RC9000-10/RC8000

SW8585 Compiler Collection

ALGOLS User’s Guide, Part 1

RC Computer

Keywords:

RC9000-10, RC8000, Compiler, ALGOL, ALGOLS, User’s Guide

Abstract:
This manual is describes the syntax etc. of the ALGOL compiler for
RC9000-10 and RC8000 systems.

Date:
March 1989.

PN: 991 11279 '

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-
ject to change by RC at any time without prior notice. RC is not responsible for typo-
graphical or arithmetic errors which may appear in this manual and shall not be re- '
sponsible for any damages caused by reliance on any of the materials presented.

ALGOLS, User’s Guide, Part One

Table Of Contents

FOTEWOTd............ccoieiiiniiiiiiiiiiiisnssesssssesssssssenesssssssenssssensnsasssssansass 1
1, INEPOAUCHION. ...t sseaenes 3
1.1 How to use this manual............coreeecenenrenrccneeneneereseesscensenenesanes 3
2. INput/OQUtPUL SYSLEMI..........ccreevuererrrrcererrersasassssnsssessassssssssssssssssssssnsasenss 5
2.1 High Level Zone Procedures.............cuniiniinninionssnessasescascsens 5
2.1.1 Zone Control Procedures...........couvcneunevcniurercssesessssasessssecssssssssenne 5
2.1.2 Character Input/Output Procedures...........oocveecvisensisscnsuseesusnnns 6
2.1.2.1 Standard Zones In and Out...........ccicnirnincniincnsnsnsnensosssesens 9
2.1.3 Record Input/Output Procedures............cocvcuveueeesiarersssnesccrsenenee 10
2.2 Z0N€ EIBMENLS......uoeeieccnienreircninieicncreeesresteseeessassssntensesesessaessasens 15
2.2.1 BUfer AT€a.....uiirciiintiiiiiseisisessisessssssessssasosssssssasessssasaeoces 16
2.2.2 Z0N€ DESCIIPLOL....uuucmrenecnincirrtisresesesessssssesensssesesessssensasssssssnssnsresase 16
2.2.2.1 ZONE TECOTM....ccuurirrerrenricnerecrerresesecnseseesssetsasesrsasssossssssssassssssassans 17
2.2.3 Share Descriptors Or ShAres.........c.ccocveuveesercssnsiseneususancrsasssensessnensenes 17
2.2.4 Zone after Declaration..............cccoeeveeerenrsernrescsnnseeessnsassssssssssssessnes 18
2.2.5 Z0one after OPEN........ccecuieciirrcrinccnserisssenissieresssessessssssssessssssssssssnns 19
2.3 Error Handling/ChecKing............ccceceevueueernrssmsnessnsessssssssssssssssessssssnes 20
2.3.1 Block Procedure and Give Up MasK........cocvevuecrencurencencsenenecssnecnee 20
2.3.1.1 EXAMPIES.....cucuiriricncririicncnincienisenscssnnsssssnesastsasessssssssnssensassssens 22
2.3.1.2 Other Call of the Block Procedure...........cccoeoeteruecrenrercnsuscrecnnees 24
2.3.1.3 Another use of the give up mask.......ccecvreecorrcrcrnrencrnececrnsnecnns 25
2.3.2 DOCUMENLS......cviririiiririsnisisiiisisiasisssssssisisssssssssssssssssssssssssssasesens 26
2.3.3 Standard Error Actions and Modekind.........ccccocecevruverrurcncnrurerennnae. 29
2.3.3.1 Details of Handling of Device Status............ccceesreercneserersresennens 34
2.4 Multi Buffering and ChecKing............ccoceevvenreecmenruccsrecsessnesseesesensannens 38
2.4.1 Multishare Input/OUtPUL............ccecoeerrerrusensnsesssassssssssasssssssssrsassessnnns 38
2.4.2 Choice of Number of Shares...........cccoeeerrorerenseccrennscensersssessssssennns 39
2.4.3 Message Buffers Occupied...........couuecermreeennnecncnnsccrsensecesseecsesensssssanns 40
2.4.4 Algorithms for Multishare Input/Output...........ccccoeceemrererecrsrernn. 40
BUFHENAS.......eeenrcrncecns sttt an s 44
3.1 File, Record and Field..........o.oooiiereertereresreteneneeereesnesssesenennnsesenne 44
3.2 Field EIEMENLS.........coverremreererenecnneesestnessrenseesasessasesssssssssssssssessssssesas 47
3.2.1 Field Base........ocuemreviniriennenicnaissnsisinssssesenssssssesssssessssesessasasesens 47

Table Of Contents

eSS

ALGOLS, User’s Guide, Part One

3.2.2 Field Variable...........cecueurrerrmnreecerencsmensisescacmsearessuscssssessesenssnnes 47 .
3.2.3 Simple Field Variable..............ccirnninnenciciesecnicnes 47
3.2.3.1 Value of a Simple Field Variable...........e, 48
3.2.4 Array Field Variables.............inicncecsnscesnscanins 50
3.2.4.1 Value of an Array Field Variable.........eennrnnncn, 50
3.2.4.2 Bounds of Array Fields..........ccoorcciceace 50
3.2.5 Fields as Parameters to Procedures............ccouuincuvenvurnsccnrencncnne 51
4. Context BIOCKS.........uiceererecrcreeritincreerennennssssistssesisssssesssssssssssnns 54
4.1 Context Block Elements............ccoumivinsisinnnnecsennncscsenenseecsssnsens 55
4.1.1 INCAINALIONS........cverrererrerenrressreensnesssassesasssmssssssssesssssssssssassassssssnsssssansens 56
4.1.2 Incarnation Interval.............ccovimsemnercnnmssnsssssncnsesnanes 56
4.1.3 Context Variables...........cocccvrniisirecensinnisneninnsennssssssssessessssssesns 57
4.1.3.1 Initialization of Context Variables........cicvissnrsicnsnssrnians 57
4.1.3.2 Storage of Context Variables..........cuuunernccinccnirreenricccnnne 58
4.1.4 Context Mode...........ioicriinnnsnsircnncenasnseenns . 58
4.2 Coroutines.. vetsessaetssases e st a b s s nates 59
Q.21 EXiL....oucveueerercnansansrnnsssecsssnssssenssssscnsiossssssosssscssescssonsassssssssssssssssssssnses 59 .
4.2.2 CONLINUE........cocceirereenresccnenisicssessasessssssssssissssssssssassassssassssasssessenss 60
4.2.3 RESUME......ccuecteitenintrniiiissesssasesbesssssesssesssssssssssssssensasssssssaes 60
4.3 EXaMPIES.....cuiiircrcriricrite et besens 60
4.3 Continue and EXit..........ccoceremrnseveniusisissnsisiseisssessisescsssssssssssessasssessases 60
4.3.2 Relation to the concept of OWNS.........cccecvemrcurincnseninscsiessensesennenene 61
4.3.3 Context RECOIdS.........coommmecneirinininincnisnssinisisissssssisisesesssessasssasasesess 61
4.3.4 Record Classes..........ccocrvcrmnenirenireinnesisisianesiasasscssassssssssessssssessassssass 62
4.4 Virtual Storage File........miiiciintcsccssc s 63
4.4.1 Openvirtual, VIrtual...........mennnseissssessesessonss 63
4.5 Program REStart..........coiiieireeinenneeseniinsnsisssisessssssssssssssssssssnssssnenas 64
5. Text Handling...........ccoccoccocencncnceee. versaeseeanaeaeaens v 65
5.1 StOTING Of TEXLS......ooccreecrrrienirisirnnsessasesissasessssssissssssissssisessnsssesensessssssssens 65
5.2 Isolation of Text Parts.................. N 66
5.3 COomPAriSON Of TEXLS......cucrrreiurerreniieissieeniissssesessasessssasesssssssssessess 66 .
5.4 Text Handling Procedures............ccoeecnreevessinenrnrcncnsencscnsusssnssssnssseesenes 67
5.5 Text Handling in FORTRAN Programs..........c.ccccecuvemcsscsnsasesncascsens 67
6. Mathematical Procedures................ininnnennsssssisssssssnssssssssasssssasseseaes 69
7. Operators 70
7.1 Arithmetic OPErators..........uuecuiniercssesensesmsimisisesesessssssssssssessasenss 70
7.1.1 Transfer FUNCLIONS.........ccoviiniiseiisisiininsisiesinnemssssssasssesseasssssssnse 71
7.2 LOgIcal OPErators........cccovuvcusereercesissessesssssssasessessassssessmsessmssssssssssssssessesess 71
7.3 Pattern OPErators.......cuuecriennniscscsmssnssisiscsssinssssssssssssssssssssssessasssssasses 72
7.4 Relational OPerators..........cccovcreucevcusicmsessusssssssisiusesssssusssessssssssssssesssses 72
8. Standard Identifiers and Procedures..................coouemecrerrennrensercrnnens 73

Table Of Contents

ALGOLS, User’s Guide, Part One

8.1 RUN TIME SUIVEY.....coourermririenrirrnirsnsicsensesesisissasissssasssessassasssesssasssses 73
8.2 Locking of Segments in COre..........oucucicmienisiunsincnrisesscsssassssensonse 74
8.3 MISCELIANEOUS......ccreueecrncirericniiniinsiisersnesesissssesessasesssstssssesassssssaces 74
8.4 Procedures for System CommuniCation..........cececveerereesescusecsresercennes 75
8.5 Program to Program CommuniCation.........c.cuucucucinnisennenisiisinnnns 75
8.6 Zone Handling Procedures............cncennnneinnninsncsenessnncnecaennns 75
8.7 Input/Output Procedures..............cvcuvcencerencuscuvinninsinressinsensisesesseseces 76
8.8 Character CONVEISION........occuuimissensusssseseasissiscrsessmsensissassssasessssosssssass 77
8.9 SOrting Procedures.........msmmiimsniniiissessssssennis 77
8.10 Procedures in connection with context... retuencssres e saesas s sasaaane 78
8.11 FORMATS8000 Procedures...........ccucviiiinisisscssassssassssessesessescanns 79
8.12 COTOULINES.......cocurueirrsisersusesensensssssesessossasassssassronsssssinsassasssssssssssssssssssses 79
8.13 Input in One/Output in Many Zones.........coceveurescusisscssesssessessesenns 80
9. Operating System Created in ALGOLS...................ivrnnnenencnss . 81
9.1 Primitve Level Zone Procedures.............ccocovcueeeuecreecniosnccnrenssessnscans 81
9.2 Document Driver................. sttt bt sse e sesenas 82
9.3 OPerating SYStEM.......ccvciueermnecresscrensesensssossassssssssassssssencassocssrssssssaseoces 82
10. Program Translation and Execution...................cooeuevrvencnnncnnnae 84
10.1 Translatable and Linkable Structures...........cceceevvuererensuecrueereusesenens 84
10.1.1 Program StrUCLUTE..........c.cocurrecuruerersrccnsersossesesessaccssssecssascasssasesssssses 85
10.1.2 External Procedure Structure..............cciicvnensiinsccnscssncnnen. 85
10.1.3 EXQAMPIES.....cvvivirnrimirisincnincssnssinsassssessassssisessissssssssssssensassassnsnssnss 86
10.2 TranSlation...........ceecnnincnircnsensnsssescsssssssssssessessessasssssssssssassssosses 88
10.2.1 The COMPILET.......cvirirrucrniinisinisciesssssisissssssssssssesssssesscssessassssess 88
10.2.2 Call of the COMPILET........cocovreeruererereeerereecerecsesncnsessessnsasssssnns 88
10.2.2.1 SYNLAX....ccucuereenrecerenseensenesrseseasensesessessssassassasesersssssssssassassssssessssesasas 89
10.2.2.2 SEMANLICS.....coruemrrrenrucrernerrsssessessesessasssssssessssssessasesssssssssssssssasessssases 89
10.2.2.3 The Algol and Copy CONCEPL.........ccovueruermresmsrsmsessussasessrsenssnasrans 93
10.2.2.4 Details On LiStINg........cocovcuereecenrosmesnsensmscnsnsssessasensessmsesssssesssessens 94
10.2.2.5 Details on CroSSreference.............umicneruecorunuscnrneeersaseseensesssenss 97
10.2.2.6 EXAMPIES.....ouuueieimrinincannicnisiscssnssisssessasssessssssssssnsassassssassnns 98
10.2.3 Storage requirements, etc......... SO 99
10.2.4 Speed, Length of Object Code.........cvuvcimvcnvcnnininscseisscnsensesercnanes 100
10.2.5 ErTOr CheCKing.......cocovueurensrvvcnnrsenrncsnrensesesessesssassonsessssssrsssssssssesssssens 100
10.2.6 Messages from the COmPILET.........cccovevrreceirersesessrsnnenssnsensseseneenes 101
10.2.6.1 Line and Operand Numbers...........cccceveerencnserersernee . 101
10.2.6.2 Alphabetic List of Error Texts..........ccccoecveemrenscsscrennessenseasessesenones 102
10.2.7 Assembly, Index, Spill...........coccoverrerrmeresrussessssrssusssssssssassssssessaessens 107
10.2.7.1 Assembly retseastsasnsasas sttt asnssessenss s asaasasane 107
10.2.7.2 Index retrsrs it aRs AR bbb men et eensaaneas 112
10.2.7.3 SPIlL...cerereeceurererennencnsssnsesnssessessassssssssssesssssssnsssssasssessssssessessasssesees 112
10.2.7.4 Program Descriptor VECTOT........uciuiinsisisnnsssssnsscssmssensesesensascaes 112
10.2.8 LiMitations......ccceeureuseucenccrecuecsesssensensansonsessssssassssssases . 113
10.3 EXCCULION......covimimninennisenssssinsssesecsansecssensonsersensens 114
10.3.1 Segmentation.......... seeresas s bbb bRt 114
10.3.2 Call of Object PrOGram.............cccoveerurenreseesesensesenssssserssssssasessasessesnes 115
10.3.2.1 SYNAX....coruivecrirrerensnrnasersaseisescsrsssnsassssasasssssessessssisssssssssssassssasassssssen 115
10.3.2.2 SEmMaNtics........veeeeesressronnes . 116
10.3.2.3 Examples......cccovuvrerreecrecnncees reeresssssaersssesaasaserssres s sasesnsssranes 117
10.3.3 Storage ReqUIrements.............ccceverrureerurenseseusessessnsesssessssssssesessesnne 117
10.3.4 Message Buffers, Area Processes, €tC........ccouvvrerreereereeveresnaeninenas 119

Table Of Contents

ALGOLS, User’s Guide, Part One

10.3.5 EXECUtION TIMES......cverrieersvcrsircncesicssssisssemsissssmessssssssossssessssssesssssenss
10.3.5.1 Operand References..........courrrvrremverncsensiscnssssssnnisssscsessasissneenes
10.3.5.2 Constant SUDEXPreSSIONS........cocvuuerrvrermrissssssessessnsnssssassssssssnsens
10.3.5.3 Saving Intermediate ReSulLs...........couureeereemenenensisisssssissnsennes
10.3.5.4.1 OPEIALOLS.....ccocuvevercnerrnenrerssresessssssssssssssssssssssosssssssssasessasessssasssses
10.3.5.4.2 Operators, FORTRAN SPECIfiC.......cceeerrrnrrsrnsnrsnsssssnnsscnscnenase
10.3.5.5.1 Exec. time for std. externals..........cccocoereererernresnneieseressisssennne
10.3.5.5.2 Exec. times for std. procedures...........oouvuneneneenesnescserssasersenes
10.2.5.5.3 EXample.......cccovuimririnnrnnrennrnsiesnnsesssesssnssssnenses

10.3.6 Messages from the Running Program
10.3.6.1 Initial Alarm......
10.3.6.2 Normal FOorm.........coecvecuecvevnsresnesnenens
10.3.6.3 Undetected errors................
10.3.6.4 Alphabetic List of Alarm Causes..........coccoereersemsesensenscnsssscsssannans

Al REECTCIICES. ...oo.eeeeeeeeeieieesesssssessssessseresssessssssessssasssssassssnesesssesssstasssnsassssssasons 134

B. Index..... teteesaesesssesesssesssssesensessettessstesesbesesastensstressataesasasessansessnnns 136

Table Of Contents

ALGOLS, User’s Guide, Part One Page 1

Foreword

This edition of the manual is an update to the present state of the
ALGOL compiler, ALGOL/FORTRAN runtime system and ALGOL
library. Throughout this manual, anything stated about the
ALGOL/FORTRAN runtime system and about standard identifiers
and procedures in the ALGOL library concern FORTRAN programs as
well as ALGOL programs. This means that the chapters 2, 5 (the
procedure parts, not the operators), 6, 8, 9 and most of chapter 10 are
all proper reading from a FORTRAN user’s point-of-view. The
extensions of ALGOLS compared to ALGOL7 concern:

- the activity concept allowing procedures to act as coroutines with
an option for concurrent i/o transfers

- format8000 procedures for IBM 3270 compatible transaction
processing

- new layout possibilities

- character constants

and a few minor changes.

On top of the ALGOL 8 extensions come the extensions and changes of
version 2 of ALGOL, which in highlights are:

- same linker in ALGOL and FORTRAN, making it possible to link
into both ALGOL and FORTRAN programs any of the external
program units: ALGOL external procedures, FORTRAN
subroutines and functions and code procedures made for either
ALGOL or FORTRAN use

- same external runtime system to both compilers, linked in at
compile time as any other external program unit

- allocation of an extra stack, the high end partition, in address
space beyond 1 M halfwords (if available) to contain zone buffer
areas and free memory for program segments, leaving other
variables to the to the low end partition along with more free
memory for program segments

- renewed procedures "read" and "write", among other things making
it possible to read and write from or into arrays of any kind instead
of just zones, making the way for zone specific conversion tables
rather than all-zone block specific conversion tables

Foreword

Page 2

Foreword

ALGOLS, User’s Guide, Part One

giving parameter alarms on current output as well as on the
actual zone

new record in- and output procedures doing multibuffered
input-in-one-and-output-in-many zones, eliminating the need of
moving data from the input buffer to the output buffer(s)

the possibility to "compress” algol and fortran programs into
libraries, e.g. by the program "lib", the program "compress" or any
other program compressing files and describing them by segment
offsets, and execute the "compressed" programs described by
auxiliary entries

procedures in algollib, which used to have a formal parameter
specified of type "real array" will now accept arrays of any
arithmetic type (long, real, double real, complex and sometimes
even integer and boolean), e.g. "movestring”, "write", "read",
"outvar"....

procedures in algollib with a parameter array will all consider the
array starting in the halfword with halfword index 1 in other words,
fielding will now work in all such procedures, e.g. "system",
"monitor”, "read", "get/setzone" and "get/setshare”

RC Computer A/S, February 1989

ALGOLS, User’s Guide, Part One Page 3

1. Introduction

1.1 How to Use the Manual

The scope of this manual is to give a description of all elements in
ALGOLS and a detailed functional description of some elements which
are not in ALGOLG0.

Along the way, elements shared with RC FORTRAN are pointed out.

The syntactical definition of the language ALGOLS is given i [14]. The
syntactical definition of the language RC FORTRAN is given in [9].

Chapter 2 describes the input/output system of ALGOLS, which is
shared with RC FORTRAN, and should be read by anyone who wants
to use either of the two languages. '

Chapters 3 and 4 are special to ALGOLS.

Chapter 3 describes the FIELD concept of ALGOLS, and is mandatory
reading for ALGOLS users.

Chapter 4 describes CONTEXT BLOCKS and is necessary if you are
interested in concepts like multiple incarnations of blocks of code and
associated data (variables), reentrant blocks, incarnations of records
together with the associated field processing code, virtual memory,
survival of variables, etc. useful in connection with e.g. multiple terminal
handling, coroutine programming, program restart etc.

Chapter 5 describes the tools for text handling in ALGOLS8 and RC
FORTRAN.

Chapter 6 gives a list of mathematical procedures available to both
languages and chapter 7 gives a list of available operators and standard
procedures working as operators in ALGOLS.

Chapter 8 gives a list and a short description of ALGOLS elements not
mentioned in the other chapters.

Chapter 9 shows an example of how ALGOLS can be used to code an
operating system. This chapter implies knowledge of chapter 2.

1. Introduction

Page 4

1. Introduction

ALGOLS, User’s Guide, Part One

Chapter 10 gives a description of how the programs are structured,
translated and executed. A list of error messages is included.

Chapters 8, 9 and most of 10 describe elements shared with RC
FORTRAN.

ALGOLS, User's Guide, Part One Page 5

2. Input/Output System

This chapter describes the use of zones for input/output to any
document (device).

An exotic use of zones is programming an operating system in ALGOL.
This is described in chapter 9.

A zone array is a group of zones with identical declarations. The
following details refer to a zone or to a zone within a zone array.

The ALGOL system contains a set of standard procedures "the high
level zone procedures” which take care of normal input/output
functions. The "primitive level" zone procedures are described in
chapter 9.

The description of the input/output system is fully adaptable to
FORTRAN programs with the remarks in 5.5 concerning text handling.

2.1 High Level Zone Procedures

The high level zone procedures are logically split into three groups:
- control procedures

- character procedures

- record procedures

See further description of the mentioned procedures in [15].

2.1.1 Zone Control Procedures

The control procedures will take care of connecting, releasing and
positioning the document (cf. 2.3.2) by means of a zone. The following
procedures are available:

open
Moves the documentn:me to the zone, and divides the buffer area into
shares of equal size. Specifies how the handling of the document is
performed (mode, kind).

2. Input/Output System

Page 6

Input/Output System

ALGOLS, User’s Guide, Part One

close .

Terminates the current use of a zone, including the emptying of output
buffers and possible releasing of the document.

setposition

Terminates the current use of a zone including emptying of output
buffers. A magnetic tape or a backing storage area is then positioned to
the file and block specified. The positioning takes no time on a backing
storage area, but it may involve tape moving operations for a magnetic
tape.

getposition
Gets the file and block number corresponding to the current logical
position of the document.

A number of more special zone control procedures are available too:
stopzone, initzones, resetzones, openinout, expellinout, closeinout, cf. [15].

Example 2-1, control procedures .

<*write something on file 3 on a magnetic tape*>
begin
zone 2(200,1,stderror);
<* open will tell the operating system that this program will use the tape
471100 in connection with zone z *>
open(z,18, <:mt471100:>,0);
<* on magnetic tape a setposition must be perfor-med after open *>
setposition(z,3,0); <* position to file 3 *>
write(z,<:something --- :>);
write(z,<:lastword:>);
<* empty buffers and terminate *>
close(z,true); <* suspend tape *>

2.1.2 Character Input/Output Procedures

The character input/output procedures are used for text handling .
input/output where the zones are used as buffers.

A conversion is performed for numbers. They are read as decimal
numbers and converted to binary numbers, in *write’ the reverse
conversion takes place i.e. binary number to decimal number.

read

Inputs a sequence of numbers given in character form on a document
(or in an array), converts them to binary numbers, and assigns them to
variables.

readchar
Inputs one non-blind character from a document, and supplies the
character value and character class.

readstring
Inputs a text string given as characters on a document (or in an array).

ALGOLS, User’s Guide, Part One Page 7

readall
Inputs a mixture of numbers in character form, single characters, and
text strings from a document (or in an array).

repeatchar
Makes the latest character read from the document available for
reading once more.

intable
Exchanges the current input alphabet with an alphabet specified in the
program.

tableindex
Used in connection with intable to define the alphabet.

write
Prints texts, numbers, and single characters on a document (or into an
array).

writeint
Prints texts, integer numbers, and single characters on a document (or
into an array).

The range of character input/output procedures also includes the
procedures outchar, outdate, outinteger, outtext and the FORMATS8000
input/output procedures waittrans, readfield, opentrans, writefield and
closetrans, cf. [15].

Example 2-2, read with test on terminator.
Program Part:

integer number, term;

integer array a(1:3);

<* read number,a(1),a(2),8(3) and terminator*>
read (in,number,a);

<* get terminator *>

repeatchar(in);

<* read terminator once more *>

readchar(in, term);

Data: 47, 18p30x 4;5
Result:

number contains: 47

a(1) contains: 18

a(2) contains: 30

a(3) contains: &
term contains: 59 (59 is the 1S0 value of ;%)

2. Input/Output System

Page 8

Input/Output System

ALGOLS, User’s Guide, Part One

Example 2-3, skip characters until digit occurs. .
Program Part:

integer class, number;

<* read a number skipping all leading nondigit
characters *>

<* read all leading nondigits *>

repeat class := readchar(z,number) until class=2;
<* repeat first digit *>

repeatchar(z);

read(z,number);

Data: a+b=487
Result:

number contains: 487

Example 2-4, read string, with use of intable.

begin
integer array alphabet(0:255);
long array arr{1:5); integer j;
<* get space to be a text part class 6 *>
isotable(alphabet);
alphabet(’/sp’):=6 shift 12+/sp’
alphabet(... <* the rest of the alphabet is set
to standard values cf. intable example, [15] *>
intable(alphabet)
<* now we have a new alphabet *>
j:= readstring(in,arr,2);
end

Data: ,,,,,,peter brown

Result:

j contains: 2
arr(2) contains: peter
arr(3) contains: brown

Normally space is a terminator and the result will be:

j contains: 1

arr(2) contains: peter

Example 2-5, readall

Program Part:

<* read numbe 's, strings and delimiters into integer arrays ia and kind, ia

will contain the numbers, strings or delimiters, kind will contain the
class of the items stored in ia *>

integer i; .

ALGOLS, User’s Guide, Part One Page 9

integer array ia, kind(1:20);
i:= readall(in,ia,kind, 1);

Data: ab:at.2c, 17.56 12345678<NL>
Result:

i contains: 12

Index 123456789 101 12 ia |eb
|0[58al. |2¢]|44]32|32|18 |32 |great |10 kind | 6 |6] 7| 6 | 6] 7| 7| 7] 2 |
7N | 8 data ab : al. 2c , SP SP 17.56 SP 12345678 NL

‘great’ indicates the greatest positive integer number.

Example 2-6, write
Program Part:

i:= write(out,la);

write(out, %sp¥, 18-1i,
<:age:>,<<ddd>, la(4),"sp"2,
<:kilos:>,<<ddd.d>, 1a(5)/1000,
wgph 2,string La(6));

Data:

la(1:3) contains: peter brown
la(4) contains: 36

la(5) contains: 81350
la(6) contains: m

Result:

peter brown age 36 kilos 81.4m

2.1.2.1 Standard Zones In and Qut

Two standard zones, ’in’ and ’out’, exist. ’in’ is used for input on
character level, ’out’ is used for output on character level. The
documents connected to ’in’ and ’out’ are determined when the program
execution starts, i.e. in the FP commands before calling the program.

The zones are declared with a buffer length of 512 halfwords and one
share. The blockprocedure is stderror. These standard zones are stored
in the top of the memory area occupied by the job.

Example 2-7, this example will show the use of FP commmands to
direct ’in’ and ’out’ (cf. [6]).
Note: this job is executed under the operating system BOSS. Input from

a magnetic tape filel and a backing storage area datal. Output to a
convert area convertout. The program name is examp1.

2. Input/Output System

Page 10

Input/Output System

ALGOLS, User’s Guide, Part One

convertout=set 1 ; filel=set mth mt123456 0 create convert area

1; file describes filel on magtape
mt 123456
o convertout ; direct output to convertout

call of program the program will

exampl filet ; ; write on convertout and connect
input to magtape the program will
read from filel
connect input to the area datal
H the program will read from datal
redirect output to
examp? datat ; console/terminal
will print the convertout on the
H printer
end BOSS job
oc H

convert convertout ;

finis

2.1.3 Record Input/Output Procedures

These procedures perform input/output at record level. The zones are
used as buffers, but only one record is available for processing at a time.

inrec6
Gets a sequence of the requested number of halfwords from a document
and makes them available as a zone record.

outrec6

Creates a zone record with the requested number of halfwords. The
contents is initially undefined. The program may then assign values to
the record variables, the record will later be output to the document.

swoprec6

Gets a sequence of the requested number of halfwords from a backing
storage area and makes them available as a zone record. The program
may then modify the record, which is later transferred back to the
backing storage area.

changerec6

Regrets the former record and replaces it by a new one. The function of
changerec6 depends on which of the procedures inrec6, outrec6, or
swoprec6t was most recently called, i.e. the use of the document.

The set of record input/output procedures also includes the procedures
inoutrec and changerecio, cf. [14].

Example 2-8 inrec6é and outrec6.

begin

integer i;
<* move 10 records from area ’‘old’ to area ‘new’ *>

ALGOLS, User’s Guide, Part One

zone zin, zout(128,1,stderror);

open(zin, 4<:old:>,0);
open(zout,4,<:new>,0);

Page 11

<* open to both areas ‘old’ and 'new’ *>

for i:=1 step 1 until 10 do

begin
inrecé(zin, 100);

<* reads a record from ‘old’ with 100 halfwords *>

outrec6(zout,100);

<* make space for record with 100 halfwords *>

tofrom(zout,zin, 100);

<* move 100 halfwords to zout from zin *>

end

close(zin, true);

close(zout,true);
end

Example 2-9, inrec6, change of share (block).

begin

zone 2(2*128,2,stderror);

<* 2 shares each of 128*4=512 halfwords *>

open(z,4 <:mine:>,0);
inrec6(z,100);

<* record! length 100 *>
... <* use the record *>
inrecé(z,90);

<* record2 length 90 *>
inrec6(z,110);

<* record3 length 110 *>
inrec6(z,200);

<* record4 length 200 *>

inrec6(z,70);

<*only 12 halfwords left, therefore

<* record5 length 70 *>

the next share is used.*>

2. Input/Output System

Page 12

Input/Output System

ALGOLS, User’s Guide, Part One

< recordt
[4
share 1 { recorde
<
512 ¢ record3
C
halfwords (recordé
<
[12 halfs left

recordS

512

<
<
share 2. (
<
halfwords (

After inrec6(z,4*n) elements z(1) to z(n) may be addressed either by
indexing or by fielding.

Example 2-10, outrec6, change of share (block).

begin
zone z(2*128,2,stderror);
open (z,4<:new:>,0);
outrec6(z,200); <* fill(z,200); 1 *>
outrec6(z,300); <* fill(z,300); 2*>
outrecé(z,100); <* fill(z,100); 3 *>

end
{ record1
share 1 (
512 (record?
halfwords (
{
¢ 12 halfs left
{ record3
share {
512 < .
halfwords
< .
<

after outrec6(z,4*n) elements z(1) z(n) may be stored.

ALGOLS, User’s Guide, Part One Page 13

‘ Example 2-11, changerec6.
Program Part:

outrec6(z,100);
<* make space for 100 halfwords *>
outrec6(z,200);

<* now we regret last outrecé and want it replaced by outrecé(z,60) *>
changerec6(2z,60);

Example 2-11, changerec6 (continued).

<)
4 record?!) 100
. «

4 change rec2) 60
share (

L4 record2

< b

{ Jeem=ceeemese--)

<) 200

L
invar

Gets a sequence of halfwords from a document as for inrec6, but the
number of halfwords is given as the first word in the record. The
checksum stored in the second word may be checked.

outvar

Creates a zone record of a specified length and stores data from an

array or another record. The length is stored in the first word of the
' record. A checksum is generated and stored in the second word of the

record.

changevar
Changes the length of a record generated by means of outvar. The
checksum is computed. ‘

checkvar
Generates a checksum in a record.

Example 2-12, invar, outvar.

<* copy 100 records from the area bsfilel to area bsfile2 *>
begin
integer i;
zone zin, zout(128,1,stderror);
<* open to both areas. Note that setposition is not required *>
. open(zin,4 <:bsfilel:>,0);

2. Input/Output System

Page 14

Input/Output System

open(zout,4 <:bsfile2:>,0);
for i:= 1 step 1 until 100 do
<* copy 100 records *>
begin
invar(zin);
outvar(zout,zin);
end;

<* empty buffers and terminate run *>

close(zin, true);
close(zout, true);

Example 2-13, invar

<* gimilar to example 2-9 (inrec) *>
begin
integer field length, checksum;
zone z(128*2,2,stderror);
length:= 2;
checksum:= &;

<* record length and record checksum are

open(z,4,<:mine:>,0);

invar(z); <* 1 use (z,z.length);
;r.n.mr(z); < 2 use (z,z.length);
;;\;ar(z); <* 3 use (z2,z.length);
;u.w;ar(z); <* 4 use (z,z.length);
;r.\:/ar(z); <* 5 use (z,z.length);

Example 2-14, outvar.

<* similar to example 2-10 (outrec)
begin
integer field length;
zone z(128*2,2,stderror);
array a(1:100);
length:= 2;
open(z,4,<:mine:>,0);
a.length:= 200; <* assign to the
outvar(z,a);
a.length:= 300; <* assign to the
outvar(z,a);
a.length:= 100; <* assign to the
outvar(z,a);

end

*>

*>

*>

*>

*>

*>

array *>

array *>

array *>

ALGOLS,

User’s Guide, Part One

found in first record element *>

ALGOLS, User’s Guide, Part One Page 15

Example 2-15, changevar.

begin
integer field length;
array a(1:100);
zone 2(128,1,stderror);
length:= 2;
a.length:= 40;
outvar(z,a);

<* now wWe want to change the length of the above record *>
a.length:= 60;

changevar(z,a);

<* NB: the checksum is recalculated *>

end

changevar is only allowed after outvar, since it would be senseless after
invar.

Example 2-16, checkvar.

begin
integer field length, count;
array a(1:100);
zone z(128,1,stderror);
length: = 2; count: = 10;
a.length: = 40;
outvar(z,a);
<* now the checksum is created *>

2.count:= 2.count+1

<* now the checksum does not correspond to the record *>
checkvar (z);

<* now it does *>

enc.i

2.2 Zone Elements

Every zone consists of
a buffer area or zone buffer

a zone descriptor
one or more share descriptors or shares.

2. Input/Output System

Page 16

Input/Output System

ALGOLS, User’s Guide, Part One

2.2.1 Buffer Area

The length of the buffer area is specified with the zone declaration. The
length is in reals (each real is 4 halfwords). This buffer can be used as a
real array with

1 =< subscript =< length

Such a subscripted variable is called a record variable.

The zone record defines which part of the buffer area is available for
subscription.

The buffer area is split up into shares usually of equal length.

2.2.2 Zone Descriptor

A zone descriptor consists of the following set of quantities, which
specify a process or a document (cf. [3]) connected to the zone, and the
state of this connection:

Set by
procedure

process name A text string specifying the open
name of a process or a
document connected to the
zone.

mode and kind An integer specifying mode and open
kind for a documnet (cf.

open) .
logical A set of integers specifying open
position the current position of a

document.
give up mask An integer containing ones in open

positions where a resulting
status bit should call the
block procedure instead of the
standard error action.

free parameter Used by FORTRAN read/write, when
the varprocedures and the declared
inout procedures.

state An integer specifying the
latest operation on the zone.
(cf. getzoneb).

record Two integers specifying the
part of the buffer area

ALGOLS, User’s Guide, Part One Page 17

nominated as the zone record
(cf. 2.2).

used share An integer specifying the
share descriptor within the
zone, which is used at the
moment.

last halfword An integer specifying the end
of a physical block on a
document.

block procedure This procedure is third when dec
parameter in the zone
declaration. The procedure is
called when a hard error
occurs on the document
(standard error actions gave
up) or if a status is received
with bits corresponding to a
bit set in the give up mask,

2.2.2.1 Zone Record

A number of consecutive halfwords of the buffer area may at run time
be nominated as the zone record. The halfwords of the zone record may
be available as record variables, which may be thought of as a kind of
real subscripted variables.

The record variables are numered 1, 2..., record length. All halfwords of
the record may be referenced by means of field references, as the zone
may be used as a field base.

The position and length of the zone will be specified by the record
input/output procedures.

When the character input/output procedures are used the zone record
will be a block, which is the actual amount of information transferred to
or from the share in one operation.

2.2.3 Share Descriptors or Shares

A zone buffer is split into a number of shares, each one described by a
share descriptor. The number of shares is specified in the zone
declaration.

A share descriptor consists of a set of quantities which describe a
transfer of data between a document (process) and a part of the buffer
area.

The set of quantities forming one share descriptor is:

share state

An integer describing the kind of activity going on in the shared area (cf.
getshare6, [15]).

2. Input/Output System

Page 18

Input/Output System

ALGOLS, User’s Guide, Part One

shared area
Two integers specifying the part of the buffer area shared with the
process controlling the document.

operation
Specifies the latest operation performed by means of the share
descriptor (cf. [3]).

The amount of information transferred to or from a share in one
operation is called a block.

On a magnetic tape, a block is a physical block or a tape mark. On a
backing storage area, a block is one or more segments. On a paper tape
reader, a block is usually one share of characters. The advantage of
splitting the zone buffer into shares is, that one or more shares can be
used for input/output while another is used for processing.

In case of single share input/output the program has to wait for a data
transfer before the processing may continue.

For the choice of number of shares cf. 2.6.2.

2.2.4 Zone after Declaration

When a zone is declared, the following parts of the zone descriptor are
defined:

free parameter
Set to 0 (binary zero).

used share
Is the first share, which contains the entire zone buffer area.

zone record

Is the entire buffer area as one record. The entire buffer can be
accessed as a real array, where the elements are numbered 1, 2, 3, ..,
length declared. The zone record can be used as a real array everywhere
in the program (e.g. in a procedure call).

block procedure .
The block procedure is defined but will not have any practical effect
before a high level zone procedure is called.

Example 2-17, after declaration.

begin
integer i;
zone 2(128,1,stderror);
comment now it is possible to use the whole zone buffer area or the zone
record as a real array 2(1:128);
for i:= 1 step 1 until 128 do
2C¢i):= i;
end

ALGOLS, User’s Guide, Part One Page 19

2.2.5 Zone after Open
Opening a zone with the high level procedure (cf. open)

{ <string> }
open(<zone>,<mode_kind>,(<array> },<give up mask>)

will cause the following zone description changes. (cf. 2.2.2).

process name
Is the name specified in the call of open, for a document, which should
be connected to the zone.

mode and kind

Is set to modekind from the call. Specifying the mode and kind for the
document (cf. open). Kind is as a rule only used in connection with error
handling of the document. Mode specifies how to input or output from
the document (e.g. even or odd parity).

logical position
Just before the first element of block 0 file 0.

give up mask

Is set to give up mask from the call, and used to specify which status bits,
the block procedure should take care of. Normally give up mask is 0,
meaning that the block procedure is only called if harderror (1 shift 0) is
detected in the status word, i.e. standard error actions gave up (cf. 2.3).

zone state
Is set to after open’.

shares
The buffer area is divided evenly among the shares.

The zone is now ready for high level input/output to the specified
document.

Note: the document is not connected physically (i.e. the entry on a
backing storage is not looked up). Therefore a call of open to a non
existing document will not cause an error, but the first call of a high level
input/output procedure will show the document as disconnected.

Zone record.

There is no elements in the zone record. A reference to a zone variable
will cause an alarm: index, field, or the like.

A high level input/output procedure should be called before a zone
record is available.

Example 2-18, zone after open.

begin

zone(128,1,stederror);
<* the zone is declared and the zone record is the entire buffer area z(1)

2. Input/Output System

Page 20

Input/Output System

ALGOLS, User’s Guide, Part One

to z(128) *>

open(2,4.<:bsfile:>,0);

<* now the zone is opened to the backing storage area bsfile, no zone
record exists *>

invar(2z);

<* now the first record from befile is available in the zone record z(1)
to z(record length) *>

<* the first segment of the file is transferred to the share (= the entire
buffer) *>

close(z,true);
<* now the zone is no longer connected to the befile, situation as after
declaration *>
end;

2.3 Error Handling/Checking

Any input/output operatxon to a document will result in an answer to
the program containing a 24 bit logical status word. This status word will
describe the success of the operation. If an error occurs (reflected in the
status word) a check routine in the runtime system will perform a
standard error action depending on the bits set in the status word and
the give up mask.

A list of the normal meaning of the status bits is given in 2.3.3.

2.3.1 Block Procedure and Give Up Mask
Call:

A call of the block procedure specified in the zone declaration will take
place in the following cases:

1. When some of the bits set in the give up mask occured in the
logical status word (user bits).

2. When the standard error action classifies the situation as a hard
error (gives up).

You can tell the difference between the call reasons by mean of the last
bit in the logical status word (hard error or give up bit).

The following figure should explain when the block procedure is called.

ALGOLS, User's Guide, Part One

{

input/output
operation

¥

L

set status |

standard
error action
on not give up bits

*)?

~_

Page 21

*) bits set in statusword
and not in give up mask

NO

Ksetin

hard error NO
?
YES
call of the YES
block procedure
return

give up mas

NO

The block procedure is called with 3 parameters:

block __proc(z,s,b)

is the zone. The record of z is the entire shared area available for
the transfer.

o @

block size.

is an integer containing the logical status word.
is the number of halfwords transferred in the operation, e.g. the

Normally the give up mask should be ’0’ and the block procedure
’stderror’. But if a special block procedure is wanted, let the stderror
procedure take care of as many of the status bits as possible. Note that a

hard error always calls the block procedure.

2. Input/Output System

Page 22

Input/Output System

ALGOLS, User’s Guide, Part One

Purpose and return

In the block procedure, you can do anything to the zone by means of the
primitive zone procedures and the high level zone procedures (in the
latter case you must be prepared for a recursive call of the block
procedure).

To make sense, the effect should be an improved check or error
recovery of the operation, which caused the block procedure to be
called. You may also avoid a standard error action by means of the give
up mask and instead perform your own checking of the transfer.

You signal the result of the checking back to the high level zone
procedure by means of the final block length 'b’. The value of ’b’ has no
effect when an output operation is checked, but after an input operation
you may signal a longer or a shorter block or even an empty block
(b=0). However, the value of b’ at return, must correspond to a block
which is inside the shared area specified by the value of used share at
return. Otherwise, the execution is terminated with an index alarm.
Further details may be found in 2.4.

2.3.1.1 Examples

Example 2-19, reading a file on a magnetic tape.

Instead of creating a block procedure to take care of tapemark, a stop
record should be created as the last record in the file.

Example 2-20, rejecting part of a block.

A block procedure which tries to repair an input after persistent parity
error looks like this:

procedure repair(z,s,b); zone z; integer s,b;
if s shift (-22) extract 1=1 then
begin comment handling of persistent parity error;
boolean ok;
integer to,from;
boolean procedure check (realv);
<* checks the parameter is ok *>
real realv;
begin ... end;
to:= 0;
for from:= 1 step 1 until b//4 do
begin
ok:= check(z(from));
if ok then
begin
to:= to+1;
z(to):= z(from);
end;
end;
comment the defect items of the block are squeezed out. The new length is
signalled back;

ALGOLS, User’s Guide, Part One Page 23

b:= to*4;
end
else stderror(z,s,b);
<*end procedure repair*>

Example 2-21, copy input.

A block procedure which copies to the zone ’test’ everything read from
the zone ’z’ may look like this:

procedure copy(z,s,b);

zone z; integer s,b;

<* copy only if not harderror *>

if s extract 1=1 then stderror (z,s,b) else

begin comment this code also works for b=0;
outrec6(test,b);
tofrom(test,z,b,);

end;

The zone 'z’ must be opened with a give up mask of 2 (normal answer).
Inrec6, invar, and read take action on nothing transferred (maybe
stopped).

Example 2-22, file number checking on magnetic tape.

This example has no relevance, if your parent (operating system) is
BOSS. The safety of magnetic tape positioning can be improved by
means of file labels. Each of the logical files on the tape are separated
by two tape marks surrounding one label block. This block contains the
logical file number in text form. The positioning to block 0 of a logical
file (counted 1, 2, ...) is started with this procedure:

procedure logpos(z,f);
zone z; integer f;
setposition(z,f*2 - 2,0);

The procedure cannot check the label, because simultaneous positioning
then would be impossible. Instead the block procedure may check the
label:

Example 2-22, file number checking on magnetic tape (continued);

procedure labelcheck(z,s,b);
zone 2; integer s,b;
if s extract 1=1 then stderror(z,s,b) else
begin
integer array ia(1:20); integer op,f,bl,lab;
own boolean next;
comment next indicates whether the procedure was
called from labelcheck itself;
getzoneb(z,ia); getshare6(z,ia,ia(17));
comment the operation checked is in used share, which now is moved to ia;
op:= ia(4) shift(-12) extract 12;
if (op=0 or op=8) and -, next then

2. Input/Output System

Page 24

Input/Output System

ALGOLS, User’s Guide, Part One

begin ‘
comment positioning operation not called from labelcheck, was completed;
next:= true;
getposition(z,f,bl); setposition(z,f,bl);
if read(z,lab,op) <> 1 or lab <> f//2 + 1 then
system(9,f//2 + 1,<:<10> position:>);
comment if label did not contain exactly one number or the file number
recorded is wrong, the run is terminated with an alarm;
setposition(z,f+1,0); b:= 0; next:= false;
end;
end;
<*end procedure labelcheck*>

The zone must be opened with a give up mask of 2 (normal answer).

Example 2-23, test on end of file

zone ztape (300,3,ztape_block_procedure);
procedure ztape block_procedure (ztape,status,halfs) ‘
zone ztape; integer status, halfs;
integer status, bytes;
<* if the status is tapemark then nextfile else stderror*>
if status shift 7 < 0 then
goto next file
else
stderror(ztape,status, bytes);
<* the zone is opened with tapemark in give up mask *>
open(ztape, 18, <: tapename:>,1 shift 16);
setposition(ztape,1,0);
for i:=
begin

invar(ztape);

end;
next file:

Example 2-24, see example 2 of invar (cf. [15]).

2.3.1.2 Other Calls of the Block Procedure

The runtime system may call the blockprocedure of a zone depending
on a bit in the give up mask for another reason, which is not triggered by
the receipt of a status word.

If the bit 1 shift 10 is set in the give up mask of a zone at the time the
declaration block of that zone is left, either by passing the block end, by
goto or by any other exit except runtime alarm, it is checked whether the
zone is in a state 'opened and used for input/output but not closed’. If it
is, the block procedure of the zone is called. It is imperative th:it the
block procedure should be designed to handle this call reason, too.

ALGOLS, User’s Guide, Part One Page 25

This effect of 1 shift 10 in the give up mask depends, however, of a
compile time option, zonecheckyes, with the default value
zonecheck.no.

Finally, the user may call the blockprocedure of a zone by issuing the
statement: blockproc(z,s,b), where s will be handled as a statusword and
b as number of halfwords transferred.

Example 2-25, check that the zone is closed at block exit

begin <* declaration block of the zone *>
zone z (blocklength * no_of_shares,no_of_shares,
check_exit_block)

procedure check_exit_block(z,s,b);
zone z ;
integer 8,b ;
if s extract 1=1 then
stderror (z,s,b) <* give up on hard error bit *>
else
begin <* the zone was not closed at block exit *>
<* handle the situation e.g. by closing the zone *>
close (z,true);
end;

open(z, modekind, name, 1 shift 10);

end <* declaration block of the zone *>;
<* if the zone is ’in use’ the block procedure is called *>

2.3.1.3 Another use of the give up mask

The runtime system will use the bit 1 shift 9 in the give up mask of a
zone for another purpose than to call the block procedure, and not
triggered by the receipt of a status word.

The use concerns concurrent input/output in activities, i.e. instead of
waiting for an input/output transfer to complete, control is transferred
to activity monitor mode for the possible activation of another activity.
For details, cf. section 3.6 i [18].

2. Input/Output System

Page 26

Input/Output System

ALGOLS, User’s Guide, Part One

2.3.2 Documents

A document is a physical medium in which a specific collection of data is
stored.

The high level procedures assume that all peripheral devices scan
documents. For instance, a document scanned by paper tape reader is a
roll of paper tape, a document scanned by a magnetic tape station is a
reel of magnetic tape. The documents are at run time addressed by
names appearing as text strings in ALGOL.

A document may be thought of as a string of information, either a string
of 8-bit characters or a string of real variables (elements). The string is
on some documents broken into physical blocks (e.g. on magnetic tapes
and backing storage areas). The procedures for input/output on
character level and record level keep track of the current logical position
of the document. The logical position points to the boundary between
two characters or two elements of the document. During normal
sequential use of the document, the logical position moves along the
document corresponding to the calls of the input/output procedures.

For documents consisting of physical blocks, the logical position is given
by a position within the physical block, plus a block number, plus (for
magnetic tape) a file number. Note that the block number is ambiguous
in the case where the logical position points to the boundary between
two physical blocks. This ambiguity is resolved explicitly in the
description of the individual procedures: The term ’the logical position
is just after or just before a certain item’ implies that the block number
is the block number of that item.

The following sections give a survey of some documents and the way
they transfer information to and from the zone buffer. The rules for
protection of documents and further details are found in [1), [2], and [3].
The kinds and modes mentioned below are explained under ’open’ (cf.

[15]).

Internal process (kind 0)

An internal process (another program executed at the same time as your
job) may receive or generate a document, which is data to or from your
job. If the process just transmits the information to or from a penpheral
device, the rules above for that device will hold for the communication
with the document too. The kind specified in ’open’ of the mtemal
process should then be the kind of the document.

The internal process may also handle the information in its own way,
and then no general rules can be glven, but usually, the end of the
document is signalled as explained in section 2.3.3.

Interval Clock (kind 2)

The interval clock serves delay operations, operations to wait for
clockchange and operations to wait for power restart [3]. None of these
operations are performed by high level zone procedures, but they may
be issued by momtor(16, . monitor(18,... . The logical position has no
meaning as no document is scanned.

ALGOLS, User’s Guide, Part One Page 27

Backing storage area (kind 4)

The backing storage consists of a drum or a disc. The term ’drum’ is
used for a pool of discs, administered by the monitor. A *drum’ is a disc
considered to be faster than a normal disc. Details about the various
types of devices may be found in [3]. You have no direct access to the
entire backing storage, but only to documents which are backing storage
areas consisting of a number of ’consecutive’ segments (only logically
not physically). Each segment contains 512 halfwords (or 128 real
variables). The segments are numbered 0, 1, 2, ... within the area, and
the block numbers mentioned above are exactly these segments
numbers. File numbers are irrelevant.

One or more segments may be transferred directly as bit patterns to or
from the memory in one operation. The number of segments transferred
is the maximum number that fits into the share used.

Disk (kind 6)

The document is the entire backing storage [cf. 3], being either a
physical disc or a logical disc. Segment numbers on a physical disc
specify absolute segments on the disc storage module, while segment
numbers on a logical disc specify segments relatively to the start of the
logical disc. The block numbers mentioned above are exactly these
segment numbers. File numbers are irrelevant.

Terminal (kind 8)

A terminal may be used both for input and output. The sequence of
characters input forms one document (infinitely long), and the sequence
of characters output forms another document. File numbers and block
numbers are irrelevant on a terminal.

One input operation transfers one line of characters (including the
terminating New Line character) to the share. If the share is too short,
less than a line is transferred, but that is an abnormal situation. The
characters are packed in 8 bits to a character with 3 characters to one
word, and last word is filled up with binary nulls. One output operation
transfers characters packed in the same form to the terminal. Several
lines may be output by one operation.

Paper tape reader (kind 10)

A document consists of one roll of paper tape. It may be read in various
modes: with even parity, with odd parity, without parity, or with
transformation from flexowriter code to ISO code. File numbers and
block numbers are irrelevant for a paper tape.

One input operation will usually fill the share with characters packed 3
per word, but fewer characters may also be transferred, for instance at
the tape end. In such cases, the last word is filled up with null characters
(binary zeroes). The characters are not necessarily ISO characters, that
depends on the meaning you assign to them.

Paper tape punch (kind 12)
A document is from the programs point of view infinitely long, even

2. Input/Output System

Page 28

ALGOLS, User’s Guide, Part One

when the operator divides the output into more paper tapes. A paper
tape may be punched in various modes: with even parity, with odd
parity, without parity, or with transformation from ISO code to
flexowriter code. File numbers and block numbers are irrelevant for a
tape punch.

One output operation may punch any number of characters packed 3
per word. In all modes, except the mode without parity, only the last 7
bits of the characters are output and extended with a parity bit.

Line printer (kind 14)
A document is from the program’s point of view infinitely long. File
numbers and block numbers are irrelevant on a printer.

One output operatioh may print any number of characters packed 3 per
word.

Card reader (kind 16)
A document is one deck of cards.

One input operation will fill the share with an integral number of cards.

Usually jobs let the operation system read all necessary card decks
before they are started. The cards may then be read as a normal text
stored on backing storage (cf. [7] for further details).

Magnetic tape (kind 18)

A document is one reel of tape. It consists of a sequence of files
separated by a single file mark. Each file consists of physical blocks
possibly with variable lengths. The blocks may be input or output in high
or low density, with the high or low speed specified, and also in even or
odd parity. The files and blocks are numbered 0, 1, 2, ... as shown in the
figure.

Magnetic tape document:

logical position

load point—=—file 0—= tape mark——file 1—— tape mark end of
L) L

oo Mx)) L n____@

block 0 block 1 ... block 0 block 1

Input/Output System

- —-Dtape

The normal magnetic tape station is a 9 track station where a block
consists of a sequence of 8 bit characters; one word of the share is here
transferred as 3 8-bit characters.

ALGOLS, User’s Guide, Part One Page 29

Among the magnetic tape stations, more kinds exist, differing in
encoding and speed:

800 bpi NRZ/1600 bpi PE, 45 ips
1600 bpi PE/3200 bpi PE, 25/50/100 ips
1600 bpi PE/6250 GCR, 25/75 ips
1600 bpi 3200 bpi PE/ 50/100 ips
6250 GCR

The share length you use for output to a magnetic tape determines the
physical block length. As the blocks are separated by a block gap, the
share length has influence on the amount of information the tape can
hold and also on the maximum transfer speed.

Details on actual transfer rates and possible densities are found in [3],
and the device manuals.

Devices without documents

Some peripheral devices, for instance the clock, do not scan documents,
and they cannot be handled by the high level zone procedures. However,
the primitive input/output level may handle such devices too.

2.3.3 Standard Error Actions and Modekind

Each standard error action is mainly concerned with a single bit of the
remaining bits in the logical status word. The logical status word is 24
bits generated at the end of an operation on the document, it is available
as a parameter when the check algorithm has called the block
procedure. The first bits from ’1 shift 23’ until ’1 shift 12’ are taken from
status returned from the external process controlling the document (cf.
[3]) . The last bits are a transformation of the result supplied by the
monitor, while bits ’1 shift 8, ’1 shift 7’, and ’1 shift 6’ are generated by
the wait transfer routine (cf. 2.4.4). The meaning of the bits is as follows:

Logical status word
External process

1 shift 23: _
Intervention. The device became deselected or offline during the
operation, presumably because the operator changed the paper, etc.

1 shift 22:
Parity error. A parity error was detected during the block transfer.

1 shift 21:
Timer. The operation was not completed within a certain time defined
in the hardware.

1 shift 20:

Data overrun. The data channel (bus) was overloaded and could not
transfer the data.

2. Input/Output System

Page 30 ALGOLS, User’s Guide, Part One

1 shift 19: @

Block length. A block input from magnetic tape was longer than the
buffer area allowed for it.

1 shift 18:

End of document. Means various things, for instance: Reading or
writing outside the backing storage area was attempted, the paper tape
reader was empty, the end of tape was sensed on magnetic tape, the
paper supply was low on the printer. See [1] and [3] for further details.

1 shift 17:
Load point. The load point was sensed after an operation on the
magnetic tape.

1 shift 16: :
Tape mark or Attention. A tape mark was sensed or written on the
magnetic tape or the escape key was touched during terminal i/o.

1 shift 15:
Write-enable. A write-enable ring is mounted on the magnetic tape, the .
diskette or the tape cassette was write enabled.

1 shift 14:
Mode error. It is attempted to handle a magnetic tape in a wrong mode.

1 shift 13:
Read error. Error in input from disk, or card reader error, cf. [3].

1 shift 12:
Not connected/disk error/card reject. The printer is not connected, disk
error or erased diskette record inpit or card rejected by card reader.

Wait transfer

1 shift 8:

Stopped. Generated by the check routine when less than wanted was
output to a document of any kind or zero halfwords were input from a
backing storage area. .

1 shift 7:

Word defect. Generated by the check routine when the number of
characters transferred to or from a magnetic tape is not a multiple of
the number of words transferred, i.e. when only a part of the last word
was transferred.

1 shift 6:

Position error. Generated by the check routine after magnetic tape
position operations, when the monitors counts of file and block number
differ from the expected values in the zone descriptor (cf. getzone6).

Monitor Result
1 shift 5:

Process does not exist. The process communicating with the document is
unknown to the monitor, i.e. an area process or a peripheral process. ‘

Input/Output System

ALGOLS, User’s Guide, Part One Page 31

1 shift 4:
Disconnected. The device was somehow disconnected during
input/output, e.g. by operator intervention.

1 shift 3:
Unintelligible. The operation attempted is illegal on that device, e.g.
input from a printer.

1 shift 2:
Rejected. The program must not use the document, or it should be
reserved first. Also if the disk is protected against writing.

1 shift 1:
Normal answer. The device has attempted to perform the operation, i.e.
’1 shift 5’ to ’1 shift 2’ are not set.

Standard error action

1 shift O:

Hard error. The standard error action has classified the transfer as a
hard error (cf. 2.4.4), i.e. the error recovery could not succeed and the
standard error action gave up.

The standard error action for ’stopped’ cannot be performed
successfully if "users bits’ (cf. 2.4.4) contain any one of the following bits:
1 shift 22, 21, 20, 19, 18, 16, 7, 5, 4, 3, or 2. As a consequence, the
stopped-bit is ignored by the standard error actions in this case.

The bit ’normal answer’ is always ignored, the remaining standard error
actions depend on the document kind given in ’open’ as shown below.
This kind has not necessarily any relation to the actual physical kind.
Situations not covered by the description are hard errors.

As a table 2-1 in this section, you will find a quick index on how the
standard error actions work for the different devices and status bits.
You will also find the translation of the status bits to the messages from
FP when the ALGOL program stops because of device errors (stderror
is called).

Below follows a more elaborate description of the actions.

The status bits after extraction of the user’s bit get a special treatment
depending on the kind used in the call of open.

This treatment is shown in the table on the next page.

2. Input/Output System

Page 32

bit

10

1

12

13

14

15

1

algol

equivalent

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

shift

22

21

20

19

18

17

16

15

10

9

Table 2-1, Standard Error actions

name

intervention

parity error

timer

data overrun

block length

error

end document

load point

tapemark
or att

writing
enabled

mode error
read error
not connec-
ted or disk

error

checksum
error

bit 13

bit 14

stopped

Input/Output System

actions for the different kinds

magtape card

reader printer

18 16

ignore ignore

repeat ignore give wp

15

give up give up give wp

line

14

ignore

repeat give up error

atl

repeat error
15

give up ignore
or EM
ignore ignore
EM ignore
ignore error
give up error
error ignore
error ignore

error error

error error
error error
repeat erro

all or
ring

error

attend

error

error

error

error

error

error

error

error

error

repeat
rest

paper
tape
punch
12

ignore

error

error

attend

error

error

error

error

error

error

error

error

error

repeat
rest

paper
tape
reader
10

ignore

ignore

ALGOLS, User’s Guide, Part One

type-
writer

ignore

give wp

bs area

4,6

give up

give up

give up give up give up

error

error

ignore
or EM

ignore

ignore

error

error

ignore

ignore

error

error

error

error

or
ignore

error

error

give wp

error

ignore

error

error
error

error

error

error

error

repeat
rest

give up

error

internal

0,2

give up

give wp

give wp

give wp

give up

extend(4) give up
give up(6) or EM

or EM(4,6)

error give up
error give wp
give up give wp
give up give wp
give up give wp
give up give wp
error error
error error
error error
repeat repeat
atl rest

®

ALGOLS, User’s Guide, Part One

16 1 shift 7 word defect repeat error error error error error error
15
17 1 shift 6 position repeat 5 error error error error error error

error

18 1 shift 5 proc does mount give up give up give up give up give up create
not exist

19 1 shift & disconnected mount give up give up give up give up give up give up

20 1 shift 3 unintelli- give up give up give up give up give up give up give up
gible

21 1 shift 2 rejected reserve give up give up give up give up give up create
22 1 shift 1 normal ignore ignore ignore ignore ignore ignore ignore

23 1 shift 0 hard error

*) the ‘checksum error bit’ is not generated by the ALGOL check
routines, but by invar. It will not be explained in this sec-
tion.

error

error

give up

give wp

give up

give wp

ignore

Page 33

2. Input/Output System

Page 34

Input/Output System

ALGOLS, User’s Guide, Part One

The entries ’give up’ and ’error’ in the table above mean that the hard
error bit will be set and the give up action - the block procedure - will be
called. If the entry says ’give up’, it means that this status bit may may
occur for the kind specified, but no standard action has been invented. If
it says ’error’, it may mean that you have opened with a wrong kind or
that the system has been misused in some other way.

The entry ’ignore’ means that no action is taken for this status. This may
either be because the status is normal for the device (write enable for
magtape or normal answer) or because it occurs together with another
status.

2.3.3.1 Details of Handling of Device Status

Internal process (kind 0)

Any status bit except ’1 shift 18’, end document, ’1 shift 8’, stopped, and
’1 shift 1’, normal answer, is treated by calling the block procedure. The
special actions to be taken must be defined by a special agreement
between your program and the internal process.

End of document:

This will only make sense during input. If anything has been input, the
bit will be ignored. Otherwise the empty block will be replaced by one
word containing three end medium characters. If this bit appears during
any other operation, it will cause the block procedure to be called.

Stopped during output

The output operation will be repeated for the (during output):
remaining part of the buffer. This action may compensate for
differences in share sizes in your program and in the internal process.

Interval clock (kind 2)

Any status bit is treated by calling the block procedure. The special
actions to be taken (intervention) must be defined by your program.

Backing storage area (kind 4)

The monitor usually repeats defect transports to or from backing
storage areas. Therefore most error bits are treated as hard errors. Only
the bits ’1 shift 18’, end of area, ’1 shift 8, stopped, 1 shift 5, process
does not exist, and ’1 shift 2, rejected are given special treatment.

End of document (i.e. area):

If this happens during input, and if nothing has been transferred, the
empty block is replaced by one word containing three end medium
characters, otherwise the bit is ignored. During output, the standard
action is to try to extend the area. If the extension fails because of lack
of resources for that particular disk, a parent message bs <disk>
<segments> 0 is sent. If the FP modebit 'bswait’ is ’yes’, or FP is not in

the process, the process waits. When the process continues, the ‘

ALGOLS, User’s Guide, Part One Page 35

extension is tried once more, and if it still fails, the block procedure is
called. If the extension succeeds, the output operation is repeated.

Stopped:

This status may appear both during input and during output. The
transfer is repeated, except if it has been overruled by the action for end
of area, or the two actions below.

Process does not exist:

An area process is created. If the creation is not successful, the action
gives up and calls the block procedure. If the operation is output, the
area process is reserved for exclusive access. If this is not possible, the
action gives up and calls the block procedure. Now the transfer is
repeated.

Rejected:
Handled exactly as ’process does not exist’.

Note that the status message ’process does not exist’ or ’rejected’ may be
caused by the fact that you have exceeded your area claims.

Logical or physical disc (kind 6)

The monitor or the controller firmware repeats defect transports to or
from backing storage modules. Therefore most error bits are treated as
hard erros. Only the bits ’1 shift 18’, end of document, ’1 shift 8’,
stopped, ’1 shift 5’, process does not exist, and ’1 shift 2’, rejected, are
given special treatment.

End of document (i.e. disc)

During input, if nothing has been transferred, the empty block is
replaced by one word containing three end medium characters,
otherwise the bit is ignored. At all other operations, the block procedure
is called.

Stopped

May appear at all operations. The operation is repeated, except if it has
been overruled by the action for the end of document or the two actions
below.

Process does not exist
An area process is created and the action proceeds as for area process.

Rejected

If the disc process does not exist or calling process is not a user, the
block procedure is called. If the operation is initialize, cleantrack or
output, the disc process is reserved for exclusive access. If this is not
possible, the action gives up and calls the block procedure. Now the
operation is repeated.

Note that if the process does not exist, an area process will be created
only if an entry of that name exists in the main catalog. If not so, the
action gives up and calls the block procedure.

Terminal (kind 8)

2. Input/Output System

Page 36 ALGOLS, User’s Guide, Part One

Among the status bits concerning the hardware only the timer status, ’1 .
shift 21’ has been given special treatment. The ignored hardware bits
will either generate ’1 shift 4’, disconnected, or ’1 shift 8’, stopped.

Timer:

If this status happens as a result of an output message, the block
procedure is called. After an input operation it is ignored if anything has
been input, otherwise the input operation is repeated.

Stopped (during output):
If this bit is generated together with the ignored bits, the rest of the
buffer is output.

Paper tape reader (kind 10)

Only end document status ’1 shift 18’ gets a special treatment from the
check system. If a parity error occurs, the monitor will substitute the
defect character by a substitute character, decimal value 26. Intervention .
status is ignored.

End of document (i.e. end of paper tape):
If anything has been input the status is ignored, otherwise a block of one
word containing three end medium characters is simulated.

Paper tape punch (kind 12)

If something has been punched with parity error, the action is to give up,
and call the block procedure. The same thing happens after a timer
status as this usually is caused by the punch running out of paper tape
without having given ’end document’ status. This is either caused by
hardware malfunction or by misuse of the punch.

End of document (i.e. no more tape):

A message is sent to the parent, requesting that the paper is changed in
the punch and the job is stopped until the operator has performed his
task, and started the job.

Stopped (during output):
The remaining part of the share is output.
Line printer (kind 14)

If a parity error occurs during printing, the standard action is to give up.
The end of document status means that the paper supply is low.

Intervention (i.e. deselected)/End of document (i.e. no more paper):

A message is sent to the parent requesting operator attemtion and the
job is stopped until the operator has performed his task and starts the
job.

Stopped (during output):
The remaining part of the share is output.

Input/Output System

ALGOLS, User’s Guide, Part One Page 37

. Card reader (kind 16)

A parity error status, signalling an error in the conversion, is ignored by
the standard error actions, as the monitor substitutes the wrong
combination by a substitute character corresponding to the conversion
(cf. details in [3]). The ’end hopper full. The of document’ status shows
end of card deck or ’intervention’ status shows stocker full.

End of document (i.e. end of deck):
If anything has been input, the status is ignored, otherwise a block of
one word containing three end medium characters is simulated.

Magnetic tape (kind 18)

The actions for magnetic tapes are made to ensure that a tape may be

unloaded and remounted during the execution without harming the job

using the tape. Label check is not included, it is expected that the

operating system (or the operator) performs this. The action on mode
. error is to give up and call the block procedure.

Parity error, word defect, blocklength error, data overrun:

The stopped bit is ignored in this case. An input operation is repeated
up to fifteen times, but if the parity persists, the error is a hard one. An
output operation is repeated up to fifteen times, i case of parity error
preceded by one erase operation the first time, two erase operations the
second, and so on. If the parity persists, the standard actions give up and
call the block procedure.

Word defect, blocklength error, data overrun:

The actions are as for parity error. Note that if you suppress the ‘word
defect’ action by setting ’1 shift 7’ in your give up mask, you can read
tapes not written on the RC8000 or tapes written with trail <> 0 (cf.
open). Of course your block procedure will be called each time the bit
occurs. In case of 'word defect’, unused character positions are filled
with binary nulls.

. Position error:
The position reached differs from the position required by a move
operation. The operation is repeated up to five times, and if still
position error, the standard actions give up and call the block procedure.

Tapemark: ,

Tapemark is ignored after a sense or a move operation. If tapemark
occurs after an input operation, the standard action is to simulate a
block of one word containing three end medium characters.

Stopped (during output):

If the ’enable’ bit is set, the output is repeated. Otherwise a message is
sent to the parent requesting the document to be write enabled. When
the job is restarted after the enabling, the output is repeated.

Does not exist:

The bit is ignored after a sense operation or a move operation. In other
cases, a mount-tape-message is sent to the parent. Next, the tape is
reserved for exclusive access and if this is unsuccessful, the

2. Input/Output System

Page 38

Input, sh = 3

begin of

-

ALGOLS, User’s Guide, Part One

mount-tape-message is sent again. Thirdly, the tape is positioned
according to file and block count and the operation is repeated.

Rejected:
Handled as ’does not exist’, except that the mount-tape-message is not
sent.

Note on parent message

The parent (i.e. the operating system for your job) may either handle a
message according to its own rules, or it may pass the request on to the
operator. The job may ask the parent to stop the job temporarily until
the operation has been performed. The exact rules depend on the
operation system in question.

2.4 Multi Buffering and Checking

2.4.1 Multishare Input/Output
Below sh denotes the number of shares in the zone.

Input.

During input from a document via a zone with sh shares, the system uses
one of the shares to unpack information and the remaining sh-1 shares
for uncompleted input of later blocks (at first input all sh shares are
used for uncompleted transfers). The following picture shows the state
of the blocks of the document.

Input,sh = 3

‘logical position physical position
1 if close were called

s L I tmmnpmpnmnnd s A

document campleted transfers unccmpleted transfers

Input/Output System

Note that when the document is closed, the physical position of the
document is far ahead of the logical position. This is particularly
important at the end of magnetic tapes where the ’dotted’ blocks may be
absent and the tape then comes off the reel.

Output.

During output to a document via a zone with sh shares, one share is
used for packing of information, and 0 to sh-1 of the remaining shares
are used for uncompleted output of previous blocks. The following
picture shows the state of the blocks in the output stream.

Output, sh = 3

begin of

ALGOLS, User’s Guide, Part One Page 39

Output,sh = 3

- logical positionl lphysical position
if close were called

FERY l“..-..JML-—————
document campleted transfers uncampleted transfers
for packing

Note that when the document is closed, the physical position is just after
the block corresponding to the logical position.

Swoprec6.

The procedure swoprec6 utilizes the shares as follows: One share is used
for packing and unpacking of information. If sh > 1, another share is
used for uncompleted output. Remaining shares, if any, are used for
uncompleted input of later blocks.

2.4.2 Choice of Number of Shares

The advantage of the multishare input/output is that differences in
speed between the program and the device may be smoothed to any
degree. The most frequent choice is between single or double buffer
input/output. Do not use multibuffering if it can be avoided. A decrease
of transfer time can be obtained using a larger share size (blocking).

The following rule of thumb may help you calculate time differences in
cases where you scan a document sequentially:

th = time spent by the program with handling of the
information in a block

td = time spent by the device with transfer of a block

td + th is the total time in single buffer mode (sh = 1)

max (td,th) is the total time in double buffer mode (sh = 2).

If th varies from block to block, the situation is more complicated and sh
> 2 may pay.

The following rule of thumb concerns the sequential use of swoprec:

th + 2*td is the total time per block with sh = 1,
max(th,td) + td is the total time per block with sh = 2,
max(th,2*td) is the total time per block with sh = 3.

You should always use single buffering on printer, plotter, and punch,
except if you know for sure that your job is not stopped and started by
the operating system. The reason is that an output operation may not be
terminated when the job is stopped, and then if sh > 1 the next output
operation is started before the first is checked and output again.

2. Input/Output System

Page 40

Input/Output System

ALGOLS, User’s Guide, Part One

You should always use single buffering for terminal output, because the
operator at any moment may stop the output operation to send a
console message.

2.4.3 Message Buffers Occupied

Input/output by means of sh shares occupies permanently sh-1 of the
message buffers available for the job (cf. [1]). First time input, however,
occupies momentarily sh message buffers.

From the moment setposition has been called for a magnetic tape and
until the first input/output operation is performed, one message buffer
is occupied (even when sh = 1).

2.4.4 Algorithms for Multishare Input/Output

The following algorithms are part of ALGOL 8 input/output system.
You must know about these algorithms if you want to interfere with the
system in the block procedure of the zone (examples of block
procedures are given in 2.3.1). [3] and [8] explain the rules behind the

communication with devices.

Below sh denotes the number of shares in the zone.

Snapshots of shares in typical situations (sh = 3)

Just after setposition on a magnetic tape:

share 1 Share 2 share 3
move operation free free

for positioning
uses only share 1

ALGOLS, User's Guide, Part One Page 41

After inrec:

share 1 share 2 share 3
record
input free input
(used share)

After several outrecs:

share 1 share 2 share 3

(used share)

Change of block at input.
Program Part:

rep:
if share state(used share) = free then
begin start transfer(input);

used share:= used share mod sh+1;
. goto rep

end;
commment now all shares are busy with transfers
except after a positioning;
wait transfer(used share);
comment share state becomes free.
The operation checked might be a positioning operation;
last halfword:= top transferred(used share)-1;
comment now the share contains availsble data from record base to last
hal fword;

Change of block at output
if share state(used share <> free then
begin

wait transfer(used share);
comment a positioning operation might be uncompleted;

‘ end;

2. Input/Output System

Page 42 ALGOLS, User’s Guide, Part One

start transfer(output); ‘
used share:= used share mod sh+1;

comment one or more shares behind used share are busy with transfers;
wait transfer(used share);

comment share state becomes free and the share may be filled from record
base to last halfword;

Start_transfer (share).

This procedure works only on used share. It sets a part of the message
and sends it (written in pseudo ALGOL):

first absolute address of block:=

abs address of first shared;

segment number of message:= segment count;<* on bs *>
update segment count for next transfer;

operation in message:= operation;

comment the mode is left unchanged;

send message; .

share state:= uncompleted transfer;

Wait_transfer (share).

This procedure waits for the answer from a tape transfer or positioning,
checks it, and performs the standard error actions (error recovery).
Finally it may call the block procedure of the zone. In details this works
as follows (written in pseudo ALGOL):

record base := abs address of first shared(used share)-1;
last halfword:= abs address of last shared(used share)+1;
record length:= last halfword-record base;
st:= share state(used share);
if st <> running child process then
share gtate (used share):= free;
if st <> uncompleted transfer then
goto return;
wait answer(st); ‘
if kind = magnetic tape and
not tape mark sensed and
(status in answer > 0)
or some words were transferred
transfer position from
answer to zone;
compute logical status word;
top transferred(used share):=
if operation = jo then
1+address of last halfword transferred else
first shared(used share);
users bits:= common ones in logical status and give up mask;
remaining bits:= logical status-users bits;
perform standard error actions for all ones in remaining
bits (cf. 2.3.3);
if hard error is detected then
logical status:z logical status+1;
if hard error is detected or users bits <> 0 then ‘

Input/Output System

ALGOLS, User’s Guide, Part One Page 43

begin <*call blockprocedure*>
b:= top transferred(used share)-1-record base;
let record describe the entire shared area from first
shared to last shared;
save:= zone state;
if operation = input and tapemark and b=0 then
b:= 2;
blockproc(z, logical status,b);
zone state:= save;
if b < 0 or btrecord base > lLast halfword then
index alarm;
top transferred(used share):= b+1+record base;
return
end;

Compute logical status word.

The logical status word is 24 bits generated at the end of an operation
on the document:

<* bits 18 to 22 from monitor *>
result:= monitor (18,z,used share,answer);
<* wait answer result *>
logical status:= 1 shift result;
<* bits 0 to 11 from monitor *>
if result = 1 <* normal answer *> then
logical status:= logor(logical status, answer(1));
<* add bits 0 to 11 from hardware status in answer *>
<* bits 15 to 17 from wait transfer *>
<* stopped bit 15 *>
if (modekind = bs or operation = output)
and ‘not everything has been transferred’ then
logical status:= logical status add 1 shift 8;
word defect bit 16 *>
modekind = magtape then
begin
if ‘characters transferred do not fill an integral
number of words’ then
logical status:= logical status add 1 shift 7;

>4

end;
position error bit 17 *>
if modekind = magtape then
begin
if tape mark sensed and
not move operation then
transfer answer position to zone;
if answer position <> filecount, block count then
logical status:= logical status add 1 shift 6;
end;

'

2. Input/Output System

Page 44

3. Fields

ALGOLS, User’s Guide, Part One

3. Fields

Field variables is a tool in ALGOLS8 which makes it easy to address all
types of variables in a zone record or an array.

3.1 File, Record and Field

A file on a document (e.g. a backing storage area) may consist of set of
records. A record may be regarded as a set of fields, where a field is the
smallest entity which in some connection is considered as a unit of data.

The terms file, record and field will only have a meaning when they are
defined together with a specific data set and the operations on it.

Example 3-1, record manipulation.
A use of these concepts could be:

read a record from a file by means of the high level record procedures
(cf. chapter 2) change some of the variables using fields to specify the
type and length of the record elements, and finally write the record back
or to another file.

begin
<* ingert record numbers in all records in a file *>
integer field recordno, rlength, end value;
zone zin, zout (128,1,stderror);
integer i;
open (zin, 4, <:input:>, 0);
open (zout,4, <:output:>, 0);
rlength := 2;
recordno := 6;
end value := 10;
i:= 1;
<* the file has an end record as the last record *>
repeat invar(zin);
zin.record := i;
ic= i+1;
outvar(zout,zin);
until zin.end value = 9999999;

ALGOLS, User’s Guide, Part One

close(zin, true);
close(zout,true); end;

Page 45

Example 3-2, a zone record describes a simple invoice and has the
following structure:

Note: z(1) contains length and check sum.

zone field tength in field vari- field
element name hal fwords able type value
customer_no 2 integer 6
2(2) internal_cust 1 boolean 7
empty 1
2(3)-2(5) customer_name 12 long array 8
2(6) first word zip code 2 integer 22
2(6) sec. word customer_addr 16 long array 22
to 2(10) first word
z(11) first word item_no 2 integer 42
z(11) sec. word no_ordered 2 integer &4
2(12) price 4 long 48
2(13) discount 4 long 52
z(14) amount 4 long 56

z.fieldname will address the wanted part of the zone record.

The field variable must point to the rightmost halfword in the required

zone part if it is a simple field.

If it is a one dimensional array, the field value must point to its
preceding halfword.

The addressing of this zone record with fields is shown in the following

table:

3. Fields

Page 46

3. Fields

ALGOLS, User’s Guide, Part One

Table 3-1.
Record Field name Hal fword Initialized field
element ring variable value
record_length 2
z(1)
check_sum 4
customer_no é customer_no
z2(2) internal_cust 7 internal_cust
- not used - 8 customer_name
10
z(3)
12
14
z(4) customer_name
16
18
z(5)
20
zip_code=
zip_code 22 customer_addr
z(6)
24
26
z(7)
28
30
2(8) customer_addr
32
34
(9
36
38
z(10)
- not used- 40
item_no 42 item_no
(1) = -
no_ordered &4 no_ordered
46
z(12) price
48 price
50
z(13) discount
52 discount
54
2(14) amount
56 amount

The following program will read a record like this and write some

elements on current output.

begin
integer i;

zone z(128,1,stderror);

<* declaration of field variables *>

integer field customer_no, item_no,no_ordered,zip_code;
boolean field internal_cust;

long field price, discount, amount;

long array field customer_name, customer_addr;

<* initializtion of field variables is done ~elative
to make a change easy *>

customer_no:=

internal_cust:=

ix= 6;

i= i+1;

ALGOLS, User's Guide, Part One Page 47

i=1;<* not used *>

customer_name:= i;

iz=

i:=

i:z i+12;
zip_code:= iz= i+42;
customer_addr:= i:= i;

i:= i+16;

i:= §i+2; <* not used *>
item _no:= iz i+2;
no_ordered:= f:= i42;
price:= i:= i+4;
discount:= iz i+4;
amount := isx i+d;
<* end init *>
open(z,4,<:record:>,0);

<* open to backing storage with records created
with outvar *>

invar(z);

<* now & zone record is available *>

write(out,"nl”,1,<:customer number:>,
<<dddddd>, z.customer_no,
“nl*,1,<:customer name:>, z.customer_name,
“ni®,1,<:customer address:>,z.customer_addr,
"nl",1,<:item number:>,z.item_no,
“ni*,1,<total sales price:>,<<dddddddd>,z.amount);

close(z,true);

end;

3.2 Field Elements

A field reference consists of a field base and a field variable separated
by a period. A field reference is either a simple field or an array field.
3.2.1 Field Base

The field base is the array or zone record in which the field is found.
Note that the array may be an array field.

3.2.2 Field Variable

The field variables are the pointers to the wanted part of the field base.
A field variable can be a simple field variable or an array field variable.

A simple field variable used as reference in the field base will give a
simple field, and an array field variable used as reference will give an
array field.

3.2.3 Simple Field Variable

A simple field variable points to a single element of the field base. This
element is specified to be of type boolean, integer, long or real by the
type of the simple field variable. This type specifies therefore the field
length of the element as follows:

3. Fields

ALGOLS, User’s Guide, Part One

simple field variable length of simple field in .
type halfwords

boolean 1

integer 2

long 4

real 4

3.2.3.1 Value of a Simple Field Variable

The value of the simple field variable is of type integer independent of
the type of the variable. This integer value is a halfword pointer, which
selects the wanted element, in the field base. _

The value of the pointer depends on the type of the simple field
variable.

The halfword numeration is the lexicographical ordering of the array (or ‘
zone record) (cf. [14]).

The halfword with number 0 (zero) is the last halfword in the (possibly
fictive) array element with subscripts (0,...,0).

Booleans fields are addressed by their halfword number. Integer fields
are addressed by one of the 2 halfwords of the integer word. Long or
real fields are addressed by one of the 2 halfwords in the rightmost
word.

The field reference is only valid if the simple fields are inside the bounds
of the field base.

A simple field variable can be assigned values throughout the program.

Example 3-3,

begin integer i; .

<* declaration of the field variables *>
integer field if1, if2;

long field Lf1;

real field rfi;

<* field base a *>

long array a(1:100);

<* initializtion of fields *>
ifl:= i:= 2;

if2:= i:= §+2;

Lfl:= f:= §+4;

rfl:= j:= j+4;

<* gimple field references *>
a.ifl:= 1; a.if2:=2;
a.lf1:= 3; a.rfl:= §4;

end
The first 12 halfwords of the array a are assigned

ALGOLS, User’s Guide, Part One

Page 49

a.if1 a.if2 a.lf1 a.rf1
halsword: |0 | 112{3]4|5]6{7 {89 [10{11]12{13]1a]15}16
a(0) a(1) a(2) a(3) a(4)
a.if1 will address first word of a(1)
a.if2 will address second word of a(1)
a.lf1 will address a(2)
a.rf1 will address a(3)
‘ Example 3-4, halfword numbering.
If a program contains the declarations
real array ra(l:3); long array la(1:3);
integer array ia(l:5); boolean array ba (1:11);
then the halfword numeration is according to this scheme:
ra(1) ra(2) ra(3)
1 2 3 4 5 ¢ 6 7 8 9 10 11§ 12
la(1) la(2) la(3)
‘ ia(1) ia(2) ia(3) ia(4) ia(5)
1 2 1 3 4 5 6 7 8 9 10

ba (1) ba(2) ba(3) ba(4) ba(5) ba(6) ba(7) ba(8) ba(9)bz(10)ba(11)

1

2 3 4 5

6 7

8

9

10 | 1

Example 3-5, lexicographical index.

If a program contains the declaration

real array B(1:2,0:1),

the array will be numbered like this lexicographical index:

3. Fields

Page 50

3. Fields

ALGOLS, User's Guide, Part One

0 1 2 3 4 5
B(0,0) B(0,1) B(1,0) B(1,1) B(2,0) B(2,1)
nalf| o f41213lalsiel7l8]olro]11]12}13]14]15}16]17]18]19}20
word

T
non existent Tlower bound upper bound
hal fword halfword

3.2.4 Array Field Variables

An array field variable will point to an array within the field base. The
elements of this array are specified to be of type boolean, integer, long
or real by the type of the array field variable. This type specifies the
length of the array elements (cf. 3.2.2).

The array field variable is considered to be declared one dimensional.

3.2.4.1 Value of an Array Field Variable

The value of the array field variable is an integer independent of the
type of the variable. This integer value is a halfword pointer selecting a
part of the field base. The value should be the halfword number in the
field base which defines the possible fictive element (0) of the array
field. As the latter is always one dimensional the pointer should be the
upper halfword number of the subscript 0 (zero) of the array field.

3.2.4.2 Bounds of Array Fields
The array must be within the field base. No check is made that the
subscripts are outside the array field. But it is checked that the

subscripts are not outside the original field base.

lower bound of array field =
lower bound of field base - array field variable

upper bound of array field =
upper bound of field base - array field variable

Example 3-6, array fields.

begin
<* declaration of field variables *>
integer field length, al;

integer array field iaf;
boolean array field baf;

<* field base a *>

long array a(1:5);

<* initialization of fields *»

ALGOLS, User’s Guide, Part One Page 51

‘ length:= 2;

al := 6;
iaf :=0;
baf := 12;

<* array field references *>

a.iaf(5) := 1; a.iaf.length:= 20;

a.baf(8) := “3"; a.baf.al := &4;
end;

a.baf (-11) a.baf (0) a.baf (8)
;.iaf.length a.iafr.a1 a.iaf (3) * a.l;)af(Z) %.baf.a1

half

ol1t2131l4l5}6}7{8{9}10{11}12{13}14}15§16}17{18}119420
word

a(0) a(1) a(2) a(3) a(4) a(5)

Example 3-7, array fields.

The index bounds for the array field baf from the above example are as
if it was *declared”:

boolean array a_baf(-11:5);

3.2.5 Fields as Parameters to Procedures

Note that field variables may be used as actual parameters to
procedures. They behave as integers. Formal parameters may be
specified as field variables, but they must not be called by value. The
actual parameter must be an integer. They act as field variables in the
procedure body.

Simple fields as actual parameters are handled in the same way as
subcripted variables. This means that if the corresponding formal is not
called by value, the field will be evaluated each time the formal is
referred (Jensen’s Device).

Array fields are evaluated and a description of the array field as an
array is set up before the procedure is entered. This description, local to
the procedure, is made in such a way that references to the array
parameter are just as effective as references to an array declared local in

the procedure body.

If you restrict yourself to using actual array field references where the
reference halfword index is a multiple of the type length, and the field
base is one dimensional with lower bound 1, you will hardly run into
trouble.

Otherwise the formal array may be ’cut’ in order to ease and secure
index check in the procedure body. The ’cutting’ is made so that the
number of halfwords between the reference halfword of the array field
and the first accessible halfword of the formal array is a multiple of the
type length. The term 'between’ is to be understood so that

3. Fields

Page 52 ALGOLS, User’s Guide, Part One

(address(ref halfword) - address(lower bound halfword) -1) .
mod typelength = 0

is true.

Example 3-8,
Consider a program like this:

long array longa(1:2);
long array field laf;
procedure test(la);
long array la;
begin boolean field bf;
integer i;

... lagi) ... la.bf ...

end; .

test(longa.laf);

For some values of laf, the accessible parts of the formal array la may be

sketched like this
laf interval interval
of i of bf
-4 S 6 7 8 9 10 1 12 2:3 5:12
-3 5 6 7 8 9 107 1 2:2 5:11
-2 5 6 7 8 9 10 2:2 5:10
-1 5 6 7 8 9 2:2 5:9
0 1 2 3 4 5 6 7 8 1:2 1:8
1 1 2 3 4 5 6 7 1:1 1:7
2 1 2 3 4 5 6 1:1 1:6
3 1 2 3 4 5 1:1 1:5
4 -3 -2 -1 0 1 2 3 4 0:1 -3:4

3. Fields

ALGOLS, User’s Guide, Part One Page 53

. Halfwords with equal locations are shown in the same column.

The reference halfword numbers corresponding to indexing in la are
bold and underlined, and the halfwords accessible by direct indexing are
shown in boldface. The word boundaries are shown as vertical lines
going from line to line.

In arrays which are fields, the word boundaries are only between an
even numbered halfword and its odd numbered successor, if the value of
the field variable is even.

If an actual array in a procedure call is a multiple fielded array or

record, only the type length associated with the last array field variable
is used in a possible ‘cutting’ of the lower bound.

3. Fields

Page 54

4. Context Blocks

ALGOLS, User's Guide, Part One

4. Context Blocks

The context concept is a very useful tool in application programs
handling on-line terminal systems, and for programming ’coroutines’ (cf.
4.2), and various other things.

A program that is to serve several terminals does not know from which
terminal to take the input at a given time. This is not known until the
input operation is completed, which means that the communication
initiative is taken by the terminal operator, and not by the program. Two
consecutive transactions may thus quite well originate from different
terminals, which circumstance makes it difficult to express the
processing of a sequence of transactions from the same terminal.

In such program the terminals usually have a set of terminal variables.
These variables describe the state, function, type, and the like of the
operations performed on the terminal in question. These variables are
normally the same for all the terminals in the system. Therefore a set of
equally defined variables is needed.

It should be easy for the application program to access the terminal
variables belonging to the terminal from which input is actually read.
The context blocks will solve these problems. A declaration of a context
block will make the context variables available in a number of
incarnations i.e. one per terminal. When the context block is entered the
variables of one of the terminal incarnations is selected for processing.

Example 4-1, transaction series from a terminal.
In the following example two procedures are assumed to exist:

wait_trans(z,device,...); and
read_field(z,...);

wait_trans awaits the arrival of a transaction from zone z by jump-out,
the value of ’device’ is the identification of the terminal from which the
input was received, whereas the zone z is positioned to the first
character of the transaction.

read field positions to the first character of the next field of the
transaction procured by calling wait_trans. The example is now as
follows:

ALGOLS, User’s Guide, Part One Page 55

next_transaction:
wait_trans(in,device,...);

begin context(device, 10, mode);
integer array a(1:20); boolean more_fields;
real x,y; integer i,j,k; long L;

next field:
read_field(in,...);
read(in,x,y,i,j,k,1);
read_string(in,as,1);

if more_fields then goto next_field;

end context block;
goto next_transaction;

After the call of wait trans the device number is defined. This identifies
‘ an incarnation of the context block shown, which has thus one
incarnation for each of the 10 terminals.

The example outlines a way of programming the processing of a
sequence of transactions from the same terminal.

4.1 Context Block Elements

A context block is an ordinary ALGOL block, semantically extended
with certain properties. A context block is declared as follows:

begin
context(incarnation,no_of_incarnations,context_mode);
<* declaration of simple variables,arrays,etc. *>
end;

. An ordinary ALGOL block and a context block differ as follows:
Immediately after the block *begin’ follows the context declaration:
context(incarnation,no_of_incarnations,context_mode)
where the three declaration parameters: incarnation, no_of
incarnations, and context mode are all integer expressions, the values of

which must be defined at the block entry.

Declaration of zones and zone arrays in the head of the block is not
permitted.

The context declaration is not permitted to appear more than once in
the head of the block.

The local variables (simple as well as arrays) declared in the head of a
context block are also called context variables.

4. Context Blocks

Page 56

4. Context Blocks

ALGOLS, User’s Guide, Part One

Context blocks are permitted anywhere in an ALGOL program (or
external procedure), where ordinary blocks are permitted. However,
they cannot appear as a procedure body, i.e. they have to be enclosed in
the begin-end of the procedure body.

The context declaration specifies the number of incarnations of the

context variables, the actual incarnation and the way the context
variables should be handled when the context block is entered and left.

Example 4-2, context declaration.

begin
context(i,n,3);
<* context variables: s,t,x,a,b *> -

real x; integer s,t; real array a,b(i:m);

begin
real y,z; integer j,mode;
real array p(1:20); zone 2(128,1,stderror);

begin
context (j,10,mode);
<* context variables: s,t1,l *>
integer s,t1; long 1;

In this example all block declarations are permissible constructions.
Note that the zone declaration in the 2’nd block is permissible, because,
it does not appear among context variables.

4.1.1 Incarnations

The context declaration defines a number of incarnations of the
declared block, the incarnations being numbered: 1,2,3,..,<no of
incarnations’. The declaration parameter <incarnation> represents
such an incarnation number. An incarnation number is related to each
execution of a context block. If two different executions of a context
block have the same incarnation number, they define the same
incarnation of the context block. The number of different incarnations is
thus equal to the value of the declaration parameter: <no of
incarnations>.

4.1.2 Incarnation Interval

When a context block is executed for the first time, the actual value of
<no of incarnations> defines the number of differen: incarnations of
the block. This value will then remain frozen for the repeated use of this
binary program, although the value may be changed by the program

ALGOLS, User’s Guide, Part One Page 57

during the execution. The value can be changed using the context mode
’new block bit’ in a later execution of the context block (cf. 4.1.4).

The incarnation interval:

1 <= incarnation <= no of incarnations

is then defined.

4.1.3 Context Variables

The context variables are the local variables declared in the head of a
context block. Zones cannot be declared as context variables.

When a context block is declared, space for the context variables is
reserved the number of times specified by 'no_of incarnations’, but
only one of the incarnations is accessible at a time.

Before the first statement in the context block is executed, the context
variables of the context block are initialized to values depending on
which incarnation is to be executed. When the block is left (via the last
end in the block or by means of a goto statement) the values of its
context variables are stored in such a manner that the value of the
variables can be retsored by the stored values in the next execution of
the same incarnation of the block. The declaration parameter <context
mode> governs the initialization and storing of context variables (cf.
4.14).

4.1.3.1 Initialization of Context Variables

At the entry point of a context block, and before the first statement is
executed, the following is done:

a) The declaration parameter <incarnation> is evaluated and it is
verified that it is within the incarnation interval. This value
remains unchanged throughout the execution of the context block,
although it may be changed through assignments, etc., (it has thus
the same status as value parameters in procedures). In this way an
incarnation of the context block is selected. To the incarnation is
related just one record, the fields of which are identical to the
context variables of the block. To each context block are thus
connected <no of incarnations> records. The records are called
context records.

b) Next, the context variables of the block are initialized. If the
incarnation has been executed before, the contents of the relevant
context record will be transferred to the context variables of the
block (depending on context mode). If it is a first time execution of
the incarnation, all the context variables of the block are zero-set
(binary 0). This zero-setting is also performed when ’new
incarnation bit’ is specified in the context mode.

The topical array lengths define at the same time the maximum array
lengths applicable to this incarnation. This means that an array length,

4. Context Blocks

Page 58

4. Context Blocks

ALGOLS, User's Guide, Part One

in all subsequent executions of this incarnation, shall be less than or
equal to the maximum length.

The transfer of values between context records and context variables is
done in accordance with the normal lexicographical ordering.

4.1.3.2 Storage of Context Variables

At the exit an incarnation of from a context block (via the last end in the
block, an exit operator, or a goto statement) the context variables of the
incarnation are stored (depending on context mode) in the context
record belonging to the incarnation, as follows:

* If the incarnation was executed for the first time this means that
the corresponding context record does not exist. Such a record is
now established in the virtual store connected to the program (cf.
4.4).

* The values of the context variables of the incarnation are
transferred to the context record belonging to the block and its
incarnation.

If several context blocks are nested into one another, and if jumps occur
out of several context block levels, the process described above will take
place for each of the context blocks thus being left.

4.1.4 Context Mode

The actual value of <context mode> affects the action described under
4.1.2,4.13.1, and 4.1.3.2. The value is regarded as a bit pattern:

Read bit: 1 shift 0

The action described under 4.1.3.1 b) is not executed unless ’read bit’ is
set. If ’read bit’ is not set, only the zero-setting of context variables is
performed.

Write bit: 1 shift 1

The action described under 4.1.3.2 is not executed unless 'write bit’ is
set. "Write bit’ = 0 is therefore useful for references to and searching in
context records.

Save bit: 1 shift 2

The context record is written into the file containing the virtual store
every time the context block is left (cf. 4.5). If only the *write bit’ is set
the context records are not updated in the virtual storage file.

New block bit: 1 shift 3
If ’new block bit’ is set, the action is as if this context block was executed
first time. Even in the case of context records already established, such
records are abandoned.

New incarnation bit: 1 shift 4
If 'new incarnation bit’ is set, the action is as if this incarnation was
executed first time.

ALGOLS, User's Guide, Part One Page 59

4.2 Coroutines

With the context concept are connected two context statements and one
standard procedure, permitting a context block to be considered a
coroutine in <no_of_incarnations> incarnations.

The two statements are described below.

42.1 Exit
The exit statement is a goto statement, which leaves a context block in

such a way that the same incarnation can restart execution next time
with the statement immediately following the exit call.

‘ The syntax is:
exit (<designational expression>)
where it is required that:
* The statement shall be found in a context block only,

* The block level at which an exit statement is found shall be
identical to the level of the context block,

* The statement shall be found outside repetitive statements
embedded in context blocks.

The exit statement has the following effect:
The restart point (also called the continuation point), i.e. the logical
address of the statement immediately following the exit statement, is

stored in an anonymous context variable. This variable is called the
. context label belonging to the incarnation.

Jumping to the point of <designational expression>, is done exactly the
same way as via a goto statement, i.e. the action described under 4.1.3.2
is performed.

More exit statements are permitted in the same context block, and each
incarnation has its own specific context label.

The value of a context label is either a continuation point or 0 (zero). A
continuation point can be created by an exit statement only. The zero
value is found in the following situations:

- first time the incarnation is executed,

- when ’read bit’ has not been set,

- when ’new block bit’ or new incarnation bit is set.

4. Context Blocks

Page 60 ALGOLS, User’s Guide, Part One

422 Continue o

The context statement continue is a goto statement which jumps to a
context label.

The syntax is:

continue

where it is required that the statement is found in a context block. The

block level at which it is found may be different from the context block

level (i.e. inner block).

The statement has the following effect:

- if the context label belonging to the incarnation is zero, the
statement is blind. This means that the execution goes on with the
next statement,

- if the context label belonging to the incarnation has the value of a .
continuation point, the execution continues in that point.

4.2.3 Resume

The standard procedure resume works as the context statement

continue, except that the context label is cleared (zero-set) after

execution. This means the a context label can only be used once by the
procedure resume.

4.3 Examples

In the following are given a number of examples of context blocks.

4.3.1 Continue and Exit '

The following example illustrates one way of using exit and resume.

Example 4-3, continue and exit
next:

begin
context(i,n,mode);
array a(1:10); real x,y;

continue;
<* goto |1 or 12 depending on context label *>

exit(next);

<* goto next, set context label to L1 *>
l1:

4. Context Blocks

ALGOLS, User's Guide, Part One Page 61

' exit(next);

<* goto next, set context label to L2 *>
l2:

end context block;

4.3.2 Relation to the concept of owns

In the following example the context declaration has the same effect as
an own declaration of x,y, and a (although an array cannot be declared
own). The context concept can thus be considered a generalization of

the own concept in the ALGOL60 sense (cf. warning in example 4-6,
however).

Example 4-4, relation to the concept of owns

. begin
context(1,1,3);

real x,y; real array a(1:n);

end;

4.3.3 Context Records

The following example illustrates the interrelation between context
variables and context records.

Example 4-5, context records

begin context(i,3,3); P -—-—— context record
integer p,q; real x; q belonging to in-
. array a(1:i); X carnation no.1
a(1)
end; P ---—— context record

q belonging to in-
carnation no.2

To the context block
shown are connected 3
context records of dif-
ferent lengths. Both
‘read bit' and 'write

P -—— context record

bit' are set. d belonging to in-
X carnmation no.3
a(1)
al(2)

4. Context Blocks

Page 62

4. Context Blocks

ALGOLS, User’s Guide, Part One

4.3.4 Record Classes

The following is an example of the use of context blocks in connection
with the handling of record classes with appurtenant code.

Example 4-6, record classes

integer procedure next_record(action,record, last_record);
integer action,record,last_record;
begin
integer mode;
mode:= case action of (3,1,3,2,...);
begin -
context(record, 1000, mode) ;
long array text(1:50);
integer version, chars,chain;

case action of
begin .
comment,only 4 actions shown;
<*1*> begin
version:= version+1;
chars:= read_string(in, text,1)*6;
next_record(3, last_record, record);
end;
<*2*> begin
write(out,<:<10>version:>,version,<:<10>:>);
write (out,text);
end;
<*3*> chain:= last_record;
<*4*> <* dummy action = clear record *>
<*5*> ...
end case;
next_record:= chain;
end context block;
end procedure next_record;

The procedure defines a class consisting of 1000 records. A record ’
contains a text field (array text), a version number (version), and a chain

to the next record (chain). The 1000 records constitute a number of
single chained chains. The vaule of the procedure call is the number of

the following record in the chain.

The following statements will output the chain of records starting with
record no. <first record> and ending with a record having no
SUCCESSOT:

next:= first_record;
for next:= next_record(2,next,0) while next <> 0 do;

The statement:

next_record(1,n,m);

ALGOLS, User’s Guide, Part One Page 63

will change the contents of record no. n (or establish one, if it is not
found), and link it to the chain, so that it follows after record no. m, and
increase the version number by 1.

Note that action no. 1 in the context block calls the procedure
recursively.

Caution:

If the procedure is called recursively by the same incarnation, the
relation to own variables referred to in example 4-4 will no longer be
applicable, because a context record is not updated until block_exit.
Own variables are in fact always directly updated (in assignments, etc.),
whereas the fields in context records are updated through context
variables, which during the updating are separated from the record.
Only at block_exit are these variables transferred to the record.

Recursive calls of context blocks, using the same incarnation, should
therefore be subject to caution.

4.4 Virtual Storage File

All context records in the program are kept in a Virtual Storage File,
related with the program. When the program is called, this virtual
storage file is the extension of the program file itself. Segment transfers
to and from this storage file are integrated into the paging algorithm
used to transfer normal program segments. The program is thus, in a
way, selfmodifying. If the program is called more times, the context
records will assume the values stored in the virtual storage file by the
previous execution.

The file containing the program must have a scope giving write access to
the file.

The upper limit of the volume of the virtual storage file (program not
included) is 24 000 000 characters (= 16M halfwords).
4.4.1 Openvirtual, Virtual

Another backing storage area can be connected as virtual storage file to
the program by means of the procedures: ,

openvirtual (name_of_file);
string name_of_file;

or

' virtual(name_of_file);

string name_of_file;

where name_of file is the name of the file intended for virtual storage
file. The function is as follows:

4. Context Blocks

Page 64

4. Context Blocks

ALGOLS, User’s Guide, Part One

In case of openvirtual, the file connected as virtual storage file is
disconnected, i.e. all own variables, internal descriptions, etc., are
transferred into the file.

Both procedures then connect the new file to the program as virtual
storage file in a way depending on the contents of the catalog entry of
the file, cf. [6].

Contents= 0:

The file is considered a file which has not previously been used as a
virtual storage file in connection with context. ’openvirtual’ or *virtual’ is
to be called before execution of any context block. The catalog entry of
the file gets contents key = 9, and all own variables, internal
descriptions, etc. are written at the start of the file. Now the file is the
virtual storage file of the program.

Contents= 2:

The file is considered a program having as an extension the virtual
storage file of this program. The own variables and internal descriptions
of the calling program are initialized by values fetched from this virtual
storage file. It is a prerequisite hereof that the structures of own
variables and context blocks must be equal in the two programs. After
‘openvirtual’ or ‘virtual’ has been called, the calling program will
continue with the new virtual storage file; i.e. context records
established by the other program are now used by this program.

Contents= 9:

The file is considered a virtual storage file which has previously been
used by this program (or other programs) in connection with context.
The function is, otherwise, the same as for contents= 2.

NOTE:
’openvirtual’ and ‘virtual’ are not to be called within a context block.

4.5 Program Restart

It is guaranteed in the implementation that a context record is explicitly
written back into the file connected as virtual storage file, provided that
‘write bit’ and ’save bit’ are set, even if the segments, in which the record
is stored, are found in memory. The virtual storage file, which is thus
currently updated, survives the program termination. When the program
is later called in the normal way, it will be in a position to continue with
the virtual storage file in its most recently updated condition.

If ’save bit’ is not set, the writing into the file is only done when the
paging algorithm of the runtime system requires segment space in
memory. However, at program termination, just before exit, all context
data segments, which have been updated, are written back into the file.
This ensures that the virtual storage file contains updated values of the
context records at program end.

ALGOLS, User’s Guide, Part One Page 65

5. Text Handling

Text or string variables are not implemented in ALGOLS, but strings
can be parameters in procedure calls (e.g. open).

5.1 Storing of Texts

Text constants belong to either of two groups: short texts and long texts,
cf. [14].

Short texts are texts with less than 6 characters, which may be moved to
a long or a real variable. The last position of the text is a null character.

Long texts are texts with 6 or more characters, which may be moved to
an array, usually of type long.

The value of a long text string is a reference to the address where it was
stored by the compiler.

All texts are stored with 3 characters per word.

. The standard procedures read, readall, readstring and movestring may
move a text string into an array.

The operators add, long, and real may help to store a text directly in a
variable.

Example 5-1, storing of texts in variables.

The following piece of code will cause the variable ’time’ to contain the
text ’time’, the variable ‘number’ to contain the text ’number’ and array
’address’ to contain the text 'Lautrupbjerg 1-3, Ballerup’.

begin
long time, number;
long array address(1:%);
time:= long <:time:>;
number:= long <:numbe:> add ‘r’;
<* /pr! is the value of the letter r, this

5. Text Handling

Page 66 ALGOLS, User’s Guide, Part One

letter is added to the position of the .
null character.
Number is now containing a text portion and
can be written out as follows:

write (out,string number) *>

movestring (address, 1, <: Lautrupbjerg 1-3, Ballerup :>

<* address is now containing a text packed in an array
and may be written: write (out, address; *>

end;

5.2 Isolation of Text Parts
Fields can be used to single out parts of a text string stored in an array.

If a part of a text stored in a long or real variable is to be moved to
another variable this may be done by use of the operators: shift and

extract. .

Example 5-2, text parts.

Let the long variable number contain ’ab1234’, where ab is an item
specification and 1234 is a serial number, these two parts of number
should be split into two variables, an integer item and a long partnr.

begin
integer item;
tong partnr;
<* number is assigned outside this block *>
item:= (number shift (-32)) shift 8 extract 24;
partnr:= number shift 16;
<* Note, this is a textstring not a number *>
end

5.3 Comparison of Texts ‘
As a text constant - string literal - is represented by an address made by

the compiler, a simple compare between long texts is not possible. The

texts must be stored in variables and the variables may then be
compared (for other possibilities cf. 5.4). '

Example 5-3, comparing texts.

Cf. example 5-2. Test that the long partnr is equal to the text <:1234:>.

if partnr= long <:1234:> then ... else ...;

If a text should be compared with an integer the following statement will
work

if item= long <:ab:> shift(-24) extract(24)

then ... else ...; .

5. Text Handling

ALGOLS, User’s Guide, Part One Page 67

Example 5-4, comparing long texts
A test like the following will never be true
t:= long <:a12345:>; <*long string*>

if t= long <:a12345:> then goto equal;

In this case it is neccesary to move both text strings to arrays:

real array ral,ra2(1:n);
movestring (ral,1,<:a12345:>);

movestring (ra2,1,<:a12345:>);
if ral(1)= ra2(1) then
begin

if ral(2)= ra2(2) then

goto equal;
end;

5.4 Text Handling Procedures
Procedures to handle texts are found in the algol library, and are:

read, readall, readchar, readstring (read, readall and readstring may
read from arrays)

write, writeint, outchar, outdate, outtext (write and writeint may write
into arrays)

movestring, tofromchar, pos, len
isotable, intable, outtable, tableindex, outindex

The procedures read, readall, readstring, write and writeint, which may
read from/write into arrays are specially helpful when handling texts.

The subpackage Algol Text Procedures is a collection of text handling
procedures for more advanced text handling and text comparison.

5.5 Text Handling in FORTRAN Programs

The present chapter may be fully adapted to FORTRAN programs with
the following corrections:

Short texts are texts with at most 6 characters (Hollerith text or
apostrophed text), which may be assigned to long or real variables

5. Text Handling

Page 68

5. Text Handling

ALGOLS, User's Guide, Part One

(internal type is long). The characters are left justified with NULL filling
(so the last position need not be zero).

Extended texts are only allowed in DATA statements, i.e. apostrophed
texts of any number of characters are assigned to data elements in a
COMMON block, e.g. to arrays.

Since string parameters and string expressions are unknown in
FORTRAN, the procedure movestring is of no use and the procedure
write cannot be called with an actual string parameter.

The procedures read and write may be used if called through alias
names, since read and write are reserved names in FORTRAN.

ALGOLS, User’s Guide, Part One

Page 69

6. Mathematical Procedures

In this chapter is shown a list and a short description of the available

mathematical procedures within the ALGOLS system. See further

descriptions in [15]. The standard RC8000 software mathematical and
. statistical package [16] will contain additional procedures.

The procedures here and in [16] are usable in FORTRAN programs as
well as in ALGOL programs. For some of the procedures in [16],
precautions should be made for the ALGOL parameter type "call by
name" when the so-called "Jensens Device" is exploited.

arcsin
arctan
arg

cos
exp
1n

random

sgn

. sign
sin
sinh
sqrt
tan

log

Is the mathematical function arcsin(r).
Is the mathematical function arctan(r).
Is the argument in radians of the complex
number (u,v).

Is the mathematical function cos(r).

Is the exponential function e**r,

Is the natural logarithm function 1n(r),
base e.

Computes two pseudorandom numbers, a real
and an integer.

Yields -1 or 1 according to the sign of
the parameter.

As sgn but = 0 if parameter is O.

Is the mathematical function sin(r).

Is the mathematical function sinh(r).

Is the square root function sqrt(r).

Is the same as arctan, the name is for use
in fortran programs

Is the same as 1ln, the name is for use in
fortran programs

6. Mathematical Procedures

Page 70 ALGOLS, User's Guide, Part One

7. Operators And Standard Procedures
Working As Operators

This chapter contains a list and a short description of the available ‘
operators defined in the language.

Furthermore, standard procedures with related functions are listed. See
further description in [15].

7.1 Arithmetic Operators
The arithmetic operators:

plus
minus
multiply
divide
/ integer divide
* exponentiation

NN * 0+

have their usual meaning. ‘
Operators performing arithmetic operations:

abs

This operator yields the absolute value of integer, long or real
expressions.

entier

This operator transfers a real expression to the largest integer not
greater than the expression.

mod
This operator yields the remainder corresponding to an integer division.

7. Operators And Standard Procedures

ALGOLS, User’s Guide, Part One Page 71

7.1.1 Transfer Functions

The transfer functions will cause a type change of the operand.
Assignment of a variable to an expression of different type, will cause a
type transfer, except for type boolean.

extend
This operator converts an integer expression into a type long.

extract
This pattern operator extracts a number of the rightmost bits, the result
is of type integer.

long
This operator changes the type of a string or real expression into type
long.

real
This operator changes the type of a string or long expression into a type
real.

round
This operator rounds the value of a real or long expression to the
nearest integer.

string
This operator changes the type of a real or long expression into type
string.

7.2 Logical Operators

The logical or boolean operators:
and logical and

or logical or

- implication

— equivalence

not logical negation

have their usual meaning.
Standard procedures performing logical operations:

exor
Is the logical function exlusive or.

logand
Is the logical function and. More types can be used as operands.

logor
Is the logical function or. More types can be used as operands.

7. Operators And Standard Procedures

Page 72 ALGOLS, User’s Guide, Part One

7.3 Pattern Operators ‘

These operators can be used in both arithmetic and boolean
expressions:

add
This dyadic pattern operator will perform a binary addition. The type of
the left hand operand will determine the type of the result.

extract

This pattern operator extracts a number of the rightmost bits, the result
is of type integer.

shift

This pattern operator will perform a logical shift of the left hand
operand.

7.4 Relational Operators .

The relational operators:

< less than

<= less than or equal

- equal

S greater than or equal
> greater than

< not equal

have their usual meaning.

7. Operators And Standard Procedures

ALGOLS, User’s Guide, Part One Page 73

8. Standard Identifiers And Procedures

This chapter contains a short description of the standard identifiers and
procedures not mentioned in the previous chapters. Further description
in [15], [17] and [18].

. The standard identifiers and procedures may be used in FORTRAN
programs as well as in ALGOL programs.

The elements are listed after functions.

8.1 Run Time Survey
Procedures to control the program at run time:

systime
Systime gives access to the real time clock in the monitor and to the
CPU time used by the job.

trap

A standard procedure changing the traplabel in an ALGOL block. The

traplabel defines the program returnpoint in case of an error detected in
. runtime system check routine.

getalarm

A standard procedure to grap the runtime alarm which would have been
printed, if the program had terminated and trapmode had allowed it to
be output.

alarmcause
Contains the cause of a suppressed runtime alarm.

trapmode
This bitpattern may cause the output of an runtime error message to be
skipped.

endaction

The value governs the action when the program terminates:
- return to the file processor ’end program’

- return to the file processor ’break routine’

- send a ’finis’ message to the parent

8. Standard Identifiers And Procedures

Page 74

ALGOLS, User’s Guide, Part One

errorbits
The value defines the ’end program condition’ when returning to the file
processor.

overflows
This integer variable controls the actions on floating point overflow.

underflows
This integer variable controls the action on floating point underflow.

blocksread

This integer variable counts the number of times segments have been
transferred from the backing storage to the memory. The value of this
variable is printed after the program is finished.

progsize
This integer variable holds the size of the program as it was just after
compilation (program segments + 1 segment for owns).

blocksout
This integer variable counts the number of times segments have been
transferred from virtual store to the virtual storage file.

rc8000
This boolean variable tells whether or not the program is executing on
an RC8000 (as opposed to RC9000-10).

8.2 Locking of Segments in Core

lock
Transfers a number of program segments to core and locks them i.e.
they will not be overwritten by other program segments.

locked
Transfers the segment numbers of the segments locked for the moment
to an integer array.

progmode
This standard variable specifies whether the current segment should be

locked or not.

8.3 Miscellaneous

increase
This procedure will automatically increase the argument by one.

movestring
Copies a literal text string to an array.

tofrom
The procedure will copy a set of data from one array or zone record to
another.

8. Standard Identifiers And Procedures

ALGOLS, User’s Guide, Part One Page 75

tofromchar
The procedure will copy a number of characters from a given position in
one array or zone record to a given position in another.

algol
This compiler directive directs the compiler to read source texts from
various sources during compilation.

pos
The procedure will locate a substring in another string of characters,
stored in arrays.

len

The procedure will identify the length of a given string of characters,
stored in an array.

8.4 Procedures for System Communication

monitor

This procedure is the Algol/fortran equivalent to the monitor
procedures (monitor interface).

system

This procedure gives access to various system and job parameters
(runtime system interface).

fpproc

This procedure gives access to a selection of the most useful routines
embedded in the file processor (file processor interface).

8.5 Program to Program Communication

fpmode
Tests an fp mode bit.

setfpmode
Sets or removes an fp mode bit.

8.6 Zone Handling Procedures

getzone, getzone6
Transfers the contents of a zone descriptor to an array.

setzone, setzone6
Transfers the contents of an array to a zone descriptor.

getshare, getshare6
Transfers the contents of a share descriptor to an array.

8. Standard Identifiers And Procedures

Page 76

ALGOLS, User’s Guide, Part One

setshare, setshare6
Transfers the contents of an array to a share descriptor

getstate
Gets the zone state from a zone descriptor.

setstate
Sets the zone state in a zone descriptor.

getposition
Gets the logical position from a zone descriptor.

setposition
Sets the logical position in a zone descriptor and positions the document
if it is a magnetic tape.

initzones
Changes the buffersizes and number of shares of the zones in a zone
array.

resetzones
Resets the buffersizes and number of shares of the zones in a zone
array.

open
Initializes the zone with a given document name and prepares the zone
for input/output.

close
Terminates the current use of a zone and makes it ready for a new call
of open.

stopzone
Terminates the current input/output in the zone making the zone ready
to resume input/output.

8.7 Input/Qutput Procedures

read, readall,readchar, readstring, repeatchar
Inputs one or more items in character form from a document or an
array, possibly with character conversion, converts the items to algol
values, and assigns them to variables or arrays.

write, writeint, outchar, outdate, outinteger, outtext
Outputs one or more algol values in character form to a document or an
array, possibly with character conversion.

replacechar
Changes the special characters of a layout field used by the algol
number to character output procedures.

inrec, inrec6, invar
Makes the next sequence of halfwords or the next variable length record
from a document available as a zone record.

8. Standard Identifiers And Procedures

ALGOLS, User’s Guide, Part One Page 77

outrec, outvar, outrec6

Creates a zone record, initially undefined, or a variable length record
with contents from an array, intended for output to a document at the
next change of block.

changerec, changerec6, changevar

Regrets the latest call of inrec/inrec6, outrec/ outrec6 or
swoprec/swoprec6 or outvar and makes a new zone record available
(initializes a new variable length record).

swoprec, swoprec6

Makes a zone record available, with contents taken from the next
halfwords in the sequence from a backing storage document, intended
for output to the same position of the document at the next
blockchange.

checkvar
Calculates the record checksum of a variable length record as generated
by outvar.

stderror

The standard error block procedure intended for use in zones where you
are satisfied with the standard error actions for the given kind of
document. The procedure just gives up and terminates the program with
a runtime device alarm.

blockproc
Calls the blockprocedure of a given zone.

check
Checks a transfer to or from a document in the way used by the high
level zone procedures.

8.8 Character Conversion

isotable
Initializes a given integer array with the standard ISO 7 bit character
table for use in intable or outtable.

intable, tableindex

Exchanges the current input alphabet or modifies the current input
alphabet used by all character reading procedures.

outtable, outindex

Exchanges the current output alphabet or modifies current output
alphabet used by all character writing procedures.

8.9 Sorting Procedures
The procedures perform in-memory sorting. For further details cf. [17].

8. Standard Identifiers And Procedures

Page 78 ALGOLS, User’s Guide, Part One

newsort .

Creates a zone record in memory with initially undefined contents,
intended to be an active record in the next call of any sorting procedure.

deadsort

Creates a zone record in memory, with initially undefined contents,
intended to be an inactive record in the next call of any sorting
procedure, i.e. it will not be made available by the procedure outsort.

lifesort

Makes available that zone record which is to be the next record in a
sorted string of records from a zone. The winning record is selected
among the active as well as the inactive records in the zone, and all
inactive records are made active.

initsort
Initiates a sorting process in a zone to be used by newsort, outsort,
deadsort and lifesort.

outsort ’

Makes available a zone record, which is the winner in a sorting process
among the set of active records in the zone, intended to be taken away
from the zone before the next call of any sorting procedure.

initkey

Generates a piece of code for comparison of two records in a zone to be
used by newsort, outsort and lifesort. The procedure may be replaced by
changekey6 and startkey6.

sortcomp

Compares two records, using the key comparison code generated by
startkey6, changekey6 or initkey.

startsort6

Initiates a sorting process in a zone, and generates a piece of key
comparison code to be used by newsort, outsort, deadsort, lifesort and
sortcomp.

changekey6 .
Makes it possible to change the key code generated by startsort6.

8.10 Procedures in connection with context
openvirtual cf. 4.4.1
virtual cf.4.4.1
resume cf. 4.2.3

8. Standard Identifiers And Procedures

ALGOLS, User’s Guide, Part One Page 79

® 8.11 FORMATS8000 Procedures

A set of procedures to process IBM 3270 compatible transactions, for
further details cf. [15] and [18].

waitttrans
Awaits the arrival of a FORMATB8000 transaction and gets the fields of
the transaction head.

readfield
Inputs the next field designator of a FORMATB8000 transaction.

opentrans
Outputs a transaction head of FORMATS8000 transaction.

writefield
Outputs a field designator in a FORMATB8000 transaction.

closetrans
‘ Terminates the current FORMATS8000 output transaction.

getf8000tab
Gives access to the FORMATBS8000 character input table.

f8000table
Exchanges the current input alphabet with the FORMATB8000 character
input table.

8.12 Coroutines

The procedures implement a coroutine concept in
ALGOL/FORTRAN, called activities. For further details, cf. [15] and
[18].

activity
. Creates a number of empty activities.

newactivity
Initiates an empty activity with a procedure (coroutine) and starts the
activity.

passivate
De-activates the executing activity establishing its restart point.

activate
Restarts a non-empty activity at its restart point.

w_activity

Waits for an event in the event queue (message or answer), and supplies
the identification of of the activity responsible for the event.

8. Standard Identifiers And Procedures

,

Page 80 ALGOLS, User’s Guide, Part One

8.13 Input in One/Output in Many Zones @

The procedures offer the possibility for input_in_one/ output_in_many
zones in parallel, multibuffered and without need of in-memory data
movement.

buflengthio
For a given blocklength and a given number of shares, the procedure
returns the bufferlength to be used in a zone array declaration intended
for inoutrec.

openinout
Prepares a zone array for input in one/output in many zones, each zone
already being connected to a document.

expellinout
Expells a zone among the set of output zones in the zone array from
further use until another closeinout or openinout.

closeinout .

Terminates the use of the zones in the zone array making them ready
for other use as before openinout.

inoutrec

Makes a record available in the zones of the array. The contents of the
record is obtained by input of the next halfwords from the input
document, and it is available for modification before it is output to all
outputzones.

changerecio

Regrets the latest call of inoutrec and makes a new zone record
available, maybe a shorter one, part of the present record, or a new one,
obtained by blockchange.

8. Standard Identifiers And Procedures

ALGOLS, User’s Guide, Part One Page 81

9. Operating System Created In ALGOLS

The chapter is fully adaptable to FORTRAN programming, so whenever
an ALGOL program is mentioned, it could as well be a FORTRAN
program.

9.1 Primitive Level Zone Procedures

When you use zones at the primitive level, you can change the values of
the zone descriptor and the share descriptors in nearly any way.
Consequently you may handle the peripheral devices in non-standard
ways. You may also use the full principle of sharing a buffer area with
other processes, to create child processes, and let the program work as
an operating system to these child processes.

The following standard procedures are known as the primitive level
zone procedures:

getzone6
Transfers the contents of a zone descriptor to an array.

setzone6
Transfers the contents of an array to a zone descriptor.

getshare6
Transfers the contents of a share descriptor in a zone to an array.

setshare6
Transfers the contents of an array to a share descriptor in a zone.

initzones
May change the buffersize and number of shares of each zone in a zone
array.

monitor

This procedure is the ALGOL equivalent to all the functions of the
monitor. It looks up, changes, creates or removes catalog entries, it
starts and stops communication with peripheral devices, it creates,
starts, stops, and removes child processes, etc..

9. Operating System Created In ALGOLS8

Page 82

ALGOLS, User’s Guide, Part One

blockproc
Calls the block procedure of a given zone.

check
Checks a transfer to or from a document in the way used by the high
level zone procedures.

9.2 Document Driver

You may let the ALGOL program control a document to which other
processes in the computer send output:

1. Use entry 20, *wait message’(or entry 24 ’wait event’), in ’'monitor’
to wait for messages sent to the ALGOL program. The sender of
the message assumes that the ALGOL program is a document.

2. Copy the block of information described in the message into a
zone buffer area by means of ’system’, entry 5, ‘move data’, or use
entry 84, ’general copy’, in ‘monitor’.

3. Send the answer to the message by means of entry 22, ’send
answer’, in ’‘monitor’.

4. Output the block of information to the document.

Under special circumstances, for instance when the ALGOL program is
the operating system for these other processes, it is possible to control
input and output from a document, even without copying the block of
information from one buffer to another. That is possible because both
the sender process and the buffer for the document may be parts of the
same zone buffer area.

9.3 Operating System

You may let the ALGOL program create, start, stop, and remove a child
process in this way:

1. Use entry 56 in ’monitor’ to create the child process in a zone
buffer area. It may be necessary to use entry 72 in ’monitor’ to set
your own catalog base in order to define the base of the process
name.

2. Include the process as a user of some peripheral devices by means
of entry 12 in ‘monitor’, and give the process access to the backing
storage by means of entry 78 in monitor’.

3. Initialize the child process area with a suitable binary program for
example the File Processor code which may be read directly from
the backing storage area, fp, into the zone buffer area.

4. Set the machine registers of the child process by means of entry 62
in ‘monitor’. See [6] if fp is used.

9. Operating System Created In ALGOLS8

ALGOLS, User’s Guide, Part One Page 83

5. Start the child process by means of entry 58 in ’monitor’. Now, the
child process starts executing the instructions of the binary
program. We say that it runs in parallel with the other processes in
the computer (including your ALGOL program). If fp is the
executive system, the user base is communicated so that this is the
catalog base at which the child process was started. fp will as its
first action set the catalog base to standard.

6. When you want to stop the child, use entry 60 in 'monitor’.

7. Wait for the completion of the stop by means of entry 18 or 24 in
'monitor’. Now, all modifications of the child process area are
ceased, and you may for instance store the area on the backing
storage, use the area for something else, later reestablish the
process area and start the child again by means of entry 58 in
’monitor’ so that it continues as if nothing had happened.

8. When you want to get rid of the child and withdraw its resources,
you use entry 64 of 'monitor’. Remember the process must be
stopped first.

In order to make an operating system, which handles several child
processes, serves as a driver for peripheral devices, and communicates
with the operator, you have to mix the principles of 10.1, 10.2, and 10.3.
In this mixing, entry 24 of ‘'monitor’ is very useful to help the program to
serve the first arriving event first. An event is here the arrival of a
message or an answer, or the completion of a stop.

9. Operating System Created In ALGOLS8

Page 84 ALGOLS, User’s Guide, Part One

10. Program Translation And Execution

This chapter describes the structure of ALGOL programs, the ALGOL
compiler, and the execution system.

Since the structure of a FORTRAN program is the same as for an .
ALGOL program, and the execution system is one and the same, most
of the present chapter adapts to FORTRAN programs.

10.1 Translatable and Linkable Program Structures
Program structures to be translated by the ALGOL compiler are:

- ALGOL programs
- ALGOL external procedures

Program structures to be translated by the FORTRAN compiler are:

- FORTRAN programs
- FORTRAN external procedures and functions

ALGOL external procedures may be linked into an ALGOL program, .
which it will be as a result of any reference to its name in the translated
program text, just as code procedures (cf. [10]) may be linked into an
ALGOL program.

FORTRAN external subroutines and functions (cf. [9]), too, may be
linked into an ALGOL program, just as ALGOL external procedures
may be linked into a FORTRAN program, along with code procedures.

One special program structure to be linked into programs by both
compilers is the ALGOL/FORTRAN RUNTIME SYSTEM, in short:
RTS. RTS, which is normally kept in a file called ’algftnrts’ contains:

- the runtime system entries (variables and routines) described in
[10], embedded in the memory residing part

- routines for alarm printing, zone declaration, common data and

zone common block initialization, input/output system,
checksystem, standard error handling, power function (**) and .

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 85

. others, distributed over a number of non-resident program
segments.

- a program initialization part executed at program start

Other linkable program structures are taken from files or libraries,
which are files shared by a number of linkable program structures,
‘compressed’ by programs like compresslib, lib, contract etc. The files
’algollib’ and *fortranlib’ are such files, both names also being the names
of external procedures doing nothing but writing on current out the list
of names belonging to the library.

Translated ALGOL and FORTRAN programs, too, may be
‘compressed’ into libraries of programs, e.g. by programs like compress,
lib, contract etc.

10.1.1 Program Structure
. An ALGOL program is a block.

The syntax of a program is:
begin

D1; ...; DM;

$1;

;
end;

Where S1, .., SN are ALGOL statements, which therefore may be
blocks (cf. [14], and D1, ..., DM are declarations.
10.1.2 External Procedure Structure
An external procedure in ALGOL is a separately translated procedure,
included in the catalog. It can be used as a standard procedure for later
. translated programs and externals.
External procedure syntax:
external
<procedure declaration>;

end

where <procedure declaration> is a declaration of a procedure, (cf.

[14]).

10. Program Translation And Execution

o

Page 86 ALGOLS, User’s Guide, Part One
10.1.3 Examples o

Example 10-1, external procedure

external
procedure heading(line, page,date);
integer line,page; long array date;
<* date contains yyyy.mm.dd *>
begin
write(out "ff", 1, date, *sp", k20, <:RC COMPUTER:>,
WgpH, 20, <<bddd>, page,*nl¥,3);
page:= page+1; line:= &;
end;
end

Example 10-2, calling external procedure

This is an example of an ALGOLS program. It reads some records and .
writes a message depending on the record type. The external procedure
from example 10-1 is used.

begin
<* declaration *>
integer line, page, maxlines, stop_element;
long array date(1:2);
long array field rec_name;
integer field record_type, rec_ident, update_type;
zone zin(128,1,stderror);
procedure insert;
procedure delete;
procedure update;

<* initialization *>

maxlines:= 50;

stop_element:= 999999; ’
page:= 1;

line:= maxlines;

rec_name:= 8;

record_type:= 4;

rec_ident:= 5;

update_type:= 6;

movestring (date, 1, <:1987.08.24:>);

<* program start *>

<* connect the zone to the area <:records:> *>
open(zin,4,<:records:>,0);

repeat

invar(zin);

if line >= maxlines then
heading(line,page,date)

else

line:= Line+1; .

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 87

. case zin.record_type of
begin
begin <* record type=1:insert *>
write(out,"nl",1,<:insert record: :>,
zin.rec_ident,"sp",3,zin.rec_name);
<* call insert procedure *>
insert;
end <* record_type=1 *>;
begin <* record_type=2:deletion *>
write(out,*nl",1,<:delete record: :>
zin.rec_ident,“sp",3,zin.rec_name);
<* call delete procedure *>
delete;
end <* record_type=2 *>;
begin <* record_type=3:update *>
write(out,"nl", 1,<:update record: :>,
zin.rec_ident,"sp*,3,zin.rec_name,
wsp",3,zin.update_type);
<* call update procedure *>
. update;
end <* record_type=3 *>
end case;
until zin.record_type=stop_element;
close(zin, true);
end;

Example 10-3, calling a FORTRAN external subroutine

This is an example of a (very simple) ALGOL program calling a
FORTRAN external subroutine, which again calls an ALGOL external
procedure:

begin
write_ftnlib;
end;

. where the external FORTRAN subroutine looks like:

SUBROUTINE WRITE_FTNLIB
CALL FORTRANLIB
END

Example 10-4, FORTRAN program calling an ALGOL external
procedure

This is an (also very simple) example of a FORTRAN program calling
an ALGOL external procedure:

PROGRAM XXX

CALL ALGOLLIB
END

10. Program Translation And Execution

Page 88

ALGOLS, User’s Guide, Part One

10.2 Translation

Most of the section is valid information for the FORTRAN compiler as
well as the ALGOL compiler, only 10.2.2 is specific for ALGOL,
although many parameters are found in the call of the FORTRAN
compiler with the same meaning.

The compiler works in your job process and you start the translation by
means of an FP command specifying the source text of a program or an
external procedure, the compilation options, and the file where the
resulting object program should end (cf. 10.2.2.1).

The result of the translation is either a complete, self-contained, binary
program or a binary external procedure. In the first case, the program
may be executed as described in 10.3. In the second case, the procedure
may be used as a standard procedure in later translations. If you
permanent the program or the procedure (give it scope user or scope
project), you can use it in later jobs.

10.2.1 The Compiler.

The compiler occupies about 16000 (FORTRAN about 19000)
instructions divided into 11 passes, either on backing storage or on
magnetic tape. In the first case, it may be used for simultaneous
translation in several job processes.

The 11 passes of the compiler perform the following tasks: Pass 0 is a
common administration routine. Pass 1 to 8 perform the translation into
binary code by means of 8 scans of the source program. The
intermediate program text is stored in the place later occupied by the
binary program. Pass 9 rearranges the binary program, inserts
references to standard procedures, and includes the code of the runtime
system (RTS) and the code of the external procedures used in the
program. When an external procedure is translated, pass 9 only
rearranges the binary procedure and RTS is not included.

Pass 11 does not exist, but in ALGOL a pass 12 may make
crossreferences of the different names used.

In FORTRAN it takes the preprocessor XFORTRAN to make
crossreference lists.

10.2.2 Call of the Compiler

Here is shown the File processor commands used in connection with call
of the compiler. Further description of the File Processor is given in [6].
The notation is described in [14] The call of the FORTRAN compiler is
described in [9].

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 89

10.2.2.1 Syntax
{ <s> <source>) *
<bs file> = algol ()
{ <s> <modifier>) 0
<source> ::= <text file>
{ (blocks))
{ { bossline) b
€ (connect))
{ (fp))
E Lt) ey 3
spi yes
{ « l‘l?st Y. €))
{ (message) {(no))
{ { survey))
{ (ix))
{ { zonecheck))
{ (code))
{)
{ {on))
{ list . €))
{ € off))
{)
(*)
<modifier> ::= % copy . { <copy source>) ;
{)
{ rts . <rts file>»)
{)
{ { yes))
{ stop . {no))
% { <last pass>) g
{ {no)
< xref . { yes 1 1)
E { <connections> { .<intervals> { <sortarea>) 0) ;
{)
{ { yes))
{ { no)y)
(details . € })
{ { <first pass> . <last pass> Y)
{ { <first pass> . <last pass> . <first line> . <last line>)})
<c source> ::= <name>
oY { all y*
{ declare)
<conhnections> ::=)
{ assign)
{ use 1
<intervals> ::= <firstline> . <last line> . { <first name line> . <last name line>)
{ <first line>)
{ <last line>)
{ <first name line>)
{ <last name line>) ::= <integer>
{ <first pass>)
{ <last pass>)
<sortarea> ::= <name>
10.2.2.2 Semantics
<bs file>

A file descriptor describing a backing storage area. It is used as working
area for the compilation, and the object code ends up here and will be
described in the file descriptor. If <bs file> does not exist an area is
created on the disc where the job has maximum temporary resources.
After a possible creation, the area is made as large as possible leaving 1
slice on the device. When the compilation terminates the area is cut to
the used number of segments. An existing area, however, is never cut.

<source>
The list of source files specifies the input files to the compiler. If no

10. Program Translation And Execution

Page 90

ALGOLS, User’s Guide, Part One

source file is specified, the compiler reads the source text from current
input.

<modifier>

The list of modifiers is scanned from left to right. Each modifier changes
the variables which control the compilation. When the scan starts, the
variables are initialized to the values stated below.

blocks.yes

In case the program text is listed, a blocknumber will be listed in a
column at the left hand margin. The blocknumber is increased by one, if
a begin is found in the input - and decreased by one if an end is found.

The initial setting is "blocks.no’.

bossline.yes
Implies that listing or messages besides the linenumber will state the
BOSS linenumber. The initial setting is ’bossline.no’.

connect.no
Implies that a text parameter following the call of the translated
program will not be connected as current input (cf. 10.3.2.2).

The initial setting is connect.yes’.

copy. < copy sources > >
This parameter will make it possible to copy the specified <copy
sources> into the main source text. Further description in 10.2.2.3.

details.yes

This parameter is mostly used for compiler debugging. Intermediate
output from all the passes of the compiler is printed on current output.
The output may be restricted to an interval of pass numbers and to an
interval of line numbers. The output from pass 8 (for instance caused by
’details.8.8’) consists of a list of those line numbers which correspond to
segment boundaries in the object program.

The initial setting is *details.no’.

code.yes

The parameter is mostly used for compiler debugging. The code
generated by pass 8 will be listed on current output in disassembled
form (SLANG-like) as it is produced: backwards over the segments,
starting in address 502 or 500 of the last program segment. The lines of
the output has the format:~ <rel. addr.> <rel. segm.> <code>~
where <rel. addr.> is the relative address on the segment and <rel
segm.> is segment number - no. of segments. The last program segment,
then, will be -1, the preceding one -2, and so forth. The option will
override the option "details.8.8".

The default setting is code.no’.

fp.yes

Implies that the call of the translated program may use an integer as
first parameter without removing the File Processor (cf. 10.3.2.2).

The initial setting is *fp.yes’.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 91

ix.yes

Code for dynamic indexing/index check, using the "ix" double-word
instruction, is generated. Compared to the traditional suite of
instructions doing indexing and index check, 5 instructions will be
replaced by one double-word instruction by this option. Note, that index
check is embedded in the instruction "ix" and cannot be omitted. The
option is intended, of course, for execution on CPU’s having this
instruction in its instruction set, but may be executed on any other CPU.
In case of no "ix" instruction available on the CPU executing, it will be
emulated by the runtime system, the penalty being an execution time of
4-5 times that of the normal execution for the "ix" instruction. If the
program zeroes the "floating point exception active" bit, indexing outside
the bounds by the "ix" instruction (in-line code or emulated) will lead to
indexing the upper bound element.

Default setting is ix.no, execpt when an entry named "algolix” is visible,
in which case the default setting will be

- ix.yes, if the translating CPU can execute an "ix" instruction
- ix.no otherwise

The existence of an entry "algolix" is entirely an installation or user
matter. It may be set by the command algolix=assign algol, in which
case it becomes another name of the compiler.

index.no

Code for dynamic check of subscripts against bounds is omitted. The
code is reduced by 3 out of 5 instructions generated for each indexing
and simple fielding (+ zone indexing and zone simple fielding) and
execution becomes considerably faster. The initial setting is ’index.yes’. ~
The option is not available with ix.yes, cf. above.

list.yes
The entire source text is listed on current output with line numbers in
front of each line. See further description in 10.2.2.4.

The initial setting is ’list.no’.

list.on
The following source text is listed on current output with line numbers
in front of each line. See further description in 10.2.2.4.

The initial setting is ’list.off’.

message.no

Normally, the text preceding the first begin and all comments denoted
by message in the source text are listed with line numbers. With
’message.no’ this listing is omitted. The initial setting is 'message.yes’.
spilL.yes

Dynamic check of integer overflow is performed. Even if the external
procedures referenced were translated with spill.no, a partial check of
integer overflow is performed when they are executed.

The initial setting is ’spill.no’.

10. Program Translation And Execution

Page 92

ALGOLS, User’s Guide, Part One

stop.<last pass>

The translation is terminated after the pass specified. Stop.yes
terminates the translation after pass 9. The translation is regarded as
unsuccessful. The following shortcut is useful in case of large programs
and/or heavy system loads: If only a listing and a crossreference is
wanted the translation can be stopped after the second pass: stop.2.

If error messages are wanted stop after pass 6.
The initial setting is ’stop.no’.

survey.yes
A summary is printed on current output after the completion of each
pass of the translation. The meaning of the summary from pass 9 is
explained in [10] and in 10.2.7.

The initial setting is ’survey.no’.

xref.yes

A crossreference listing (xref-list) is printed on current output after a
possible listing. The xref-list is a listing of the identifiers used in the
program. The list contains an occurence list for each identifier. Further
description in 10.2.2.5.

The initial setting is *xref.no’.

rts.<rts file>

The parameter is intended for runtime system debugging and testing.
The file <rts file> will be linked into the program as runtime system by
the linker, pass 9. The tail of the catalog entry for <rts file> is supposed
to contain the values:

tail (1) : number of rts segments+l

tail (2-5) : documentname (= name of disc)

tail (6) : 1<23 + rel.addr. of rts init code

tail (7) : kind <18 + size of rts table

tail (8) : 0

tail (9) : 4<12 + start external list

tail (10) : no. of rts segments + size of rts own
area

The kind in tail (7) must be 15 = ’illegal procedure’ and the size in tail
(1) must be > 0, i.e. the runtime system cannot be part of a ‘compressed
library’.

The default setting is 'rts.algftnrts’.

zonecheck.yes

The parameter is used to check that zones are not still ’active’ when the
block of declaration is abandoned, i.e. if the bit 1 shift 10 is set in the
give up mask of the zone and the state of the zone is not ’after
declaration’ = ’after close’ = 4 and it is not ’in sort’ = 9 at the time the
declaration block of the zone is left, then the blockprocedure of the zone
is called. It it imperative that the blockprocedure should be designed to
handle this situation.

The default setting is "zonecheck.no’.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 93

10.2.2.3 The Algol and Copy Concept
The compiler parameter:

{) *
copy {.<copy sources>)

()1

makes it possible to copy the specified <copy sources> into the main
source text.

The source text will specify when the copy is to take place.

The following compiler directive is used in the source text:

{on}) 1l { <copy source> } 1
algol { list.{ }) { copy.(})
{ off) O { <integer> } 0

<copy source>: .= <name>
In case of
copy .<copy source>

the content of the specified copy source will be copied to the place
specified in the source text.

In case of

copy .<integer>

the integer parameter is matched with the copy parameters of the
compiler call which are numbered 1, 2, The matched copy source is
copied to the place specified in the source text.

The source text delimiter ’algol’ is by the compiler treated as message,
i.e. it is listed unless the parameter mesage.no is specified, and the
delimiter must follow either begin or semicolon, and it must be
terminated by semicolon.

Description of the modifier ’list’ cf. 10.2.2.4.

Example 10-3
See example 10-6 in 10.2.2.4.

10. Program Translation And Execution

Page 94 ALGOLS, User’s Guide, Part One

10.2.2.4 Details on Listing @

There are three levels of listing of an ALGOL program.

1. The compiler parameter:

(yes)
list.{)
{ no)
list.yes the total source text is listed.
list.no nothing is listed.
{ yes)
The last (right most) list.{)
{ no)
modifier in the call is used. .

2. The compiler parameter:

on
list.
off

~— p—— o~
—

(yes)
This modifier is blind if list. {)
{ no)
is used.
list.on
will cause the listing of the following source texts, until a possible list.off
is met. '
list.off
will cause no listing of the following source texts, until a possible list.on
is met.

Default value depends on the File Processor mode bit:

yes
listing.

—
—

no

listing.yes
everything is listed until a list.off is met.

listing.no
nothing is listed until a list.on is met.

The initial setting is listing.no. .

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 95

3. The compiler directive list.(on/off)

This directive may be written in the source text:

{ on } 1 { <copy source> } 1
algol ((list. }) { copy. {(1)

{ off } O { <integer> } O
Cf. 10.2.2.3.

If a list parameter is not followed by a copy source parameter, it means
that the listmode of the actual source is changed.

If a list parameter is followed by a copy source, the list parameter
relates only to the copy source.

If no list parameter is specified for the copy source, the copy source will
be listed in case the actual source is listed.

A list parameter in front of copy.<integer> will be blind. The list mode
specified in the call will be used.

In case the text is not listed, and the ALGOL call does not specify
message.no, a message is given for end medium.
Example 10-4, listing.

p = algol textl text2
nothing is listed.

p = algol textl text2 list.yes
everything is listed.

Example 10-§, listing.

p = algol textl list.on text2

If fp mode listing.no text2 is listed.
If fp mode listing.yes textl and text2 are listed.

10. Program Translation And Execution

Page 96

Example 10-6, listing.

prog =

source 1

ALGOLS, User’s Guide, Part One

algol list.on copy.tl.t2 list.off copy.t3 tO,

bossline.yes

copy source 3 = t3

File

t0:

t1:

t2:

t3:

th:

Output:

prog =

t0 d.8
10

1. lin
40
50
lin

t1 d.8
10
20

t0
lin

té d.8
10
20

t0
lin

t2 d.8
10

Contents

begin

comment 0;
algol list.on
comment 1;
algol list.off
comment 2;

algol copy.i<*ti*>;
comment 3;

algol list.on copy.té;
comment &;
algol copy.2<*t2*>;
algol copy.3<*t3*>;
comment 5;
end

comment copy source no.1;
comment copy source no.2;
comment copy source no.3;
comment copy source no.4;

algol list.on copy.t1.t2 li
bossline.yes

71111.1436
1 begin
e 30 3 algol list.on;

4 comment 1;
5 algol list.off;

e 70 7 algol copy.1<
71111.1433
7 comment copy source no
8
e 90 9 algol list.on
71111.1433

9 comment copy source té4
10

e 110 11 algol copy.2<
71111.1433
11 comment copy source n

10. Program Translation And Execution

= t0 copy source 1 = tl copy source 2 = t2

Note

listed

not listed

not listed, but message
listed

listed

not listed

not listed, but message
not listed

not listed, but message
not listed

not listed, but message
not listed, but message
not listed

not listed

listed
listed

not listed
listed

st.off copy.t3 t0,

t1>;

1;

copy.té;

*t2%>;

0.2;

ALGOLS, User’s Guide, Part One Page 97

20 12

t0
lin e 120 12 algol copy.3< *t3%>;
t3 d.8 71111.1433
lin e 20 13 end medium
t0
algol e nd

10.2.2.5 Details on Crossreference

The crossreference listing (xref-list) is a listing of the identifiers used in
the program. The list contains an occurrence list for each identifier
listing the linenumbers in which it is represented. These line numbers
are split up in 3 different groups, each group starts with a group letter in
the listing:

D: meaning the identifier is found in a declaration or specification. A
label is considered declared in the line where it is defined.

A: meaning the identifier occured in an assigment, i.e. in front of := .
A switch declaration is indicated with a D.

U: meaning all other occurrences.

The xref-list is made with no regard to the block structure of the

program. The identifier names are sorted according to the collating

sequence.

abcdefghijklmnopqrstuvwxyzaea

ABCDEFGHIJKIMNOPQRSTUVWXYZAGA

0123456789

Connections and Intervals

The modifier xref.yes will list all groups of occurrences. But it is possible

to select certain groups of occurrences, to specify which part of the

program and which part of the identifiers the xref-list should contain.
Select occurence group:

connections

declare) The occurence-lists will only contain the

assign) specified groups D, A, U respectively.

use }

all This connection is equivalent to the connections
declare.assign.use.

xref.yes is equivalent to xref.all.

Select program and identifier interval

10. Program Translation And Execution

Page 98

ALGOLS, User’s Guide, Part One

<first line >.<last line>

The occurrence lists will only contain numbers belonging to the specified
interval. If not specified, the line interval will include the entire
program.

<first name line >.<last name line>

Only those identifier names, which appear in the specified part of the
program, are listed in the xref-list. This parameter restricts the set of
identifier names in the xref-list. If not specified, the name line interval
will include the entire program.

Examples cf. 102.2.6

The sortarea is usually created by the compiler. This area is used for
sorting the occurrences of the identifiers. A part of the area used for
compilation of the program is used. For very large programs it may be
necessary to create a specific sortarea. The name of this area may then
be specified at the end of the list of modifications to the xref-parameter.

10.2.2.6 Examples

Example 10-7, call of compiler.

o lp
sl1=algol list.yes sl2 sl3

The final program is stored in sl1. The source is taken from the file
described in sI2 followed by the file sI3. The entire source text and all
error messages appear on Ip (line printer).

sl1=algol list.yes stop.1

The source text is read from current input and listed on current output.
The translation stops after pass 1, i.e. just after the listing. If xref was
wanted too stop.2 should be specified.

The following examples show the calls of the compiler with
xref-parameter and the corresponding output. The bold headed lines are
the commands.

algol text list.yes xref.yes
text d.871111.0849

1 begin integer i, j;

2 procedure pip(a,b);

3 wvalue a;

4 real a; integer array b;
5 b(a):=a;

6

7

7 A:pip(i,ia);

8

8 end

<an FF character is printed here>

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 99

a D: 4
Uu:. 2 5
b D: 4
A: 5
U: 2
i D: 1
u: 7
ia D: 6
u: 7
j D: 1
pip D: 2
u. 7
A D: 7

No. of identifiers=7
algol end 17

algol text xref.assign
text d.871111.0849
1 begin
8 end
< a FF character is printed here >
a
b A: 5
i
ia

h]

pip

A

No. of identifiers=7
algol end 17

algol text xref.all.2.10.1.1
text d.871111.0849

1 begin

8 end
< an FF character is printed here >
i u: 7
J

No. of identifiers=2
algol end 17

algol text xref.all.4.7.6.6
text d.871111.0849
1 begin
2 end
< an FF character is printed here >
ia
No. of identifiers=1
algol end 17

10.2.3 Storage Requirements, etc.
The compiler requires a job process with a memory space of 13000

halfwords with 4 message buffers and with 8 area processes (6 if current
input and output are not backing storage areas).

10. Program Translation And Execution

Page 100

ALGOLS, User’s Guide, Part One

The minimum memory space may cause the translation to terminate
with the alarm ’stack’. This is due to the limited size of the table of
identifiers in pass 2 and 5, and the table of labels, case elements, and
procedures in pass 8. A greater memory space will remedy the problem:
just 1000 halfwords more give room for about 250 identifiers.

10.2.4 Speed, Length of Object Code
After a basic time of 2 seconds, the total translation speed is about

1000 characters/second (for RC8000-45),
3000 characters/second (for RC8000-55),
7200 characters/second (for RC9000-10),

500 final instructions per second (for RC8000-45),
1500 final instructions per second (for RC8000-55),
3600 final instructions per second (for RC9000-10),

for an average program.
The final program of, say, i segments, consists of

- the segments of the runtime system (segments 0-15)

- the segments with the code corresponding to the source text
(segments 16...n-1)

- the segments of the standard procedures linked into the program
(segments n...i-2)

- the first virtual data segment with initial owns (rts owns) (segment
i-1)

The length of the code, measured in segments, corresponding to a
source text is about 1.5 times the length of the source text, measured in
segments.

10.2.5 Error Checking

The compiler performs extensive syntax and type checking, but a few
errors may pass undetected as described in 10.3.6.3.

Except for some rare errors concerning communication with the
surrounding system, no error can stop the compilation, and most of the
errors will be detected in the first translation. Suitable mechanisms are
included to prevent one error from generating several error messages.

Whenever the translation has worked to the end, the program may be
executed until the first point where a syntax error was detected or until
the first point where an undeclared or doubly declared identifier is used.
The execution is then terminated with the alarm ’syntax line ...".

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 101

10.2.6 Messages from the Compiler

In this section, only the messages in 10.2.6.2 coming from other passes
than pass 9 are special for the ALGOL compiler. The rest of the section
goes for FORTRAN as well.

Four formats of error message exist:

1. <pass number>.line <line number>.<operand
number> <text>
(e.g. 6. line 12.6 type)

2. <pass number>.<text>
(e.g. 8. program too big)

3. <pass 9>.<name> <text>
(e.g. 9. write program too big)

4, ***algol <text>
(e.g. ***algol param)

Below, the error messages are sorted according to <text>. The
messages are classified as:

(alarm)
The translation will terminate immediately as an unsuccessful execution.
The program cannot be executed.

(warning)
The message has no effect. The erroneous construction is skipped.

Nothing

The message allows the translation to continue and the program to be
executed until the erroneous construction is met or until an undeclared
or doubly declared identifier is used.

10.2.6.1 Line and Operand Numbers

The lines of the program are counted 1, 2, 3, ... where line 1 contains the
first ’begin’ or ’external’. Only lines containing visible (printing) symbols
are counted.

The operands within a line are counted 1, 2, 3, An operand is an
identifier, a constant, or a string.

The point of the program where an error of form 1 is detected, is
specified by the line number and the number of operands passed within
the line, for example:

source line 12: 1if a<=1.5 then b(i):= real<:cd:>; else

operand numbers: 1 2 34 5
error message: 6. line 12.5 termination

10. Program Translation And Execution

Page 102 ALGOLS, User’s Guide, Part One

10.2.6.2 Alphabetic List of Error Texts ‘

algol end <i>
This is not an error message. The ALGOL program has been
translated. The object code occupies <i> segments. The ok bit (cf.
[6]) is set to yes. The warning bit is set to no if no error message has
occurred, otherwise it is to yes.

algol sorry <i>
An alarm has occurred. The ok bit is set to no, cf. [6]. The integer i
shows the number of segments the compiler has attempted to make.

area
(pass 9). In the start up phase of pass 9, an area process for the
actual runtime system could not be created. The result of create
area process is shown.

bases
(alarm, pass 9) The bases of the area process created for the next
external procedure to be linked do not macth the entry bases for the ‘
entry looked up. The alarm is closely related to the alarm ’catalog’
from pass 9).

block proc
(pass 6). Error in the declaration of the block procedure of a zone.

blocks
(alarm, pass 5). More than 62 nested blocks.

call
(pass 6). A procedure call has a wrong number of parameters.

case elements
(pass 6). More than 2046 case elements in one element list. Applies
to case expressions, case statements and switch declarations.

catalog

(alarm, pass 2). Trouble reading the backing storage catalog. May

be caused by too few area claims. ‘

(alarm, pass 9). Trouble with

- catalog lookup, result is printed

- create area entry, result is printed

- size >= 0 but contents < 32 and contents <> 4, size is printed

The trouble could eg be caused by a standard identifier

disappearing

- catalog 3: Could be caused by a previously translated external
procedure or a code procedure containing references to
prodedures, which have been changed.

Remedy: retranslate the external procedure.

- catalog 4: Entry not in compressed library or base trouble.

char or illegal
(warning, pass 6). Illegal character or wrong use of a graphic.

comment
(pass 6). Comment or message not after begin or semicolon.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 103

common
(pass 9). In linking a fortran program unit, a common block or zone
common block does not match the definition already given by a
previoiusly called fortran program unit. May happen linking two or
more fortran external program units into an algol program.

compiler directive syntax
(pass 6). Syntactical error in the compiler directive "algol". The
erroneous constructions are skipped.

constant
(pass 6). Syntactical error in a constant number.

context zone
(pass 6). A zone is declared among context variables.

context label '
(pass 6). The exit operator is at an erroneous block level, or in a
for-, repeat-, or whilestatement located within a context block.

+declaration
(pass 6). Identifier declared two or more times in the same block.
The message appears at each place of declaration.

delimiter
(pass 6). Impossible sequence of delimiters.

-delimiter
(pass 6). Two operands follow each other.

entry
(alarm, pass 9). A standard identifier has been changed in the
catalog the execution of pass 9, or the identifier is described by an
auxentry with entry bases differing from the bases of the main entry.

error at source
(alarm, pass 1). Trouble with input from the source file specified.
Following possibilities:
<name> unknown
<name> not textfile (contents key <> 0)
<name>.<integer> not magtape
<name> illegal kind
<name> connect error (hard error)
<name> not text
<name> hard error, followed by:
device status <name>
<cause>

ext param
(alarm, pass 5). More than 7 parameters in an external procedure.

external
(pass 6). External-end does not surround a procedure declaration.

for label

(pass 6). Label which labels a statement inside a for-, repeat-, or
while-statement from the is used outside of the statement.

10. Program Translation And Execution

Page 104

ALGOLS, User’s Guide, Part One

head
(pass 6). Impossible procedure head. The line number points to the
first symbol of the procedure body.

kind

(pass 9). A standard identifier has been changed in the catalog since
the translation started. This is most likely to happen in connection
with an external procedure which was translated assuming a certain
standard identifier, but now this identifier has been changed in the
catalog, beyond the scope of changes accepted by pass 9, cf. the
program upextlists. The two kindwords are shown in decimal
representation (expected values), in the form <half1>.<half2>, as
shown by the program lookup.

In the start up phase of pass 9, an area process for the actual
runtime system could not be created. The result of create area
process is shown.

layout
(pass 6). Impossible layout.

local
(pass 6). Local variable used in array or zone declaration.

mode kind <i>
(pass 9). The modekind, i.e. catalog entry tail word 1, of an external
procedure entry is illegal, e.g. an auxiliary entry to a shared main
entry. The modekind is shown in decimal representation.

name trouble <i>
<alarm, pass 9). An external procedure is being translated, but the
resulting catalog entry could not be created/changed. The result of
change entry is shown.

not text
(pass 1). A source text contains a character > 127.

object area
(alarm, ***algol). The file specified for the object code does not
exist, cannot be used, or cannot be created (cf. 10.2.2.2).

operand
(pass 6). Operand appears in wrong context or is missing.

-operand
(pass 6). Operand missing at end of construction.

overflow
(pass 7). Integer or real overflow during evaluation of a constant
expression.

owns <i>
(alarm, pss 9). A reference to an own memory location is based
upon an own base big enough to give an own reference exceeding
the limit of 4095 halfwords. The own reference is shown.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 105

param
(warning, ***algol). Illegal parameter in the FP command. The
parameter is ignored.

pass trouble
(alarm, pass 1-12). The job area is too small to load the next pass or
the next pass has been destroyed.

give up, one of above errors too severe
(alarm, pass 7). Insufficient clearing of the source text errors in
earlier passes. Will disappear together with these.

program too big
(alarm, pass 1-12). The backing storage area specified cannot hold
the object code.

relative
(alarm, pass 9). An undebugged code procedure is assembled. The
procedure contains a relative reference outside the interval
0 <= r <= 510.
The value of r is shown.

remove process
(pass 9). The area process for the latest linked external procedure
could not be removed. The result is shown.

right par improper
(pass 6). The construction (<letter string> is not followed by :(.

rs entry <i>
(pass 9). An unknown runtime system entry was referred, maybe an
undebugged code procedure is being linked. The name of the
external procedure which contained the reference is shown, and the
name of the illegal runtime system entry is shown.

size
(pass 9). An external procedure is being linked, which extends
- the number of program segments beyond the limit of 4095
segments
- the number of halfwords for owns beyond the limit of 4095
halfwords

segs <i>
(alarm, pass 9). A segment reference in a program unit is based on a

segment base big enough to give a segment reference beyond the
limit of 4095 segments. The segment reference is shown.

sorry <i>
(alarm, ***algol). The translation is unsuccessful, because of an
alarm or because the FP parameter ’stop’ was used. See also ’algol
sorry <i>’.

source exhausted
(pass 1). The source text is exhausted before the program was
complete. A clue to the missing termination is printed:
in comment
in comment string

10. Program Translation And Execution

Page 106

ALGOLS, User’s Guide, Part One

in string
ends missing is output.

sort area
(alarm, pass 12). Cross references could not be made because the
sort area could not be created or connected.

stack
(alarm, pass 2-12). The job area is too short for the translation
tables (see 10.2.3).

subscripts
(pass 6). A subscripted variable has a wrong number of subscripts.

termination
(pass 6). Parentheses or bracket like structures do not match.

text
(warning, pass 6). Illegal constituent of text string, usually <: or
digits in <>.

type
(pass 6). The declaration or type of an operand is not in accordance
with its use.

too many parameters
(alann, pass 7). More than
509 actual parameters in a procedure call, or
- 2044 halfwords used in the stack for a procedure call (6 for
return information + 4 for formal locations for each actual
parameter + 4 for each literal location, i.e. expression computed
at the call side).

undeclared
(pass 6). The identifier is not declared. Later occurrences of the
identifier in the same block will not result in a message.

unknown
(pass 9). An external is to be linked, but is not found in the catalog.
The name of the external is shown.

variables
(alarm, pass 2). The program contains more than 3484 distinct
names of identifiers.
(alarm, pass S). More than 1951 halfwords of simple variables and
simple zones in one block, or more than 2047 halfwords of owns in
the entire source text, or more than 2047 labels and procedures in
the entire source text.

works
(alarm, pass 7). More than 96 halfwords of working locations in one
block, e.g. more than 15 nested repetitive statements.

wrong version <i>
(pass 9). The internal version number of an external procedure
(algol or fortran) which states the version number of the compiler
having translated it, is less than "the smallest version number in an

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 107

external procedure acceptable by pass 9" i.e. the procedure needs
retranslation. The version number of the external procedure is
shown. A survey from pass 9 will expose the ’pseudo external’
*version:

010 2 *version

where 1 is the "smallest version number of an external procedure
acceptable by this version of the compiler” and 2 is the version
number of the compiler translating.

wrong version 0

(pass 9). Pass 9 is linking an
external algol procedure translated with version 0 of the compiler
(older than release 11.0, 1979.11.22)

- external fortran subroutine or function translated with version 0
of the compiler (older than release 2.3, 1985.11.01)

- a code procedure which violates the rule that the last word on
any segment must end with a 'null’ character

Notice that pass 9 continues and that the program will be executable

except for alarm printing in the segments of the external (this

statement holds up to and including version 2 of the compiler).

xref too big
(alarm, pass 12). The area used for sorting is not large enough.

zone
(pass 6). Wrong number of subscripts after zone or zone array.

zone declaration
(pass 6). Wrong number of commas in zone array declaration.

10.2.7 Assembly, Index, Spill

In this section, only specific information about passes other than pass 0
and pass 9 is special to the ALGOL compiler, the rest is valid for the
FORTRAN compiler as well.

10.2.7.1 Assembly

Pass 9 performs the assembly or linking of standard and other external
procedures into the main program and if these external procedures refer
to other external procedures the assembly continues recursively. All
standard identifiers must exist in the catalog at this stage.

The pass output from pass 9, caused by the compiler option survey.yes
(or details.9.9) will be of interest dealing with the messages from pass 9
or the limitations imposed by the formats handled by pass 9 (cf. 10.2.8).

The output from pass 9 contains one line for the main program and one
line for each assembled and linked external, ending with one line of pass
information (summary output). If the program unit translated is an
external procedure, the summary output decreases to this last line of
pass information, where only the second field, used segments, is
significant, cf. below.

The output from pass 9 is explained with below example.

10. Program Translation And Execution

Page 108

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One

ALGOLS, User’s Guide, Part One Page 109

pptx1 d.890208.1104

1 begin
19 end;
1. - - - - -
2. - - - - -
3. - - - - -
4. - - - - -
5. - - - - -
6. - - - - -
7. - - - - -
8. - - - - -
9. 16 168 16 4 890208 133522 pp1
. name of
. wain program
. time of translation
. . . . date - -
. . . own halfword base main program
. . segment - - -
. relative address program entry point
segment number - - -
6 0 1989 0201 algftnrts
. . . . name of runtime system
. . . date of release
. . year
. subrelease number (internal rts number)
release (internal rts number)
0 1 0 2 *version
. . . . pseudo external *version
. . . version number of compiler
. . unused
. smallest acepted version in any external

unused

10. Program Translation And Execution

Page 110 ALGOLS, User’s Guide, Part One

18 176 17 4 890208 144819 write
. . . . name external
. procedure area
. time from external lis
. . date - - -
. . . own halfword base this external
. . segment - - -
. relative address entry point

segment number - -

0 410 0 0 out
. . . . name external zone
. . . unused
. . unused
. addr relative to memory base
unused
1 634 17 4 outindex
. . . . name own core variable
. . . own halfword nase stille
. . segment
. right half of final address
left
18 178 17 4 writeint
. . . . name external
. . . . entry into write
. . . own halfword base this external
. . segment - - -
relative address entry point
segment number - -
0 1642 0 0 blocksout
. . . . name of rts variable
. . . unused
. . unused
. right half of final address
left - - - -

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 111

. 0 183 24 138 0 summary output pass 9
. . unused
. . total no of own halfwords (0 if external
. total no of segments procedure)

. max (no of globals + no of externals)
in all externals linked into program
(in this example the procedure write)
no of externals in
max (no of globals + no of externals)
in all externals linked into program
(in this example still write)

algol end 24

Lookup ppp1

pppl = set 24 disc d.890208.1336 6.142 0 2.3248 3930 ; -

. rts load

. . e e e e length
.« . . « s« « o rel. rts entry
. . . e« . segm. - -
- segment number

. first program segment
. . . . relative address
. . . program descriptor vector
. . . segment number
. . . program description vector
. . date and time of translation
name of backing storage document
no of program segments (rts + program + init owns)
name of translated program

The summary output from each pass, as seen in the example, is
composed of one line with the field:
‘ <pass no.>. <sum0> <suml> used segments <intl> <int2>
Just for the record is here a list of the used fields:
<sum0> is the sum of the halfwords read by the pass
<suml> is the double sum of the halfwords read by the pass

used segments is the number of segments produced by the pass,
counting upwards for forward passes, downwards for reverse passes.

<intl> and <int2> are used by some passes only:

2. <intl> = result of remove process (<: catalog :>)

3. <intl> = no. of lexicographical blocks ine the
program. ,
4. <intl> = max. halfwords in stack (internal stack)
<int2> = max. words in use (internal stack)

no. of occurences of identifiers in

‘ 5. <intl>

10. Program Translation And Execution

Page 112

ALGOLS, User's Guide, Part One

statements and expressions
<int2> = no. of redeclarations of identifiers
8. <intl> = (greatest top - stack top)*1000 + sigma
(last constant - segment base) // no.of code
segments
(int2> = max. line change * 1000 + total moves // no.
of code segments

The summary output of pass 9 is different, as explained in the example.

10.2.7.2 Index

At run time, subscript check will be omitted during the execution of all
program parts compiled with ixno and index.no. All standard
procedures may be thought of as compiled with ix.no and index.yes. For
further details cf. 10.2.2.2.

10.2.7.3 Spill

If the main program is compiled with spillyes (cf. 10.2.2.2) , a partial
check of integer overflow is performed in procedures compiled with
spill.no. If the main program is compiled with spill.no, integer overflow
at multiplication will still be detected in subroutines compiled with
spillyes. None of the standard procedures can cause an integer
overflow.

10.2.7.4 Program Descriptor Vector

When a program has been translated, it will contain the runtime system
as its first segments. As part of the runtime system will be found the
program descriptor vector, which is a shared dara area, where the
compiler gets information about the runtime system and where it hands
over information to the runtime system to be used at program start-up
and during program execution. The address of the program descriptor
vector is found in tail word 7 of the program catalog entry (cf. 10.2.7.1),
and its format is:

; PROGRAM DESCRIPTOR - USED FOR COMMUNICATION OF
; VALUES BETWEEN PASS 9 AND THE RUNTIME SYSTEM:

;+ 0 modebit word 1 (pass 0)
;+ 2 modebit word2 (pass 0)
;+ & compiler version (pass 0)
;¢ 6 compiler release<i2 + compiler subrelease (pass 0)
;+ 8 compiler release year<12

+ compiler release date (pass 0)
;+10 rts version (rts)
;+12 rts release<12 + rts subrelease (rts)
;+14 rts rc.ease year<i2 + rts release date (rts)
:+16 interrupt mask (pass 0)
;+18 entry point to main program (pass 9)
;420 length of own area (pass 9)
;422 length of data table (fortran) (pass 9)
;+24 length of 2one common table (fortran) (pass 9)

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One

;+26 segment no for first own segment
;+28 length of common area

10.2.8 Limitations

Page 113

(pass 9)
(pass 9)

As can be seen from the compiler messages certain limitations exist, that
should be considered when developing programs, especially large
programs. Below follows a survey of the limitations, where possible with
the message given from the compiler if they are exceeded, and the

number of the pass giving the message.

The limitations with a message from pass 9 or with no message are valid
limitations for the FORTRAN compiler as well.

Limitation
Minimum memory size 13000
halfwords (cf. 10.2.4)

No more than 3484 distinct
names of identifiers

No more than 1951 halfwords
of simple variables and
simple zones in one block

No more than 2047 halfwords

of owns in the program unit

being translated (program or
external procedure)

No more than 2047

~- external procedures

- local procedures

_ - labels

- rts entries
in the program unit being
translated

(number of globals +
number of externals,
cf.10.2.7).

- No more than 1023 segments

occupied by one single
local procedure declaration
or by a suite of local
procedure declarations.

No more than 62 nested blocks

No more than 7 parameters in
an external procedure

Number of case elemeats in on
list no more than 2046 (case
expressions, case statements

Message Pass
stack pass 2,5,8
trouble all
variables 2
variables 5
variables 5
variables 5

no message

blocks 5
ext param 5
case element 6

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One

and switch declarations)

No more than 97 halfwords of works 7
working locations in one

block, e.g. no more than 15

repetitive nested statements

No more than 509 actual too many 7
parameters in a procedure, or parameters

no more than 2044 halfwords

used in the stack for a

procedure call (return

information + actual

parameters + values computed

at the call stack, cf.

10.2.6.2).

No more than 4095 segments in size
the final program, counting segs
runtime segments and segments

of external procedures but

not counting segments of

virtual storage (cf.10.2.7)

O O

No more than 4095 halfwords size
occupied by owns in the final owns
program, counting runtime

system owns and owns in

external procedures, but not

counting commons or zone

commons from fortran program

units (cf£.10.2.7)

O WO

Line number information will no message
be counted modulo
8192%32=2621444 = 256 K

10.3 Execution

Except for the ALGOL specific figures in 10.3.5.4, (of which some are
valid for FORTRAN too) the rest of the section is valid information for
FORTRAN, too. '

A binary object program is executed in the job process and started by
means of an FP command as described in 10.3.2. The program must at
that moment exist in a backing storage area.

10.3.1 Segmentation

The object program consists of independent program segments of 512
halfwords. Whenever the running program demands a program segment
which is not in- memory, it is transferred from the backing storage,
possibly replacing another segment in memory. The number of segments
held in the partition of memory is increased gradually until the limit

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 115

posed by the variables is met. If no higher partition of memory exists (cf.
10.3.3), segment places will be chosen in lower partition in increasing
order with a wraparound in lower partition when the stack of variables is
met. If a high end partition of memory exists segment places will be
chosen first in lower partition, then in higher partition in increasing
order with a wraparound to the other partition when filled. If a higher
partition exists, the lower partition may be filled with the variable stack,
leaving only the minimum of two segment places in lower partition. If
more variables are declared, some segments will be released from lower
partition memory, and the next segment place will be taken in the high
end partition, if it exists.

This scheme works satisfactorily as long as the program segments
involved in the current part of the algorithm are kept in memory. Under
these circumstances a jump to another segment is performed in

- 7 microseconds for RC8000-45,

- 4.5 microseconds for RC8000-50/60,

- 2 microseconds for RC8000-55/65 with cachehit
- 0.5 microseconds for RC9000-10 with cachehit

while a jump within one segment is performed in

- 3 microseconds for RC8000-45,

- 1.3. microseconds for RC8000-50,/60

- 0.8 microseconds for RC8000-55/65 with cachehit
- 0.2 microseconds for RC9000-10 with cachehit

When the number of variables is increased so that the active segments
cannot stay in memory, the program can still execute, but a jump to
another segment will often cause a transfer from the backing storage
resulting in a jump time of 15 000-25 000 microseconds. The standard
identifier blocksread will show how these situations may be detected.
You will see from this that it is very important to avoid crowding the
program with variables.

As a minimum, you should have room for at least 8 segments in
memory, corresponding to 4000 halfwords.

As a further aid, the ALGOL compiler may print a list of line numbers
corresponding to the segment boundaries in the object program, if the
compiler is called with details.8.8 (cf. 10.2.2.2), while the FORTRAN
compiler will list the final instructions in a disassembled form, segment
by segment, and a list of external procedures telling their segment
boundaries in the program, if the compiler is called with details.9.9 (or
survey.yes, cf. 10.2.7.1). The procedure lock may help to ensure the
permanent presence of selected segments of the program in memory.

10.3.2 Call of Object Program

10.3.2.1 Syntax

10. Program Translation And Execution

Page 116 ALGOLS, User’s Guide, Part One

{ <empty> }

1 { <s><source><anything>)

{ <name> =)} <bs file> { }
0 { <s><integer> }

{ <s><param><anything>)

{ <integer>} { <integer> }
<param>: ;={ }. |)
{ <name> } { <name> }

10.3.2.2 Semantics

<name> =
Has no direct significance. However, <name> may be accessed from
the executing program by means of ’system’.

<bs file> .

A file descriptor describing a backing storage area which contains an
object program from an ALGOL translation.

<empty>
The program is called with the zone ’in’ connected to current input file.

<source>
Specifies a text file to be ’in’. Current input file is not touched in this
case.

Note: if the program was translated with connect.no the text parameter
following the program call, will not be connected to the zone ’in’, unless
the program itself does it.

<integer>

The file processor is overwritten from the process. The program cannot

use the zones ’in’ and ’out’ and it cannot print error messages. When the
program terminates, it sends a parent message corresponding to a .
‘break’ and specifying the cause of the termination. On the other hand,
3000-4000 halfwords more are available in this way. This possibility is
mainly intended for operating systems, which 'never’ are terminated,
never use ’in’ and ’out’, and work satisfactorily in a limited memory
space.

Note: if the program was translated with fp.yes the file processor is not
cleared.

<param>

Works as <empty>. The command parameters <param> and
<anything> may be accessed from the running program by means of
’system’ and interpreted in any way. <param> must obey the FP syntax
(cf. [6)-

<anything>
See <param>

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 117

10.3.2.3 Examples, translation and execution

p = algol ptx
p infile
p

Translates the source program in ptx. Executes it once with input from
infile and once with input from current input file.

10.3.3 Storage Requirements

During program execution, the job area is organized in this way:

1) The job area is entirely below the limit of 1 M = 1048576

halfwords.

Length in halfwords Contents

1536 File Processor

3106 Runtime System

Depends on program Own/common space variables

2%L Segment table, L=total
number of program/virtual
memory segments.

minimum: 1024 Space for program segments

reasonable: 4096 currently in memory, lower
partition
Space for variables, arrays,
zones.
Buffers for 'in’ and ’'out’.

1024+2*16

10. Program Translation And Execution

O

Page 118 ALGOLS, User’s Guide, Part One
2) The job area crosses the limit of 1 M = 1048576 halfwords: .
Length in halfwords Contents
1536 File Processor
3106 Runtime System
Depends on program Own variables/common space
2%L Segment table, L= total

number of program/virtual
memory segments.

Minimum: 1024
Space for program
segments, lower partition

Limit 1 M:

Minimum: 1024 Space for variables,

Reasonable: 4096 arrays, zones .
1024+2%*16

Space for program
segments, higher partition

Space for zone buffers and
share descriptors

Buffers for ’'in’ and ‘out’

When the program is called with the parameter 0 (cf. 10.3.2.2), the space
occupied by the file processor and buffers for in and out becomes 16
halfwords.

The space occupied by variables at any moment of the execution is the
sum of the reservations made at entries to all the blocks and procedure
bodies which are active.

Lengths of memory are usually given in halfwords (one halfword = 12 '
bits), sometimes in words or double words (4 halfwords = 2 words = 1
double word).

The reservations made at block entry may be derived from the
declarations of the block as follows:

Quantity: Number of halfwords
| reserved:

simple boolean variable,

field variable, simple

integer variable 2

simple long variable,
simple real variable 4

simple double precision
simple complex 8 (FORTRAN) .

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 119

Array segment 2% (number of array
identifiers +l+number of
subscripts)+space for total
number of array elements.

12

array element, boolean

array element, integer 4

array element, real or long

array element, double 8 (FORTRAN)

precision or complex zone 50+24*number of
shares+4*bufferlength + 18

zone array working 2+space for all the zones.

locactions Depends on structure of
program, usually about 10
for each block.

block, procedure body 2*number of statically
surrounding blocks+(if
normal block then 4 else if
type procedure then 14 else
10);

parameter 8 if the actual parameter is

constant, or expression
computed at the call side, 4
otherwise.

10.3.4 Message Buffers, Area Processes, etc.

The job process must have been created with a sufficient number of
message buffers and area processes. The number of message buffers
occupied at any moment during the execution of the program is derived
as follows:

Reserved for Runtime System 1
Each n-shared zone used for high level

input/output (’in’ and 'out’ count as

1-shared zones). n-1
- at first input n
Each zone busy positioning a magnetic tape

(then it is not used for input/output) 1

Zones used on primitive level, each share
describing an uncompleted transfer 1

10. Program Translation And Execution

Page 120

ALGOLS, User’s Guide, Part One

The number of area processes occupied at any moment is 2 + the
number of backing storage areas opened for input/output. Remember
to include possible area processes used by ’in’ and ’out’.

10.3.5 Execution Times

The times given below represent the total physical times in
microseconds for execution of algorithmic constituents on the
RC8000/45 computer. The relative speed factors of the computers
RC8000/15, RC8000/(50 or 60), RC8000/(55 or 65) and RC9000-10 are
in average 0.6, 1.3, 2.6 and 10.4, which means that the total execution
times should be divided by on of these factors for the specific computer.

The total time to execute a program part is the sum of the times for the
constituents. The times are only valid under the following assumptions:

1. The time for transfer of program segments from the backing
storage is negligible (cf. 10.3.1).

2. The program is not waiting for peripheral devices (cf. 3.3.2).
3. The time slice interval is 25.6 milliseconds or more (cf. [1}).

4. The program is executing in the only internal process running in
the computer.

When the computer is time shared, assumption 4 is not fulfilled, but
then the times represent the CPU time used by the program.

10.3.5.1 Operand References

Reference to local identifiers and constants 0
Reference to non-local
identifiers(variable,zone, or array) 0-2.5

An array parameter is referenced as if it

was declared locally in the outermost block
of the procedure. If a sequence of
identifiers from the same non-local block

are referenced without intervening

references to other non-local blocks, the
first reference costs 4 microseconds and the
later one usually O. '

Reference to name parameter, actual is 6.5
simple

Reference to name parameter, actual is 115
composite

Reference to own variable 2.5

10.3.5.2 Constant Subexpressions

Operations are performed during the translation and thus d¢ not
contribute to the execution time in the following cases:

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 121
' + - * / shift extend working on constant operands. Conversion of an
integer constant to a real constant, or vice versa.
real string long working on all operands.

The result of an operation performed during translation is again treated
as a constant. Examples:

A(-2+6/5) is reduced to A(-1)
1+0.5-0.25 is reduced to 1.25
p+l/2-1/4 is only reduced to p+0.5-0.25 because

p+0.5 must be evaluated first.

10.3.5.3 Saving Intermediate Results

By the term ’composite expression’ we shall mean any expression
involving operations to be executed at run time. Examples:

‘ A(2) b+l a shift 8 pr (i,i,<:ab:>) are composite
11.5 real<:ab:> 5 shift 20 are not
composite

During evaluation of expressions, one intermediate result is saved in the
following cases:

+, *, and, or, all relations, shift, extract when
working on 2 composite expressions.

-, /, //, mod when the rigth hand expression is
composite.

add when both operands are composite or
when the left hand operand is a
composite real.

The saving of one intermediate result takes

integer or boolean value saved 5

real value saved, 8
‘ Examples:

ACT)+BCI)+C(I) uses 2 savings (+,+)

a<b and b<d uses 1 saving (and)

a<btc and t uses 0 savings

ath+2-e uses 0 savings

a-f*(g+h) uses 1 saving (-)

103.5.4.1 Operators, ALGOL

integer+integer, integer-integer 2.7

long+long, long-long 4.2

real+real, real-real 13.6

and, Orcittierrrenrtnrnenenan 2.5

integer*integer, spill.no 8.2

integer*integer, spill.yes 13.2

integer//integer, integer mod integer 14.2

real*realciiiiiin.n. 34.2

10. Program Translation And Execution

Page 122 ALGOLS, User’s Guide, Part One

real/real i, 25.8
long*longcciviienriiennnnennes 139.2
long//long, long mod long 153.2
P extract<constant> 2.3
pextract 1 i, 6.9+1*%0.6
real add i, long add i, string add i.. 3.8
integer add i, boolean add i 3
real shift i, integer shift i 2+abs(1)*0.5
boolean shift 1, 2+abs(1)*0.5
entier real i, 22.6
round real i i, 9.0
round long it aannn 1.5
extend integer 2.1
abs real 35.3
abs Integer i, 2.8
abs longottt 9.8
subscripted variable with check

against bounds one subscript 19.2
subscripted variable without check

against bounds, one subscript 10.2
subscripted variable for each

extra subscriptadd 7.0
integer:= integer 5.0
integer:= long, spill.yes 11.5
integer:= long, spill.no 6.5
integer:=real i iiieinnns 14.1
long:= integer 10.0
long:= longcoiiierinnennennnn. 7.9
long:=realciiiiineeenn. 60.6
real:= integer, 18.3
real:= longccciiiiiiiiiniannn 76.4
real:= realo i 7.9
goto local label 7.0
for i:= 1 step <constant> until n do,

each loop i, 14.8
if true then ... else 7.7
if true then, 5.1
if false then ... else 6.2
if false thenc.iiun... 6.2
i<j, other connections 6.3
r<q, other connections 18.6
case 1 of i it 17.6

call of procedure with empty body,

NO PATAMELErSevveesorvoncsnnness 113.0
parameter, for each value parameter

add ... e 25.8
parameter, for each name parameter add 6.3

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 123

. 103.5.42 Operators, FORTRAN specific

double precision +

double, double - double 279.2
complex + complex, complex - complex . 125.4
and, Ottt 5.7
long * 1ongciivveeviennennnans 144 .3
long / longcvviiiiiiiiinnnnnnns 145.0
double * double 327.2
double / double vt 531.7
complex * complex 286.2
complex / complex 411.2
real ** integer, 235.9
real ** real 625.0

subscripted variable, with check

against bounds, 1 subscript 14.5
do., without check against bounds 7.5
do., for each extra subscript add 7.0
. logical = logical 7.0
double = double 39.6
complex = complex 39.6
o o« 2.6
assigned goto, 23.4
computed gOtOc.iiiiiiiiinnnn 16.3
logical if (true) 5.7
logical if (false) 2.9
arithmetical if 6.4
continue i 0.0
do (Lcycle)ciiiiiiiiiiiiin., 22.6
integer.rel.interger 5.8
real.rel.real iiviiiunnn 17.8
call subroutine 91.6
for each param., add 6.3

103.5.5.1 Execution Times for Standard Externals, FORTRAN

ABS ... i i i l164.7
IABS ... i i i i e e 117.6
107N 386.4
DABS ..t i i i i e e e e 214.7
Y (0] 296.3
< 0 182.1
AMAXO(,) iiiiiiiii it ie et i e 295.4
AMAXI(,) .ottt i i i e, 279.8
MAXO(,) vviiiiiiiiiiiiiiiiiiiiieeannas 310.7
MAXI(,) ittt e 287.1
AMINO(,) .. viiiiiiiiiiriiniiiineeoonn 295.2
AMINI(,) .. iiiiiii i it i 275.9
MINO(,) ..ttt e 303.2
MIN1(,) e e 567.7
2 . 59.2

10. Program Translation And Execution

Page 124

ALGOLS, User’s Guide, Part One

AIMAG oottt e e 69.2
(0107129 - QR 93.7
EXP e 533.2
(0] %4 2 1582.7
ALOG o oottt ettt e 455.5
(o) 7o S 1309.8
SIN ottt e 569.5
CSTIN tvtit e ettt 2143.9
€08 e e 546.6
CCOS et 2248.8
0] 243.5
(o7:0) & (R 649.5
ATAN oottt 527.5
CANG .ot vettenteeieeiiieaiiaannnns 661.5
DSIGN &ttt ittt eeee e iieeeeeens 171.0

103.5.5.2 Execution Times for Certain Standard Procedures

arcsin i i i i i e, 613.3
F-% o o o ¥ o Pt 354.0
s o - 686.7
COS i ittt it tet ittt 628.5
3 o 228.3
EXP sttt tiet ittt i e e 564.2
G « 485.6
logand, 225.9
Jogor . e e 226.8
randomttt 176.3+
double words moved
sgn, sign i iiiiaii., 154.5
Sin L. i i i et e e 625.2
sinh i i e e e 648.7
=« o oA 274.5
tofrom i e 302+47.5%

double words moved

10.2.5.5.3 Example

The follwoing example shows the computation of the time for the

following loop:

for i:= n step -1

until j+1 do 14.8 (for do)
2.7 (j+1)
if ia(i)= 3 and 19.2 (ia(i))
6.3 (=3)
7.5 (save, and)
ra(i+1)>1 then 21.9 (ra(i+l),+)
18.6 (>1)
(5.1-) 6.2 (if then)
97.2
p:= ptra(i+l); 21.9 (ra(i+l),+)

13.6 (real +)

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 125

7.9 (p:=)

140.6

The result is that the loop takes about 140 microseconds when the last
statement is executed, 97 otherwise.

10.3.6 Messages from the Running Program

10.3.6.1 Initial Alarm
Before the first begin of the program is entered, the alarm
%<program name> init: <explanation>

may appear, and the program terminates unsuccesfully. The
<explanation> is either of:

- ’not bs’, i.e. the program is not on backing storage,

- ‘connect in’, i.e. the zone ’in’ could not be connected to the file
parameter (<program> <file>),

- ’infile not text’, i.e. the file parameter is not a text file,

- *process too small’, i.e. the job process is too small, or

- ’at restart wrong size’, i.e. the program performs a restart from
data in virtual memory, but the virtual memory in the program file
extension is inconsistent, probably it has been reused by another
program.

10.3.6.2 Normal Form

When the program is called with <program> <integer>, a possible run
time alarm will appear as a parent message (cf. 10.3.2.2).

If the program is successful, the message:
end <blocks read>
will terminate the execution.

A run time alarm will terminate the program with a message of the
form:

<cause> <alarm address>
called from <alarm address>
called from ...

A run time message of the same form may appear, after which the
program continues, cf. the procedure write.

If a run time alarm occurs in activity mode, the fist line in the error
message is supplied witl the activity number. If notrap label is present
at the moment of the alarm, an implicit passivate statement will be
executed, rather than terminating the program.

10. Program Translation And Execution

ALGOLS, User's Guide, Part One

If the alarm occurs in disable mode, the error message will include an
alarm address for the corresponding disable statement.

If a traplabel is present at the moment of the alarm, the program will
continue execution of the traplabel after having given the message.

The printing of the message may be omitted, governed by the standard
variable trapmode. The value of <cause> may be obtained, though,
through the standard variable alarmcause and the procedure getalarm.

A list of the possible alarm causes is given in 10.3.6.4.

If the program terminates, it does so unsuccessfully except after the
message ’end’.

An alarm address shows where the error occurred. If it was a procedure
or a name parameter, a line specifying the call address or the point
where the name parameter was referenced is printed too. The action is
repeated if several calls or references were active at the time of the
alarm. If more than 10 calls or references are active, the process stops
after having printed the last ’called from’, but before the last alarm
address is printed.

An alarm address may take 3 forms:

1. name of a standard procedure or of a set of standard procedures
2. line <first line>-<last line>

3. ext <first line>-<last line>

Form 2 specifies a line interval in the source text of the main program.
Form 3 specifies a line interval in an external ALGOL or FORTRAN
procedure or subroutine. The accuracy of a line interval corresponds to
about 17 instructions of generated code. The first line number may
sometimes be 1 too great if the line is not terminated with a delimiter.

The line number of a procedure call points to the end of the paranthesis.

The following alarm addresses from standard procedures are used:

activity (activity, newactivity, activate,
passivate, disable, enable, wactivity)
alarm segmO (the code in rts preparing the alarm

print and the termination or resumption
of the progra m execution, rts segment)

alarm segml (the code in rts actually printing the
alarm text, rts segment)
algolcheck (the subprocedure in the check procedure

in rts calling the user’s block
procedure. May als o be the code
performing certain operations o n long
operands, rts segment)

buflengthio (buflengthio)

char input (read, readall, readchar, readstring,
repeat- char, intable)
check (the check procedure in rts used by all

high level zone procedures, rts segment)

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One

checkspec

ch/outvar
close/term
fpmode
fpproc
£8000table
inoutrec
invar

lock
monitor
open
open/stop
openinout0
openinoutl
openinout?
outchar
outdat/move
pos/state

pos
recprocsb
resume
sorting

sortingb
std.fct.1
std.fet.2
std.fct.3
system0
systeml
system?2

systime
tofroml
tofroml
tofromchar
transinput
transoutput
virtual
write ext.
write

zone declar
zone, share
zone, shareb

zones/trap

Page 127

(the rts standard error handling actions
in the check procedure, rts segment)
(changevar, outvar, checkvar)

(close, setposition, stopzone)

(fpmode, setfpmode)

(fpproc)

(£8000table, getf8000tab)

(inoutrec, changerecio)

(invar)

(lock, locked)

{monitor)

(open)

(open, stopzone)

(openinout)

(openinout)

(closeinout, expellinout, resetzones)
(outchar, outtext, outinteger)
(outdate, movestring)

(getposition, setposition, getstate,
setstate) power func. (real ** integer,
real ** real, rts segment) recprocs
(changerec, inrec, outrec, swoprec)
(pos, len)

(changerec6, inrec6, outrec6, swoprecé6t)
(resume)

(newsort, deadsort, lifesort, outsort,
initsort, initkey, sortcomp)
(startsort6, changekey6)

(exp, ln, alog, sign, sgn, random, sinh)
(arctan, atan, arg, sin, cos)

(arcsin, sqrt)

(system, int all entries, entries 1-8)
(system, entries 9-11, 13)

(system, entries 12 and 14, increase,
check, blockproc, stderror)

(systime, logand, logor, exor)

(tofrom, init and exit, move half instr)
(tofrom, data moving segment)
(tofromchar)

(waittrans, readfield)

(opentrans, writefield, closetrans)
(virtual, openvirtual)

(write)

(write, writeint, replacechar, outtable,
isotable)

(the rts code taking care of zone and
zone array declarations, rts segment,
resetzones)

(getzone, setzone, getshare, setshare)
(getzone6, setzoneb, getshareb,
setshareb)

(initzones, getalarm, trap)

A number of alarm addresses in standard FORTRAN subroutines and
functions may be found in [9], D.2.2.

10. Program Translation And Execution

Page 128

ALGOLS, User’s Guide, Part One

10.3.6.3 Undetected Errors

If all parts of a program have been translated with index.yes and
spill.yes, the following errors may still pass undetected.

1. Parameters in the call of a procedure which is a formal parameter
do not match the declaration of the corresponding actual
procedure. Any reaction may result.

2. Number of subscripts of a formal array do not match the number
of subscripts of the actual array. Wrong results may be produced,
but the control of the program remains intact.

3. A subscript may exceed the bounds in an array declaration with
more dimensions as long as the lexicographical index is inside its
bounds. The control of the program remains intact.

4. The program may write into the backing storage area occupied by
the program itself. Any reaction may result.

5. Undebugged standard procedures in machine language may cause
any reaction.

6. The location of an array given as actual parameter to a procedure
is established at the call side (call by value) but the array is
nevertheless changed in the procedure (the actual array is a zone
record). Any reaction may result.

The monitor and the operating system will usually limit the
consequences of errors in such a way that no other job or process in the
computer can be harmed (see [1]).

10.3.6.4 Alphabetic List of Alarm Causes

The error messages below cover only the standard procedures described
in this manual. Error messages coming from FORTRAN standard
subroutines and functions may be found in [9], D.2.4.

The set of messages is expected to grow in step with the growth of the
standard procedure library.

abled

In disabled mode

1) alarms in disabled mode are terminated by the message abled...
The alarm address shows the call of disable

2) jump out of a disable statement

3) leaving a disable statement in activity mode. This may happen if a
jump is done into a disable statement. The address shows the end
of the disable statement.

actno <i>
System(12 ... is called with an illegal activity number.

arcsin 0
Illegal argument to arcsin

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 129

block <i>
Too long record in call of changerec6, inrec6, outrec6, or swoprecot.
The block length is shown.

break <i>

An internal interrupt is detected. <i> is the cause of the interrupt,

usually meaning:

0 index error in program translated with index.no

6 too many message buffers used (cf.10.3.4)

8 program breaked by the parent, often because it is looping
endlessly. In this case, the alarm address should be taken with
some reservation.

The break alarm will often be called as a result of the undetected

errors described in 10.3.6.3.

bufsize <i>
Initzones. The original total buffer size for za is exceeded by
allocating space for za(i), or buffersize(i) <= 0, or shares(i) <= 0.

case <i>
Case index outside range. The index is shown. The line number
points to 'of’.

connect
openvirtual. Number of owns in calling program different from
number of owns defined in the file connected.

context
openvirtual. The procedure is called inside a context block.

create
openvirtual. A file is attempted created as virtual storage after some
context blocks in the calling program have been executed.

c.array
Actual array length in a context block exceeds the maximum.

c.expand
The file containing the virtual storage cannot be extended, i.e. there
is no space available for further context records.

c.incarn
Incarnation number not positive, or exceeds number of
incarnations.

end <i>
The program has passed the final end. The integer printed after
’end’ shows the value of the standard identifier "blocksread’ as the
program terminated.
This is not an error message.

entry <i>

Illegal function code or entry conditions in a call of monitor, system,
or systime. The function code is shown.

10. Program Translation And Execution

Page 130

ALGOLS, User’s Guide, Part One

exp 0
Illegal argument to exp.

field <i>
Field reference outside bounds. The illegal halfword address is
shown.

goto
It is not allowed to jump (by a goto statement) out of an activity or
out of a disabled statement.

giveup <i>
Printed by stderror. The number of halfwords transferred is shown.
The File Processor prints the name of the document and the logical
status word.

index <i>
Subscript outside bounds. The lexicographical index is shown. This
message also occurs for subscripted zones or record variables.
The character input procedures call the index alarm if they cannot
assign a single result to their return parameters or if a character
outside the current alphabet is met.
The procedure ’check’ calls the index alarm if a block procedure
specifies a too long block. In this case, the value of the parameter 'b’
is shown.

In the procedure write or writeint, a parameter could not be
properly classified”. The integer i is parameter no.*100+kind,
where kind is the parameter kind, cf. [10], page 39. The program
execution continues.

In the procedure getalarm the parameter array does not offer 8
halfwords from halfword index 1.

In the procedure initzones, bufsize or shares cannot be referenced
with 1< = index <= number of zones.

In one of the procedures newactivity, activate or activity, the activity
number, i, or the shared activity number, i, defines a not declared
activity, or it is an illegal parameter value in call of activity.

Other procedures may report an index error. Consult the proper
manual pages found following the clue given by the alarm address.

integer
Integer overflow.

killed
activate. An activity has been killed, i.e. activated by a call of
activate with a negative parameter.

kind <i>
Hlegal modekind in call of open. The kind is shown.

lenght<i>
Negative record length in call of inrz=c6, outrec6, or swoprec6. The
length is shown.

level
Trap level is global to the calling block.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 131

In0
Argument tolnis <= 0.

mode
One of the procedures activity, newactivity, passivate, activate or
wactivity is called in a wrong mode:

activity not in neutral mode
newactivity not in monitor mode
passivate not in activity mode
activate not in activity/monitor mode
wactivity not in monitor mode

movesize <i>
Tofrom is called with the number of halfwords to be moved < 0.

The size is shown.

movefld <i>
Tofrom is called with an array where the halfword numbered 1 or
the halfword numbered size does not exist.

oddfield <i>
Tofrom, read, readall, readstring, write, writeint or movestring was
called with an array where the word boundaries are not between an
even numbered halfword and its odd numbered successor. The
wrong parameter number (1 or 2) is shown.

param
Wrong type or kind of a parameter.

param <i>
In the procedure write or writeint, a parameter could not be
properly classified. The integer i is

parameter number*100 + kind

where kind is the parameter kind, cf. {10], page 39. The program
execution continues.

param <n> lock
Means that an inconsistent set of parameters is used, i.e. parameter
2 of a pair is missing, parameter 1 > parameter 2, or the segment
number specified is < 0 or >4095. The value of <n> designates the
type and the parameter causing the error:

<n> = paranumber * 10 + type
type: 1 integer
2 label
3 procedure
4 parameter list exhausted
5 type not integer or label.

proc

Parameter number 3 in a call of new activity is not a typeless
procedure identifier.

10. Program Translation And Execution

Page 132

ALGOLS, User's Guide, Part One

reclen <i>
Changevar or outvar was called with a length word < 0 or 0 <
length word < 4.

real
Floating point overflow or underflow.

replace <i>
In the procedure replacechar, the first parameter, special, is outside
the range 0....7.

segment
A text seems to be a long string but could not be found as a text
constant.

share <i>
An illegal share number is specified. The share number is shown.

sh.state <i>
A share in an illegal state is specified. The share state is shown.
> 1 message buffer address for an uncompleted transfer or a
stopping child process.
< 0 process description address for a running child process.
0 for a free share
1 for a ready share

sinh 0
Illegal argument to sinh.

sqrt 0
Argument to sqrt is < 0.

stack <i>
The number of variables exceeds the capacity of the job area, or an
array or a zone is declared with a nonpositive number of elements.
The number of halfwords in the reservation of storage is shown.

string <i>
As for param <i>...

syntax
The program is terminated at a point where an error was detected
during the translation.

value <i>
The contents of ia(i) in setzone/setzone6(z,ia) or
setshare/setshare6 (z,ia,sh) is illegal. The value is shown.

virtual
The shared virtual activity, defined by the second parameter in
new_activity is not initialized (by new_activity), or it is not a virtual
activity.

z.kind
Swoprec is used on a document, which is not a backing storage area.

10. Program Translation And Execution

ALGOLS, User’s Guide, Part One Page 133

‘ zlength <i>
The buffer length is too short. The actual buffer length is shown.

z.state <i>
A high level zone procedure is called in an illegal zone state. The
actual state is shown.
Initzones is called with zonestate not equal to 4.
Concerning zonestate, cf. [15], getzone.

10. Program Translation And Execution

Page 134

A. References

ALGOLS, User’s Guide, Part One

A. References

Part numbers in references are subject to change as new editions are
issued and are listed as an identification aid only. To order, use package
number.

1 PN:991 11255
RC9000-10 System Software
delivered as part of SW9910I-D, RC9000-10 System Overview.
This manual is the equivalent to the RC8000 document called
Monitor, Part 1, System Design (PN: 991 03577).

2 PN:99111259
Monitor, Reference Manual delivered as part of SW9890I-D,
Monitor Manual Set.

3 PN:99103435
Monitor, Part 3, External Processes
This manual is part of the documenttaion for RC8000. The
RC9000-10 relevant processes are described in manuals part of
SW9890I-D, Monitor Manual Set.

5 PN:99104162
RC8000 Computer Family, Reference Manual

6 PN:99111263
System Utility Programs, Part 1
PN: 991 11264
System Utility Programs, Part 2
These manuals are delivered as part of SW8010I-D, System Utility
Manual Set. PN: 991 11294
System Ultility Programs, Part 3
This manual is delivered as part of SWB8585-D, Compiler
Collection Manual Set.

7 PN: 991 11274
BOSS, User’s Guide
delivered as part of SW8101I-D, RC9000-10 BOSS Manual Set.

8 PN:991 11260
Operating System s, Reference Manual
delivered as part of SW9890I-D, Monitor Manual Set.

ALGOLS, User’s Guide, Part One Page 135

10

11

12

13

14

15

16

PN: 991 11292
RC FORTRAN, User’s Manual
delivered as part of SW8585-D, Compiler Collection Manual Set.

PN: 991 11296

Code Procedures and the Run Time Organisation of ALGOL
Programs

this document is not part of any package, but it is available on
demand.

R.M. De Morgan et al.:
Modified Report on the Algorithmic Language ALGOLG0.
The computer Journal, Vol. 19, no. 4 pp 364-379.

J.W. Backus et al.:

Revised Report on the Algorithmic Language ALGOL 60 (ed. Peter
Naur),

Comm. ACM 6 no. 1(1963), pp 1-17

ISO: R646 - 1967 (E),
6 and 7 bit coded character set for information processing
interchange.

PN: 991 11278
ALGOLS, Reference manual
delivered as part of SW8585-D Compiler Collection Manual Set.

PN: 991 11280
ALGOLS, User’s Guide, Part 2
delivered as part of SW8585-D Compiler Collection Manual Set.

PN: 991 11288

Mathematical and Statistical Routines, Reference Manual
delivered as part of SW8585-D, Compiler Collection Manual Set.

A. References

Page 136 ALGOLS, User’s Guide, Part One

B. Index

abs ... 7.1

activate 8.11
activity 8.11

add i 7.3 ‘
alarm, initial 10.3.6.1
alarmcause 8.1
alarmsegm 1 10.3.6.2
algol00, 8.3, 10.1
algol concept 10.2.2.3
algolcheck 10.3.6.2
algorithm for i/o 2.4.4

alogciiiiiiiiia, 6

alphabetic 1list of alarm

CAUSESuveernnnnnnenns 10.3.6.4
alphabetic list of error

teStS ...ttt 10.2.6.2
and ... 7.2

arcsin, 6

AXCtancoveieneenaens 6

area ProcesSes 10.3.4

- o - 6

arithmetic operators 7.1 .
array field variables 3.2.4
assembly 10.2.7

atanieeiiiieneenaa 6

backing storage 2,3.2
backing storage area 2.3.3.1
blockciiiiiiiinae, 2.2.3

block {/0 2.4.4

block length 2.3.3
blockproc 9.1
blockprocedure 2.2.2, 2.3.1
blocksiiviivinnnnnnns 10.2.2.1
blocksout 8.1
blocksread 8.1

boolean operators 7.2

bosslinecivvvuvnns 10.2.2.1
bounds array fields 3.2.4.2
buffer area 2.2.1
buffering 2.4 .

B. Index

ALGOLS, User’s Guide, Part One Page 137

. buflengthio 8.13
call of compiler 10.2.2
call of object program 10.3.2
card reader 2.3.2, 2.3.3.1
card rejected 2.3.3
change of block 2.4.4
changekey6 8.9
changerec 2.1.3, 8.7
changerecio 8.13
changevar 2.1.3, 8.7
character i/o procedures .. 2.1.2
characters, 6 or 8 bits ... 2.3.2
char input 10.3.6.2
checkccaa.. 10.3.6.2, 9.1. 8.7
checking 2.3, 2.4.4
checkspec 10.3.6.2
checkvar 2.1.3, 8.7
ch/outvarc....... 10.3.6.2

‘ child process 9.3
closecoiiiian. 2.1.1, 8.6
closeinout 8.13
closetrans 8.11
codeiiiiiiiiieee 10.2.2.1
collating sequence 10.2.2.5
comparison of texts 5.3
compilation 10.2.1
compilation, speed of 10.2.4
compiler directive 10.2.2.3
compute logical status word 2.4.4
connectcc000ic0nnns 10.2.2.1
consolec.... 2.3.2, 2.3.3.1
context blocks 4
context label 4.2.1
context mode 4.1.4
context variables 4.1.3
continuation point 4.2.1
continue 4.2.2

. COPY v tvvninnaerirnnnnnnnn 10.2.2.1
copy concept0... 10.2.2.3
coroutines 4.2
COS .. iviinenoennnnenannns 6
data overrun 2.3.3
deadsort 00000 8.9
density 2.3.2
details0 10.2.2.1
disc file, see backing
StOTAZEvveervevennnonas 2.3.2
disc error 2.3.3
disconnected 2.3.3
document driver 9.2
documents 2.3.2
endaction 8.1
end of document 2.3.3

7.1

B. Index

Page 138

B. Index

errorbits
error checking
error handling/checking ..
error messages, compiler .
error messages, program ..
execution
execution times

execution times for

certain std. proecs.
exit i i,

L= 14 o T
expellzone
exponentation
extend 000
external procedure
extract 000

fieldt
field base
field variable
fields as parameters
file,
file mark, see tape mark ..
file number
file processor
fortran

fpproc i it
free parameter
£8000table

getalarm
getf8000tab
getposition
getshare
getstate
getzone00..
give upmask

hard error
higher partition
high level zone procedures

in ... e
incarnations

increase
index (parameter)

initialization of context

variables

initkey o
initsort
initzones
inoutree

ALGOLS, User's Guide, Part One

.1 ®

10.2.5
2.3

2.6
3.6.4
3

3

NHENNOONN
[
W

HEWWHENNON

0.2.2.1

ONOOOEHEHMENNNWWWWW
N

N0
o -

-
oy 0
[+,

o
N O

N WO WO N ® e
R O\ e
[o . 3
[#V)
(=]

N

N

.3.3
10.3.1, 10.3.3.
2 B

ALGOLS, User’s Guide, Part One

inrec i,
intable
internal process
interval clock
intervension
invar i i,

i/o,
i/o,
i/o,
i/o,
i/o,
i/o,
i/o,

algorithm
check of
driver for
ErTrOTiivnvnnnn.
high level
primitive level
termination of

isolation of text parts ...
isotable

ix .

.......................

last halfword
lifesortcovv...
limitations
line printer

list

listing of program

In .

load print

lock

locked
logand
logical disc
logical operators
logical position
logical status
logical status word

long

......................

long field
lower partition

magnetic tape
mathematical procedures ...
message (parameter)
message buffer
message buffers occupied ..

mod

.......................

mode, context
mode error
mode-kind of document
monitorc. 0000
movestring
multishare i/0

newactivity
newsort

0

0

NOOOOMNNENNREOAN

NS oo
W O -

o o

PLwBOWRE .

ONHMHMEWNWS HWWWE

.2.2.1

NEMNMNPEPWWNDNWNDNORNDW

3.1, 10.3.3

LV)

.1

3

W
[a

w N
W .

-

N

.3.

1

- N W .
s

w s~

O
[

Jr

-

Page 139

B. Index

Page 140 ALGOLS, User’s Guide, Part One

3
]
t
~
N

object program, call 10.3.2
object program, execution . 10.3

o + 73 o 2.1.1, 8.6
openinout 8.13
opentrans 8.11
openvirtual 4.1.1
operand number 10.2.6.1
operating system 9.3
operation 2,2.3

L o 7.2

OUL . iiiiiiiii it 2.1.2.1
outchar 10.3.6.2, 8.7
outdate 8.7
outindex 8.8
outinteger 8.7
output, see ifo

Outretcevuvnennns 2.1.3, 8.7
OULSOTLvvivivnnnannnnns 8.9 .
outtable................... 8.8
OULLEXLvvvennennenns 8.7

outvarccc0iinnnn 2.1.3, 8.7
overflow 10.2.7
overflow 8.1
packing of text 5

paper tape punch 2.3.2
paper tape reader 2.3.2
parameter, file processor . 10.2.2.1, 10.3.2.1
parity error 2.3.3
passes of compiler 10.2.1
passivate 8.11
pattern operators 7.3
peripheral devices 2.3.2
physical disc 2.3.3.1
position 10.3.6.2
position error 2.3.3 .
primitive level zone

procedures 9.1
printer 2.3.2
printingol 2.1.2
process does not exist .. 2.3.3
Process Name 2.2.2
progmode 8.2
progsize 8.1
program descriptor vector . 10.2.7.4
program execution 10.3
program restart 4.5

punch 2.3.2
random 6

rc8000 8.1
re8000/15, 10.3.5
rc8000/45 10.3.5
rc8000/50 10.3.5
rc8000/55 10.3.5 .

B. Index

ALGOLS, User’s Guide, Part One

rc8000/60
rc8000/65
rc9000-10
read

.................

..................

..................

oooooooooooooooooo

read errorc.0.0...

readall .
readchar

reader ..
readfield

..................

..................

..................

readstring

real (operator)
real field
record, context

ooooooooooo

record i/o, see i/o

ooooooo

record i/o procedures

record variables ..
TECPIrOCS
reference halfword

oooooooo

rejected

relational

operators

remaining bits

repeatchar

replacechar
requirements of compiler ..

resetzones

................

restart of program

resume

....................

rts

.......................

runtime message
runtime system

save bit

segmentation

setfpmode

.................

setposition

setshare
setzone

..................

...................

.......................

share descriptor

share state
shared area

...............

ooooooooooooooo

shiftciiviva...

sign

simple field variable

sin
sinh

SOTYLCOMPvvvvnnnnnnnnn.
spillot
splitting text

sqrt

standard error

Page 141

[eNeNe]

WR e W WO
. W W W
T RCNT

FWNNONNNDN S
[, .

WWwkHEN NN WS
oo o ™
~ ~N o~

o
N =
W -
NH WU =W
o
)

N WS W
(-]
~

=N Oy
HWWwWwwN -
. . P
(=23)]]
[

P‘P‘P‘k‘h‘\l#‘#‘GDE;G)B)N>\JBJLQDHIQIO
N
(%)

[Sr

OCOO0OO0OO-
O NN

.2, 10.3

NN OARNWANNNNNOOON S
w
W

B. Index

Page 142

B. Index

standard procedures
stand.fct.1,2,3
startsorté

status, logical
stderror00...
SEOP .t iiii ittt
stopped i i,
stopzonec00...
storage requirements
storage of context

variables..................
storing of text
string (operator)
subscript check
SULVEY . ivvtinnnnrncnnanans
SWOPTEC ... vnnnnnnnns
SYStemcovvuiuuonas
systime

tableindex
tape, magnetic
tape mark
tape punch
tape reader
text, short, long
texthandling procedures .

timer,
tofrom
transfer functions
translation
translation speed
trapciiiiiiiii i
trapmode
type transfer
typewriter

underflows
unintelligible
unpacking of text
user bits

value of array field
variable
value of simple field
variable

wactivity,
waittrans

write o,

ALGOLS, User’s Guide, Part One

8
1
8.
2.
2.
2
1
2.
8
1

0 OON =W

NN SNONUVLULNNNNN

W

N =

o -

N W .

0

0
0

NV

w

s~ Ww

NP ON 00

o O -

0.3.6.2

W w N
SR
W: WwN
N~
=
~

.2.3

[y
w
N

NN WNON

=W WHHWWWWwe
W

=

10.2
2.4

ALGOLS, User’s Guide, Part One Page 143

xref i 10.2.2.1
xref, details of 10.2.2.5
zonecheck 10.2.2.1
zone after declaration .. 2.2.4
zone after open 2.2.5
ZONE AXTAYvvvnnneeenns 2

zone buffer 2.2.1
zone declar 10.3.6.2
zone descriptor 2.2.2
zone record0c00... ds .2.1
zone share 10.3.6.2
zone state000... 2.2.2, 10.3.6.4

B. Index

Compiler Collection, ALGOLS, User’s Guide, 1
PN: 991 11 279

