° RC9000-10/RCS000

SW8010 System Utility
User’s Guide, Part Two
®
e RC Computer

Keywords:
RC9000-10, RC8000, System Ultility, Utility Programs

Abstract:
This manual describes the programs in the System Utility package that
are labelled utility programs.

Date:
February 1989

PN: 991 11264

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-

ject to change by RC at any time without prior notice. RC is not responsible for typo-

graphical or arithmetic errors which may appear in this manual and shall not be re- ‘
sponsible for any damages caused by reliance on any of the materials presented.

System Utility, User’s Guide, Part Two

Table of Contents

L INErOAUCEION........ooceeceeceree s eeeennnensesnessssssssnesesseee e s 1
20 ADSETACES..............coocooceverveeeercenrressseseere s ssssasossssssssssssssses seseseen 2
2.1 Catalog Handling Programis................cccocccvevnnreeneenrirnnnrncesseeesennes eveenees 2
2.1.1 Creating ENtIi€s..........coucecureeveereeeieisisessssssssssssessessessesssssssss sessnens 2
2.1.2 Changing ENtries..........ueumureeccecenensisnisensensssssssesssses s ssssnssssans 2
2.1.3 LooKing Up ENtrIES.....ccoveeerererirnetnsnsinsteses e essssess s sasssens ssseene 3
2.1.4 Surveying Catalogs........ccuucwueceeeneuneenereresssssssssnssssssssessesssssssssssssssnes 3
2.1.5 ReMOVING ENLLIES...........ooiiiveriricnrcererreesseessiesssnssisstessaessses s ssmssenes 4
22 Data Handling Programs.............ccceivesincverneinnesreenenneensssessscssesssmsssssens 4
2.2.1 Creating Data in a File.........cooccnernrenmernnecsnniensieenseesseereeessss s mssesnens 4
2.2.2 Changing Data in @ File..........ccooenenrnnenersnrenrnsresieee s e 4
2.2.3 Moving Data in Between FIles..........ooocmuveeneererecrennecsesceeeeresne 5
2.2.4 Verification of Data in @ File..........ccoovvumrurreerrreeceeeeesicessesecessseesenns 5
2.2.5 Backup and RESLOTE.........ccccurrurirenrrnsreninsiessesesesessesssssessssssesesemesnnees 5
23 Job Control PrOGramis............c.cvcceueriemnennrnssensessesessssssscssssssssesseesssmessseses 6
2.3.1 JOb FIOW CONEIOL......cvcuimeererrrerirrenninsinesessissssssesses s sseessessasssessesssesssessan 6
2.3.2 JOb Mode CONLIOL.....cccuieeeecirieceresnenrense st seses e s sese e s 7
2.3.3 Input / Output CONLIOL........cvvrueirreirrrrenrteesieesc e sseseese s saeereseaseseseesees 8
2.3.4 Name Base CONtIOL.........coocvrieeisereinrrnnsinstes s esssessessssssee s messsenns 8
2.3.5 ReSOUTCE CONLIOL......ouuvererrerrnermeinriensrnsiessssssessesssessasssssssssssenessessesssens 8
2.3.6 DEVICE CONLIOL........ocomecrecereneeerecasrisssnenstsesssssase st ssessasssssssssesesseesmsesesees 8
2.3.7 Operator Interaction CONtrOL.........coeevvemmuerrnreesrersessesunissssssesssne sessenee 9
2.3.8 ACCOUNLING.......cucemeineinncrscnmsesserssssessssssssssssssessasssassessssssssssssssesessemaseens 10
3. The Programis.................ovvvveevervesssssssssssssssessmmaessessssssssssssssesssssssssssssns 11
UL ACCOUNL...........oneeitecnncecnrisinessesesssssas s st s s s s sssasasssessasenssesesen sseenes 11
LT Callciieenreceesssasssss sttt e es s s s e s 11
3.1.2 FUNCHION.ouceeieiteiscarenecnstsetsssseessanesessses s ssesbesassssessasssnssnssssenssssssens 11
3.1.3 Storage REQUIrEMENLS.........c.ccoreeererrrrerrnrrnerensecssesnssscsssssssssesnesssemessens 11
3.1.4 ErTOr MESSAGES......u.ouuiveirceniesenesessessssssansinnssessessssssssssssssssossossscsmessnns 11
B2 ASSAI......oevretctceicttcte sttt et e 12
32,1 EXAMDIE....ouueeimrieesinnnensennsrnsissssnssanssassssssssssssssssssssssnsesaseesessessesseen sesens 12
322 Calloeeesnctst sttt sttt e 12
323 FUNCLION........tneeercenticneneienstesesssinsss st ss s sssssssseesssasseessssssesssens 12
3.2.4 Storage REQUITEMENLS...........cceevuueenreinrinssrnsreerses s iessssesessssesssessnnns 12
3.2.5 EITOr MESSAEES.........oouercimrintincencnnneessssssasssssssssesssssssssssssssesssessssssnans 13

Table of Contents

Table of Contents

System Utility, User’s Guide, Part Two

B3 DACKIILE. ...t et 14
B3 Gl s 14
3.3.2 FUNCHON. ...ttt teesesasesseaseas s ss s ssssasssessssesaees 14
3.3.3 Storage REQUITEMENtS..........cccuuiurruimerninerenseiecienseassesscssssssesesmsnsens 14
3.3.4 Error MESSABES......cevniinirincnirecerensensaeneneesessensessssensssessessssssossssasssmsensens 14
B BASE..........oot sttt e sem s 16
341 Gl sttt e 16
3.4.2 FUNCHOMN.outiecectncecsececacnseasiessesssssosssssssssssssssssssssssssessssassesassessesassns 16
3.4.3 Storage REQUITEMENLS..........cocueucecureurencnerneeeaerseseesesssssssessesssssmrsssss 17
3.4.4 ErrOr MESSALES....cucvucuiiniencirircnincensnisecestassssseasasssessasessessanessesssssssmssenns 17
3.4.5 EXAMPIES......uriicrrcercnieiesrcetintsssessessasssssassssssssassssssssssssssssssesassemsasens 17
IS DANN......c et sas e s masaae 20
3.5.1 EXaMPIE.....cuiiitieieenenecersnentstessssassis sttt et sss st bans ssasses 20
B52 Call sttt ens 20
3.5.3 FUNCHOMN.cuvuiniteiecnrennsescacasenretsessenessssssessesssessasssssssssssasssssssssessassessases 20
3.5.4 MOGIfIT......cocmimcuecirereeeeeierisresssiesssssstes s sssssssssssssesssss s sesasssassesans 21
3.5.5 COMMANGS......couniriicrrirenriiiicinieseisensissaersessssiseasssesssssessessassssessssmesases 22
3.5.6 Storage REqUIrEMENLS...........cecvivereieeneenrnnisersnissiessessssssesisiesessessensesnes 23
3.5.7 EITOT MESSAEES......coveuierricrrincrnicrnereesnesesaecnssssssassesssssssssssssssassesssmmasanss 23
30 DINOUL ...ttt ans arerens 25
3.6.1 EXaMPIE.........ooniiiccccecteetseseseses st sess sranses 25
3.6.2 Call......cceiiciinece ettt arae 25
3.6.3 FUNCLION........ouirieernctcincritiscssetsecsecsaseasesssssssasssssessssssssssssassasssssansaenes 25
3.6.4 DINOUL.......ccvieiinitcrciccrc et ses e sesssease s st sassass s smsenee 26
3.6.5 Input DESCTIPLION.......u.eeciuiiirirnciscisernesensetsiseeasisesesseesessesssasssssnses sevses 26
3.6.6 BiNOUt SEGMENL.......o.ooucieerecinireinccnreeennreaecssesessessesssssesssssssasssassas sesenns 27
3.6.7 Command SEEMENL..........c.coivrirerriremrirecrerenrisesisisssistsesssssesessesesmansens 27
3.6.8 StOrage REQUITEMENLS........cvvueurrrurieeeereereiceiessieisssesessassssesesessesmessens 28
3.6.9 EITOr MESSAZES......cuoueemrurennerncrcrenreerneseanessaesecsensissssssassssssssssssesssssesmmesaess 28
3.6.10 Examples on the Use of the Modifiers..........cccocoevvnrrerrrnreerereecennn. 28
BT DOSSJOD.........cctcecceeree e r s sen s b 30
371 Callttcttces sttt b 30
372 FUNCHOMN. ... eeninrtcecnetesccesesessesses e essasssesssesssassssssssssssssssssesassassasses 30
3.7.3 Storage REQUITEMENLS.........ccccimirecmiunierirneeiscnreseesensessessesssasessssmsenees 30
3.7.4 Error MESSAES........uvvuiceecnicrnncesriesrencnsesesssesssssssssssssssssssssesesmmesanse 30
BB AL ...t re et s st sttt st st ne e sens 32
3.8.1 EXAMPIES.....comercerrrrerreniseciceersesrsasssssstssssssssssssssesssssssssssssesesssssmasans 32
3.8.2 Gl sttt st a st sa e 32
3.8.3 Format Of OULPUL........cociiiunrircrcrencercnrecnssnseeisessesessessssssssssasssesassensseses 32
3.8.4 FUNCLION. ... vrerctrcncninrctncenissscscascsensssssssssassssssssssssssssssssssssssnsessessenes KX}
3.8.5 ErrOr MESSAGES......ouivnivnirirreiireerinecuiessesssenstsenesssssssssssesssssssssssssassemsnnens 33
3.8.6 Further EXamples..........cccocereevreernennecnrnsrsnresessssssssssssssessesssessssssesenss 33
BG CALSOTL ...t sases et a s sessas s s e meseas 34
3.9.1 EXAMPIES......ou.coueeiierecinnncisinesincscssesscsssanecnseasensssssssenssssssasssssmssnes 34
3.9.2 Gl s st a st naies 34
3.9.3 Format Of QULPUL..........covviccimincnniireincnseneesessissessesiesseessssssessessesssssanes 35
3.9.4 FUNCHION. ... cnirceitcenenecnissasesessstnsessessesaseassssesassssstsssastsssasssssssssanes 36
3.9.5 Error MESSagES...........couiviirinicrereseneeeserseessesessssisssssssssssssssssssemssans 38
3.9.6 Further EXamples............cccininirincninnenenrernenssessnesessssssessessosssmsannes 38

System Utility, User’s Guide, Part Two

30 ChANGE.........eiieit ettt s meenene 40
3.10.1 Gl ettt e s s baee 40
3.10.2 FUNCHOMN. ...cuicereecnecerenteiescaseseissasssssssasssssssssssssssassssessasessssessessssaessons 40
3.10.3 Storage REqUITEMENLS..........ccocreriremrernirerressinsinisssssssessesensssesensessmessees 40
3.10.4 ErTOr MESSaES......cocuvvururmimrerceicrnicnnesinasisesssssessssssssssssssssssesesessmeseens 40
3.11 ChaNGEENLTY........cucuiuiircniecceccceenceseeseestesstst st st sesaes s snssens 41
3111 EXaMPIE.....niiininceceinencicicaseeasensisssassesssisssssssssessesassessesessens sesanes 41
LT Gl cetsenssiss e ssssses s st sa st st sees 41
3.11.3 FUNCHON...cuieieieiececerenscaneieeseisisesessessssssssssssasssssssaesssssessessesssssessasssns 42
3.11.4 PaTameELErS......cvuvirieincrcrisrinsnseesiensasenessasessasesssssssssssessassssssesssasses sesenns 42
3.11.5 Storage ReEqQUIrEmMENtS..........cocurreremmmmseesemereeneeneiseensssnsessis s semensens 43
3.11.6 Error MESSaes........cuuueurccrincrrcuneniasisisssssesensanersssesssssesssssessssssssemesenes 43
B2 CRAT.......tt et bas s aen 44
3.12.1 EXAMPIE......uuiiiiitrisitencrecniretsesesessestsessesssssssssesssssssesassessessssses sesnens 44
3.12.2 Gl ses st 44
3123 FUNCHOMN.cocevieerercectscnneetieessesetsessseset s ses s st s s sessass s s snsenas 44
3.12.4 Storage ReqUIr€meNnts..............cveevcureurerrunrereeseeneusnsssnsasssssassassssemensnns 44
3.12.5 EITOT MESSAEE......ouieriueecrrncrcrneiseiseireissssisstsesssss s assass s ssssssassass sassaes 44
BB CLAIN........ ettt s e 45
3.13.1 EXAMPIES....neeiiicncecsescciseste s aes st se st et s e eene 45
BAB.2 Gl ne 46
3.13.3 FUNCHON. ...eienincrerecreeecresetsssssnasssessessaes s ses s sas s sssasssessenennne 46
3.13.4 Storage REQUITEMENLS........ccccuucvcurrererrernrenssesessiesiesinsensasssessessesnsssmsenans 47
3.13.5 EITOT MESSAZES.....ccvuueenenceerrerennsisssnsensansssssssassssassssssssnsssssssssssesssmenes 47
314 claimtest..............ooiiii et eas 48
3141 EXAMPIE.......oiiiiirictcceiretse ettt e e 48
3142 Call..oeerniictte et seisses sttt 48
3.14.3 FUNCHOMN......ocvtieiteiecmeecieeeaseeetesessesssssssssssss s s sssss s s s s nasesaenenes 48
3.14.4 Storage REqUIrEMENLS........ccccueurcmvenrmeenirenseriese et ssesessm s 49
3.14.5 EITOT MESSAZES......ccerurrirrrrrireetnieiese e issssesssssssssesasessessemensens 49
BUAS CEAN ... e ree 50
3151 EXAMIPIC....ucoeceiitciciceieissssessstsensssssses st seen resenes 50
BAS2 Gl bt 50
3.15.3 FUNCLON.......otvenicinnctsciscsaenesessesseesiss s ssssses st sesss e ssssassassmennne 50
3.15.4 Scope SPECIfiCAtIONS..........couvrueeerrerrirsesssissiensiesses e sesessses sevenne 50
3.15.5 Storage REQUIrEMENLS..........cccueeueeerererrressssssisesienssnsssessessssessesmesnans 50
3.15.6 EITOr MESSAZES........cooerreiscrmcrnersesssesssssssssssssssesssessssssssssssssssssomeennns 51
A6 CIEATL..............nonntteeeee e sesrs st s bbb st saen senees 52
3.16.1 EXAMIE.........ooncteviniinriencennracaeniseiesisesisssssssasssssae st sesssassasssas seenans 52
3.16.2 Call......ocoeennncrinctrcesiesessssess st bt e 52
3.16.3 FUNCLION.....cucuiiniirceceecneneresetsetsesssasssesssssses e sessssssassassssssssssessennmennns 52
3.16.4 Storage REQUIrEMENtS..........occeeeurrerrensrrsersssers e ssssssssessssosssesssemeenne 52
3.16.5 EITOT MESSAEES......ccoovrererreeninsrrsinsssrsersesesesassssasssssssassossscssessnsessemesnnns 52
3.17 cOMPIESSlib..............cocoiirrerreceeeeeteeee st seeses s e s 54
3171 EXAMPIE....oneeeeieeecetententisrinstns st s ssssssssssssssssssssnessen soseees 54
BAT2 Gl tssasss s s ae e st s s e 54
3173 FUNCHOMN. ...ttt stssssssssssssss s ssssssesssssssssssssasesmasenns 54
3.17.4 Storage REQUITEMENLS..........ovevvrerrecrnriserssnisesmssssssensssssssnsssssssmsnnnns 54
3.17.5 EITOr MESSAZES.......cuceuimnenrerrerrerssrnsessssssessssses s isssssssssssssssesasensenmensens 55

Table of Contents

Table of Contents

System Ultility, User’s Guide, Part Two

BB CONVEIL.........o.ecr s esab s s eee e sssacaen 56
3.18.1 EXAMPIE.....cumneieieieceeeeicencncineeeisees sttt ssss st ssse s seranen 56
3182 Call..eoecri ettt 56
3.18.3 FUNCHON. ...ttt csenses e s ssenssassessasssessesssssssassas 56
3.18.4 PAPET TYPES.....coviuiirrninnirciisiincssscsenisasssssestsssssassessessecsessssemsssons 56
3.18.5 Storage REqQUITEMENLS.........ccveuevrerruecrerrineariscnnereseeseseasessasssesessemsnses 56
3.18.6 Error MESSages..........comiiiiiiiiiniscniseesiinetscssenscsensesessesesessemseanen 57
L1 COPY..ovveintrrcctetrcstssn ettt b s s st sae e snsns e sne e an s 58
3.19.1 EXAMPIE...ucuiuieninieciinccncencnrcnaneanemeeerensesseesessaessssssenssssassasss esans 58
3.19.2 Calluoi s ess s tenes 58
3.19.3 FUNCHOMN......corriminnrisissnscnecissnscsssassnsssssssssssessssssessssassasessssassasessesasesaenes 58
3.19.4 Storage REQUITEMENLS...........oriererremencureniicnscssesssscsscssenenessessemsecens 59
3.19.5 Error MESSAEES.......ocuivmrniteniirincnsinssnsnniss s sssssssssssssassasssssssmsonses 59
320 COTRIOCK. ...t essssee s naesressessseassssasasssscnses 61
3.20.1 EXaMPIE.......ciiiirimiieciininncrninnssssssessnesssssessesesstassssstassssesess sesaees 61
3.20.2 Callnceeeiiinrcc s e e 61
3.20.3 Storage ReqQUIrEMENLS...........cecveureremeercrereenenecierneeseesenseseseneeressemesnnns 61
3.20.4 Error MESsages........ocoiiiininniininiisisicisiesesscesesecsssssssssessassssemesssns 61
32T COTCOPLIN.........eeiireincritriceecter st sas et sase s ts s ansassssessssassssasasssassesne 62
3211 EXAMPIC...ininicicicscictricicicie e sessessessaseas st saes s 62
3212 Gl et 62
3.21.3 Storage ReqUIrEMENLS..........cccueueeurreecereucnenesricssennisseseseiesssssmensans 62
322 COXTECL.........oeertricsnt ettt bttt e s nsesa asbene 63
3.22.1 EXAMPIE....oureceresinrcrcnnesisne st en sttt saas sbassns 63
3.22.2 Gl e s 63
3.22.3 FUNCHON ... cutrircrinreererecseencereeressasesseasesssesses s sssnsssssassasassssasssesans 63
3.22.4 Storage ReqUIr€MEeNts............ccocuvrmcenrueeurunercmrcnneuseenseasessssesessssamensans 64
3.22.5 Error MESSAZES........cuiuiiiiiininsiscsnisencsssisssscssenesssssssesssssessesssssssmsneens 64
J23 delete.........nn ettt ne steenes 66
3.23.1 EXaMPIE.....niiiiiciiiiicriicse et ssessae s essass s nsanes 66
3.23.2 Calluueee ettt 66
3.23.3 FUNCLIOMN......ouccistienincnacinenneasesscseesasessesnseessasesenessasssssessssssessessssansen 67
3.23.4 Scope SPECIfiCAtiON.........ccovcuivmiuncreccrrensereenseiseerceseeseessesaseseresssssssssansen 67
3.23.5 Filter SPecifiCation..........c.cocviuiurircrscesssinssicicesessenseeseesessssssassnssmsssnes 67
324 @dit...........ec e n ettt st 68
3.24.1 EXAMPIE.....ouriiceiniicectncrctriseecsesecssesesessesstssssessssessassnsssensssesss ssesens 68
3.24.2 Call.....eeccc et s s st a s e nee 68
3.24.3 FUNCLION. ...ttt tastsesessesessssssssssssssssssessasssannens 68
3.24.4 Edit Commands..........ccccvcuiimmuerunsineneemsensecssssseeesssessssssessssssssssssmsenes 69
3.24.5 DElMILETS.....uucuniirrrincenierreeencensensensensea e sasesssasesssssenssssssssssssssssssssasssesses 69
3.24.6 WarNING @ @ccovemcrirueencrciccnenssessssssssssssnsssssssssssssssssssssessmsnases 70
3.24.T LINC..noenrrcrcinininsssssssisssissssssssisssssessesstsstssessasststastaseassssssamannens 70
3248 Delete.......nntnicisccnenstce ettt ss s aanes 70
3.24.9 INSEIL....ouceeetcrscsscscinssist st esessessessessssssssases sessees 71
3.24.10 REPIACE........cieririnincrcncnieniesesesee st stassassssess e ssssasssssssssases sesenee 71
3.24.11 GIObaL....ou ettt s st resens 71
32412 FINS..cueitinctcretescnessesaenaeesessesstasesssessssssssssssssssssssssssssssssssssessanes 73
32413 PLIDLc.oeeeectincinstcisciescsesesncssesasesssensessessessesessasstssassssssssnssanns 73
3.24.14 SOUICE.......ouirceiriricireeteiene s sssss s s ssassssassassssssssatassssassesmessas 73
32415 MarK...oettt st tessaasasssissnasssanen 74
3.24.16 VErify....ciueerireeiecisieeieseeeeeeeeesine s ssessesssssssssssssssasssssessssmsanees 75

System Utility, User’s Guide, Part Two

3.24.17 WRETEC.....cocuriirriiccni ittt st sasstsas bbbt sossasacs 75
3.24.18 Matching StriNgS......c.coovurivimeercrrinenininninieseinisnenesssasenesssassssssas sreses 76
3.24.19 Parity EITOTS.....c.cuoeeeeercreeceecenecneeensesesessesraeseensnesessesesesens ssasens 76
3.24.20 ErrOr MESSAES.....cuoveieririiiiirnsinicseinisisesicsssstesesstccssassenesessescsemsneses 76
325 eNd......o s s 78
3.25.1 EXAMPIES....cuiuiiirirrinriirieniicnsttistrincaensisencncaens e esesensnsensesesesesmensens 78
3.25.2 Calluceeeeeeeeeccceeeceerenree ettt ses sttt sttt 78
3.25.3 FUNCHON.....cuunrvrrinisnncnininicississsssascssssssssssnsssssessessesssssssssssssasessssesasnas 78
3.25.4 Storage REQUITEMENLS..........ccocvcuemreccmrererenesenerereesessasssasessasessamussnes 78
3.25.5 EITOT MESSAEES.......oovvrirnricnrircriissinesniincasisessaisissassessessessssssessssemsennes 78
3260 ENLTY.........orcrrtr et st 79
3.26.1 EXample.......oueretttttttt b s 79
3.26.2 Calluuiiiiiniii et ssasa e mesenes 79
3.26.3 FUNCHON.......cotrercrcnirencnrennereeesastsessasesesesessascssessssnsessssssaasassastsssans 80
3.26.4 Parameters..........covvvememiureimnirincernmnsssssissessssssesssssssassssssassessass seeeses 80
3.26.5 Storage REqUITEMENLS........c.ccovuivcunierncrnercerereereessecesersssnsssssassssamuennns 81
3.26.6 Error MEssages..........ccuiiiiiciiniiniinicssiccicseaeaessescsensesesmessnes 81
32T FINES....o.oeecc sttt 82
3271 Call...iiictct et e aen 82
3.27.2 FUNCHON.....ouceetieiecicrcnceceeraecsea et asesenassssstntesasssesssastsssnessasasessans 82
3.27.3 Storage REqUITEMENLS..........ccocureureveurureeienererincunesesessisssssessssssssmensans 82
3.27.4 ErTOT MESSAEES.......ouvvrimiiiriniiicnceeeneeesesesenseseessesessssasssssssesssamessans 82
2B head..........uittc ettt sttt ats srstens 83
3.28.1 EXAMPIC....corecceeeececticrtectetsne s et st tes st sresens 83
3.2B.2 Call...iictr ettt en 83
3.28.3 FUNCHON......cotrecrennareerceeeeeeseisesessessesssssaessssssssesssessssassesassesassasssosans 83
3.28.4 Storage REQUIrEMENLS.........covuvemeunnusciersenesncicieisenersssssosssssessemennes 83
3.28.5 ErrOr MESSAES........vvcuiiiiiicuiiinnccnenieneseeisissseiessssissassesessssesasenmessens 83
329 et ettt sttt s s 84
3.290.1 EXAMPIE L..ueceieiiicrctstctssesessenacsseeissssssssssssssssssssssssasees 84
3.29.2 EXAMPIE 2.t ssssstenas s ssss st sas s st e ssesnssnsanes 84
3293 Call.....ict ettt s ane 85
3.29.4 FUNCLION......uoeiirriicicininiecisiscscssssssncssessssessessssssssssssssssssssssessensienes 85
3.29.5 Storage REQUIrEMENLS.........ccuivircrninninnenensiienennssesnisesssesessssssmesnes 85
3.29.6 EITOr MESSAGES.......oocuriuimininncnininseneennesensesenesissassssssessssssssssssesssesmensans 85
BI0E ...ttt st ae e eprene 86
3.30.1 EXaAMPIE......uueeetttttrieintcmcncnesenenecs e sse s s ssssssessesas s seene 86
3.30.2 Q... et es st maesaes 86
3.30.3 FUNCHON......cuieiercenrerecesrecniasiseessensrssessssssesssssssssssssssssssssssesssssssessssessasses 86
3.30.4 Storage REQUITEMENLS..........ceccuuerermecmcernerceneeeeenesisssssssesesssesseemenenes 87
3.30.5 Error MESSAZES.....cucvuuvureieimimisunsiisesessnseseseessssorsssssssssssessssssesssssemunnens 87
BB EDL. ..ottt sttt et nes 88
3311 EXAMPIE.....iriiiiiiniriircnirenecreesecsesesasesess st tssassasssas svseens 88
3312 Call.uceceecncinnnriccsenensessstsassessessessessnss s s ass st st aenen 88
3.31.3 FUNCHOMN. ..o eeieiecenctcnsenescncnesesseensessssssissassssessssssssssessssasssssssssssansenes 88
3.31.4 Storage ReqUIr€mEeNnts.............ccevevuermrecrereenesissinsssresnsssessessessesersemsannes 89
3315 Error MESSAGES.......uouiuivniecmrnirrcnsenssensinseesscssisesssssssssssssesssssssesmaneans 89
B32 JOD....e sttt st asbess seeeses 90
3.32.1 EXAMPIE...ucuirininiririeencrinreceniersnensesesasssssssssesssssssssssssessssessssssesssse stosans 90

Table of Contents

Table of Contents

System Utility, User’s Guide, Part Two

3.32.2 Gl sttt s 90
3.32.3 FUNCHOMN.ucvcrcrincnnisnicninicissneteessesecsstessesssassesssessensasssssasassasesssesasssnnes 90
3.32.4 Storage REqUITEMENLS........ccvueuerermirercrneieeeseeesessesseessesesssssmesnnns 90
3.32.5 ErTOr MESSAZES......cvoviiiiriincnininencnnesesiescseenesestessetsesssssssssesessmassens 91
BB KLt s aa ettt st 92
3.33.1 EXAMPIE......ouiiitieitinecniniciencnie et sesaseassssss e nns sessens 92
3332 Gl e es 92
3.33.3 FUNCHOM.....cuiivinirncrcsiseienenensessasessessssessensensssesessesssasssssssesssssssssnsasses 92
3.33.4 Storage REqUITEMENLS..........cccvcveemncecrncenisecnniscesenencessessassasesssssmesnees 92
3.33.5 ErTOr MESSAZES.......ccuiriinrnmimnirinisesessinaessesisensessmensesssassssssssssssssmensens 92
334 1abel.........c s sse sttt sesnans 93
3.34.1 EXaMPIE....uuiiiiiiiicicticsitsssin st ssnensense e sesens seasnns 93
3342 Call.....encttsss ettt s s e 93
3.34.3 FUNCHON...cueerniieincncecaineecsentsensssasssssesststsssstsssessesssssssessssssssasssnses 93
3.34.4 Alternative Parameter Names...........ccoceecereresmvuvennennaneenecssessseranees 94
3.34.5 ErTOr MESSAZES......ceouermireriererereteeesesssesssssesssssssssssssesssssssassssssmenenns 94
B35 H0Ad.........ccc et ns e svesens 96
3.35.1 EXAMPIE...ceeceeeeiecereteee sttt sess s sess st ss st esasaeses sesaens 96
3.35.2 Gl ettt 96
3.35.3 FUNCHOM....coitiinrenrcrcnescisenneesecnsessessensessessessensesssasessesssssessnssssssssssssssssasees 97
3.35.4 Tape FOImMat........corivcemeeecieneiceceneeseneeeseisast s e e sessessssssassenss nnes 100
3.35.5 Load of systemdUmP...........ccvuurruriiremcrnencnensnenseesenneesnessesessesssaes seene 100
3.35.6 Storage ReqUIr€MENLS........c.cc.vcerereercurencrrcarcnrunersecesenniessenessssssssssnmenns 100
3.35.7 Error MESSAZES.........onimiiiiiiininicnisiseiessesescncasesesssesessessesssssmenns 100
3.35.8 EXAMPIES.....ccuriirirerrieinicnricerireaseeisnstnsssieessessssssssssssssssssssassssssssesmenes 101
336 0OKUP.........ooiinniriscncrisicssstsertasesessessessasseseasssessesssssessessssssas s semrans 102
3.36.1 EXamPIe........coiiiiiirccienniienicntsesi et sss st nnan e 102
3.36.2 Call...coee e ettt 102
3.36.3 FUNCHON.........ccoiiiirencrrenennserecesscsessesaensaeestsenssseassssssassssssssssassesassans 102
3.36.4 Format of the QUIPUL.........cccorriecreorreereseceeieneeeces e seresenenenns 102
3.36.5 Storage ReqUIr€ments..........c.cocveurercerenrrucerenseneeerenssnissnsssessssssessemeans 103
3.36.6 Error MESSAZES.......uccucmmiiiiitninisnciensnsessinsescesessaesessnsssssssssssssssemenes 103
J3T MESSAGE..........ocoeccecncereere et s s ben s 104
3.37. 1 EXaMPIE...iiiiriinecicnensrsiessesesessesseessessisessessessasssssssesas svens 104
3.37.2 Callntctiitiise e neneseneas ettt sss st st e st emnans 104
3.37.3 FUNCHOMN.....cotuirieiinieenscncnenneeseassaseastastsssssssstssssssssssessssssssssessssessaenas 104
3.37.4 Storage REqQUITEMENLS............eccuecremreurememnerncereesesnssssssessesssssssessessemenns 104
3.37.5 EITOT MESSAZES.......crurererercnrinsrensesnensssassasisssssasssssssssssssassssesessemenns 104
3B MOde..........ooc ettt e 105
3.38.1 EXamPIE......uotrctnieiennrcrcncnesecnsesnsessesesesesess e sssssssssssassssoss seses 105
3.3B.2 Call.....oirciiincisiiet sttt ses s meae 105
3.38.3 FUNCHON.....cucueneininenieencncenseecseascssessessesssssesssasssssssssssassassassessassannes 105
3.38.4 Storage ReqUirements..............cocuecueurcueemrmnreesecesserssssssssnsssssssemenes 106
3.38.5 ErTOr MESSAZES.......cuccucmmiecrercnrenesasisesesssssesssssssesssssssssssssssssssssssssmenes 106
JIIMOUNL..........octsbesenese st sssase s ssn s aens suees 107
3.39.1 EXaMPIE.......corcrrrecnrienrinenieisnsisinesrassassssssesassessssesessessssssesssasssrs srens 107
3392 Gl sttt sttt nee 107
3.39.3 FUNCHOMN......coitrcercemcnecnnressensenmenastasesssssssisssssessessssssessssssssassssssssansssnes 108
3.39.4 Storage ReqUIremMENtSs...........ccocureureurerrrerrersaerressessssessssessssassessessmenns 108
3.39.5 ErTOr MESSAZES........ocuminniincnniinninsesenassssissesassastssessssssssssessessesssessmenes 108

System Utility, User’s Guide, Part Two

3,40 MOUNESPEC.......cemeercrrirriceriineniiisteseessesnsesestsaeseseensesesssssasnsssssnssssemeres 109
3.40.1 EXAMPIE....uiiiiricirircnnienecnicntinecstssnassessssssssassesesssessessess ssnes 109
3.40.2 Call.....ciciciniiin st s sssans 109
3.40.3 FUNCHOMN. ..ot ecreeseseneaeesesasasessesseesesenssesesastsesescassaces 109
3.40.4 Storage REQUITEMENLS...........ccorvemrmivemerrenusencnssesensesesessessensesressemenes 109
3.40.5 Error MESAgEs.......coeeviereieniieretietesiessse s sasssese s e 109
L MIOVE.......oiiririrrc bbb bbb e bbb 111
3.41.1 EXample....riinniiininsnisssissi s s ssssesens soses 111
3412 Calle.....cicninninnen sttt aes 111
3.41.3 FUNCHON. ...t creiesetsennasseaeessscasnen s nstsescsesssessssnsenerescasenens 111
3.41.4 Storage Requirements..........c.creinmcucenincnincnninsesnessssssssssssessmecne 112
3.41.5 Error MESSAgES.......cvvumimiininireritriiincncienniincsnsssesssissssssesessassssmenne 113
3.41.6 Further Examples of USe.........ccoovmeirincncnnincnnicnnescnsenncnmenes 113
342 NEWJOD.........o e saes sense 115
3.42.1 Gl s ses s st e e 115
3.42.2 FUNCHOMN. ...ttt tsesiiese e ssesessasessaesstssassstsssesossesesssssasansans 115
3.42.3 Storage Requirements..............ccoovvuemcivcnninicnicinicesicnsseencsemenne 115
3.42.4 EITOr MESSAEES.....cooveuimemreireecenrtriccneneneeseseeseeseasssasesesesensasesssssamenes 115
343 nextfile.......... s 117
3.43.1 EXAMPIES.....oeoimiircircncitciencreseesseseastsessesesessestsesessisssesssssssssansemenns 117
31432 Calle..irinn et 117
3.43.3 FUNCHON......coceeeeccee et essassessasasassessesasessassssssseassessasssnene 117
3.43.4 Storage REqQUIrEMENLS..........cccoevcueureeereremneercenennessestsenseensnssasssaemenss 117
3.43.5 ErTOr MESSALES....cueerererrrenerirenerenesesenssesessssssssssesssesesssenssssessssesemunes 117
i 0.ttt nes 119
3.44.1 EXAMPIE.....nneicieiccceenrceceenneeseseeeasaeseeee s ssas e seasases s ses et 119
30442 Call....cocieciriericnictc et a s seaen 119
3.44.3 FUNCHION....c.ciimiiriririenccicecistiese e eacesescasssesstsassssssssesssssanesesasssnnes 119
3.44.4 Storage REQUITEMENLS.........cuiiuiuiinincerenneessieresseeseaseseeasssesesssmenns 119
3.44.5 Error MESSAES........couviimemininnennnisseinissiseseessensessensesssssssssscssssmenns 119
345 0nLNE......... et ses et 121
31451 Callu...icctcce ettt st s 121
3.45.2 FUNCHOM.ceceecerceerecrcmnensecnseneisessessassasessssessesssssasssssssasesssssssssssssanses 121
3.45.3 Storage REQUITEMENLS.........ccoeueeeunermnrecrenerenesiessensesessessssessssssssemeses 121
3.45.4 EITOT MESSAZES......covurinimiireiisiiinsnsecsnasisannrcessrenssesssssssnssssssssssmenns 121
3.6 OPCOMIM...........coucunninciccrnercecttesestensastssssess e s sssasesesnassssensesasereses 122
3.46.1 EXAMPIE.....ouiiviriirensiserincnsinennnetcneeseessenssnasensssesssssssssssssssssssessassse seens 122
3.46.2 Call....coiriiincnicsissasetee ettt sttt st 122
3.46.3 FUNCLION.oceeeeririsriisiisiestseinensensnsassnsessesssssassssssssassssssssssessaneas 122
3.46.4 Storage ReqUIrements...........cccceereeceeemrueeneseeececsesnssnssssssssssssesesssmenns 123
3.46.5 Error MESSAES.........voririmriiiniinnecisisessasicssnssssssasesassasassssssssssssmeses 123
4T OPIMIESS........ocecnnnnirrcncnccccnccncecesssesesssssnssssessessssssasasssssssnssesssesesemenes 124
3.47.1 EXAMPIE......cuiciririririinrnerenrcneesessnssnsasnsessssssesssssssssssssssassssssssssesssss sonas 124
3L47.2 Call.u.uneciceiicicesisesinsiie st ssssss e sa s s st s 124
3.47.3 FUNCLHOMN......ccuirieereenninennesreeresnssstastssassssssssssssssssssssssasssssassssessssssssses 124
3.47.4 Storage ReqUIremMEeNts...........cccvcvureemreerrmeceusmecnereeeeessenesessessasssesmenns 124
3.47.5 ErTOr MESSaes........ucuumcrciiniciiscnissssisessiscssssssssessescssssenessasesmenns 124
348 PErmMAaNeNLt.............ccevirmrerenrrereeereinssesssssesestssesesssssesssssesessnsesassans saees 125

Table of Contents

Table of Contents

System Utility, User’s Guide, Part Two

3.48.1 EXAMPIE......ommcnicrerrisieiscnestsinsssstesssse s s s sesseasesesassesse s eses 125
34B2 Call.......e ettt e 125
3.48.3 FUNCHON......cuiuirercrseinsincnseirensessesssssesssssssssssssessessssssssssassssassessassasssenns 125
3.48.4 Storage Requirements............ocveeveereeneueceneensensiresensnsnsssensessessemenns 125
3.48.5 Error MESSaES........cuviuceeeerrererrenisusessesssstsesesssssssssssssssssssssssessessmenns 125
B PLINL. ...ttt sttt s st n st aes 126
3.49.1 EXaAMPIE......oritiirircerinicectenressesesesasessessasesssessssssssssssassessesassens seses 126
3.49.2 Call.......oeeettttc et s nae 126
3.49.3 FUNCLION.......cuieirnineesesenerecaeeaessssssssssssssissssstssssssssessssssssessessssesssssanes 127
3.49.4 FOrmat LiSt.......ccvvuviueiuirneriinirscncnenneescnenneseeaestssessssssssssssssssssemenes 128
3.49.5 Field SpecifiCation............cceueueemeencesmesnenensensessenssssssnssssssssassens soree 129
3.49.6 Numbering of Addresses..........cccovcurerreurerereeureneenrrnnsnsnsssesssens vevee 130
3.49.7 EXrOr MESSAEES........cucummeerreerreneniansessesssssssssssssssssssssssssssossssesemerns 131
3.49.8 Further EXamples...........cocccvurrunsemcenresencenesesnsssnsssessssnssssssssnseemnns 132
350 PROCSULVEY..........oovnennireentnnceccneeeiseassssissassssssstssassssassssssssssassassens sraes 137
3.50.1 EXaMPIE.......uuimicrienircrrenicincisennisenesseessesesssssssss st sassessesssssssesss soses 137
3.50.2 Gl ettt res 137
3.50.3 FUNCHON.......oeiuiiesciscireneseceeaseaseansaessssstsssssssssssessas s s sesssess s sssanens 137
3.50.4 Storage REQUIrEMENLS..........ccvememreereureremneencuniunestressssssssssssssssessemenne 137
3.50.5 EITOr MESAEES........oocuiviireciinninctseesnensasesessenesssssssesssssssssssssessse enes 137
B LTRIRASE......... ettt nn e 139
3511 EXAMPIE...nieeitinctcscicsiiseessesssesessesessssssnssessessssss s s saess enes 139
3512 Gl ettt st sttt ae 139
3.51.3 FUNCHOMN.ouutitteeceerecereeeactisetsssssssassssssssssessses st s ssasssen s s sssens 139
3.51.4 Storage REQUITEMENLS..........cccuvevuerurrerreerrereerernsissesassissses s essssemenes 139
3.51.5 EITOT MESSAEES........ccueuirrircreceseinssesrensesssssssssnsssssssassasssessassanssssmenns 139
352 XCNAMIE...........o.occ ettt et 141
3.52.1 EXAMPIE.......oueniiniieiinitrcecniereaeneseessasssseasissssssssassssssesassassassassassassn senns 141
3.52.2 Gl sttt 141
3.52.3 FUNCHOMN.coceriririscisiisnnteeietseaesnesssasetssassssstsssesssssssassassassassassessessasnns 141
3.52.4 Storage ReQUIr€MENtS............ccvvuuimerrerecrerrerneressesesisssenssssssseemenne 141
3.52.5 ErTOr MESSAZES......ocuuvuiuiriieciienersenessesssssssssssssssasssssssssesessessassessemenns 141
IS XEPEAL.........o sttt 143
3.53.1 EXAMPIE...nnnniiiiiciiitneces et ses st sas s e s 143
3532 Call...oeeetitctcice st st s 143
3.53.3 FUNCHOMN......ouccenicnecinctncnnnesiacrsesesecsassesssssrarsssssssassasssssssesssssansaessasons 143
3.53.4 Storage REqUIrEMENLS...........cocuvruriorererresnrserersssesserssessesessenssessssssmenns 143
3.53.5 EITOT MESSAEES......ouvuremceneureinrersensesssssssssssasinsasssssssssssssasssssssssssssemenns 144
BSATPLACE.............ertnrtietrissase e sses ettt s anee 145
3.54.1 EXAMPIE.......ooeerreririreeccteisiesissessessssssns e sssssss s sssssensssssossessss seene 145
3542 Call......rcnnise ittt st r st nens 145
3.54.3 Function.... ree v s abe s e sensans 145
3.54.4 Storage REQUIr€MENtS............ccovumreurererensemmenmemreesssnsrssssssssessssemenes 145
3.54.5 EITOr MESSAZES......cccrrueurernrerenesissssstssssssassssessssessessessessesssssssmane 145
3SESTEWINA.............oeecct ettt e res 147
3.55.1 EXAMPIE......uoeeerereeristesisssisss e sesres s ssasas s ssssssessssssanensasss senes 147
3552 Gl ettt s a st 147
3.55.3 FUNCLION......couceciricirictrcsmscasensenesenseessesssesisssssassesssssssssasssssssessansssssssns 147
3.55.4 EITOT MESSALES......c.couivmicrencmrmerereesnissessssssssssessssssasssssssssssssssasessssmesns 148

System Utility, User’s Guide, Part Two

3561 Call..........oeitirn sttt seees 149
3.56.2 FUNCHION....ccoiiirinnininincnnmeeenenesieneetssssessssssesssssasssssssssssssessssessaces 149
3.56.3 Storage REQUITEMENLS............coiumeereremrerreninsenerseeeseessasesssssessssssmanes 149
3.56.4 EITOr MESSAZES......cecevniuiiniieirirenisissicssisenensiessssssssssssssssssssssssemenns 149
35T HUDOUL..........octct ettt st 150
3.57.1 EXAMPIES....c.ourmrnrciiriicerirsirireinessesassssastssssssasssssnssessssssssasssssssesmenes 150
3.57.2 Callu.eircrc ettt s saes s s e 150
3.57.3 FUNCLION.....uvinincrititecnecneneeseensensresesesesssssesssesssssassasssssssasssssssases 150
3.57.2 EITOr MESAGES........uouvimririiinciisesesensaicssescnsatsassssssssssssassssssssssn sanes 151
5B SAVELI........oiccnt sttt sttt ae nenes 152
3.58.1 EXAMPIES.....ouveiriiirincrcncniirensesesessessssensessasessessssssssssssssssssssssssssssemenes 152
3.58.2 Gttt sttt e mnen 153
3.58.3 FUNCHON......o.ouerreircnincneicnncencssisssnsesssssssssssnessesssassssssssassaneses 154
3.58.4 Entries and backing StOrage areas............oceeeveeevesrssussrensensssaseemenns 160
3.58.5 Tape FOrmat...........iiienirecccncineeresesesesssisesasssssassnsssess eene 162
3.58.6 REQUITEMENLS..........covurcerercenerersrrneresensssassssssssssssssssssessessasssessens soses 164
3.58.7 Error MESSAEES.........cucuemieercrcreercrnensencrssssssssssssssssssssssssessssssesnssessmenns 164
3.58.8 Further EXamples...........ccocveecnnercniresereeniresesnscs s esesesesessmenne 169
359 SCOPE.......ott st s a staes 171
3.59.1 EXAMPIE.....uniiiiiiicic et iessns st esbsssses s aenses srens 171
3.59.2 Gl ettt ren 171
3.59.3 FUNCHION........coeeerircrnciniecinseississsneasssssssssssssssae s st ses s s s sensnns 171
3.59.4 Scope SPECIfiCation...........cvceeceeeurrunrrneenrensnsiessssesssessessessss s sessesens 171
3.59.5 Storage ReQUITEMENLS............occverreerrrerrrereerrresrreeessessesessssssssssemecns 172
3.59.6 Error MESSAZES........ccveuremmemnercrersesinissssssassassssssssssssssssssssnssnsssssmunes 172
360 SArCh............oeiec ettt s 173
3.60.1 EXaMPIE.......ououiiniiicninecnctncreenesis st esse st sees aees 173
3.60.2 Call.........oueiiincrcrccceice sttt 173
3.60.3 FUNCHION.........coieeniieceeireieceecesnessasssstssses s asssesaesssesessesssssssaessennes 174
3.60.4 ScOpE SPECIfICALION.......ceueeeeriereereerrereierieste et sssssastesseesenseaes 174
3.60.5 Filter SPecification.........ccovcueeererveesrisnrinsusnsesiee s sssssssssssssessssmees 174
BUBL SCL......coeet et saeas 175
3.61.1 EXaMPIE.....uuuiirieniecrceecicnennissssssssstesss st s s ssssstesssssssses sonns 175
3612 Call.....ooeenrcenceenire sttt 175
3.61.3 FUNCLION.......ou.eeeetittreececcieeeeaeissassesssnsssssssss s nsssssssessssssonennes 176
3.61.4 Storage REQUIr€MENLS...........ccerueeercencuernnenrsasserssssssssnssaessersessssssmenes 176
3.61.5 EITOT MESSAZES........cecuerereirirecissnsssessessensssessesssssmssssssssssssssssensemenes 177
362 SEIMIL ...ttt sees 178
3.62.1 EXAMPIES.......cocuinininenencencneesissssnsssssasssesasssesssssssssssstssssssnesnmenes 178
3.62.2 Call..........iirnieeeencri et s st seee s 178
3.62.3 FUNCHOMN.oueuonicerineniniciictcnersesesessssssassesssssssassssasssssssssnssnesessessanes 178
3.62.4 Storage REqUIrEMENLS.........c.occoveveerrrrerenrneseenrsersessencesssssssensseesemenes 179
3.62.5 EITOr MESSAZES.....cocucurrerrrnrereesiirennsssessessssessresesssssssasssssssssssssmenes 179
383 SKIP.......o.oete st e b e s st sesaes seans 180
3.63.1 EXAMPIE......ourieeieinirsireeceresrssssissnssssses st ssssssssssassassossasesss casen 180
3.63.2 Call.......ocoereerrcnetrese et as s emaes 180
3.63.3 FUNCLION......couuvercemcrneeeesereisssssssssssansesesssssssessssssssssssssssssssessessesnsens 180
3.63.4 Storage REQUITEMENLS..........cocvrurrrumrrerreesrecrsenrneniecessnsscsessesensssssmenes 181
3.63.5 EITOT MESSAEES.........cocrerirrrrnrrrrrrearsssessssesssesssessssssssessesssnssesesesssmenes 181

Table of Contents

Table of Contents

System Ultility, User’s Guide, Part Two

364 SUSPEN............neirrnc st s 182
3.64.1 EXAMPIE.....criricriericictresteeitsctseessese st seaesstssas s asssssetssssssanes snen 182
3.64.2 Call........eeii et 182
3.64.3 FUNCHOMN.oucminimintrinennenteeescoenseneneasnsnnsaseseesesesasessensessssssasesns 182
3.64.4 Storage REQUITEMENLS........c..ccuuueemermemncrecunensnsensiserasscsssascsesesssssmenes 182
3.64.5 ErTOr MESSAEES......cccuvuieeuieeercnnnensereneenenenecseneassessesesenssasssssesessesemenns 182
365 HHMET ...ttt ss sttt ne seses 184
3.65.1 EXamPIE.......uriniiiiiininicncnintcsensnssnenssssssssssesessesssnesassess seon 184
3.65.2 Gl 184
3.65.3 FUNCHOMN......ccrincneicininincncnsinssscasesseasessesssassassssesssssssssssessessseses 184
3.65.4 Storage REQUITEMENLS...........ovurivrimncnimcrnisiesssiresessssassssssecscssessamunns 184
3.65.5 EITOr MESSAEES......ccruriicniericcninriiienessiteseessssssesesessesasecsssssmenns 184
366 translated.................eii e 185
3.66.1 EXample.........uiiiiriieicininceniniicsetssnensnesestcssssessastsassstens sases 185
3.66.2 Call.......oirircnirccrcecse ettt ns st 185
3.66.3 FUNCHION......cucucuerrcerccecetiniaeresentaeissassasss s ssstsstssssssssssssssssessnssssasassanes 185
3.66.4 Storage REQUITEMENLS..........c.ccueureuimemernenensensensenseasraseesessesesasesscmenns 185
3.66.5 EITOr MESSAZES......cccuvcrmemerererreercccncieseeserasaesesesseseessasseesesesesssssssmenns 185
3.67unload............ e 186
3.67.1 EXAMPIE.......cueiiciiicritrnecetrennentneeseensaeceasessstsesesasesssssasssssssssssns snes 186
3.67.2 Gl se sttt sa e menans 186
3.67.3 FUNCHON.cominiceeneieneeenseeiseesesusiesseneassssseanessasssssossossessssssnsssssans 186
3.67.4 Error MESSAES........cocvimiuiuininineninissacsessissnencssensessssessesssssussssmenns 187
Appendix A, References...............ceineneerenensensssnssssesssessses sevee 188

System Utility, User’s Guide, Part Two Page 1

1. Introduction

System Utility, User’s Guide, Part One gives a general introduction to the
file processor and utility program system and a detailed description of
certain important features of the system.

This manual, System Utility, User’s Guide, Part Two, contains detailed
descriptions of the individual programs.

Chapter 2 contains a list of programs together with a short abstract of
each program. The list is divided in three sections, one for each category
of programs: catalog handling programs, data handling programs, and
job control programs.

Chapter 3 contains the detailed descriptions of the programs, one
section for each, and all in alphabetic order.

1. Introduction

System Utility, User’s Guide, Part Two

2. Abstracts

The System Utility Programs may be divided up in categories according
to their functionality as below.

* means more than one functionality according to below categories

@ means strictly BOSS functionality ‘

2.1 Catalog Handling Programs
2.1.1 Creating Entries

assign Creates or changes a temporary entry so that the
tail of the two specified entries become identical.

entry * Creates or changes a temporary catalog entry
according to the parameters in the call. The
program is a supplement to the program "set" and
is used when one wants to set some of the elements
in the entry tail by copying from the tails of other
entries.

set * Creates a new catalog entry with scope temp or
changes an already existing entry (with scope temp)
according to the parameters. ‘

setmt Creates catalog entries of scope temp describing
files one magnetic tape according to the
parameters.

2.1.2 Changing Entries

backfile Subtracts one from the file number (unless it is 0)
in the tails of the entries specified and signals reach
of file 0.

changeentry Changes an existing catalog entry according to the

parameters in the call The program is a
supplement to the programs "set" and "entry" and is
used when one wants to change some of the
elements in the entry tail by copying from the tails
of other catalog entries. '

2. Abstracts

System Utility, User’s Guide, Part Two

Page 3

entry * Creates or changes a temporary catalog entry
according to the parameters in the call. The
program is a supplement to the program "set" and
is used when one wants to set some of the elements
in the entry tail by copying from the tails of other
entries.

nextfile Adds one to the file number in the tail of the
catalog entries specified.

permanent Changes the permanent key of the specified entry
to the specified integer.

rename Changes the names of catalog entries as specified.

scope Changes the scope of catalog entries as specified in
the call of the program.

set * Creates a new catalog entry with scope temp or
changes an already existing entry (with scope temp)
according to the parameters.

2.1.3 Looking Up Entries

lookup Finds and lists catalog entries with specified name.

procsurvey Lists types of procedures and their parameters, as
well as the procedure date.

search * Finds and lists all catalog entries with a given
scope.

translated Prints the data of translation which is found in all

ALGOL/FORTRAN programs.

2.1.4 Surveying Catalogs

cat

catsort

search *

Works as catsort, except that no sorting of entries
prior to output takes place, i.e. the entries specified
in the call are listed in the order in which they are
found in the catalog

Lists on current output selected parts of the main
catalog (or any subcatalog) sorted according to the
parameters. At last also total number of entries
and segments output are listed.

Finds and lists all catalog entries with a given
scope.

2. Abstracts

Page 4

2. Abstracts

System Ultility, User's Guide, Part Two

2.1.5 Removing Entries

clear

clearmt

Removes catalog entries with name and scope as
specified.

Removes catalog entries according to the
parameters.

2.2 Data Handling Programs

2.2.1 Creating Data in a File

binin *

binout *

char

edit *

head

label

message

The program can input files generated by the
program "binout". The program "binin" and "binout"
are primarily used when binary files are stored on
paper tape.

The program can output catalog entries and
contents of files in a format (a binout file) which
may be input by the program "binin" or the
program ‘"initialize catalog". The program can
furthermore output autoload tapes.

Outputs the specified character the specified
number of times.

Edit is a line oriented program for editing of text
files.

Prints a number of form feeds and a page head
containing the name of the job and the date.

Outputs a BOSS label on file 0 of the specified
magnetic tape.

May be used (together with "head") to make
headings on the output. The parameter list in the
call of message is simply output when the program
is called.

2.2.2 Changing Data in a File

correct

edit *

rubout

The program corrects specified words on the
backing storage according to the parameters. The
program may also be used to print specified bits as
integers.

Edit is a line oriented program for editing of text
files.

Rubs out the contents of the specified backing
storage files. If demanded the catalog entry is
removed after the cleaning.

System Utility, User’s Guide, Part Two

Page 5

2.2.3 Moving Data Between Files

binin *

binout *

compresslib

copy

edit *

move

The program can input files generated by the
program "binout". The program "binin" and "binout"
are primarily used when binary files are stored on
paper tape.

The program can output catalog entries and
contents of files in a format (a binout file) which
may be input by the program "binin" or the
program ‘initialize catalog”. The program can
furthermore output autoload tapes.

Compresses into one single area a number of
external ALGOL / FORTRAN procedures or code
procedures to occupy a minimum number of
segments.

Copies one or several files into another file and
calculates the number of characters copied and the
sum of their ISO values. Blind characters are not
copied. The program can be used instead of "edit"
if only a simple copying is wanted. Furthermore the
program may be used for check reading of text files
(e.g. texts punched on paper tape).

Edit is a line oriented program for editing of text
files.

Performs blockwise copying of files on backing
storage or magnetic tape.

2.2.4 Verification of Data in a File

binin *

edit *

print

translated *

The program can input files generated by the
program "binout". The program "binin" and "binout"
are primarily used when binary files are stored on
paper tape.

Edit is a line oriented program for editing of text
files.

Prints from a backing storage area or directly from
the core store with specified formats. The program
is primarily intended for printing of dumped core
areas.

Prints the data of translation which is found in all
ALGOL/FORTRAN programs.

2.2.5 Backup and Restore

load

The program restores files from a backup made by

save, cf. [13].

2. Abstracts

Page 6

2. Abstracts

System Utility, User’s Guide, Part Two

load13 The program can input catalog entries and bs-files
from a magnetic tape file generated by the program
savel3.

save The program performs backups of files and file
systems, cf. [13].

savel3 The program can output catalog entries and bs-files
to a magnetic tape file for later reestablishment by
the program load13.

2.3 Job Control Programs

2.3.1 Job Flow Control

claimtest *

bossjob @

corelock * @

coreopen * @

end *

finis

init

job @

Checks the claims of the calling process according
to the call parameters and leaves the ok bit true if
the claims specified are present, false otherwise.

Sends a newjob message to BOSS (the internal
process named BOSS) demanding the specified file
enrolled as job file in an off line job. In this way a
job running under another operating system may
create a BOSS job. The actual job continues with
the next FP command. Further details are found in
sec. 1.3, newjob and replacejob, in ref. 10.

Sends a corelock message to the parent (the
operating system) demanding that the job should
stay in the core the specified number of seconds.
This feature is only used in connection with process
control devices producing data with a high rate, cf.
ref. 10, secs. 3.4 and 6.7.

Sends a coreopen message to the parent (the
operating system) signalling the end of a corelock
period (cf. the program "corelock"). The program is
only used on process control installations.

Returns current input to previous current input at
the positions where it was left.

Finis terminates the job.

Makes the execution of the next FP command
conditioned by the values of one (or several) mode
bits. The condition may reflect the success of the
latest program end (or it may correspond to the
mode bits as set by a call of the program "mode").

Forces a reinitialization of FP.

Makes it possible to use tapes containing a BOSS
job request in runs directly under "s".

System Utility, User’s Guide, Part Two

mode

newjob

online * @

repeat

replace

timer @

Page 7

Changes the FP mode bits specified in the call and
may thereby change the working cycle of FP.

Sends a newjob message to the parent (operating
system) demanding the specified file enrolled as
job file in a new off line job ie. in this way a new
job is created. The actual job continues with the
next FP command. Further details are found in sec.
1.3, newjob and replacejob, in ref. 10.

Turns the job into the conversational mode where
the current input to the job is typed on the terminal
at run time. A conversational job is very resource
demanding and the user must have a special option
in the user catalog (cf. ref. 10, sec. 3.2).

The program makes it possible to repeat (a
specified number of times) a series of FP
commands placed in brackets.

Sends a replace message to the parent (the
operating system) defining a file as replacement for
the current job file. After termination of the job
BOSS will create a new job with the same name
and the specified file as job file. A replace message
from an on line is not accepted by BOSS.

Bypasses parts of current input as specified in the
parameter list.

Sends a timer message to the parent (the operating
system) demanding a provoked interupt after a
certain time.

2.3.2 Job Mode Control

corelock * @

coreopen * @

online * @

Sends a corelock message to the parent (the
operating system) demanding that the job should
stay in the core the specified number of seconds.
This feature is only used in connection with process
control devices producing data with a high rate, cf.
ref. 10, secs. 3.4 and 6.7.

Sends a coreopen message to the parent (the
operating system) signalling the end of a corelock
period (cf. the program "corelock”). The program is
only used on process control installations.

Turns the job into the conversational mode where
the current input to the job is typed on the terminal
at run time. A conversational job is very resource
demanding and the user must have a special option
in the user catalog (cf. ref. 10, sec. 3.2).

2. Abstracts

Page 8

2. Abstracts

System Ultility, User’s Guide, Part Two

2.3.3 Input / Output Control

convert * @

end *

Sends a convert message to the parent (the
operating system) who is then expected to print the
specified backing storage area. A file with scope
login is not accepted and the file must not be in use
(for instance the file must not be current output).
A temporary file converted will immediately
disappear from the reach of the job. Each convert
operation performed by BOSS requires a cbuffer
which must be reserved in the job specification (cf.
ref. 10, ch. 3 and sec. 6.2).

Returns current input to previous current input at
the position where it was left.

Selects a new file as current input. The former file
may later be resumed at the position where it was
left (for instance by a call of "end").

Selects a new file as current output.

2.3.4 Name Base Control

base

Changes the catalog base of the job process,
thereby changing the name base, and displays the
process bases of the job process.

2.3.5 Resource Control

claim

claimtest *

Lists selected parts of the bs area claims of the
process together with area, buf, size and first core.

Checks the claims of the calling process according
to the call parameters and leaves the ok bit true if
the claims specified are present, false otherwise.

2.3.6 Device Control

change @

convert @

Sends a change paper message to the parent
(operating system). The program is only used when
a job executed under BOSS uses job controlled
printer. (cf. ref. 10, section 6.2).

Sends a convert message to the parent (the
operating system) who is then expected to print the
specified backing storage area. A file with scope
login is not accepted and the file must not be in use
(for instance the file must not be current output).
A temporary file converted will immediately
disappear from the reach of the job. Each convert
operation performed by BOSS requires a cbuffer
which must be reserved in the job specification (cf.
ref. 10, ch. 3 and sec. 6.2).

System Ultility, User’s Guide, Part Two

kit @

mount

mountspec * @

release *

rewind

enable/ring

suspend @

unload

Page 9

Sends a mount disk message to the parent (the
operating system) demanding a disk kit with a
specified name to be mounted on a specified disk
unit (cf. ref. 10, ch. 3 and sec. 5.3).

Sends a mount message to the parent (the
operating system) who is then expected to ask the
operator to mount the tape reel (cf. ref. 10, sec.
6.1). The program does not await the mounting,
unless there is asked for mounting of an
unspecified worktape.

Sends a mount special message to the parent (the
operating system) limiting a later mounting of the
specified magnetic tape reel to the station with the
specified device number (cf. ref. 10, sec. 6.1).

Sends a release message to the parent (the
operating system) tape reel (cf. ref. 10, sec. 6.1).
releasing the specified magnetic

Sends a rewind operation to the magnetic tape
process, allowing the job process to continue while
the tape is rewinding.

Sends a write enable message to the parent (the
operating system). The program is normally not
used as the software sends the write enable
message automatically when needed.

Sends a suspend message to the parent (the
operating system) asking for suspension of the
specified magnetic tape reel. This is relevant for
worktapes only. The station is now available for
mounting of another tape reel, but the suspended
worktape is still reserved for the job until it
terminates or releases the tape reel.

Each suspend operation uses a suspend buffer. (cf.
ref. 10, sec. 6.1).

Sends an unload operation to the magnetic tape
process, allowing the job process to continue while
the tape is unloading.

2.3.7 Operator Interaction Control

mount *

mountspec * @

Sends a mount message to the parent (the
operating system) who is then expected to ask the
operator to mount the tape reel (cf. ref. 10, sec.
6.1). The program does not await the mounting,
unless there is asked for mounting of an
unspecified worktape.

Sends a mount special message to the parent (the
operating system) limiting a later mounting of the

2. Abstracts

Page 10

2. Abstracts

opcomm

opmess

2.3.8 Accounting

account @

System Utility, User’s Guide, Part Two

specified magnetic tape reel to the station with the
specified device number (cf. ref. 10, sec. 6.1).

Sends the parameter list in the call as a print
message to the parent (the operating system) with
request for an answer from the operator and types
the answer (when received) on current output.

Sends the parameter list in the call as a print
message to the parent (the operating system). If
the operating system is BOSS the message is typed
on the main console.

Sends an account message to the parent (operating
system) who is then expected to produce a record
in the account file. Only used when jobs running
under BOSS wants to produce special account
information.

System Utility, User’s Guide, Part Two Page 11

3. The Programs

3.1 account
Sends an account message to the parent (the operating system) which is

then expected to produce a record in the account file. Only used when
jobs running under BOSS wants to produce special account information.

3.1.1 Call
1-3
account <account kind> {<integer>)

where the parameters <account kind> and <integer> are integers.

3.1.2 Function

The program sends an account message containing the integers.

3.1.3 Storage Requirements

1536 halfwords plus space for FP.

3.1.4 Error Messages

***account call
The program was called with a left hand side.

***account <parameter list> parameter error
Parameter error in the call of the program.

***account <parameter list> kind illegal
The account kind was not accepted by the operating system.

In case of any message no account record is produced.

3. The Programs; account

Page 12

3. The Programs; assign

System Utility, User’s Guide, Part Two

3.2 assign

Creates or changes a temporary entry so that the new entry becomes a
sub entry to the old one, if the old one is an area entry, and the two
entries become identical if the old one is a non-area entry. The program
is used together with the programs entry and nextfile.

3.2.1 Example

The programmer wants to set an entry in the file longname and instead
of

new=entry longname longname longname longname longname,
2.6 longname

the following commands are used

t=assign longname
new=entry t t t tt 2.6t

The calls:

nextfile tape
nextfile tape
progfile=assign tape

will set progfile equal to the current value of tape.

3.2.2 Call

<resultname> = assign <oldname>

3.2.3 Function

<oldname> ::= <name>
<apostrophized name>
<generalized name>
<general text>

If <oldname> is an area entry, <resultname> will become a bs-entry,
ie. modekind = 1<23+4 and document name = <oldname>. If

<oldname> is a non-area entry, <resultname> will become identical to
<oldname>.

3.2.4 Storage Requirements
1536 halfwords plus space for FP.

System Utility, User’s Guide, Part Two Page 13

3.2.5 Error Messages

**assign call
No left hand side in the call of the program.

***assign param <parameter>
Parameter error in the call of the program.

**2assign <oldname> unknown
The file <oldname> was not found in the catalog.

***assign <reultname> change kind impossible
A change of an area entry to a non-area entry or vice versa was
attempted.

*#**assign <result name> change bs device impossible
A change of disk/doc name of an area entry was attempted.

***assign <result name> bs device unknown
The bs device specified was not found.

***assign <result name> no resources

The resources of the job did not allow the wanted creation or change of
an entry.

***assign <result name> no room

The wanted creation of an entry was not possible because the name
overflow for the new name in the main catalog exceeded the limit.

***assign <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is created or changed.

3. The Programs; assign

Page 14

3. The Programs; backfile

System Utility, User’s Guide, Part Two

3.3 backfile

Substracts one from the file number (unless it is 0) in the tails of the
entries specified and signals reach of file 0.

Examples

If the catalog entries 01d and new describe file 4 of magtape mt310514
and file 2 of mt310515 respectively, then the command

backfile old new

will change old to describe file 3 of mt310514 and new to describe file 1

of mt310515. A repeated call will change old to decribe file 2 and new to
describe file 0 and set the warning bit to yes. A following call will change

old to descibe file 1 and leave new unchanged - the ok bit is set to no. ‘
If the entry t describes file no. 7 on magtape mt310514 the call

backfile t t t t t t

will make it describe file no. 1.
3.3.1 Call
backfile { <name> } 1-*

3.3.2 Function

For each name in the list a catalog lookup is made and the file number
in the tail of the entry is decreased by one unless it is zero.

If any file number becomes zero then the warning bit is set to yes. .

If any file number already was zero then the ok bit is set to no.

3.3.3 Storage Requirements
512 halfword + space for FP.

3.3.4 Error Messages

***backfile call
Left hand side in the call. Program terminates without further actions.

***backfile <name> param
Parameter error. The faulty parameter starting with the name specified
is skipped and the program continues with the next parameter.

System Ultility, User’s Guide, Part Two Page 15

***backfile param
Same as above except that the faulty parameter does not start with a
name.

***backfile <name> unknown

No entry with the specified name was found. The program continues
with the next parameter.

**shackfile <name> protected

The job was not allowed to change the tail in the entry found. The
program continues with the next parameter.

If any error message occurs then the ok bit is set to no.

3. The Programs; backfile

Page 16

3. The Programs; base

System Utility, User’s Guide, Part Two

3.4 Base

The program changes the catalog base of the job process according to
the parameters in the call.

The catalog, standard, user and max bases of the process may be listed
on current output before as well as after the change of catalog base.

The catalog base may be changed to any interval which is contained in

(or equal to) the max base and which also contains the standard base,
equals it or is contained in the standard base.

3.4.1 Call

base {what}o-* [<specifier>] [<modifier>] [what]

<specifier> ::= std | user | max | abs

<modifier> = <modifl> [<modif2>]
<modifl> =

<modif2> = <integer> | <intl>.<int2>
<intl> D=

<int2> = <integer>

However, an empty modifier to the specifier <abs>, i.e. the call:
base abs

will not be accepted.

3.4.2 Function

If the parameter <what> is met before a possible specifier/modifier, the
current values of the catalog base, user base and max base of the job
process are listed on current output.

The catalog base of the job is changed to the interval specified. The
interval is found as follows:

1) the specifier is determined:

no specifier the lower limit of the current
catalog base
std the lower limit of the current
standard base
user the lower limit of the current
user base
max the lower limit of the current ‘

System Utility, User’s Guide, Part Two Page 17

2)

max base
abs the integer zero

The new interval is derived from the specifier and a possible
modifier:

no modifier lower limit, upper limit of the
specified base

<mofifl> specifier + <modifl>, specifier +
<modifl>

<modifl> <modif2> specifier + <modifl>, specifier +
<modif2>

The parameter <intl>.<int2> is interpreted as <intl> shift
12 + <int2>.

By specifying <intl> greater than 2047, a negative modifier
will be specified.

This may also be done by specifying an integer greater than
8388607, eg the modifier -1000 may be specified as
16 777 216 - 1000 = 16 776 216.

However, negative integers should of course be specified as signed
integers.

Note that an ampty specifier/modifier defines the current catalog base,
i.e. no change.

If the parameter <what> is met after a possible specifier/modifier, the
values of the bases after the changes of catalog base are listed on
current output.

3.4.3 Storage Requirements

512 halfwords plus space for FP.

3.4.4 Error Messages

*** base interval
The interval specified is not a legal catalog base for the job process. The
catalog base remains unchanged.

*## base param
Parameter error in the call of the program. The catalog base remains
unchanged.

3.4.5 Examples

3.4.5.1 base user

The call

3. The Programs; base

Page 18

3. The Programs; base

System Utility, User’s Guide, Part Two

base user .

will change the catalog base to equal the user base.

3.4.52 base abs

The call

base abs 1532 1584

will change the catalog base to the interval 1532, 1584, provided it is a
legal catalog base for the process.

3453 base 1

The call

base 1 ‘

will change the catalog base to the interval lower catalog base + 1, lower
catalog base + 1, provided it is a legal catalog base.

3.4.5.4 base what

The call

base what

will write

cat base : 420 429

std base (login) : 420 420

user base : 420 429

max base (project) : 400 499

provided the current bases have these values. ‘

3.4.5.5 base what std 0 3 what
The call

base what std 0 3 what

will write

cat base : 420 429
std base (login) : 420 420
user base : 420 429
max base (project) : 400 499
cat base : 420 423
std base (login) : 420 420

System Utility, User’s Guide, Part Two Page 19
user base : 420 429
max base (project) : 400 499

provided the bases of the process initially have the above values.

3. The Programs; base

Page 20

3. The Programs; binin

System Utility, User’s Guide, Part Two

3.5 binin

The program can input files generated by the program ‘"binout",
verifying the contents of the file by checksum control.

3.5.1 Example

A magnetic tape file, described in the catalog by the entry t, was
produced by the FP command:

t=binout fup
It may be loaded by the FP command
binin t

and thereby the catalog entry ’fup’, the area and its contents are ‘
reestablished.

3.5.2 Call

[<outfile> =]
binin [list.(yes/no)] [disk.<disk>]
<binout file> [.<modifier>)

<outfile> ::= <name of output file>
<disk> = {<name>)
{0/1/2/3)
<name> ::= <name of a disk>
<binout file> ::= <name of input file>
{ <binout segments>) .
<modifier> = { s.<binout segments> }

{ c.<binout segments> }

<binout segments>::=
{<no of binout segments> }
{<no of binout segments> . <first binout segment>}

<no of binout segments>::=
<first binout segments>::= integer

3.5.3 Function

If the parameter list.yes is specified, all entry names found are listed on
current out.

The input to "binin" is a number of binout files, each consisting of a
number of binout segments. A binout segment is a stream of 8-bit

System Utility, User’s Guide, Part Two Page 21

characters with odd parity, the second bit of each character being 0. A
binout segment is terminated by a sum character, a character with the
second bit being 1. A binout segment input by "binin" is transformed to a
number of words, each composed of the rightmost 6 bits of 4 characters.
the rightmost 6 bits of the sum character form the sum modulo 64 of all
other characters in the binout segment; this sum is checked by "binin".
"binin" scans the parameter list from left to right, and loads the
sequence of binout segments defined by the binout files. When a file is
exhausted, the input is continued from the file decribed by the next
element in the parameter list, and when it is exhausted, the execution of
"binin" is terminated.

The left side in the call of "binin" determines how the binout segments
are interpreted:

1) <outfile> is not present.

The very first binout segment is input and interpreted as a
command segment. The commands in the command segment are
executed one by one, and when the command segment is exhausted,
the next binout segment includes a load command, a number of
binout segments following the present command segment is input
and moved to backing store or magnetic tape as defined by the load
command. The following segment is interpreted as a command
segment and so on. All files created by the commands in the
command segment are created on the disk with the name ’disc’,
unless otherwise specified by the disk. <disk> option.

2) <outfile> is present.
All binout segments of the binout files are interpreted as load
segments and loaded to the file specified by <outfile>.

A command segment must not exceed 256 words; a load segment can be
of any length.

If a disk is specified by disc. <name>, all entries will be created on that
disk, if specified by disk.(0...3), each entry will be created on the disk
with the most resources of the specified permanens, cf. 3.5.5.

Default: disk.disc

3.5.4 Modifier

<binout segment> This modifier has only effect if an outfile is
specified (left side in call occurs). The first
<first segment> binout segments of the
actual in-file are skipped, and only <no of
binout segments> binout segments are
loaded to the output file. If <first
segment> does not occur, no segments are
skipped.

.8 The modifier causes each load segment to
be preceded by one word in the output.
This word is an integer which is the length
of the entire segment (no of halfwords).

3. The Programs; binin

Page 22

3. The Programs; binin

System Utility, User’s Guide, Part Two

The last segment is terminated by a word
being 0.

. This modifier causes the binout file to be
checked only; ie. the commands in the
command segments are checked for syntax
errors, and only the <:end:> command is
executed. The sums of all binout segments
are checked, but no load segments are
output to the files specified.

3.5.5 Commands

"binin" uses the same command language as the program "initialize
catalog” (cf. ref. 2).

A command in a command segment is identified by a textstring
consisting of at most 6 ISO characters (including NULL characters).
This textstring may be followed by a fixed number of parameters.
Parameters can be catalog entry names and words. A name is a
textstring of 12 ISO characters beginning with a small letter followed by
a maximum of 10 small letters or digits terminated by NULL characters.
The possible commands are:

<:newcat:> has no effect
<:oldcat:> has no effect
<:end:> terminates binin.

<:create:>,<name>,<entry tail of 10 words>

Creates a temporary catalog entry with the name and contents as
specified. If the first word of <entry tail> is positive, an area of that size
is reserved on the backing store. If the entry already exists, it is first
removed.

<:change:>,<name>,<entry tail of 10 words>

Changes an existing catalog entry with a given name as specified. If the
entry decribes an area on the backing store, the number of segments is
reduced to the value specified by the first word of entry tail.

<:rename:>,<name>,<newname>
The catalog entry, <name> is renamed to <newname>.

<:remove:>,<name>
Removes the catalog entry specified; if the entry decribes a backing
store area, this is removed too.

<:perman:>,<name>,<catalog key>

Makes the catalog entry specified permanent with the catalog key
<catalog key>. If <catalog key> equals 3, then the entry base is
changed to the user base i.e. the entry becomes user scope.

<:load:>,<name>,<no of binout segments>

Loads a number of binout segments following the present command
segment to the file decribed by <name>. On magnetic tape each binout
segment is output as one block. On backing store the boundaries of

System Utility, User’s Guide, Part Two Page 23

backing store segments are ignored. The sum characters are not
transferred to the output file.

3.5.6 Storage Requirements

The storage requirement for "binin" is approx. 4096 halfwords plus the
space needed by FP.

3.5.7 Error Messages

*#*binin param <erroneous parameters>
Parameter error in call of "binin". The program proceeds, ignoring the
€ITONeous parameters.

***binin <binout file> exhausted

The last character of <binout file> is not a sum character, when
<binout file> is the last input file.

***binin input name missing

The parameter list does not include a <binout file> or <end of
parameter list> is found before a normal termination of "binin".

***binin <binout file> input impossible
<binout file> is unknown or the input process can not be initialized.

***binin <output file> output impossible
<output file > cannot be reserved or is unknown.

***binin <binout file> core size
No memory space for buffers etc.

*#*binin <binout file> sizeerror

A command segment from <binout file> occupies more than 256 words
in core store.

***binin <binout file> sumerror in command segment

***binin <binout file> sumerror in load <output file>

***binin <text string> syntaxerror
The <textstring> is not recognized as a command.

***binin <binout file> create <name> result <result>
Create entry, result <> 0 (monitor function).

***binin <binout file> remove <name> result <result>
Remove entry, result <> 0 (monitor function).

***binin <binout file, change <name> result <result>
Change entry, result <> 0 (monitor function).

*#*binin <binout file> rename <name> reslut <result>
Rename entry, result <> 0 (monitor function).

3. The Programs; binin

Page 24

3. The Programs; binin

System Utility, User’s Guide, Part Two

***binin <binout file> perman <name> result <result> .
Permanent entry, result <> 0 (monitor function).

If an error is detected "binin" continues with the next parameter in the
list.

Further examples:

binin binfilel binfile2

inputs two binout files; command segments are required in the input.
The binout files may e.g. be proceduced by the FP commands:
binfilel=binout fpnames.p move.b

binfile2=binout algolprog

binin binfile.c

The binout file is checked, but no catalog functions are called, and no
output is produced.

copyarea=binin binfile.s

binfilel=binout copyarea.ne.a

In this way it is possible to copy binout tapes. Another copy is made by
new call of "binout", without reading the tape again.

code3=binin bincodel.2 bincode2.1.2 bincodel.4.3

loads segments 0,1 from bincodel, segment 2 from bincode2 and
segments 3,4,5 and 6 from bincodel thus merging two binouts of slang

programs into code 3.

Possible command segments are regarded as load segments, because
<other output > is specified.

The areas bincodel and bincode2 may e.g. be produced by the FP
commands:

bincodel=binout codel.s.ne
bincode2=binout code?.s.ne

System Utility, User’s Guide, Part Two Page 25

3.6 binout

The program can output catalog entries and contents of files in a format
(a binout file) which may be input by the program "binin". The output
file is added checksum information for verification by ’binin’.

3.6.1 Example

The program file named ’'fup’ is output on magnetic tape file, described
by the entry t, by the FP command

t=binout fup

(compare with the example under the program "binin").

3.6.2 Call
<outfile> = binout {<input description>)1-*
<input description> ::= <name> {(mofdifier)o-*

P)
.b [.<halfs>))
s
a

{.

{

{.s [.<field>))
<modifier> ::= {.a [.<field>])

{.np)

{.ne }
<halfs> ::= <no of halfwords>

{<no of blocks> }

<field> ::= { }

{<no of blocks> . <first block>)
<no of blocks> ::=

<first block> ::= integer

The elements <no of halfwords>, <no of blocks>, and <first block>
are integers. The elements .p, .b.<halfs>, .s.<field>, .a.<field>, .np,
and .ne, are in the following called modifiers.

3.6.3 Function

The output from "binout" is a binout file consisting of binout segments.
The binout file is a stream of 8-bit characters on magnetic tape, in a
backing store area, or on paper tape. Each binout segment is terminated
by a special character, called the sum character.

Normally each <input description> causes the output of a number of

binout segments. The first of these consists of the catalog entry defined

3. The Programs; binout

Page 26

3. The Programs; binout

System Utility, User’s Guide, Part Two

by <name>, and determines the number of the remaining binout
segments. This first binout segment is called a command segment. If the
<input description> defines a program file, the command segment is
followed by a number of binout segments, being the contents of this file.
The latter segments are called load segments.

Depending on the modifiers of the input description, either the
command segment or the load segments may be omitted, and it is also
possible to output text files as load segments. The output from "binout"
is normally used as input to "binin".

3.6.4 binout
The output file is defined by:

<outfile>, which must be the name of a catalog entry describing a
backing storage area, a file on magnetic tape or a paper tape punch. If
the output is paper tape, "binout" will select the output mode to odd
parity, independent of the mode defined by the file descriptor.

3.6.5 Input Description

The <input description> is a name, which may be followed by a set of
modifiers; it defines the binout segments to be output:

<name> is a name of an arbitrary catalog entry. If the <input
description> consists of the name only, the corresponding
catalog entry determines the format of the output: The
command segment is output but load segments are only
output, if <name> describes a file containing a program.
A file on magnetic tape, and a backing store area, which is
organized as logical blocks, is output as a number of load
segments, each load segment being a block of the file.
Other program files are output as a single load segment.

The format of the output may also be chosen explicitly, by means of the
modifiers. The effects of these modifiers are as follows:

p Intended for output of text files. The <name> must
describe a file on magnetic tape or a backing store area.
The contents of this file is output as a single load segment.

b.<halfs> Intended for output of slang programs. Has the same
effect as p, except that only the first <halfs> halfwords of
the actual file are output. If <halfs> is not present, the
last word of the filedescriptor associated with <name>
determines the number of halfwords. This number may be
set by "slang", just after translating a program.

s.<field> Intended for output of "slang" programs fulfilling below
requirements. The <name> must describe a file on
magnetic tape or a backing store area, which is assumed to
be organized as logical blocks (i.e. the first word of each
block defines the length of the entire block; a block with a
non-positive length terminates the area). The contents of

System Utility, User’s Guide, Part Two Page 27

the file are output as <no of blocks> load segments, and
if <first block> is present, the first <first block> blocks
of the file are skipped. In this case the modifier .ne is
normally used, too. If the <field> specification is empty,
all blocks of the file are output.

a.<field> Intended for output of autoload programs. Has the same
effect as s.<field>, except that the first word of each
block is not output.

np No program, i.e., no load segments are output. Normally
not used.
ne No entry, ie., the command segment is not output. Used

e.g. for output of files which may later be loaded to
defined areas (fuss=binin tro).

Note, that in a sequence of modifiers, only the latest of the modifiers:
p, b.<halfwords>, s.<field>, a.<field>, and np

has effect; e.g. the <input description>:

jza.s.ne.a.l.3.p

has the same effect as the <input description>:

jza.ne.p

3.6.6 Binout Segment

A binout segment is a stream of 8-bit characters with odd parity, the
left-most bit of each character being the parity bit. The last character in
the segment is a sumcharacter, which is characterized by the second bit
being one. The right-most 6 bits of this character form the sum modulo
64 of all other characters in the segment.

Each halfword of the input is output as two characters. The second bit of
these is always 0, whereas the right-most 6 bits are a copy of the
corresponding 6-bit group of the halfword.

3.6.7 Command Segment

The contents of a command segment are a number of commands,
sufficient to create a catalog entry and load the load segments in a later
call of "binin". The command segment, as output by "binout", consists of
at most 3 commands, which are the output of the following words:

<:create:> ; 2 words, text string
<name of entry> ; 4 words, text string
<entry tail> ; 10 words
<:perman:> ; 2 words, text string
<name of entry> ; 4 words, text string
<catalog key> ; 1 word, integer
<:load: > ; 2 words, text string

3. The Programs; binout

Page 28

3. The Programs; binout

System Utility, User’s Guide, Part Two

<name of entry> ; 4 words, text string
<no of load segments> ; 1 word, integer

The <:perman:> command is omitted if the catalog entry has catalog
key 0; and the <:load:> command is only included if load segments are
output.

3.6.8 Storage Requirements

The storage requirement for "binout” is approx. 3072 halfwords plus the
space needed for FP.

3.6.9 Error Messages

***binout <name> output impossible
No left side in the call, or the output file defined by <name> is reserved
or does not exist, or <name> does not describe a binary file.

***binout <name> <list of erroneous parameters >
Parameter error in call of "binout". If the parameters are part of an
input description, the input description is ignored.

***binout input name missing
End of parameter list is found before an expected input description.

***binout <name> unknown
<name> is not name of a catalog entry.

*#*binout <name> input impossible
<name> describes an input file from which input is not possible, or
<name> is unknown.

*#*binout core size
The memory space needed for buffers etc. is too small.

*#*binout <name> prog or entry

The input description demands output of load segments in spite of the
fact that <name> does not describe a file, nor does the input
description cause any output.

***binout <name> segments <integer>

The input description demands more output than possible; only
<integer> load segments from the file described by <name> are
output.

If an error is detected "binout" continues with the next parameter in the
list.

3.6.10 Examples on the Use of the Modifiers

The contents of the areas textarea and codearea containing a text and a

program file respectively (e.g. produced by "edit" and "slang") are output
on a file, binfile by the FP command

System Utility, User’s Guide, Part Two Page 29

binfile=binout textarea.p codearea.b

Only the part of codearea which contains code is output. The file may be
input later by the FP command:

binin binfile

The ALGOL compiler may be moved to a magnetic tape - say
mt471100, file 1 - and kept there. If ALGOL is present on the backing
storage, this is done by the FP commands:

tapealgol=entry mt62 mt471100 0 1 O algol algol
auxarea=binout algol.ne.s.ll; as algol has 11 logical segments
tapealgol=binin auxarea

Now the areas algol and auxarea may be cleared and tapealgol renamed
to algol and permanented in the catalog. (The tape reel may now be
dismounted and will be requested whenever ALGOL is called.) The
ALGOL LIBRARY PROCEDURES are of course not moved.

3. The Programs; binout

Page 30

3. The Programs; bossjob

System Ultility, User’s Guide, Part Two

3.7 bossjob

Bossjob sends a newjob message to BOSS (the internal process named
BOSS) demanding the specified file enrolled as job file in an off line job.
In this way a job running under another operating system may create a
BOSS job. The actual job continues with the next FP command. Further
details are found in sec. 1.3, newjob and replacejob in ref. [10].

3.7.1 Call

bossjob <file name> [<name of remote batch printer>]
where <file name> is a name of a permanent job file.

<name of remote batch printer>::=<name of max 6 char>

3.7.2 Function .

A newjob message containing the specified name(s) is sent to BOSS.

3.7.3 Storage Requirements
1536 halfwords plus space for FP.

3.7.4 Error Messages

**2*hossjob call
Left hand side in the call of the program.

*#*hossjob <parameter list> parameter error
Parameter error in the call of the program.

***hossjob <filename> <error cause> ‘
Error during creation of the new job. The cause may be any of the
following:

job queue full

job file not permanent
job file unknown

job file unreadable
user index too large
illegal identification
user index conflict
job file too long

temp claim exceeded
option unknown

param error at job
syntax error at job
line too long
attention status at remote batch terminal
device unknown

System Utility, User’s Guide, Part Two Page 31

device not printer
parent device disconnected
remote batch malfunction

In case of any error no new job is created.

3. The Programs; bossjob

Page 32

3. The Programs; cat

System Utility, User’s Guide, Part Two

3.8 cat

The program works as catsort, except no sorting of entries prior to
output takes place, i.e. the entries specified in the call are listed in the
order in which they are found in the catalog.

3.8.1 Examples

Example 1

The call

cat scope.system

will list all entries in the main catalog of scope system in the order they
are found in the catalog.

Example 2

The call

cat

will list all entries with entry base inside or equal to project base from
the main catalog in the order they are found.

Example 3

The call

cat cat.disc3 name.pip docname.pip

will list all entries from the catalog with the document name disc3, which
have either the name ’pip’ or the document name ’pip’.

3.8.2 Call

Exactly as for catsort, except that in spite of sorting parameters, no
sorting takes place.

3.8.3 Format of Output

Exactly as for catsort.

Note that the parameter basesort.no will influence the format of the
output.

Since the entries appear unsorted, entries of different bases cause an
additional line stating the entry base and permkey in case of
basesort.yes.

System Utility, User’s Guide, Part Two Page 33

3.8.4 Function

As for catsort, except that the temporary work file is not sorted.

3.8.5 Error Messages

As for catsort.

3.8.6 Further Examples

Example 1

cat sort.no

will list all entries in the main catalog, disregarding the parameter
sort.no

Examples 2-8

The examples in 3.8.6 apply to cat as well, except that the entries are
listed in the order they are found in the catalogs.

3. The Programs; cat

Page 34 System Utility, User’s Guide, Part Two

3.9 catsort
Lists on current output selected parts of the main catalog (or any

auxiliary catalog) sorted according to parameters. At last also the total
number of entries and segments are listed.

3.9.1 Examples

Example 1

The FP command:

catsort base.project.min

will list all entries with a base contained in the project base, e.g.
belonging to the actual project. The parameter min causes that only .
name, segments, docname, date, and scope is output.

Example 2

The FP command:

catsort scope.project min.yes

will do the same, but only permanent entries with an entry base equal to

the project base are output.

Example 3

The FP command:

catsort

will list all entries with a base inside or equal the to project base from ‘
the main catalog sorted according to base and entry name.

See also Further Examples.

3.9.2 Call

{<catalog spec>) 0-*
[<outfile>=] catsort {<entry spec>)
{<sorting spec>)

|
3. The Programs; catsort

System Utility, User’s Guide, Part Two Page 35

<catalog spec> ::= { main.{yes/no}
{

{docname .<document name>
(

{base. ({<scope> .min }}
({<lower>.<upper>})
(}
{scope. {<scope> .min })
{ {<lower>.upper>))
{)
{before. <clock>
{after. <clock>

)

)

{ {yes/no})

{ cat. {<integer>) }

{ {<document name>}}

{ {main})
<entry spec> si= | { only)})
{system. { yes } }
{ {no })
{)
{name. <entry name> }
}
}

{size. <lower><upper>
{cont. <lower><upper>
{min. yes/no
<sorting spec.>::= ({(basesort } . {yes/no)
{docsort }
{slicesort}
{sort)
{system)}
{project)
{user H
<scope> ii= {login)
{ temp)
<lower> (1= <integer>
<upper> 1:= <integer>
<clock> = <yymmdd>.<hhmmss>
<yymmdd> = <integer>
<hhmms s> = <integer>
3.9.3 Format of Output

In case of basesort.yes, each entry is listed in one line in the form:
<entryname> <modekind> <document name><remaining entry tail>
If the parameter min is specified the line is:

<entryname> <modekind> <document name>

Before each group of entries with the same base, one line stating the

base and permkey is listed.

3. The Programs; catsort

3. The Programs; catsort

System Utility, User's Guide, Part Two

In case of basesort.no, this line is replaced by a supplement to each
entry line. The supplement comes after entry name and consists of the
information from the entry head:

<first slice> <name key> <catalog key> <lower base> <upper base>

If, however, an auxiliary catalog is listed, the document name of area
entries is replaced by:

-> <write access counter><read access counter> <-
and another line follows:

-> d.<latest changed> <-d.<latest read>

3.9.4 Function

If an outfile is specified, this file is used for output, otherwise current .
output file is used.

The catalogs are copied, one by one, into a temporary work file, which is
sorted according to the parameters.

The parameters are processed, one by one, before any catalog is
accessed.

Any parameter being repeated is a modification to the previous one.

Catalog Specifiers
main.<yes/no> defines whether the main catalog is
listed or not. Default: main.yes
cat.<integer> defines whether the auxiliary catalog is
.<name> listed or not.
.main An integer or a document name .
.yes specifies an auxiliary catalog to be
.no listed.

The name ‘main’ specifies the auxiliary
catalog for the disk having the main
main catalog.

The name ’yes’ means all auxiliary
catalogs.

The name ’no’ specifies no auxiliary
catalogs.

The option prevents the main catalog
from being listed, unless explicitly
specified by main.yes.

Default: cat.no.

System Utility, User’s Guide, Part Two

Entry Specifiers:

system.yes
.no
.only

name .<name>

docname . <name>

base.<scope>

base.<lower><upper>
scope.<scope>
scope.<lower>.<upper>

before.<clock>
after.<clock>

size.<lower>.<upper>

cont.<lower>.<upper>

Sorting Specifiers

basesort.yes

docsort.yes

Page 37

defining whether the system files are
listed or not.
Default. system.yes

only entries with the entry name
specified are listed. Default: any name.

only entries containing the document
name specified are listed. Default: any
document name.

only entries with an entry base
contained in the base specified by the
scope are listed. Default: base.system

only entries contained in the specified
base are listed.

only entries with the specified scope are
listed.

only entries with entry base as specified
are listed. (cf. above).

only entries updated before (or after)
are listed. In the main catalog,
shortclock is used as latest update, i.e.
only non procedure entries are
candidates.

In auxiliary catalogs, latest changed in
the tail is used for area entries,
shortclock is used for non procedure file
descriptors.

Default: after.zero before.infinity

only area entries with the size in the
interval specified are output, (lower and
upper size included).

Default: size.0.infinity

only entries with a contents key in the
interval specified are output (lower and
upper included).

Default: cont.0.infinity.

sorted after the entry base (which
means grouped after project and users).

each area entry is followed by all
subentries which have a document name
equal to the entry name of the main
entry.

3. The Programs; catsort

Page 38

3. The Programs; catsort

System Utility, User’s Guide, Part Two

slicesort.yes sorted according to first slice. This ‘
parameter will cancel the parameter
docsort.yes and has the same priority.

The priority of the sorting parameters are basesort, docsort. The last
sorting criterion will always be alfabetic sorting on entry name.

sort.no no sorting at all is performed. The total
catalog will be output, neglecting all
other parameters but main and cat.

3.9.5 Error Messages

**scatsort error param <erroneous and following parameters >
Parameter error in the call.

***catsort, create sortarea impossible
It was impossible to create an area for sorting.

In case of any error message, the program terminates.

3.9.6 Further Examples
Example 1
catsort sort.no

will list the total main catalog, segment by segment, in unsorted form,
empty entries represented by a line marked: -

For each segment is stated the segment number and the number of non
empty entries on the segment.

Example 2

catsort cat.yes

will list all entries in the auxiliary catalogs sorted according to base and
entry name.

Example 3

catsort name.pip docname.pip basesort.no

will list all entries in the main catalog with entry name ’pip’ or document
name ’pap’, sorted according to entry name.

Example 4

catsort docname.disc

System Utility, User’s Guide, Part Two Page 39

will list all entries from the main catalog with document name ’disc’,
sorted according to base and entry name.

Example §

catsort cat.discl

will list all entries from the auxiliary catalog with document name ’disc1’
sorted according to base and entry name.

Example 6

catsort main.yes cat.yes size.5000.8000000

will list all area entries from the main catalog and all auxiliary catalogs
which have a size greater than 5000 segments.

Example 7

catsort after.840506.174500 before.840506.240000

will list all entries from the main catalog updated since the date
1984.0506 at 174500 until the date 840506 at 240000, i.e. entries with a
shortclock (all entries which are not procedure entries) set in the
interval given.

Example 8

catsort cat.disc3 after.840601.000000

will list all entries from the auxiliary catalog with document name ’disc3’
which have been updated since the date 840601 at 000000 hours, i.e.

area entries (last changed in the tail is used) or file descriptors which
are not procedure entries (the shortclock of the tail is used).

3. The Programs; catsort

Page 40 System Utility, User’s Guide, Part Two

3.10 change

Sends a change paper message to the parent (the operating system). The
program is only used when a job uses job controlled printer. (cf. ref. [10],
section 6.2].

Output on printer from a job running under BOSS is normally made

either by printing on current output or as off line printing initiated by
the FP command "convert".

3.10.1 Call

change <device name> <paper type>

where the parameter <paper type> is an integer.

3.10.2 Function

A change message containing the specified device name and paper type
is sent to the parent who is then expected to perform the necessary
actions (message to the operator etc.).

3.10.3 Storage Requirements
1536 halfwords plus space for FP.

3.10.4 Error Messages

***change call
The program was called with a left hand side.

***change <parameter list> parameter error
Parameter error in the call of the program. .

***change <parameter list> <error cause>
The change message was not accepted by BOSS for one of the following
causes:

1. no buffers
2. job printer not allowed (cf. ref. [10])

In case of any error the change action is not performed by BOSS.

3. The Programs; change

System Utility, User’s Guide, Part Two Page 41

3.11 changeentry

Changes an existing catalog entry according to the parameters in the
call. The program is a supplement to the program "set" and "entry" and
is used when one wants to change some of the elements in the entry tail
by copying from the tails of other catalog entries.

3.11.1 Example

Suppose that the catalog entry named ’source’ contains the name of a
magnetic tape reel in the document name field.

By the FP commands
filex=changeentry filex source filex filex filex filex filex
the entry filex is changed to contain the name of the tape reel.

The catalog entry named ’source’ containing the name - say mt471100 -
may be created by a call of "set":

source = set mtlé mt471100

3.11.2 Call
0-4

<newname> = changeentry [<kind> [<docname> [<date> {<word>}]]]

{<kind> } ji= {<integer> }

{<docname>) {<integer> .<integer>)
{<name> }

<date> (1= {<integer> }
{<integer> .<integer>)
{<name> }
{<name> .<name>)
{d.<isodate>.<clock> }

<word> ti= {<integer> }
{<integer> .<integer>)
{<name> }
{<name> .<name> H

<isodate> ti= {<yymmdd> / 0)

<clock> ::= <hhmm>

<yymmdd> Dl

<hhmm> ::= <integer>

<newname> {i= name

<name> ;= name, apostrophized name,

generalized name or general text

3. The Programs; changeentry

Page 42

3.11.3 Function

System Utility, User’s Guide, Part Two

The left hand side is looked up. If it does not exist, the program
terminates. Otherwise the parameters are interpreted as described
below yielding the wanted entry tail. From this point the program

continues exactly as program "set".

3.11.4 Parameters
Kind:
<integer>

<integer1l> . <integer2>

<name>

Document Name:
<integer>

<integerl> . <integer2>

<name>

The Other Parameters:

The value is placed in the tail.

The value <integerl> shift 12 +
<integer2> is placed in the tail.

First the name is searched for in the
table of modekind abbreviations
and if found here the value found is
used. If not found in the modekind
table (see ref. [8]) it is searched for
in the catalog and the kind of the
entry found is used.

The value is placed in the tail.

The value <integerl> shift 12 +
<integer2> is placed in the tail.

If the kind found above is the
modekind bs (2048 shift 12 + 4) the
name itself is used in the tail. For
all other kinds the name is looked
up in the catalog and the document
name in the tail of the entry found
is used.

A parameter of the form <halfwordl> gives separate specifications of
the two 12-bit halfwords in the word.

<integer>
<integer1>.<integer2>

<name>
<name>.<name>

3. The Programs, changeentry

The value is placed in the tail as the
word or halfword in question.

The name is looked up in the
catalog and the value of the word or
halfword in question in the entry
tail is used.

System Ultility, User’s Guide, Part Two Page 43

If the parameter list does not specify all of the tail, the rest of the tail is
set to zero.

3.11.5 Storage Requirements

1536 halfwords plus space for FP.

3.11.6 Error Messages

*#*changeentry call
No left side in call of the program.

***changeentry param <parameter>
Parameter error in call of the program.

***changeentry <name> unknown
Lefthand side or a parameter was searched in the catalog but not found.

***changeentry <result name> change kind impossible
A change of an area to a non-area entry or vica versa was attempted.

***changeentry <result name> change bs device impossible

***changeentry <result name> bs device unknown
The bs device specified was not found.

*#*changeentry <result name> no resources
The resources of the job did not allow the wanted creation or change of
an entry.

***changeentry <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is changed.

3. The Programs; changeentry

Page 44

3. The Programs, char

System Utility, User’s Guide, Part Two

3.12 char

Outputs the specified character the specified number of times.

3.12.1 Example

The current output may be divided in groups by the call
char nl.8

which produces 8 newlines on current output.

char ff nl

produces a top of form and a newline on current output.

3.12.2 Call

[<outfile>] = <char { <iso value> } 0-*
{ <iso value>.<repeat factor> }

<iso value> ::= <integer>|nl|ff|em|sp

<repeat factor> ::= <integer>

3.12.3 Function

If no repeat factor is specified the character will be output once, else the
character will be output as many times as specified by repeat factor.

The repeat factor may be changed by the program, e.g. ff.19 will be
changed to ff.6, as nl.100 will be changed to nl.64. Other characters will
be repeated max. 133 times.

If an outfile is specified, it is used for output, else current output is used. .

3.12.4 Storage Requirements
1024 halfwords plus space for FP.

3.12.5 Error Message

s*schar param <parameter>
Parameter error in the call. The program continues in the parameter
list.

System Ultility, User’s Guide, Part Two

3.13 claim

Lists some claims of specified processes.

3.13.1 Examples

In an installation with the 2 disks:
disc and discl

the call:
claim
may print:
name: fgs area: 10 buf: 12 size: 200000
disc: 84 segm/slice
temp 1596 segm. 19 slices 20 entr.
login 924 segm. 11 slices 21 entr.

perm 924 segm, 11 slices 21 entr.

disc1: 42 segm/slice

temp 42 segm, 1 slices

login 42 segm. 1 slices 1 entr.

perm 42 segm. 1 slices 1 entr.
The call

claim key.disc
would print:
name: fgs area: 10 buf: 12 size: 200000
disc: 84 segm/slice
key 0 1596 segm. 19 slices 20 entr.
key 1 924 segm. 11 slices 22 entr.

key 2 924 segm. 11 slices 21 entr.
key 3 924 segm. 11 slices 21 entr.

and the call:

claim perm.disc temp

would print:

name: fgs area: 10 buf: 12 size: 200000

disc: 84 segm/slice
perm 924 segm. 11 slices 21 entr.

Page 45

first: 149790

first: 149790

first: 149790

3. The Programs; claim

Page 46

3. The Programs; claim

System Utility, User’s Guide, Part Two

disc: 84 segm/slice
temp 1596 segm. 19 slices 20 entr.

discl: 42 segm/slice
temp 42 segm. 1 slices

The call

claim all buf

may print

name: s area: 50 buf: 53 size: 1708290 first: 126714
name: driverproc area: 0 buf: 129 size: 119918 first: 8
name: errorsnoop area: 0 buf: 1 size: 1100 first: 149790
name: acp area: 7 buf: 14 size: 36000 first: 149790
name: hsp area: 5 buf: 12 size: 70000 first: 149790
name: ftsserver area: 8 buf: 6 size: 80000 first: 149790
name: ftsuser area: 9 buf: 11 size: 80000 first: 149790
name: fgs area: 10 buf: 12 size: 200000 first: 149790
name: tem area: 4 buf: 19 size: 23000 first: 149790
name: primo area: 9 buf: 53 size: 26000 first: 149790
name: sos area: 61 buf: 50 size: 120000 first: 149790
name: boss area: 297 buf: 253 size: 559114 first: 149790
3.13.2 Call

[<outputfile> =] claim {[<process>] {(<spec>}0-* }0-*
<outputfile> ::= <name of a file>
<process> ::= <name of internal process> / all

<spec> ;1= <disk> / <scope> / <scope>.<disk> /
<disk>.<scope> / <other>

<disk> ::= <name of disk>

<scope> ::= temp / login / perm / key
<other> ::= area / buf / size / first
3.13.3 Function

The program scans the parameter list. For each parameter group, the
internal tables in the monitor are scanned. If a name of an internal
process is specified, the resources of that process are listed. The name
’all’ means all internal processes, one by one. No process name means
own process. If a document name is specified in the parameter group,
the resources of catalog entries and segments for each permanent key
on that device are listed, else the resources on all disks are listed. If
<scope> is specified the listing of resources is restricted to the
specified scopes.

System Ultility, User’s Guide, Part Two Page 47

perm is equal to scope user + project.

If the <scope> ’key’ is specified, the permanent keys will be output
instead of the scope names.

Note that temp entries are only output for the disk containing the main
catalog, since all temporary entries are counted only here, cf. ref. [2] and

(31

If claim is called in the beginning of a job, the value of area claim for
own process is already reduced by 1, which is the one used by FP.

An empty parameter list means: own process, all disks, all scopes.
If there is a left side in the call of claim, the output will appear on
<output file> otherwise on current output.

3.13.4 Storage Requirements
1536 halfwords plus space for FP.

3.13.5 Error Messages

***claim connect <output file>

The specified output file could not be connected. Current output is
chosen as output.

***claim param <list of erroneous parameters >
Parameter error in call of claim.

*#*claim param <docname> unknown
A disk named <disk> does not exist.

3. The Programs; claim

Page 48

3. The Programs; claimtest

System Utility, User’s Guide, Part Two

3.14 claimtest

Checks the claims of the calling process according to the call parameters
and leaves the ok bit true if the requirements specified are met, false
otherwise.

3.14.1 Example

The job

claimtest perm.discl.1000.10
if ok.no

finis

is terminated if the permanent resources on discl are less than 1000
segments and 10 entries.

3.14.2 Call
0-*
claimtest { <key>.<bs claims>)
{ buf .<buffer claim>)
{ area .<area claim>)
{ size .<size> }
{ int .<internal>)
<key> ::= perm/login/tempspec/temp
<bs claims> . i= <document name>.<segments>.<entries>

<document name>::= <name of disk>

<segments>
<entries>

<bs claims>
<buffer claim>
<area claim>
<size>
<internals>

i:= integer

—— p— p— — - —
— ot N Nt St

3.14.3 Function
The parameters in the call are examined one by one.

The <key> parameter names mean:

temp : key = 0
tempspec : key = 1
login : key = 2
perm : key = 3

System Ultility, User’s Guide, Part Two Page 49

If an error in the parameter occurs or the claims specified exeed the
claims available according to the process description of the calling
process, the program terminates setting the ok bit false. If the program
reaches the end of the parameter list, the program terminates setting
the ok bit true.

Temporary and temporary special entry claims are checked on the disk
containing the main catalog no matter the document name specified.
3.14.4 Storage Requirements

4096 halfwords + space for FP

3.14.5 Error Messages

***claimtest: parametererror, unknown fpparameter <parameter>
The parameter is neither of the eight names: perm, login, tempspec,
temp, buf, area, size, int.

***claimtest: parametererror,

parameter must be (name/integer) read <param>
The parameter is a name or an integer when it should be an integer or a
name.

***claimtest: syntaxerror, separator must be <point> read <sep>
Separator not a point.

*#*claimtest: unknown bs device <name>
The bs device with the name <name> is not included in the bs system.

3. The Programs; claimtest

Page 50 System Utility, User’s Guide, Part Two

3.15 clear

Removes catalog entries with name and scope as specified.

3.15.1 Example
By the FP command
clear user text4

the catalog entry (if any) with scope user and name text4 is removed
from the catalog. A catalog entry with the same name but another scope
is not affected.

3.15.2 Cali

1-*
clear <scope spec> (<name>}

<scope spec> .= <scope> [.<disk name>]
<scope> ii= { temp }
{ login }
{ user }
{ project }
<disk name> ::= <name of disk>
3.15.3 Function

The scope specification is interpreted and then the name list is scanned.
For each name in the list the name is searched in the catalog. If an entry
with the specified name and scope is found, it is removed from the

catalog. .
3.15.4 Scope Specifications

The concept of scope of a catalog is explained in ref. [10], sec. 4.1. A
disk name means a further restriction to entries which are either

(a) area entries, where the data area is placed on the specified disk, or

(b) non-area entries, which are present in the auxiliary catalog on the
disk cf. ref.[3].

3.15.5 Storage Requirements

2048 halfwords plus space for FP.

3. The Programs; clear

System Utility, User’s Guide, Part Two Page 51

3.15.6 Error Messages

*#2clear call
The program was called with a left hand side. No entries removed.

s**clear <scope spec> illegal scope
The scope specification was illegal. No entries removed.

s*2clear <scope spec> bs device unknown
The specified disk was not included in the bs system. No entries
removed.

**2clear <scope spec> bs device not ready
The disk specified was not ready or catalog i/o error. No entries
removed.

*#*clear param <parameter>
Illegal parameter. The rest of the parameter list is skipped.

*s*clear <scope spec> <name> unknown
The entry to be removed was not found. The program continues with the
next name in the parameter list.

***clear <scope spec> <name> entry in use

The entry could not be removed because another job was using it. The
program continues with the next name in the parameter list.

3. The Programs; clear

Page 52 System Utility, User’s Guide, Part Two

3.16 clearmt

Removes catalog entries according to the parameters.

3.16.1 Example
The FP command:
pap=clearmt mt004711.3

will remove the entries pap1 pap2 pap3.

The FP command:

f=clearmt £.3.5 ‘

will remove the entries f3 f4 £5.

3.16.2 Call

<result name> =
clearmt <mtname>. [[<lower integer>.] <upper integer>]

The <mtname> is not used during interpretation of the parameters. If
no <lower integer> is specified, the value 1 is used.

3.16.3 Function

Entry names <resultname> followed by <lower integer> to <upper
integer > are removed.

3.16.4 Storage Requirements .
512 halfwords plus space for FP.

3.16.5 Error Messages

***clearmt call
No left hand side of more than 9 characters

#**clearmt param
Parameter error in the call, e.g. <integer> greater than 99.

#**clearmt <resultname> catalog error

Error in catalog, monitor, or hardware

In case of above error messages the program terminates.

3. The Programs; clearmt

System Utility, User’s Guide, Part Two Page 53

***clearmt <resultname> unknown
The specified entry was not found. The program continues.

3. The Programs; clearmt

Page 54

System Utility, User’s Guide, Part Two

3.17 compresslib

The program compresses into one single area a number of external
ALGOL / FORTRAN procedures or code procedures to occupy a
minimum number of segments. The object area may be an already
compressed library of procedures.

3.17.1 Example
The call

read = compresslib write arctan ln arcsin

collects into one single area the algol library procedures read, write,
arctan, In and arcsin and sets the descriptors of these procedures so that
they may be found and accepted by the ALGOL and FORTRAN
compilers.

3.17.2 Call

1-*

<collection area> = <compresslib> (<procedure area>)

<collection area> ::= <procedure area>
<procedure area> ::.= <name>

A procedure area is an area entry with content 4, and with length < 0.
The intervals of the procedure areas must be equal and the procedure
areas must be visible to and not protected against the user process.

3.17.3 Function

The contents of the collection area is examined so that it is known how
much space the code and the external list take up in the area. Then the
procedure areas on the right hand side are scanned from left to right
and their code and external lists are placed one after the other as tight
as possible after the external list and the code of the collection area. If
necessary the collection area is extended as the processing proceeds.
Parameters not accepted in this phase are dropped in the compression.
When all procedure areas have been collected, the accepted areas are
removed and the procedures are described as shared main entries (see
the appendix), i.e. the content becomes 32 + first segment in the
collection area, and the mode kind becomes bs.

Possible sub entries to the procedure areas are not changed.

3.17.4 Storage Requirements

900 halfwords + room for FP + room for the largest external
procedure.

3. The Programs; compresslib

System Utility, User’s Guide, Part Two

3.17.5 Error Messages

Page 55

All error messages have the following form:

***compresslib <param> <further explanation>

After an error message of this form, the standard actions are as follows:

If <param> is absent or it is the name of the collection area, the
program terminates immediately. None of the procedure areas to the

right will be changed.

If <param> is one of the right hand parameters, this parameter is
dropped from the compression, but the other parameter will not be

effected.

Further explanations may be:

connect error:

unknown:

interval:

content:

not area:

intervals:

no collection area:

transport error:

process too small:

too many segments:

The area could not be connected for
input or output. the reason may be that it
is reserved for output by another process.

The area could not be found.

The interval of the procedure area is not
equal to the interval of the collection
area.

The parameter does not denote an
external procedure.

The parameter does not denote an area
(with length > 0).

The interval of the collection area is not
equal to the catalog base of the process
or the catalog base is not contained in or
equal to the standard interval of the
process.

The program call has no left hand side.

Input from a procedure area or input to
the collection area is impossible. Usually
because of claims exceeded or bs_fault.

It is imposible to hold the entire
procedure in the process area. If
parameter is the collection area, it is
impossible to hold the external list in the
process area.

The collection area has exceeded 4063
segments.

3. The Programs; compresslib

Page 56 System Utility, User’s Guide, Part Two

3.18 convert

Sends a convert message to the parent (the operating system) who is
then expected to print the specified backing storage area. A file with
scope login is not accepted and the file must not be in use (for instance
the file must not be current output). A temporary file converted will
immediately disappear from the reach of the job. Each convert
operation performed by BOSS requires a cbuffer which must be
reserved in the job specification.

3.18.1 Example

A program has produced a text file in the area outl. It is printed by the
FP command

convert outl

3.18.2 Call
convert <name> [<name of remote batch printer>] [integer]

<name of remote batch printer>::= <name of max. 6 char>

3.18.3 Function

The convert message with the specified name(s) and integer (or zero if
no integer is specified) is sent to the parent).

3.18.4 Paper Types

0 Standard paper, i.e. monitor format, one copy. A page is 64 lines of

133 positions. '
1 A4 upright, one copy.

A page is 64 lines of 72 positions.
A4 across, one copy.
A page is 42 lines of 112 positions.
Monitor, two copies.
A4 upright, two copies.
A4 across, two copies.
Monitor, three copies.
Ad upright, three copies.
A4 across, three copies.
9-99 For extensions.
100-999 Special forms. Requires agreement with the operator.

[%]

0NN bW

3.18.5 Storage Requirements
1536 halfwords plus space for FP.

3. The Programs; convert

System Utility, User’s Guide, Part Two

3.18.6 Error Messages

***convert call
Left hand side in call of the program.

***convert <parameter list> parameter error

Parameter error in call of the program.

***convert <parameter list> <error cause>
The convert message was not accepted by BOSS for one of the following
causes:

bk el e
NS 0oNaUnswh-

no cbuffers

file does not exist

file has login scope

no resources

file in use

file is not area

attention status at remote batch terminal
device unknown

device not printer

parent device disconnected
remote batch malfunction
not textfile

Page 57

In case of any error the convert operation is not performed by BOSS.

3. The Programs; convert

Page 58

3. The Programs; copy

System Utility, User’s Guide, Part Two

3.19 copy

Copies one or several text files into another file and calculates the
number of characters copied and the sum of their ISO values. Blind
characters (ISO values 0 and 127) are not copied. Furthermore the
program may be used for check reading of text files (e.g. texts on paper

tape).

3.19.1 Example

The text files ’text1’ ’text2’ are output as one magnetic tape file 'text’ by
the FP command

text=copy textl text2

and the number and the sum of the characters are printed on current
output. One may then check the text by reading it in another job by the .
FP command

copy text

3.19.2 Call

[<outfile>=] copy [list. {yes/no}] ,
1-'
{ <infile> }
{ <lines> }
{ [<infile>.] <iso value>.<appearances> }
{ message.{yes/no} }

<infile> 1= <name>
<lines> := <integer>
<iso wvalue> = {<small letter>)}
{<integer> } .
<appearances> {:= <integer>

3.19.3 Function

If the parameter list.yes is specified, the input is listed on current out.
The program interpretes one parameter at a time as follows:

<infile>
The file is copied on <outfile> if any. If no <outfile> is specified only
the calculation of number and sum of characters is performed.

<lines>

Thespecified number of visible lines are copied from current input on
<outfile> if any.

System Utility, User’s Guide, Part Two Page 59

<iso value>.<appearances> and

<infile>.<iso value>.<appearances>

The program copies from <infile> if specified, else from current input
on <outfile> if any.

Copying stops when the specified number of appearances of the iso
character are met. The last character is not output.

message.yes OY message.no
Determines whether the following should be output on current output
(default: message.yes)

1. after each parameter:
<infile> segm. <number of segments>
number of characters < 128
sum of characters
number of characters > 128 (if any)
number of blind characters (0, 127) - (if any)
number of sub characters (26) - (if any)

2. at program end (only if the call contains an <outfile> and more
than one param):
<outfile> segm. <number of segments>
total number of characters < 128
total sum of characters
total number of characters > 128 (if any)
total number of sub characters (26) - (if any)

3.19.4 Storage Requirements
1536 halfwords plus space for FP.

3.19.5 Error Messages

All errors cause the warning bit to be set.

***copy connect <outfile> <cause>
The output file cannot be connected for output. The ok bit is set to no
and the program is terminated. <cause> may be:

no resources

not found

in use - maybe file is the job file

convention error - output attempted on input device or vice versa
error - catalog, monitor, or hardware error.

nawbhe

***copy connect <infile> <cause>
An input file cannot be connected for input. The parameter is ignored.

**%copy param <illegal parameter>
Illegal parameter syntax. The parameter is ignored.

$**copy end medium
Current input is exhausted because the parameter <lines> or <iso

3. The Programs; copy

Page 60

3. The Programs, copy

System Utility, User’s Guide, Part Two

value>.<appearances> demands reading past EM. The program .
continues with the next parameter.

*#**copy no core
The call is not executed because the process is too small.

System Utility, User’s Guide, Part Two Page 61

3.20 corelock

Sends a corelock message to the parent (the operating system)
demanding that the job should stay in core the specified number of
seconds. This feature may, e.g., be used in connection with process
control devices producing data with a high rate, cf. ref. [10], secs. 3.4 and
6.7.

3.20.1 Example

The FP command:

corelock 5

demands corelock for a period of 5 seconds.

3.20.2 Call

corelock <seconds>

where <seconds> is an integer.

3.20.3 Storage Requirements
1536 halfwords plus room for FP.

3.20.4 Error Messages

***corelock call
Left hand side in the call of the program.

***corelock <parameter list> parameter error
Parameter error in the call of the program.

In case of any error no corelock message is sent.

3. The Programs; corelock

Page 62

3. The Programs; coreopen

System Utility, User’s Guide, Part Two

3.21 coreopen
Sends a coreopen message to the parent (the operating system)

signalling the end of a corelock period (cf. the program "corelock"). The
program may, e.g., be used on process control installations.

3.21.1 Example
The program is called without parameters:

coreopen

3.21.2 Call

coreopen

3.21.3 Storage Requirements

1536 halfwords plus room for FP.

System Utility, User’s Guide, Part Two Page 63

3.22 correct
The program corrects specified words in the backing storage file

according to the parameters. The program may also be used to print
specified bits as integers.

3.22.1 Example
The FP call:
correct bsfile.4 ,
addr.0 bits 0.11 if 700 then -456,

bits 12.23 1if -1234 then 4000,
addr.8 if 0 then 1
will make the following corrections on segment 4 of ’bsfile’:
halfword 0 is changed to -456 (in case it is 700)
- 1 - - - 4000 (- - - - -1234)
- 8:9 - - - 1 (- - - - 0)

No corrections are made if <oldvalue> is not correct in all cases.

3.22.2 Call

correct <bsfile>.<segmno> |,

{ address.<addr>
{[<bitspec>] if <oldvalue> |,
1-& 0.*
then <newvalue>)})

<bitspec> ::= bits.<firstbit>.<lastbit>
{ <oldvalue>) ::= { <integer> }

{ <newvalue>) { negative.<integer>)

{ <segmno> } !:= <integer>

{ <addr>)

{ <firstbit>)

{ <lastbit>)

3.22.3 Function

Segment number <segmno> is input and for each address it is tested
whether the specified <oldvalue> is found, in which case it is replaced
by <newvalue>. If no errors are found the segment is output.

Note that the file will be connected in the standard way for utilities, i.e.
segmno is calculated as segmno + block count cf. [8].

During syntax check only the first 3 letters in the words:

3. The Programs; correct

Page 64

3. The Programs, correct

System Ultility, User’s Guide, Part Two

address, bits, then, negative

are tested, i.e adr is accepted for address.

Odd addresses are reduced by 1.

<segmno> and <addr> are counted from 0.

Bits are numbered 0, ..., 23 with the most significant bit being no. 0.
The word ’shortclock’ in the catalog entry is updated. In case <bsfile>
describes an external procedure, the internal date is updated.

3.22.4 Storage Requirements

1024 halfwords plus space for FP.

3.22.5 Error Messages

***correct call
Left hand side in the call.

***correct param <faulty parameter >
Syntax error in the call.

***correct param missing
End of parameter list when more parameters are expected.

***correct <bsfile> not connected
<bsfile> could not be connected, maybe not present or not kind bs.

***correct segm.<segmno >
<segmno> > = size of <bsfile>.

s**correct addr.<addr>
<addr> > 511. ‘

**2correct addr.<addr> bits. <firstbit >.<lastbit>
<firstbit> > <lastbit> or <lastbit> > 23.

**3correct addr.<addr> bits. <firstbit>.<lastbit>,
oldvalue= <oldvalue>
<oldvalue> is greater than the specified bits allow.

ss*scorrect addr.<addr> bits. <firstbit>.<lastbit>,
newvalue = <newvalue>
<newvalue> is greater than the specified bits allow.

***correct addr.<addr> bits. <firstbit>.<lastbit>,
oldvalue= <oldvalue > ,[found = <oldvalue found >
The specified <oldvalue> is not equal to the value found.

System Utility, User’s Guide, Part Two Page 65

In the last case the program continues in the parameter list (but no
corrections will be made), in all other cases the program terminates
immediately.

In case of any of above error messages no corrections are made.

*#*correct entry inconsistent

***correct code inconsistent

The date in ’shortclock’ of the entry tail, or the internal date of an
external procedure is incorrectly described either in the catalog entry or
in the code. The correction has been performed.

3. The Programs; correct

Page 66 System Utility, User’s Guide, Part Two

3.23 delete

Finds and removes all catalog entries with a given scope, possibly
filtered by filters given. The filters work on the entry name and on the
document name as for the program search.

The program should be used with extreme care, e.g. execute the
program search with the same parameters before executing delete.

3.23.1 Example

By the fp command

delete user

all entries of scope user are listed on current output and removed. .

By the fp command
delete own

all entries of scope temp, login, user, or project are listed on current
output and removed, while the command

delete user ret.tx
will list all entries of scope user which contain both the substring ’ret’

and the substring 'tx’ in either name or document name and remove
them.

3.23.2 Call
[<out file> =] delete <scope spec> {(<filter>) o0-* .

<scope spec> ::

<scope> [.<disk name>]

<scope> Dl { temp }
{login }
{user }
{project }
{own)
{<low>.<upp> }

<filter> Pl <substring> {.<substring>} o0-*

<substring> {<name>
{<apostrophized name>
{<generalized name>

{<general text>

——r S Nt gt

3. The Programs, delete

System Utility, User's Guide, Part Two Page 67

<low> =
<upp> Dl integer
3.23.3 Function

The main catalog is scanned, and a subset of it is listed with an output
format as for lookup and the entries in the subset are removed. If an
outfile is specified, the list of catalog entries is printed on that file,
otherwise current output is used. Messages from delete are always
printed on current output. If no filters are given, all entries from the
main catalog according to the scope specification are listed and
removed, otherwise, the set of catalog entries is further delimited by
means of filters (see filter specification below).

3.23.4 Scope Specification

The scope concept is explained in ref. [10], section 4.1. The scope own
means any scope in the set temp, login, user, or project (cf. the example
above). If a disc name is specified, only entries in the auxiliary catalog
on that disc are candidates. The scope given by <low>.<upp> means
all entries with entry interval equal to the interval <low>.<upp>, which
will have to be contained in but not equal to the std. interval of the
process.

3.23.5 Filter Specification

A filter consists of one or more substrings concatenated by period. If a
list of filters exists, an entry selected for listing and removing will only be
accepted if either its name or its document name contain all the
substrings of at least one of the filters. The order of the substrings in a
filter is irrellevant. Thus, in a possible list of filters, you may consider
space as "or" and period as "and", where the precedence of "and" and
"or" is as in algol.

3. The Programs; delete

Page 68

3. The Programs; edit

System Utility, User’s Guide, Part Two

3.24 edit

"edit" is a line oriented program for editing of text files.

3.24.1 Example
The FP call and edit commands:

; COMMENTS
betterfinal=edit finaltext ; fp call
1/bad/,r/bad/good/, £ ; edit command

will produce in ’betterfinal’ a corrected version of the text ’finaltext’.

The FP call: .
(i corrfile

newtext=edit oldtext

end)

will correct the text in oldtext with the edit commands in ’corrfile’. The

FP command ’end’ ensures that FP will not read from ’corrfile’ in case
’edit’ exits before the finis command.

Ref. [10] shows several very relevant examples of the use of "edit".

3.24.2 Call
0.*
[<outfile>=] edit { <source> }
3.24.3 Function .

The program will edit the text in <source> by the commands in current
input and store the resulting text in outfile.

<outfile> can be any kind of document. If no outfile is
specified, no text is stored.

<source> if no source is specified this is interpreted as
an empty source.

When "edit" is loaded and prepared for input of commands the message
edit begin
is printed, and before "edit" exits, it prints the message:

edit end.

System Utility, User’s Guide, Part Two Page 69

3.24.4 Edit Commands

The editing is performed by means of the following commands. Only the
first letter in the word is tested by "edit":

line
delete
insert
replace
global
finis

and less important

print

source

mark

verify

where

; <comments> (this line is skipped by "edit")

The commands are separated by NL or COMMA. Superfluous NLs are
blind. SPs between commands are blind. Commands separated by
COMMA form a sequence. At end of each single command or
sequence, the line on which the line pointer points is printed (unless the
command: v n is given), see "verify".

3.24.5 Delimiters

A special feature of edit is that the delimiter is chosen each time as the
first symbol following the command letter(s), e.g.

% -

2
P

In the last case p was the first letter in the following word. Illegal
symbols, SP, NL, and EM cannot be used as delimiters.

The delimiter must not be a part of the string to be searched, the string
to be removed, or the replacing or inserted string.

In all following examples only the delimiter / is shown.

3. The Programs; edit

Page 70 System Utility, User’s Guide, Part Two

3.24.6 Warning % ¢ & .

Those letters have a special meaning and cannot be used in the strings
unless the following command is given:

; COMMENTS
m e ; mark empty
see "mark".
3.24.7 Line

All corrections are made in the current line, so first of all this must be
found. At start the line pointer points at the first line.

COMMENTS
17 Move line pointer 7 lines forwards.
1-4 Move line pointer 4 lines backwards.
1t Line top, move line pointer to line 1. ‘
1b Move line pointer to line bottom, i.e.

the line containing EM.

1./find/ The line pointer is moved forward to
point at the first line containing the
string find.

Empty lines are not counted. They have the same number as the
following line. This is the case for all commands. The line pointer points
at the first of the empty lines.

In case the search string consists of several lines, the line pointer will
point at the last line. A NL must not be specified by 102 as NL has a
special representation. This is also the case for the commands delete
and print.

3.24.8 Delete

COMMENTS .
Delete current line.

4 Delete current and 4 following lines.

2 Delete current and 2 preceding lines.

t Delete current and all in front.

b Delete current and all following.

/find/ Delete current up to and including the
line containing the textstring find.

After deletion the line pointer points at the line following the last

deleted line.
Note: NL see Line.

3. The Programs; edit

System Utility, User’s Guide, Part Two

3.24.9 Insert

i/
elephants
monkeys

/

Page 71

COMMENTS

The two lines are inserted in front of
the current line. After insertion the
line pointer points at the line in front
of the terminating delimiter. (here in
the line monkey).

Note that it is a syntax error if the first delimiter is not followed by NL.
SPs between the first delimiter and the NL are blind.

3.24.10 Replace

r/bad/good/
r/something//

r//something/

COMMENTS

In the current line the first string bad
is replaced by the string good.

Remove the first string something from
the line.

Before anything else on the line place
the string something.

The string which is to be replaced, must be within one line, i.e. a NL
character can only be used in connection with empty lines. A NL
character must not be specified by 210%. The replacing string can be of
any number of lines. The line pointer points at the last line in the

replacing string.

If the position is not found, the line pointer points at the next line.

3.24.11 Global

g/bad/good/

g2/bad/good/

COMMENTS

In the current line any appearance of
the string bad is replaced by the string
good. The line pointer is unchanged.

If, however, the replacing string is two
or more lines, the 1line pointer is
changed. It will point at the last line
before the terminating delimiter, as for
‘insert’'. In this case only the first
occurrence of the string is replaced,
since later occurrences are no longer in
current line.

In the current and 2 following lines any
appearance of the string bad is replaced
by the string good. The line pointer is
moved 2 lines forward. If, however, the
replacing string is two or more lines it
must be noticed that only occurrences in
the original 1lines are replaced, and

3. The Programs; edit

Page 72

3. The Programs; edit

g-6/bad/good/

g t/bad/good/

g b/bad/good/

g b/unwanted//

System Utility, User’s Guide, Part Two

only as long as the line pointer does
not not exceed the initial value of
current line + the number of 1lines
specified, which is where the 1line
pointer will end.

In current and 6 preceding 1lines any
appearance of the string bad is replaced
by the string good. The line pointer is
not moved.

The effect 1is the same as 1-6, g
6/bad/good/

If the replacing string is two or more
lines, this 1is important, because it
means that the interval for the 1line
pointer is frozen to initial wvalue of
current line wup to 1initial wvalue +
number of lines specified, which is
where the pointer will end. The contents
of that 1line interval 1is changed for
each replacement, moving some of the
original 1lines beyond the interval
limit.

In current and all preceding 1lines any
appearance of the string bad is replaced
by the string good. The line pointer is
not moved.

If, however, the replacing string is two
or more lines it must be remembered that
the effect is the same as:

1 t, g<current line>/bad/good/

In current and all following lines any
appearance of the string bad is replaced
by the string good. The 1line pointer
points at the 1line following the last
line.

The effect is the same for replacement
strings or more lines.

Remove the string unwanted from current
line and until bottom.

Note: NL see Replace

System Utility, User’s Guide, Part Two Page 73

3.24.12 Finis
COMMENTS

f "edit" copies to EM and exits.

3.24.13 Print
COMMENT

P Prints current line.

p2 Current and 2 following 1lines are
printed.

p-2 Current and 2 ©preceding 1lines are
printed with normal direction.

Pt All lines in front of and including
current line are printed with normal
direction.

pb Current and all following lines until EM
are printed.

p./find/ The current and all lines inclusive the

line with the string find are printed.

The line pointer points at the last printed line.

Note: NL see Line.

3.24.14 Source

The sources are the parameters to the call of edit and
are numbered from 1.

COMMENTS

s 2 Edit with input from source number 2.

Example:

The programmer wants to produce a textfile 'new’ which is ’text1’ with
the procedure ’error’ from ’text2’ placed between procedure ’testoutput’
and procedure ’calculate’ and to link ’text3’ to 'text1’:

textl: text2:

begin real a,b,c,d; begin integer 1i,j,k;
procedure testoutput; boolean ok;

begin procedure error(i);
write(out,<:<10>:>,a,b,c); integer i;

3. The Programs; edit

Page 74 System Utility, User’s Guide, Part Two

end testoutput; begin .

procedure calculate(x); write(out,<:<10>alarm
>,1;

real x; end error;

begin procedure merge(a,b,x);
COMMENTS

new=edit textl text2 text3 Edit call with 3 sources.

1. /ure calculate/, Copy until this line from
source 1.

s 2 Continue from source 2.

d. /boolean ok/, Delete inclusive this
line.

1./end error/,11, Copy until this line.

sl Continue from source 1.

d./end testoutput/, Delete inclusive this
line. '

1b Copy to last line.

s 3 Continue from source 3.

b Copy and exit.

3.24.15 Mark

"edit" is initialized to: COMMENTS

m s Mark standard, which is

equivalent to the 3
following commands.

mn a Mark numeric 2. The
character 2 is here chosen
to be used to specify a
character by its numeric
code, i.e an integer

between 0 and 127, e.g.
12>, o
me o Mark character e The

character o is here chosen
to be used as character
replace mark, see example.

mla Mark line 4. The character
4 1s here chosen to be
used as line erase mark,
i.e. the total line
containing the letter & is
erased.

If those 3 characters should be treated like other letters, use the
following command

m e Mark empty
Any other characters may be chosen as mark numeric, mark character

or mark line, e.g. ‘

3. The Programs; edit

System Utility, User’s Guide, Part Two Page 75

mn z Mark numeric z

The selected characters should not be used in any other context in the
edit commands.

Examples of Use of Mark Characters
COMMENTS

r/formfeed/2122/ Replace the text formfeed
by the character formfeed.

r/a**b/a//ba Erase faulty line.

r/abgde<BS><BS><BS>e<BS>c<SP><SP>fg/alphabet/
Result:
r/abcdefg/alphabet/
only to be used when typed
on terminals writing on
paper which has a
backspace, BS, character.
Used for correction of one
character without changing
the rest of the line.

3.24.16 Verify

Normally the line is listed at the end of each command sequence. This
may be omitted by the "edit" command.

COMMENTS
v n Verify no
and reset by
vy Verify yes

3.24.17 Where

The "edit" command

w

prints the number of the current source text line, e.g.

3 line.

3. The Programs; edit

Page 76

3. The Programs; edit

System Utility, User’s Guide, Part Two

3.24.18 Matching Strings o
The characters SP, NL, and non-graphic characters are blind for
identification, i.e. they are skipped by the matching procedure when met

in the source string.

In case those characters are part of the search string, they will take part
in the matching.

Two strings are considered identical, if the source text has as a
minimum the same number of SP and NL (and other blind characters)
as the search string, e.g.

r/a b/ak/

will accept

aba b

but not '

ab

3.24.19 Parity Errors

When a parity error is met in the source text, the message

parity error on <source>

is typed on current out, and "edit" continues and copies the character 26.
During verification and printing of a line, the character will be printed

as the character 38 (ampersand).

The character may be changed as any other symbol, by using the
numerical value of the character, e.g.

COMMENTS ‘
1./2262/,r/2262/g/,f The faulty character is
replaced by g.

3.24.20 Error Messages

3.24.20.1 Initial Alarm

*#%edit end. no core
The current process is too small.

s#%edit end: param
The parameters to the call of edit are not syntactically correct.

s**edit end: connect object
The object document cannot be connected by the file processor.

System Utility, User’s Guide, Part Two Page 77

If an output area should be created the alarm may indicate that there is
no room on backing storage.

***edit end: work area
There is no room on the backing store for the work area needed for
intermediate storage of commands.

3.24.20.2 Alarms Concerning Communication with Peripheral Devices

***edit <command no.> connect source

The source document cannot be connected by the file processor. Note:
when the source command is used to select a source outside the source
given in the parameter list, the source document is defined as empty.

sssedit <command no.> source unknown
The source is not found.

##*edit <command no.> work area
Not enough backing storage for output.

***edit <command no.> character
A character with a code greater than 127 has been input either from the
source document or the command document.

***edit <command no.> correction area
Not enough backing storage for a long correction.

<command no> is reset to 1 at start of each sequence.

Other errors in connection with the transfer of characters and blocks are
handled by the file processor and treated as hard errors.

3.24.203 Alarms Caused by Erroneous Commands

***edit <command no.> syntax
A syntax error in the command format is found.

*#*edit <command no.> position not found
A line position cannot be found, or no match with the string in a replace
command can be obtained. The string looked for is printed.

#*%edit <command no.> backspace error

If random access to the text is not allowed, i.e. when the outfile is not
specified or is not backing storage, backspacing is only allowed a limited
number of lines. The alarm is given when backspacing is attempted
beyond this number of lines, which among other things is dependent on
process size.

<command no.> is reset to 1 at the start of each sequence.

3. The Programs; edit

Page 78 System Ultility, User’s Guide, Part Two

3.25 end

Returns current input to the previous current input at the position
where it was left.

3.25.1 Examples
See 3.24.1, edit.

3.25.2 Call

end

3.25.3 Function

The function is the same as when an EM character is read by FP from
current input. The actual input is unstacked, and FP continues reading
from the previous current input.

3.25.4 Storage Requirements
1024 halfwords plus space for FP.

3.25.5 Error Messages

***end call
Left hand side in the call. The end is still performed.

*#*end param <parameter>
Wrong parameter in the call. The end action is still performed.

3. The Programs; end

System Ultility, User’s Guide, Part Two Page 79

3.26 entry
Creates a temporary or changes an existing catalog entry according to
the parameters in the call. The program is a supplement to the program

"set" and is used when one wants to set some of the elements in the tail
by copying from the tails of other catalog entries.

3.26.1 Example

Suppose that the catalog entry named ’source’ contains the name of a
magnetic tape reel in the document name field. By the FP commands

filel=entry mtl6é source 0 1
file2=entry mtlé source 0 2
file3=entry mtlé source 0 3

one gets catalog entries ’filel’, ’file2’, ’file3’ which serve as file
descriptors for file 1, 2, or 3 on the tape reel.

A catalog entry named ’source’ containing the name - say mt471100 -
may be created by a call of "set":

source = set mtl6 mt471100

3.26.2 Call

0-4
<newname> = entry [<kind> [<docname> [<date> {<word>) 111

{<kind>) Pl {<integer> }
{<docname>) {<integerl> .<integer2>)
{<name> }
<date> D= {<integer> }
{<integerl> .<integer2>)
{<name>)
{<namel> .<name2> }

{<d.isodate>.<clock> }

<word> lle {<integer> }
{<integerl> .<integer2>)
{<name> }
{<namel> .<name2>)

<isodate> i= {yymmdd> / 0)

<clock> t:= <hhmm>

<yymmdd> R

<hhmm> (1= <integer>

<newname> = name

<name> i name, generalized name,
apostrophized name, or general
text

3. The Programs; entry

Page 80 System Utility, User’s Guide, Part Two

3.26.3 Function

The parameters are interpreted as described below yielding the wanted
entry tail. From this point the program continues exactly as the program

"set".

3.26.4 Parameters

Kind:

<integer>: The value is placed in the tail.

<integerl> . <integer2>: The value <integer1> shift 12 +
<integer2> is placed in the tail.

<name>: First the name is searched for in the
table of modekind abbreviations
and if found here the value found is
used. If not found in the modekind
table (cf. ref. 8, Appendix) it is
searched for in the catalog and the
kind of the entry found is used.

Docname:

<integer>: The value is placed in the tail.

<integerl> . <integer2>: The value <integer1> shift 12 +
<integer2> is placed in the tail.

<name>: If the kind just found is the
modekind bs (2048 shift 12 + 4) the
name itself is used in the tail. For
all other kinds the name is looked
up in the catalog and the kit/doc
name in the tail of the entry found
is used.

The Other Parameters:

A parameter of the form <integer> . <halfword> or

<namel>.<name2> gives separate specifications of the two halfwords

in the word.

<integer>: The value in the tail as the word or
halfword in question.

<name>: The name is looked up in the

catalog and the value of the word or
halfword in question in the entry
tail found is used.

3. The Programs; entry

System Utility, User’s Guide, Part Two Page 81
If the parameter list does not specify all of the tail, the rest of the tail is
set to zero.

Note:

If <free> = d.<isodate> and an entry named d exists, the left half of
<free> will be taken from d and the right half will become <isodate>.
3.26.5 Storage Requirements

1536 halfwords plus space for FP.

3.26.6 Error Messages

***entry call
No left side in call of the program.

***entry param <parameter>
Parameter error in call of the program.

***entry <name> unknown
A parameter was searched in the catalog but not found.

***entry <result name> change kind impossible
A change of an area to a non-area or vice versa was attempted.

***entry <result name> change bs device impossible
A change of document name of an area was attempted.

***entry <result name> bs device unknown
The disk specified was not found.

***entry <result name> no resources
The resources of the job did not allow the wanted creation or change of
an entry.

***entry <result name> no room
Name overflow in the main catalog exceeded the limit.

***entry <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is created or changed.

3. The Programs; entry

Page 82 System Utility, User’s Guide, Part Two

3.27 finis

finis terminates the job and removes the process.

Example

See the program if, and the program claimtest.

3.27.1 Call

finis [output.{yes/no}]

3.27.2 Function

The current output file is terminated (emptying of buffers etc.) and a '
finis job message is sent to the parent (the operating system), who is

then expected to remove the job.

If parameter output.no is specified, and the parent is BOSS, the finis
message will specify that output is not wanted.

3.27.3 Storage Requirements
1024 halfwords plus space for FP.

3.27.4 Error Messages

***finis call

The program was called with a left hand side - the finis action is still
performed.

*#*finis param <parameter> .
Erroneous parameter in the call - the finis action is still performed.

3. The Programs, finis

System Utility, User’s Guide, Part Two Page 83

3.28 head

Prints a number of form feeds and a page head containing the name of
the job and the date (in iso form) and clock.

3.28.1 Example

The output from two programs is separated in a nice way by calling head
in between:

head 1
This command prints one form and a page head on current output.
head old cpu

This command prints a page head with the date in ’old’ form (ie. day,
montbh, year), followed by the cpu time used by the job.

3.28.2 Call
o-ﬁ
{ <integer>)
[<outfile> =] head (cpu }
{ iso)
{ old }

3.28.3 Function

In an integer is given as parameter that many form feeds are printed.
Next, one line consisting of job name, date, and clock is printed. In an
outfile is specified this is used for the output, else the current output file
is used. Date in iso form is standard. The parameter old will cause the
date to be printed as day month year.

3.28.4 Storage Requirements

1024 halfwords plus space for FP.
3.28.5 Error Messages

¢*%head param <parameter>
Parameter error in the call. A page head is still output.

3. The Programs; head

Page 84

3. The Programs; i

System Utility, User's Guide, Part Two

3.29 i

Selects a new file as current input. The former file may later be resumed
at the position where it was left (e.g. by a call of end).

3.29.1 Example 1
If we have the following FP commands in a job file

i commdsl
i commds?

the first will cause FP to start reading from the file commds1. When this
fiel is exhausted FP will return to the job file and read the next call of i,
which in turn causes FP to read commands from the file commds?2.

If, on the other hand, we have the following commands

(i commds?2
i commdsl)

the first will select the file commds2 as currrent input, but since FP
immediately executes the next command without reading from current
input, the next command will select the file commds1 as current input.
Now FP will start reading from the file commdsl, and when it is
exhausted or the command end executed, current input will return to the
previous, i.e. commds2 and FP will continue reading from commds?.
When this file in turn is exhausted or the command end executed,
current input will return to the file where the composite command was
read, and reading will continue from here.

3.29.2 Example 2

edit reads the editorial commands from current input. The commands to
edit may be kept in a separate file editcomds if the editing is done by
the following composite FP command:

(1 editcomds ; the file 'editcomds’ is connected

as current input file.
call of edit

reselects the previous
current input file

newtext=edit oldtext
end)

s we we we w

The parentheses are essential here. If they were omitted FP would
immediately start reading from the file editcomds instead of calling
edit. The end command is not necessary if edit reads and accepts all of
the file editcomds. It ensures however that FP does not start reading
from editcomds, even if edit should exit before emptying the file edit
comds.

System Utility, User’s Guide, Part Two Page 85

3.29.3 Call

i <file name>

3.29.4 Function

The current input file is stacked so that reading may be resumed later
(when the new file is exhausted or by a call of "end"). Next the specified
file is connected as current input.

3.29.5 Storage Requirements
1024 halfwords plus space for FP.

3.29.6 Error Messages

s*%§ call
Left hand side in the call.

***j param
Parameter error in the call.

***i <document name> <cause>
The specified file could not be connected for some reason which is
explained by <cause> as follows:

no resources forbidden by the parent (the operating system)
disconnected device disconnected

name unknown the file did not exist

kind illegal the file could not be used for input

reserved the file was used by another job.

In case of any error FP forgets about all previous current input files and
returns to the primary input file (the job file).

3. The Programs; i

Page 86

3. The Programs; if

System Utility, User’s Guide, Part Two

3.30 if

Makes the execution of the next FP command conditioned by the values
of one (or several) mode bits. The condition may reflect the success of
the latest program executed, as the ok and warning bits are set at
program end (or it may correspond to the mode bits as set by a call of
the program mode).

If more bit values are specified, the value of the expression will be a
logical and of the bit values.

3.30.1 Example

If the translation of an ALGOL source program goes wrong, you want
to do the translation once more with listing of the program. If the
translation error is serious you want to terminate the job. Proceed as
follows:

progl=algol text ; translate
if warning.yes if syntactical errors
progl=algol text list.yes then translate and list

e we we we we w

if ok.no if serious errors

finis then terminate job

progl else execute the program
3.30.2 Call

1-*

if { <mode bit> . (yes/no))

<mode bit> ::= ok)
warning }
initmess)}
bswait }
error }
pause }
listing)
all }

)

<integer>

— - - p— - p— p— p_—

3.30.3 Function

The next (possibly composite) FP command is executed if each of the
mode bits mentioned in the parameter list has the specified value ’yes’
or 'no’. If not, the next FP command is skipped. The program "if" does
not change any mode bit (even not the ok and warning bits) hence
repeated questions may be asked on the same mode bits by several
successive calls of "if".

System Utility, User’s Guide, Part Two Page 87

3.30.4 Storage Requirements
1024 halfwords plus space for FP.

3.30.5 Error Messages

..'if ca“
Left hand side in the call - does not affect the function of the program.

***if param <parameter>

Wrong parameter in the call. The erroneous parameter is skipped and
the program continues with the next parameter.

3. The Programs; if

Page 88 System Ultility, User’s Guide, Part Two

3.31 init o

The command, which is an entry into FP, forces an initialization of FP.

3.31.1 Example
By the command
init

a reinitialization of FP is done, giving the output on current output after
having reconnected it to primary output document :

*** fp reinitialized
fp version 2 release 4.00

provided the FP modebit ’initmess’ is true (cf. ref [8], 4.2).

3.31.2 Call

init

3.31.3 Function

The job starts the reinitialization of FP with the information about
primary input and output handed over by the parent at job start. During
the reinitialization of FP the job creates catalog entries v’ and ’cC’
describing the primary input and output files resp. If such entries are
already present they are removed by the job unless they describe the
proper files. The zone initialization ends by connecting the current input
and output zones to the primary input and output files.

The reinitialization count is zeroed, allowing FP itself to reinitialize up
to 10 times before giving up with a FINIS parent message, cf. (8), 3.3. .

The catalog base is reset to equal the standard base of the job and the
name and name table address of the parent are renewed.

The overflow/underflow interrupts are masked off (integer overflow,
floating under/overflow).

A possible current input zone stack chain is zeroed and the ’***fp
reinitialized’ message is written on current output.

If the modebit ’initmess’ is ’true’, the initialization message stating
version and release of FP is written, too, on current output, and in any
case the current output zone is emptied with a NL character.

The modebits 'warning’ and ’ok’ are set ‘warning.yes’ and ’ok.no’, while
the rest are left unchanged.

At last the area processes in the monitor are scanned, and any area
process with the job process as user is removed (the job process is '

3. The Programs; init

System Utility, User’s Guide, Part Two Page 89

removed as user). The event queue of the job process is scanned, too,
and any pending operation not belonging to current input zone is waited
for.

Now the FP command reading routine is entered.

3.31.4 Storage Requirements
1024 halfwords plus space for FP.

3.31.5 Error Messages
**%* fp init troubles

*** fp trouble : c or v

Cf. ref. [8], Appendix B.4

3. The Programs; init

Page 90

3. The Programs; job

System Utility, User’s Guide, Part Two

o
3.32 job

Makes it possible to use files containing a BOSS job specification in the
first line as job files in other operating systems than BOSS.

When the operating system is BOSS, the program makes it possible to
enroll the current BOSS edit file as a terminal job by the command "go",
regardless of a possible job specification in the first line.

3.32.1 Example

Assume you have a file, ’jobfile’, containing:

job fgs 1 274001
p=algol tp

p pip

finis .
If you type

i jobfile

FP will simply skip the line

job ...

and read the next line.

If you execute under BOSS and enroll the same file as a terminal job by
the command ’run’, BOSS will read the job specification and FP will
start reading the next line.

If you enroll the same file as a terminal job by the command "go", FP
will read the job specification, skip it, and read the next line.

3.32.2 Call

job <parameter list>

<parameter list> may consist of any sequence of parameters obeying
the FP syntax.

3.32.3 Function

"job" returns to "FP end program’ with ok.yes and warning.no.

3.32.4 Storage Requirements
512 halfwords plus space for FP.

System Utility, User’s Guide, Part Two Page 91

3.32.5 Error Messages

None.

3. The Programs; job

Page 92 System Ultility, User’s Guide, Part Two

o

3.33 kit

Sends a mount disk message to the parent (the operating system)
demanding a disk with a specified name to be mounted on a disk storage
module; cf ref [9], chapters 3 and 5.

3.33.1 Example

The FP command

kit 12 disc5

asks for mounting of the disk ’disc5’ on the disk storage module with
device number 12.

3.33.2 Call ‘
kit <device no> <kit name>

where <device no> is an integer and <kit name> is a name.

3.33.3 Function

A mount kit message containing the device number and name specified
is sent to the parent.

3.33.4 Storage Requirements

1536 halfwords plus space for FP.

3.33.5 Error Messages

**&Lit call
Left hand side in the call of kit.

***kit <parameter list> parameter error
Parameter error in the call of kit.

***kit <parameter list> not available
The kit specified by the kit name is not available for the job.

In case of any error no mount kit message is sent.

3. The Programs; kit

System Utility, User’s Guide, Part Two Page 93

3.34 label

Outputs a BOSS Volume Header Laber (ISO 1001 - 1986, VOL1 label)
in file 0 of the specified tape to make the tape an initialized volume.

3.34.1 Example

The FP call:

label mtlh mt123456 p 789012
outputs a BOSS label on mt123456.
If you have a filedescriptor, e.g.:
f-set mtl6 mtl23456 0 1

the call:

label £ £ p 789012

will have the same effect.

3.34.2 Call

label <modekind> <mtname> [<access> <project number>]

<modekind> i= { mt62)}
{ mt32 }
{ mtlé }
{ mt08)
<mtname> ;= { <name of magnetic tape>)
{ <name of filedescriptor>)
<access> co={

€ RO

<project number>::= <integer, max. 999999>

Name of magnetic tape must start with mt followed by exactly 6
characters, the first 2 may be letters or digits, the 4 last must be digits.
3.34.3 Function

A label in the format accepted by BOSS (cf. ref. [10], sec. 5.3) will be
written in file 0 of the tape. Next, two tapemarks are written (i.e. an

empty file 1), and approx. 5 inches of tape is erased.

Note: this means that the first part of the previous contents of the tape
will unconditionally be destroyed.

3. The Programs; label

Page 94

System Utility, User’s Guide, Part Two

3.34.4 Alternative Parameter Names

For compatibility reasons, the modekind parameter names mthh, mthl,
mtll, mto, mte, nrz, and nrze are still valid, giving:

modekind abbreviation speed density value¥* parity
mt62 - high .1 odd
mt32 - high 11 odd
mthh high high .1 odd
mtlh mto low high .1 odd
mte high .1 even
mtlé - low .. odd
mt08 - low 1. odd
mthl high low odd
mtll nrz low low odd
nrze low even

3. The Programs; label

*) value of density field in modeword

3.34.5 Error Messages

*#*label, call
Left hand parameter in the call.

***label, <parameter> param
Illegal parameter in the call.

#]abel, <parameter> modekind error

Filedescriptor does not describe a magnetic tape.

***]label, <modekind param> unknown

Modekind is not a known modekind abbreviation, or it is not the name
of a a file descriptor.

***label, <parameter> illegal tapename

Tapename is illegal.

***]abel, <parameter> illegal access kind

Access must be p, r, or w.

***]abel, project number missing
If access specified, a project number is demanded.

***label, <parameter> illegal project number
Project number must be max. 999999.

***label, too many parameters
The program accepts max. 4 parameters.

System Utility, User’s Guide, Part Two
#]abel, parameter missing
The program demands at least 2 parameters.

***]abel, connect tape unsuccessful
Hard error.

3. The Programs; label

Page 96

3. The Programs; loadl3

System Utility, User’s Guide, Part Two

3.35load13

The program can input catalog entries and bs files from magnetic tape
files generated by the program savel3. Unless the magnetic tape is
explicitly targeted for restore by the program loadl3, the program load
should be used, cf. [13].

3.35.1 Example

All catalog entries and bs files saved on mt471100 file 1 are
reestablished by the FP command:

load mt471100.1

In case:

t=set mto mt471100 O 1

the same is obtained by the command:
loadl3 t.0

All catalog entries and bs files of scope temp plus the entry by name pap
are loaded by the FP command:

loadl3 mt471100.1 scope.temp pap

See also: Further examples.

3.35.2 Call

[<outfile>=]
loadl3 [<mountparam>.]

<tape parameter> [<special param>] [<load spec>]
<mountparam> =

[mountspec.<deviceno>.] [<modekind>.] [release .{yes/no}]
<tape parameter> .= 0-9

<tapename>.<fileno> {.<tapename for next volume>)

<tapename> P

{<filedescriptor describing a magnetic tape file>)
{<name of magnetic tape> }
<fileno> i:= (last)

{<integer>)

<special param> ::= ({check. {yes/no) }
{survey. (yes/no)} }
{load .({yes/no) }
{list .{yes/no/name}

System Utility, User’s Guide, Part Two Page 97

<load spec> :i= {<modifiers>)
{<kit spec>)
{<entry spec>)

<modifiers D= 0-*
{changekit.<bs device spec>.<bs device spec>)
{changekit.all.<bs device spec>)
{newscope .<newscope spec>)
<kit spec> ::= kit.<bs device spec>

<bs device spec> ::= (<bs device name>)

{main)
(0)
{1)
<entry spec> Dl
0.*
{<name> }
{<name>.scope.<scope spec> }
{docname .<docname> }
{docname .<docname>.scope.<scope spec>}
{scope.<scope spec> }

3.35.3 Function

The contents of the dump label (see "save13") are checked and listed on
current out.

Next the program loads from the magnetic tape all the entries and bs
files specified by <load spec>. If <entry spec> is empty all the entries
are loaded.

Each entry is created with scope and <bs device spec> as defined in the
entry record. For area entries <bs device spec> defines the disk name
for non-area entries, the kit into which the entry is permanented.

3.35.3.1 Function, mountparam

If no mountparam is specified, the program will use a standard magtape
station, modekind=mt62 (or in case mtname is a filedescriptor, then the
modekind of this file will be released at end of program.

e.g. mountspec.l0.nrz.release.no.
mountspec.10.
nrz,
release.no.

3.353.2 Function, tapeparameter
In case mtname is a filedescriptor, filenumber will be understood

relative to the filenumber in the filedescriptor. The modekind of the
filedescriptor will be used.

3. The Programs; load13

O

Page 98 System Ultility, User’s Guide, Part Two

If <fileno> =last, the file in front of the first file which does not contain .
a version label is loaded. This parameter gives a longer run time than an
integer parameter.

Tapenames of following volumes are only necessary in case the
following volume has a name different from what is stated in the
continuation block. This may be the case if saving was performed with 2
parallel tapes.

3.35.3.3 Function, special param

check. (yes/no) Default is check.yes
If check.no, then the program
continues, if the mtname or the
fileno in the dumplabel is wrong.
Also when the dumplabel is a
continuation label.
survey. {yes/no) Default is survey.no .
If survey.yes, then all entries
from file 1 to <fileno> are listed
but not loaded.

load. {yes/no) Default is load.yes, the specified
entries are loaded.
If load.no, then all specified
entries in the file are listed but
not loaded.

list. {yes/no/name) Default is list.yes, all loaded
entries are listed.
If list.name, then only the names
of the entries are listed.
If an outfile is specified, this
file is used for output, otherwise
current output file is used.

3.353.4 Function, modifiers

If <bs device spec> = 0,
the area is created on the disk with the most temporary resources.

If <bs device spec> = 1,
the area is created on the disk with the most resources for key= 1.

If <bs device spec> = main,
the area is created on the disk containing the main catalog.

If <bs device spec> = a name < main,
the area is created on the bs device with this name.

changekit.<saved kit>,<loaded kit>
This parameter is valid for the total call. Each entry, which on the tape

3. The Programs; load13

System Utility, User’s Guide, Part Two Page 99

. is described as an entry on <saved kit> will be loaded on <loaded kit>.
E.g. changekit.disc1.disc2

changekit.all.<loaded kit>
As above, except all entries specified, no matter their document name,
are loaded on <loaded kit>.

newscope.<newscope spec>

Default is newscope.std, meaning no change in scope. This parameter is
valid for the following entry specifications. They will all be created with
<newscope spec>.

<newscope spec>::= (temp/login/user/project/std),e.g.
newscope. temp

3.35.3.5 Function, kit spec
General about <bs device spec>, see modifiers.

kit.<saved kit> Default is main, meaning all disks. Only entries
which in the tape is described as addressing this
disk will be loaded (or entries which after a
changekit parameter is addressing this disk).
The parameter is valid for all following <entry
spec> until a new kit parameter is specified. If a
kit parameter specifies a not connected disk, a
changekit, changing this kit to a connected kit
name, must be specified earlier in the parameter
list. E.g. kit.disc2

3.353.6 Function, entry spec

<scope spec>::= (temp | login | user | project | own
system | perm | all)

<name>

. All entries of the name are loaded.

scope.<scope spec>
All entries with this scope are loaded.

<name>, scope.<scope spec>
An entry of specified name and scope is loaded.

docname .<docname>
All entries with specified docname (maybe kitname) are loaded.

docname .<docname>.scope.<scope spec>

All entries with specified docname (maybe kitname) and specified scope
are loaded.

3. The Programs; loadl3

Page 100

3. The Programs; loadl3

System Utility, User’s Guide, Part Two

3.35.4 Tape Format ‘

See savel3.

3.35.5 Load of systemdump

Entries which are saved at scope.perm (or scope.all) may be loaded in a
BOSS job. Entries with bases corresponding to scopes temp, login, and
user will be loaded if their name is specified. For sake of security it is
decided that entries of scope project must be specified by
<name >.scope.project.

3.35.6 Storage Requirements
12000 halfwords.

3.35.7 Error Messages .

***]oad: error in tapeparam <erroneous and following parameters >
Parameter error in the call. The program terminates.

***]oad: error in modekind spec.
<tapename> describes an entry of kind 18, but mode is neither 0 nor 4.

***load: error in param <erroneous and following parameters >
Parameter error in the call. The program terminates.

***]oad param, kitnames exceeded

The program does not accept more than 10 bs device names different
from the bs devices connected. The program terminates.

Remedy: two calls of load.

***]oad: no dumplabel on file <fileno>
The file contains no dumplabel. The program terminates.

***load: dumplabel <specification> .
Error in the specified part of the dumplabel. The program terminates.

<name> entry inconsistent

<name> code inconsistent

The date of an external procedure is incorrectly described, either in the

catalog entry or in the code.

The entry is loaded.

<name> bad tape: <pattern>

Hard error during run. The pattern shows the status word.

<name> bad tape: <pattern> blocklength = <blocklength>

Blocklength error on the tape.

<name> bad tape, blocks skipped <skipped blocks >

The blocks could not be interpreted by the program.

<name> bad tape, segm. loaded <segments>

The segments loaded do not correspond to the number of segments

specified in the entry record.

bad tape, entry no. <d> missing

<name> bad tape, segm. no. <d> missing

<name> monitor <xx> result <y> <explanation> .

System Utility, User’s Guide, Part Two Page 101

The call of the ALGOL procedure monitor with the parameter <xx>
gave the unwanted result <y>.

<explanation>:

device not mounted

process base error

no work resources

NO perm resources

entry in use

impossible (catalog error)

***not found <entry spec>
<entry spec> was not found on the tape.

***]oad not ok <d>

This message occurs at program exit in case of any error.

<d> is the number of errors.

3.35.8 Further Examples

1) The programmer wants to load the entries and bs files pr1 and pr2
from a saved file, which contains several other entries,
furthermore he wants to change the scope of pr2 to user:
load mt471100.2 prl newscope.user pr2

2) The programmer wants to load the entry named pip and all his
entries which belong to the catalog on kit5, from a file which
contains other entries as well:
load mt471100.3 pip kit.kit5 scope.own

3) The programmer wants to check the contents of mt471100
load mt471100.last survey.yes

4) The programmer wants to load file 8 but gets the output

dump mt471100 006 vers. 130473.12 s=1 unhappydays
***load dumplabel fileno

at repeated calls. This suggests that the start of the magnetic tape
has been overwritten and probably the wanted file will be found on
file 10.

Try the FP command:

load mt471100.10 check.no load.no

3. The Programs; loadl3

Page 102

3. The Programs; lookup

System Ultility, User’s Guide, Part Two

3.36 lookup

Finds and lists all visible catalog entries with a specified name.

3.36.1 Example
The FP command
lookup pip

finds and lists all the visible entries with name ’pip’ and prints something
like:

pip =set 16 disc d.880523.1021 0 0 0 O ; temp
; 92 17 0 -56 -56

The first line gives the tail and the scope of the entry, the second line ‘

gives the entry head.

3.36.2 Call

1-*

[<outfile> =] lookup { <name>)

3.36.3 Function

Each name in the list is searched in the catalog and all entries with this
name which may be accessed by the job are listed. If an <outfile> is
present this file is used for the output -otherwise the current output file
is used.

3.36.4 Format of the Output

Each catalog entry is listed as two lines:

<name> =set <entry tail> ; <scope spec>
; <entry head>

The name and entry tail appear exactly as in a call of the program "set"
for creating the entry.

The scope specification has the form

<scope> [.<device name>]

where <scope> is one of temp, login, user, project, system, or *** (the
last one means scope undefined) and where a <device name> tells that

the entry is permanented into the auxiliary catalog on this device.

The entry head is output as the five integers

System Ultility, User’s Guide, Part Two Page 103

<first slice> <name key> <catalog key> <interval lower>
<interval upper>

as described in the manuals for the monitor (ref. 1 and 2).

3.36.5 Storage Requirements
2560 halfwords plus space for FP.

3.36.6 Error Messages

***lookup connect <outfile>
The specified output file could not be connected -current output is used
instead.

***lookup param <parameter>
Parameter error. The remainder of the parameter list is skipped.

***lookup <name> unknown
No entries with the given name was found. The program continues with
the next name in the list.

***lookup <name> no resources
The program has terminated because the job has too few area processes.

3. The Programs; lookup

Page 104 System Utility, User’s Guide, Part Two

3.37 message

May be used (together with "head") to make nice headings on the
output. The parameter list in the call of message is simply output when
the program is called.

3.37.1 Example

The FP command

message program execution no.1l

outputs the text

program execution no.l

on current output. .

3.37.2 Call

[<outfile> =] message <parameter list>

<parameter list> may consist of any sequence of parameters obeying

the FP syntax.

3.37.3 Function

The parameter list is copied on <outfile> or current output (if no
outfile is specified). The output is terminated by an NL character.

3.37.4 Storage Requirements

512 halfwords plus space for FP. .

3.37.5 Error Messages
***message connect <outfile>

The specified output file could not be connected. Current output is used
instead.

3. The Programs; message

System Ultility, User’s Guide, Part Two Page 105

3.38 mode

Changes the FP mode bits specified in the call and may thereby change
the working cycle of FP.

3.38.1 Example

The FP command:

mode list.yes

causes FP to change to list mode i.e. each FP command is listed on
current output just before execution.

The FP command:

mode what

causes all modebits to be listed.

3.38.2 Call

0.*
{<mode bit>. {yes/no}) [what]

<mode bit> ::= { bswait }
{ initmess)}
{ listing)
{ warning)}
{ ok)
{ error }
{ pause }
{ list)
{ all }
{<integer>)

The integer values of the mode bit names are as follows:

bswait=13, initmess=14, listing=15, warning=17, ok=18, error=19,
pause =20, list=23.

Bit 16 is used internally by FP.

The mode bits are explained in ref. [8], section 4.2.

3.38.3 Function

The FP mode bits are changed as specified in the call.

3. The Programs; mode

Page 106 System Utility, User’s Guide, Part Two

3.38.4 Storage Requirements .
1024 halfwords plus space for FP.

3.38.5 Error Messages

***mode call
Left hand side in the call - does not affect the function of the program.

***mode param <parameter>

Wrong parameter in the call. The parameter is skipped and the program
continues with the next parameter.

3. The Programs,; mode

System Utility, User’s Guide, Part Two Page 107

3.39 mount

Sends a mount message to the parent (the operating system) which is
then expected to ask the operator to mount the tape reel (cf. ref. 10,
section 6.1). The program does not await the mounting, unless there is
asked for mounting of an unspecified worktape.

3.39.1 Example

When a program needs a magnetic tape reel which is not mounted, the
mounting is automatically requested and the job waits for it. The
scheduling of a job which uses several tape reels is however improved if
the tape reels are requested right at the beginning of the job, ie. if the
tape reels named ’'mt280007’, ‘'mt280008’, and 'mt280009’ are needed
during the job one may start the job file with the FP commands:

mount mt280007
mount mt280008
mount mt280009

If p7, p8, p9 are names for files on these magtapes, e.g.
p/=set mt62 mt280007 0 3

p8=set mt62 mt280008 0 1

p9=set mt62 mt280009 0 2

the same result is obtained by the FP commands:
mount p7

mount p8

mount p9

An unspecified worktape is requested as follows:

workfile=set mt62 0 0 1
mount workfile

This call of "mount" asks for mounting of a worktape and places the
name of the magtape reel in the entry. File number 1 on the tape is now
available under the name ‘workfile’.

The workfile is released and made available to other users when the job
terminates or if the tape is released during the job. One may suspend

the use of the worktape by a "suspend" command (cf. the description of
"suspend").

3.39.2 Call

mount <name>

3. The Programs; mount

|
Page 108 System Utility, User’s Guide, Part Two

3.39.3 Function

A mount message is sent to the parent.

The name in the message is found as follows: the name is looked up in
the catalog. If an entry describing a magnetic tape file (kind=18) is
found and if this entry is not protected (e.g. not of scope system) the
document name in the entry is used. Otherwise the name specified is
used. The document name in the entry may be empty (zero). In this case
a worktape is mounted and the name of the worktape placed as
document name in the entry.

3.39.4 Storage Requirements

1536 halfwords plus space for FP.

3.39.5 Error Messages

***mount call
Left hand side in call of mount.

***mount <parameter list> parameter error
Parameter error in call of the program.

In case of any error no mount message is sent.

3. The Programs; mount

System Utility, User’s Guide, Part Two Page 109

3.40 mountspec

Sends a mount special message to the parent (the operating system)
limiting a later mounting of the specified magnetic tape reel to the
station with the specified device no. (cf. ref. [10], section 6.1).

3.40.1 Example

If the installation has some standard magnetic tape stations and a non
standard with device number 12 and one has a tape reel named
mt123456, which must be mounted on device no. 12, the FP command

mountspec 12 mt123456

ensures that BOSS will accept the reel only when mounted on station No
12. If ’pip’ is the name of a file on a magtape e.g.

pip=set mt62 mtl23456 0 7
the same result is obtained by the FP command

mountspec 12 pip

3.40.2 Call

mountspec <device no> <name>

where <device no> is an integer.

3.40.3 Function

The name is looked up in the catalog. If an entry describing a magnetic
tape file (kind=18) is found and if this entry is not protected (e.g. not of
scope system) the document name in the entry is used. Otherwise the
name specified is used. Next a mount special message containing the
specified device number and the name is sent to the parent.

3.40.4 Storage Requirements
1536 halfwords plus space for FP.

3.40.5 Error Messages

***mountspec call
Left hand side in the call of the program.

***mountspec <parameter list> parameter error
Parameter error in the call of the program.

3. The Programs; mountspec

Page 110 System Ultility, User’s Guide, Part Two

***mountspec <parameter list> tape name missing .
The entry specified has a zero document name.

In case of any error no mountspec message is sent.

3. The Programs; mountspec

System Utility, User’s Guide, Part Two Page 111

3.41 move

Performs blockwise copying of files on backing storage or magnetic tape.

3.41.1 Example

The contents of the backing storage area with name ’text4’ is moved to
file 5 on the magnetic tape reel named 'mt314711’ by the FP commands:

fileS5=set mt62 mt314711 0 S
file5=move text4

Files number 3, 4, 5, 6 on the magtape 'mt312223’ will be copied to the
magnetic tape ’mt312224’, starting at file number 7 by the FP
commands:

fromfile=set mt62 mt312223 0 3

tofile =set mt62 mt312224 0 7

tofile =move fromfile.4

3.41.2 Call

The program may be called in two ways depending on the kind of the
left hand side :

<bs file> = move (<param>}0-* {<bs file> / <mt file>)
or
<mt file> = move (<param>}0-* {<bs file> / <mt file set>)}0-*

<bs file> ::= name of a backing storage area entry

<mt file> ::= name of magnetic tape entry

<param> ::= {message.{yes/no})
{blockl.<segm>)

<mt file set> ::= <mt file> [.<no of files> [.<skip>]]

<segm> =

<no of files> ::=

<skip> ::= integer
3.41.3 Function

Move performs blockwise copying of files on backing storage or
magnetic tape.

The parameter *message.yes’ will cause output of the number of
halfwords copied and the word checksum.

3. The Programs; move

s
Page 112 System Utility, User’s Guide, Part Two

<mt file> - move <mt file> / <mt file set> o

As many files as specified will be written, separated by tape marks. <no
of files> specifies the number of files to copy, <skip> specifies how
many files to skip before copying.

The blocklengths on the input files are kept on the output files, except
when the inputblock is not a three character multiple. Then the
outputblock is added one or two zeroed characters up to the nearest
word boundary.

<mt file> = move <bs file>

The parameter 'blockl. <segm >’ defines the blocklength on the
magnetic tape, given as segments per block, with a maximal value of 84
segments per block. Default is 1 segment per block.

<bs file> = move <mt file>

If the input blocklength is not a multiple of 512 halfwords, the output '
blocks will be filled with zeroes up to the nearest segment boundary. If

the input blocklength is not a multiple of three characters, the last word

will be added one or three characters up to the nearest word boundary.

The length of the bs area is cut to the number of segments actually
copied.

<bs file> = move <bs file>

The blocklength used for input and output will be the greatest number
of segments possible in the job process.

The length of the output area is cut to the actual number of segments
copied, and the last 5 words of the entry tail will be copied from the
input area entry.

3.41.4 Storage Requirements .

The minimum memory requirements for move is 3318 halfwords plus
space for FP (4854 halfwords).

When copying from magnetic tape with blocklengths greater than one
segment, more space will be needed, namely 1536 halfwords for each
extra segment in the blocklength.

The greatest possible blocklength when copying to or from from
magnetic tape is 84 segments per block, so no matter the memory space
available, greater blocks will not be used for magnetic tape.

When copying from disc to disc or from disc to tape, blocklengths

greater than one segment are attractive. For each extra segment in the
blocklength, move will need extra 1536 halfwords of memory.

3. The Programs; move

System Utility, User’s Guide, Part Two Page 113

Blocklength Minimum memory size
(segments): (halftwords):
1 4854 (incl FP)
2 6390
7 12534
9 15606
15 24822
21 34038
63 98550
84 130806
132 204800 (200 K)
681 1048576 (1M
1364 2097152 (2 M
3.41.5 Error Messages

***move: no core
The process area is too small to contain the minimum input and output
buffers or input blocklenght from magnetic tape exceeds 84 segments.

***move call
No left hand side is specified in the call.

***move param: <parameter list>
An input specification has an erroneous format. The specification is
shown as <parameter list>. *)

***move: input kind
***move: output kind
The specified file is neither a bs file nor an mt file. *)

***move: connect input
***move: connect output
It has not been possible to connect an input or an output file.

***move: t00 many parameters
It is attempted to copy more than one file to a bs file.

***move: change error
It is not possible to change the catalog entry describing the output bs
file.

***device status <inputfile>
Blocklength error. The process area could not contain the magnetic tape
input blocks.

3.41.6 Further Examples of Use

In the following the catalog entries mt1 and mt2 describe file number
one on two magnetic tapes, and bsl, bs2 --- describe areas on the
backing storage.

*) The parameters will be checked and handled one by one. Therefore one or
m?re files may have been copied even if the program is terminated by an
alarm.

3. The Programs; move

Page 114 System Utility, User’s Guide, Part Two

move mtl
causes the alarm:
***move call

because no output file is specified.

mtl = mt2.2 bs3 mt2.2.3
After this call, the tape described by mt1 will contain:

file no contents from
unchanged

mt2 file 1

mt2 file 2

bs3

mt2 file 4 '

mt2 file 5

LW~ O

mtl = move mt2.1.1.1
causes the alarm:
***move param: mt2.1.1.1

because of the erroneous parameter, and no copying is performed.

3. The Programs; move

System Ultility, User’s Guide, Part Two Page 115

3.42 newjob

Sends a newjob message to the parent (the operating system)
demanding the specified file enrolled as job file in a new off line job i.e.
in this way a new job is created. The actual job continues with the next
FP command. Further details are found in section 1.3, newjob and
replacejob, in ref. [10].

3.42.1 Call

newjob <file name> [<name of remote batch printer>]
where <file name> is a name of a permanent job file.

<name of remote batch printer>::= name of max 6 characters
3.42.2 Function

A newjob message containing the specified name(s) is sent to the
parent.

3.42.3 Storage Requirements
1536 halfwords plus space for FP.

3.42.4 Error Messages

***newjob call
Left hand side in the call of the program.

***newjob <parameter list> parameter error
Parameter error in the call of the program.

***newjob <filename> <error cause>
Error during creation of the new job. The cause may be any of the
following:

job queue full

job file not permanent
job file unknown

job file unreadable
user index too large
illegal identification
user index conflict
job file too long

temp claim exceeded
option unknown

param error at job
syntax error at job
line too long
attention status at remote batch terminal
device unknown

3. The Programs; newjob

Page 116

3. The Programs; newjob

System Utility, User’s Guide, Part Two

device not printer
parent device disconnected
remote batch malfunction

In case of any error no new job is created.

System Utility, User’s Guide, Part Two Page 117

3.43 nextfile

Adds one to the file number in the tails of the catalog entries specified.

3.43.1 Examples

If the catalog entries ’to’ and ’from’ describe file 3 of the magtape
'mt312223’ and file 6 of the magtape 'mt312224’, respectively, the FP
command

nextfile to from

will change them to describe file 4 and 7 of the tapes in question.

If the catalog entry ’t’ describes file no. 0 at a magnetic tape, the FP
command

nextfile tt t ttt

will change it to file no. 6.

3.43.2 Call

1-*

nextfile { <name> }

3.43.3 Function

For each name in the list a catalog lookup is made and the file number
in the tail of the entry is increased by one.

3.43.4 Storage Requirements

1536 halfwords plus space for FP.

3.43.5 Error Messages

***nextfile call
Left hand side in the call. The program terminates without further
actions.

***nextfile param <parameter>
Parameter error. The faulty parameter is skipped and the program
continues with the next parameter.

***nextfile <name> unknown

No entry with the specified name was found. The program continues
with the next parameter.

3. The Programs; nextfile

Page 118 System Ultility, User’s Guide, Part Two

***nextfile <name> protected ‘
The job was not allowed to change the tail in the entry found. The
program continues with the next parameter.

3. The Programs, nextfile

System Utility, User’s Guide, Part Two Page 119

3440

Selects a new file as current output.

3.44.1 Example

The text output from an ALGOL translation may be written in a special
file in the following way:

o list ; the file 'list’ is
chosen as current
output

translation of the
algol program

program=algol text list.yes

W v we we we we we o w

oc current output is
shifted back to the
primary output file
3.44.2 Call

o <file name>

3.44.3 Function

The actual use of the current output file is terminated (emptying of
buffers) and the file given as parameter is connected as current output.

There is no stacking and unstacking of previously used output files as for
current input files.

If <file> is not found in the catalog an area with this name on the
backing storage with the most temporary resources is created and
connected as current output. The name ’c’, however, is used for the
primary output file and is treated in the following way. Whenever the
program "c" connects current output to ’o’ (either because of the
command ’o ¢’ or because of some error) the following is done: if a
catalog entry named ’c’ is present with the proper document name
(primary output process), the file described by this entry is connected. If
the catalog entry is not present it is created as describing the primary
output file and current output is connected to the file.

3.44.4 Storage Requirements
1024 halfwords plus space for FP.

3.44.5 Error Messages

.“0 cau
Left hand side in the call.

3. The Programs; o

Page 120 System Ultility, User’s Guide, Part Two

*#*0 param <param> .
Parameter error in the call.

***0 <document name> <cause>
The file could not be connected. The reason is explained by <cause>:

no resources the job resources are exceeded

disconnected the device is disconnected

kind illegal the file could not be used
for output

reserved the file was used by another job.

In case of any error the primary output file is connected as current
output file.

3. The Programs; o

System Utility, User’s Guide, Part Two Page 121

3.45 online

Turns a BOSS job into the conversational mode where the current input
to the job is typed on the terminal at run time. A conversational job is
more resource demanding and the user must have a special option in
the BOSS user catalog (cf. ref. [10], section 3.2).

3.45.1 Call

online.

3.45.2 Function

The process ‘terminal’ is connected as current input and selected as a
new primary input.

Contrary to the FP command

i term

the FP command

online

has the advantage that an FP syntax error will not return current input
to the job file.

3.45.3 Storage Requirements

512 halfwords plus space for FP.

3.45.4 Error Messages

***online connect terminal
The job does not have the option ’online yes’.

3. The Programs; online

Page 122

3. The Programs; opcomm

System Utility, User’s Guide, Part Two

3.46 opcomm

Sends the parameter list in the call as a print message to the parent (the
operating system) with request for an answer from the operator and
types the answer (when received) on current output.

3.46.1 Example

A user with initials hsr and project number 47 is placed at a terminal
and needs a new project tape reel. The labeling of the reel and an
answer back telling the reel name may be requested by the FP

commands:

opmess label new p 47 reel
opcomm return name of reel

This causes the following lines to appear (among the other messages .
from BOSS) on the main console

message hsr0 label new p 47 reel
pause hsr0 return name of reel

When the operator has labeled the reel - say with the name ‘'mt271536’ -
he returns the name to hsr by typing

answer hsr0 mt271536
on the main console.

In the meantime "opcomm" has been waiting for the answer. The answer
is now output as the text

*operator answer: mt271536 O

on current output (for hsr0).

3.46.2 Call

opcomm <parameter list>

The parameter list may consist of any sequence obeying the FP syntax.

3.46.3 Function

The first 21 characters (if that many are present) in the parameter list
are packed as a print message and sent to the parent.

The answer is then awaited and when it arrives printed on current
output in the form

*operator answer: <name> <integer>

System Utility, User’s Guide, Part Two Page 123

where <name> and <integer> are the answer as typed by the
operator.

3.46.4 Storage Requirements

1536 halfwords plus space for FP.

3.46.5 Error Messages
***opcomm call

Left hans side in call of the program. No message is sent and no waiting
is performed.

3. The Programs; opcomm

Page 124

3. The Programs; opmess

System Utility, User’s Guide, Part Two

3.47 opmess
Sends the parameter list in the call as a print message to the parent (the

operating system). If the operating system is BOSS the message is typed
on the main console.

3.47.1 Example

An example of the use is given in the description of the program
"opcomm”".

3.47.2 Call

opmess <parameter list>

The parameter list may consist of any sequence of parameters obeying ’

the FP syntax.

3.47.3 Function

The first 21 characters (if that many are present) in the parameter list
are packed as a print message and sent to the parent.

3.47.4 Storage Requirements

1536 halfwords plus space for FP.

3.47.5 Error Messages

***opmess call
Left hand side in call of the program. No message is sent.

System Utility, User’s Guide, Part Two Page 125

3.48 permanent
The program changes the catalog key of the specified entries to the
specified integer.
3.48.1 Example
The fp call:
permanent pip.3
will change the catalog key of the entry pip to 3. Normally the program
scope should be used.
3.48.2 Call
0’*
permanent { <name>.<integer>)}
3.48.3 Function
For each name a catalog lookup is made and the catalog key of the entry
found is changed to the specified value. This may cause an illegal scope.
3.48.4 Storage Requirements
2048 halfwords plus space for FP.

3.48.5 Error Messages

***permanent call
Left hand side in the call. The program terminates.

*#*permanent param <parameter>
Parameter error in the call. The faulty parameter is not treated.

***permanent <name> unknown
No entry with the specified name was found.

*#*permanent <name> protected
The job was not allowed to change the entry key of the specified entry.

*#*permanent <name> no resources
The job has no permanent resources left on the relevant disk.

***permanent <name> error
Catalog or hard error.

3. The Programs; permanent

O

Page 126 System Utility, User’s Guide, Part Two

3.49 print

Prints from a backing storage area or directly from memory with
specified formats. The program is primarily intended for printing of
dumped areas and for disassembling.

3.49.1 Example

The memory of the job process has been dumped into a backing storage
area named ’image’ (under BOSS this is for instance provoked by the
FP command 'mode pause.yes’ just before the call of the program we
are going to debug).

By the FP command
print image 0.16 1536.1600

the words number 0 to 14 and 1536 to 1600 of the area are printed on
current output as integers, halfwords, and code. (The words 0 to 16
contain the start address of the memory area and the registers at the
time of the dump).

If the area is described with contents 7 in the area entry tail (dumped
memory areas should always have this contents, which also is set by s
and BOSS when making a dump) the output is listed with absolute
addresses, corresponding to the logical allocation in memory. One can
select the part to be printed by specifying such absolute addresses: The
command

print image 179766.179874.a

prints the part of the dump originating from the memory addresses
179766 to 179874.

3.492 Call o

[<outfile> =] print <source> ,

0.*
[<modifier>] { <format list> <field>)

<source> ::= (<bs area name>)
{ <internal process name>)
{ <memory address>)

<modifier> ::= {.<first number>)

{. 3 }

3. The Programs; print

System Utility, User’s Guide, Part Two Page 127

<format list>::= (integer)
word }
half)
abshalf }
char }
octal }
hex }
code }
text }
bits <pattern> }
all }
words . <words per line>)

e g e e g gt - -~ p—

<pattern> i= [.<first bit> . <last bit>)o-*
<field> D=

<from - to>

]

(

[.c.<center>]

(]

[]

{ <from addr>.<to addr>.<from segm>

{ <from addr>.<to addr>.<from segm>.<to segm>

RO

{
{
{
{

<from - to> i:= { <from addr> }
{ <from addr>.<to addr>)}

<memory address> ::=

<first number> =

<words per line> ::=

<first bit> D=

<last bit> D=
<center> L=

<from addr> D=

<to addr> Dl

<from segm> M

<to segm> ii= integer
3.49.3 Function

The format list is initialized to all (see below).
The parameter list is scanned.

If <source> is the name of a backing storage area, print prints from this
area. If it is the name of a bs-entry, i.e. its documents name is the name
of a backing storage area entry, print prints from the subarea pointed
out by the bs-entry.

If <source> is the name of an internal process, print prints from the
memory area of the process, provided the cpa limit of the calling process
is greater then the last physical address of the process specified.

If <source> is an integer, print prints from the memory area with the
integer as physical base address.

3. The Programs; print

Page 128 System Utility, User’s Guide, Part Two

Concerning the source modifiers, .s and .<first number>, cf. 3.49.5 and
3.49.6.

The program enters the following cycle until the end of the parameter
list:

1) When a <format list> is recognized the printing format is
changed accordingly.

2) When a <field> is recognized the printing is activated. The
printing is done with the current format.

The output occurs on <outfile> if specified -otherwise on current
output.

3.49.4 Format List

The elements of a <format list> defines how the current word of the
actual field appears in the output:

integer current word is printed as a signed integer.

word current word is printed as a signed integer.

half current word is printed as two signed integers,
being the two halfwords of the word.

abshalf current word is printed as two positive integers,
being the two halfwords of the word.

char current word is printed as three unsigned
integers i.e. the iso values of a text is printed.

octal current address and word is printed in octal. If
code is also specified, the final address is printed
in octal, too.

hex current address and word is printed in

hexadecimal. If code is also specified, the final
address is printed in hexadecimal, too.

code current word is printed as an instruction in
symbolic form. If the instruction includes
relative addressing, the output is supplied with
the corresponding final address according to the
numbering of words:
final address = displacement + number of
current word
This final address is printed immediately after

the displacement.

text current word is printed as 3 ISO characters,
control characters, ISO 0...31, and 127, replaced
by SP.

bits.<pattern> current word is printed as a number of unsigned

integers according to <pattern>. Denoting the
bits from 0 to 23, each integer is the value of the
bit group defined by <first bit> and <last bit>.
The value of <pattern> is initialized to:
0.0.1.1..22.22.23.23

which causes the current word to be printed as
24 integers, being the value of each bit of the
word.

3. The Programs; print

System Utility, User’s Guide, Part Two Page 129

words.<words per determines the number of words to be printed in

line> each line. The line is headed by an integer
corresponding to the numbering of words, as
explained below. The value of <words per line>
is initialized to 1.

all is equivalent to the <format list> integer
bits.0.11 code.

If a <format list> consists of more elements, the current word is
printed in all forms, as defined by the elements of this list. The different
forms occur in a certain order in the output, according to the following
sequence:

<text> <octal> <hex> <integers, halfwords, and bit
patterns> <instruction>;

<integers, halfwords, and bit patterns> are printed in the same order as
the corresponding elements in <format list>.

The <format list> is initialized to:
integer bits.0.11 code
which causes current word to be printed in the 3 forms:

<integer> <unsigned left-most halfword> <instruction>.

3.49.5 Field Specification

The area to be printed is limited by the integers <from addr> and <to
addr>, <from addr> alone meaning <to addr> = <from addr>. If no
<from addr> and <to addr> is specified in the field specification, the
area is limited by the addresses <from addr> and <to addr> in an
address space being:

- the address space of the area, if it is a backing storage area not
containing a dumped internal process (contents <> 7), the base
address being zero

- the logical address space of the dumped internal process, if the area
is a backing strage area containing a dumped internal process
(contents = 7), the base address being the first logical address of
the process

- the physical address space of the internal process, if the area is the
memory area specified by the name of an internal process, the base
address being the first physical address of the process (logical
address space and base address being the first logical address if the
process is the calling process itself)

- the physical address space of the entire memory, if the area is a

memory area specified by an integer, the base address being the
physical address specified by the integer.

3. The Programs; print

Page 130 System Utility, User’s Guide, Part Two

Specification of <from segm> and <to segm> normally makes sense ‘
for backing storage area only, but in special cases it could make sense

for memory areas as well. When specified, a source area is considered
divided into physical segments of 512 halfwords each, or, when the
source modifier .s is used, into logical segments, where the first word of

each segment contains the length of the segment. The areas fp, algol and
fortran are such areas, most utility programs too, but they consist of one
logical segment only. Data structures in memory areas may be organized

that way, too.

When <from segm> and <to segm> are specified, <from segm>
alone meaning <to segm> = <from segm>, the part of the segments
limited by the relative addresses <from addr> and <to addr> in each
segment is printed with addresses relatively numbered inside each
segment.

The modifier .i (indirect addressing) causes the contents of the words
specified by <from addr> and <to addr> to be interpreted as absolute
addresses and used as limits. The values <from addr> and <to addr>

are interpreted relative to the base address. (If the source is a backing .
storage area it should have contents = 7).

The modifier .c.<center> (indirect addressing around a center): The
contents of the word with relative address <center> (relative to the
area start or the base address) is interpreted as an absolute address and
taken as center for printing and the printing limits become <from
addr> below the center and <to addr> above the center. (If the source
is a backing storage area it should have contents = 7).

In case of the modifier .a (absolute addressing) the printing limits are

the integers <from addr> and <to addr> taken as absolute addresses.

(A backing storage area source should have contents = 7).

The modifier .r (relative addresses in output) belongs in a way to the
format specification. It causes the absolute addresses used as numbering

in the output to be replaced by relative addresses, cf. below.

3.49.6 Numbering of Addresses o
The addresses listed in the left column of the output will be numbered
relatively from zero and up inside each segment, when <from segm>

and <to segm> are specified in the field specification.

If no <from segm and <to segm> is specified, the addresses are
numbered consecutively from the base address of the area, starting by :

- zero if the area is a backing storage area not containg a dumped
internal process (contents < > 7)

- first logical address if the area contains a dumped internal process
(contents = 7)

- first physical address if the area is a memory area specified by the
name of an internal process

- zero if the area is a memory area specified by a physical address. .

3. The Programs, print

System Utility, User’s Guide, Part

Two

Page 131

If the source modifier .<first number> is used, the consequtive
numbering of addresses will instead start with :

- first number, if the area is a backing storage area with any contents
key

- first number + first logical address, if the area is a memory area
specified by an internal process name (probably only first number =
0 makes sense)

- first number, if the area is a memory area specified by a physical
address (probably only first number = 0 makes sense)

If the field specifier .r is used, it overrides the use of .<first
number>, renumbering the addresses relatively to the base address,
starting with zero.

Survey of numbering options with no <from segm> and <to segm> :

Options : First Number: Last Number:
print <bs area> <from>.<to> <from> - <to> *
print <bs area> <from>.<to>.r <from> - <to>
print <bs area>.no <from>.<to> no +<from> - no +<to>
print <dump> <from>.<to> <l.f.> - <l.t.>
print <dump> <from>.<to>.r <from> - <to> *
print <dump>.no <from>.<to> no +<from> - no +<to>
print <proc> <from>.<to> <p.f.> - <p.t.> *
print <proc> <from>,<to>.r <from> - <to> *
print <proc>.no <from>.<to> no +<l.f.> - no +<l.t.> **
print <addr> <from>.<to> addr+<from> - addr+<to>
print <addr> <from>.<to>.r <from> - <to> *
print <addr>.no <from>.<to> no +<from> - no +<to>
<l.f.> means 'logical from address’

<l.t.> means 'logical to address’

<p.f.> means ’'physical from address’

<p.t.> means 'physical to address’

* means usefull

*k means usefull if no = 0

3.49.7 Error Messages

**¢print param <erroneous parameters >
Parameter error in call of "print". If the parameters are part of a syntax
element, this has no effect.

3. The Programs, print

Page 132

\
|
\
3. The Programs; print

System Utility, User’s Guide, Part Two

*#*print limit violation ‘
The field specification together with the modifier attempts to define an
address exceeding legal limits.

If printing from an internal process or from memory addresses, make
sure the CPA limit of the printing process is above the locations to be
printed.

***print <name> area
Area process cannot be created or trouble during input data transfer.

***print connect out
Output file cannot be connected.

##*<name> unknown
<name> is neither name of a catalog entry or an internal process.

***print memory size
No memory space for segment buffers; at most 512 halfwords more are

needed. '

In the first two cases "print" continues with the next parameter in the
list. In the other cases "print" terminates.

3.49.8 Further Examples

print sin

prints the total area sin as integer bits.0.11 code.

print datas integer 0.510.1

prints the second segment of datas as integers.

print algol text all 10.20.0.4

prints halfwords 10 to 20 on the first 5 segments of ALGOL as text
integer bits.0.11 code.

print algol.s text all 10.20.0.4

prints halfwords 10 to 20 of the first 5 passes of ALGOL as text integer
bits.0.11 code.

print image.0 0.16 16.10.c.12 1594.1604 1614.1616 1598.1582.1i,
bits.0.0.1.23 1604.1636.1

prints relevant parts after break of ALGOL program (cf. ref. [12]).

0 first address

2 wo

4 wl

6 w2

8 w3

10 exeption register
12 instruction counter

System Utility, User’s Guide, Part Two Page 133

14 interrupt cause
16 sb

16.10.c.12 8 words before and 5 words after breakpoint

1594 UV

1596 UV

1598 lastused

1600 last of program
1602 first of program
1604 segment table base
1614 saved stack ref
1616 saved w3

1598.1582.1i total stack

1604.1634.1 entire segment table

3. The Programs; print

.

Page 134 System Utility, User’s Guide, Part Two

p=slang list.yes ptx

1 0
1 0 b. e2, g1 ; begin block insertproc
2 0 w.
3 0
3 0 d.
7 0 fpnames
110 0
110 0
110 0 s. a2 ; begin segment for program
1M 0 w.
112 0
112 0 k = h55
113 1536
113 1536 0 H
114 1538 a0: O H
115 1540 '
115 1540 e0: al. w0 a0.-2 H
116 1542 al. wi al. H
117 1544 ds. wl a0. :
118 1546
118 1546 jl. -1 H
119 1548 jl. -2 H
120 1550 jL. -3 :
121 1552 jl. -4 H
122 1554 jl. -5 ;
123 1556 al: jl. -6 ;
124 1558
124 1558 e. ; end segment
125 1558
125 1558 el = k - h55 ; load length
126 1558 €2 = e0 - h55 ; entry point
127 1558
127 1558 g0:
128 1558 g1: (:e1+511:) > 9 : size
129 1560 0, r.4 ; name .
130 1568 s2 ; date
131 1570 0,0 ; file, block
132 1574 2<12+e2 ; contents.entry point
133 1576 el ; load length
134 1578
134 1578
134 1578 d.

138 1578 insertproc
slang ok 1/22/1

P

att s
break

ready

from fgs .

3. The Programs; print

System Utility, User’s Guide, Part Two

***break 8 151312

from fgs break fp

att s

dump imagep

ready

att s
start

ready

from fgs

***fp reinitialized

fp version 2 release 4.00

print imagep integer half 0.12

imagep
149766.
149768,
149770.
149772.
149774
149776.
149778.

149766 36 -1786
151302 36 -250
151322 36 -230
248672 60 -1184
248672 60 -1184

1 0 1
151312 36 -240

print imagep integer 0.12.r

imagep

149766
151302
151322
248672
248672
1
151312

Page 135

print imagep integer 1536.1538 code 1536.1538.i all 2.4.c.12 2.c.12

imagep
151302.
151304,

imagep
151302.
151304.
151306.
151308.
151310.
151312.
151314.
151316.
151318.

00
00

al.
al.

jl.

jt
jt
jl

151302
151322

w2 (-250)

w2 (-230)

w0 -4 151302

wi 14 151322
. wl -6 151304

-1 15131

. -2 151312
. -3 151313
. -4 151314

3. The Programs; print

Page 136

3. The Programs; print

151320. jl. -5 151315
151322. jl. -6 151316
imagep

151310. -2256902 3544 ds. wi
151312, 3444735 840 jl.
151314, 3444734 840 jl.
151316. 3444733 840 jl.

imagep
151310, -2256902 3544 ds. wi
151312. 3444735 840 jl.
151314. 3444734 840 jl.

print imagep 151312.151316.a
imagep

151312. 3444735 840 jl.

151314, 3444734 840 jl.

151316. 3444733 840 jl.

print imagep 151312.a.r

imagep
1546. 3444735 840 jl.

-1

System Utility, User’s Guide, Part Two

151304
151311
151312
151313

151304
151311
151312

151311
151312
151313

1545

System Utility, User’s Guide, Part Two Page 137

3.50 procsurvey

For each procedure or standard ALGOL or FORTRAN identifier in
the parameter list, the program displays on current output

- the procedure type

- the parameter specifications

- the procedure date

- the identifier type or

- the Run Time System entry number
3.50.1 Example

The FP command:

procsurvey invar in

will produce the output:

integer procedure invar : d.880822.1005 (algol)
param 1: zone

zone in , s entry no.: 26

3.50.2 Call

procsurvey { <name> }0-*

The (algol) or (fortran) given for each procedure represents information
internally used by the runtime system, and does not state anything about
source code etc.

3.50.3 Function

Each name is looked up in the catalog, if several entries with the same
name exist, only the one with the smallest scope will be listed.
Procedures and standard variables will be listed, as above, other entry
types will cause an error message.

3.50.4 Storage Requirements
2500 halfwords plus space for FP.

3.50.5 Error Messages

*#*procsurvey call
Left hand side in the call.

**sprocsurvey <integer> param
Integer parameter.

3. The Programs; procsurvey

o

Page 138 System Utility, User's Guide, Part Two
***procsurvey <name> unknown .
The name was not found in the catalog.

***procsurvey <name> connect error
The area could not be connected.

***procsurvey <name> not procedure

The name does not describe a procedure or an ALGOL or FORTRAN
standard identifier.

***procsurvey <name> entry inconsistent

The start external list in the entry description contains a halfword > 500,
i.e. the entry does not describe a legal procedure.

***procsurvey <name> code inconsistent
Illegal contents of the internal list in the code body.

In case of error, procsurvey continues after the error message.

3. The Programs; procsurvey

System Utility, User’s Guide, Part Two Page 139

3.51 release

Sends a release message to the parent (the operating system) releasing
the specified magnetic tape reel (cf. ref. [10], section 6.1).

3.51.1 Example

If the total number of tape reels used during a BOSS job exceeds the
number of stations available one has to release one of the tapes during
the job in order to tell BOSS that the reel could be dismounted. The FP
command

release mt123456

tells BOSS that mt123456 can be dismounted.

If ’pip’ is a name of a file on the magtape e.g.
pip=set mtl6é mtl23456 0 7

the same result is obtained by the FP command
release pip

In general it is good manners to release a tape reel as soon as it is no
longer required.

3.51.2 Call

release <name>

3.51.3 Function

A release message is sent to the parent. The name in the message is
found as follows: the name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry is
not protected (e.g. not of scope system) the document name in the entry
is used. Otherwise the name specified is used.

3.51.4 Storage Requirements
1536 halfwords plus space for FP.

3.51.5 Error Messages

***release call
Left hand side in the call of the program.

3. The Programs; release

GGG

Page 140 System Utility, User’s Guide, Part Two

***release <parameter list> parameter error .
Parameter error in the call of the program.

***release <name> tape name missing
The entry specified has a zero document name.

3. The Programs; release

System Utility, User’s Guide, Part Two Page 141

3.52 rename

Changes the names of catalog entries as specified.

3.52.1 Example

By the FP command

rename pip.fup

the name of the catalog entry named ’pip’ is changed to *fup’. The scope,

entry tail, and the contents of a possibly associated data area remain
unchanged.

3.52.2 Call

1-%

rename { <oldname> . <newname>)

3.52.3 Function

Each <oldname> in the list is looked up in the catalog and the name of
the entry found is changed to the corresponding <newname>.

Remark: if several entries with the same name are present, the catalog
lookup will find the entry with the ’smallest’ scope (corresponding to the
order: temp, login, user, project).

3.52.4 Storage Requirements
1536 halfwords plus space for FP.

3.52.5 Error Messages

***rename call
Left hand side in the call. The program terminates without further
actions.

***rename param <parameter>
Parameter error. The remainder of the parameter list is skipped.

***rename <oldname>.<newname> name conflict
The entry could not get the name changed because an entry named
<newname> already exists.

*s**rename <oldname>.<newname> unknown
No entry named <oldname> was found.

***rename <oldname>.<newname> protected
The job was not allowed to change the name of the entry.

3. The Programs; rename

Page 142

3. The Programs, rename

System Utility, User’s Guide, Part Two

***rename <newname> no room
The name overflow in the main catalog exceeded the limit.

***rename <oldname>.<newname> entry in use
The entry could not be renamed because another job was using it.

In the last four cases the program continues with the next parameter.

System Utility, User’s Guide, Part Two Page 143

3.53 repeat

The program makes it possible to repeat (a specified number of times)
an FP compound command, i.e. a series of FP commands placed in
brackets, or the last part of an FP command.

3.53.1 Example

By the following FP commands files number 1 to 20 on mt471100 and
mt471200 are checked by the program "copy” (which outputs the number

and sum of characters for each of the 40 files):

tl=set mtlé6 mt471100
t2=set mtlé mt471200

(repeat 20
. nextfile tl t2
copy tl t2)
3.53.2 Call
({<FP command>}1-*
[<outfile>=] repeat <total number of times> |,
<parameter list> <NL>

(<FP command>})1-*

<total number of times>::= an integer greater than 0

<parameter list> ::= any sequence obeying the FP syntax
. <FP command> ii= {<simple command>)
{<compound command>)

3.53.3 Function

The program augments the command stack so that the rest of the
compound command containing the call of repeat, will be executed the
specified number of times.

<outfile> and <parameter list> have no effect at all, but in mode
list.yes they may be used to identify the repeat call to be executed.

3.53.4 Storage Requirements

512 halfwords plus space for FP.

3. The Programs; repeat

Page 144

3. The Programs; repeat

System Utility, User’s Guide, Part Two

3.53.5 Error Messages

***repeat no core

There is no room in the process area for the augmentations of the
command stack made by repeat (the command to be repeated must be
exceptionally long).

***repeat no factor
Either there are no right hand parameters to the call or the first right
hand parameter is not an integer.

***repeat factor 0
The integer <total number of times> is equal to 0.

s**repeat nothing to repeat
The call of repeat is the last command in the compound command
containing repeat.

In case of error messages, the commands following the repeat call will
be executed once.

System Ultility, User’s Guide, Part Two Page 145

3.54 replace

Sends a replace message to the parent (the operating system) defining a
file as replacement for the current job file.

After termination of the job BOSS will create a new job with the same
name and specified file as job file. BOSS only accepts replace messages
from off line jobs, not from on line jobs.

The operating system s removes the job process as if the command had
been ’finis’ and reads from the file as by the s command ’read’.

3.54.1 Example

The FP command

replace pip

defines the file ’pip’ as replacement for the job file.

The FP command

replace pip newid

defines the file ’pip’ as replacement for the job and the identification to
be changed according to the job head in the file ’pip’.

3.54.2 Call

replace <job file> ({oldid/newid)

where <job file> is a name of a permanent disk file. Default is ’oldid’.

3.54.3 Function

A replace message containing the specified name is sent to the parent.

3.54.4 Storage Requirements
1536 halfwords plus space for FP.

3.54.5 Error Messages

***replace call
Left hand side in the call of the program.

***replace <parameter list> parameter error
Parameter error in the call of the program.

3. The Programs; replace

Page 146

3. The Programs; replace

System Utility, User’s Guide, Part Two

*#*replace <parameter list> not allowed from on line job
The replace message was not accepted as the job is an on line job.

In case of any error no replace message is sent.

System Utility, User’s Guide, Part Two Page 147

3.55 rewind

Sends a rewind operation to a magnetic tape document and returns.

3.55.1 Example

By the fp command

rewind mt280007

the magnetic tape mt280007 starts rewinding, and the program returns
to let you perform other jobs while the rewinding takes place.

By the fp command

rewind t

the same action is performed, provided t is a file descriptor, like :

t=set mt62 mt280007

If you know that the tape is mounted on device number 12, you could as
well go :

rewind 12

3.55.2 Call

rewind <tape spec>

{<document name>)
<tape spec> 1= {<file name>)
{<device number>)}

<document name> : :=
<file name> : .= name

<device number> ::= integer

3.55.3 Function

A rewind operation is sent to the magnetic tape document. The name of
the document is found as follows : if the parameter is an integer, and the
external process with that device number is a magnetic document (kind
= 18), the name of the process is used, else the name is looked up in the
catalog. If an entry describing a magnetic tape is found (kind = 18 and
mode even), the document name of the entry is used, else the name
specified is used. The magnetic tape process is reserved and the
operation is sent, waited for and when the answer returns, the process is
released. If any significant status bits are raised, the program returns
with device status error, else it returns normally.

3. The Programs; rewind

Page 148

3. The Programs; rewind

System Utility, User’s Guide, Part Two

3.55.4 Error Messages

***rewind call
Left hand side in call of rewind.

***rewind parameter missing
No magnetic tape specification parameter.

***rewind not device
The device number specified does not specify an external process.

***rewind device not mt
The device number specified is not a magnetic tape process.

***rewind modekind error
The filedescriptor found does not specify a magnetic tape.

***rewind no process .
The <tape spec> did not specify an existing process.

System Ultility, User’s Guide, Part Two Page 149

3.56 ring
Sends a ‘'mount ring’ message to the parent (the operating system). The
program is normally not used as the software sends the mount ring

message automatically when needed.
The function of the program is taken over by the program ’enable’.

3.56.1 Call

ring <name>

3.56.2 Function

A ’mount ring’ message is sent to the parent. The name in the message
is found as follows: the name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry is
not protected (e.g. not of scope system) the document name in the entry
is used. Otherwise the name specified is used.

3.56.3 Storage Requirements
1536 halfwords plus space for FP.

3.56.4 Error Messages

***ring call
Left hand side in the call of the program.

***ring <parameter list> parameter error
Parameter error in the call of the program.

***ring <name> tape name missing.
The entry specified has a zero document name.

In case of any error no mount ring message is sent.

3. The Programs; ring

Page 150

3. The Programs, rubout

System Utility, User’s Guide, Part Two

3.57 rubout

Overwrites the contents of the specified backing storage files with a
’rubout’ fill pattern. If specified, the catalog entry is removed after the
rubbing out.

3.57.1 Examples

By the FP command

rubout user clear.yes texté4

the file text4 is overwritten with the rubout fillpattern after which the
entry is cleared.

The following two FP commands

rubout user text4
rubout user clear.no texté4

are identical, since the clear parameter is initialized to no. The entry is
not removed.

3.57.2 Call
0.*
rubout <scope> (name }
{clear. (yes/no})

<scope>::= { temp }

{ login }

{ user }

{ project }

{ own }
3.57.3 Function

The files are filled with a fillpattern after which it is cleared in case the
value of the parameter is yes. The fillpattern is a double word consisting
of 3 NUL characters and 3 EM characters. Scope own means all of
temp, login, user, and project.

3.57.4 Storage Requirements
1536 halfwords plus space for FP.

System Utility, User’s Guide, Part Two Page 151

3.57.5 Error Messages

***rubout call
The program was called with a left hand side.
No file rubout.

***rubout param <parameter>
Illegal parameter.
The rest of the parameter list is skipped.

*+*rubout <scope> illegal scope
The scope was illegal.
No file rubout.

***rubout <scope> <name> unknown
The entry was not found.
The program continues with the next parameter in the list.

***rubout <scope> <name> entry in use
The entry was not changed or removed because another job was using it.
The program continues with the next parameter in the list.

***rubout <scope> <name> not bs area
The entry did not describe a backing storage area.
The program continues with the next parameter in the list.

***rubout <scope> <name> catalog error

Catalog, monitor, or hard error.
The rest of the parameter list is skipped.

3. The Programs; rubout

Page 152

3. The Programs; savel3

System Utility, User’s Guide, Part Two

3.58 savell

The program transfers catalog entries and backing storage areas to
magnetic tape for backup purpose.

The catalog entries and backing storage areas are transferred back to
disk by the program load13.

The program is replaced by the program save and should only be used to
produce back up tapes to be read by the program load13.
3.58.1 Examples

3.58.1.1 Example 1

All catalog entries and backing storage areas of scope temp are
transferred to the magnetic tape mtdp0001 file 2 by the call:

save mtdp0001.2

In case

t = set mtlé mtdp0001 O 2
the same is obtained by the call:

save t.0

3.58.12 Example 2

All catalog entries and corresponding backing storage areas specified in
the file ’savefiles’ are transferred to file number 2, overwriting the ones
saved in example 1, by the call:

save mtdp000l1.2 in.savefiles

3.58.13 Example 3

All catalog entries with corresponding backing storage areas of scope
project, those of scope user on the disk named ’disc3’ and finally the
best entry with the name ’pap’ are saved after the ones in example 2 by
the call:

save mtdp000l.last scope.project,
disc.disc3 scope.user,

pap

System Utility, User’s Guide, Part Two Page 153

3.58.2 Call
[<outfile> =]
1-2
save [<mount param>] {<tape param>} [<special param>] ,

[<save specifier>]

3.58.2.1 outfile

<outfile> ::= name of any filedescriptor

3.58.2.2 mountparam
1-*

<mount param> ::= { mountspec. <device no>)

{ release. {yes/no))

{ <modekind> }
<device no> D= <integer>
<modekind> ::={ mthh)

{ mtlh)

{ mthl)

{ mtll)
3.58.2.3 Tape param
<tape param> :i= <tape name>.<file no> {.<next volume>}o0-31,

[.label.<fpname>]
<tape name> Dim
<next volume> :i= (<name>/<filedescriptor>)
<name> ::= name of magnetic tape

<file descriptor> ::= name of magnetic tape file descritor

<file no> :i= {<integer>/last)
<fpname> !i= name obeying fp syntax
3.58.2.4 Special param
1-»
<special param> :: { segm. <integer>)
{ list. {yes/no/name})
{ reserve.{yes/no) }

3. The Programs; savel3

Page 154

3. The Programs; savel3

System Utility, User’s Guide, Part Two

3.58.2.5 Save specifier

1-%

<save specifier> ::= {<modifier>)
{<disk specifier>)}
{<entry specifier>)

1-*

<modifier> ::= (changedisc {.<from disk>.<to disk>}1-*)

{newscope. <new scope>)
<from disk> = {all/maincatdisc/<disk name>)
<to disk> := {no/maincatdisc/<disk name>)

<new scope> {no/temp/login/user/project)

1-%

<disk specifier> disk {.<from disk>)}

0-*
<entry factor> {.<entry factor>)

<entry specifier> ::

<entry factor> ::= {<entry name>
/scope.<scope>/docname .<docname>}

<entry name> 1= <name>

<scope> ::= {temp/login/user/project/
own/system/perm/all)

3.58.2.6 Infile parameter

Everywhere the delimiter <s> is allowed in the parameter list according
to syntax for FP commands (ref. 8), the parameter pair <s> in.<file>
is allowed and will be syntactically equivalent to <s>.

<file> ::= name of any filedescriptor.

3.58.3 Function

The program will save the catalog entries and possible backing storage
areas specified by <disk specifier> and <entry specifier> with the
modifications in <modifier> on the magnetic tapes specified in <tape
param>, i.e. maybe in two copies and maybe extending over more
volumes.

The program interprets the parameter groups, one by one.

The tape is mounted according to possible <mount param> and
positioned to the file number(s) specified.

A version dumplabel record (cf. below) is output as the first block and
displayed on current output.

System Utility, User’s Guide, Part Two Page 155

Each <entry specifier> starts a catalog scan, picking out the entries
specified, and the entries satisfying the current disk specifications are
saved after a possible change according to the actual state of modifiers.
During the save, succeeding magnetic tape volumes, as far as specified,
are mounted whenever actual volume is filled up.

The last block in each volume will be a continue record, specifying the
number of entries and segments saved so far and the name of the next
volume. The first block of the next volume will be a continuation dump
label record, which is displayed on current output as well.

When the parameter list is emptied, the magnetic tape file is closed with
an end record as the last block, specifying the amount of entries and
segments saved.

The tape is positioned to the next file, an empty dump label record is
output in the file and displayed on current output, the file is closed and
the tape released if so specified in <mount param>.

If two sets of tapes are specified they are treated in parallel, except for
different <mount param> and except for volume change, which allows
for tapes of different lengths in the two sets.

3.58.3.1 Function, outfile parameter

<outfile> ::= name of any file descriptor

Current output zone is stacked and connected to the file specified at
program start.

If the program terminates through its final end, the current output zone
is unstacked again.

If the program terminates with a runtime alarm, the current output zone
remains connected to <outfile>.

3.58.3.2 Function, mount param

1-*
<mount param> ::= {mountspec .<device no>)
(<modekind>)
{release. {yes/no) }

<mountspec. <device no>

A mount special parent message with the device number and proper
tape name will be sent each time a new volume in the set of tapes
specified in <tape param> is mounted.

Default: mountspec.0

meaning no parent message.

3. The Programs; savel3

Page 156 System Utility, User’s Guide, Part Two

<modekind> .
The modekind specified will be used for all volumes in the set specified

in <tape param>.

Default: mto

release. (yes/no)
If release.yes the tape in the set actually used at program termination
will be released. Default: release.yes

The mount parameters may be repeated, but the last one will stand.

3.58.3.3 Function, tape param

<tape param> ::= <tape name>.<file no> {.<next volume>)0-31,
[.label.<fpname>]

One tape parameter specifies a set of magnetic tapes, consisting of one
to thirtytwo tapes. .

<tape name> ::=

<next volume> ::= <name>/<file descriptor>

The name of the tape. If <file descriptor> is used, the name and
modekind are taken from the descriptor.

<file no> ::= {<integer>/last)
The file number of the first tape in the set where the save shall start.

The save will start in file number one in all succeeding volumes. If the
first tape is specified by <file descriptor>, its file count will be added to
<file no>.

If <file no> = last, the first file, which does not start with a version or a
continue dump label, is searched along the tapes in the set, even if they
are specified by <file descriptor>’s. '

label.<fpname>
If a label is specified, the name will be written as the last field in the
version dumplabel record, and it will appear on current output.

3.58.3.4 Function, special param

1-*
<special param> ::= (segm.<integer> }
{list. {yes/name/no})
{reserve. {yes/no})

The special parameters may be repeated, but the last one will stand.

3. The Programs; savel3

System Ultility, User’s Guide, Part Two Page 157

segm. <integer>

Backing storage areas will be saved in magnetic tape blocks of
<integer> segments, l<=<integer><=9,

Default: the value found in the file count of the programs own catalog
entry tail. If the value is outside the legal value interval, the value one is
used.

list. (yes/name/no)
If list.yes, the entries saved are listed on current output in the form:

<name><modekind> <scope>/<permkey><docname> ,
[<base>] [<shortclock>]

If list.name, only the entry name is listed.
If list.no, the entries are not listed.
Default: list.yes

reserve. {yes/no}

If reserveyyes is specified, the program will try to reserve the area
process for an area entry to be saved, unless the monitor offers write
protection, cf. 3.58.4.

If reserve.no is specified, no reservation is tried.

If the monitor offers write protection, the parameter has no function.
Default: reserve.yes

3.58.3.5 Function, save specifier

1-*
<save specifier> ::= {<modifier>)
{<disk specifier>)
(<entry specifier>)

The elements of the save specifier are treated one by one, until the
parameter list is emptied.

A modifier will modify the state of current modifiers.

A disk specifier will cancel current disk specifiers and define a new set
of disk specifiers.

An entry specifier will start a catalog scan, picking out entries specified.

Entries picked out which belongs to a disk specified in current disk
specifiers will be saved after having been modified according to current
modifiers.

If no <entry specifier> is found in the parameter list after a modifier or
a disk specifier or no save specifier is found, a default entry specifier will
be used.

1-0
<modifier>::= (changedisc {.<from disk> .<to disk>}1-*)
{newscope. <newscope> }

3. The Programs; savel3

Page 158

3. The Programs, savel3

System Utility, User’s Guide, Part Two

A modifier is valid until changed by another modifier. .
changedisc (.<from disk>.<to disk>)1-*

An entry belonging to <from disk> will be changed as if it belongs to
<to disk>.

<from disk>: := {all/maincatdisc/<disk name>)
all means all disks
maincatdisc means the disk with the main
catalog

<disk name> means the disk with that name
<to disk> ::= {no/maincatdisc/<disk name>)
no means changedisc. <from disk>.<from

disk>
others as for <from disk>
Default, changedisc.all.no '

newscope. <new scope>
All entries will be changed to have the scope <newscope>
<newscope> ::~ {temp/login/user/project/no)

If the entries are saved using a scope key (cf. specifier ’scope’) they will
be saved with the one denoting <newscope>.

If they are saved using bases they will be saved with permkey and bases
corresponding to <newscope>.

<newscope> = no means no change of scope.

Default: newscope.no

<disk specifier> ::= disc {.<from disk>)1-*
A disk specifier is valid until the next disk specifier, which will cancel it.
<from disk> ::= (all/maincatdisc/<disk name>) .

The parameters have the same meaning as for ’changedisc’.
Default: disc.all

<entry specifier> ::= <entry factor> {.<entry factor>)}o-*
An entry specifier is composed of one or more entry factors of which
three kinds exist, each of which specify an entry attribute.

If one kind of entry factor is repeated, the last one stands, except for the
factor <name>, where a warning will be given and the first name
stands.

The entry specifier specifies a set of entries, each of which have all the
attributes specified

<entry factor> ::= {<name>/scope.<scope>/docname.<docname>)

<name>

The attribute is the entry name. .

System Utility, User’s Guide, Part Two Page 159

All entries visible with this name have the attribute. The entry names ’c’
v’ and primout cannot be specified.

Entries of name ¢’ or V' with permkey = 0 and entries with name
’primout’ and permkey = 2 are considered to have no name attribute.
scope. <scope>

<scope> ::= {temp/login/user/project/own/system/perm/all}

The attribute is the scope.
All entries with the scope specified have the attribute.

temp, login, user, project have the usual meaning
own means one of above.
system means permkey = 3 and
entry base = system base
perm means permkey = 3 and

entry base inside or equal
to the standard base of
the process

all means any permkey and
entry base inside or equal
to the standard base of
the process.

Entries specified by the attribute scope.perm or scope.all will be saved
using permanent key and entry base. Entries specified by any other
scope will be saved using a key denoting the scope, making them
loadable in any process (scope.system in a process with maxbase =
system base, though).

cf. the modifier 'newscope’.
Default: name specified: the best name
no name specified: temp

docname. <docname>

The attribute is the document name of the entry. All entries visible with
a document name equal to <docname> have the attribute.

Changes the default for scope to <any visible scope>.

The best name means the name with the best scope among the scopes
temp, login, user and project or any scope visible changed into one of
above by the modifier newscope’.

Default entry specifier: scope. <temp>

3.58.3.6 Function, infile parameter
Every where the delimiter is syntactically correct in the parameter list,

the parameter pair <s>in.<filename> is allowed and syntacitally
equivalent to <s>.

3. The Programs; savel3

Page 160

3. The Programs; savel3

System Utility, User's Guide, Part Two

<filename> ::= name of any file descriptor

When in.<filename> is met in the parameter list, current input zone is
stacked and connected to the file specified by the file descriptor, and the
parameter reading is continued in current input zone.

The parameter reading takes place using the special fp input alphabet
and according to normal fp parameter syntax (cf. Ref. [9]), except the
character ’'nl’ is equivalent to the character ’sp’, and except names of the
types: apostrophized name, general name and general text.

When the separator ’em’ is met, current input zone is unstacked and
parameter reading continues from current input zone, except when
unstacked to the initial level, in which case parameter reading continues
in the fp command stack.

In case of illegal character or fp syntax error a syntax alarm is written on
current output zone, current input zone stack chain is emptied, listing
the chain on current output zone, and parameter reading continues in fp
command stack.

The fp command listing governed by the mode bit ’list’ will list the
parameters in the fp command stack, not the parameters in any file.
3.58.3.7 Alternative parameter names

For compatibility reasons, some alternative parameter names are
allowed.

The modifier ’changekit’ is allowed and is equivalent to ’changedisc’.

The changedisc parameter <from disk> = main is allowed and
equivalent to <from disk> = all.

The changedisc parameter <to disk> = main is allowed and is
equivalent to <to disk> = maincatdisc.

The disk specifier ’kit’ is allowed and is equivalent to the disk specifier
"disc’.

The disk specifier parameter <from disk> = main is allowed and is
equivalent to <from disk> = all.

3.58.4 Entries and backing storage areas

Catalog entries are picked out of the main catalog according to <entry
specifiers>, checked with <disk specifier>, changed according to
<modifier> and transferred to a record, which is output on the tape as
one block (cf. 3.58.5, Tape Format).

If, however, the entry is an area entry, steps are taken to protect the
area during the save.

System Utility, User’s Guide, Part Two Page 161

Before the entry is changed, the catalog base of the process is changed
to equal the entry base. If, however, the entry base is outside the max
base of the process, to equal the max base.

An area process with the name of the entry is created. If the creation
fails, the entry is skipped with a warning on current output, telling the
reason of the failure.

Next, the area process is write protected, unless its base is outside the
max base of the process.

If the current monitor does not offer write protection, the process is
reserved instead, unless reserve.no is specified.

If the protection fails because the area process is already reserved by
another process, the entry is skipped with a warning on current output.

If the base of the area process created does not equal the entry base, i.e.
the entry base is outside max base and a better entry exists, the entry is
skipped with a warning on current output, telling that the entry is
inaccessible.

At last, the write access counter and the name table address of the area
process are read and the catalog base of the executing process is reset.

Now the entry is changed and saved, followed by the segments of the
backing storage area.

When the area has been saved, the write access counter of the area
process is compared with its value before the area was saved. If the
value has changed, ie. the entry base is outside the max base of the
existing process (it was not protected) and another process has had
write access to it, or the executing process itself has had write access to
it (area connected to current output zone), the entry is listed on current
output followed by a warning, that the area has been changed during the
save.

Finally, the number of segments saved is compared to the size of the
area in the entry tail, and if not equal, the entry is listed on current
output followed by a warning, that the area and the entry are
inconsistent.

The area process is removed, unless the area is the program itself.
Foreign read accesses to the area will not influence the save.

If the current monitor does not offer write protection, foreign write
accesses will only hold up the save if reserve.no is specified or the entry

base is outside max (scope.system).

If the current monitor offers write protection, foreign read accesses will
not be affected by the save.

If the current monitor does not offer write protection, foreign read

accesses will be held up by the save, unless reserve.no is specified or the
entry base is outside max base.

3. The Programs; savel3

Page 162

3. The Programs; savel3

System Utility, User’s Guide, Part Two
Foreign write access during the save will be rejected unless reserve.no is
specified or the entry base is outside max base of executing process.
Using one of the entry specifiers scope.perm or scope.all, which are
intended for system back-up, entries with a base equal to or inside the
standard base of the executing process are specified.
Areas saved this way (as well as areas saved using temp, login, user,
project or own) will never be changed by other processes during the
save. Either they are protected during the save or they are skipped
because they are reserved by another process at the time of reservation.
3.58.5 Tape Format
The magnetic tape file created by save starts with a block containing a
- version dump label record
followed by a number of blocks each containing
- an entry record or
- a segment record
ending with a block containing
- an end record.
The file may extend over more tapes, in which case each tape ends with
a block containing
- a continue record

and each new volume tape starts with a block containing

- a continuation dump label record.

After the file, save creates another file with only one block containing
- an empty dump label record.

The segment records are 8+segm*512 halfwords long, all other records
are 100 halfwords long.

The format and contents of the records are as follows.

Dump label records:

version-, continuation- and empty label records contain a number of

characters, terminated by an em-character (the records may be read by
edit or copy):

System Ultility, User’s Guide, Part Two

contents

<:dump :>

tapename followed by a number of spaces
file number followed by a number of
spaces

<:ivers. :>,<:cont. :> or <:empty :>
<<ddmmyy>, date,

<<.hh >, hour,

<:s=<segments per block>:>

true, 12, label.<fpname>,
<:release:>, <<dd.d>,
<:<10><0><0><0><0><25>: >

null characters

Page 163

An entry record contains parts of a catalog entry head and all of the tail:

hw addr :
o0 - 3:
4 - 11
12 - 15 :
16 - 19 :
20 - 23 :
24 - 27
28 - 31 :
32 - 39 :
40 - 47
48 - 51 :
52 - 99 :
Entry record:
hw addr :
0 - 3:
4 - 7
8 - 15 :
16 - 35 :
36 - 39 :
40 - 47 :
48 - 51 :
52 - 99 :

contents

1, if saved using bases then 52 else 48
entry count, no of segments

entry name

entry tail

if saved using bases then permanent key
else scope key (temp=8, login=7, user=6,
project=5, system=3)

disk name

if saved using bases then (entry base
lower, entry base upper) else 1,48

if saved using bases then (1,52) else
(1,48),..

Segment record:
A segment record contains some saved segments:

hwd addr :
0o - 3:
4 - 7
8 -519
520-1031

End record:

contents
2, 8+512* number of segments in record

! entry count, segment count
: contents of one segment
: contents of one segment

An end record contains the entry and segment counts:

hwd addr:
0 -3
4 - 7
8 -99

contents

3,8

entry count, segment count
3,8,...

Continue record:
A continue record contains the name of the continuation tape:

3. The Programs; savel 3

Page 164

3. The Programs; savel3

System Ultility, User’s Guide, Part Two

hwd addr: contents

0-3 : 4,16
4 - 7 : entry count, segment count
8 -23 : name of the continuation tape
24-99 : 4, 16,
3.58.6 Requirements

The program will allocate memory space to internal data buffers of at
least 2*segm*512 halfwords.

If that does not leave space for two program segments, the program will
terminate with a stack alarm, in which case the size of the process must
be increased.

If free memory space at time for buffer allocation leaves space for more
than enough program segments to avoid program paging in inner loops,
the memory surplus will be allocated to databuffers, giving maybe
double buffered tape zone and all the rest to extend a single buffered
disk zone.

The program needs:

4 area processes (fp, save, catalog, area to be saved)
+

1 area process if current output zone is connected to a
backing storage area +

1 area process as long as current input zone is
connected to a backing storage area for parameter
reading.

If the program fails to have the necessary number of area processes, it
will

- write a parameter alarm and continue writing or reading in the
present file, if the resource was missing at time for zone connection

- skip area entries with a warning (cf. 3.58.7).

The program may need temporary entries and segments to perform
zone stacking in case of parameter input from backing storage area. In
case of shortage of these resources, the program will terminate with a
’break 10’ alarm.

3.58.7 Error Messages

Error messages from the program are written in current output zone.
The following kinds of error messages exist:

- parameter alarm

- parameter warning

- save specifier warning

- area entry warning
- parameter input syntax error message

System Utility, User’s Guide, Part Two Page 165

3.58.7.1 Parameter alarm

At parameter alarm, the parameter list is emptied, listing the
parameters from current parameter and on in the alarm message.

The modebits are set: ‘'warning yes, ok.no’.

Since the parameter list is emptied, the program terminates.

**# save alarm <text> <parameter list>

Text: Explanation:
mountspec param syntax mount param not followed by
.<integer>

tape param too many volumes tape param specifies more than 32

volumes
label param syntax label not followed by . <name>
tape param missing no tape parameter found
segm param syntax segm not followed by . <integer>

3.58.7.2 Parameter Warning
The parameter warning skips current parameter, displaying it in the

error message and continues, setting the modebits:
‘warning yes, ok.yes'’

*** save warning <text> <current parameter >

Text: Explanation:
outfile param connect The current output zone could not
impossible <cause> be connected to the file specified

for the reason explained in
<cause>. The stacked output zone
is unstacked again and output

continues.
infile param connect The current input zone could not be
impossible <cause> connected to the file specified for

the reason explained in <cause>.
The stacked input zone is unstacked
again and input continues, maybe
from fp command stack.

mountspec param syntax The parameter ‘mountspec’ was not

followed by . <integer>.
The value remains the latest read or

3. The Programs; savel 3

Page 166

3. The Programs; savel3

release param syntax

list param unknown

reserve param unknown

changedisc param syntax

newscope param syntax

newscope param unknown

disc spec param unknow

scope param syntax

scope param unknown

docname param syntax

name illegal

System Utility, User’s Guide, Part Two

default.

The parameter 'release’ was not
followed by .yes or .no.

The value remains the latest read or
default.

The parameter ’list’ was not
followed by .yes, .no or .name.

The value remains the latest read or
default.

The parameter ’reserve’ was not
followed by .yes or .no.

The value remains the latest read or
default.

The parameter ’changedisc . <from
disk >’ was not followed by
.<name>

The value becomes <to disk> =
no.

The parameter 'newscope’ was not
followed by . <name >
The value is not changed.

The parameter to newscope was
neither of temp/login/user/project
/no

The value is not changed.

The disk specified in disk specifier
was unknown.

Previous disk specifier is cancelled,
all other disks specified in this disk
specifier become specified.

The scope parameter was not
followed by . <name >

No entries will be saved according
to this entry specifier.

The scope specified was neither of
temp/login/user/project/
own/system perm/all.

No entries will be saved according
to this entry specifier.

The ’docname’ parameter was not
followed by . <name >
No entries will be saved according
to this entry specifier.

The name specified in entry
specifier was ’c’, v’ or ’primout’.
The entry is not saved.

System Utility, User’s Guide, Part Two Page 167

name double defined A name was already specified. The
new name is ignored and the
program continues with the current
entry specifier.

save spec param unknown Syntactically the parameter would
start a save specifier, but the
parameter is not <name>.
The rest of the parameter list is
read, each parameter with this
warning as a result.

3.58.7.3 Save Specifier Warning

The save specifier is listed in the error message, the mode bits are set
‘warning.yes, ok.yes’ and the program continues.

**#* save no entries found/saved according to following specifier
disc: <disk specifier>

entry: <entry specifier>

Explanation:

No entries are found in the main catalog according to the save specifier
or the entries specified have been skipped cf. below.

3.58.7.4 Area entry warning

The warning appears in current output following the entry concerned.
The modebits are set *warning.yes, ok.yes’ and the program continues.
<entry>

warning: area changed during save

Explanation:

Some other process has had write access to the backing storage area
during the save (or the area is connected to current output zone of the
program itself and own process has had write access during the save).
The entry and the area have been saved.

The warning appears no matter what the list parameter specifies.
<entry>

*** warning: area and entry inconsistent, area length <integer>
segments

Explanation:

The number of segments actually saved do not equal the size in the
catalog entry tail.

3. The Programs; savel3

Page 168

3. The Programs; savel3

System Utility, User’s Guide, Part Two

The entry and the area have been saved.

The warning appears no matter what the list parameter specifies.
<entry>

warning: entry skipped <cause>

Explanation:

The area proces could not be created, not be protected/reserved or the

area was inaccessible for the reason stated in <cause>.

The entry and the area have not been saved.
The warning appears only if list.yes or list.name is specified.

Cause: Reason:
area claims exceeded create area process failed .

catalog i/o error, state of create area process failed
document does not permit

call

entry not found create area process failed
entry not an area entry create area process failed
name format illegal create area process failed

reserved by another process set write protect/reserve

failed

process does not exist, set write protect/reserve

process is not user of area failed

process

area process inaccessible area is inaccessible from .
executing process

3.58.7.5 Parameter input syntax error message

This message is caused by a syntax error in the parameter list read from
a file connected to current input zone.

The parameter list must follow the syntax of an fp parameter list and
must be coded in the special fp input alphabet, cf. Ref. 9, with the one
exception that the character 'NL’ is equivalent to the character *SP’.

The current parameter is listed in the error message and the zone stack
chain is emptied, listing the chain on current output the same way fp
does in an fp syntax error message.

The parameter reading is continued in the fp command stack.

The modebits are left unchanged. ‘

System Utility, User’s Guide, Part Two Page 169

*** save syntax <parameter>
* read from <file>
* selected from <file>

**; save reinitialized
3.58.8 Further Examples

3.58.8.1 Example 1

The file pip of scope user and all files with documentname pip and
scope user are saved on mtdp0001 file 1 by the call:

save mtdp000l.1 pip.scope.user docname.pip.scope.user

3.58.8.2 Example 2

All files of scope temp, login, user or project on the disks: disc, disc1 and
disc2 are saved changing their disk names:

disc becomes disc3
discl becomes disc?
disc?2 becomes discl

by the call:

save mtdp0001.1,
changedisc.disc.disc3.discl.disc2.disc2.discl,
disc.disc.discl.disc2.scope.own

3.58.8.3 Example 3
All files in the main catalog, except

- the main catalog itself

- the auxiliary catalogs

- files of name ¢ or v with permkey = 0

- files of name primout with permkey = 2

- files belonging to other disks than disc, discl and
disc2

are saved, disk by disk by the call:

save in. magtapes,

disc.disc scope.all,

disc.discl scope.all,

disc.disc2 scope.all

provided the executing process has standard base = system base and the
file ‘magtapes’ contain a tape parameter, e.g.

3. The Programs; savel3

Page 170

3. The Programs; savel 3

System Utility, User’s Guide, Part Two

mtdp0001.1.mtdp0002.mtdp0003.mtdp0004 . mtdp0005.
mtdp0006.1.mtdp0007 .mtdp0008 . mtdp0009.mtdp0010.

The files are saved in two copies, each copy containing at most 5
volumes.

System Utility, User’s Guide, Part Two Page 171

3.59 scope

Changes the scope of catalog entries as specified in the call of the
program.

3.59.1 Example
By the FP command
scope user pip

the scope of the catalog entry named ’pip’ is changed to ’user’. The
catalog entry is now a permanent entry and is not removed when the job
terminates.

3.59.2 Call

1-t

scope <scope spec> { <name>)}
<scope spec> .= <scope> [. <device name>]

<scope> ti= { temp }
{ login }
{ user }
{ project }

<device name>::= <name of disk>

3.59.3 Function

The scope specification is interpreted and then the name list is scanned.
For each name a catalog lookup is made and the scope of the entry
found is changed to the specified scope. The entry may hereby replace a
catalog entry with the same name (this ’old’ entry is removed from the
catalog).

Remark: if several entries with the same name are present, the catalog
lookup will find the entry with the ’smallest’ scope (corresponding to the
order: temp, login, user, project).

3.59.4 Scope Specification

The concept of scope of a catalog entry is explained in the ref. 10,
section 4.1.

A device name in the scope specifications means that the catalog entry
should be permanented into the auxiliary catalog on the device
mentioned and thereby occupy permanent claims on the device
mentioned, but not in the main catalog.

3. The Programs; scope

Page 172

3. The Programs, scope

System Utility, User’s Guide, Part Two

This is meaningful for the scopes user and project only and the entry
should be either a non-area entry or an area where the data area is
situated on the specified bs device.

3.59.5 Storage Requirements
2048 halfwords plus space for FP.

3.59.6 Error Messages

***scope call
Left hand side in the call. The program is terminated without further
actions.

***scope <scope spec> illegal scope
The scope specification is illegal.

***scope <scope spec> bs device unknown
The bs device specified in the scope specification is not included in the
backing storage system.

In all cases above the program terminates without changing the scope of
any catalog entry.

**#*scope param <parameter>
Parameter error in the call. The rest of the name list is skipped.

**%scope <scope spec> <name> unknown
No entry with the given name was found. *)

***scope <scope spec> <name> protected
The job was not allowed to change the scope of the entry found. *)

***scope <scope spec> <name> entry in use
Another job was using the entry and hence the scope could not be
changed. *)

**%scope <scope spec> <name> no resources
The resources of the job did not allow the change of the entry scope. *)

**%scope <scope spec> <name> change bs device impossible
The entry could not be permanented into the specified auxiliary catalog.

*)

***scope <scope spec> <name> catalog error
Catalog error, monitor error, or hardware error.

*) The program continues with the next name in the name list.

System Utility, User’s Guide, Part Two Page 173

3.60 search

Finds and lists all catalog entries with a given scope, possibly filtered by
filters given. The filters work on the entry name and on the document
name.

3.60.1 Example

By the fp command

search user

all entries of scope user are listed on current output.

By the fp command

. search own

all entries of scope temp, login, user, or project are listed on current
output, while the command

search user ret.tx

will list all entries of scope user which contain both the substring ’ret’
and the substring ’tx’ in either name or document name.

3.60.2 Call

[<outfile> =] search <scope spec> {<filter>)o-*

<scope spec> :im <scope> [.<disc name>]
<scope> D= { temp)
‘ {login)
{user }
{project }
{system }
{own)
{<low>.<upp> }
<filter> Pim <substring> (.<substring>) 0-*
<substring> ::= {<name> }

{<apostrophized name>)
{<generalized name>)

{<general text> }
<low> Pl
<upp> D integer
. 3.60.3 Function

3. The Programs; search

Page 174

3. The Programs; search

System Ultility, User’s Guide, Part Two

The main catalog is scanned, and a subset of it is listed with an output
format as for lookup. If an outfile is specified, the list of catalog entries
is printed on that file, otherwise current output is used. Messages from
search are always printed on current output. If no filters are given, all
entries from the main catalog according to the scope specification are
listed, otherwise, the set of catalog entries is further delimited by means
of filters (see filter specification below).

3.60.4 Scope Specification

The scope concept is explained in ref. [10], section 4.1. The scope own
means any scope in the set temp, login, user, or project (cf. the example
above). If a disk name is specified, only entries in the auxiliary catalog
on that disk are candidates. The scope given by <low>.<upp> means
all entries with entry interval equal to the interval <low>.<upp>, which
will have to be contained in but not equal to the std. interval of the
process.

3.60.5 Filter Specification

A filter consists of one or more substrings concatenated by period. If a
list of filters exists, an entry selected for listing will only be listed if
either its name or its document name contain all the substrings of at
least one of the filters. The order of the substrings in a filter is
irrellevant. Thus, in a possible list of filters, you may consider space as
"or" and period as "and", where the precedence of "and" and "or" is as in
algol.

System Ultility, User’s Guide, Part Two Page 175

3.61 set

Creates a new catalog entry with scope temp or changes an already
existing entry (with scope temp) according to the parameters.

3.61.1 Example

An area named ’pip’ with an area size of 20 segments on the disk ’disc3’
and dated now, is created by the FP command:

pip=set 20 disc3

(Actually the area may get a slightly larger size because the size is
always a multiple of the slice length on the device, cf. ref. 3).

A non-area entry ’file7’ which may serve as file descriptor for file 7 on
the magtape with name 'mt314711’ is created by the FP command

file7=set mt62 mt314711 0 7

An area named ’image’ on disc (intended for job process dump) is
created by the FP command

image=set 40 1 0 0 0 7.0
(The parameters 0 0 0 7.0 may be omitted as s and BOSS will
automatically set contents 7 when the dump is made).
3.61.2 Call
<newname> = set [<kind> [<docname> [<date> (<word>}0-4]]]
<kind> ii= (<integer> }

(<integerl> .<integer2>)

{<modekind abbreviation>)

<docname> ::= {<name> }

{ 0/1/2/3})
<date> i:= {<integer> }
(<integerl> .<integer2>}
{d.<isodate> }
({d.<isodate>.<clock> }
<word> i:= <integer>

<integer> .<integer>

<isodate> ::= (<yymmdd> [/ 0}

<clock> ::= <hhmm>
<yymmdd> ::=
<hhmm> ::= <integer>

<newname> ::= name

3. The Programs; set

Page 176

3. The Programs; set

System Ultility, User’s Guide, Part Two

<name> ::= name, apostrophized name,
generalized name or general text

3.61.3 Function

The parameters are interpreted as described below yielding the wanted
entry tail. Next, creation of the catalog entry <result name> with this
tail is attempted. If the result is ’entry already exists’ (cf. ref. [2] and [3])
the existing entry is changed to get the entry tail wanted.

Each element in the entry tail except <docname> is a 24 bits word.
1. <integer> : the integer is placed in the tail

2. <integerl> . <integer2> : is interpreted as two halfwords ie. as
the binary number <integer1> shift 12 + <integer2>

3. <mode kind abbreviation> : only relevant for <kind>. The table
of mode kind abbreviations is scanned and the value is used.

4. <name> : only relevant for <docname>. The name is placed in
the tail.

If the parameter list does not specify all of the tail, the rest is set to zero.

When an area entry is created, the bs device is determined by
<docname>:

If <docname> is 0,
the area is, if possible, created on the disk with the most resources at
key zero (temporary).

If <docname> is 1,
the area is, if possible, created on the disk with the most resources at
key one (special temporary).

If <docname> is 2,
the area is, if possible, created on the disk with the most resources at

key 2 (login).

If <docname> is 3,
the area is, if possible, created on the disk with the most resources at
key 3 (permanent).

If <docname> is a name, apostrophized name, generalized name or
general text,
the area is created on the bs device with this name.

3.61.4 Storage Requirements
1536 halfwords plus space for FP.

System Utility, User’s Guide, Part Two Page 177

3.61.5 Error Messages

s*sget call
No left hand side in the call.

**%set param <parameter>
Parameter error in the call.

$*%set <result name> change kind impossible
Change of an area entry to a non-area entry or vice versa was
attempted.

**%set <result name> change bs device impossible
A change of <kit/doc name> on an area entry was attempted.

***set <result name> bs device unknown
The bs device specified was not included in the backing storage system.

***set <result name> no resources
The resources of the job did not allow the wanted creation of a catalog
entry.

*#%set <result name> no room
The name overflow in the main catalog exceeded the limit.

***set <result name> entry in use
The entry could not be changed because another job was using it.

If any error message appears, no entry is created or changed.

3. The Programs; set

Page 178 System Ultility, User’s Guide, Part Two

3.62 setmt

Creates catalog entries of scope temp describing files on magnetic tape
according to the parameters.

3.62.1 Examples

The FP command

pap=setmt mt004711.3

creates the same catalog entries as the FP commands
papl=set mt62 mt004711 4.0 1

pap2=set mt62 mt004711 4.0 2

pap3=set mt62 mt004711 4.0 3

If t is a name of a file on this magtape, e.g.

t=set mt62 mt004711

the same result is obtained by

pap=setmt t.3

The FP command

f=set mtlé mt004711 O 2
f=setmt £.3.5

creates the same catalog entries as the FP commands
f3=set mtlé mt004711

d.0 5
f4=gset mtl6 mt004711 4.0 6
f5=set mtlé mt004711 4.0 7

3.62.2 Call

<resulting name> =

setmt <mtname>.{ <upper integer>)
{)
{ <lower integer>.<upper integer>)

If no <lower integer > is specified, it is set to 1.

3.62.3 Function

Entries describing files on the magnetic tape <mtname> are created
with names <resultname> followed by <lower integer> to <upper
integer >. If a temporary entry already exists, it is first moved.

3. The Programs; setmt

System Utility, User’s Guide, Part Two Page 179

The mtname is looked up in the catalog. If an entry describing a
magnetic tape file (kind=18) is found, the document name and the
modekind of this entry is used and the file will be addressed relative to
the file number. Otherwise the name specified is used.

3.62.4 Storage Requirements
512 halfwords plus space for FP.

3.62.5 Error Messages

ss*setmt call
No left hand side or left hand side of more than 9 characters.

***setmt param
Parameter error in the call, e.g. an integer greater than 99.

***setmt <resultname> no resources
The resources of the job did not allow creation of the catalog entry.

***setmt <resultname> no room
The name overflow in the main catalog exceeded the limit.

***setmt <resultname> catalog error
Error in catalog, monitor, or hardware.

3. The Programs; setmt

Page 180 System Utility, User’s Guide, Part Two

3.63 skip

Bypasses parts of current input as specified in the parameter list.

3.63.1 Example

(test2=edit textl

skip 2)

l./error/,r/er/err/

12,x/sory/sorry

f

2

In case of an error during editing the remainder edit commands will be

skipped, i.e. when skip is called the input position in current input is
forwarded to just after the second @ character.

o
3.63.2 Call

1-%

skip { <lines> }
{ <iso value>.<appearances>)
{ <small letter> }

<lines> :i= <integer>

<iso value> ::= { <integer> }
{ <small letter> }

<appearances> ::= <integer>

3.63.3 Function

The program interpretes one parameter at a time and skips current ‘
input as follows:

<lines>

This number of graphical lines are skipped.

<iso value>.<appearances>

Skips until the specified number of appearances of the iso character is

bypassed.

<small letter>

Skips up to and inclusive this letter.

3. The Programs; skip

System Ultility, User’s Guide, Part Two Page 181

3.63.4 Storage Requirements
1024 halfwords plus space for FP.

3.63.5 Error Messages

***skip call
An output file has been specified in the call. This is ignored.

***skip param <illegal parameter>
Illegal parameter syntax. The parameter is ignored.

***skip end medium

Current input is exhausted. The program is terminated. Notice: current
input is not unstacked.

3. The Programs; skip

Page 182

3. The Programs; suspend

System Ultility, User’s Guide, Part Two

3.64 suspend

Sends a suspend messsage to the parent (the operating system BOSS)
asking for suspension of the specified magnetic tape reel. This is
relevant for worktapes only. The station is now available for mounting of
another tape reel but the suspended worktape is still reserved for the job

until it terminates or releases the tape reel. Each suspend operation
uses a suspend buffer (cf. ref. 10, section 6.1).

3.64.1 Example

A worktape has been mounted by the FP commands

workfile=set mt62 0 0 1
mount workfile

The job has produced some output on ’workfile’ but now needs the
station for another purpose. The worktape is therefore suspended by the
FP command

suspend workfile

When the name "workfile’ is referred to later in the job, the worktape is
demanded. In the meantime no other job is allowed to use the tape.

3.64.2 Call

suspend <name>

3.64.3 Function

A suspend message is sent to the parent. The name in the message is
found as follows: the name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry is
not protected (e.g. not of scope system) the document name in the entry
is used. Otherwise the name specified is used.

3.64.4 Storage Requirements
1536 halfwords plus space for FP.

3.64.5 Error Messages

*#*suspend call
Left hand side in the call of the program.

***suspend <parameter list> parameter error
Parameter error in the call of the program.

System Utility, User’s Guide, Part Two Page 183
***suspend <name> tape name missing
The entry specified has a zero document name.

In case of any error no suspend message is sent.

3. The Programs; suspend

Page 184

3. The Programs, timer

System Utility, User’s Guide, Part Two

3.65 timer

Sends a timer message to the parent (the operating system BOSS)
demanding a provoked interrupt after a certain time.

3.65.1 Example

The FP call

timer 30 2

will provoke an interrupt after 30 seconds.

3.65.2 Call
timer <run time> <break time> '

where <run time> and <break time> are integers, denoting time in
seconds.

3.65.3 Function

A timer message containing the two integers is sent to the parent. If
BOSS is the parent <run time> will be the number of seconds to the
interrupt, <break time> the number of seconds allowed the job to
respond to the interrupt.

3.65.4 Storage Requirements
1536 halfwords plus space for FP.

3.65.5 Error Messages ()

***timer call
Left hand side in the call of timer.

***timer <parameter list> parameter error
Parameter error in the call of timer.

In case of any error no timer message is sent.

System Utility, User’s Guide, Part Two Page 185

3.66 translated

The program prints the date of translation which is found in all SLANG,
PASCAL or ALGOL/FORTRAN programs.

3.66.1 Example

The call

translated pppp q se

may produce the following output:

pPPPP translated by slang 89.01.16 12.33

q translated by algol 88.12.09 14.56
q translated by pascal 87.11.30

3.66.2 Call

translated { <name> }0-*

3.66.3 Function

If <name> describes a program, the file is connected and the program
searches for the date, which will be output.

3.66.4 Storage Requirements

2048 halfwords plus space for FP.

3.66.5 Error Messages

***translated call
Left hand side in the program call.

***translated param <parameter>
Parameter error in the program call.

***translated <name> not found
The parameter was not found in the catalog,

***translated <name> not program
The catalog entry <name> does not describe a program.

s**translated <name> error
The file <name> could not be connected.

*#*translated <name> date not found

3. The Programs; translated

Page 186

3. The Programs; unload

System Ultility, User’s Guide, Part Two

3.67 unload

Sends an unload operation to a magnetic tape document and returns.

3.67.1 Example

By the fp command

unload mt280007

the magnetic tape mt280007 starts unloading, and the program returns
to let you perform other jobs while the unloading takes place.

By the fp command

unload t

the same action is performed, provided t is a file descriptor, like :

t=set mt62 mt280007

If you know that the tape is mounted on device number 12, you could as
well go :

unload 12

3.67.2 Call

unload <tape spec>

{<document name>}
{<file name>)
{<device number>)

<tape spec>

<document name> ::=
<file name> : .= name

<device number> ::= integer

3.67.3 Function

A unload operation is sent to the magnetic tape document. The name of
the document is found as follows : if the parameter is an integer, and the
external process with that device number is a magnetic tape document
(kind = 18), the name of the process is used, else the name is looked up
in the catalog. If an entry describing a magnetic tape is found (kind = 18
and mode even), the document name of the entry is used, else the name
specified is used. The magnetic tape process is reserved and the
operation is sent, waited for and when the answer returns, the process is
released. If any significant status bits are raised, the program returns
with device status error, else it returns normally.

System Utility, User’s Guide, Part Two Page 187

3.67.4 Error Messages

***unload call
Left hand side in call of unload.

***unload parameter missing
No magnetic tape specification parameter.

***unload not device
The device number specified does not specify an external process.

*#*unload device not mt
The device number specified is not a magnetic tape process.

***unload modekind error
The filedescriptor found does not specify a magnetic tape.

***unload no process
The <tape spec> did not specify an existing process.

3. The Programs; unload

Page 188

Appendix A. References

System Ultility, User’s Guide, Part Two

Appendix A. References

Part numbers in references are subject to change as new editions are
issued and are listed as an identification aid only. To order, use package

number.

1) For RC8000
Monitor, Part 1, System Design
For RC9000:
RC9000-10 System Software

2)

3)

4)

5)

6)

7

Included in SW9910I-D

For RC8000
Monitor, Part 2, Reference Manual

For RC9000:
Monitor, Reference Manual
Included in SW9890I-D Monitor Manual Set

Monitor, Part 3, Definition of External Processes

Operating System s, Reference Manual
Included in SW9890I-D, Monitor Manual Set

ALGOLS, User’s Guide, Part 2
Included in SW8585I-D, Compiler Collection
Manual Set

RC FORTRAN User’s Manual
Included in SW8585I-D, Compiler Collection
Manual Set

RCSLANG Assembler Programming Guide
Included in SW8585I-D, Compiler Collection
Manual Set

991 03577

991 11255

991 03588

991 11259

991 03435

991 11260

991 11280

991 11292

991 11295

System Utility, User’s Guide, Part Two

8)

9)
10)

11)

12)

13)

System Utility, Part 1
Included in SW8010I-D, System Utility Manual
Set

BOSS Operating Guide
Included in SW8101I-D, BOSS Manual Set

BOSS User’s Guide
Included in SW81011-D, BOSS Manual Set

System 3, Utility Programs, Part 3
Included in SW8585I-D, Compiler Collection
Manual Set

Code Procedures and Run Time Organization of
ALGOL Programs

Save, Incsave; Load, Incload
Included in SW8010I-D, System Utility Manual
Set

Page 189

991 11263

991 11275

991 11274

991 11294

991 11296

991 11313

Appendix A. References

System Utility Programs, User’s Guide, Part Two
PN: 991 11 264

