¢ RC9000-10/RC8000

SW8585 Compiler Collection

ALGOLS Reference Manual

RC Computer

Keywords:
RC9000-10, RC8000, Compiler, ALGOL, ALGOLS, Reference
Manual

Abstract:
This manual is the reference manual for the ALGOL compoler for
RC9000-10 and RC8000 systems.

Date:
March 1989.

PN: 991 11278

Copyright © 1988, Regnecentralen a-s/RC Computera-“s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-
ject to change by RC at any time without prior notice. RC is not responsible for typo-
graphical or arithmetic errors which may appear in this manual and shall not be re-
sponsible for any damages caused by reliance on any of the materials presented.

ALGOLS Reference Manual

Table Of Contents
INLIOAUCLION.........ceeeieciieictcirinctcresncsasanssssssscsesossnssassossasnssnssens 1
Lo NOBALIOM.t ses st e ssssnsasasnns 2
. 2. Symbols, Identifiers, Numbers And Strings............ccccecrervecrerereruenee. 4
2.0.1 Character Set and Coding...........cccovurerureecereersrnseesseesessseisessensnesanans 4
2.0.2 SOUTCE TEXL.....ccrvrrrrerrrerrrnrnrrnssennnasassensonssssanssssesasesasassesessssssssessesens 6
2.0.3 SOUTCE flES....cvriurucirerriereicrricieisenireennissenstsssessesssssssssssssesssseesssesns 7
2.0.4 Space and New Line................. et e e 7
2.1 LELEIS....ccoveecrnnnnsrnissssssssssessnsossnssssasssssesessssasasssesesenssssssssassssssessasasssnssases 8
2.2 Digits and Logical Values..........cccccovueeuecrencnenrercneeserecscessssssssssuscsannas 9
2.2.1 DURIS..oooseevmeeeressseseesessssssssssssssssssseesssssssssssssessssssssssssssssssssssssseesen 9
2.2.2 Logical VAlUES..........cooueememirerencneercnsesencssiensssissasesssssessessssssssansans 9
2.3 DELMILETS.......creeeurenenccnrenearieeneessssnessesssssasssssssessssssesssnsssssssssesnsssassesasaes 10
2.4 TAENEIETS.....cuoveeurrcereceeererrererescasneeenssseessesessseessasssssssssssassesessssesesans 13
241 SYNLAX....vevveereessseseeseesscsssseessssssssessesssssssssssesssesssssssssssssssssmssseessees 13
2.4.2 EXAMPIES.......cuiriuireircncnnisicisnisssiessesssessassassassssesssssssessesssssssssnssanes 13
2.4.3 SEMANLICS.....ceovurrererrecnenreeerserssssessssssessssssssasssssstsssssssssssssassassesassesasnes 13
. 2.5 NUIMDETS....ccoimirircneennaeincniniessessesessesesasessessnsssessnsssassssssansasssassnses 14
2.5.1 SYDAX.....coomrirrtiririsssisissasisisisssssssssssssssssesssessssssessessssssassses 14
2.5.2 Examples...........ccuu... rerrera bbb arsa e senes 14
2.5.3 Semantics.......ccoeuevrrenrenrences reeustseretutssas e s esassassssnssranasans 14
2.5.4 TYPES...ovmiriinririnricnsesisinsenssesssasesssssssssssssenssnssessessuonsssssssssssassssssanns 14
2.5.5 Integer and Long Literals..........ocoeeeervrueemeenreseneeeesensesessscsssassessenns 15
2.5.6 Real Literals......... veusesntntas s seresesenerens 15
2.6 SEEINES....c.cecuecrcrrnereninsisssssnsssssssssssssssssossosssssasesssssssssassassessassesssssesassans 16
2.6.1 SYNEAX......ocoeritrrrcnrnsninscicis i ssssasessssesssastssaseasensasesasenseaesesassse 16
2.6.2 EXAMPIES.......covuircrincninntcnicitsssesnssseessasessnsassssssesessasesanessssassens 16
2.7 Quantities, Kinds and SCOPES.........cccovuererenrenruneserersessresssssessensesseseene 18
2.8 Values and TYPES........cociuevenesisensisssssnsersesessersesessssssssssssssssssesss cons 18
3. EXPIeSSIONS..........cocvveiniiniicriiciirnenicsnssnssessessasenessssstsnsssssssssssssassens 19

Tabe Of Contents

Table Of Contents

ALGOLS Reference Manual

1 Variables and Fields.......u e eeeieeeercresreeeeseeeeseessesseseessessessessens

...

1.3 SEIMANLICS. c.eveviereeererrerteeeseseesesssesssesessssssssssessssssesssessessesssossassnossessssanes

3.
3.
3.1.2 EXAMPIES.....corivvvinriiiiiiininsiinssnisnsssssensssse s ssssasssesenes
3.
3.

1.4 SUDSCTIPLS.....ocvuercrcmrceceeisanemsssssnsiaserssssasssssississsssmsssssssssssssssssnsesssaes
3.1.5 Initial Values of Variables..........cccocemrveernnccccnrccinercescrerneeenneenes
3.1.6 Ranges of Values.........ccrriisnscriciscncscnnennsscncssnsasissans

3.1.6.4 Reals..

3.1.7 Reals Used as Semilong Integers........ovcuveurervcevevrcnriseseniorensennes

3.2 Function D

ESIZNALOTS.....ocurrererrencnsirersrserssssesessissssinssssssssssnsenssssssossses

3.2.1 Syntax
3.2.2 Example

..

........................

3.2.3 SCIMANLICS. c.uvievirrieererirnreressesssessseesssrsseesessessssessesssasssassssaessssessnssssessnas

3.2.4 Standard Functions...........cccoeeveveererverenns
3.2.5 TranSTEr FUNCLONS.c.eoceeeeeeereeeeereeeeeseessearesssssesessossessessassssssessoseoss

...

...

3.3.4 Operators and TYPES.........cnurrncsicinisniessesisessssssssssssessesens
3.3.5 Precedence of Operators............cvuiucenmesciceivnmmsisesseessnsesssensessones
3.3.6 Real, Long, and Integer Quantities..........cccocruruvcurincrnieisnncnncnenn.

...

...

3.4.6 Precedence Of Operators.........ueeecncnininnsccncnsnssnsesesesssnessaesess
3.4.7 Arithmetic of Boolean Quantities..........c.coocveueirvurcururcurersescnsercancn.

352 Examples

...

...

3.5.3 SEMANLICS. ...cueeveevieereereresreeesieseesesressesessessesssessesessessssssessesssssssssssesnsans
3.5.4 The Subscript EXpression.......iiscssinsseennes
3.5.5 Switch Versus Case StatemeENLt.....u. . veeeceericeerereenrsesesseessesesses

3.6 String Expr

ESSIOMS. cuveurereerrorereenessesessesessessseseensessossesesssssessessesssessonsonsent

...

...

19
b @
20
20
21
22
22
23
23

25
25
25
25
26
26

27
27
28
> @
30
32
32

34
34
35
35
35
35
36
36

37
37
37

44
44
45

ALGOLS Reference Manual

4.1.3 SEMANLICS....c.ceevrmreererresrersasiniiseinisiesiiiese et ssssssssssssnssssesasssnsses 46
4.2 AsSignment StAtEMENLS.........c.ocuiurivvnerieresrsinsessssssssssssssssssssssssnsassenss 47
4.2.1 SYNEAX.....ocvvurircniriirisiasssaisisessassasesssssssssssessssasssssssssassssassassssssssnssens 47
4.2.2 EXAMPIES......ccuremeniiermmiciscnsisisncsissisisesssssssssssssssssssssssssssssassasssssssans 47
4.2.3 SEMANLICS....covrrereererrnrerraseseesnaeressessorsosssssssstssestssessssssessssessersssessossoneone 47
4.2.4 TYPES...ooueniririiriisirirensnsisssessense s sssesensasassssssssssbssssasssssssssasasassons 48
4.3 GOtO StAtEMENLS.....ccovereccneinercreinesieiesisssessssssesssssesesessasessssssesss 49
4.3.1 SYNAK....cucecrrinircrnsiinianisesssiesssssssasssssssasssssesssasssssssssssssssssssssassssssnassns 49
B L LA 49
4.3.3 SEMANLICS.....ccocerrererecaronsasssssonsnsssiseserssssnisrsesssessassssssssssasssssssssrsssssseses 49
4.3.4 RESITICLION.cvererrererecrecnerssesecsastssnssssssesesessnsessassecssassesssassossssssassesssss 49
4.3.5 Goto an Undefined Switch Designator............cccvcevnivcuvusercrennenens 49
4.4 DUmMmMY StatemMENtS.......covvirnrriienniininsinisesisssssssssesesessasssssessssssasssssses 50
4.4.1 Syntax reereetset ettt RS R s SRR bR e R SRR s 50
4.4.2 EXAMPIES........coriirircircninincncscsicisssissssess st sessssssssssessssesssseons 50
4.4.3 SEMANLICS. ..cvveeerererreeenrrernsreseseessasesssersessaecssssssesssssssssssssssassssasasssanss 50
4.5 Conditional StatemenLts...........cccoevevcrenrercmeerenreessseessccesnsescssesasssnessens 50
4.5.1 SYNEAX....coueimrieiriennreireninicremsersaesessisste st st assessssse s s e ss b ane s sasens 50
4.5.2 EXAMPIES......orcvrrinrurirnicnrcnnecniricssissssscsessisesessisssssssscassssasssssanens 50
4.5.3 SEIMANTICS. ...ceveururrererrarereeesecasaneecsesenssrereseessssssasasssmsssssenessssassssssssseses 51
4.5.4 Goto into a Conditional If Statement...........cccoceeveruveccuccecrnuececncnes 51
4.5.5 Case StatemMEeNt........cccceeemrurnsrarsrensnessrenseseeessessesssesassessasssssenes 52
4.6 Repetitive StatemMENts............cevuvevieniciniinivinsenerenesessenssessssssesesesens 53
4.6.1 SYDLAX.......ocucmemcnmcecrrinsencmenesctensensasensessssessessansnsisssssassssssssssssassssnsssss 53
4.6.2 EXAMPIES......cvovuiuruecenceinnicanisensissessiscsseressasssssssssssssssosssssssensrsssssssecs 53
4.6.3 SEMANLICS......crereueecneereneaireasessesesssrasessesessstessssssosassesssnssssacsensssesesse 53
4.6.4 The For List Elements...........ccooenrecnenccretececnercerceseececsencscsenes 54
4.6.5 The Controlled Variable upon EXit..........cccvvcvivinireninenrearenee 55
4.6.6 Goto Leading into a For Statement............coeceeinievercnnnnnnnnnnenne 55
4.6.7 Repeat Statement..........c.eucevevereenereernessisssesesesesessssssssssssssessseseseses 55
4.6.8 SYDLAX.......ccoriecerercnicririiniciereesiesestsesesasessstssensasssrsssnssrerssssssssnesss 55
4.6.9 EXAMPIES......ccouoicrcnrecrcnsecrininsesenesacssesesessassassesscsssassassssnsssssssaes 55
4.6.10 SEMANLICS.....cccceerrrrrererreenrrerssserssesessssesessasassessesesssssssssssesssnesensassesssens 55
4.6.11 While Statement..........ccooeueeecerereecrcrcerrsetrcccnesseenestsesecasssassees 56
4.6.12 SYNLAX......ocurrirrencrcncrsiisncssisssnssesessesesssssssssssssssssssssssassssassaseassssessss 56
4.6.13 EXAMPIE........cocrieriiincrcnrccsrensisitssesissasebstssssnssssasisssssssssrsssssecs 56
4.6.14 SEMANLICS.......ccoerrersrernsseressesssssorsssssssssssssssssssnsassessssssssssssssssssssosssses 56
4.7 Procedure Statements. retsesteesa e as Rt as Rt 57
B.77.1 SYDLAX.....o.cereecerierirrercesistensssesissassasissssessissssssssssastasssssssssassasesenssassesae 57
4.7.2 EXAMPIES.....reviinrnnininniunisssessronsiscnsssnsasscscsssessasssssssssesssssssssssssssssssanes 57
4.7.3 SEMANTICS....cccureeueecrcemreseeecncatsencssensoseecsrecaeasasssssmssssssensastessrsnsssses 57
4.7.4 Actual Formal Correspondance............ucsessnesiessuessssssessesencs 58
4.7.5 RESITICLIONS.cereemecncnnenraceccnsaseccassensasesccsssensssassnsnsnsassessasssnesessses 58
4.7.6 (This section has been deleted) ... 61
4.7.7 Parameter DElMILETs...........coccverireerernisesensesissusersssessssssssessasesessasens 62
4.7.8 Procedure Body Expressed in Slang Code........cvvvrrrvnnrencrcrrrecane. 62
4.7.9 Standard Procedures.............ccoercnrnirniccnensensenesensusessssesessssesssessane 62
4.7.10 Recursive Procedures..........cocumeersisisarossansssscsissssssasssasssssssosesencs 62
4.8 Context StatemENts..........ccorrvereninrnnsesererisissesicsesssssesessesssesssssasssess 63
4.8.1 SYNLAX.......cuveriiriisicriirieircenineiessss s bbbt be 63

Tabe Of Contents

Table Of Contents

ALGOLS Reference Manual

4.8.2 EXAMPIES......coeremeerecrneenrereneenrcnsssssasassasssssessastsssssssssnsmnssssssssssaes

4.8.3 SEMANLICS...ocueneereerernererrrereaneene

5. Declarations............oeeveenvevennen.

5.1 Type Declarations.........c.cceceu..
5.1.1 Syntax.......cceeerennecncrennenennens

...

..

..

..

T B8 25 1 111 o) L= S0P
5.1.3 SEIMANLICS.veeveeeereereererreerireeseesiseesesesssesesserssessesssserseserssesssesessssssseeses

--

522 EXAMPIES.....c.ccoiririrriininisicicninisnr it sassseaenes
5.2.3 SEMANLICS.......ceevereererrnensereereseaseseneaenes versnsassssessrsaseens

5.2.4 Lower Upper Bound ExXpressions..........escncnsinccscnncsanes ,

5.2.5 (This section has been deleted)...........occeemurvrvereensierennnrcrscssenen.

5.2.6 Lexicographical Ordering.....

..

5.2.7 Bound Halfwords and Halfwords Numbering............ccccocnuuruncee.
5.2.8 Word Boundaries and Adresses...........ocoevereeeerverreneresinssessessnens

..

..

5.3.4 Expressions in the SWitch List.........cc.cccovcincrenccccnncnisencscccnnens

5.3.5 Influence of Scopes................

..

..

..

..

...

5.4.4 Values of Function Designators............iinisiseninsminns:

5.4.5 Specifications.........ccccocccuuneee.

..

5.4.6 Code as Procedure Body...........cccvrevcncrcnnsinncinnennnsinesesesnennens
5.4.7 Procedures Translated AlONE.......cuereeieceiriceeseeeeesssessesene

..

5.5.2 EEXAIMIPIES....occoerosremresrsreseesrsereerssreserssresremeseresrssessreseessso

5.5.3 Semantics.

5.54 TYPES...ouuitrrircnrnsesensissasrssasesssansinssnsssssnssssssssssssssssssssssssssesssssosnss

5.5.5 Scope...

5.5.6 Standard Zones

...

..........................

5.5.7 Standard Block Pr(;::edure ...

5.6 Zone Array Declarations.........
5.6.1 Syntax

..

.........................

5.6.2 Examples...........cocu.....
5.6.3 Semantics

...

..

......................................

...

...

...

--

63
63

ALGOLS Reference Manual

5.7.5 Location and Bounds of an Array Field...........ccoocuvivniinnnncce. 83
5.8 Context Declarations.........o.veeecereisinisrinssmsnisiscisssssssssssessassssnes 84
5.8.1 SYNAX...c.cuiivicrierrricrinininsnen s enes 84
5.8.2 EXAMPIES.....ccrrirrcnirerinrennciiniscsiescssnnssesn s sssasnsse s 84
5.8.3 SEMANLICS.....ccvruiurencrerercninneseniaieassessessesesensessasissasassssasessasassassesessons 84
5.8.4 TYPES....crviimnsiniisirsisiiriniiiisisisisisssssssse st es s s sssasaes 86
Appendix A, References...............vvimvirreresnnsisnnncniesnsssesssesesssses 87
Appendix B. INdexX............einnncnininnnicccsnieniissssssssassssssssssenss 89

Tabe Of Contents

ALGOLS Reference Manual Page 1

Introduction

This book contains the formal description of the ALGOL language and
the corresponding ALGOLS compiler used on RC8000/RC9000-10.

The description of the reference language follows the structure of
Revised Report of ALGOL 60 (cf. ref. 11 and 12). The elements which
are in ALGOLY7 but not in ALGOL 60 are merged into this description.

The book gives a syntax and a semantic description for all language

elements. Furthermore short examples are given to illustrate the syntax,
further examples are found in [14] ALGOLS8 User’s Guide, Part 2.

Introduction

Page 2

1. Notation

ALGOLS Reference Manual

1. Notation

The syntax of the ALGOLS elements are described with aid of an
improved BNF (BackusNaur FORM) where repetition suffixes are used.
(cf. ref. 15)

The following example and short explanation may help to understand at

least the basic idea of the language.

{ 11 }*
<transaction> ;:= tr {<transdate>}0 (<trfield>)1l

<transdate> ::= <day>.<month>.19<year>
{<payment>)
<trfield> ::= {<invoice>}

Or more compact:
<transaction> ::=

{ }*

(<payment>)
tr {<day>.<month>.19<year>}0 (<invoice>)

{ 11

A BNF description is composed of a set of statements, each one naming
and defining a syntactial unit or string by means of a definition symbol
= to the right of which the possible components of the string are
stated. (What is in fact defined is not a single string but a whole class of
strings having the properties specified by the right side). The
components may either be other strings or data constants i.e. sequences
of socalled terminal symbols which, in fact, are nothing but
typographical representations of elements of the data spectrum. (In the
example tr,. and 19).

A string is denoted by a name enclosed in brackets < >. The name,
which may be a whole sentence, will normally be chosen to give the
reader some associations with the information represented by the string.
The order of the statements in a description is immaterial, but all
referred strings must be defined somewhere else in the description. On
the other hand, the order of the components to the right of the ::=
symbol prescribe exactly the order in which the data elements must

ALGOLS Reference Manual Page 3

‘ appear. In this way concatenation of the real data elements is implied in
the description.

Alternative data structures are described as separate lines enclosed in
{}. The same bracket is used around repetitive data structures. The
repetive factor is specified by the lower and upper bound numbers
connected to the bracket. * denotes any number.

1. Notation

Page 4 ALGOLS Reference Manual

2. Basic Symbols, Identifiers, Numbers and
Strings

The Algol 8 language is built up from the following basic symbols:

{<letter> }
<basic symbol>::= {<digit>)
{<logical value>)
{<delimiter>)

2.0.1 Character Set and Coding

The Algol 8 character set is a subset of the ISO 7bit character set
extended with the Danish letters: {,[, |, \, },]-

(See ref. 13). At run time, the program may choose any alphabet, but
the ISO 7bit code is offered as standard. It is possible in a simple way to
use paper tapes in flexowriter code as source and data, because the i/o
system may convert the code to ISO 7-bit code (see ref. 3 and 14).

The table 2.1 shows for each character of the ISO 7-bit alphabet:

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 5
V: The internal value.
G: The graphic representation or the name of the
character.
S: The character class as source to the translator.
D: The character class as data read with the standard
alphabet.

vV G S D V G § D G S D V G S D
0 NUL blind O 32 SP basic 7 64 @ graphic 7 96 ° graphic 7
1 SOH illegal 7 33 ! basic 7 65 A basic 6 97 a basic 6
2 STX illegal 7 34 " graphic 7 66 B basic 6 98 b basic 6
3 ETX illegal 7 35 £ graphic 7 67 C basic 6 99 ¢ basic 6
4 EOT illegal 7 36 $§ graphic 7 68 D basic 6 100 d Dbasic 6
5 ENQ illegal 7 37 % graphic 7 69 E basic 6 101 e ©basic 6
6 ACK illegal 7 38 & basic 7 70 Fbasic 6 102 £f ©basic 6
7 BEL illegal 7 39 ' basic 5 71 G basic 6 103 g ©basic 6
8 BS illegal 7 40 (basic 7 72 Hbasic 6 104 h basic 6
9 HT illegal 7 41) basic 7 73 I basic 6 105 i basic 6
10 NL basic 8 42 * basic 7 74 J basic 6 106 j basic 6
11 VT illegal 7 43 + basic 3 75 K basic 6 107 k basic 6
12 FF basic 8 44 , Dbasic 7 76 L basic 6 108 1 Dbasic 6
13 CR blind O 45 - basic 3 77 M basic 6 109 m Dbasic 6
14 SO illegal 7 46 ., basic 4 78 Nbasic 6 110 n Dbasic 6
15 SI illegal 7 47 / basic 7 79 O basic 6 111 o Dbasic 6
16 DLE illegal 7 48 O basic 2 80 P basic 6 112 p basic 6
17 DC1 illegal 7 49 1 basic 2 81 Q basic 6 113 q Dbasic 6
18 DC2 illegal 7 50 2 basic 2 82 R basic 6 1ll4 r Dbasic 6
19 DC3 illegal 7 51 3 basic 2 83 S basic 6 115 s Dbasic 6
20 DC4 illegal 7 52 4 basic 2 84 T basic 6 116 t Dbasic 6
21 NAK illegal 7 53 5 basic 2 85 U basic 6 117 u basic 6
22 SYN illegal 7 54 6 basic 2 86 Vbasic 6 118 v basic 6
23 ETB illegal 7 55 7 basic 2 87 Wbasic 6 119w Dbasic 6
24 CAN illegal 7 56 8 basic 2 88 X basic 6 120 x Dbasic 6
25 EM basic 8 57 9 basic 2 89 Ybasic 6 121 y Dbasic 6
26 SUB illegal 7 58 : basic 7 90 Z basic 6 122 z basic 6
27 ESC illegal 7 59 ; basic 7 91 £ basic 6 123 2 basic 6
28 FS 1illegal 7 60 < basic 7 92 O basic 6 124 e basic 6
29 GS illegal 7 61 = basic 7 93 Abasic 6 1254 basic 6
30 RS illegal 7 62 > basic 7 94 " graphic 7 126 graphic 7
31 US illegal 7 63 ? graphic 7 95 _ in text 7 127 DEL blind O

Table 2.1 Character Set and Input Class

2. Basic Symbols, Identifiers, Numbers and Strings

Page 6

D,Data classes
0,blind:

1,shift character:
2,digits:

3,signs:

4 ,decimal point:

5,exponent mark:
6,letters:

7,delimiters:
8, terminator:

S,Source text classes
Basic:

Blind:

Graphic:

Illegal:

In text:

Control characters

ALGOLS Reference Manual

The character is skipped by all read
procedures.

Not used in the standard alphabet.

May be used as digits in a number or in a
text string.

May be used as a sign of number or in a
textstring.

May be used as the decimal point of a
number, in a text string or in a field
reference.

May be used as the exponent mark of a
number or in a text string.

May be used as part of a text string. Will
terminate a number.

Will terminate a number or a text string.
Works as class 7, but terminates a call of
readall. EM (25) will immediately terminate
a call of read or readstring. .

Significant in all contexts.

Skipped in all contexts.

Allowed inside text strings and comments,
causes a warning outside.

Produces a warning during the translation,
but does not harm.

Works as a space inside text strings, blind
outside.

The control characters which are used in algol are the following:

10,NL:
12,FF:

New Line. The changetonewline character. ‘
Form Feed. Causes a change of page on the printer, but

works syntactically as New Line outside text strings.

25,EM:
32,SP:
127 ,DEL:

Space.

2.0.2 Source Text

End Medium. See 2.0.3.

Delete. Used for overpunching of wrong characters.

The program consists either of one block, of one compound statement,
or of one procedure declaration surrounded by "external" and "end".

All characters up to the first "begin" or "external” are skipped, but

appear in a possible listing.

After the last "end", the compiler reads as many characters as are
necessary to distinguish the "end" (usually a space or a new line).

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 7

2.0.3 Source files

The source text to the compiler consists of one or more files of text as
specified in the File Processor command that started the translation.
The compiler may read source files from standard input devices such as
paper tape, cards, typewriter, magnetic tape, and backing storage.

A file terminates either when an EMcharacter is read from the file or
when the file physically is exhausted. A file on a roll of paper tape is
exhausted when the tape end is met. A file on the backing storage is
exhausted when the end of the backing storage area is met. A file on
magnetic tape is exhausted when tape mark is met.

When the compiler meets the file termination before the source text is
complete, it looks for the next file specified in the File Processor
command and continues reading from that file. If the list of files is
exhausted, the compiler prints an error message, generates the
necessary number of string terminations and "end"s, and compiles the
program completed in this way.

The compiler handles the peripheral devices in accordance with the
rules of the File Processor (ref. 6 or 7).

2.0.4 Space and New Line

Space and New Line may be used freely in numbers and between
identifiers, compound symbols, and other delimiters. They are not,
however, allowed inside identifiers, compound symbols, or delimiters.

Space and New Line are significant characters in a text string and will be
printed out at run time when the string is printed.

The character " " represents a space inside strings, but is completely
blind outside. The latter property may be used to divide identifiers and
compound symbols (cf. 2.3).

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual

2.1 Letters ‘

<small letter>::= <capital letter>::=

S g gy g g g — g pu— pu— (" G D D p— A — A~ g~ p— p—
P8 BNY MR LA CrRQUTODHEHMMXLEI@HAOD LD OD
et gt g N gt gt gt gt g gt gl gt it mid it gt gt gt gt) g gt gt gl gt it wgpd magut
S g, g, g g pu— p_— p_— (A p— — p— pu— g g p— g, pu— g p——, g~
NI M OHWOZEIMNTRGHIOMMEMOO®P

{ <small letter>)
<letter> ::= { <capital letter>)

Letters do not have individual meaning. They are used for forming
identifiers and strings (cf. sections 2.10 Identifiers, 2.12 Strings). '

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 9

2.2 Digits and Logical Values

2.2.1 Digits

{0)
(1)
{2)
{3)
<digit> ::= {4}
{5)
{6)
{7}
{8)
{9)

Digits are used for forming numbers, identifiers, and strings.

2.2.2 Logical Values
2.2.2.1 Syntax
<logical value> ::= { true }

{ false }

{ "<graphic or name>")
<graphic or name> is one of the mnemonics for the ISO 7/bit
characters shown in column G in table 2.1. The mnemonics for the ISO
values 0...32 and 127 must be spelled with small letters.
2.2.2.2 Semantics
The logical values true or false have a fixed obvious meaning.

The logical value "<graphic or name>" has the value false add <ISO

value>, where <ISO value> is the corresponding value in the column V
in table 2.1.

2. Basic Symbols, Identifiers, Numbers and Strings

Page 10 ALGOLS Reference Manual

2.3 Delimiters

The underlined delimiters (compound symbols) of the reference
language are written without underlining. A Space or a New Line is
required to separate a compound symbol from a preceding identifier or
a succeeding letter or digit. Thus the delimiter space is forbidden inside
a delimiter, but the symbol " " may be used instead. The delimiter "goto"
and "boolean" may not be written as "go to" and "Boolean”.

<operator> }
<separator> }
<delimiter> ;:= <bracket>)
<declarator>)
<specificator>)

)

<compiler directive>

<arithmetic operator> }
<relational operator>)
<logical operator>)
<sequential operator> }
<pattern operator> }
<context operator> }

<operator> :@::=

<arithmetic operator> ::=

B NN * 0+

round

entier
extend

- - - - p— — -~ o~~~ p— p—

}
}
}
}
}
od }
)
}
)
)
)

relational operator> ::=

A S

<logical operator> ::=

"E-g |
(="

o3
(=]
(ad

- - - - p_— — g~

goto
if
then
else
for
do

<sequential operator> ::=

— - — o p—
Nt ettt Nt et

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 11

' case }
of }
)
)

repeat
while

— p— o~ g~

{ real)
<transfer operator> ::= { long)
{ string)

<context operator> ::= { exit }
{ continue }

add
extract
extend
shift

<pattern operator> .=

-~ -

<separator> ::=

-~ p— g~ p— pp— o~y p— p—
.
et st gt gt gt gt gt gt Nt

<bracket> ::=

<k

*>
begin
end

et it Nt el gl gt St Nt St

own
boolean
integer
long

real
array
switch
zone
procedure
context
field

<declarator> ::=

o - —p—— p— p— o~ p—
B N e e RO S R S)

—~—

string }
label)
{ value }

<specificator> ::

]
—

2. Basic Symbols, Identifiers, Numbers and Strings

Page 12 ALGOLS Reference Manual

{ algol) ’

<compiler directive> ::= (external)
{ message)

Delimiters have a fixed meaning which for the most part is obvious, or
else will be given at the appropriate place in the sequel.

For the purpose of including text among the symbols of a program the
following "comment" conventions hold:

The sequence of basic symbols: is equivalent with

;comment<any sequence not containing";">;

’
begin comment<any sequence not containing";">; begin
end <any sequence not containing "end",";",
"else" or "until" end
;ymessage <any sequence not containing®;">; 5
begin message <any sequence not containing";">; begin
<*< any sequence not containing "<*" or "*>" > *> space ‘

By equivalence is here meant that any of the structures shown in the left
hand column may, in any occurrence outside of strings, be replaced by
the symbol shown on the same line in the right hand column without any
effect on the action of the program. The comment structure
encountered first in the text when reading from left to right has
precedence in being replaced over later structures contained in the
sequence.

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS8 Reference Manual Page 13

2.4 Identifiers

2.4.1 Syntax

{ }*
<jdentifier> ::= <letter> { <letter>}

{ <digit>)

{ 10

The words for compound symbols (see 2.6.1 and 2.7) can never be used
as identifiers.

2.4.2 Examples:

q

Soup

V17a

a34kTMNs

MARILYN

goto go_to Both are interpreted as the
delimiter "goto".

go to An erroneous construction
consisting of two identifiers.

13 do a7:= The number 13, the delimiter "do",

the identifier a7, and the
delimiter :=

begin of line : = An erroneous construction
consisting of the delimiter
"begin", the identifier "of line",
the delimiter :
and the delimiter =

2.4.3 Semantics

Identifiers have no inherent meaning, but serve for the identification of
simple variables, arrays, labels, switches, procedures, field variables,
zones, and zone arrays. They may be chosen freely, except for the
limitation mentioned above.

The same identifier cannot be used to denote two different quantities
except when these quantities have disjoint scopes as defined by the
declarations of the program (cf. section 2.7 Quantities, Kinds and
Scopes and section 5. Declarations).

2. Basic Symbols, Identifiers, Numbers and Strings

Page 14

ALGOLS Reference Manual

2.5 Numbers

2.5.1 Syntax

{ <digit> }*
<digit sequence>::= { ’‘<graphic or name>')1

{ }*
<unsigned integer>::= { <digit sequence>)}
(11

({ +)1
<integer>::= { }0 <unsigned integer>

<decimal fraction>::= .<unsigned integer>
<exponent part>::= ‘<integer>

<decimal number>::=

{ {)1)
{<unsigned integer> {(<decimal fraction>}0)
{<decimal fraction>)

<unsigned number>::=

{ { 1)
{<decimal number> {<exponent part>}0)
{<exponent part>)

{ +)1
<number>: := {)0 <unsigned number>

The numbers of digits are restricted, (cf. sections 2.5.5 and 2.5.6).

<graphic or name>, cf2.2.2.1

2.5.2 Examples
0 200.084 .083'02 'sp!
177 +07.43'8 '7 'p’
.5384 9.34'+10 "4 'del’
+0.7300 2'4 +'+5 1'ne’
2.5.3 Semantics

Decimal numbers have their conventional meaning. The exponent part
is a scale factor expressed as an integral power of 10. The digit sequence
’< graphic or name>’ consists of the digits in the ISO value in column V
in table 2.1.

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 15

2.5.4 Types

Integers are either of type integer or of type long, depending on the
value. All other representable numbers are of type real.

2.5.5 Integer and Long Literals

Integers and longs may not exceed the interval

-140 737 488 355 327 <= integer <= 140 737 488 355 327.

If the literal is within the interval

-8 388 607 <= integer <= 8 388 607

it is classified as being of type integer. Outside this interval it is
classified as being of type long (cf. section 3.3.4).

2.5.6 Real Literals

The real may not have more than 14 significant digits or 14 decimals.
The exponent part may not exceed the interval 1000 < exponent < 1000.
The total number is confined to the range -1.6’616 <= number <=
1.6’616.

The number is converted to internal binary form using the same

methods as the procedures read and readall. The relative error of the
result is about 3°11.

2. Basic Symbols, Identifiers, Numbers and Strings

Page 16

ALGOLS Reference Manual

2.6 Strings

2.6.1 Syntax

<string literal>::= (<text string>)}
{<layout string>)

<text string>::=-
<:<any sequence of text symbols not containing ":>"or
">>

<layout string>::= << <layout> >
<layout>::=

{ 11¢{)1

{<spaces>}0{<sign>}0<layout number part>
{ 11
{<layout exponent part>}0

{)*
<spaces>::= {<space>)1l

)

<space>::= { _)

{ +)

<sign>::= { -)
<layout number part>::=

{<first letter>d’'s>.<d’'s><zeroes>)}

{<first letter>d’'s><zeroes>.zeroes>)

<first letter>::=

— - - ~—
oM anN
— Nt Nt St

{(1)*
{(

<d’'s>::= <space> }0 d)0
{(11 [
<zeroes>::= { { <space> }0O O }0

<layout exponent part>::= ’‘<sign><first letter><d’s>

A text symbol is a character belonging to one of the classes basic,
graphic, or in text (see 2.0.1) or it is a positive integer of at most 3 digits
enclosed in >. The latter construction has precedence over the char
tion, and represents the character with the integer as internal value. The
value must obey 0 value 128. The general string concept is described in

2 6.

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual

Page 17
2.6.2 Examples
<:a<b’c’>>d<'ne’'> will be printed by a
running program as
a<b c>d
<<_-d.ddd’'+d> is a layout string.

2. Basic Symbols, Identifiers, Numbers and Strings

Page 18

ALGOLS Reference Manual

2.7 Quantities, Kinds and Scopes

The following kinds of quantities are distinguished: simple variables,
arrays, labels, switches, procedures, field variables, zones and zone
arrays.

The scope of a quantity is the set of statements and expressions in which
the declaration of the identifier associated with that quantity is valid.
For labels see section 4.1.3.

2.8 Values and Types

A value is an ordered set of numbers (special case: a single number), an
ordered set of logical values (special case: a single logical value), or a
label.

Certain of the syntactic units are said to possess values. These values
will in general change during the execution of the program. The values
of expressions and their constituents are defined in section 3. The value
of an array identifier is the ordered set of values of the corresponding
array of subscripted variables (cf. section 3.1.4.1).

The value of a zone is a set of values called the zone descriptor, plus a
set of values in the zone buffer area, plus a set of values called the share
descriptors (see 5.5).

The value of a zone array is the set of values of the corresponding
subscripted zones.

The various types (integer, real, long, boolean) basically denote
properties of values. The types associated with syntactic units refer to
the values of these units.

A field variable possesses an integer value, but has an associated type
denoting the type of a field. A field is either a simple field or an array
field. Fields are subsets of arrays or zones. Variable fields posses a
single value. Array fields are one dimensional arrays.

2. Basic Symbols, Identifiers, Numbers and Strings

ALGOLS Reference Manual Page 19

3. Expressions

In the language the primary constituents of the programs describing
algorithmic processes are arithmetic, boolean, designational, zone, and
string expressions. Constituents of these expressions, except for certain
delimiters, are logical values, numbers, variables, function designators,
and elementary arithmetic, relational, logical, pattern, and sequential

. operators. Since the syntactic definition of both variables and function
designators contains expressions, the definition of expressions, and their
constituents, is necessarily recursive.

<arithmetic expression> }
<boolean expression>)
<expression>: := <designational expression>)
<string expression> }

)

<zone expression>

3.1 Variables and Fields

3.1.1 Syntax

<variable identifier> ::= <identifier>
<simple variable> ::= <variable identifier>
<simple field variable> ::= <identifier>
<array field variable> ::= <identifier>

<field variable> ::= <simple field variable>
<array field variable>

<subscript expression> ::= <arithmetic expression>

<subscript list> ;:=

<subscript expression> { }*
{ ,<subscript expression>)0

<array identifier> ::= <identifier>

<zone identifier> ::= <identifier>

3. Expressions

Page 20 ALGOLS Reference Manual

<zone array identifier> ::= <identifier> .

<zone expression> ::=
{<zone identifier>
{<zone array identifier> (<subscript expr.>))}

<field base> ::=

{<array identifier>)
{<zone expression>)
{<array field>)

<array field> ::= <field base>.<array field variable>

<simple field> ::= <field base>.<simple field variable>

<record variable> ::=

{<zone identifier>(<subscript expression>) }

{<zone array ident.>(<subscr. expr.>,<subscr. expr.>))
<subscripted variable> ::= .

{<array identifier>(<subscript list>))
{<array field>(<subscript expression>))

<variable> ::=

{<simple variable> }
{<simple field> }
{<subscripted variable>}
{<record variable> }
{<field variable>)

<field reference> ::=
{<array field>)
{<simple field> }

<field> ::= (<field reference>)

3.1.2 Examples .

epsilon

detA

al7

Q(7, 2)

x(sin(n*pi/2), Q(3, n, 4))
P.type

term (termno).entry

3.1.3 Semantics

A variable is a designation given to a single value. This value may be
used in expressxons for forming other values and may be changed at will
by means of assignment statements (section 4.2).

3. Expressions

ALGOLS Reference Manual Page 21

The type of a simple variable is defined in the declaration of the
variable itself (cf. section 5.1 Type declaration).

The type of a variable field is defined in the declaration of the simple
field variable (cf. section 5.7 Field declaration).

The type of a subscripted variable is defined in the declaration of the
array identifier (cf. section 5.2 Array declaration) or in the declaration
of the ultimate array field variable defining the array field (cf. section
5.7 Field declaration).

The type of a record variable is real, and the type of a field variable is
integer.

3.1.3.1 Zones and Record Variables.

Record variables designate values which are components of zone buffer
areas. The subscript expressions are evaluated like subscripts of
ordinary subscripted variables.

In case of a zone array with subscripts, the first subscript expression
selects a zone from the zone array. This subscript must obey

1 <= subscript <= number of zones declared in zone array.

The last subscript selects a variable within the zone record, which in turn
is a set of consecutive variables of the selected zone buffer area. This
subscript must obey

1 <= subscript <= number of variables currently in the
record.

When an expression is assigned to a record variable, the location (see
4.2.3) of the selected buffer element is not influenced by possible
changes of the record caused by procedure calls in the right hand
expression.

3.13.2 Fields

Fields are subsets of arrays and zone records. A field consists of a
number of halfwords located within an array or a zone. This array or
zone is the field base for the field. A field variable is a pointer indicating
a field within an array, a zone record, or an array field. The type of the
field depends only upo a type declared together with the field variable
(cf. section 5.7 Field declaration). All the halfwords of a simple field
must be located within the field base.

3.1.4 Subscripts

3.1.4.1 Subscripted variables may designate values which are
components of multidimensional arrays (cf. section 5.2 Array
declarations). Each arithmetic expression of the subscript list occupies
one subscript position of the subscripted variable, and is called a
subscript. The complete list of subscripts is enclosed in the subscript

3. Expressions

Page 22

3. Expressions

ALGOLS Reference Manual

brackets (). The array component referred to by a subscripted variable is
specified by the actual numerical value of its subscripts (cf. section 3.3
Arithmetic expressions).

3.1.42 Each subscript position acts like a variable of type integer and
the evaluation of the subscript is understood to be equivalent to an
assignment to this fictive variable (cf. section 4.2.4).

The value of the subscripted variable is defined only if the value of the
subscript expression is within the subscript bounds of the array (cf.
section 5.2 Array declarations).

3.143 An array field is an array always considered one dimentional.
The ordering of the halfwords in the field base and in the array field
follows the lexicographical ordering (cf. 5.2.6 Lexicographical ordering)
The subscript bounds are defined by means of the halfword bounds (cf.
5.2.7). The halfword bounds for the array field are obtained by
subtracting the value of the array field variable from the halfword
bounds of the field base (possibly an array field). An element must be
located within the field base.

3.1.5 Initial Values of Variables

The value of a variable, not declared own or context, is undefined from
entry into the block in which it is declared until an assignment is made
to it.

The value of a variable declared own or context is binary zero (if
arithmetic) or false (if boolean) on first entry to the block in which it is
declared. On subsequent entries it has the same value as at the
preceding exit from the block.

3.1.6 Ranges of Values. Type Length. Binary Patterns

Depending on the type, each variable is represented by an integral
number of halfwords. Each halfword is of 12 bits. The number of
halfwords representing a variable is called the type length. The type
length may some times be expressed in bits.

3.1.6.1 Booleans are represented as 12 bits quantities. The type length of
a boolean variable is 1 halfword. The binary pattern of a boolean is
extended with zeroes to the left whenever needed. The last of the 12 bits
is 0 when the boolean is false, 1 when it is true.

The logical constants "true" and "false" and the result of applying the
relational operators will always be 12 zeroes for false, 12 ones for true.
Other binary patterns may be obtained by applying the operators add
and shift, and/or using the constants expressed by "<graphic or
name>". The 5 logical operators work on all 12 bits in parallel.

ALGOLS Reference Manual Page 23

3.1.6.2 Integers are represented in 24bits, 2"s complement, binary form.
This gives the range:

-8 388 608 <= integer <= 8 388 607.

The type length of an integer variable is 2 halfwords, and the binary
pattern of an integer is the 24 bites of its representation extended with
zeroes to the left whenever needed. The binary patterns are used in
connection with the operators add, extract, and shift.

3.1.63 Longs are represented in 48 bits, 2’s complement, binary form.
The range of longs should be confined to:

-140 737 488 355 327 <= long <= 140 737 488 355 327.

The type length of a long variable is 4 halfwords, and the binary pattern
of a long is the 48 bits of its representation. The binary patterns are used
in connection with the operators add, extract, and shift.

3.1.6.4 Reals are represented as 48bits builtin floating point numbers.
This gives the following range of nonzero real values:

1.6'-617 < abs(real) < 1.6'616

The precision of real values correspond to 35 significant bits. Thus one
unit added to the last binary place will correspond to a relative change
of the number of between 6’-11 and 3’-11.

The type length of a real variable is 4 halfwords. The 3 first halfwords
are used for the number part and the last halfword for exponent part of
the real.

The binary pattern of a real consists of a 36-bits, 2’s complement,
number part followed by a 12-bits, 2’s complement, exponent part so
that the real value is:

number*2**exponent.

The number is either 0 or in the range -1 <= number < -0.5, 0.5 <=
number < 1. The exponent is in the range -2048 < = exponent <= 2047.
The exponent of 0.0 is -2048, but other exponents might be obtained by
the operator "add".

If r is a floating point zero with an exponent < >-2048, the relationr = 0
will be false because the operands are compared bit by bit. The relations
r <= 0 orr >= 0 will both be true, however.

Operations like r + b cannot be expected to give b (see ref4.).

3.1.7 Reals Used as SemiLong Integers
As there is neither builtin long multiplication nor builtin long division,

programs using many of these operations on large integers may be
speeded up some what by representing them as real variables.

3. Expressions

Page 24

3. Expressions

ALGOLS Reference Manual

This can be done with full accuracy as long as all results are kept in the
range

-2%%35 = 34 359 738 368 <= real <= 34 359 738 367 = 2%*35
-1

If the results exceeds this range, the last bits of the semilong integer are
lost.

A kind of integer division may be obtained by a real division followed by
a cutoff of decimals caused by the addition of a large constant. For
results in the range 0 < = result <= 2**34, this is done as follows:

roundconstant: = 2%%34,
result: = rl/r2 + roundconstant roundconstant,

Safety against loss of accuracy may be obtained by scaling the semilong
integers so that loss of accuracy will cause a floating point overflow. The
scale factor f is chosen so that f*2**35 = 2**2048 and f*(2**35) =
2**2048. This is fulfilled by f = 2**2013. Addition (i1 + i2) and
multiplication (i1 * i2) with check for loss of accuracy may be performed
like this:

rl: = il*f, r2: = i2*%f,
rl + r2 rl/f*r2

ALGOLS Reference Manual Page 25

3.2 Function Designators

3.2.1 Syntax
<procedure identifier> ::= <identifier>

<actual parameter> ::=

<string literal>)
<expression> }
<array identifier>)
<array field>)
<switch identifier> }
<procedure identifier>)}
<zone identifier>)
<zone array identifier>)

- -~ p— o~ -~

<letter string> ::=
{) *
{ <letter>)0

<parameter delimiter> ::=

{ ’)
{)<letter string>:()

<actual parameter list> ::=
<actual parameter>{<parameter delimiter>
*

<actual parameter>)

0

<actual parameter part> .=
1

{ (<actual parameter list>))
0

<function designator> ::=
<procedure identifier><actual parameter part>

The <parameter delimiter> known as "fat comma" defined by)<Iletter
string>:(may not contain compound symbols, to prevent code errors.
Comment strings may not be used either.

3.2.2 Example

sin (a b)

J(v + s, n)

R

S(s 5)Temperature: (T)Pressure: (P)

write(out, <:good morning:>, <<d.ddddd>, folks)

3. Expressions

Page 26

3. Expressions

ALGOLS Reference Manual

3.2.3 Semantics

Function designators define single numerical or logical values, which
result through the application of given sets of rules defined by a
procedure declaration (cf. section 5.4 Procedure Declarations) to fixed
sets of actual parameters. The rules governing specification of actual
parameters are given in section 4.7 Procedure Statements. Not every
procedure declaration defines the value of a function designator.

3.2.4 Standard Functions

The numerical standard functions of ALGOLS are listed below. They
are described in detail in User’s Manual, ref. 14.

arcsin cos random sin
arctan exp sgn sinh
arg 1n sign sqrt

3.2.5 Transfer Functions

The operators add, extend, entier, extract, long, real, round and string
take care of type transfers.

ALGOLS Reference Manual Page 27

3.3 Arithmetic Expressions

3.3.1 Syntax

<adding operator> ::= { +
-

{)

<multiplying operator> ::= {/)
()

({)

}
<pattern operator> : = { add)
{ extract)

abs
entier
round
extend
real
string
long

<monadic operator> ::=

et Nt gt Nt Nt gt

<primary> ::=
{<unsigned number> }
{<variable>)
{ 11 {<function designator> }
{<monadic operator>) {(<arithmetic expression>)}
{)0 {real <string primary> }
{long <string primary> }
<factor> ::=
{<factor>** }
{<factor><pattern operator>} <primary>
{<boolean basic> extract }

<term> ::=

{ 11
{<term><multiplying operator>} <factor>
{)0

<simple arithmetic expression> ::=

{{)1)
{{<simple arithmetic expression>) <adding operator>)
<term>

{{)0)
<if clause> ::= if <boolean expression> then

<case clause> ::= case <arithmetic expression> of
<arithmeti- expression list> ::=

*

<arithmetic expression> {,<arithmetic expression>)
0

3. Expressions

Page 28

3. Expressions

ALGOLS Reference Manual

<arithmetic expression> ::=

{<simple arithmetic expression> }

{<if clause><simple arithmetic)
expression>else<arithmetic expression>)

{<case clause> (arithmetic expression list>))

<string primary> cf. 3.6.1
<boolean basic> cf. 3.4.1

<boolean expression> cf. 3.4.1

3.3.2 Examples
Primaries:

7.394'-8

sum

w(i+2,8)

cos(y+z*3)

(a3/y+vu**8)

long(if b then <:abc:> else <<dd.d0>)
abs round ra(i)

entier cos(y+z)

Factors:

omega

round r shift (-6) add j

(a < b) extract 1

sum ** cos (y+z*3)

7394 8%%w (i+2,8) ** (a-3/y+vu**8)

Terms:
U
omega * sum**cos(y+z*3)/7.394'-8%*w(i+2,8)**(a-3/y+vu**8)

Simple arithmetic expression:

U-Yut+omega*sum**cos (y+z*3) /7.394' 8%*w(i+2,8)**(a3/y+vu**8)

Arithmetic expressions:

w * u - Q(S+Cu)**2
if ¢>0 then S+3 * Q/A else 2 * S+3 * Q
if a<0 then U+V else if a * b=17 then U/V
‘ else if k<y then V/U else 0
a * sin (omega * t)
0.57'12 * a(N * (N 1)/2, 0)
(A * arctan(y) + Z) ** (7 + Q)
if q then n-1 else n

ALGOLS8 Reference Manual Page 29

if a<0 then A/B else if b=0 then B/A else z
case 1 + £ of (1 mod j, if b then r**j else i, case i of (j))
if b then (case i of (j,r)) else case 1 of (1,5)

3.3.3 Semantics

An arithmetic expression is a rule for computing a numerical value. In
the case of simple arithmetic expressions this value is obtained by
executing the indicated arithmetic operations on the actual numerical
values of the primaries of the expression, as explained in detail in
Section 3.3.4 below. The actual numerical value of a primary is obvious
in the case of numbers. For variables it is the current value (assigned
last in the dynamic sense), and for function designators it is the value
rising from the computing rules defining the procedure (see Section
5.4.4 Values of function designators) when applied to the current values
of the procedure parameters given in the expression. Finally, for
arithmetic expressions enclosed in parentheses the value must through a
recursive analysis be expressed in terms of the values of primaries of the
other three kinds.

If

In the more general arithmetic expressions, which include if clauses, one
out of several simple arithmetic expressions is selected on the basis of
the actual values of the boolean expressions (see Section 3.4 Boolean
expressions). This selection is made as follows: The boolean expressions
of the if clauses are evaluated one by one in sequence from left to right
until one having the value true is found. The value of the arithmetic
expression is then the value of the first arithmetic expression following
this boolean. If none of the boolean expressions has the value true, then
the value of the arithmetic expression is the value of the expression
following the final else.

Case
The expressions of an expression list in a case expression are separated
by commas and numbered 1, 2, 3,...

A case expression is evaluated as follows: First, evaluate the arithmetic
expression and if necessary round it to an integer. Next, select the list
element corresponding to the result. If no such list element exists, the
run is terminated. Evaluate the selected expression and take the result
as the value of the caseexpression.

The order of evaluation of primaries within an expression is not defined.
If different orders of evaluation would produce different results, due to
the action of side effects of function designators, then the program is
undefined.

In evaluating an arithmetic expression, it is understood that all the
primaries within that expression are evaluated, except those within any
arithmetic expression that is governed by an if clause but not selected by
it. In the special case where an exit is made from a function designator
by means of a goto statement (see section 5.4.4), the evaluation of the
expression is abandoned, when the goto statement is executed.

3. Expressions

Page 30

3. Expressions

ALGOLS Reference Manual

3.3.4 Operators and Types ‘

Apart from the boolean expressions of if clauses, the constituents of
simple arithmetic expressions must be of real, long or integer types (see
Section 5.1 Type declarations). The meaning of the basic operators and
the types of the expressions to which they lead are given by the following
rules:

33.4.1 The operators +, , and * have the conventional meaning
(addition, subtraction, and multiplication). The type of the expression
will be integer if both of the operands are of integer type. The type is
real if at least one of the operands is of real type. Otherwise the type is
long.

3.3.42 The operations term / factor and term // factor both denote
division. The operations are undefined if the factor has the factor value

zero, but are otherwise to be understood as a multiplication of the term .
by the reciprocal of the factor with due regard to the rules of precedence

(see Section 3.3.5). Thus for example

a/b * 7/(p - @) * v/s

means

-1 -1 -1
(((a* (b))*7)* ((p-q)) *v)* (s).

The operator / is defined for all nine combinations of real, long, and
integer and will yield results of real type in any case.

The operator // is defined only for operands of integer or long type.
The result is integer if both operands are integer and long otherwise.

The result can be defined by the function:

long procedure div (a,b);
value a,b; .
long a,b;
if b = 0 then
begin

if spilltest then div:ea
else alarm (:integer:>)
end
else
begin long q,r;
q:=0, r:=abs a;
for r:=r - abs b while r>=0 do q:=q+1;
div:= if a<0 == b>0 then -q else q
end;

If both operands are integer, an equivalent algorithm where all long
specifications and declarations are replaced by integer specifications
and declarations, must be used as definition.

ALGOLS Reference Manual Page 31

33.42.1 The operation <term> mod factor> is defined where // is
defined, and yields values of the same types as //. For long resulting
values, the result may be defined by the function:

long procedure modulus (a,b);

value a,b;
long a,b;
modulus := a - div(a,b)*b;

3343 The operation <factor>**<primary> denotes exponentation
where the factor is the base and the primary is the exponent.

Thus for example
2wknktk means (27)°
while

m
2%%(n**m) means 2(??

)

The result of an exponentation is always real. The precision of the
exponentation is explained in ref. 14.

3.3.4.4 Type of a Conditional Expression.

The result of

<if clause><simple arithmetic expression> else
<arithmetic expression>

is of type integer if both expressions are of type integer, of type real if at
least one expression is of type real, and of type long otherwise.

The result of

<case clause>(<arithmetic expression list>)

is of type integer if all expressions in the list are of type integer, of type
real if at least one expression is of type real, and of type long otherwise.
33.4.5 Types of the monadic operators and the pattern operators

Pattern operators: can be used in arithmetic and boolean expressions.

add This dyadic pattern operator will perform a binary addition.
The type of the left hand operand will yield the type of the
result.

extract This pattern operator extracts a number of the rightmost

bits. The result is of type integer.

3. Expressions

Page 32

3. Expressions

ALGOLS Reference Manual

shift This pattern operator will perform a logical shift of the left
hand operand.

Monadic operators:

abs This operator yields the absolute value of integer, long or

real expressions.

The following monadic operators are the transfer functions:

extend This operator converts an integer expression into a type
long.

entier This operator transfers a real expression to the largest
integer not greater than the expression.

long This operator changes the type of a string or real expression
into type long.

real This operator changes the type of a string or long
expression into type real.

round This operator rounds the value of a real or long expression
to the nearest integer.

string This operator changes type of real or long expression into
type string.

Further description see Algol 8 User’s Manual ref. 14.

3.3.5 Precedence of Operators

Function calls in an expression may cause "sideeffects", but the result
will correspond to a left to right evaluation of the expression, so that
sideeffects may only influence variables to the right of the function call.

33.5.1 According to the syntax given in section 3.3.1 the following rules
of precedence hold:

first: abs entier real round long extend string
second: ** add extract shift

third: * / // mod

fourth: + -

33.5.2 The expression between a left parenthesis and the matching right
parenthesis is evaluated by itself and this value is used in subsequent
calculations. Consequently the desired order of execution of operations
within an expression can always be arranged by appropriate positioning
of parentheses.

¢

ALGOLS Reference Manual Page 33

3.3.6 Arithmetic of Real, Long, and Integer Quantities

The operations + - * / ** (for integer, long or real exponents) are
performed by the built in floating point operations whenever the result
is of type real, and by the fixed point operations whenever the result is
of type integer. Whenever the result is of type long, + and are
performed by the built in double length operations, whereas the
operation * is performed by a subroutine.

The operations // and mod are performed by the built in fixed point
division whenever the result is of type integer, and by a subroutme
whenever the result is of type long.

When necessary integer operands are floated by means of the built in
float operation or converted to a long by extension of the sign.
Conversion of operands of type long to type real is performed by a
subroutine.

The range of values of type real and mteger is given in 3.1.6. The action
when the range of reals is exceeded, is controlled at run time by means
of the two standard integer variables "overflows” and "underflows” (cf.
ref. 14). The action when the range of integers or longs is exceeded, is
determined at translation time by means of the translation parameter
"spill" (cf.ref. 14).

3. Expressions

Page 34

3. Expressions

ALGOLS Reference Manual

3.4 Boolean Expressions o

3.4.1 Syntax

relational operator> ::=

<
()
{
{
{
(
({

o \Y Y] ? A

<and> ::=
{ and)
{ &)

<or> =
{ or)

(r o) o

<not> .=
{ not)
('o}

<relation> ::=
<simple arithmetic expression><relational operator>
<simple arithmetic expression>

<boolean pattern operator> : :=
{ add }
{ shift)

<boolean basic> ;.=

{<logical value>

{<variable>

{<function designator>

{<boolean basic><boolean pattern operator><primary>
{ (<boolean expression>)

Nt Nt St gt

<boolean primary> ::=
{ <boolean basic> }
{ <relation> }

<boolean secondary> ::=

{)1
{<not>}0 <boolean primary>

<boolean factor> ;.=

{)1
{<boolean factor><and>)0 <boolean secondary>

<boolean term> : ;=
{)1
{<boolean term><or>}0 <boolean factor>

ALGOLS Reference Manual Page 35

. <implication> ::=
{)1
{<implication> =>}0 <boolean term>

<simple boolean> ::=

{ 11
{<simple boolean>==}0 <implication>

<boolean expression list> ::=
()*
<boolean expression> {,<boolean expression list>)0

<boolean expression> ::=

{<simple boolean> }
{<if clause><simple boolean> else <boolean expression>)
{<case clause>(<boolean expression list>) }
3.4.2 Examples

. if b add 1 shift 3 then (case i of (true, b or c¢)) else

case j of ((u=v) shift 1, false)

X = -2

Y>Vorz<gqg

a+b>-5and z - d> q **2

porqand x <y

g == not a and b and not ¢ or d or e => not £

if k <1 then s > w else h<= ¢

if if if a then b else ¢ then d else f then g else h < k

3.4.3 Semantics

A boolean expression is a rule for computing a logical value. The
principles of evaluation are entirely analogous to those given for
arithmetic expressions in Section 3.3.3.

3.4.4 Types

Variables and function designators entered as boolean primaries must
be declared boolean (see Section 5.1 Type declarations and Section 5.4.4
Values of function designators).

3.4.5 Operators

The relational operators <,<=,=,>=,> <> have the meaning: less
than, less than or equal to, equal to, greater than or equal to, greater
than, not equal to, respectively. A relation take on the value true
whenever the corresponding relation is satisfied for the expressions
involved, otherwise false.

The meaning of the logical operators <not>, <and>, <or>, =>
(implies), = = (equivalent), is given by the following function table:

3. Expressions

Page 36

3. Expressions

ALGOLS Reference Manual

bl false false true true
b2 false true false true
not bl true true false false
bl and b2 false false false true
bl or b2 false true true true
bl => b2 true true false true
bl == b2 true false false true

3.4.6 Precedence of Operators
The sequence of operations within an expression is generally evaluated
from left to right, with the following additional rules:

3.4.6.1 According to the syntax given in Section 3.4.1 the following rules
of precedence hold:

first: arithmetic expressions and pattern
operators according to Section 3.3.5

second: <, L, =, = D= >

third: -, not (both notations equivalent)

fourth: &, and (both notations equivalent)

fifth: !, or (both notations equivalent)

sixth: -

seventh: —

3.4.62 The use of parentheses will be interpreted in the sense given in
Section 3.3.5.2.

3.4.7 Arithmetic of Boolean Quantities

The representation of booleans and some rules for boolean arithmetic is
given in 3.1.6. Here, we add the rules for relational operators:

<, <y D= >

are in most cases executed as a subtraction (floating point or fixed
point) of the two operands. Thus, you must be prepared for overflow,
underflow, or spill. ’

-,o

are always performed as a bit by bit comparison of the two operands.
This may for instance be utilised to compare two text strings packed into
rea] variables without risk of overflow.

ALGOLS Reference Manual Page 37
. 3.5 Designational Expressions

3.5.1 Syntax
<label> ::= <identifier>
<switch identifier> ::= <identifier>

<switch designator> ::= <switch
identifier>(<subscript expression>)

<simple designational expression> ::=
{<label> }
{<switch designator> }
{ (<designational expression>)}

<designational expression list> ::=
{ }*
. <designational expression> (,<designational expression>}0

<designational expression> ::=

{<simple designational expression>

{<if clause>simple designational expression>)
else<designational expression>)

{<case clause>(<designational expression list>))

3.5.2 Examples

L17
53]
Choose(n-1)
Town(if y < O then N else N+1)
if Ab < ¢ then L17
else q (if w <=0 then 2 else n)
case p+q of (L17, P13, Choose(n-1))

. 3.5.3 Semantics

A designational expression is a rule for obtaining a label of a statement
(see Section 4 Statements). Again the principle of the evaluation is
entirely analogous to that of arithmetic expressions (see Section 3.3.3).
In the general case the boolean expressions of the if clauses will select a
simple designational expression. If this is a label the desired result is
already found. A switch designator refers to the corresponding switch
declaration (see Section 5.3 Switch declarations) and by the actual
numerical value of its subscript expression selects one of the
designational expressions listed in the switch declaration by counting
these from left to right from 1 and up. Since the designational
expression thus selected may again be a switch designator this
evaluation is obviously a recursive process.

3. Expressions

Page 38

3. Expressions

ALGOLS Reference Manual

3.5.4 The subscript expression

The evaluation of the subscript expression is analogous to that of
subscripted variables (see Section 3.1.4.2). The value of a switch
designator is defined only if the subscript expression assumes one of the
positive values 1,2,3....n, where n is number of entries in the switch list.

3.5.5 Switch versus case statement

It is recommended to use the case statements instead of "goto sw(i)".
Case statements are much faster and may give a clearer program.

ALGOLS Reference Manual Page 39
3.6 String Expressions

3.6.1 Syntax
<formal string> ::= <identifier>

<string primary> ::=

{<formal string>)
{<string literal> }
{string <arithmetic expression>)
{ (<string expression>) }

{string primary> add <primary>)
<string expression list> ;:=

{ }*
{<string expression>,)0 <string expression>

<string expression> ::=

{<string primary>)
{<if clause><string primary> else <string expression>)
{<case clause>(<string expression list>) }
3.6.2 Examples

if b then <:ok:> else <:error:>
case 1 of (<:first:>,<:second>,string ra(increase(j)))
if b then (case i of (string r,fs))

else case i of(<:ab:>,<<d.dd>)

3.6.3 Semantics

A string expression is a rule for computing a string value. The principles
of evaluation are analogous to the evaluation of an arithmetic
expression. The monadic operator "string" changes the type of a real or
long expression into type string. The value of string <real> or string
<long> has the same bit pattern as the value of the operand (see
below).

String expressions are used as actual parameters and as arguments of
the operators "real” and "long".

The value of a string expression is

a short text string (a literal text string of at most 5 characters,
for example <:abcde:>),

a long text string (a literal text string of more than 5
characters, for example <:result:>),

a layout strin 3 (for example <"dd.dd"+d>), or

a text portion (6 characters none of which are Nulls.

This cannot occur as a literal text, but may

3. Expressions

Page 40

3. Expressions

ALGOLS Reference Manual

be obtained by the operators "string" or
"add", for example <:abcde:>add 92).

3.6.4 Types

The argument of the operator "string” must be of type real or long. A
formal string must be a formal parameter specified as string.

3.6.5 Binary Pattern

The binary pattern of a string value is 48 bits with the values given
below.

3.6.5.1 Text portion and short text string. The characters of the t string
(omitting the string quotes) are represented as their internal value (see
2.0.1) and packed as 8bit bytes from left to right. The 48 bits are filled
up to the right with zeroes.

3.6.52 Long text string. The text strings are stored in portions of 48 bits
(two words). These words may contain

long text string reference:

word 1 (24 bits): segm shift 12 add rel

word 2 (24 bits): 1 followed by some undefined bits

character portion:

word 1: char N+3 shift 16 add char N+4 shift 8 add char N+5
word 2: char N shift 16 add char N+1 shift 8 add char N+2
or

short text string.

The long text string is referenced with a long text string reference
specifying on which segment (segm) and at which relator (rel) the text
starts.

The characters of the text string are stored as text portions on the
backing storage area which is occupied by the algol program.

The first text portion representing the first 6 characters is found on
segment "segm" word rel//21 and rel//2 (the 256 words of a segment
are numbered 0, 1, 2, ..). The next text portions are found in word
rel//23 and rel//22 and so on, until 48 bits representing a new long text
string are found (which specifies the continuation of the string on a new
segment) or until 48 bits representing a short text string are found
(signaling the string end).

3.6.5.3 Layout string. The first 24 bits represent the spaces of the lay out
a follows: First, a 1 followed by a 1 for each leading space of the layout.
Second, one 0.

ALGOLS8 Reference Manual Page 41

The following bits correspond to the digit positions of the number part
(z, £, d, and 0). A bit is 1 if the corresponding digit position is followed
by a space, otherwise 0. T The last 24 bits contain:

bit 0 O

bit 15 b = number of significant digits (z, b, £,
and d).

bit 69 h = number of digit positions before the
point.

bit 1013 d = number of digit positions after the
point.

bit 1415 pn = first letter of number part (z=10, £f=01,
d=00, b=11).

bit 1617 fn = sign of number part (+ =10, =01, no sign
=00). ,

bit 1819 s = number of digits in exponent.

bit 2021 pe = first letter of exponent part (z=10,
f=01, d=00).

bit 2223 fe = sign of exponent part coded as fn.

3.6.5.4 Reference of Strings. When a standard procedure references a
string parameter and obtains a text portion as the result, it will accept
these 6 characters as the first part of the string and reference the
parameter again and again to obtain the next text portions. When a
short or a long text string is obtained, the string end is met (null
character). This rule implies that the string parameter must have
sideeffects to supply new text portions when it is referenced repeatedly.
The standard procedure "increase" assists you with this tasks as
explained in the following example.

Example:
Let the real array ra(1:n) hold a sequence of text portions terminated by
a null character.

This variable text may be used as a string parameter in this way, for
instance:

i:= 1; write(out,string ra(increase(i)));

Write will reference the second parameter, which in turn calls
increase(i) and yields the value of ra(1). At the same time i becomes 2.
Write will print the text portion held in ra(2) and if it does not contain a
null character, write will reference the second parameter again, and so
on until the null character signals the end of the text.

3. Expressions

Page 42

3. Expressions

ALGOLS Reference Manual

3.7 Zone Expressions ¢

3.7.1 Syntax

<zone expression> cf. 3.1.1

3.7.2 Examples

in polyfase (p) polyfase (input(i))

3.7.3 Semantics

The value of a zone expression is a zone. Zone expressions are used as
actual parameters.

The arithmetic expression is evaluated as a subscript expression. It
selects a zone from the zone array. The subscript must obey .

1 <= subscript <= number of zones declared in the array.

ALGOLS8 Reference Manual Page 43

4. Statements

The units of operation within the language are called statements. They
will normally by executed consecutively as written. However, this
sequence of operations may be broken by go to statements, which define
their successor explicitly, shortened by conditional statements, which
may cause certain statements to be skipped, and lengthened by
repetitive statements which cause certain statements to be repeated.

In order to make it possible to define a specific dynamic succession,
statements may be provided with labels.

Since sequences of statements may be grouped together into compound
statements and blocks the definition of statement must necessarily be
recursive. Also declarations are supposed to be already defined as they
are used in syntactic definition of statements.

4. Statements

Page 44

ALGOLS Reference Manual

4.1 Compound Statements and Blocks .

4.1.1 Syntax

<basic statement> ::=
(<assignment statement>)
{<goto statement> }
{)1)
{<label>:} (<dummy statement> }
{ }J0 {<procedure statement>)}
{<context statement> *))

<unconditional statement> ::=
{ <basic statement> }
{ <compound statement>)

{ <block> } ‘

<statement> ;.=

{ <unconditional statement> }
{ <conditional statement> }
{ <repetitive statement> }

<compound tail> ::=
{ end)
<statement> { ;<compound tail>)}

<simple block head> ::=
{ begin Y {)*
{<simple block head>) {;<simple declaration>}1

<context block head> ::=

{ }
begin <context declaration>{ ;<context variable declaration>}0

<context block> ;:= .
<context block head>;<compound tail>

<block head> ::=
{ <simple block head>)
{ <context block head>)}

<unlabelled compound> ::= begin <compound tail>

<compound statement> ::=
{ }1 {<unlabelled compound>)
{ <label>:}0 (<compound statement>)

<block> ::=
{ }1 { <block head>;<compound tail>)}
{ <label>:)0 { <block> }

*) Note: a <context statement> is only allowed within a context block .

4. Statements

ALGOLS Reference Manual Page 45

<program> : .=

{<block>)
{<compound statement> }
{external <procedure declaration>;end)

This syntax may be illustrated as follows: Denoting arbitrary statements,
declarations, and labels, by the letters S, D, and L, respectively, the basic
syntactic units take the forms:

Compound statement:

L:L:...begin S;S;...5;S end
Block:
L:L:...begin D;D;...D;S;S;...5;5 end

It should be kept in mind that each of the statements S may again be a
complete compound statement or block.

4.1.2 Examples
Basic statements:

a:= p+q
goto Naples
START:CONTINUE: W:= 7.993

Compound statement:

begin x: = 0;
for y:= 1 step 1 until n do x:= x + A(y);
if x > q then goto STOP
else if x > w 2 then goto S;

Aw: St: W:= x + bob

end

Block:

Q: begin integer i,k, real w;
for 1{:= 1 step 1 until m do
for k:= 1 + 1 step 1 until m do
begin w:= A(i,k);
A(i,k) := A(k,1);

Alk,i) = w
end for 1 and k
end block Q
Context block:

R: begin context (i,r,mode);
integer ql,q2;real w;
if i = type 1 then
w:= B(i,1)

4. Statements

Page 46

4. Statements

ALGOLS Reference Manual

else

w:= B(i,2)
end block R
Program:
external procedure X(p);
integer p;
pi=p +1;

end external

4.1.3 Semantics

Every block automatically introduces a new level of nomenclature. This
is realized as follows: Any identifier occurring within the block may
through a suitable declaration (see Section 5 Declarations) be specified
to be local to the block in question. This means (a) that the entity
represented by this identifier inside the block has no existence outside it
and (b) that any entity represented by this identifier outside the block is
completely inaccessible inside the block.

Identifiers (except those representing labels) occuring within a block
and not being declared to this block will be nonlocal to it, ie. will
represent the same entity inside the block and the the level immediately
outside it. A label separated by a colon from a statement, i.e. labelling
that statement, behaves as though declared in the head of the smallest
embracing block, i.e. the smallest block whose brackets "begin" and "end"
enclose that statement.

A label is said to be implicitly declared in this block head, as distinct
from the explicit declaration of all other local identifiers. In this context
a procedure body, or the statement following a for clause, must be
considered as if it were enclosed by begin and end and treated as a
block, this block being nested within the fictive block of Section 4.7.3.1
in the case of a procedure with parameters by value.

A label that is not within any block of the program (nor within a
procedure body, or the statement following a for clause) is implicitly
declared in the head of the environmental block.

Since a statement of a block may again itself be a block, the concepts
local and nonlocal to a block must be understood recursively. Thus an
identifier which is nonlocal to a block A, may or may not be nonlocal to
the block B in which A is a statement.

ALGOLS8 Reference Manual Page 47

4.2 Assignment Statements

4.2.1 Syntax

<destination> ::=
{ <variable>)
{ <procedure identifier>)

<left part> ;:= <destination> :=
}*
<left part list> ::= { <left part>)1

<assignment statement> ::=
{<left part list><arithmetic expression>}
{<left part list><boolean expression>)

4.2.2 Examples

s:= p(0):=n:=n+ 1+ s

n:=n+ 1

A;=B/C - Vv -q*8§

S(v,k + 2):= 3 - arctan(s * zeta)
Vi=Q > Y and Z

ia ('x'):= 6 shift 12 + 'x’'

4.2.3 Semantics

Assignment statements serve for assigning the value of an expression to
one or several destinations.

Assignment to a procedure identifier may only occur within the body of
a procedure defining the value of the function designator denoted by
that identifier (see Section 5.4.4). If assignment is made to a subscripted
variable, the values of all the subscripts must lie within the appropriate
subscript bounds.

The location of a zone buffer element designated by a record variable is
not influenced by expressions to the right of the record variable, even if
these change the position of the record within the zone buffer.

The location of a wvariable is an absolute address in the
RC8000/RC9000-10. The assignment process takes place in three steps
as follows.

423.1 The location of all variables, including subscripted variables,
record variables, and simple fields, occuring in the left part are
evaluated from left to right.

4. Statements

Page 48

4. Statements

ALGOLS Reference Manual

4.23.2 The expression of the statement is evaluated.

4233 The value of the expression is assigned to all the left part
variables with locations as evaluated in step 4.2.3.1 in sequence from
right to left.

4.2.4 Types

The type associated with all destinations of a left part list must be the
same.

If this type is boolean, the expression must likewise be boolean. If the
type is real, long, or integer, the expression must be arithmetic.

If the type of the arithmetic expression differs from that associated with
the destinations, an appropriate transfer function is automatically
performed. For transfer from real to long or integer type the transfer
function yields a result which is the largest integral quantity not
exceeding E + 0.5 in the mathematical sence (i.e. without rounding
error) where E is the value of the expression. It should be noted that E,
being of real type, is defined with only finite accuracy (see Section
3.3.6).

The type associated with a procedure identifier is given by the
declarator which appears as the first symbol of the corresponding
procedure declaration (see Section 5.4.4).

Field variables may be used as variables of type integer. The conversion
of a real value to an integer or long and the conversion from a long
value to an integer are performed so that spill alarm (see User’s Manual
ref. 14) may occur.

ALGOLS Reference Manual Page 49

4.3 Goto Statements

4.3.1 Syntax

<goto statement> ::= goto <designational expression>

4.3.2 Examples

goto L8
goto exit{n + 1)
goto Town(if y < 0 then N else N + 1)
goto if Ab < ¢ then L17
else q(if w < 0 then 2 else n)
goto case p + q of (L17, p13, choose(n - 1))

4.3.3 Semantics

A goto statement interrupts the normal sequence of operations, by
defining its successor explicitly by the value of a designational
expression. Thus the next statement to be executed will be the one
having this value as its label.

4.3.4 Restriction

Since labels are inherently local, no goto statement can lead from
outside into a block. A goto statement may, however, lead from outside
into a compound statement.

4.3.5 Goto an Undefined Switch Designator

A goto statement will terminate the program with an alarm if the
designational expression is a switch designator whose value is undefined.

4. Statements

Page 50 ALGOLS Reference Manual

4.4 Dummy Statements

4.4.1 Syntax

<dummy statement> ::= <empty>

4.4.2 Examples

L: begin statements;John:end

4.4.3 Semantics

A dummy statement executes no operation. It may serve to place a label. .

4.5 Conditional Statements
4.5.1 Syntax
<case statement> ;.=

<case clause> begin <statement set> end

<if statement> ::=
<if clause><unconditional statement>

<conditional if statement> ::=

{ }* {<if statement> }
{<label>:}0 {<if clause> else <statement>)
{<if clause><rep. statement>) ‘

<conditional statement> : ;=
{<conditional if statement> }
{ (}*)
{ {<label>:)0 <case statement>)
<statement set> .=

{)
<statement> {;<statement>)0
<case clause> cf. 3.3.1
<if clause> c¢f. 3.3.1
<unconditional statement> cf. 4.1.1

<repetitive statement> cf. 4.6.0.1

4. Statements

ALGOLS8 Reference Manual Page 51

4.5.2 Examples

if x > 0 then ni= n + 1

if v > u then V: q:= n + m else goto R
if s < 0 or P <= Q then

AA: begin if q < v then a:= v/s
else y:= 2 * a
end
else 1f v > s then a:= v - q
else if v > s - 1 then goto §

4.5.3 Semantics

Conditional statements cause certain statements to be executed or
skipped depending on the running values of specified boolean
expressions or arithmetic expressions.

4.53.1 If statement. An if statement is of the form

if B then Su

where B is a boolean expression and Su is an unconditional statement.
In execution, B is evaluated; if the result is true, Su is executed; if the
result is false, Su is not executed.

If Su contains a label, and a goto statement leads to the label, then B is

not evaluated, and the computation continues with execution of the
labelled statement.

4.53.2 Conditional if Statement. Three forms of unlabelled conditional
statement exist, namely:

if B then Su
if B then Sfor
if B then Su else S

where Su is an unconditional statement, Sfor is a for statement and S is
a statement.

The meaning of the first form is given in Section 4.5.3.1. The second
form is equivalent to

if B then begin Sfor end

The third form is equivalent to

begin

if B then begin Su; goto locall end;
S;

localL: end

Where localL is an anonymous local label.

4. Statements

Page 52

4. Statements

4.5.4 Goto into a conditional if statement

The effect of a goto statement leading into a conditional statement
follows directly from the above explanation of the execution of a

conditional statement.

4.5.5 Case statement
4.5.5.1 Semantics
The case statement

case i1 of
begin S1; S2;...; SN end

where S1;.. are statements is equivalent to

switch SWIT := SWIT1, SWIT2,...SWITN
goto SWIT(i);

SWIT1: S1; goto STOP;
SWIT2: S§2; goto STOP;
SWITN: SN;

STOP:

The statements of the statement set are separated by semicolons and

numbered 1, 2, 3....

A case construction is executed as follows: First, evaluate the arithmetic
expression and if necessary round it to an integer. Next, select the set
element corresponding to the result. If no such set element exists, the
run is terminated. Execute the selected statement and continue the
execution after the complete casestatement (provided that a goto was

not executed).

4.5.5.2 Example

case i of
begin
a:= p+l;
begin
q:=p;
r:=q+l
end;
P:=q
end

ALGOLS Reference Manual

ALGOLS Reference Manual
4.6 Repetitive Statements

4.6.0.1 Syntax

<repetitive statement> ::=
{<for statement>)
{<repeat statement>)
{<while statement>)
4.6.0.2 For Statements

4.6.1 Syntax

<for list element> ::.=
{<arithmetic expression>

Page 53

)

{<arithm. express.>step<arithm. express.>
{ until<arithm. express>)
{<arithmetic expression>while<boolean expression> }

<for list> ::=
{ }*
<for list element>{,<for list element>}0

<for clause> ::= for <variable identifier> := <for list>
do

<for statement> ::=

{ 11
{<label>:)0 <for clause><statement>

4.6.2 Examples

for q:= 1 step s until n do A(q):= B(q)

for k:= 1, V1 * 2 while V1 < N do

for j:= I +G, L, 1 step 1 until N, C + D do
A(kvj) .- B(k»j)

4.6.3 Semantics

A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a sequence of
assignments to its controlled variable, which must be a simple variable of
real, long, or integer type or a field variable. The process may be

visualized by means of the following picture:

4. Statements

Page 54 ALGOLS Reference Manual

Initialize ; test ; statement S ; advance ; successor
A

A

for list exhausted

In this figure the word initialize means: perform the first assignment of
the for clause. Advance means: perform the next assignment of the for
clause. Test determines if the last assignment has been done. If so the
execution continues with the successor of the for statement. If not the
statement following the for clause is executed.

4.6.4 The For List Elements

The for list gives a rule for obtaining the values which are consecutively .
assigned to the controlled variable. This sequence of values is obtained

from the for list elements by taking these one by one in the order in
which they are written.

The sequence of values generated by each of the three species of for list
elements and the corresponding execution of the statement S are given

by the following rules:

4.6.4.1 Arithmetic Expression Element

If X is an arithmetic expression then

for V := X do S

is equivalent to

begin

V := X;S ‘l'

end

where S is treated as if it were a block (see Section 4.3.1)

4.6.42 Step-Until-Element

If A, B and C are arithmetic expressions and V the controlled variable
then

A step B until C do S
is equivalent to

Vi= A; localB:= B;

Ll: if (V-C)*(localB) > O then goto Element_exhausted; S;
localB:= B; V:= V + localB;
goto L1;

4, Statements

ALGOLS Reference Manual Page 55

Where localB is an anonymous variable and Element_exhausted is the
end of this step-until-element.
4.6.4.3 While Element

If E is an arithmetic expression, F a boolean expression and V the
controlled variable then

E while F do S
is equivalent to
L3:V:=E;
if-, F then goto Element_exhaused;
Z;to L3;

where the notation is the same as in 4.6.4.2 above.

4.6.5 The value of the controlled variable upon exit.

Upon exit from a for statement, the value of the controlled variable is
defined by the algorithms in 4.6.4.2, 4.6.4.1, and 4.6.4.3 above.

4.6.6 Goto Leading into a For Statement.

Any occurrence outside a for statement of a label which labels a
statement inside the for statement is forbidden.

4.6.7 Repeat statement

4.6.8 Syntax
<repeat statement> ::.= repeat <statement set>until
<boolean expression>
4.6.9 Examples
repeat
a:= a+l;
sum:= sumta

until a > 99

repeat AP(3,4,1i) until i=0

4. Statements

Page 56

4. Statements

ALGOLS Reference Manual

4.6.10 Semantic ‘
The statement
repeat S1; S2;...;SN until boo
is equivalent to the ALGOL construction:
for i:= i, i while - ,boodo
begin
S1; S2;...;SN;
end

Nesting of repeat statements is allowed.
4.6.11 While statement

4.6.12 Syntax
<while statement> ::= while <boolean expression> do ‘
<statement>
4.6.13 Example
while a>b do a:=b
while A(i) do
begin
a(i,j):=5;
a(J y1) :=7
end
4.6.14 Semantics
The statement
while boo do S
is equivalent to the ALGOL construction:

for 1:= 1 while boo do
S

Nesting of while statements is allowed.

ALGOLS Reference Manual

Page 57

4.7 Procedure Statements

4.7.1 Syntax

<procedure statement> ::= <procedure identifier><actual
parameter part>

<actual parameter part> cf. 3.2.1

4.7.2 Examples

Transpose (W, v+l)

Spur (A)Order:(7)Result to: (V)

is equivalent to Spur (A,7,V)

Absmax (A)beginof search:(N)endof search:(M,Yy,I)
is equivalent to Absmax (A,N,M,Yy,I)
Innerproduct(A(t,P,u),B(P),10,P,Y)

These examples correspond to examples given in section 5.4.2.

4.,7.3 Semantics

A procedure statem ent serves to invoke (call for) the execution of a
procedure body (cf. section 5.4 Procedure declarations). Where the
procedure body is a statement written in ALGOL. The effect of this
execution will be equivalent to the effect of performing the following
operations on the program at the time of execution of the procedure
statement:

The zone of a zone expression is always evaluated before the procudure
is entered.

An array field is evaluated before the procedure is entered. The
evaluation is made like this:

a)
b)

The bound halfwords are computed as shown in section 5.7.5.

The lower bound halfword is adjusted relative to the value found
above. The adjustment will assure that all halfwords in the lowest
array element are available. The adjustment is made as follows:
lower_bound halfword:=

lower_bound_halfword + (llower_bound_halfword)
extract log2(type_length)

where

log2(x) = 1n(x)/1n(2)

A description of a onedimensional array of the resulting type and
with these bound bytes is set up local to the procedure. If the

4. Statements

Page 58

4. Statements

ALGOLS Reference Manual

procedure uses this array as an actual array field parameter in
subsequent procedure calls, this cutting may be performedagain.
Thus, from a certain step, the bytes of an array may be
unaccessible from the procedures, if the values of the array field
variables are not chosen appropriately.

A parameter specified as a field variable may correspond to an actual
parameter of type integer. A field variable as an actual parameter
behaves as a variable of type integer.

A parameter specified as a field variable cannot be called by value.

4.73.1 Value Assignment (call by value). All formal parameters quoted
the value part of the procedure declaration heading (see Sections 5.4
and 4.7.4) are assigned the values (cf. section 2.8 Values and types) of
the corresponding actual parameters, these assignments being
considered as being performed explicitly before entering the procedure
body. The effect is as though an additional block embracing the
procedure body were created in which these assignments were made to
variables local to this fictive block with types as given in the
corresponding specifications (cf. section 5.4.5). As a consequence,
variables called by value may be considered as non local to the body of
the procedure, but local to the fictive block (cf. section 5.4.3).

4.732 Name Replacement (call by name). Any formal parameter not
quoted in the value list is replaced, throughout the procedure body, by
the corresponding actual parameter, after enclosing this latter in
parentheses wherever syntactically possible. Possible conflict between
identifiers inserted through this process and other identifiers already
present within the procedure body will be avoided by suitable systematic
changes of the formal or local identifiers involved.

4.733 Body Replacement and Execution. Finally the procedure body,
modified as above, is inserted in place of the procedure statement and
executed. If the procedure is called from a place outside the scope of
any nonlocal quantity of the procedure body the conflicts between the
identifiers inserted through this process of body replacement and the
identifiers whose declarations are valid at the place of the procedure
statement or function designator will be avoided through suitable
systematic changes of the latter identifiers.

4.7.4 Actual-formal Correspondance.

The correspondance between the actual parameters of the procedure
statement and the formal parameters of the procedure heading is
established as follows: The actual parameter list of the procedure
statement must have the same number of entries as the formal
parameter list of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists in the
same order.

ALGOLS Reference Manual Page 59

4.7.5 Restrictions

For a procedure statement to be defined it is usually necessary that the
operations on the procedure body defined in section 4.7.3.1 and 4.7.3.2
lead to a correct ALGOLS statement.

This poses the general restriction on any procedure statement that the
kind and type of each actual parameter be compatible with the kind and
type of the corresponding formal parameter. For reasons of effectivity
of the compiled code certain deviations from this general rule are
imposed. Some particular cases of this rule together with the deviations
are listed in the following:

4.75.1 If a string is supplied as an actual parameter in a procedure
statement or function designator, where the procedure body is an
ALGOLS statement (as opposed to nonALGOL code, cf. section 4.7.8),
then this string can only be used within the procedure body as an actual
parameter in further procedure calls. Ultimately it can only be used by a
procedure body expressed in nonALGOL code. (In very specific cases
this rule may be circumvented, if the actual string parameters are short
strings (cf. Section 3.6.3.)).

4.7.52 A formal name parameter which occurs as a left part variable in
an assignment statement within the procedure, may actually be an
expression which is not a variable (a constant for instance). In this case,
the assignment takes place to a fictive variable.

If the actual parameter is a constant, the future value will be taken from
this fictive variable, and if it is an expression, the assignment disappears
as the fictive variable is a normal used work variable (UV cf. ref. 10).

4753 An actual parameter which is an array identifier can only
correspond to a formal array parameter with the same number of
subscripts or with one subscript. In the latter case, the lexicographical
ordering of the array elements is used as explained in 5.2.6. An array
field is considered as a onedimensional array (see 4.7.3).

The number, kind and type of any parameters of a formal procedure
parameter must be compatible with those of the actual parameter. If a
formal not checked whether the actual parameter is a field variable. A
formal parameter specified as real array may actually be parameter is
specified as a field variable, it is a zone expression. In this case, the
array elements are that part of the zone buffer which is selected as the
zone record at the moment of the call.

4.7.5.4 (This section has been deleted)

4.75.5 Restrictions imposed by specifications of formal parameters
must be observed. The correspondence between actual and formal
parameters should be in accordance with the following table.

4. Statements

Page 60 ALGOLS Reference Manual

If the actual parameter is itself a formal parameter the correspondence .
(as in the table on the previous page) must be with the specification of

the immediate actual parameter rather than with the declaration of the
ultimate actual parameter.

4. Statements

ALGOLS Reference Manual Page 61
Formal parameter Mode Actual parameter
integer value arithmetic expression yielding a real,
long or integer value.
name arithmetic expression yielding an integer
value
long value arithmetic expression yielding a real,
long or integer value
name arithmetic expression yielding a long
value
real value arithmetic expression ylelding a real,
long or integer value
name arithmetic expression yielding a real
value
boolean value boolean expression
name name boolean expression
label designational expression

integer array long
array real array
boolean array
integer field

long field

real field

boolean field
integer array field
long array field
real array field

boolean array field

typeless procedure

integer procedure long
procedure real
procedure boolean
procedure

switch string zone zone
array

name name
name name

name

name

name

name

name

name

name

name

name

name name
name name

name name
name name

integer array

long array

real array or zone
boolean array

arithmetic expression yielding

value
arithmetic
value
arithmetic
value
arithmetic
value
arithmetic
value
arithmetic
value
arithmetic
value
arithmetic
value

expression
expression
expression
expression
expression
expression

expression

yielding
yielding
yielding
yielding
yielding
yielding

yielding

an

an

an

an

an

an

an

an

arithmetic procedure, or typeless

procedure, or boolean procedure

integer procedure
long procedure
real procedure
boolean procedure

switch

string expression
zone expression
zone array

integer
integer
integer
integer
integer
integer
integer

integer

4. Statements

Page 62

4. Statements

ALGOLS Reference Manual

4.7.6 (This section has been deleted)

4.7.7 Parameter Delimiters.

All parameter delimiters are understood to be equivalent. No
correspondence between the parameter delimiters used in a procedure
statement and those used in the procedure heading is expected beyond
their number being the same. Thus the information conveyed by using
the elaborate ones (known as "fat commas") is entirely optional.

4.7.8 Procedure body expressed in slang code.

The restrictions imposed on a procedure statement calling a procedure
having its body expressed in nonALGOL code can only be derived from
the characteristics of the code used and the intent of the user. Therefore
it is outside the scope of this part of the manual.

4.7.9 Standard Procedures

The standard procedures belonging to the ALGOLS8 system are
described in ref. 14.

4.7.10 Recursive Procedures

Recursive procedures are handled fully in ALGOLS, note however the
possible "cutting" of array parameters which are actually arrays fields
described in 4.7.3.

If a variable is declared "own" in a procedure body and the procedure is

called recursively, the same own variable is used in all the dynamic
incarnations of the procedure.

ALGOLS Reference Manual Page 63

4.8 Context Statements

4.8.1 Syntax

<context statement> .=
{<exit statement>)
{<continue statement>}

<exit statement> ::=
exit (<designational expression>)

<continue statement> ::= continue

4.8.2 Examples

exit (L)
exit (Q(1))

continue

4.8.3 Semantics

The context statement serves to control special jumps out of a context
block and within a context block. The statements should be found in a
context block only.

Exit

The exit statement is a goto statement, which leaves a context block in
such a manner that the same incarnation (cf. 5.8.1) can start the
execution next time with the ALGOL statement immediately following
the exit call.

The block level at which an exit statement is found shall be identical
. with the level of the context block.

The statement shall be found outside forstatements embedded in
context blocks.

The exit statement has the following effect:

The return point (also known as the continue point), ie. the logical
address for the ALGOL statement following immediately after the exit
statement, is stored in an anonymous context variable (cf. 5.8.3). This
variable is known as the context label belonging to the incarnation.

Jumping to the value of <designational expression>, is done exactly in
the same manner as via a goto statement (cf. 3.3).

Several exit statements are permittet in the same context block, and
each incarnation has its specific context label.

4. Statements

Page 64

4. Statements

ALGOLS Reference Manual

The value of a context label is either a continue point or 0 (zero). A
continue point can be defined solely by exit. The zero value can be
obtained in the following manner:

First time this incarnation is executed.
When read bit has not been set.
When "new block bit" or "new incarnation bit" is set. (cf. 5.8.3).

Continue

The continue statement is a goto statement that jumps to a context
label. The block label at which it is found may be different from the
context block level (i.e. inner block). The statement has the following
effect:

If the context label belonging to the incarnation is zero, the statement is
blind. This means that the block goes on with the next ALGOL
statement.

If the context label belonging to the incarnation has the value of a
continue point, the block jumps to the point concerned.

ALGOLS Reference Manual Page 65

5. Declarations

Declarations serve to define certain properties of the quantities used in
the program, and to associate them with identifiers. A declaration of an
identifier is valid for one block. Outside this block the particular
identifier may be used for other purposes (see Section 4.1.3).

Dynamically this implies the following: at the time of an entry into a
block (through the begin since the labels inside are local and therefore
inaccessible from outside) all identifiers declared for the block assume
the significance implied by the nature of the declarations given. If these
identifiers had already been defined by other declarations outside they
are for the time being given a new significance. Identifiers which are not
declared for the block, on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by a go to
statement) all identifiers which are declared for the block lose their local
significance.

A declaration of a simple variable may be marked with the additional
declarator own. This has the following effect: upon a reentry into the
block, the values of own quantities will be unchanged from their values
at the last exit, while the values of declared variables which are not
marked as own are undefined. Variables declared in a context block will
behave as if they were marked with the declarator own.

No identifier may be declared either explicitly or implicitly (see Section
4.1.3) more than once in any one block head.

All programs may be thought of as surrounded by one common block
(the standard identifier block). The declarations of this block are given
in the backing storage catalog of the RC 8000. New procedure
declarations are inserted in this block when external procedures are
translated (see 5.4.7). Procedures expressed in machine language,
simple variables, and zones may be inserted in the standard identifier
block as described in ref. 10.

Apart from labels, formal parameters of procecure declarations, and

identifiers declared in the environmental block, each identifier
appearing in a program must be explicitly declared within the program.

5. Declarations

Page 66

5. Declarations

Syntax

<declaration> ::=
{<simple declaration>)
(<context declaration>)

<simple declaration> ::=

{<context variable declaration>)
{<zone declaration>)
{<zone array declaration>)

<context variable declaration> ::=
{<type declaration>)
{<array declaration>)
{<switch declaration> }
{<procedure declaration>)
{<field declaration> }

ALGOLS Reference Manual

ALGOLS Reference Manual Page 67

5.1 Type Declarations

5.1.1 Syntax

<type list> ::=
{ }*
<simple variable> {,<simple variable>)0

<type> ::=
{real)
{long)
{integer)
{boolean}

<type declaration> ::=

{ 11
{own)0 <type><type list>

5.1.2 Examples

integer p,q,s

own boolean Acryl,n

long 1g

5.1.3 Semantics

Type declarations serve to declare certain identifiers to represent simple

variables of a given type. The range and representation of variables are
given in 3.1.

5. Declarations

Page 68 ALGOLS Reference Manual

5.2 Array Declarations

5.2.1 Syntax

<lower bound> ::= <arithmetic expression>
<upper bound> ::= <arithmetic expression>
<bound pair> ::= <lower bound>:<upper bound>

<bound pair list> ::=
{ }*
<bound pair> (,<bound pair>)0

<array segment> .=
<array identifier> ((<bound pair list>))

{,<array segment>) .

<array list> ::=
{)*
<array segment> (,<array segment>)0

<array declarer> ::=

{)1
{<type>)0 array

<array declaration> ::=

{ 11
{<type>)0 array <array list>

5.2.2 Examples

array a, b, ¢(7:n, 2:m), s(-2:10, -5:-1, 7:10, 13:i)

real array q(-7:if ¢ < O then 2 else 1)

long array zjjj(l:case i of (7, i, 3)) .
integer array ('nul’:’del’

5.2.3 Semantics

An array declaration declares one or severel identifiers to represent
multidimensional arrays of subscripted variables and gives the
dimensions of the arrays, the bounds of the subscripts, and the types of
the variables.

5.23.1 Subscript Bounds. The subscript bounds for any array are given
in the first subscript brackets following the identifier of this array in the
form of a bound pair list. Each item of this list gives the lower and upper
bounds of a subscript in the form of two arithmetic expressions
separated by the delimiter :. The bound pair list gives the bounds of all
subscripts taken in order from left to right.

5. Declarations

ALGOLS Reference Manual Page 69

5232 Dimensions. The dimensions are given as the number of entries
in the bound pair lists.

5233 Types. All arrays declared in one declaration are of the same
quoted type. If no type declarator is given the real type is understood.
5.2.4 Lower Upper Bound Expressions.

At least one element must be declared.

52.4.1 The expressions will be evaluated in the same way as subscript
expressions (see Section 3.1.4.2).

52.42 The expressions cannot include any identifier that is declared
either explicitly or implicitly (see Section 4.1.3), in the same block head
as the array in question. Own variables, having an initial value may
however be used.

52.43 An array is defined only when the values of all upper subscript
bounds are not smaller than those of the corresponding lower bounds.
The array should be declared so that:

The product of the lower subscript bounds and the
type_length is >-2%%22,

The product of the upper subscript bounds and the
type_length is <2#%22,

The product of the number of subscribt elements and the
type_length is <2%%22,

5.2.4.4 The expressions will be evaluated once at each entrance into the
block.

5.2.5 (This section has been deleted)

5.2.6 Lexicographical Ordering

The elements of an array are stored in a sequence, and a
multidimensional array declared

Am(lowl:upl,low2:up2,...lown:upn)

may in certain connections (specified in 5.2.6.1 and 52.6.2) be
considered as a onedimensional array

Ao(low:up).

Whenever the mapping of Am and Ao makes sense, the element

5. Declarations

Page 70 ALGOLS Reference Manual
Am(il,i2,...,in) .
may be found as
Ao(...((il%c2+i2)*c3+i3)*...+in)
where
c2 = up2 - low2 + 1, ¢3 = up3 - low3 + 1, and so on.

This mapping of elements is called the lexiographical ordering because it
is a linear ordering of the elements obtained by varying the first
subscripts at the lowest rate.

The values of low and up may be seen to be:

low = ...((lowl*c2 + low2)*c3 + low3)* ... + lown
up = ...((upl *c2 + up2)*c3 + up3)* ... + upn

It may also be seen that the (possibly fictive) element

Am(0,0,...,0) is the same as Ao(0).

5.2.6.1 Multidimensional array as actual parameter.

A multidimentional array may occur as an actual parameter where the
corresponding formal is a one dimensional array. The mapping above is

used in that case.

52.6.2 Multidimensional array as field base.

Whenever a multidimentional array is used in a field reference as the
(ultimate) field base, the halfword numbering and addressing described

in 5.2.7 and 5.2.8 is found by mapping the multidimensional field base

on a onedimensional field base according to the rules above. .

5.2.7 Bound Halfwords and Halfword Numbering.

Each element of an array is represented by a number of halfwords. This
number is the type length explained in section 3.1.6. '

The first halfword in an array is called the lower bound halfword and the
last one the upper bound halfword. Let an array be declared

A(low:up)
then

lower_bound_halfword = (low l)*type_ length + 1
upper_bound_halfword = up*type_length.

5. Declarations

ALGOLS Reference Manual Page 71

The halfwords of an array are numbered relative to the rightmost
halfword in the (possibly fictive) element A(O). The element A(i)
contains the halfwords

(1 1)*type_length + 1 = halfword number <= i* type

length.

5.2.8 Word Boundaries and Addresses.

When an array is declared, it is created so that the word boundaries are
between an even numbered halfword and its odd numbered successor.

An array element, A(i), is addressed within the array be the halfword
with the number i*type_length.

5. Declarations

Page 72

5. Declarations

ALGOLS Reference Manual

5.3 Switch Declaration

5.3.1 Syntax

<switch list> ::=
{)*
<designational expression>{,<designational expression>}0

<switch declaration> ::= switch<switch identifier>:=
<switch list>

5.3.2 Examples

switch S:= S1,52,Q(m), if v > 5 then S3 else S4
switch Q:= pl,w

5.3.3 Semantics

A switch declaration defines the set of values of the corresponding
switch designators. These values are given one by one as the values of
the designational expressions entered in the switch list. With each of
these designational expressions there is associated a positive integer, 1,
2,..., obtained by counting the items in the list from left to right. The
value of the switch designator corresponding to a given value of the
subscript expression (see Section 3.5 Designational expressions) is the
value of the designational expression in the switch list having this given
value as its associated integer.

5.3.4 Evaluation of Expressions in the Switch List.

An expression in the switch list will be evaluated every time the item of .

the list in which the expression occurs is referred to, using the current
values of all variables involved.

5.3.5 Influence of Scopes

If a switch designator occurs outside the scope of a quantity entering
into a designational expression in the switch list, and an evaluation of
this switch designator selects this designational expression, then the
conflicts between the identifiers for the quantities in this expression and
the identifiers whose declarations are valid at the place of the switch
designator will be avoided through suitable systematic changes of the
latter identifiers.

ALGOLS Reference Manual Page 73

5.4 Procedure Declaration

5.4.1 Syntax
<formal parameter> ::= <identifier>

<formal parameter list> ::=

{)*
<formal parameter> (<parameter delimiter><formal
parameter>)0

<formal parameter part> :@:=
{)1
{(<formal parameter list>))0

<identifier list> ::=
{ 11
<jdentifier>{,<identifier>)0

<value part> ::=

{)1
{<value <identifier 1list>;)0

<specifier> ::=
string

<type>

array

<type> array
label

switch
procedure
<type> procedure
<type> field
array field
<type> array field
zone

zone array

- o g e o o - -
— et it ot it Nt it et it st St st et

<specification part> ::=
{)1
{<specifier>identifier 1list>;)0

<procedure heading> ::=

<procedure identifier><formal parameter part>; value
part><specification part>

<procedure body> ::= <statement>

<procedure declaration> ::=-

{ 11
{<type>)0 procedure<procedure heading><procedure body>

5. Declarations

Page 74

ALGOLS Reference Manual

5.4.2 Examples

procedure Spur(a,n,s);
value n; real array a; integer n; real s;
<*sum all elements in the diagonal up to element a(n,n)*>
begin integer k;
:=0;
for k:= 1 step 1 until ndo s := 8 + a(k,k)
end
procedure Transpose(a,n);
value n; array a; integer n;
begin real w; integer i,k;
for i:= 1 step 1 until n do
for k:= 1 + i step 1 until n do
begin w:= a(i, k);
a(i, k):= a(k,i);

a(k,i):= w
end 'II’

end transpose

integer procedure stepfct(u);
value u; real u;
stepfct:= if O<=u and u<=1 then 1 else 0

procedure Absmax(a,n,m,y,i);
value n,m;real array a;integer n,m,i;real y;
<* The absolute greatest element in the vector a, and with a
subscript interval n<= index <=m is transferred to y, and the
subscript of this element to i *>
begin integer p;

y:=0; i:=n;

for p:= n step 1 until m do

if abs a(p) > y then

begin y:= abs a(p);

i:=p

end
end Absmax "I'

procedure Innerproduct(a,b) Order:(k,p) Result:(y);
<* here the fat comma)<letter string>:(is used as parameter
delimiter, the above is equivalent to procedure Innerproduct
(a,b,k,p,y);*> integer k,p; real y,a,b;
begin real s;
8:=0;
for p:= 1 step 1 until k do s:= s + a * b;
y:=s
end Innerproduct

5. Declarations

5.4.3 Semantics

A procedure declaration serves to define the procedure associated with
a procedure identifier. The principal constituent of a procedure
declaration is a statement or a piece of code, the procedure body, which
through the use of procedure statements and/or function designators .

ALGOLS Reference Manual Page 75

may be activated from other parts of the block in the head of which the
pr block in the head of which the procedure declaration appears.
Associated with the body is a heading, which specifies certainidentifiers
occurring within the body to represent formal parameters. Formal
parameters in the procedure body will whenever the procedure is
activated (cf. section 3.2 Function designators and section 4.7 Procedure
statements) be assigned the values of or replaced by actual parameters.
Identifiers in the procedure body which are not formal will be either
local or nonlocal to the body depending on whether they are declared
within the body or not. Those of them which are nonlocal to the body
may well be local to the block in the head of which the procedure
declaration appears.

The procedure body always acts like a block, whether it has the form of
one or not. Consequently the scope of any label labeling a statement
within the body or the body itself can never extend beyond the
procedure body. In addition, if the identifier of a formal parameter is
declared anew within the procedure body (including the case of its use
as a label as in section 4.1.3), it it is thereby given a local significance
and actual parameters which correspond to it are inaccessible
throughout the scope of this inner local quantity. If the procedure body
is a block, an identifier of a formal parameter must not be declared
anew in this outermost block.

No identifier may appear more than once in any formal parameter list,
nor may a formal parameter list contain the procedure identifier of the
same procedure heading.

5.4.4 Values of Function Designators.

For a procedure declaration to define the value of a function designator
there should, within the procedure body, occur one or more uses of the
procedure identifier as a destination, at least one of these should be
executed. The type associated with the procedure identifier must be
declared through the appearance of a type declarator as the very first
symbol of the procedure declaration. The last value so assigned is used
to continue the evaluation of the expression in which the function
designator occurs. Any occurrence of the procedure identifier within the
body of the procedure other than as a destination in an assignment
statement denotes activation of the procedure.

If a goto statement within the procedure, or within any other procedure
activated by it, leads to an exit from the procedure, other than through
its end, then the execution, of all statements that have been star that
have been started but not yet completed and which do not contain the
label to which the go to statement leads, is abandoned. The values of all
variables that still have significance remain as they were immediately
before execution of the go to statement.

If a function designator is used as a procedure statement, the resulting

value is discarded, but such a statement may be used, if desired, for the
purpose of invoking sideeffects (cf.3.3.5).

5. Declarations

Page 76

ALGOLS Reference Manual

5.4.5 Specifications

The heading includes a specification part, giving information about the
kinds and types of all the formal parameters In this part no formal
parameter may occur more than once.

Restrictions on the actual/formal correspondence are listed in section
4.7.5.5. Note that arrays cannot be value specified.

5.4.6 Code as Procedure Body

Procedures may be expressed in machine language and introduced into
the standard identifier block (see the introduction to chapter 5) as it is
explained in ref. 10.

5.4.7 Procedures Translated Alone

Procedures expressed in Algol may be translated alone, provided that
they have at most seven parameters. A procedure translated alone will
be introduced into the standard identifier block mentioned in the
introduction to chapter 5. In order to translate the procedure alone, the
procedure declaration must be surrounded by the delimiters external
and end, and a semicolon (;) must delimit the procedure declaration
from the end.

A procedure translated in this way becomes a standard procedure
included in the standard identifier block. The name of the procedure is
the name of the backing storage area into which the procedure is
translated.

All identifiers used as standard identifiers by the procedure must be
present at the time of compilation. The name of an external procedure
must not contain capital letters as these are forbidden in names of
backing storage areas.

5.4.7.1 Example

external real procedure greatest (x,y,i);
value x,y;real x,y;integer §;
begin

real work;

{:=0;

work:= if x > y then x else y;

if work = y then i:= 1;

greatest:= work;

5. Declarations

ALGOLS Reference Manual Page 77

5.5 Zone Declarations

5.5.1 Syntax
<length> ::= <arithmetic expression>
<shares> ::= <arithmetic expression>
<block proc> ::= <procedure identifier>
<zone segment> =
<zone identifier> {(<length>,<shares>,<block proc>))
{ ,<zone segment>)
<zone list> ::=
{ }*

<zone segment> {,<zone segment>}0

<zone declaration> ::= zone <zone list>

5.52 Examples

zone master(2*bl,2,stderror)
zone m1,m2(a,b,c),m3¢(900,3,pr)

5.5.3 Semantics

A zone declaration declares one or several identifiers to represent
zones. The arithmetic expressions in the declaration are evaluated once
for each entrance into the block. Each zone consists of:

a buffer area
a zone descriptor
one or more share descriptors (often just called shares)

Inside the block, a zone identifier may occur as an actual parameter, as
a constituent of a record variable, or as a field base (cf. 3.1).

Buffer area
The length in reals of the buffer area for any zone is given by <length>
in the first parenthesis following the zone identifier

Each element of the buffer area may be used as a real variable as
explained for zone record below. The elements are in some connections
identified by a halfword number in the range

1 <= halfword number <= 4*length.

5. Declarations

Page 78

5. Declarations

ALGOLS Reference Manual

Zone descriptor .

A zone descriptor consists of the following set of quantities, which
specify a process or a document (see ref. 1) connected to the zone and
the state of this process:

process name
A text string specifying the name of a process or a document connected
to the zone.

mode and kind
An integer specifying mode and kind for a document +see ref. 14,
open).

logical position
A set of integers specifying the current position of a document.

give up mask
An integer specifying the conditions under which block proc is to be
called. .

state
An integer specifying the latest operation on the zone.

record
Two integers specifying the part of the buffer area nominated as the
zone record.

used share
An integer specifying the share descriptor within the zone, which is used
for the moment.

last halfword
An integer specifying the end of a physical block on a document.

block procedure

The procedure block proc in the first parenthesis following the zone
identifier. The give up mask and status of the connected document
specifies when this procedure is called. .

Share descriptor

Each zone contains the number of share descriptors given by shares in
the first parenthesis following the zone identifiers. The share descriptors
are numbered 1, 2,...,shares.

A share descriptor consists of a set of quantities which describe an
external activity sharing a part of the buffer area with the running
program.

An activity may be a parallel process transferring data between a
document and the buffer area, or it may be a child process executed in
the buffer area under supervisiory control of the algol program. £<e ref.
14.

The set of quantities forming one share descriptor is: ‘

ALGOLS Reference Manual Page 79

share state
An integer describing the kind of activity going on in the shared area.

shared area
Two integers specifying the part of the buffer area shared with another
process by means of the share descriptor.

operation
Specifies the latest operation performed by means of the share
descriptor.

Zone record

A number of consecutive halfwords of the buffer area may at run time
be nominated as the zone record. The halfwords of the zone record may
be available as record variables, which may be thought of as a kind of
real subscripted variables. The record variables are numbered 1, 2..,

‘ record length (the max addressable word in the buffer), and referenced
as described in 3.1.

All halfwords of the record may be referenced by means of field
references, as the zone may be used as a field base.

Zone after declaration

The following parts of the zone is defined just after declaration.

used share is set to first share record is set to the entire buffer area
block proc

The entire buffer area can be accessed as one zone record.

5.5.4 Types

. The two expressions <length> and shares> must be of type integer.
The procedure <block proc> must be declared like this:

procedure block proc> (z,s,b); zone z; integer s,b;

5.5.5 Scope

All identifiers occuring in <length> and <shares> must be nonlocal to
the block. However, <block proc> may also be local.

At the time of exit from the block (through end, or by a go to
statement), the activities described by the share descriptors are
terminated as follows: A communication with a parallel process is
completed by means of the monitor function wait answer (see ref. 1). A
running child process is stopped (but not removed, see ref.1).

5. Declarations

Page 80

5. Declarations

ALGOLS Reference Manual

5.5.6 Standard Zones .

Two zones, "in" and "out", are available without declarations. The
declaration is similar to zone in,out (128,1,stderror). (See ref. 14).

5.5.7 Standard Block Procedure

A procedure "stderror” exists which can be used as standard block
procedure without declaration (cf. ref.14).

ALGOLS8 Reference Manual Page 81

5.6 Zone Array Declarations

5.6.1 Syntax

<zones> ::= <arithmetic expression>

<length> ::= <arithmetic expression>

<shares> ::= <arithmetic expression>

<block proc> ::= <procedure identifier>

<zone array list> ::=

{<zone array list>,<zone array list>)
{<zone array identifier>(<zones>,length>,<shares>,<block proc>))
<zone array declaration> ::= zone array <zone array

list>

5.6.2 Examples

zone array inmerge(3,2*600,2,stderror),
outmerge(3,2%600,2,stderror)

5.6.3 Semantics

A zone array declaration declares one or more identifiers to represent
onedimensional arrays of zones. The arithmetic expressions in the
declaration are evaluated once for each entrance into the block. Each
zone array consists of as many zones as specified by zones . All these
<zones> are declared with <length>, <shares>, and <block proc> as
specified (cf. section 5.5). The zones of a zone array are numbered 1,

2, ..., <zones>. Inside a block, a zone array identifier may occur as
an actual parameter, as a constituent of a subscripted zone occurring as
a parameter (cf. 3.7), or as a constituent of a record variable (cf. 3.1).

5.6.4 Types

<zones> must be of type integer. See section 5.5.4 for
<length>, <shares>, and <block proc>.

5.6.5 Scope

All identifiers occurring in zones must be nonlocal to the block. See
section 5.5.5 for <length>, <shares>, <block proc>, and the exit from
the block.

5. Declarations

Page 82

5. Declarations

ALGOLS Reference Manual

5.7 Field Declarations

5.7.1 Syntax

<field list> ::=
{ } *
<field variable> {,<field variable>} O

<simple field declaration> ::= <type> field <field list>

<array field declaration> ::=

(11
{<type>}0 array field <field list>

<field declaration> ::=
{<simple field declaration>) .
{(<array field declaration>)

§.7.2 Examples

integer field ifl, if2

long field 1f1

boolean array field bfal, bfa2

array field rfal, rfa2, rfa3l
5.7.3 Semantics

A field declaration serves to declare one or several identifiers as field
variables.

Field variables are integers and may be used whereever an integer
variable may be used. ‘

A variable field declaration declares simple field variables and an array
field declaration declares array field variables.

The type declared together with the field variables, the associated type,
has no meaning outside field references.

All field variables declared in one declaration have the same associated
type. If no type declarator is given in an array field declaration the type
real is understood.

5.7.4 Location of a Variable Field

A variable field is located within a field base which may be an array, a
zone record, or an array field.

The denotation of a variable field is shown in section 3.1.

ALGOLS Reference Manual Page 83

The variable field consists of as many halfwords as the type length of the
associated type shows.

A variable field cannot occupy halfwords outside the bound halfwords
(cf. section 5.2.7 and section 3.1.4.3).

The integer value of the field variable specifies a halfword number.This
halfword number is used as an address in the corresponding field base.

Boolean fields are addressed by their halfword number. Integer, long,
and real fields are synchronized with the word boundaries (cf. section
5.2.8) of the RC8000/RC9000-10. Integer fields are addressed by one of
the 2 bytes forming the integer word. Long and real fields are addressed
by one of the 2 halfwords in the right hand word. The address must be

>= lower bound halfword + type length - 1

and it must be <= upper bound halfword, of the corresponding field
base.

5.7.5 Location and Bounds of an Array Field

An array field is located within the field base. For an array field variable
the halfword number should be lower bound halfword 1, where lower
bound halfword is the lower bound of the wanted array addressed within
the field base. The halfword number referring to a certain piece of data
in the array field is found by subtracting the value of the array field
variable from the corresponding halfword number in the field base.

If the field base is an array field, this rule may be used recursively.

The bound halfword numbers are given by the formula:

bound halfword of array field =

bound halfword of field base - value of array field
variable.

A subscripted element in an array field is addressed according to the
rule in section 5.2.8. The address of a subscripted element must be > =

lower bound halfword + type length - 1 and it must be <= upper bound
halfword.

5. Declarations

Page 84

5. Declarations

ALGOLS Reference Manual

5.8 Context Declarations
5.8.1 Syntax

<context declaration> ::=
context(<incarnation>,<no of incarnations>,<context
mode>)

<incarnation> ::= <arithmetic expression>
<no of incarnations> ::= <arithmetic expression>

<context mode> ::= <arithmetic expression>

5.8.2 Examples

context (i, M+N, 3)
context (if p then 1 else 4, Q, 1 shift 1)

5.8.3 Semantics

A context declaration serves to indicate that the actual block is a context
block (cf. 4.1.1). The variables declared in the block are denoted context
variables.

A context declaration defines a number of incarnations of the declared
block; these incarnations are numbered: 1, 2, 3 .., <no of
incarnations>; the declarator parameter <incarnation> represents
such an incarnation number. To each execution of a context block is
related an incarnation number. If two different executions of a context
block have the same incarnation number, they define the same
incarnation of the context block. The number of different incarnations is

thus equal to the value of the declarator parameter: <no of .

incarnations>.

The effect of a context declaration is now that the context variables
declared in the context block are initialized to values depending on the
incarnation before the first statement in the block is executed. When the
block is left (via the last end in the block or by means of a goto
statement) the values of its context variables are stored, and these
variables will be initialized to the stored values in the following
execution of the same incarnation of the block.

The parameter <context mode> affects this initialization and storing of
context variables. See 5.8.3.4. In more detail, the context declarator
functions as follows:

ALGOLS8 Reference Manual Page 85

. 5.8.3.1 Incarnation Interval.

When a context block is executed first time, the actual value of <no of
incarnations> defines the number of different incarnations of the block.
This value will then remain unchanged for the rest of the program run,
although the value may be changed by the program during the run. The
value can be changed using the context mode "new block bit" (cf. 5.8.3.4).
This value defines the incarnation interval: 1 < = incarnation <= no of
incarnations.

5.8.3.2 Initialization of Context Variables.

When a context block is entered, and before the first statement is
executed, the following is done: .

The value of <incarnation> is evaluated, and it is verified that it is
within the incarnation interval. This incarnation is used throughout the
execution of the context block, although the value of <incarnation>

‘ may be changed in the block. This concept is similar to value parameters
in procedures. To an incarnation is related just one record, the fields of
which are identical with the declared context variables. To each context
block are thus connected <no of incarnations> records. Such records
are known as context records. The context variables of the block are
initialized if the incarnation concerned has been executed before, the
contents of the corresponding context record will be transferred to the
context variables of the block. If it is a firsttime execution of the
incarnation concerned, all the context variables of the block are set to 0.
This zeroset of all variables is performed when "new incarnation bit" is
specified, too (cf. 5.8.3.4).

The actual array lengths defines at the same time the maximum array
lengths applicable to this incarnation. This means that an array length,
in all subsequent runs of this incarnation, shall be less than or equal to
the maximum length.Transfer of values between context records and
context variables is done in accordance with the common lexicographic
procedure.

5.8.3.3 Storage of Context Variables.

When a context block is left (via the last end in the block, an exit
statement, or a goto statement) the context variables of the block are
stored in the context record belonging to the incarnation, as follows:

If it was the first time the incarnation was executed the corresponding
context record is established in the virtual memory connected with the
program. The values of the context variables of the block are transferred
to the context record belonging to the block and its incarnation.

If several context blocks are nested into one another, and if jumpouts

occur from several block levels, the process described above will develop
for each of the context blocks thus being left.

5. Declarations

Page 86

5. Declarations

ALGOLS Reference Manual

5.8.3.4 Context Mode.

The actual value of <context mode> affects the process described in
5.8.3.3. The value is regarded as a bit pattern:

1 shift 0 (read bit):

The updating of the context record described in 5.8.3.3 is not executed
unless read bit is set; if read bit is not set, solely the zerosetting of
context variables is performed.

1 shift 1 (write bit):

The updating of the context record in virtual memory described in
5.8.3.3 is not executed unless write bit is set. Write bit = 0 is therefore
usable for references to and searching in context records.

1 shift 2 (save bit):
Every time a context block is left the context variables of the actual
incarnation are saved on backing storage and in virtual memory.

1 shift 3 (new block bit):
Same function as if this context block was executed first time. If context
records has been established, such records are ignored.

1 shift 4 (new incarnation bit):
Same function as if this incarnation was executed first time.
5.8.4 Types

<incarnation>, <no of incarnations> and <context mode> must all be
of type integer.

ALGOLS Reference Manual Page 87

Appendix A. References

Part numbers in references are subject to change as new editions are
issued and are listed as an identification aid only. To order, use package
number.

1 PN: 991 11255
RC9000-10 System Software
delivered as part of SW9890I-D, Monitor Manual Set

2 PN: 991 11259
Monitor, Reference Manual
delivered as part of SW9890I-D, Monitor Manual Set

3 PN: 991 03435
Monitor, Part 3, Definition of External Processes
(for model -10, equivalent information is found in the LAN
Device Processes and Channel Device Processes manuals, parts of
SW9890I-D.

4 PN: 991 04162
RC8000, Computer Family, Reference Manual

6 PN: 991 11263 (Part 1), 991 11264 (Part 2)
System Utility Programs, User’s Guide
delivered as part of SW8010I-D, System Utility Manual Set.

PN: 991 11294 (Part 3)
System Utility Programs, Part Three
delivered as part of SW8585-D, Compiler Collection Manual Set.

7 PN: 991 11274
BOSS User’s Guide
delivered as part of SW8101I-D, BOSS Manual Set.

8 PN: 991 11260
Operating System s, Reference Manual
delivered as part of SW9890I-D, Monitor Manual Set

9 PN: 991 11292

RC Fortran, User’s Manual
delivered as part of SW8585-D, Compiler Collection Manual Set.

Appendix A. References

Page 88

Appendix A. References

10

11

12

13

14

ALGOLS Reference Manual

PN: 991 11296 ‘
Code procedures and the run time organisation of ALGOL

programs
available on request

R.M. De Morgan et al.. Modified Report on the Algorithmic
Language Algol 60. The computer Journal, Vol 19, no. 4, pp
364-379.

J.W. Backus et al: Revised Report on the Algorithmic Language
Algol 60 (ed. Peter Naur), Comm. ACM 6 no.1 (1963), pp 1-17.

ISO: R646 - 1967 (E) 6 and 7 bit coded character set for
information processing interchange.

PN: 991 11280
ALGOLS, User’s Guide, Part 2 part of SW8585-D, Compiler
Collection Manual Set.

ALGOLS Reference Manual

Page 89

Appendix B. Index

All references are given through section numbers.
The references are given in three groups:

Definition:

Use:

Text:

/ 1/

*%
<= = D= >

= => gand & or

0

Following the word "definition", reference to the
syntactic definition (if any) is given.

Following the word "use”, references to the
occurrences in metalinguistic formulae are given.
References already quoted in the defgroup are not
repeated.

Following the word "text", the references to
definitions given in text are given.

see: plus

see: minus

see: multiply

see: divide

see: exponentiation

see: <relational operator>
! not -, see: <logical operator>

see: comma

see: decimal point

see: exponent

see: colon

see: semicolon

see: colon equal

see: parentheses or
subscript bracket

Appendix B. Index

Page 90 ALGOLS Reference Manual

<: > see: string quote

Appendix B. Index

ALGOLS Reference Manual

<actual parameter>
definition.............,

<actual parameter list>
definition............. .. cou.

<actual parameter part>
definition................. ...,

<adding operator>
definition.....................
algol

<and>
definition............. ...
arithmetic

<arithmetic expression>
definition.....................

<arithmetic operator>
definition.....................

<array declaration>
definition.....................

<array declarer>
definition................. ...,

<array identifier>
definition.....................

<array field>
definition.....................

<array field declaration>
definition.....................

<array field variable>
definition.....................

Page 91

3.3.1

3.2.5, 3.3.4.5, 3.3.5.1

Appendix B. Index

Page 92 ALGOLS Reference Manual

<array list> .
definition..................... 5.2.1
<array segment>
definition................ 5.2.1
<assignment statement>
definition..................... 4.2.1
USB. ittt i eeennneeeaeaneoanasans 4.1.1
Eod =5 3 1, 4.2.3
<basic statement>
definition..................... 4.1.1
USE. . .utnenenontosonsnsasnnonss 4.5.1
<basic symbol>
definition..................... 2
begin
L Y= - Y 2.3, 4.1.1
<block>
definition............. .. .t 4.1.1
UGB i ittt tnneennnnneennennnns 4.5.1
EEXE. .\ttt 1, 4.1.3, 5 o
<block head>
definition..................... 4.1.1
<block proc>
definition..................... 5.5.1
US. . ittt it tienennnneenesensnns 5.6.1
boolean
USC. . ittt tenesnnansaeeaeaenns 2.3, 5.1.1
o= - oS 5.1.3
<boolean expression>
definition..................... 3.4.1
US. it i vt i ieneennenennneenenss 3, 3.3.1, 4.2.1, 4.5.1,
4.6.1, 4.6.8, 4.6.12
Lo =& 3.4.3
<boolean factor>
definition..................... 3.4.1
<boolean primary>
definition..................... 3.4.1
<boolean secondary>
definition..................... 3.4.1 ‘
<boolean term>
definition............. . 3.4.1
<bound pair>
definition..................... 5.2.1
<bound pair list>
definition.................. ... 5.2.1
<bracket>
definition..................... 2.3
buffer area
o5 = 5.5.3

<capital letter>

definition................ 2.2
<case clause>
definition................ 3.3.1
USB. vt iveneeneetncnnnnennanns 3.4.1, 3.5.1,
3.6.1, 4.5.1
o= oS 3.3.3

Appendix B. Index

ALGOLS8 Reference Manual Page 93

<case statement>

definition.................. ... 4.5.1
% - = 4.5.5
<closed string>
definition..................... 2.6.1
<code>
USE. .t v iveuesernonoansnneanenns 5.4.1
o - oS 4.7.8, 5.4.6
colon:
LS. i vvvsvenvoneonaenanancnaans 2.3, 3.2.1, 4.1.1,
4.5.1, 4.6.1, 4.7.1,
5.2.1
colon equal :=
USE. . tvieenenoneneneeanananonns 2.3, 4.2.1, 4.6.1, 5.3.1
comma,
USB. i vttt tnteerononesecenensnss 2.3, 3.1.1, 3.2.1,
4.6.1, 4.7.1, 5.1.1,
5.2.1, 5.3.1, 5.4.1
comment
USE. . ovvenernerensensancannnans 2.3
comment convention
L= 3 oS 2.3
<compound statement>
definition..................... 4.1.1
USB..ovvivernereoneonenanennnns 4.5.1
teXt. .. ittt ittt e e 1
<compound tail>
definition..................... 4.1.1
compund symbols
definition..................... 2.3
<conditional if statement>
definition..................... 4.5.1
- 3 oS 4.5.3
<conditional statement>
definition..................... 4.5.1
USB. i v iiennennroeneonenennenns 4.1.1
Lo - =S 4.5.3, 4.5.5
context
USB ..o itveruneenneonnenneennes 2.3
Lo = - oS 5.8.1
<context block>
definition.................. ... 4.1.1
o =5 - of 5.8.3
<context block head>
definition..................... 4.1.1
<context declaration>
definition..................... 5.8.1
USE. .. iviveeneeseconannacnnaans 5
o0 - - oS 5.8.3
context label..................... 4.8.3
<context mode>
definition..................... 5.8.1
o5 - oS 5.8.3.4
<context operator>
definition..................... 2.3

<context statement>

Appendix B. Index

Page 94

Appendix B. Index

<context variable declaration>

definition....................

continue point................

<continue statement>

definition....................

<decimal fraction>

definition....................

<decimal number>

definition....................

<declaration>

definition....................

<declarator>

definition....................

<delimiter>

definition....................

<designational expression>

definition............... ...,

<destination>

definition....................

<digit>

definition....................

<digit sequence>

definition....................

<d"s>

definition....................

<dummy statement>

definition....................

W W= =

W =

w =

2.5.1

ALGOLS Reference Manual

ALGOLS Reference Manual

<empty>

definition.................. ...

<exit statement>

definition....................

<exponent part>

definition.....................

<expression>

definition.....................

<factor>

definition.....................

false

<field>

definition............. ... v

<field base>

definition.....................
<field declaration>
definition.....................

<field list>

definition.....................

<field reference>

definition.....................

<field variable>

definition.....................

<first letter>

definition.............

N o=

N W

Page 95

w
v &~

-
s~

w
~
=
=

1
.5, 3.3.4.5, 3.3.5.1

1
.5, 3.3.4.5, 3.3.5.1

w

, 3.3.4.5, 3.3.5.1

.3, 5.4.1, 5.7.1

7.1
.7.3

7.1

Appendix B. Index

Page 96

Appendix B. Index

for

<for clause>

definition...............

<for list>

definition...............

<for list element>

definition.............

<formal parameter>

definition.....................

<formal parameter list>

definition.....................

<formal parameter part>

definition.....................

<for statement>

definition.............

<function designator>

definition.............,

<goto statement>

definition..............

<graphic or name>

definition.....................

<identifier>

definition.............cit

<identifier list>

definition.....................

if

<if clause>

definition............. ...

<if statement>

definition.....................

<implication>

definition.....................

ALGOLS Reference Manual

4.1

4.3

4.1

4.1

.6.1

1.1, 4.5.1
.6

2.1

3.1, 3.4.1
.2.3, 5.4.4
3, 4.3.1
3.1

1.1

.3.3

.2.2.2
.2.2.1
.5.1, 2.5.3, 3.1.6.1,
4.1

.1.1, 3.2.1, 3.5.1,
4.1

4.3

4.1

.3, 3.3.1, 4.5.1

3.1,

.4.1, 3.5.1, 4.5.1
.3.3, 4.5.3.2

5.1

.5.3.1

4.1

ALGOLS Reference Manual Page 97

<incarnation>

definition.............., 5.8.1

Lo 5.8.3
integer

USB. . vt iiieneneennoeeneencnnsnns 2.3, 5.1.1

o -3 - oS 5.1.3
<integer>

definition..................... 2.5.1

L = = 2.5.4
label

USE. ottt eteeeneensenacennnnas 2.3, 5.4.1
<label>

definition..................... 3.5.1

USE. it veeeroenoaoenosoenasonnas 4.1.1, 4.5.1, 4.6.1

L = =S 1, 4.1.3, 4.7.6
<layout>

definition..................... 2.6.1
<layout external part>

definition..................... 2.6.1
<layout number part>

definition............., 2.6.1
<layout string>

definition..................... 2.6.1

Lo0= .8 =P 3.6.5.3
<left part>

definition..................... 4.2.1
<left part list>

definition..................... 4.2.1
<length>

definition.................. ... 5.5.1

USC. ot ittt teenereansenenenenas 5.5.1
<letter>

definition..................... 2.1

US. . vt it tennnnnennneenenenns 2, 2.4.1, 3.2.1
<letter string>

definition..................... 3.2.1
local

Lo = o 4.1.3
<local or own>

definition..................... 5.1.1

USB. it ivreennonenenoeneonennens 5.4.1
location

Lo & = 4.2.3
<logical operator>

definition..................... 2.3

USC. it entnenneeennoencnannnnns 3.4.1

o5 3 3.4.5
<logical value>

definition..................... 2.2.2

USB. it it tinrasnnereonnnnenenns 2, 3.4.1
long

USB . v vt it enetnnenennonenonnenns 2.3, 5.1.1
long

US .ttt vt setneenennensonenenns 3.3.1

Lo =5 o 3.2.5, 3.3.4.5, 3.3.5.1

<lower bound>

Appendix B. Index

Page 98

Appendix B. Index

<multiplying operator>
definition.............,

nonlocal

<no of incarnations>
definition.....................

<number>
definition.....................

<open string>
definition.....................

<operator>
definition............. ..ot
<or>
definition..............
own

<parameter delimiter>
definition..............

<primary>
definition..............,
procedure

<procedure body>
definition..............

<procedure declaration>
definitirn.................. ...

<procedure heading>

ALGOLS Reference Manual

5.2.1 .

2.3, 2.5.1, 3.3.1
3.3.4.1

3.3.1

2.5.1

3.3.4.1

<procedure identifier>

definition..............,

<procedure statement>

definition...........,

<program>

<proper string>

definition.........

quantity

<record variable>

definition.................. ...

<relation>

definition.....................

<relational operator>

definition.....................

repeat

<repeat statement>

definition.....................

round

<separator>

definition.....................

<sequential operator>

definition............

<shares>

definition.....................

share descriptor..................

shift

NP

N
W

3.
2.

4.
4.

3.
.2.

wow
W

Page 99

IS
w -

W =

.6.1

.3, 5.1.1
.1.3

1
5, 3.3.4.5, 3.3.5.1

.1.3.1, 5.5.3

1.1

1
5

.3, 3.4.1
.6.8

.6.8

1
5, 3.3.4.5, 3.3.5.1

.7
.3, 4.1.1, 5.4.1

.3

.3.1, 3.4.1

Appendix B. Index

Page 100 ALGOLS Reference Manual

e R 3.2.5, 3.3.4.5, 3.3.5.1 @
<sign>
definition.............., 2.6.1
<simple arithmetic expression>
definition.................. ... 3.3.1
USE. i ettt innnnneeennnnnennnes 3.4.1
teXt. i i e, 3.3.3
<simple block head>
definition..................... 4.1.1
<simple boolean>
definition..................... 3.4.1
<simple declaration>
definition..................... 5
USE. ..ttt uennsonsnnasnnnnonas 4.1.1
<simple designational expression
definition............... 3.5.1
<simple field>
definition..................... 3.1.1
USE . . iiiieernerenoennonnnennnns 5.5.3
LoD 3 2.8, 5.5.3
<simple field declaration>
definition..................... 5.7.1
<simple variable>
definition............... 3.1.1
USE. ... ' tvenieneonnnsnsennnnanns 5.1.1
teXt. .ttt s 2.4.3
<simple variable field>
definition..................... 3.1.1
<small letter>
definition.............. 2.1
<spaces>
definition............... 2.6.1
<specification part>
definition............. 5.4.1
teXt. ittt e 5.4.5
<specificator>
definition..................... 2.3
<specifier>
definition..................... 5.4.1
standard block procedure.......... 5.5.7
standard functions and procedures
CeXE. .ttt ittt ittt 3.2.4
standard procedures
Lo 3 o 4.7.9
<statement>
definition.............., 4.1.1
UG v ittt v tetennoennonesnnananes 4.5.1, 4.6.1, 4.6.12,
5.4.1
123 3 o 4
statement bracket see: begin
Stderror........iiiiiiiiiiinaaann 5.5.7
step
LS. it tieeeinennecanonenennenen 2.3, 4.6.1
Lo =3 . 4.6.4.2
<statement set>
definition..................... 4.5.1

Appendix B. Index

ALGOLS Reference Manual Page 101

WS . v ie it tnenonneneenenannns 4.6.8, 4.9.1
string

USE. .t v it tneneenoneenenesonanas 2.3, 5.4.1
string

USB. i vt iveineennnronnnneennnens 3.3.1

Lo -5 -3 O 3.2.5, 3.3.4.5, 3.3.5.1
<string>

definition..................... 2.6.1

USE. . voeeveeencensennensaaannns 3.2.1, 4.7.1

L od = o4 2.6.3
<string quotes >

USB. . iviieeeoronnonnsnssenasas 2.3, 2.6.1

o0 =5 o 2.6.3
subscript

-5 1§ 3.1.4.1
subscript bound

o5 oS 5.2.3.1
subscript brackets ()

USB. i vveevenrneonenoetonnonannns 2.3, 3.1.1, 3.5.1, 5.2.1
<subscripted variable>

definition..................... 3.1.1

o -5 S 3.1.4.1
<subscript expression>

definition..................... 3.1.1

USC. it veinnennnonneeroneonennnns 3.5.1
<subscript list>

definition..................... 3.1.1
successor

teXt. ... ittt i it i e 4
switch

US. i ittt tennnenennnsennnsnnnnn 2.3, 5.3.1, 5.4.1
<switch declaration>

definition............ ... vt 5.3.1

USE .. oot entneneenenneenennnnnns 5

Lo =5 & o 5.3.3
<switch designator>

definition..................... 3.5.1

o -3 - 3.5.3
<switch identifier>

definition..................... 3.5.1

US B . ittt vt eeennreoenenenennnas 3.2.1, 4.7.1, 5.3.1
<switch list>

definition..................... 5.3.1
<term>

definition..................... 3.3.1
then

USB . i vttt eerenentnenenaennnns 2.3, 3.3.1, 4.5.1
true

USB. .t o vnenornosecnsoonnennenos 2.2.2
<type>

definition..................... 5.1.1

USC. . 'toeionnoenesnnoensoannanas 5.4.1

o0 =5 1 oS 2.8
<type declaration>

definition..................... 5.1.1

USE .ttt tivneennorneneeoeaennans 5

Appendix B. Index

Page 102

Appendix B. Index

<type list>

definition...................

<unconditional statement>

definition.....................

<unlabelled basic statement>

definition.............

<unlabelled block>

definition.....................

<unlabelled compound>

definition...................

<unsigned integer>

definition...................

<unsigned number>

definition...................

<upper bound>

definition...................

<value part>

definition...................

<variable>

definition...................

<variable identifier>

definition................ ...

<while statement>

definition...................

<zeroes>

definition...................

zone

<zones>

definition...................

zZone array

<zone array declaration>

ALGOLS Reference Manual

.6.

4.1, 4.2.1

.1, 5.5.1

1

ALGOLS Reference Manual Page 103

definition..................... 5.6.1
USB. it vt tvvvnennncncannasnsnss 5
<zone array identifier>
definition.............., 3.1.1
USB. .o vieveeneenncesnesnsosnnss 3.2.1
<zone array list>
definition......... ... vt 5.6.1
<zone declaration>
definition..................... 5.5.1
USC. . v vnvesncnssnsnsonsansanas 5
o - o 5.5.3
zone descriptor................... 5.5.3
<zone expression>
definition................ ... 3.1.1
USB. . vvevennenenassasososnnnnns 3
<zone identifier>
definition..................... 3.1.1
USB . i i tieenveansosonessnsonons 3.2.1
<zone list>
definition..................... 5.5.1
zZone record.ottt rononn 5.5.3
<zone segment>
definition..................... 5.5.1

Appendix B. Index

Compiler Collection, ALGOLS, Reference Manual
PN: 991 11278

