HEFEWOARAOANWWOON N
&~ e PEPRORONWEDNONNON -

O
~ oo

o~

-

w

&~

wu U

w

System Utility, User’s Guide, Part One Page 53

status word 6.4
stopped 6.4

tail (of catalog entry) 5.6

tape mark 5.3

tape mark or attention 6.4
terminal 6

text file 6.1, B.3
timer 6.4
underflow 3.3, 4.5
unintelligible 6.4

v

warning bit

word defect

writing enabled
write-enable-message

Ao P W
NP W

Appendix C. Index

System Utility, User's Guide, Part One
PN: 991 11 263

