o RC9000-10/RC8000

SW8585 Compiler Collection

ALGOLS User’s Guide, Part 2

RC Computer

Keywords:
RC9000-10, RC8000, Compiler, ALGOL, ALGOLS, User’s Guide

Abstract:
This manual describes the standard procedures of the ALGOL
language for RC9000-10 and RC8000 systems.

Date:
March 1989.

PN: 991 11280

Copyright © 1988, Regnecentralen a-s/RC Computera-s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-
ject to change by RC at any time without prior notice. RC is not responsible for typo-
graphical or arithmetic errors which may appear in this manual and shall not be re-
sponsible for any damages caused by reliance on any of the materials presented.

ALGOLS, User’s Guide, Part Two

Table Of Contents
1. INEPOAUCHION. ...ttt cstresenecssecssssesseesssessssossaeessessnsasssensssassnne 1
2. Procedure Description.................ccoeeeceervcnerennencncnueeseseenesessessesesseseaes 3
2.1 @Dttt b e s sass b e e e s s e seassassaeasnneenenas 3
. 2.2 ACLIVALE......coverecreciererererieneaesesesssaeseeseesessonessencssessassssassssssesssasnsaresessenes 4
2.3 ACHVILY.c.cuerreecericsnaesensecssastsensesensessnseessessssssasnacssesssstossrensessassassecansasens 6
PR 3 o [« SO USSR 14
2.5 AlATMICAUSE. ... eertcnceeetercsrencseestsseeseseessassssssessssssesssntssesassssstosssss 16
2.6 ALGOL...ceecetirtcr sttt et nnes 17
2.7 ANuceoneerenrerirreerteeereernereressesseresseressesssssassssssasesssssssssessonsassosessessnsasesssasassane 19
2.8 ALCSIM.ucuecreieierieicistesseseessesssssessessssessessessessessesaessessonsossintessosasssonessnssesnsene 20
2.9 ATCLAN.....eeeceeeererrereerneeereecreeseessesssssssssnessessesssesssssnessesssesssessasssassessassnnessesnns 21
210 ALttt et 22
211 AITAY.c.orreicneincsicieasnatsssssssesessastssstssessstsssssessesssassesssssassasessessanens 23
2.12 BIOCKPIOC.....cutericecnieciiniestcareascscnscacsesssessassasessasessasassssnsenssasassasssenns 24
2.13 DIOCKSOUL......coverererereeirrernerererreriressesssesrsacssssessessssassersssssosssessssencosenseses 25
2.14 DIOCKSTEAW.ccrererrreerereerereernnseneressesssessssssessssssessnesssssssssssnessessncase 26
2.15 DOOLEAN........ceeeeeecerts s ses s s ssebesssssbebeesss st sne e nes 27
216 DLACKEL........ceeeeeeeceeeeeerereettce et ssesesesssbesessssasssesssnsnssensosssessonsncana 28
2.17 BUBIENGLRIO. ...ttt saenes 29
2,18 CASE....eeeeerrrreereresseree st reesbssssstestssesbessesssssessssssssnsnensesnsssssnsenssssassntntonsan 31
‘ 2.19 CHANGEKREYO......couuevernrirrenneeinseesnssessssssiessssssssssssssssssssssasssssssssssssaases 33
2.20 ChANGETEC.......ueircecriinccsicn st ssssens 34
2.21 ChaNGETECIO......cuuuireieimrcrinccicsecactsscasensncnssessesecssessensenseasesssasens 35
2.22 ChANGETECH.......ccceririanimincerecnennececnsnesnsensesasssesssessassssssnssassssssssssssans 37
2.23 ChANEEVAT ... sesensescsssenssssssssssssassans 39
2.24 Character CONSLANL..........cccceveirreriienresrossovsseesssssssessossosssssrommensensessenenees 43
2.25 CRECK...ceeeeeetereeesteereeeeetereeesaesese st sessesesessasssessasassssarassssnssessensnennsane 44
2.26 CHECKVAToueeeeeeeeeeeeseeneeseaese s s ssssesensssasssssssasssssassssssesssssnsanne 45
2.27 ClOSE..cueeeeeeeerreererirereestesaessessssesssssessesressessossossssssssssessessessrssenasessessassessan 47
2.28 ClOSEINOUL........eeeerererereeecerenererrrreeseseesesesssssesssessesssenssssssssassensassssssssnns 49
2.29 closetrans.........coceevevevveennen teereseeressisesentsbenrbetsbssasasestatenssases 51
2.30 COMIMIENL....cceevirereererrernerressersereesessessessossessessessessessosssssssessasssesessasssessesns 52
2.31 COMMENL SITINEG......cceuencnrncnrnrererersasessssessasasessassasssssssssesassssessasssassseses 53
2.32 COMLEXL.....ccverrrrirrrrerrerrerrenressesesnsssessessoserseesessrsssssessesssessssssssensensessnsensonss 54
2.33 CONLINUE.........eceeerereerereereneneacaisesesesessresessssssesesssssnsasssssssensssessssasesensasesenes 55
2.34 COS.nnneereerecreerereeerrereesressessresesssesressesasessesanebesstens sssesbeesssesassssensesaseressnnes 56
2.35 dEAASOIL.....cecvrererereecreeeeree et eene e snarssesessssesesesssessneasensassnasenes 57
2.36 decimal POINt.........ccuiriisiiiniecisreneriessissessenscssesssssensessensassssssssssssssnes 59

Table Of Contents

Table Of Contents

ALGOLS, User’s Guide, Part Two

2.37 diSADIE.....coerct ettt nsas 60
2.3B dIVIAE.....ceeececnereceercncntcn st s e ensee st r s assasesse e sene 61
2.39 €NAACLION......ueeeirecereerenenisssicareessasssssssssensssssssscsssessessssssssssssssssassasane 62
2,40 ENLIET......cuvenreecereereesesesenienetscssesessaseesstsssssessasssaesessessssessasessasssarsasane 63
241 €QUAL....eitet et sssss e e assasasesensesestase 64
2.42 eqUIVAIENL............orrs st assasas 65
2.43 EITOIDILS......coruenceiererenraeseniensicaresesesessstsessaessasessnessssensasessssensasasassasass 66
244 EXiL.....couereiricncnnie et et n sttt ens 67
2.45 exXPeLliNOUL.........coomictncecrctn s esssssssesssresssssinsass 68
P2 LI (o) T 7
24T EXP..ouererriiniecnrensietsnesteres s sae e st s et a et 73
2.48 EXPONENIALION........covriurrirerennarnneressueesersasessasassssasassossssssnssosssnssssessss 74
2,49 eXtENA.......coiiintiii ettt sas st sans 76
2.50 EXLEINAL........covreirerrrncinenneensierncsesinennnessssssassasensnsasesessasssasssssnsasnsnsans 77
2.51 EXITACL......cecirirircrirrnsiiisistisiiaiiessssassssssssasssasasasissassssessasassssssstassesens 78
2.52 fBO00LADIE.........ccccrenenencecrecnencirenensenentenenenressssnsassassessssnseseusensscnsses 81
253 fIElduuunct e s ees 82
2.54 PMOME.....unetiiriirsirctriceiss st ssassesssnsssesesesasas 83
2.55 IPPIOC ..ottt ssss s sessasesessasessssasasssssssasesenessssenes 84
2.56 ZELALATIN......cueererrceruercserresereresssesesesescssusasasssesersasssssssssssssnsessasasassssesanss 86
2.57 getfBO00LAD.........ccirrrincriricnirirsa s ssassissases 88
2.58 ZELPOSIHION.ecuucurirircicncnisetenensesasessessaeseessasesessestassssssassasssssessessaes 89
2.59 ELSNATE......cuonueececereccneceece et tsases s e sessnss s aseessassssans 90
2.60 GEtShATED..........cciceirieiciitcirni st ssscssiss s aseseene 91
2.61 BELSLALL......cucrerircrrtrririricr sttt st sa s e e e nnas 93
2.62 ZOLZOME......ceeeiecrriicrcrriiessesiseseasessst s ssasase sttt sasne s s enen 94
2.63 BELZOMED.......ceveicrimiriirenrrecserenistrcsas s ssasases e e cas s s nracsesenes 95
2.6 BOLO...ouerrret ettt et s 102
2.65 greater than.........ccnc e ssene 103
2.66 greater than or €qual..........iccncisnn s cacsreseens 104
2.67 IMNPLCALION......cuvcureerrerneeeeereereascnasaseenersesessessasesssasessssasessssasssnsasssnsas 105
2,608 I...euierieceeintencncssensensaseasesseseseasessessesastesasensessasessssssssssassssssstessssassesnsssees 106
2.09 INCTEASE......cccvcreimrrerrerneninsesnenesessssesessssssssasssesssesssstasssensasssssssssssssasaes 107
2.70 INEKEY.....cocvrieieeecermrraernnensiaenecsseressnsessrssssasesssssasassssessasessensassssssssssasses 108
2.7 INOULTEC....c.uuvneureerereenreneueiseseaesssesasssesssestsessassasssssnssssassssssssssssssasssnssssene 110
2.72 INHESOTL......ecueurrrirrernsensessessssessessesssessessasssssssssssssssssesessasssssssesssasessasssss 115
2.73 INHZOMES.......ceveucercencecnrennensenasiasessseasissesstsssssasesaseasasessanssessssnsasssssssasses 116
274 INTEC...cu.eriiriseisicenssessisssnstassassassassssessssssssssssssesssnssastasessensenesssensenses 118
2.5 INTECO......cerieincecrcinsissssssnsessssassessessesssssasssssssssssssssssssssssessssssssssssasassssenes 119
2.76 INLADIE.......c.coreeeceirececncceeecasesesensensesnseetsensesssesssessassnssssnsassrssasrans 122
277 INEGET..c..eueeercercnerreecnensensesesensenessassssensasensessasessssssossssssnssassasssssssssssssssas 125
2.78 integer divide....... setecususssnsnerenerssaetes 126
2.79 INVAT......cccreremrnrersernecnsessrsnnes . 127
2.80 ISOLADIE........cocuircanirninicisisi st sssssasssssrens 132
28B11AINK ..ottt cnstsene st sssessesassesresssessassaserensessssnaen 133
2.82 IAUNLNK....coceiircrscrinirinisinincrsasisiasissasissassssssssssasssensasassssassassassanasessasass 137
283 LBttt sttt sttt e 139
2.86 FESOTL.... ..ot rersnsasessessastssseaseseasessssensessasesssssasssnens 142
287 Ittt ssnae 143
2.8B 1OCK....ccucuturrruccnineteeneneiseasesaeesesetsenessaasssessrssssnsssssssssasssssessessssssnasatans 144
2.89 10CKEM......cirericmireicecnenreeececeasiesensee et nses st ene st sosasessaseasaanes 147
2.90 108ANd.......oueiiririiircriinisin et 148 .

ALGOLS, User’s Guide, Part Two

2.9 JOZOT ...ttt as st b b e sas 150
292 JONG..ucuriiiinctiricsrnienierscces s sasrsas s s b s ene 151
293 JONIG...ccuieniiiici bbb bbb 152
2.94 MESSAZE......corvrmriircrrrisiririenatisnasasssersssss st asasaens b aes 153
2.95 DUUNUS.....cuovrnereirennirssessensasesstsesnieriesessssssssssssassssassssssassassssssssssassassossanss 154
2.96 MIOd......cocmiercereieseenenien e ssaseresss s ssstssss s sssssassasssenssassas 156
2.97 MONILOT.....corueerurernenentseniesesirnesastesessessassesnsasesssssstssasssossesssssasessesssassons 157
2.98 MOVESITING.......curierarcescrrineincninessisssssssssssiassss st sssasssssnsansssssssassassases 184
2.99 MUILIPLY.....cooeeeircircecniccesenreenentstsesssssstsessssasassesssssassasesssaes 185
2.100 NEWACHIVILY. ..cuurreurrcrenencnsesnisessicsessesensmsensassnsessssssssssssssessssssssssssssssses 186
2.101 NEWSOTL......oouriirrinsinnrescsenesinccrsacacassesessesesisssesesasasasassssssssssssenssssasessses 191
2,102 NOL..c.oniiiiininrircnsntcsenessaicasssssassssssssssasasesnssssassossasssesessesesesssasssssans 194
2.104 OPCN....ceeeretttctrtrer s n e ens 196
2.105 OPEMUNOUL.......evrrrircicscrsicscsistssssessssssessasessassssossasssesssrsssssssssssssssss 204
2.106 OPENLIANS......cruinctricrireisnsncsicsssiai st ers s sssssasassssasssassssnss 206
2.107 OPENVITLUAL.......ceueereerererireeeeesenceeesesesasesessssasessessssssesasssssssassssans 208
2108 OFucecvurininiinniniisnessi s sassssssas s s ssesesesssssassssssassnsssasessnsass 210
2.109 OUL.....uverercncrriietrisintcsaensienetseesesesasasasssas e sasssesessessssssassossasassssssssens 211
2.110 OULCRAT ... ceiececrcnceiriencitcnecsntesasastsssessssssessssassssssassssnsassssnsssasesens 212
2. 111 OULALE......ceecrerernnenecicennescarssarssrssesaes s st ssssasessasasssesses 213
2.112 OULINAEX.....cucueereureerecuremrecurensieecssessesasessssesscssassssassssssssassessasssssssassns 214
2.113 OULINLEGETecureecnreruricnenenencisessesessasesrasasesssassessssssasasssesssssssssssssssn 215
2114 OULTEC.......eircecrceiencnnnnt st ssssssasessscssasasassesssssnssssasassanesesssssaens 217
2115 OULTECD.......coivireuiririrenisescacaseensescnemsusereneasasssnesseseensesssassssessssssssssasasasnss 218
2.116 OULSOTL.....cvirececrniriericntiicscssastsssassssssssssssesssessastsasssssessasssssssassasans 220
2.117 OULLADIE.........oeeeeicntceiciicnicsee e sesessens s as s neaesens 223
2118 OULLEXL.....oenrirceircnircncinscarescniscsstessassensssssasessasasessssasasssssscssassasassnsas 224
2. 119 OULVAT....coeenicrircnenennicsnneneaesessisessnsenessesersessnsassecsessesssssssssssassssssassans 226
2.120 OVETTIOWS........oirtiinniscnicnccssaesssssssssasesenessssessmsssassensrssassssssssns 228
2121 OWNuceeennicnicrtcsessensaisacasassesesstssasesessassasssastssssassesassorssssnsssssasanes 229
2.122 PASSIVALE.......cocreiririninisiniasisensessesssassssssresssessesssassasessesseseassasesseans 230
2.123 PlUS ot sbss e et ssa s s e e 231
2124 POS ..ttt ss sttt st et a st ben 233
2,125 PLHOTILY...c.cuiucrcrcrsrincsseneneiensesecssasessensesessessssssssssesssssssssssssssssessassssessesas 234
2.126 PrOGMOAE.......curiiueniirinsincissisesssstsssssnsssesecssesssserensessessssassssssssssses 235
2,127 PLOGSIZE. ..u.curennercrnracasesecnssesreanesesesessensesssessosssssssssssssssssssssssssssasssssnns 236
2.128 random reteetaea R eSSttt aanase s asen 237
2.129 rc8000 RO 238
2.130 read........eercncinicninenecenns A 239
2.131 readall.......ceomecee s sesnessa s rsas et ses s aenee 243
2.132 r€adChAT........eecttt e rsnssssassass st asnenns 250
2.133 readfield........irccnicicninine e ass st tenanaes 253
2.134 FEAASLTING.cervieeniuerencnrensrcancnsesesensesssssssssesssssssssassssssssessssnssnsassens 255
2135 TCAL....ce ettt s e n sttt b aesaene 258
2130 T@AL.....cerncsics ettt sase e et s st s s banas 259
2.137 1ePeAtCRAL ... resas e s 261
2.138 1eplacechar.........c.ooeuricuiceiseicsice e sn s seene 262
2.139 FESELZOMES.......oucuirrriririncssaecnsnissssssessasassssassasasensasasisassssasassossssssssases 264
2.140 FESUME......ocueneerircnrcrct sttt sssssessssssessssssssssssasssessansnananes 265
2,141 TOUN.....cuninircrecicrcr sttt ssseassastsssssassssssanen 266
2.142 SetfPMOdE......uceeeicrircccitsreeriestesatsssnsts st sssssnssesesaes 267

Table Of Contents

Table Of Contents

ALGOLS, User’s Guide, Part Two

2.143 SEPOSILION.....ccutirincrrrecincrctnie s ssase s sasessessssenas 268
2.144 SELSNATC......eceeeeeeeeee ettt res s nsasasasaseseessresesarsssstsssarsenesebsaens 272
2.145 SELSRATED........c.eeeerereerrrerieerieeerreeeeressesessssessassssssanessasasatsasssssarsrsnsssessns 273
2.146 SELSLALE.....eueeverrreerereerrcreescrnerereessnrensersarareassssossesssssestsstsssssossonssessenessessen 274
2.147 SELZOME.eeeerereerereeneneeseerersaesssesssssssesssssrsstsessssesestssestasssessssssssssressrenes 275
2.148 SELZOMED......c.cveererererereerenreneeseenssssesesasssnssssssssssnsstssssesssnsaesssnsnssessesansas 276
2.149 SEN.cccuceeieirrrsisisscsnsesiss s s et s st s s ne 277
2.150 SRIft....ceoreeeeeeeirerrerenirensesraensesessesnsesasssssssessrsssessasassesssssnsssasssnesssensssssnsans 278
2,151 SIZN.cuiririesiirsesesssssisssessea s s e s st s 279
2,152 SIMucucucrerreercseeistrenssssessessasssssessssssssmcssesasssssbsssessasresssssssssssssenssssssssanesens 280
2.153 SINNcoccecceceece ettt astssss s ese sttt sa s a e s a s 281
2.154 SOTECOMP...cevruncerrerresncsirciserssnsssssssessessssssssssrssssssssssassasasassassssssassssssoss 282
2.155 SOIL..ccueuecenccrscncsscrsessissnissasessessssessesssssssesssssssassssssssssssssessssscssinssassases 283
2.156 SLATISOTLO.......cceeeeeeeecrereereacncneeaesessosssssesssasssssserensssssesssssssnssssasassasasnss 284
2.157 SEACITONcoeeeeeeereeereerercncssesssessssissasansscsssassessssssssssssssnssassassssssssssneses 288
2.158 SLOPZOME.........uvrvisirirniisisssennsrssinssanssssssssssssnsssssssssssesssssssssassasssssssassos 289
2.159 SITINE....cuerucenrensrssssssasensessissansessissssssssesnsssssssssssssssesssssestestsssasssssssassassass 290
2,160 SEIINR.ecvcrirririarcnsesissinsassiseaneasesssssassessssassassasassasssssssssasssssssensasenssass 291
2,161 SWOPTEC.....ocoreuurrncurererersessrsesssssssssesesssssssssssssssssessssssssssssssssassocsessescssssss 293
2.162 SWOPTECE......ccocrirernniririnerennnssensansssnsssesssssssssssssssnsssssssssassonsnsasessasasas 294
2.163 SYSLEM.....cucuiurenriniscernrsensessssssessssssassssssssssssssssssasessassnsssonsenssssssensascsss 297
2.164 SYSHME.......occvcnirenreiserreinrisnnsesissssssessssssssssssssssessssssssssssssssssessesssossosss 308
2.165 taADIEINAEX.........ceerereeeeeerererereneresrasessesessrsasssscnsasasssssessssssusssasssessssssens 312
2.166 LOFTOM......ocreerreeereeeraererenesessseseresesssssseessenssssessssssensessrennesssenssessesssssreness 313
2.167 tOfTOMCRATveceecereieereessesresenesaesessscsseesmisssssasssasassonsaersssssasens 315
2,168 LrAP..cuucrecerncirernininissisnsssssssss st st s st 317
2.169 trapmOde.........cuueiueiimrenirincriierenssseriressessssisssssssessssssssssssssasesssasaseass 321
2.170 UNAETTIOWS......cviecrecirerereceensennenensnssssassssestossssssersssssssssssnsssssannss 322
2171 VAIUC.....oeeeeeeeeeeereteresssssssssseseesessssensasessossssssasssssrestasssassssssnsssssasnenes 323
2172 VITLUAL......oeoevvrecteeteenenenesnesaessaseecsesssessasssnssssssssssssensasasassssssssnsasssssns 324
2.173 WACHVILY..c..oureerecncrencnnsisinsesessessaseaseasersssssssssessossessassssassassassassassasses 325
2.174 WAILLTANS.ceeeeeeereerererrieressaesessesssssasasaesessasassssessassssesesssssssssassessssnsssscses 327
2175 WEIL...vverrecrcrererneseressessssssssssassssssssssssssssssssssssenessssssasssnensaessorassssssscsens 331
2.176 WEILESIEId. ...t seeseneserstsasssassonsasasssnensasas 339
2177 WIILEINL.......eveverererererrrereseaereerasesensssessssssasasssssasassesessasasassesassossasnsasssnenens 342
2178 ZONE..ueerreerrervrerererereesssssesssssssssssssssssssssssssssansesssnsssssssosssessossasssssssssssnsoss 344
Appendix A, References..............uierrirsinssnssssresssnssssssssssssssssssssssonses 347
Appendix B. Survey of Format8000 Transactions..............ccccccoeueunnnee. 350

ALGOLS, User’s Guide, Part 2 Page 1

1. Introduction

This manual gives a detailed description of all the standard identifiers,
standard procedures, operators, and a few other things supplied as a
part of the compiler, and all the delimiters found in ALGOLS.

The standard identifiers and standard procedures may be used in RC
FORTRAN programs as well as ALGOL programs.

The syntax of the operators and other delimiters is described rather
informally. Take the description of ’divide’ as an example.

Syntax : <operandl>/<operand2>
Priority : 3

Operand types : integer, long, or real
Result type : always real

This shows that ’divide’ has two operands with type <> boolean. The
result of applying ’divide’ to these two operands is always of type real.
The priority of operators is listed in the description of priority in this
manual. The priority with value 1 is the highest.

The description of procedures follows a different sceme.

Call:

inrec6 (z,length)

inrecé6 (return value,integer). The ...
z (call and return value,zone). The ...
length (call value, integer, long, or real). The ...

This shows that inrec6 is called with two parameters. The first, z, must
be a zone. The contents of the zone at call time is significant and it is
changed at return from the procedure. The second, length, must be an
integer, a long, or a real. The value of length at call time is significant. It
is not changed at return. Finally, inrec6 is shown to have an integer
value at return.

The parameters may actually be expressions, of course. Unless
something else is mentioned, it is a tacit assumption that all the
parameters are evaluated once, but not necessarily in sequence from left

to right.

1. Introduction

Page 2

1. Introduction

ALGOLS, User's Guide, Part 2

Especially, if something is assigned to a parameter, the assignment may
or may not be delayed until all the parameters have been evaluated (see
for instance read). Note, that the evaluation of a string parameter will
access the actual parameter repeatedly until the string end is supplied

(cf. (15)).

The type string is unknown in FORTRAN. Literal hollerith strings of
any length may be packed in arrays of any type located in COMMON
blocks by DATA statements, and short hollerith strings may be assigned
long variables.

The FORTRAN arithmetic types DOUBLE REAL and COMPLEX are
not known to any of the standard procedures, but arrays of these types
may be transferred as parameters to many procedures anyhow, in each
case specified in the manual.

Throughout the manual, the names ALGOLS, ALGOL6, ALGOL 7 and
ALGOLS appear, so a short explanation is needed:

The names are not identical to any specific version or release of the
compiler/library/runtime system, rather to a sequence of releases,
introducing new concepts.

The name ALGOL]1 goes all the way back to the DASK computer, the
names ALGOL2, 3 and 4 were the compilers for the GIER computer,
while ALGOL S5 became the name of the first compiler for RC4000,
released in 1969. ALGOL 6, released in 1972, introduced the new types
long and field, being it simple fields or array fields. A number of
procedures were added to the library, some of which still have the letter
’6’ appended to the name.

ALGOL 7, released in 1976, introduced the concept of context blocks
along with the language elements 'while’ and 'repeat’ statements. To the
libary were added the new standard variables alarmcause, trapmode,
RC8000, errorbits, blockout and progmode and the new procedures
trap, lock, locked, initzones, openvirtual and resume. In 1975 RC8000
had been released and the compiler/library/runtime system migrated to
that computer as well.

ALGOL 8, released in 1979, introduced the concept of activities,
supported by a number of procedures in the library. In the library
appeared the new standard variable endaction and the FORMAT8000
procedures, along with the procedures getalarm and virtual.

The release numbering started in 1978, with release 10.03 as the first
one, containing ALGOL 7. The next release, 11.0, in 1979 contained
ALGOLS and this has been the name of the compiler/library/runtime
system ever since.

The present release is named SW8500/2, release 4.0, 1989.02.01.

ALGOLS, User’'s Guide, Part 2 Page 3

2. Procedure Descriptions

2.1 abs

This delimiter, which is a monadic arithemtic operator, yields the
absolute value of the operand.

Syntax:

abs <operand>
Priority: 1

. Operand type:

integer, long, or real

Result type:

The result is of the same type as <operand >

Semantic:

The absolute value of the argument is evaluated.

Example 1:

abs n

if abs sin(x) <= 0.5 then ...
. j:= abs (0.5 + s/q)

2. Procedure Descriptions, abs

Page 4

ALGOLS, User’s Guide, Part 2

2.2 activate

This long standard procedure activates (restarts) a non-empty activity at
its restart point.

Call:

activate (actno)

activate (return value, long). The value is composed by

two integers

activity no shift 24 add cause

describing the way in which activate returns
(see below).

actno (call wvalue, integer). The identification of

the activity to be activated. This activity
must be non-empty. The value may be negative,
in which case the activity identified by abs
actno is "killed" rather than restarted (see 6,
below) .

Function:

The call:

result:= activate (actno)

proceeds as follows:

1
2)

3)

4)

5)

If the program is not in monitor mode or is not in activity mode
the run is terminated with an alarm.

If actno = 0 or abs actno > max_no_of activities the run is
terminated with an alarm.

If the program is in monitor mode and actno designates an empty
activity, the call returns with the result = activity no shift 24 add (-
1). If the program is in activity mode and act no designates an
empty activity, the run is terminated with an alarm.

If the activity is virtual (see newactivity), and a shared virtual
activity occupies the common stack area, waiting for an i/o
transfer to be completed, the call returns with the result =
shared_virtual shift 24 add (-2).

If the activity is virutal, and a shared virtual activity occupies the
common stack area, not waiting for completion of an i/o transfer,
the stack area is transferred to the virtual stora ge file in one
output operation, and the virt. al record of the new activity is
transferred from the virtual storage file to the stack area in one
input operation (swop).

2. Procedure Descriptions, activate

ALGOLS, User’s Guide, Part 2

6)

Page 5

If actno > 0, the designated activity is activted (restarted) at its
restart point. If the program is in activity mode (i.e. activate is
called from an activity), the activate call at the same time defines a
restart point for the calling activity, and when the calling activity
later on is activated, the cause returned will be 3.

If actno < 0, the absolute value of actno designates the activity. In
this case the restart is just the execution of an implicit run time
alarm statement, with the text: "killed", and alarm cause = extend
0 add (-15). The alarm statement is executed, as if it was the first
statement at the restart point.

Result values:

The return values activity_no and cause have the following meaning:

activity no: The identification of the activity causing the return. In
case of cause = -2, the activity waiting for an i/o operation to complete.

The value of cause indicates the return cause:

-3: activate returned because of an alarm in a started activity, which
is now empty.

-2: activate returns, because the designated activity is virtual and
shares storage with another activity waiting for an i/o operation
to complete.

-1: activate returns because the designated activity is empty.

0: activate returns because a started activity terminated via its final
end. This activity is now empty.

1: activate returns because a started activity is passivated by a
programmed passivate statement.

2: activate returns because a started activity is passivated by an
implicit passivate statement in the zone i/o system.

3: activate is called in activity mode, defining a restart point - and
calling activity is resumed.

Example 1:

See Example 1 of activity.

Example 2:

See Example 2 of newactivity.

2. Procedure Descriptions, activate

Page 6

ALGOLS, User’s Guide, Part 2

2.3 activity

This standard procedure creates a number of activity descriptors
defining empty activities.

Call:
activity (max_actno)

max_actno (call value, integer). The number of activity
descriptors to be created.

The program must be in neutral mode, which is the
default mode of programs. The lexicographical enclosing
block is now defined as the monitor block. When the
program leaves this block, either by a goto statement or
through its terminating end, the activity descriptors (and
thereby the activities) are removed (including stop of
pending zones), and the program mode returns to
neutral mode.

An activity is an entity, which permits procedures to act as coroutines,
and it is identified by a positive integer. Activities are operated by the
following five procedures:

- activity (n); creates n activity descriptors, defining n empty
activities, now identified:
1,2,..,n
The mode is transferred from neutral mode to monitor mode.

- newactivity (actno, virt, p,..); initializes the empty activity actno,
with the procedure p. The mode is transferred from mo nitor mode
to activity mode.

- activate (actno); resumes the activity actno, at its restart point. The
mode is transferred from monitor mode to activity mode, or is left
unchanged in activity mode.

- passivate; deactivates executing activity, establishing its restart
point. The mode is transferred back to monitor mode.

- w_activity (buf); waits for an event (message or answer) in the event
queue (similar to the call: monitor (24,..)), supplying the
identification of the responsible activityy The mode is left
unchanged in monitor mode.

Example 1: A coroutine system

The following coroutine system runs controlled by the coroutine monitor
described in ref. (21). The system reads input data from a number of
FORMATS8000 terminals (see (17) and (18)), and spools the data on
current output.

2. Procedure Descriptions, activity

ALGOLS, User’s Guide, Part 2 Page 7

format
keyboar

The system contains the following coroutines:

Procedure inputlink:

this coroutine has one semaphore (see ref. (21)) ’transinput’ from which
the next free buffer is awaited for. Into this buffer is transferred the
transaction head from the next FORMATS8000 transaction from the
zone ’input’ (by wait trans). The contents of the buffer is signalled to a
semaphore ’screen’ depending on cu/dev (destination), the number of
screen semaphores being the same as the number of screens.

Procedure receiver:

This coroutine runs in one incarnation per screen, each having its own
screen semaphore. Each incarnation of the procedure

- receives a buffer from this screen semaphore,

- copies it to a buffer from the semaphore ’spool_pool’,

- transfers the rest of the input transaction to this buffer, and

- signals it to the sempahore ’spool’.

When a receiver coroutine is started a screen mask is initialized (as
shown in Example 3 of writefield).

Procedure spooler:

This coroutine has one semaphore, ’spool’, from which buffers are
received. The contents of the buffer are printed on current output as an
exact copy of the screen picture (incl. the mask).

The system can be outlined in the following figure:

coroutine:

input_link _—I

coroutine: - 3 -

ooter -

output<

transinput semaphore
screen semaphores
spool semaphore
spool_pool semaphore

RN

The coroutine monitor is described in details in ref. (21), here it is only
sketched:

2. Procedure Descriptions, activity

‘ \ format
receiver ‘ creens

Page 8

ALGOLS, User’s Guide, Part 2

begin <*coroutine monitor*>

integer array sem (1:no_of_sem), buf (2:buf_arr_length),
coroul (2:4*maxactivity + 2);

integer array field ready_q_first, ready_q_last, c_corout, data;

integer field next, home_pool, operation, length,
corout_no, incarn, bf;

integer buf_base, buffer_addr, i, global_count,

c_corout_no, sems_pr_incarn, buffer_head_length;

real cputime, realtime;

boolean finished;

zone input (128,1, sense), output (128,1,
stderror);

<*the contents of the following procedures are listed in ref. (21)*>

integer procedure sem_to_field (semno, incarnation);
integer procedure get_buf (bsize);

procedure init_buffer_pool (semno, incarnation, nb, bsize);
procedure init_corout_descr (actno, incarnation);
procedure empty_sem(s);

procedure signal (s,b);

integer procedure wait (s);

integer field s;

begin
<*passivates the coroutine until something arrives on the semaphore ’'s’*>
integer array field i;

if sem.s > 0 then
begin <*the semaphore is open, i.e. a buffer is ready*>
corout.c_corout.bf:x sem.s;

i:= sem.s;

sem.s:= buf.i.next;
end open
else

begin <*the semaphore is neutral or closed -queue the coroutine up on the
semaphore*>

corout.c_corout.next:= 0;

if sem.s = 0 then

sem.s:= -c_corout <*neutral*>

else

begin <*closed*>
j:z -gem.s;
while corout.i.next <> 0 do i:= corout.i.next;
corout.i.next:= c_corout;

end closed;

passivate; <*wait here*>

end neutral or closed;
wait:= corout.c_corout.bf;
end wait;

procedure sense_ready (z);
zone z;

2. Procedure Descriptions, activity

ALGOLS, User’s Guide, Part 2 Page 9

begin
getshareé (z,ia,1);
fa(é):= 2;<*sense*>
setshareé (z,ia,1);
repeat monitor (16 <*send mess*>, 2z, 1, ia)
until monitor (18 <*wait snsw*>, 2, 1, ia) = 1
and ia(1) shift (-21)<*timer*> extract 1 = 0;
end sense_ready;

procedure sense (z,8,b); <***block proc for input***>
zone z; integer s,b;
begin
if s extract 1 = 1 then stderror (z,s,b);
if b = 0 then
begin
sense_ready (z);
getshareé (z, ia, 1);
ia(4):= 3 shift 12; <*input*>
setshareé (z, ia, 1);
monitor (16<*send mess*>, z, 1, ia);
monitor (18<*wait answ*>, z, 1, ia);
b:= ia (2);
end;
end sense;

procedure claim(i); integer i;
begin integer array ii(1:i1); end;

<*coroutine and variable declarations*>
algol copy. coroutdecl;

<*initialize coroutine monitor*>
« « « <*init field variables and clear arrays*>

open (input,8,input_name, 1 shift 9 + 1 shift 1);
monitor (8<*reserve process*>,z,0,ia);
open (output, 14, output_name,0);

activity (max_activity);

<*initialize coroutines and semaphores*>
algol copy.initcor;

<*central logic of coroutine monitor*>
finished:= false;
repeat
c_corout_no:= 0;
if ready_q first <> 0 then
begin
<*gtart the first coroutine in the ready queue*>
end
else
begin
<*ready queue is empty, wait for an external event*>
for i:= w_activity (buffer_addr) while i<0 do;

2. Procedure Descriptions, activity

Page 10 ALGOLS, User’s Guide, Part 2

if i=0 then ‘

begin <*message received, decode message*>
end
else
begin <*answer to a coroutine received*>
c_corout_no:= i;
c_corout := 8*%*c_corout_no - 8 + 2;
end answer;
end ready queue empty;

if c_corout_no > 0 then
begin <*start the selected coroutine*>

activate (c_corout_no);

buffer_addr:= 0; .

end start coroutine;
until finished;
end program;

The coroutine declarations (in the file coroutdecl) appear as follows:
integer array screen_semaphore (1:max_incarn+1);

CRERRRER coroutine FEEREEE,

procedure spooler (spool, spool_pool);

value spool, spool_pool;
integer spool, spool_pool; <*semaphores*>
begin

integer array field bf;
long array field text;

integer field line; ‘

claim (400); <*reserve stack space for the activity, see
newactivity*>
repeat
bf:= wait (spool);
write (out

<:<10><10> format::>, buf.bf.data(1),

<: dest::>, buf.bf.data(2) shift(-12),
buf.bf.data(2) extract 12,

<: aid::>, buf.bf.data(3),

<: cursor::>,buf.bf.data(4));

line:= text:= data + 10;
while buf.bf.line »>= 0 do
begin
write (out,<:<10>line:>, <<dd>, buf.bf.line,

_ <: :>, buf.bf.text); .

2. Procedure Descriptions, activity

ALGOLS, User’s Guide, Part 2 Page 11

end lines;
signal (spool_pool, bf);
setposition (out,0,0);
until false;
end spooler;

CRERRRRR Coroutine ke khky

procedure receiver (transinput, screen, spool, spool_pool);

value transinput, screen, spool, spool_pool);
integer transinput, screen, spool, spool_pool);
begin

integer array field trans, bf;

integer i, aid, dest;

claim(400);

trans:= wait (screen);

dest:= buf.trans.data(2);

set_mask (dest); <®set up a screen mask, see ex. 3 of writefield*>
signal (transinput,trans);

repeat
bf := wait (spool_pool);
trans:= wait (screen);
aid := buf.trans.data(3);
for i:= 1 step 1 until 4 do
buf.bf.data(i):= buf.trans.data(i);
if aid = 1 <*send*> then get_input_data (buf.bf.data);

opentrans (output, 3, dest, 63 <*erase unprotected*>, 3);
closetrans (output);
signal (transinput, trans);
signal (spool, bf);
until aid = 17 <*clear*>;

finished:= true;
end receiver;

Ped st i i2d Coroutine whdrddddy
procedure input_Link (transinput, screen);

value transinput;
integer transinput;
integer array screen;
begin
integer array field trans;
integer screen_no;

claim (300);
sense_ready (input);

repeat

trans:= wait (transinput);

waittrans (input,
buf.trans.data(1), <*format*>
buf.trans.data(2), <*dest *>
buf.trans.data(3), <*aid *»

2. Procedure Descriptions, activity

Page 12 ALGOLS, User’s Guide, Part 2

- buf.trans.data(4)); <*cursor*>
screen_no:= buf.trans.data(2) extract 12 + 1;

signal (screen(screen_no), trans);
until false;
end input_Llink;

procedure set_mask (value dest; dest); <*see ex. 3 of writefield*> integer
dest;
begin
integer line;
opentrans (output,3,dest, 49, 3);
for line:= 0 step 1 until 23 do
begin
writefield (output, 1, line*80);
writefield (output, 2, 1 shift 5);
write (output, <:line:>, <<dd>, line);
writefield (output, 2, 0);
if line=0 then writefield (output, 3, 0);
writefield (output, 6, ’sp’ shift 12 + line*80 + 79);
end;
closetrans (output);
end setmask;

procedure get_input_data (datapart);

integer array datapart);
begin

integer field line;

array field text;

integer type, addr;

line:= text:= 10;

while read field (input, type, addr) = 8 do

begin
datapart.line:= addr//80;
readstring (input, datepart.text, 1);
line:= text:= line+50;

end;

datapart.line:= -1;

end get_input_data;

The initialization of coroutines and semaphores (in the file initcor) is:

sems_pr_incarn:= 1;
for inc:= 0 step 1 until max_ incarn do
init_buffer_pool (1, <*screen semaphore*>
inc, <*incarnation*>
0,0); <*no.of buffers, buf.size*>

inc:= max_incarn + 1;
init_buffer_pool (1, <*transinput semaphore*>
inc, <*incarnation*>
1,6)+ <*no.of buffers, buf.size*>

2. Procedure Descriptions, activity

ALGOLS, User’s Guide, Part 2 Page 13

. init_buffer_pool (2, <*spool semaphore*>,
inc, <*incarnation*>
0,0); <*no.of buffers, bufsize*>

init_buffer_pool (3, <*spool pool semaphore*>
inc, <*incarnation*>
4,800); <*no.of buffers, bufsize*>

<*start the activities*>
for inc:= 0 step 1 until max_incarn do
begin

init_corout_descr (inc+1, inc);

new_activity (inc+1, 0, receiver,

sem_to_field (1, max_incarn+1),
sem_to_field (1, inc),
sem_to_field (2, max_incarn+1),
sem_to_field (3, max_incarn+1));

end;

inc:= max_incarn+1;
init_corout_descr (max_incarn+2, 0);

new_activity (mex_incarn+2, 0, spooler,
sem_to_field (2, inc),
sem_to_field (3, inc));

for inc:= 0 step 1 until max_incarn do
screen_semaphore (inc+1):= sem_to_field (1,inc);

inc:= max_incarn+1;
init_corout_descr (max_incarn+3,0);

new_=activity (max_incarn+3, 0, input_link,
. sem_to_field (1, inc),
screen_semahore);

2. Procedure Descriptions, activity

Page 14 ALGOLS, User’s Guide, Part 2

2.4 add

This delimiter, which is a pattern operator, is used for packing of integer
values into a real, long, integer, boolean, or string value.

Syntax:

<operandl> add <operand2>

Priority: 2

Operand types:

<operandl>: boolean, integer, long, real, or string.
<operand2>: integer, long, or real.

Result type:

The result is of the same type as <operand1>.

Semantic:

If <operand2> is real or long it is rounded to an integer. Now both
operands are treated as binary patterns and the right hand integer is
added to <operand1> to obtain the binary pattern of the result. If the
result is a boolean, it is cut to 12 bits. The addition is binary addition in
24 bits with rightmost bit added to rightmost bit.

Example 1:

Let i and j be integers between 0 and 63. they may be packed into one
boolean variable in this way:

b:= false add 1 shift 6 add j;

if j were negative, the statement would not work as intended.

Example 2:

Two signed integers may be packed into one real in this way:
r:= 0.0 shift 24 add il shift 24 add i2;

or:

r:= real (extgnd i1 shift 24 add 12);

2. Procedure Descriptions, add

ALGOLS, User’s Guide, Part 2 Page 15

. Note that the binary pattern of a negative number has zeroes in front of
the 24 ordinary bits.

Example 3:
The last bit of an integer ’j’ may be tested in this way:

if false add j then ...

2. Procedure Descriptions, add

Page 16 ALGOLS, User’s Guide, Part 2

2.5 alarmcause

This long standard identifier contains the cause of a suppressed
program break down.

The value of alarmcause is interpreted as two integers:

param:= alarmcause shift (-24)
cause:= alarmcause extract 24

where param is the integer output by the normal error message (cf.
(15)) and cause is the errortype (e.g. the error message in dex 100
corresponds to param = 100 and cause = -2).

The value of cause means:

-16 index alarm (or zone index alarm) from ix instruction .
-15 killed activity

-14 goto alarm

-13 trap alarm

-12 field alarm

-11 give up from stderror (algol check)

-10 end program (normal program termination)
-9 break

-8 param error

-7 real overflow

-6 integer overflow

-5 syntax error

-4 case alarm

-3 zone index error

-2 index alarm

-1 stack alarm

>=0 other alarms (e.g. sqrt, In, etc.)

Example 1: .

Alarmcause can be used to check why a traproutine is called (see
Example 2 in trap).

Example 2:

See Example 1 of getalarm.

2. Procedure Descriptions, alarmcause

ALGOLS, User’s Guide, Part 2 Page 17

2.6 algol

This delimiter, which is a compiler directive, is used to call specific
actions of the compiler.

Syntax:

algol [<modifier>] [copy.<source>] ;

<modifier>::= (list.on/list.off)

<source> ::= {(<name> }
{<integer>)

Only allowed after the delimiters begin or ;

(semicolon)

Semantic:

The modifiers list.on and list.off may be used to direct whether or not
subsequent parts of the program should be listed during compilation.
The ef fect of the list modifier may be overruled by use of the list
modifiers of the FP command calling the compiler (cf. (15)).

The modifier copy.<source> makes it possible to copy the specified
<source> into the main source text. The copying will take place when
the delimiter is met.

Example 1:

algol list.on; <*change to listing.yes*>

Example 2:

algol list.off; <*change to listing.no*>

Example 3:

algol list.off copy.text;

<*copy text with listing.no. The listing modifier is only
valid for text*>

Example 4:

algol copy.t;<*copy t, listing as stated in the call of
the compiler*>

2. Procedure Descriptions, algol

Page 18 ALGOLS, User’s Guide, Part 2

Example 5: .

algol copy.2;<*in case the call of the compiler specifies
the parameter:
copy.text2,text3 as the first ‘copy’
parameters, text3 is copied.
A possible listing modifier in front of
copy.2 will be blind (is overruled by the
listmodifiers in the call of the
compiler*>

Example 6:
See Example 1 of activity.

2. Procedure Descriptions, algol

ALGOLS, User’s Guide, Part 2 Page 19

2.7 and (and &)

This delimiter, which is a logical operator, yields the logical and (logical
product) of the two operands.

Syntax:

<operandl> (and) <operand2>
(&)

Priority: 7

Operand types: boolean.

Result type: boolean.

Semantic:

The logical product of the operands is evaluated. This logical product is
performed bit by bit in parallel on the twelve bits of the two operands.
The truth value of the result pattern, when used in repetitive or
conditional statements, is determined by the last (rightmost) bit in the
pattern (0 = false, 1 = true).

Example 1:

Set the last 3 bits of a boolean.

a:=b and (false add 7);
Example 2:

if a and b then ...
else ...

2. Procedure Descriptions, and (and &)

Page 20 ALGOLS, User’s Guide, Part 2

2.8 arcsin

This real standard procedure performs the mathematical function
arcsine (i.e. the inverse of the trigonometric function sine).

Call:
arcsin (r)

arcsin (return value, real). Is the mathematical
function arcsine of the argument r, in radians
with - pi/2 <= arcsin <= pi/2
pl = 3.14159 26536.

r (call value, real, long, or integer) Must be in
the interval: -1 <= r <= 1.

Accuracy:

r=1-1 gives an absolute error of 3’-12

r=0 gives arcsin= 0

0 <absr <05 gives a relative error below 1.1°-10

05 <=absr<1 gives a relative error below 1.6’-10

Example 1:

The sides of a triangle are a, b, c. The angle A

(opposite a) can be calculated by:

Pi := 2*arcsin(l);

s := (atb+c)/2; .

A := 2*arcsin(sqrt((s-b)*(s-c)/(b*c)));
if A <0 then A := A + pi;

If A is wanted in degrees then

A = A¥180/pi;

2. Procedure Descriptions, arcsin

ALGOLS, User’s Guide, Part 2 Page 21

2.9 arctan

This real standard procedure performs the mathematical function
arctangent (i.e. the inverse of the trigonometric function tangent).

Call:
arctan (r)
arctan (return value, real). Is the mathematical

function arctangent of the argument r, in
radians with -pi/2 <= arctan <= pi/2

r (call value, real, long, or inte ger) in
radians.
. Accuracy:
r=0 gives arctan = 0

r<>0 gives a relative error below 1.5’-10
When inserting into formulae containing a term like arctan (b/a) where

a may be zero, the function arg (a,b) may be a better choice as it
behaves sensible for a=0.

2. Procedure Descriptions, arctan

Page 22 ALGOLS, User’s Guide, Part 2

2.10 arg

This real standard procedure performs the mathematical function of
calculating the argument (also called angle) of a complex number from
its cartesian coordinates.

Call:

arg (u, v)

arg (return value, real). Is the argument in radians

of the complex num ber u+i*v with -pi < arg <
pi. If u< 0 and v = 0, arg iIs positive.

u (call value, real, long, or integer).
v (call value, real, long, or integer).
Accuracy:

v=0andu>=0 givesarg = 0.

v<>0oru<0 gives a relative error below 1.8’-10.

Example 1:

The coordinates of the complex number a + i*b can be transformed
from cartesian format (a,b) to polar format (modulus r, argument q) by:

r:= sqrt (a*a + b*b);

q:= arg (a,b);

Example 2:

Let a and b be the lengths of two sides of a triangle, and let C be the
angle between them (in ra dians). The angle B, opposite to b, is then
computed by:

B:= arg(a-b*cos(C),b*sin(C));

2. Procedure Descriptions, arg

ALGOLS, User’s Guide, Part 2 Page 23

2.11 array

This delimiter, which is a declarator, is used to declare arrays and to
specify the kinds and types of formal parameters in procedures.

Syntax:

<type> array <array list>
<type> array <identifier list>

Semantic:

In the first description one or more array segments of the appropriate
type (i.e. real, long, integer, or boolean) is declared. The next
description specifies that the formal parameters mentioned in the
identifier list are arrays of the appropriate type. <type> may be
omitted, then real arrays are declared or specified.

If more than one array identifier appears in an array segment, the
compiler will describe the locations (the base words) for the different
arrays separately, but the description of the bounds (the dope vector) is
shared by all the arrays of the array segment. The elements of an array
are stored densely in lexicographical order.

A multidimensional array may be used as actual parameter where the
corresponding formal is used as one dimensional. In this case the
mapping used is given by the lexicographical ordering of the elements.

Example 1:
Declaration:

integer array A, B(1:100),x(0:2);
array C(1:10), D(-15:17, 1:10);

Specification:
real array K,L,M;

2. Procedure Descriptions, array

Page 24 ALGOLS, User’s Guide, Part 2

2.12 blockproc
This standard procedure performs the call of a blockprocedure as
sociated with a given zone. Blockproc makes it possible in pure algol to

obtain an effect like check (used by inrec, read, write, etc.), which only
knows the zone, but still manages to call the block procedure (cf. (15)).

Call:

blockproc (z, s, b)

z (call and return value, zone). Specifies the
procedure to be called. The procedure to be
called is the blockprocedure connected to the

zone 2.

s (call and return value, integer). The value of s ‘
is supposed to be a logical status word.

b (call and return value, integer). The value of b

is supposed to be the number of halfwords in a
block transfer.

Let pr be the block procedure of z. Then the following call will be
executed:

pr(z,s,b)

Example 1:

See Example 2 of swoprec6.

2. Procedure Descriptions, blokproc

ALGOLS, User’s Guide, Part 2 Page 25

2.13 blocksout

This integer standard identifier is increased by one each time a segment
of the virtual storage (context data) is transferred to the backing
storage.

The initial setting is zero.

2. Procedure Descriptions, blocksout

Page 26

ALGOLS, User’s Guide, Part 2

2.14 blocksread

This integer standard identifier is increased by one each time a segment
of the algol program is transferred from the backing storage. This
enables you to estimate the length of the program loops and balance the
use of the core store. The value of blocks read is printed at program end

(cf. (15)).

Example 1:

If you feel that your program is running very slowly, the first thing to do
is to insert a piece of code around the inner loop:

blockread:= 0;
The inner loop;
write(out,blockread);

The number printed then is the number of program segments
transferred from disc to memory. If this explains the trouble, you could

e.g.:

1) change the program so that fewer variables are declared, or
2) run the job in a greater core area, or

3) lock the segments of the inner loop in the memory.

In this example the integer printed after the end message is not the total
number of segment transfers during the execution, but it shows the
number of transfers since the latest time blocksread was set to 0.

Example 2:

In many cases a program can run with an array of varying length. One
example is the first phase of a magnetic tape sorting. Here you save tape
passes in the second phase by increasing the array available for the first
phase. But if you increase too much, the first phase will become very
slow because of frequent program transfers.

The following program shows how this can be balanced by the algorithm
itself. The idea is to reser ve an array of maximum size (see system) and
then decrease the length of the array whenever segments are transferred
in the inner loop.

n:= m:x;
repea
begin array ra (1:n);
8:= blocks’r{ead;
The inner loop;
if blocksread > s then n:= n-128;
<*make room for one more program segment*>

end;
until sorted;

It is more difficult to do the same thing starting with a short array.

2. Procedure Descriptions, blocksread

ALGOLS, User's Guide, Part 2 Page 27

2.15 boolean

This delimiter, which is a declarator, is used in declarations and
specifications of variables of type boolean.

Syntax:

boolean <namelist>

Semantic;

The variables in namelist will all be of type boolean and each comprises
12 bits in memory.

’ Example 1:

boolean bl;
boolean yes, no, r;

procedure truth (c);
boolean c;

2. Procedure Descriptions, boolean

Page 28 ALGOLS, User’s Guide, Part 2

2.16 bracket

These delimiters, which are brackets, are used to separate special items.

Syntax:

(<expression >)

is an expression or a subscript
(<parameter list >)

is a parameter part

(<expression list >)
is an expression or subscript

begin <statements> end
is a statement

<: <text not containing "<:" or ":>"> :>
is a string

'*<character name>'
is an integer character constant
"<character name>"
is a boolean character constant

< <unsigned integer or integer character constant> >
is a character

<< <layout> >
is a layout string

<* <text not containing "<*" or "I>"> *>
is a comment string

Examples:

(a + c/(atb))
(a,b, v+3)
(a+b, c, ntk/1)

begin a:= atb; i:= i+l end

<:bsarea:>

<:<10> data error:>
"nln

leml

<<-ddd.dd>

2. Procedure Descriptions, bracket

ALGOLS, User’s Guide, Part 2 Page 29

2.17 buflengthio

This integer standard procedure returns the value of number of
doubleword elements to use in a zone array declaration to obtain a
desired blocklength once using the procedure openinout to prepare for
inoutrec.

Call:
buflengthio (no_of_zones, no_of_shares, blocklength)

buflengthio (return value, integer). The number of
doubleword elements to use in a zone array declaration
to obtain a desired blocklength when using openinout
to prepare for inoutrec

no_of_zones (call value, integer). The number of zones in
the zone array to be declared. Obviously, no_of zones
must be positive.

no_of_shares (call value, integer). The number of shares in
the zones in the zone array to be declared. Obviously,
no_of_shares must be positive.

blocklength (call value, integer). The desired blocklength,
measured in halfwords, to be used in input/output by
inoutrec.

Zone state:

Once the zone array is declared and the zones have been opened, one or
more zones may become in a state containing the buflength error bit, 64
(64+0, 64+8). The reason is that the blocklength coming out of the call
of open, where the buffer area of the zone is divided evenly among the
shares, may not amount to a multiple of 512 halfwords, which is
minimum for a zone connected to a backing storage area or a disc.
When the buffer area is redistributed among the shares in openinout,
the bit will disappear from the zone states, if the blocklength coming out
of openinout is sufficient. After closeinout, the bit will reappear in the
zone state. Using buflengthio to declare the zone array, and using a
blocklength which is a multiple of 512 halfwords when just one of the
zones is going to be connected to a backing storage area or a disc, the
zone states will come out right after openinout.

See exampel 1 of inoutrec.

Example 1:
The declaration

zone array za (2, <*no of zones*>
buflengthio (2, <*no of zones*>

2. Procedure Descriptions, buflengthio

Page 30 ALGOLS, User’s Guide, Part 2

3, <*no of shares*> .
80), <*blocklength*>
3, <*no of shares*>
stderror <*blockproc*>);

will declare a zone array of 2 zones, each having 3 shares, each of them
with a blocklength of 80 half words after openinout, provided none of
them are connected to a backing storage area or a disc.

2. Procedure Descriptions, buflengthio

ALGOLS, User’s Guide, Part 2 Page 31

2.18 case

This delimiter, which is a sequential operator, occurs in case-expressions
and case-statements, which are generalisations of if-ex pressions and
if-statements. The case-constructions use an integer to select among
several expressions or statements.

Syntax:

case <operand> of
begin <statement list> end
is a case-statement

case <operand> of (<expression list>)
is a case-expression

A case-statement or a case-expression has the same syntactical position
as an if-statement or an if-expression.

Operand types:
<operand> must be of type integer, long, or real.

The elements of a statement list are separated by semicolons and
numbered 1, 2, 3,...

The elements of an expression list must either be all arithemtic, all
boolean, all string, or all designational. The expressions are separated by
commas and numbered 1, 2, 3, ...

Result type:

If the elements in an expression list are arithmetic, the type of the
resulting value will be:

integer if all elements are integer
long if one or more elements are long, but none real
real if one or more elements are real.

When the elements of the expression list are of type boolean, string, or
designational the resulting value will be of the same type.

Semantic:

A case-construction is executed as follows: First, evaluate the arithmetic
expression and if necessary round it to an integer. Next, select the list
element corresponding to the result. If no such list element exists, the
run is terminated. If ti-e selected element is a statement, execute it and
continue the execution after the complete case-statement (provided that
a goto was not executed). If the selected element is an expression,
evaluate it and ta ke the result as the value of the case-expression.

2. Procedure Descriptions, case

Page 32 ALGOLS, User’s Guide, Part 2

Example 1:

Initializing a table. An arrray may be initialized with the values 3, 5, 0, 1,
1, 2 in this way:

for i:= 1 step 1 until 6 do
ia(i):= case i of (3,5,0,1,1,2);
Example 2:

The logical status word occuring as a parameter to block procedures
may be displayed in this way:

for i:= O step 1 until 23 do

if logical status shift (-i) extract 1 = 1 then
write(out,case 24-1i of
(<:local:>,<:parity:>,<:timer:>, ...));

Example 3:

See Example 2 of readchar.

2. Procedure Descriptions, case

ALGOLS, User’s Guide, Part 2 Page 33

2.19 changekey6

This integer standard procedure makes it possible to change the key
code generated by startsort6.

The generated new key code must not be longer than the key code in the
initial call of startsort6.

Call:

changekey6 (z, keydescr, noofkeys)

changekey6 (return value, integer). The number of
records which reasonably may be placed in the
zone.

' keydescr (call value, integer array). Holds

information about types and relative loca
tions of the key filds as described for

startsorté6.

noofkeys (call value, integer). The number of
significant rows in keydesecr.

The note on the value of startsort6 is also valid for changekey6.

Zone state:

The zone must be initiated by startsort6 (state 9, in sort), and all records
in the zone must be inactive.

The procedure must not be called in connection with initsort and
initkey.

2. Procedure Descriptions, changekey6

Page 34 ALGOLS, User's Guide, Part 2

2.20 changerec

This integer standard procedure regrets the latest call of increc, outrec,
or swoprec and makes a record of a new size available. The procedure is
the ALGOLS version of changerec6.

Call:

changerec (z, length)

changerec (return value, integer). The number of
elements of 4 halfwords each left in the

present block for further calls of inrec,
outrec or swoprec.

z 7?77
|

length (call value, integer, long or real). The
number of elements of 4 halfwords each in the
new record. Length must be >= 0.

For further details see changerec6.

2. Procedure Descriptions, changerec

ALGOLS, User’s Guide, Part 2 Page 35

2.21 changerecio

This integer standard procedure regrets the latest call of inoutrec and
makes a record of a new size available.

Call:
changerecio (za, length)

changerecio (return value, integer). The number of
halfwords left in the pre sent block for
further calls of inoutrec.

za (call and return value, zone array). The
names za(l),...za(n) are all equivalent
names of the same zone record. Determines
further the documents, the buffering and
the positions of the documents.

length (call value, integer, long or real). The
number of halfwords in the new record.

Length must be >= 0. If length is odd, one
is added to the call value.

Zone state:
The zone must be in the state 32+9 i.e. after inoutrec (see getzone6),
and it is left in the same state.

Blocking:

Changerecio can be used to regret a former call of the procedure
inoutrec. This happens in the following way:

1) Check zone state = 32+9. Set the record length to 0 (zero) and
the logical position just before the record base.

2) Start the record procedure with the same parameters as
changerecio. :

The terms zone state, record length, and record base are explained in
getzoneb.

If there is room in the current block for the new record size, a call of
changerecio will not change block. In this case data in elements available
both before and after the call are unchanged.

If there is not room enough in the current block for the entire new
recordsize, a change of block takes place, cf. inoutrec.

2. Procedure Descriptions, changerecio

Page 36 ALGOLS, User’s Guide, Part 2

If you are not aware of the rest length in the used share, you must be
prepared for a block change if the length in the call of changerecio is
greater than that of the previous call of a record procedure.

Note that block change means block change in the output zones
followed by blockchange in the input zone.

The blocking is explained in more detail in inoutrec.

Example 1:

See Example 1 of inoutrec.

2. Procedure Descriptions, changerecio

ALGOLS, User’s Guide, Part 2 Page 37

2.22 changerec6

This integer standard procedure regrets the latest call of inrec6, outrecs,
or swoprect and makes a record of a new size available.

Call:
changerec6 (z, length)

changerec6b (return value, integer). The number of
halfwords left in the present block for
further calls of inrec6, outrecé6 or
swoprecb.

z (call and return value, zone). The name of
the record.

length (call value, integer, long or real). The
number of halfwords in the new re cord.
Length must be >= 0. If length is odd, one
is added.

Zone state:

The zone must be in one of the states, 5, 6, or 7, i.e. after record input,
after record output, or after record swop (see getzone6), and it is left in
the same state.

Blocking:

Changerec6 can be used to regret a former call of the procedures for
record handling. This happens in the following way:

1) Check that 5 <= zone state <= 7. Set the record length to 0
(zero) and the logical position just before the record base.

2) Start the record procedure indicated by the zone state with the
same parameters as change rec6. Le. if zonestate = after record
input then inrec6 (z,1length) else if zone state = after record output
then outrec6 (z,length) else swoprec6(z,length).

The terms zone state, record length, and record base are explained in
getzone6.

If there is room in the current block for the new record size, a call of
changerec6 will not change block. In this case data in elements available
both before and after the call are unchanged.

If you are not aware of the rest length in the used share, you must be

prepared for a block change if the length in the call of changerec6 is
greater than that of the previous call of a record procedure.

2. Procedure Descriptions, changerec6

Page 38 ALGOLS, User’s Guide, Part 2

The blocking is explained in more detail in in rec6, outrec6, and .
swoprecb.

Example 1:

Output of records with variable length. Records with variable length,
where the length is stored in the first word (2 halfwords), may be output
like this:

repeat
outrecb (z,maxlength);
.; Fill the buffer and compute
the actual length.
z,.firstword:= actuallength;
changerec6(z,actuallength);
until...;

Compare this with Example 1 of outrec6, where the actual length is .
known before the call of outrec6.

Example 2:

See Example 2 of invar.

Example 3:

In a zone with one share the last of a series of output records may be
forced onto the document without using setposition or close:

begin zone z (buflength, 1, stderror);
open (z, ...);
repeat
produce records be means of outrecé6
outrec6 (z, buflength * 4);
<*this big dummy record will force the last
record onto the document*>
changerec6 (z,0);
<*regret the dummy record*>
getposition (z, file, block);
<*file and block must be saved in some status

area*>
until ...

This can be useful in an online program for making an easy restart after
a possible program break down.

2. Procedure Descriptions, changerec6

ALGOLS, User’s Guide, Part 2 Page 39

2.23 changevar

This integer standard procedure is used in connection with outvar, as it
replaces a record placed in the zone z by means of outvar with another,
maybe of a new length. The call change var(z,z) always works so that
indices available both before and after the call refer to the same piece of
data - even though a block change may have happened.

Call:

changevar (z, a)

changevar (return value, integer). The number of
halfwords available for further calls of

outvar before change of block takes place
exactly as for outrecé6.

z (call and return value, zone). The zone used
for output.
a (call value, real array). An array containing

the record to replace the current zone record.
The first word of the element with
lexicographical index 1 must contain the new
record length in halfwords. If it is odd, 1 is
added.

Zone state:

The zone state must be after record output (state 6, see getzone6), and
the latest record may have been placed by means of outrec6, outvar or
the like.

Blocking:

Changevar tests whether the next record may reside within the current
block, and changes the block if this is not the case. The old record is not
output. The call changevar(z,z) gets a special treat ment, as the second
parameter will be saved if it cannot reside in the zone buffer while the
block is changed. The blocking and the function is explained in more
detail in outvar.

Record format, counting of records:

The record format is explained in outvar. The free zone parameter (see
getzoneo6) is decreased by one if the new length is 0 (zero). Otherwise it
is not changed.

Example 1:

Sequential file updating by merging

2. Procedure Descriptions, changevar

Page 40 ALGOLS, User’s Guide, Part 2

Certain systems maintain their master files by merging an old master ‘
file with a transaction file giving a new master file. We assume that the

files are sorted in ascending order with respect to a key field, that the

files end with an end-record with the key equal to the maximum value

for longs, and that the records are var-records.

The following algorithm allows several transactions to the same master
record. It also allows transactions to a new master record, supposed that
the new record precedes the transaction record. Old record with same
key as the previous is treated as a serious error. The algorithm can
easily be extended to more than 3 files.

begin comment merging algorithm;

zone old, trans, new(..., ..., stderror);
integer action, creation, removal, changes,
guessed_len;

long first, infinity;
integer field length, type;

long field key; ‘

length:=2; ... infinity:= extend(-1) shift (-1);

<* the initialization of the type identifications
'creation’, ‘removal’, and ‘changes’ as well as the
field variables ‘key’ and 'type’ depend on the record
format. The initialization of ’infinity’ assumes that
the key is > 0. The value of ’'guessed_len’ may lie
between the minimum length and the maximum length of
the record. If it is the minimum length, blockchanges
are postponed as long as possible, and if it is the
maximum length, intermediate savings during changevar
are avoided*>

open (old,);
open (trans,)
open (new,);

<*maybe also setposition on the documents*>

invar (old);

invar (trans); '
outrec6é (new, guessed len);

nevw.length:= guessed_len;

new.key := inifinity;

<*The following code determines an action number which
may be thought of as a binary number 1 <= action <= 7,
where 1 means new contains the lowest key, 2 means that
trans contains the lowest key, 4 means that old
contains the lowest key. More than one key can be
lowest, e.g. 6 means trans and old lowest#*>

action:= 0;
while action < 7 do

begin
<*old trans new*>
action:= 7; <k 111 %
if old.key > trans.key or old.key > new key
then action:= action - 4; <k 011* .

2. Procedure Descriptions, changevar

ALGOLS, User’s Guide, Part 2 Page 41

if trans.key > old.key or trans.key > new.key

then action:= action - 2; <k 0, %>
if new.key > old.key or new.key > trans.key
then action:= action - 1; <k 0 x>

case action of
begin

<*1. (001) new.key smallest, output the ready record#*>
begin
outrecb (new, guessed len);
new.key:= infinity; new.length:= guessed_len;
end 1;

<*2, (010) trans.key smallest, the transaction should
be a creation *>
begin
if trans.type < creation then error (1)
else
begin
trans.type:= ...; <*perform necessary changes in
trans*>
changevar (new, trans);
end;
invar (trans);
end 2;

<*3. (011) trans.key and new.key smallest, the
transaction must be a removal or change*>

begin
if trans.type = creation then error (2)
else
if trans.type = removal then new.key:= infinity
else
begin <*change*>
. <*perform changes in new, perhaps make:
new.length:= new_len; changevar (new,new);*>

checkvar (new);
end;
invar (trans);
end 3;

<*4. (100) old.key smallest, no transaction to this
record*>
begin
changevar (new, old); invar (old);
end 4;

<*5, (101) old.key and new.key smallest, two old
records with the same key This is a serious error*>
begin
alarm (1);
end 5;

2. Procedure Descriptions, changevar

Page 42 ALGOLS, User’s Guide, Part 2

<*6. (110) old.key and trans.key smallest, let the ‘
transaction wait until we have been through the logic
once more*>
begin
changevar (new, old); invar (old);
end 6;

<*7, (111) all keys are ’'smallest’, if all three keys
are equal to infinity, we have finished, else serious
error: two records with same key*>

begin
if old.key < infinity then
begin
error(3);
invar (old);
action:= 0; <*avoid leaving the loop*>
end;

end 7;
end case action; ‘

end merge loop, while action < 7;

<*At merge end put a correct end record into new, maybe
check the end records of old trans, close the zones

properly*>

If the number of transactions is not small compared with the number of
records in old, the checkvar-call concluding action 3 should be moved so
that it is performed just prior to the outrec-call in action 1. Note that in
this algorithm the number of new records is not counted in the free zone
parameter (see getzone6), as outvar is never called.

2. Procedure Descriptions, changevar

ALGOLS, User’s Guide, Part 2 Page 43

2.24 character constant

This string may be used instead of an integer constant or a boolean
constant.

Syntax:

'<character name>’ is an integer constant

"<character name>" is a boolean constant

Semantic:

All ISO character values, listed in the character set table in ref. (14),
may be written directly in the program text. <character name> is the
mnemo nics shown in column G in the character table. The mnemonics
corresponding to the ISO values 0:32 and 127 must be written with small

letters.

The mnemonics are translated to the corresponding ISO values, as if
these constants were written directly:

‘<mnemonic>’' <=> <digits in ISO value>

"<mnemonic>" <=> false add <digits in ISO value>
Example 1:

The following statements and expressions are identical two by two:

if char = 'ext’ then ..
if char = 3 then ..

write (out, "sp", 3);
write (out, false add 32, 3);

<:a'y'x"nl"<’'p’'>:>
<:a'y’x"nl"<112>:>

alpha ('x’'):= 'x' + 6 shift 12;
alpha (120):= 120 + 6 shift 12;

2. Procedure Descriptions, character constant

Page 44

ALGOLS, User’s Guide, Part 2

2.25 check

This standard procedure waits for and checks an answer from a transfer
in exactly the same way as high level zone procedures check their
transfers.

Call:
check (z)
z (call and return value, zone). The operation given

in used share of z (see getzone6) 1is waited for
and checked.

The algorithm is given in ref. (15), 2.4.4 wait transfer. Ref. (15) also
describes the standard error actions.

2. Procedure Descriptions, check

ALGOLS, User’s Guide, Part 2 Page 45

2.26 checkvar

This integer standard procedure calculates the record checksum of a
record with the format of a variable length record as generated by
outvar. The checksum is stored in the second word of the record. The
procedure is intended for use in the very special cases where the
checksum is destroyed or becomes invalid or where a checksum is
needed later on.

Call:
checkvar (z)

checkvar (return value, integer). The checksum which
was stored in the record before the call of
checkvar.

z (call and return value, zone). Specifies the
record for which the checksum must be
calculated, and where it is stored.

Zone state:

The record length given in the first word of the record must be greater
than or equal to 4 and equal to the record length of the zone descriptor
(see getzone6). The zone state is irrelevant and unchanged. No transfer
is initiated by checkvar.

Example 1:

Simulating an end-record.
An end record may be generated in the block procedure when tapemark
is sensed.

procedure endfile(z,s,b);
zone z H
integer s,b ;
if s extract 1 = 1 then stderror(2,s,b)
else if b > 0 then
begin integer array descr(1:20);
integer field reclen,firstword;
reclen:= 32; firstword:= 2;
getzoneé (z,descr);
b:= descr.reclen:= z.firstword:= length;
..... get other parameters in the record;
setzoneb (z,descr);
checkvar(z);
end;

The zone should be opened with giveup mask 1 shitt 16.

2. Procedure Descriptions, checkvar

Page 46 ALGOLS, User’s Guide, Part 2

Example 2: ‘

See Example 2 of invar.

Example 3:
See Example 2 of swoprec6.

2. Procedure Descriptions, checkvar

ALGOLS, User’s Guide, Part 2 Page 47

2.27 close

This standard procedure terminates the current use of a zone and
makes the zone ready for a new call of open. Close may also release a
device so that it becomes available for other processes in the computer.

Call:
close (z, rel)

z (call and return value, zone). Specifies the
document, the position of the document, and the
latest operation on z.

rel (call value, boolean). True if you want the
document to be released, false otherwise.

Close terminates the current use of the zone as described for
setposition. If the document is a magnetic tape which latest has been
used for output (state 3 and 6, see getzone6), a tape mark is written.

Finally, close releases the document if rel is true (release process).
Releasing means for a backing storage area that the reservation of the
area process description inside the monitor is released for use by other
zones of yours (remove process). The area itself is not removed and you
may later on open it again. End medium is not set on the document.

In case of a magnetic tape, two kinds of release exist:

If rel is true and the binary pattern is false add 1, the tape will be
released, which means that the tape is not needed later in the run.
Release of a work tape means that the tape is made available to other
users (see (7)).

If rel is true with another binary pattern, the tape may be unmounted
now (for instance if tape stations are sparse), but it will be needed later
in the run. In both cases a message is sent to the parent asking for
release or suspension of the tape.

Releasing means for other documents, that the corresponding
peripheral device is made available for other processes.

Zone state:

The zone may be in any state when close is called. After the call the
zone is in state 4, after declaration, meaning that it must be opened
before it can be used for input/output again.

Example 1:

A backing storage area which you want to open more times should not

be released, because that may allow other processes to remove it or
output to it. Avoid it in this way:

2. Procedure Descriptions, close

Page 48 ALGOLS, User’s Guide, Part 2

open(master,4,<:bs52:>,0); ‘
for ... do outrecé6(master,

close(master,false);

open(trans,4,<:bs52:>,0);

Example 2:

Let z1 and z2 be two zones which describe magnetic tapes. If you want
to close them and rewind them, proceed in this way:

setposition(z1,0,0); setposition(z2,0,0);
close(zl,false);
close(z2,false);

The rewindings are then performed in parallel and completed when
close is called.

2. Procedure Descriptions, close

ALGOLS, User’s Guide, Part 2 Page 49

2.28 closeinout
This standard procedure terminates the current inoutrec-use of a zone
array and reinitializes the buffersizes and the sizes and locations of the
shares of the zones in the array, bringing the zones back in the state as
after open (and positioned).
Call:
closeinout (za).
za (call and return value, zone array). The zones
za(l),...,za(no of zones) determines the
documents, the buffering and the positions of
the documents, cf. (19).
Function:
Closeinout proceeds in 4 steps:
terminate current use, write tape mark, reinitialize zones, reopen zones.
Terminate Current Use:
Each of the zones are terminated, as described in setposition, after
having its state set to 5 for the input zone and 6 for the output zones.
Write Tapemark:
If the document connected to any zone is a magnetic tape, which latest
has been used for output, a tape mark is written in that zone.
Reinitialize Zones:
Each zone has its buffer and share descriptions reallocated and
reinitialized as right after the zone array declaration.
Reopen:
Each zone has its zone and share descriptors reinitialized as right after
the latest call of open.
Zone state:
The zone states must be one with the inoutrec bit, 32, and they are left
as after open, i.e. 0, 8, 64+0, 64+8, being open, open on magtape, open

with buflength error, open on magtape with buflength error, cf.
getzone6.

2. Procedure Descriptions, closeinout

Page 50 ALGOLS, User’s Guide, Part 2

Example 1:

See Example 1 in inoutrec.

Example 2:

See Example 1 in expellinout.

2. Procedure Descriptions, closeinout

ALGOLS, User’s Guide, Part 2 Page 51

2.29 closetrans

This standard procedure terminates the current format8000 output
transaction, i.e. writes an ETX character in the zone, and if the
document is anything else than a backing storage area or a disc, the
procedure outputs the current buffer to the document (see (19)).

Call:

closetrans (z)

z (call and return value, zone). Specifies the
document to which the transaction is
transferred.

Zone state:

The zone must be in state 3 (after character writing). After the call the
zone is in state 13 (re ady for opentrans).

If the document is an area process (4) or a disc process (6) and the zone
is to be closed, the zone state must explicitly be set to "after character
output” (3) before close is called, or the contents of the zone buffer will
not be transferred to the document:

setstate (z, 3);

Example 1:

See Example 1 of opentrans, and Example 3 of writefield.

2. Procedure Descriptions, closetrans

Page 52 ALGOLS, User’s Guide, Part 2

2.30 comment

This delimiter, which is a separator, is used to insert comments in the
program text in order to increase the readability of the program.
Comments may appear in 2 different forms:

Syntax:

; comment <text not containing ";"> ;
may replace any ; (semicolon)

begin comment <text not containing ";"> ;
may be replace any begin

Example 1: ‘

begin comment h=height, l=length, w=width, v=volume;
integer h, |, w, v;
read (in, h, |, w);
comment calculate the volume;
viz h*l*w;

2. Procedure Descriptions, comment

ALGOLS, User’s Guide, Part 2 Page 53

2.31 comment string

This delimiter, which is a bracket, can be used everywhere a comment is
needed.

Syntax:

<* <text not containing "<* or "I>" > *>

Semantic:

This comment string can replace a space everywhere in the program.
The comment string is blind to the program.

. Example 1:
procedure A (<*price*> p, <*item no*> item);

case 1 of (<*i=1%*> a+h,
<ki=2%> c/q+l)

2. Procedure Descriptions, comment string

Page 54 ALGOLS, User’s Guide, Part 2

2.32 context

This delimiter, which is a declarator, is used in the declaration of a
context block.

Syntax:

context (incarnation, no_of_incarnations, context_mode)

incarnation (integer expression). Specifies the
actual incarnation of the context
block.

no_of_incarnations (integer expression). Specifies the

total number of incarna tions.

context_mode (integer expression). Specifies a .
bit pattern, which defines the
action at entry to and exit from a
context block. The bits are used as

follows:

1 shift 0: read bit

1 shift 1: write bit

1 shift 2: save bit

1 shift 3: new block bit

1 shift 4: new incarnation bit

This declaration follows immediately the block begin, and must only
appear once in the head of the block.

Semantic:

See the description in ref. (15), section 4. ‘

Example 1:
See the Examples in ref. (15).

2. Procedure Descriptions, context

ALGOLS, User’s Guide, Part 2 Page 55

2.33 continue

This delimiter, which is a context operator, is used in a context block to
jump to a context label, allowing context blocks to be considered
coroutines in a number of incarnations (cf. (15)).

Syntax:

continue;

Semantic:

See the description in ref. (15).

Example 1:

See the examples in ref. (15).
Note:

The delimitor is only allowed in context blocks, and yet in inner block
levels of context blocks.

2. Procedure Descriptions, continue

Page 56 ALGOLS, User’s Guide, Part 2

2.34 cos

This real standard procedure performs the trigonometric funtion cosine.

Call:

cos (r)

cos (return value, real). Is the trigonometrical
function cosine of theargument r, in radians
with -1 <= cos <=1

r (call value, real, long, or integer). The
argument in radians.

Accuracy:

abs(r) < pi/2 gives a relative error below 1.2’-10

abs(r)>= pi/2 To the relative error of 1.2>-10 must be added the
absolute error of the argument, r*3’-11. This means
that cos is completely undefined for abs(r) > 3’10,
and then the result is always 0.

Example 1:

Let d be an angle in degrees.

pi:= 3.14159 26536;
cad:= cos (pi/180 * d);

Now cad contains cos of d.

2. Procedure Descriptions, cos

ALGOLS, User’s Guide, Part 2

2.35 deadsort

Page 57

This standard procedure creates a zone record in memory which at a
later stage is to take part in a sorting process. The contents of the record
are initially undefined, but the user is supposed to assign values to the
record variables before next call of any sorting procedure. The hereby
defined record becomes an inactive record in the sorting process, i.e. it
is not participating in the selection process of procedure outsort.

Call:

deadsort (z):

z

(call and return value, zone). The name of the

record created.

Zone state:

As for newsort.

Example 1:

String generation by replacement - selection.

A large file on magnetic tape is read, and a string of sorted records as
long as possible is generated from this input stream. The input takes
place via zone x, and output is written via zone y. Record length is one
double word, and the output string is sequenced on ascending values of
this real. The memory is supposed to be able to hold about 1000 records.

begin

zone 2(2018, 1, sorterror);
integer array key(1:1, 1:2);
integer i, n;
key(1,1):= &; key(1,2):= 4; n:= 1000;
startsorté(z, key,1,4);
for i:= 1 step 1 until 1000 do
begin
inrec(x,1); newsort(z); z{1):= x(1)
end;
outsort(z);
while true do
begin
outrec(y,1); y(1):= 2(1); inrec(x,1);
if sortcomp(z, x, y) < 0 then
begin
deadsort(z); n:= n -1
end
else
newsort(z);
2(1):= x(1);
if n> 0 then
outsort(z)

2. Procedure Descriptions, deadsort

Page 58 ALGOLS, User’s Guide, Part 2

else .

begin
<*at this stage the zone z is filled up with inactive records which can
be activated to form a new string*>
end;
end while;

comment an end of file situation is not handled by this algorithm, i.e. the
input file is assumed to be infinitely large;

2. Procedure Descriptions, deadsort

ALGOLS, User’s Guide, Part 2 Page 59

2.36 decimal point (.)

This delimiter, which is a separator, is a part of a real number.

Syntax:

(+
() (<unsigned integer>) .<unsigned integer>
)

Semantic:

The decimal point has the conventional meaning.

‘ Example 1:

0.7300
+0.7614
-200.084
-.083
5.17
.1

2. Procedure Descriptions, decimal point (.)

Page 60

ALGOLS, User’s Guide, Part 2

2.37 disable

This delimiter, which is a declarator, is used in connection with activities
in order to let the following statement allocate stack space in the "open
ended" stack of the monitor block (see (19) and activity). It can also be
used to prevent an implicit passivate.

Syntax:

disable <statement>

Semantic:

Durmg execution of a disable statement all stack ing/unstacking is done
in the "open ended" stack of the monitor block, and the program is in
disable mode. This means that a possible implicit pas sivate is not
performed.

A disable statement must not be the body of a procedure declaration.

Execution of activity procedures (activate, passivate) or goto statements
is not allowed in disable mode.

Examples:
disable a:= proc (a, b, x);
disable
begin
a:= a+l;

end;

2. Procedure Descriptions, disable

ALGOLS, User’s Guide, Part 2 Page 61

2.38 divide (/)

This delimiter, which is an arithmetic operator, yields the quotient of
the two operands.

Syntax:

<operandl> / <operand2>
Priority: 3

Operand types:

' integer, long, or real.

Result type:

always real.

Semantic:

the operation may include a type conversion. Real values are
represented with a relative precision of about 3’-11 (cf. (15)). This
means that a real varible holding an integral value is represented exactly
in the interval

-2%%35 <= real <= 2**35-1,

As division of long values includes call of subroutines, and cannot be

performed by built-in operations, a representation of certain long
. variables in real variables may be advantageous (cf. (15)).

Example

1: r:= a/b;
b:= a/b/c/d;

2. Procedure Descriptions, divide

Page 62 ALGOLS, User’s Guide, Part 2

2.39 endaction

This integer standard identifier controls the way in which, the program
will terminate:

endaction = 0: At program termination, the FP end
program will be called.
endaction = 1: At program termination, the current

output buffer is emptied (provided FP is
present), a finis message with wait bit is
sent to the parent, containing the alarm
text and inte ger, the answer is waited for
and the program will loop end lessly,
waiting for the parent to take proper
action.

endaction >0 or <1: At program termination, the FP break
action will be called.

Default value is:
-0 if the File Processor is present.
-1 if the File Processor is absent.

Just before program termination, the system assigns a value to
endaction this way:

if fp.absent then
endaction: = 1 <*finis message*>
else
if termination cause = break alarm then
end action: = 'break action’; <*return to FP break*>

In case of end program or finis, the possible context data segments are

transferred to the backing storage area (prog mode : = passive; reserve
all core; and the stack with all its zones is released.

If fp is present, the current output buffer is emptied, and now the
program branches to endaction.

2. Procedure Descriptions, endaction

ALGOLS, User’s Guide, Part 2 Page 63

2.40 entier

This delimiter, which is a monadic arithmetic operator, transfers an
arithmetic expression of type real to the largest integer not greater than
the real expression.

Syntax:

entier <operand>
Priority: 1

Operand type:
. always real.

Result type:

always integer

Semantic:

The largest integer not greater than the real arithmetic expression is
evaluated. The operation may cause integer overflow.

Example 1:

a:= 5.85;

b:= entier a;

<* now be has the value 5 *>
‘ a:= -a;

c:= entier a;

<* now c has the value -6 *>

2. Procedure Descriptions, entier

Page 64 ALGOLS, User’s Guide, Part 2

2.41 equal (=)

This delimiter, which is a relational operator, gives the value true or
false.

Syntax:

<operandl> = <operand2>
Priority: 5

Operand types:

integer, long, or real.

Result type:

always boolean.

Semantic:

The relation takes on the value true whenever the bitpattern of the two
operands are equal, otherwise false.

The relation is performed as a bit by bit comparison of the two operands
(after a possible type conversion whenever the operands are of different

types).
Example 1:
b:= 5=6; <*false*>

if a=c then
k:= 5=15/3; <*true*>

2. Procedure Descriptions, equal

ALGOLS, User’s Guide, Part 2 Page 65

2.42 equivalent (= =)

This delimiter, which is a logical operator, yields the logical equivalence
of the two operands.

Syntax:

<operandl> == <operand2>
Priority: 10

Operand types:
boolean.

Result type:

boolean.

Semantic:

The truth value is evaluated according to the following rule:

right
left true false
true true false
false false true
. Example 1:

if a ==Db then;
<*ig the same as
if aand b or (-,a and -,b) then ...*>

2. Procedure Descriptions, equivalent (= =)

ALGOLS, User’s Guide, Part 2

2.43 errorbits

This integer standard identifier sets the values of the two FP modebits
ok’ and ’‘warning’, when returning to the File Processor through the
final end of the program.

The value of the errorbits is used as the "end program condition". Only
the bits: errorbits extract 2 are used by the system. The two bits are
interpreted as follows:

1 shift 0 : ok.no
0 shift 0 : ok.yes
1 shift 1 : warning.yes
0 shift 1 : warning.no

The default value of errorbits is 0.

If the program returns to the File Processor after an alarm in stead of ‘
leaving through the final end, the value of errorbits will not be used as

"end program condition". (Instead a value >3 is used at "give up" alarm

and the value 1 is used at any other alarm).

Example 1:

If you in an algol program count the number of errors recognized during
the run,you may let the program decide whether to continue or stop the
job by assigning errorbits before leaving the program:

if errors > maxerrors then

errorbits:= 1

else

if errors

errorbits:
end program

v

0 then
1 shift 1;

The job may contain the following FP commands: .

P ; run the program
if ok.no

(c = message too many errors. stop run finis)
if warning.yes

c = message some errors.run continues

; execute the next program in the jobfile

2. Procedure Descriptions, errorbits

ALGOLS, User’s Guide, Part 2 Page 67

2.44 exit

This delimiter, which is a context operator, is used in a context block to
control jumps out of a context block in such a way that the same
incarnation can restart6 in the next statement following the exit
operator. The operator, together with exit, allows context block to be
considered coroutines in a number of incarnations, cf (15).

Syntax:

exit (<designational expression>)

Semantic:
' See description in (15).
Note:
The delimiter is only allowed in context blocks, at the context block level

itself and outside repetitive statements.

Example

1: See the example in (15).

2. Procedure Descriptions, exit

Page 68

ALGOLS, User’s Guide, Part 2

2.45 expellinout

This standard procedure expells one outputzone in a zone array
prepared for inoutrec by the procedure openinout in such a way that no
output will take place in that zone until closeinout reopens the zones of
the array.

Call:
expellinout zone (za, index)

za (call and return value, zone array). The zones za
(1),..., za (no of zones) determine the
documents, the buffering and the positions of the
documents. The zones must be prepared for
inoutrec by a call of openinout, cf. zone states.

index (call value, integer, long, or real). The index
in the zone array for the zone to be expelled.
Index must be in the range 1,..., no of zones,
and if za (index) is not an outputzone, the
procedure is blind.

Zone state:

The state of the zone must be after openinout or after openinout on
magtape (32+0, 32+8) and is left unchanged.

Partial word:

The value of the fixed partial word in the zone descriptor is changed to
the address of the zone itself, cf. openinout.

Example 1:

Consider Example 1 in inoutrec, the section headed: <*handle end of
tape in one of the outputzones*> and suppose that file (1) is connected
to some backing storage area, which is to be transferred to the two tapes
in parallel. If end of tape in an outputzone should lead to a change of
tape to a new volume tape, transfer of some standard file to the tape
and continued output in the two tapes in parallel, it could go like this:

if end_file (2)
or end_file (3) then
begin <thandle tape shift in one or both zones*>

for i :=1, 2, 3do

begin <*stop all zones, position before tape mark*>

stop_zone (file (i), endfile (i)); <*tape mark if endtape*>

getposition (file (i), file_no (i), block_no (i));
end;

2. Procedure Descriptions, expellingout

ALGOLS, User’s Guide, Part 2 Page 69

closeinout (file); <*check position operation and reallocate*>

for i :=1, 2, 3 do
if end_file (i) then
begin <*change to next volume in this zone*>
next_volume (file, i, file_no, block_no);

expell (i) := end_file (i) := false;

end <*change to next tape*> else

begin <*after closeinout the zone states are ‘unpositioned’*>
setposition (file (i), file_no (i), block_no (i));
expell (i) := true; <*set expell condition*>

end;

close (file (1), false); <*don’t remove area process*>
open (file (1), 4, <:std_file:>, 0);

openinout (file, 1); <*prepare transfer standard file*>
for i :=2, 3 do
if expell (i) then

expellinout (file, i);

for hwds := inoutrec (file, 0) while hwds > 2 do
changerecio (file, hwds);

for i :=2, 3 do

begin <*stop zones, position after last block*>
stopzone (file (i), true); <*tape mark*>
getposition (file (i), file_no (i), block_no (i));

end;

closeinout (file);

close (file (1), true); <*remove area process:>
open (file (1), 4, <:bs_area:>, 0); <*reconnect*>

for i :=1, 2, 3 do <*reposition*>
setposition (file (i), file_no (i), block_no (i));

openinout (file, 1); <*reallocate for inoutrec*>
end <*handle tape shift in one or both zones*>;

It is assumed that the procedure next_volume is declared:

procedure next_volume (file, index, file_no, block_no);

value index :
zone array file H
integer index ;
integer array file_no, block_no ;
begin

<*maybe some message that the tape ran out*>

close (file (index), false add 1); <*release message*:
open (file (index), 4 shift 12 + 18 <*mtll*>, <:next_volume:>, give_up);
file_no (index) := 1;

block_no (index) := 0;

2. Procedure Descriptions, expellinout

Page 70 ALGOLS, User’s Guide, Part 2

setposition (file (index), file_no (index), block_no (index));
check (file (index)); <*check position operation*>

end <*next volume*>;

The declarations:

integer array file_no, block no (1:3);
boolean array expell (1:3);

are assumed, 100.

2. Procedure Descriptions, expellingout

ALGOLS, User’s Guide, Part 2 Page 71

2.46 exor

This long standard procedure performs the logical function exclusive or
on two 48 bit entities a and b. If the type length of a and/or b is shorter
than 48 bits, they are extended by repetition of the sign bit.

Call:
exor (a, b)

exor (return value, long). Bit pattern equal to not,
(a==b) performed bit by bit after possible
extension of the parameters a and b.

a,b (call value, short string (text portion), real,
long, integer or boolean). The two parameters do
not have to be of the same kind. They are - if
necessary - extended and they are handled as
described below.

Handling of a and b according to kind:

String: It is tested that a string parameter describes a text portion
or a short string cf. (14). This is a 48 bit entity.

Real: A real is represented by 48 bits, no conversion.

Long: A long is represented by 48 bits, no conversion.

Integer: An integer is extended to a long as if the operator extend
had been applied.

Boolean: A boolean is considered a short integer. The 12 bit

boolean pattern is extended to a 48 bit long according to
the algorithm

int:= boo extract 12;

if int > 2047 then int := int - 4096;
param.= extend int;

The rules for extension imply that actual parameters with values true, -1,
and extend (-1) are equivalent. Note that the rules also imply that the
effect of an integer with value 2048 differs from the effect of a boolean
with the value false add 2048.

Example 1:

In certain data transmission problems, a check character, which is a
longitudinal parity check of a data block is needed. If the block is of
more than 6 characters, the algorithm for finding the check character
may look somewhat like this:

longfield:= firstword + 2;
checkword:= 2.longfield;
for longfield:= longfield + 4 step 4 until lastword do
checkword := exor(checkword,z.longfield);
if longfield - 4 <> lastword then
checkword:= exor(checkword, z.lastword);

2. Procedure Descriptions, exor

Page 72 ALGOLS, User’s Guide, Part 2

checkword:= exor(checkword,checkword shift (-24)); ‘
checkword:= exor(checkword extract 8, checkword shift (-8));

checkchar:= exor(checkword,checkword shift (-8)) extract 8;

z.checkfield:= checkchar;

The data block including the checkcharacter will now be of even
longitudinal parity.

2. Procedure Descriptions, exor

ALGOLS, User’s Guide, Part 2 Page 73

247 exp

This real standard procedure performs the exponential function.

Call:
exp (r)
exp (return value, real). The exponential function of
the argument r, e**r. (e = 2.71828 18285).
r (call value, real, long, or integer). r < 1000.
Accuracy:
r=-0 gives exp = 1
. r < -1000 gives exp = O.
abs(r) < In(2)/2 gives a relative error

below 8.5’-11.
(n-0,5)*1n(2) <= abs(r) <= gives a relative error
(n+0.5)*1n(2) below 1.2'-10 + n*2'-11.

A value of r greater than 1000 will cause the run time alarm: exp 0.

Example 1:

e:= exp (1);

2. Procedure Descriptions, exp

Page 74

ALGOLS, User’s Guide, Part 2

2.48 exponentiation (**)

This delimiter, which is an arithmetic operator, yields the involution of
the left hand operand to the power indicated by the right hand operand.

Syntax:

<operandl> ** <operand2>
Priority: 2

Operand types:

integer, long, or real. When <operand2> is real, <operand1> must be
positive (see below).

Result type:

Always real.

Semantic:

The operation denotes exponentiation, where <operandl> is the base,
and <operand2> is the exponent. Thus for example

k
2%%knkkk meansn(2)

while

(n) 5**(n**k) means 2

Writing i for a number of type integer or long, r for a number of type
real, and a for a number of type either integer, long, or real, the result is
given by the following rules:

akky .

i >0: a*a*,..*a (i times)

i <0: 1/(a*a*.. .*a) (abs(i) times),
a must be < 0

i=0:1

akkr

a>0: exp (r * In(a))

a < 0: runtime alarm

a = 0: runtime alarm (expect when a is of type integer

or long and r > 0, in which case the result
becomes 0.0).

2. Procedure Descriptions, exponentiation (**)

ALGOLS, User’s Guide, Part 2 Page 75

Example 1:

r:=b * 10%*a,

2. Procedure Descriptions, exponentiation (**)

ALGOLS, User’s Guide, Part 2

2.49 extend

This delimiter, which is a monadic arithmetic operator, converts an
integer expression to a long.

Syntax:

extend <operand>
Priority: 1

Operand type:

integer. .

Result type:

long.

Semantic:

The value of <operand> is converted to a 48 bits long by extension of
the sign bit.

Example 1:

As operations on integers give integer values, an unwanted integer
overflow may occur when two integers are multiplied. This may be
avoided if the operator extend is applied on one of the operands:

totals:= extend pieces * price .
(whereas the expression: totals:= extend (pieces * price) will not work).
This is of course only relevant if totals reason ably may exceed 8 000 000
and is a long.

Example 2:

Two integers may be packed into one long variable in this way:

l:x extend i1 shift 24 add i2;

Example 3:

See Example 2 of long.

2. Procedure Descriptions, extend

ALGOLS, User’s Guide, Part 2 Page 77

2.50 external

This delimiter, which is a compiler directive, replaces the first begin of
the program when an algol procedure is translated alone.

Syntax:
external <procedure declaration>; end

is a program. A maximum of 7 parameters is allowed.

Semantic:

A procedure translated in this way becomes a standard procedure,
which means that other algol or fortran programs may call the
procedure without having to declare it. The name of the procedure is
the name of the backing storage area in which it was translated. All
standard identifiers used from the procedure must be present in the
catalog when the procedure is translated, but the actual code
determining these standard identifiers is not copied until the procedure
itself is copied into an ordinary algol or fortran program.

The name of a translated external procedure must not contain capital
letters, because they are for bidden in names of backing storage areas.

Example 1:
A standard function ’tg’ may be compiled in this way:

tg=algol; File processor commands, cf. (6).
external real procedure p(r);
value r; real r;
begin real v;
v:= cos(r);
p:= if v <> 0 then sin(r)/v else ‘600
end;
end
scope user tg; File processor command.

From another program it may be used like this:
write(out, (1+tg(B/2))/(1-tg(B/2)));
Assume that the procedures cos and sin are replaced with better

versions. These new versions will automatically be used whenever tg is
used during the translation of an algol program.

2. Procedure Descriptions, external

Page 78 ALGOLS, User’s Guide, Part 2

2.51 extract

This delimiter, which is a pattern operator, is used for unpacking of
integer values from a real, long, integer, boolean, or string value.

Syntax:

<operandl> exract <operand2>
Priority: 2

Operand types:
<operand1>: boolean, integer, long, real, or string. .

<operand2>: integer, long, or real.

Result type:

Always integer.

Semantic:

Extract treats <operand1> as a binary pattern (cf. (14), and
<operand2> is rounded to an integer if it is of type long or real. Now a
number of the rightmost bits are extracted from <operandl> as
indicated by the value of <operand2>. These bits are extended with
zeroes in front if necessary. The resulting value is the integer with these
bits as its binary pattern. The result is undefined if the, possibly
rounded, <operand2> has a value be low 0 or above 24.

Example 1: Simple splitting

A boolean may be split into two integers in this way:

i1:= b shift (-6) extract 6
i2:= b extract 6;

Both integers will be in the range 0 to 63.

Example 2: Splitting with sign.
A real may be split into two signed integers in this way:

i1:= r shift (-24) extract 24;
i2:=r extract 24;

Usually a signed integer is packed and split in this way: '

2. Procedure Descriptions, extract

ALGOLS, User’s Guide, Part 2 Page 79

comment -32 <= i <= 31;
i.e. 0 <= §+32 <= 63;
r:= r shift 6 add (i+32);

i:= r extract 6 - 32;

Example 3:

A text string stored in the integer array ia may be split into a sequence
of characters stored as integers in the array char in the following way:

comment ¢ is the current index within char,
s counts positions within ia(i);

g:= i:= 0;
for c:= 1,c+1 while ch < 0 do
begin
if s <> 0 then s:=s + 8
else

begin s:= -16; i:= i + 1; t:= ja(i) end;
char(c):= ch:= t shift s extract 8;
end;

A faster version, which always splits ia(i) into 3 characters even if one of
them is the stop character (0), works like this:

comment ¢ is current index within char,
t contains ia(i);

t:= c:= -2; i:=0;

for c:=c + 3 while t extract 8 <> 0 do

ix= 1+ 1; t:= ia(i);
char(c):= t shift (-16);
char(c+1):= t shift (-8) extract 8;
char(c+2):= t extract 8;

end;

Example 4: Scaling of reals.

An array of reals may be scaled so that all elements are in the range -1
< r < 1in the following way. The mantissas are not touched so that full
accuracy is maintained. The main problem in the algorithm is the
handling of the sign of the exponent.

max:= -2048;
for i:= 1 step 1 until n do
begin

e:= ra(i) extract 12;
if e >= 2048 then e:z e - 4096;
if e > max then max:= e;
end;
comment max is now the maximal two’s exponent;
for rf:= 4*n step -4 until 4 do
if ra.rf <> 0 then

2. Procedure Descriptions, extract

Page 80 ALGOLS, User’s Guide, Part 2

begin "I'
bf:= rf;

e:= ra.bf extract 12;
if e >= 2048 then e:= e - 4096;
e:z e - mex;
if e < -2048 then ra.rf:= 0
else ra.bf:= false add e;

end;

2. Procedure Descriptions, extract

ALGOLS, User’s Guide, Part 2 Page 81

2.52 18000table

This standard procedure changes the input character alphabet (like the
standard procedure intable) to the format8000 input table.

Call:
£8000table

The format8000 table consists of 256 entries and is stored in own core.

Note:
The procedures waittrans and readfield call this procedure, so it will not

be necessary for the program to call f8000table when using the
. format8000 procedures.

2. Procedure Descriptions, f8000table

Page 82 ALGOLS, User’s Guide, Part 2

2.53 field
This delimiter, which is a declarator, is used in declarations and
specifications of field variables.
Syntax:
<type> field <field list>
<type> array field <field list>
array field <field list>
Semantic:
Field variables are used in field references or they may be used as
integer variables. For a complete description cf. (15).
Example 1:
See (15).

Example 2:

See Example 1 of activity.

2. Procedure Descriptions, field

ALGOLS, User's Guide, Part 2 Page 83

2.54 fpmode
This boolean standard procedure tests a bit in the FP modeword.

Call:
fpmode (modebit)

fpmode (return value, boolean). True if the bit was
set, otherwise false.

modebit (call value, integer). 0 <= modebit <= 23.

Example 1:

The printing of testoutput from your program can be controlled by the
modebits in the following way:

begin
boolean testa, testb;
testa:= fpmode (0);
testb:= fpmode (1);

if testa then write (out,);
if testb then write (out,);
The job

mode O.yes 1.no; set testa
P ; execute program

will produce the testoutut controlled by testa, but not the testoutput
controlled by testb.

2. Procedure Descriptions, fpmode

Page 84 ALGOLS, User's Guide, Part 2

2.55 fpproc

This standard procedure is used to execute a subset of the FP
subroutines (cf. (3), Part Three), normally identified by their names.

Call:

fpproc (action, wl, wl, w2)

action (call value, integer).

The procedure simulates the call:

jb w3 fpbase + h-name (action)

in algol or fortran programs, i.e. calls the subroutine ‘
h(concat)action

The subset accessible is described by the possible action set:

7, fp end program
14, fp finis message to parent
22, fp inblock
23, fp outblock
24, fp wait and ready
25, fp inchar
26, fp outchar
27, fp connect input
28, fp connect output
29, fp stack zone
30, fp unstack zone
31, fp outtext
32, fp outinteger
33, fp outend
34, fp close up .
35, fp parent message
48, fp wait and free
67, fp break message to parent
79, fp terminate zone
95, fp close up text output

wl, w2, w3 (call and return values, undefined). No check
of kind and type of the actual parameters is
performed at compilation time.

Certain checks of the w parameters are performed at execution time just
before FP is entered, but still the procedure should be used with care.

The allowed kinds and types depend on the value of the action
parameter, cf (22). Violation will terminate the program with the alarm:

2. Procedure Descriptions, pfproc

ALGOLS, User’s Guide, Part 2 Page 85

‘ param fpproc
called from ...

For details on the use of the procedure, cf. (22).

2. Procedure Descriptions, fpproc

Page 86 ALGOLS, User’s Guide, Part 2

2.56 getalarm

This integer standard procedure can be used when runtime alarms are
trapped, to supply the information which would have been printed by
the File Processor if the run was terminated.

Call:
getalarm (arr)

getalarm (return value, integer). If the latest
runtime alarm was: give up (i.e. alarm
cause extract 24 = -11), the value is the
logical status word from the zone in
question - otherwise it is undefined.

arr (return value, array of any type). Must be ‘
declared to hold at least 8 words, the
first word being at halfword index 1.
Assume the declaration long array arr
(1:4), then the contents of arr will be:

arr (1:2) The alarmtext printed on current output.

arr (3:4) If alarm_cause extract 24 = -11 (give up),
the contents will be the document name of
the zone in question -otherwise the empty
string.

Example 1:

The following procedure should be called when an alarm has been
trapped.

procedure writealarm (out);

zone out ;

begin .
long array text (1:4);
long array field docname;
integer status, cause, param, bit;
real comms;
docname:= 8;
status :x getalarm (text);
cause :x= alarmcause extract 24;
param := alarmcause shift (-24);
write (out, text, param);

if cause = -11 <*give up*> then
begin <*output device information*>
write (out, “sp", 1, text.docname);
comma:= real <:: :»;
for bit:= 1 step 1 until 24 do
if status shift (bit-1) < 0 then
begin

write (out, string comma, case bit of (

2. Procedure Descriptions, getalarm

ALGOLS, User’s Guide, Part 2 Page 87

. <*1*><:intervention:>,
<:parity error:>,
<:timer:>,
<:data overrun:>,

<*5*><:block length:>,
<:end document:>,
<:load point:>,
<:att or tapemark:>,
<:write enable:>,

<*10*><:mode error:>,
<:read error:>,
<:disk error/not connected:>,
<:checksum:>,
<:bit 15:>,

<*15*><:passivate:>,
<:stopped:>,
<:word defect:>,
<:position error:>,
<:non exist:>,

<*20*><:disconnected:>,
<:unintelligible:>,
<:rejected:>,
<:normal:>,
<:hard error:»));

comma:= real <:, :>;
end for, if;
end device information;
end write alarm;

2. Procedure Descriptions, getalarm

Page 88 ALGOLS, User’s Guide, Part 2

2.57 getf8000tab

This standard procedure opens access to the format 8000 character
input table.

Call:
getf8000tab (a, low, up)

a (call and return value, integer array). The
dope vector of the array is changed, so as to
point directly to the format 8000 table. The
array may be declared: integer array a(l:1)
and must be a single declaration. Field arrays
are not allowed.

low, up (call values, integers). Define the wanted
lower and upper limits for the array: a
(low:up).

On exit there is direct access to the format8000 table, and care must be
taken to avoid destruction of table values (0:31) and (127:255), which
are used for special purposes by the format8000 procedures.

Example 1:

The following program part will make the user part of the character
input table available for changes, but will prevent the special part of the
table from being destroyed:

begin
integer array table (1:1);
getfB000tab (table, 32, 126);
table (32):= ...; <*define space and other characters*>
<*but a reference: table(31):= ...
will give an index alarm*>

2. Procedure Descriptions, getf8000tab

ALGOLS, User’s Guide, Part 2 Page 89

2.58 getposition

This standard procedure gets the block and file number corresponding
to the current logical position of a document.

Call:
getposition (z, file, block)

z (call value, zone). Specifies the document,
the position of the document, and the latest
operation on z.

file (return value, integer). Irrelevant for
documents other than magnetic tape. Specifies
the file number of the current logical
position (cf. (15)). Files are counted O, 1,
2,...

block (return value, integer). Irrelevant for
documents other than magnetic tape and backing
storage. Specifies the block number of the
current logical position (cf. (15)). Blocks
are counted 0, 1, 2,....

Getposition does not change the zone state and it may be called in all
states of the zone. If the zone is not "opened", the position got will be
undefined, however. The position is also undefined after a call of close.

When the document is a backing storage area, the contents of the
parameter block is the segment number within the area. If the share
length of the zone is greater than one segment, the position will be the
segment number of the first segment within the block.

Example 1:

During the generation of a magnetic tape, you may note the position of
a particular record and later return to that block:

outrec6 (z,10);
getposition(z,f,b);
outrecb (z,10);
setposition(z,f,b);
inrecé (z,10);

If you want to get the same record again, you may use getzone6 to get
the position within the block, or you may use the value of inrec or
outrec6 to denote the position within the block (see Example 3 of
getzone6).

2. Procedure Descriptions, getposition

Page 90 ALGOLS, User’s Guide, Part 2

2.59 getshare

- This standard procedure moves the contents of a share descriptor into
an integer array for further inspection. The procedure is the ALGOLS
version of getshare6.

Call:
getshare (z, ia, sh)

a (call value, zone). Specifies the share
together with sh.
ia (return value,integer array,length >= 12
counted from lexicographical index 1). The
elements ia(l), ..., 1a(l2) must exist.
sh (call value, integer). The number of a share .
within z. The contents of the share descriptor
are moved to ia(l,...,1a(12).

Works as getshare6 except that getshare computes first shared and last

shared as a buffer index in stead of as a halfword index. The buffer
index is equal to (halfword index+3)//4.

2. Procedure Descriptions, getshare

ALGOLS, User’s Guide, Part 2 Page 91

2.60 getshare6

This standard procedure moves the contents of a share descriptor into
an integer array for further inspection. The procedure is designed for
the primitive level of input-output, where you im plement your own
blocking strategy for the peripheral devices,and for use in the block
procedures where you want to interfere with the standard handling of
devices. Skip it if you are satisfied with the high level zone procedures.

A share descriptor constists of 12 pieces of information, most of them
with names originating from their use in high level zone procedures. The
explanation below requires some knowledge of handling of peripheral
devices (cf. (3)).

The share descriptor contains certain absolute addresses of half words
within the zone buffer. The reason for this and the relation between the
absolute address and the usual index are given for the procedure
getzoneb6.

Call:
getshare6 (z, ia, sh)

z (call value, zone). Specifies the share
together with sh.

ia (return value, integer array, length >= 12
counted from lexicographical index 1). The
elements ia(l),...,ia(12) will become the
below values.

sh (call value, integer). The number of a share
within z. The contents of the share descriptor
are moved to ia(l),...,ia(l2).

ia(l) Share state. Describes what the share is used
for:
= message buffer address for an uncompleted

transfer or a stopping child process.
= -process description address for a run ning
child process.

= 0 for a free share. See below.
= 1 for a ready share. See below.

ia(2) First shared. Halfword index for the first
element available for a block transfer which
uses this share and was started by a high
level zone procedure.

ia(3) Last shared. Halfword index for the last
element available for a block transfer which
uses this share and was started by a high
level zone procedure.

ia(4) to ia(ll) Message. A high level zone procedure
leaves the latest message sent by means of
this share in the message part of the share
descriptor. A message describing a block
transfer is composed like this:

2. Procedure Descriptions, getshare6

Page 92 ALGOLS, User’s Guide, Part 2

ia(4) operation shift 12 + mode

operation examples cf. (3)

0 sense
3 read
5 write
ia(5) first absolute address of block
ia(6) last absolute address of block
ia(7) segment number (only significant for backing
storage)
ia(12) Top transferred. The absolute address of the

halfword just after the latest block
transferred by means of this share. Top
transferred may differ from ia(6)+1 after an
input operation, for instance.

Free and ready share

The output procedures do not distinguish between a free and a ready
share, but whenever an input procedure tries to get a new block of
information, it assumes that a ready share contains a block of
information already, whereas a free share must be filled with a block
from the device.

Example 1:

Let z be declared as z(300,3,stderror) with base buffer area = 29 999,
(see definition in getzone6) and assume that you have opened the zone.
The calls getshare6(z,ia,1), getshare6(z,a,2), and getshare6(z,ia,3) will
now yield the following results in typical situations (X designates an
unde fined value):

ia(1) ia(2) ia(3) ia(4) ia(5) ia(é)... ia(12)
state f.sh. Ll.sh. opt f.adr. l.adr. top.tr.

When the first block of input is being processed:

used share 0 1 400 input 30 000 30 398 30 276
share2 >0 401 800 input 30 400 30 798 X
share3 >0 801 1200 input 30 800 31 198 X

When the first block of output has been produced:

share 1 >0 1 400 output 30 000 30 350 X
used share 0 401 800 X 30 400 30 798 X
share 3 0 801 1200 X 30 800 31 198 X

Just after setposition for a magnetic tape:

used ghare >0 1 400 move position 30 398 X
share2 0 401 800 X 30 400 30 798 X
share3 0 801 1200 X 30 800 31 198 X

2. Procedure Descriptions, getshare6

ALGOLS, User’s Guide, Part 2 Page 93

2.61 getstate

This standard procedure assigns the zonestate to an integer parameter.

Call:

getstate (z, state)

z (call value, zone). The zone state of z is
assigned to state.
state (return value, integer).
Example 1:
' See Example 1 of opentrans.

2. Procedure Descriptions, getstate

Page 94 ALGOLS, User’s Guide, Part 2

2.62 getzone

This standard procedure moves the contents of a zone descriptor into an
integer array for further inspection. The procedure is the ALGOLS
version of getzone6 and works as getzone6 except that the record length
is given in buffer elements instead of half words.

A buffer element consists of 4 halfwords.

Last halfword of a buffer element, the reference halfword, has the
absolute address:

base buffer area + 4 * buffer index.

Call:

getzone (z, ia) ‘

z (call value, zone). The contents of the zone
descriptor are moved to ia(l),...,1a(20).

ia (return value, integer array, length >= 20,

counted from lexicographical index 1).

Getzone should only be used if the zone has only been used for inrec,
outrec or swoprec. As it cuts the record length to an integral number of
elements, it may give misleading results if some of the procedures
inrec6, outrec6, swoprec6, changerec6, invar, outvar, or changevar have
been used.

For further description see getzone6.

2. Procedure Descriptions, getzone

ALGOLS, User’s Guide, Part 2 Page 95

2.63 getzoneb

This standard procedure moves the contentst of a zone descriptor into
an integer array for further inspection. The procedure is designed for
the primitive level of input-output, where you implement your own
blocking strategy for the peripheral devices, and for use in the block
procedures where you want to interfere with the standard handling of
the devices. Skip it if you are satisfied with the high level zone
procedures.

A zone descriptor consists of 20 pieces of information, most of them
with names originating from their use in high level zone procedures.

The zone buffer is just a sequence of real variables - from the point of
view of the algol program - but other processes (peripheral devices, etc.)
regard it rather as a sequence of half words, each being identified by its
absolute address.

If you want to communicate with other processes on the very primitive
level (procedure monitor), you cannot avoid the absolute addresses.
They are related to the usual halfword index in this way:

The reference halfword of a field in the zone has the absolute address:
base buffer area + halfword index.

This expression also defines the quantity ’base buffer area’ as the
absolute address of the halfword preceding the zone buffer area. The
value of ’base buffer area’ and certain other halfword addresses are
available by means of getzone6.

Call:

getzoneb (z, ia)

z (call value, zone). The contents of the zone
descriptor are moved to ia(l),...,ia(20)
ia (return value, integer array, length >= 20

counted from lexicographical index 1). The
elements ia(l),k...,ia(20) will become the
following values:

ia(l) Mode shift 12 + kind. Values and significance
are explained under the procedure open.
ia(2) to ia(5) Process name. The name of the process

(document) with which the zone communicates for
the moment. The name is extended to 12
characters using null characters for fill.

ia(6) Name table address. The corresponding variable
in the zone descriptor is used by the monitor
to speed up the .;earch for the process given by
the process name.

ia(7) File count. Only significant for magnetic tape
handling. See explanation below.

2. Procedure Descriptions, getzone6

Page 96

ALGOLS, User’s Guide, Part 2

ia(8) Block count. Only significant for magne tic
tape handling. See explanation below.

ia(9) Segment count. Only significant for hand ling
of backing storage areas. See explanation
below.

ia(10) Give up mask. See (15).

ia(1ll) Free parameter. Is used by the Fortran

read/write system, by the var-procedures and by
the in-out procedures. See explanation below.

ia(12) Partial word. Used by the procedures for
input-outputon character level to unpack or
pack characters. See explanation be low.

ia(13) Zone state. Used by high level zone procedures
to keep track of the latest operation on the
zone. See below.

ia(l4) Record base. The absolute address of the
halfword preceding the first halfword of the
present record. During character in put or
output the record may be regarded as the word
in the zone buffer in which the partial word
will end or from which it came.

ia(15) Last halfword. Absolute address of the last
halfword of current block. During output the
block matches the shared area used for the
moment, during input the block matches the
block transferred from the device.

ia(l6) Record length. Number of halfwords in the
present record. Notice that the record length
is 0 during character input or output.

ia(17) Used share. Number of a share within z. Used
share will in high level zone procedures be the
share in which items are stored for the moment
or from which they are fetched.

ia(18) Number of shares. The value given in the zone
declaration.
ia(19) Base buffer area. See above.

ia(20) Buffer length. The value given in the zone
declaration, i.e. measured in double words.

File count, block count

In the high level zone procedures of algol the two variables, file count
and block count, are used in two ways: When a tape positioning is
initiated, file and block count denote the wanted final position. When a
block transfer has been checked, file and block count denote the
physical position corresponding to the end of that block.

Segment count

The current value of segment count is used as the 4th word of every
message sent to a device by the high level zone procedures. It will only
have significance when the message is sent to a backing storage process,
however. As soon as the message is sent, segment count is updated to
correspond to a transfer of the next block of the backing storage area,
(i.e. the segment number of the first segment in this block).

2. Procedure Descriptions, getzone6

ALGOLS, User’s Guide, Part 2 Page 97

Free parameter

The so-called free parameter may contain anything if the zone is not
used by the fortran read/write system or by the procedures changevar,
invar outvar, openinout, inoutrec, changerecio or closeinout. It is set to
zero when the zone is declared. The var-procedures (changevar, invar,
and outvar) use the free parameter as a counter of the logical records
generated or read by the procedures, and as an indication of whether or
not the record checksum should be checked by invar. The fortran
read/write system uses the last bit of this parameter to signal if the
latest call of read or write have used format or format0. A one in the last
bit means that format0 was used and a zero means that format was used.
See (9) for further details.

The procedure openinout will use the word as a pointer to the in put
zone among the zones in the parameter zone array.

Partial word

One element of the zone buffer consists of two words. Each of the words

contains 3 characters like this: ch1 shift 16 + ch2 shift 8 + ch3. Partial
word may after the call of a procedure on the character level contain

this:

After input: After outp
ch?2 shift 16 + ch3 shift 8 + 1

ch3 shift 16 + 1 shift 8 1 shift 8 +
1 shift 16 1 shift 16 + chl shift 8 + ch

The procedure openinout will use the word for the zone’s own index in
the parameter zone array.
Zone state

. The action of a high level zone procedure will in general depend on the
latest operation upon the same zone. The following zone states are used:

zone state

0 positioned after open.

1 after character reading.

2 after repeatchar.

3 after character writing.

4 after declaration or after
close.

5 after record input (or
fortran unformatted input).

6 after record output (or
fortran unformatted
output).

7 after record swop

8 after open on magtape

(open and unpositioned)

‘ 9 in sorting

2. Procedure Descriptions, getzone6

Page 98

10
1
13
32

32+48=40
32+8=41
64+0=64
64+8=72
64+32+0=96

64+32+8=104

ALGOLS, User’s Guide, Part 2

after waittrans

after waittrans

after closetrans

after openinout or
setposition after open
inout

after openinout on magtape
after inoutrec/changerecio
after open with buflength
error

after open on magtape with
buflength error

after openinout with
buflength error

after openinout on mt with
buflength error

Other zone states are used by procedures not described in this manual.

2. Procedure Descriptions, getzone6

procedure zonestate zonestate
before after

<declaration> - 4

initzones/resetzones 4 4

open 4 0,8,64+0,64+8

setposition 0,1,2,3,5,6,7,8 0
32+0, 32+8, 32+9 32+0
64+0, 64+8 64+0

read, readall, readchar, 0,1,2 1

readstring fortran formatte

read

repeatchar 1,2 2

write, writeint, outchar 0,3 3

outdate, outinteger

. fortran formatted write

inrec, inrecé, invar 0,5 5

fortran unformatted read

outrec, outrec6, outvar 0,6 6

fortran unformatted write

swoprec, swoprecb 0,7 7

changerec, changerec6 5,6,7 unchanged

changevar [6

close any but one with 32 4

changekeyb, deadsort, 9 9

initkey, liftsort,

newsort, outsort

opentrans 0,13 3

closetrans 3 13

waittrans 0,1,2,10,11 10,11

readfield 1,2,10,11 1,2

. openinout 0,8 32+0, 32+8

64+0, 64+8 64+32+40, 64+32+8

expel linout 32+0, 32+8 unchanged

inoutrec 3240, 32+9 32+9

changerecio 32+9 32+9

closeinout 3240, 32+8, 32+9 0,8,64+0,64+8
64+32+0, 64+32+8

ALGOLS, User’s Guide, Part 2

Page 99

The high level zone procedures described in this manual use the zone

state as shown in the following table:

Example 1:

Let z be declared as z(2*128,2,stderror) and opened as the backing
storage area <:sldatalS:. Af ter 130 calls of ’outrec6(z,4)’ the call

getzoneb(z,ia)
will yield something which only depends on the value of base buffer

. area:

2. Procedure Descriptions, getzone6

Page 100

variable:

ia(1),modekind

ia(2)-ia(5), process name

ia(6),name table address
ia(7),filecount
ia(8),block count
ia(9),segment count

1a(10),give up mask
ia(11),free parameter
ia(12),partial word
ia(13),zone state
ia(14),record base
ia(15),last halfword
ia(16),record length
ia(17),used share
ia(18),number of shares
ia(19),base buffer area
ia(20),buffer length

Example 2:

Character output to memory locations:

Numbers may be transformed to character form by means of write. The
only problem is that you do not want to output the characters on a
device, but rather keep them in long variables as text portions. This is

possible by means of

getzoneb,setzoneb.

zone convert(10,1,stderror); integer array

ia(1:20);

open(convert,0, <:dummy:>,0);

repeat
write(convert,

ALGOLS, User's Guide, Part 2

contains:

4

<:sldatal5:>,0

Some address

0

0

1 (prepared for output of the next
segment)

As defined by open

0

1

6 (after outrec6)

30 515 (base buffer + 4*128 + 4)
31 023 (base buffer + 4*256)

4

2 (one block output already)

2

29 999

256

<<ddd.dd’dd>, the number to be converted, false,2);
comment the partial word has been forced into the buffer by the 2 null

characters;
getzonebé(convert,ia);
fa(12):= 1;

ia(14):= ia(19); ia(16):= 40;

setzoneb(convert,ia);

comment Now the record contains the number in

and partial word are ready for converting the next number;
x1:= long convert(1); x2:= long convert(2); ...

until ...;

comment the zone convert must not be closed;

Example 3: Improved setposition:

2. Procedure Descriptions, getzone6

character form. Record base

ALGOLS, User’s Guide, Part 2 Page 101

The procedures getposition, setposition do only enable a device to be
positioned at the beginning of a block. You may resume reading from
the middle of a block on magnetic tape or backing storage in this way:

begin
zone 2(...), 21(...);
integer array ia(1:20);
integer posi, pos2, pos3, posé, ¢;
integer field paritial_word, record base,
used_share, no_of_shares,
base_buf_area, buf_length;

This example is made absolute by the development of write, making it
able to write into arrays as well as zones, but for its illustrative qualitites
concerning the concept of blockprocedures, it is repeated.

partial_word - 12%2;
record_base = 14%2;
used_share - 17%2:
no_of_shares = 18%2;
base_buf_area i= 19%2;
buf_length 1= 20%2;

comment generalised getposition;

read (z, ...);

getposition (z, pos1, pos2);

getzoneb (z, ia);

pos3:= ia.record base - ia.base_buf_area -
ia.buf_length*4//ia.no_of_shares *
(ia.used share-1);

<*pos3 is the relative position within the used share*>
pos4:= ja.partial_word;

comment generalised setposition, perhaps with the device connected to another

2o0ne;

setposition (z1, posi, pos2);

readchar (z1, c);
<* now the deviced is positioned and the first block is read into the
first share *>

getzoneé (21, ia);

ia.record_base:= pos3 + ia.base_buf_area;

ia.partial_word:= posé;

setzoneb (21, ia);

read (z1, ...);

2. Procedure Descriptions, getzone6

Page 102 ALGOLS, User’s Guide, Part 2

2.64 goto

This delimiter, which is a sequential operator, can be used to change the
program flow.

Syntax:

goto <designational expression>

Semantic:

A goto statement interrupts the normal sequence of operations. The
next statement to be executed will be the one having this value as its
label.

A jump (by a goto statement) out of an activity or a disable statement is .
not allowed. This will give the run time alarm "goto" (alarmcause = -14).

A jump (by a goto statement) into a for-, repeat-, or while-statement is
also forbidden. This will give the error message "for label" during the
compilation.

Example 1:

a:= q;
if a > p then goto lab;

lab:
b:= a + 17;

2. Procedure Descriptions, goto

ALGOLS, User’s Guide, Part 2 Page 103

2.65 greater than (>)

This delimiter, which is a relational operator, yields the value true or
false.

Syntax:

<operandl> > <operand2>
Priority: 5

Operand types:
. integer, long, or real.

Result types:

Always boolean.

Semantic:

The relation takes on the value true whenever the corresponding
relation is satisfied for the expressions involved, otherwise false.

In case one of the operands is different from type integer the relation is

executed as a subtraction. Thus you must be prepared for overflow,
underflow, or spill (see Example 3 of monitor).

Example 1:

. a:=b > c;

if d > q then ... else ...;
while k > L do ...;

2. Procedure Descriptions, greater than (<)

Page 104 ALGOLS, User's Guide, Part 2

2.66 greater than or equal (> =)

Syntax:

<operandl> >= operand2>
Priority: 5

Operand types:

integer, long, or real.

Result types:

Always boolean.

Semantic:

The relation takes on the value true whenever the corresponding
relation is satisfied for the expressions involved, otherwise false.

The relation is always executed as a subtraction. Thus, you must be
prepared for overflow, under flow, or spill.

Example 1:

a: = a >= ¢;

if d >= k then ... else ...;
while x >= y do ...;

2. Procedure Descriptions, greater than or equal (> =)

ALGOLS, User’s Guide, Part 2

2.67 implication (= >)

Page 105

This delimiter, which is a logical operator, yields the logical implication
of the two operands.

Syntax:

<operandl> => <operand2>

Priority: 9

Operand types:

boolean

Result type:

boolean

Semantic:

The truth value is determined according to the following rule:

right
left true false
true true false
false true true

2. Procedure Descriptions, implication (= >)

Page 106 ALGOLS, User’s Guide, Part 2

2.68 in

This standard identifier is a preopened zone available for input on
character level. The actual file connected to the zone is determined by
the file processor command which started the program (cf. (15)).

The call

<program>

will let ’in’ be connected to the current input file of the file processor.

The call

will let ’in’ be connected to the file <text file>, if the program is not
translated with the parameter connect.no. ‘

|

<program> <text file>
The call
<program> <integer>

makes ’in’ and the file processor unavailable (but frees some space in
the job area), if the program is translated with the parameter fp.no.

When the program terminates, the latest operation on ’in’ must have
been a call of a character reading procedure.
Example 1:

read (in,a,b,c);
readchar (in,char);

Example 2:

prog= algol connect.no ...

prog param ; the program will not use param
; as input text file.

Example 3:

prog= algol fp.no ...
prog 7; infout and fp are removed from the process.

2. Procedure Descriptions, in

ALGOLS, User’s Guide, Part 2 Page 107

2.69 increase

This integer standard procedure is used in connection with a variable
text as parameter to write, open etc.

Call:
increase (i)

increase (return value, integer). The procedure
performs:
increase:= i; i:= 1 + 1;
but i is only evaluated once.

i (call and return value, integer).

. Example 1:

This procedure could be used in a procedure call, where the formal
parameter is a string, but the actual parameter is a real array, when the
parameter is referenced only once.

The zonerecord in zone z contains a text from element 4. This text can
be written out by:

i:= 4;
write (out, string z (increase(i)));

2. Procedure Descriptions, increase

Page 108

ALGOLS, User's Guide, Part 2

2.70 initkey

This standard procedure generates a piece of code for comparison of
two records in a zone. Succeeding calls of the procedure new sort,
outsort, and lifesort with the zone as parameter will cause this code to
be used, provided the second parameter in the calls is omitted (see
procedure newsort).

This procedure is the ALGOL 5 version of changekey6, and must not be
used if the sorting was initiated by startsort6.

Call:
initkey (z, keydescr, n)

z (call and return value, zone). The name of the
zone used for sorting.

keydescr (call value, array). A real array holding
information about types and relative locations
of the key field in a record (see below).

n (call value, integer). Number of key fields
(number of rows in keydescr).

Key descr:

The array keydscr must be declared as:

array keydscr(l:n, 1:2);

with the restriction:

1l <= n <= 4 * max. record length

Each row in the array holds a description of a key field in the records to
be sorted. The priority of the key decreases with increasing row number
of their description, so the highest priority key is described in the first

row, and so on.

Column one holds information about key field type and rule of
sequencing. For the key field type the following conventions hold:

value key field type
+/-1 12-bit integer
+/-2 24-bit integer
+/-4 48-bit real

A long field or a 12-bit unsigned integer cannot be specified as a key
field.

The sign of the type descriptor indicates the rule of sequencing: plus for
ascending, minus for descending.

2. Procedure Descriptions, initkey

ALGOLS, User’s Guide, Part 2 Page 109

Column two is the relative location of the described field within a
record. The meaning of this location is related to the key field type as
follows (r stands for record length):

key field type possible relative locations

48-bit real 1,2,3,...r-1r

24-bit integer 1,1.52,2.5,...r,r+0.5

12-bit integer 1,1.25,1.5,1.75,2,...,r,r+0.25, r+0.5,r+ 0.75

This means that the relative location of a key field is counted in
fractions of reals.

Zone state:

The zone state must be 9, in sort, i.e. initsort must have been called. The
state is not changed by the procedure.

Example 1:

A certain sort key consists of an integer, two halfwords and a real stored
in this order in double words 2 and 3 of a record. The following
sequence is wanted:

. ascending on the real.

. descending on the first halfword.
. descending on the integer.

. ascending on the second hal fword.

S W N -

The following program will generate a proper code for comparison of
two records.

begin zone z(size, 1, error);
real array crit(1:4, 1:2);
crit(1,1):= 4; crit(1,2):= 3;
crit(2,1):= -1; crit(2,2):= 2.5;
crit(3,1):= -2; crit(3,2):= 2;
crit(4,1):= 1; crit(4,2):= 2.75
initsort(z, length);
initkey(z, crit, 4);

2. Procedure Descriptions, initkey

Page 110

ALGOLS, User’s Guide, Part 2

2.71 inoutrec

This integer standard procedure gets a sequence of halfwords from a
document and makes them available as a zone record, which later will
be transferred to one or more documents in parallel. The input
document may be scanned sequentially by means of inoutrec because
the next call gets the elements just after the elements got now. The
output document(s) may be filled sequentially by means of inoutrec
because the next call of inoutrec will create by input a record which is
transferred to the next halfwords of the output document(s).

Call:
inoutrec (za length)

inoutrec (return value, integer). The number of the
halfwords left available in the present block
for further calls of inoutrec before a change
of block takes place.

za (call and return value, zone array). The names
za(l, za(2, ... za(n, are all equivalent names
of the same zone record., Determines further
the documents, the buffering and the positions
of the documents, cf. (15).

length (call value, integer, long or real). The
number of halfwords in the new record. If
length is odd, 1 is added to the call value.

Zone state:

The zones in the zone array must all be open and ready for inoutrec
(state 32+0 or 32+9, see getzone), i.e. the zones must only have been
used by inoutrec or changerecio since the latest call of openinout or
setposition after openinout.

To make sense, the documents should be internal processes, backing
storage areas, discs, terminals, printers, paper tape punches or magnetic
tapes. In the latter case, setposition must have been called after
openinout on the zone or zones connected to magnetic tapes.

Blocking:

Inoutrec may be thought of as transferring in parallel the contents of the
actual zone record to the halfwords just after the current logical
positions of the output documents and moving the logical positions to
just after the last halfword of the record. Then transferring the
halfwords just after the current logical position of the input document
and changing the logical position to after the last halfword of the record.
The user may modify the information in the record before in outrec is
called again.

2. Procedure Descriptions, inoutrec

ALGOLS, User’s Guide, Part 2 Page 111

Concerning the output:

Because the input/output is blocked, the actual transfers to the
documents are delayed until the block is changed or until closeinout or
setposition is called. The full record goes into the same block, so if the
block cannot hold a record of the length attempted, the block is changed
in this way:

1. Documents with fixed block length (backing storage): The
remaining halfwords of the share are filled with binary zeroes, and
the total share is output as one block.

2. Documents with variable block length (all others): Only the part of
the share actually used for records is output as a block.

The transfer is checked as described in (15). The record becomes the
first halfwords of the next share, but if the record still is too long, an
alarm occurs.

Concerning the input:

Since all halfwords of the record are taken from the same block, if the
record cannot be taken from the current block, the block is changed as
described in (15). Then the record becomes the first halfwords of that
block, but if it still cannot hold the record the run is terminated (empty
blocks are completely disregarded).

Blockchange caused by the record overloading the block is the same
thing whether you look at it from the output zone(s) or the input zones
point of wiev: the blocklength is the same in all zones and the record is
common to all zones. The block change first happens in parallel in all
output zones and then in the input zone.

Records of length 0 need a special explanation: if not even room for a
single word is left in the block when a record of length 0 is requested,
the block is changed and the logical position points to just before the
first word of the new block.

At end of document in the input zone, the standard error action will
simulate an "end block" containing one word of three end medium
characters. So the call b:= inoutrec(z,0) will in this case give the result
b=2, and the "end block" may be read by inoutrec(z,2).

Note that inoutrec, like inrec, changes the blocks in such a way that a
portion at the end of a block in the input zone may be skipped. So be
careful to read a backing storage area with the same share length as that
with which it was written, otherwise, wrong portions might be skipped at
reading.

2. Procedure Descriptions, inoutrec

Page 112 ALGOLS, User’s Guide, Part 2

Example 1:

A simple scan of a magnetic tape file in triple buffered mode copying to
two magnetic tape files in parallel also in triple buffered mode may be
programmed in this way:

begin

procedure end_of_file (z, s, b);

value s H

zone z ;

integer s, b;

begin
integer array 2descr (1:20), sdescr (1:12);
integer index, operation, file, block;

long array field docname;

docname := 2; <*fields docname in zone*>

ifs extract 1 = 1 <*hard error bit*> and
s shift (-22) extract 1 = 0 <*not parity *> then
std_error (z, 8, b); <*give up >

getzone__ 6 (z, zdescr);
getshare_6 (z, sdescr, zdescr (17)); <*used share*>

index := zdescr (12);
operation := sdescr (4) shift (-12);

if s shift (-22) extract 1 = 1 then

begin <*persistent parity error*>

if operation <> 3 <*not input*> then
std_error (z, s, b); <*give up*>

getposition (z, file, block);

write (out,

npin, 1, wew 3,

<: persistent parity error in input from tape:>,
“nln, 1, "sp", 4, true, 12, 2descr.docname,

<: file, block no :», file, <z, :> block);

parity (index) := true;

if b < 4 then
b := 4; <*not filemark*>
end <*persistent parity error*> else
if 8 shift (-18) extract 1 = 1 <*end of tape*>
or b > 0 <*tape mark *> then
begin <*end of file*>
end file (index) := true;

if operation = 3 <*input*> and
b =0 <*nothing xferred*> then
b = 2;

end <*end of file*>;

2. Procedure Descriptions, inoutrec

ALGOLS, User’s Guide, Part 2

end <*end file*>;

zonhe array file (3, buflengthio (3, 3, 512),
3, end_of_file);

boolean array parity, end_file (1:3);

integer giveup, i, huds, sumhwds;

giveup := 1 shift 18 + 1 shift 16; <*eot, eof*>

for i :=1, 2, 3do
open (file (i), & shift 12 + 18, <*mtli*>
case i of (<:mt600300:>, <:mt600301:>, <:mt600302:>),
giveup);

openinout (file, 1); <*file (1) input zone*>

for i :=1, 2, 3do
setposition (file (i), 1, 0); <*skip volume header Label*>

for i :=1, 2, 3 do
end_file (i) := parity (i) := false;

surhwds := 0;

for huds := inoutrec (file, 0) while hwds > 2 do
begin <*still not end of file in input zone*>

if end_file (2)
or end_file (3) then
begin
<*handle end of tape in one of the output zones*>

end_file (1 <*or 2*>) := false;
end else
if parity (1) then
begin
<*handle persistent parity error in input zone*>

parity (1) := false;
end else

begin
changerecio (file, hwds); <*blockchange next inoutrec*>
<*maybe modify contents of record*>

sumhwds := sumhwds + hwds+
end;

end <*for hwds*>;

closeinout (file);

Page 113

2. Procedure Descriptions, inoutrec

Page 114 ALGOLS, User’s Guide, Part 2

for i := 1, 2, 3 do ‘I')

close (file (i), true);

write (out,

“nl¥, 1, <:hwds transferred : :>, sumhwds,

"nl, 1, <:segs transferred : :>, (sumhwds + 511) // 512);
end;

The scan is terminated by the procedure endfile which is called at tape
mark (1 shift 16), end of tape (1 shift 18), and all hard errors, among
them persistent parity error. After the positioning (but before the first
input operation) endfile may be called with tape mark indication. In this
case however, b = 0, while b > 0 after input of a tape mark.

The same piece of code would work for areas on the backing storage if
the second and third parameter to open were changed.

2. Procedure Descriptions, inoutrec

ALGOLS, User’s Guide, Part 2 Page 115

2.72 initsort

This standard procedure initiates a sorting process in a zone, so that the
procedures newsort, outsort, deadsort, and lifesort can be used with the
zone as a parameter.

This procedure is the ALGOL 5 version of startsort6, and must not be
used together with changekey6. A call of initsort followed by a call of
initkey is analoguos to a call of startsort6.

Call:

initsort (z, length)

z (call and return value, zone). The name of the
zone used for sorting.

length (call value, integer). Max. length in double
words of the records to enter the sorting
process.

Zone Declaration:

A sort zone capable of holding N records at the same time must be
declared as follows:

zone z((N+9)*(length+l), 1, error)

where length is maximum record length. The declaration has the same
form as a zone declaration for input/output use with buffer length =
(N+9)*(length+1) and no. of shares = 1.

The error procedure must be supplied by the user, as described in
startsort6.

Zone state:

The zone must be in state 4, after declaration. The state becomes 9, in
sort.

2. Procedure Descriptions, initsort

Page 116

ALGOLS, User’s Guide, Part 2

2.73 initzones

This procedure changes the buffersize and number of shares of each
zone in a zone array.

Call:

initzones (za, bufsize, shares)

za (call and return value, zone array). The

buffersize and number of shares are changed
for all zonmes:

za(l), za(2), ... za(no of zones). The zone
state must be 4 (after declaration) for all
za(i).

bufsize (call value, integer array). Bufsize(i)

specifies the number of elements of 4
halfwords each in the bufferarea to be
allocated to the zone za(i).

shares (call value, integer array). Shares(i)
specifies the number of shares to be as signed
to za(i).

Note:

The sum of all bufsize(i), 1 <= i <= no_of _zones, must not exceed the
original total buffer size for the zone array za, as determinated by the
declaration. Obviously bufsize(i) and shares(i) must be positive integers.

Zone state:

All zones of the zone array must be in state 4, after declaration. The
zone state is not changed by the procedure.

Example 1:

The procedure can be used in a program where a number of files are
handled by means of a logical file number, but the files use different
block lengths:

begin
zone array za(n, total_bufsize//n, shares, stderror);
integer array buf, sh(1:n);
<* blocklength, no_of_shares*>

buf(1):= 128; s8h(1):= 1;<*filel: 1 1 *>
buf(2):= 128%2; sh(2):= 2;<*file2: 1 2 *>
buf(3):= 128%4; sh(3):= 1;<*file3: 4 1 *>

initzones (za, buf, sh);

2. Procedure Descriptions, initzones

ALGOLS, User’s Guide, Part 2 Page 117

'I' open(2(i), ...);

invar(z(i)); <* read from file no. i *>

2. Procedure Descriptions, initzones

ALGOLS, User’s Guide, Part 2

2.74 inrec

This integer standard procedure is the ALGOL 5 version of inrec6.
Inrec gets a sequence of elements of 4 halfwords each from a document
and makes them available as a zone record.

Call:
inrec (z, length)

inrec (return value, integer). The number of
elements each of 4 halfwords in the present
block for further calls of inrec.

z (call and return value, zone). The name of the
record. Determines further the document, the
buffering, and the position of the document.

length (call value, integer, long, or real). The
number of elements of 4 halfwords each in the .
new record. Length must be >= 0.

For further description see inrec®6.

Inrec may be used with advantage, if the document is considered to
contain reals.

Example 1:

Records of variable length may be handled in the Algol 5 way by means
of inrec and outrec, but you should be careful: For magnetic tapes the
record length should be checked in the block procedure to make sure
that they match the block length. For backing storage areas the unused
elements at the block end must be skipped (outrec clears them).

Suppose the record length is stored as the first element of the record.
The record may then be fetched in this way for all devices: .

for remaining:= inrec(z,1) while z(1)<= 0 do
inrec(z,remaining);
comment unused elements are skipped;
inrec(z, z(1) - 1);

Another solution is to call the block procedure after all normal answers
and let it adjust or check the z(1). Note that the relation z(1) = 0
instead of z(1) <= 0 would not work because a backing storage area is
filled up with binary zeroes.

2. Procedure Descriptions, inrec

ALGOLS, User’s Guide, Part 2 Page 119

2.75 inrec6

This integer standard procedure gets a sequence of halfwords from a
document and makes them available as a zone record. The document
may be scanned sequentilly by means of inrect, because the next call of
inrec6 gets the elements just after those got now.

Call:
inrec6 (z, length)

inrec6 (return value, integer). The number of
halfwords left in the present block for
further calls of inrecé6.

z (call and return value, zone). The name of the
record. Determines further the document, the
buffering, and the position of the document
(cf. (15)).

length (call value, integer, long, or real). The
number of halwords in the new record. Length
must be >= 0. If length is odd, 1 is added to
the call value.

Zone state:

The zone z must be open and ready for record input (state 0 or 5, i.e. the
zone must only have been used by inrec6, invar or the like since the
latest call of open or setposition). To make sense, the document should
be an internal process, a disc process, a backing storage area, a terminal,
a paper tape reader, a card reader, or a magnetic tape. In the latter case
setposition(z,...) must have been called after the call of open(z,...).

Blocking:

Inrec6 must be thought of as transferring the halfwords just after the
current logical position of the document and changing the logical
position to after the last halfword of the record.

However, all halfwords of the record are taken from the same block, so
if the record cannot be taken fromt the current block, the block is
changed as described in (15). Then the record becomes the first
halfwords of that block, but if it still cannot hold the record the run is
terminated (empty blocks are completely disregarded).

Records of length 0 need a special explanation: if there is not room for
even a single word in the block, the block is changed and the logical
position points to just before the first word of the new block. At end of
document, the standard error action will simulate an "end block"
containing one word of the thrce end medium characters. So the call
b:= in rec6(z,0) will in this case give the result b=2, and the "end block"
may be read by inrec6(z,2). (This is not valid for inrec, as inrec cannot
read less than 4 halfwords).

2. Procedure Descriptions, inrec6

Page 120

ALGOLS, User’s Guide, Part 2

Note that inrec6 changes the blocks in such a way that a portion at the
end of a block may be skip ped. So be careful to read a backing storage
area with the same share length as that with which is was written,
otherwise, wrong portions might be skipped at reading.

Example 1:

A simple scan of a file on a magnetic tape in double buffer mode may be
programmed in this way (all records are assumed to be of 20 halfwords):

begin
zone file(2*128,2,endfile);
boolean in_file;
integer i;

procedure endfile(z,s,b); zone z; integer s,b;

if s extract 1 = 1 then stderror(z,s,b) else

if b> 0 or s shift (-18) extract 1 = 1 then
begin in_file:= false; b:=512; end;

open(file,18,<:mt600304:>,

1 shift 18 + 1 shift 16);
gsetposition (file,1,0);
comment skip the label in file 0,
in_file:= true;
for i:= inrecé (file, 20) while in_file do
begin

end;
close(file,true);

The scan is terminated by the procedure endfile which is called at tape
mark (1 shift 16), end of tape (1 shift 18), and all hard errors. After the
positioning (but before the first input operation) endfile may be called
with tape mark indication. In this case however, b = 0, while b > 0 after
in put of a tape mark.

The same piece of code would work for an area on the backing storage if
the file was generated with a share length of 128 elements of 4 halfwords
and if the second and third parameter to open were changed.

Example 2:

Two files of records of 100 halfwords on magnetic tape are arranged in
ascending order (sorted with respect to the key indicated by the integer
field keyf). They may be merged into one file in this way:

begin zone result(2*256,2,stderror);
zone array inp(2,2*256,2,endfile);

procedure endfile(z,s,b); zone z; integer s,b;
if s extract 1 > 0 then stderror(z,s,b) else
begin

b:= 100; z.keyf:= large;

2. Procedure Descriptions, inrec6

ALGOLS, User’s Guide, Part 2 Page 121

. comment the procedure simulates the presence
of a record with a very large key;
end;

open(inp(1),...,1 shift 16); open (inp(2),...
setposition ... setposition ...
large:= (-1) shift (-1);
inrecé(inp(1),100); inrecé(inp(2),100);
for k:= if inp(1).keyf < inp(2).keyf then 1 else 2
while inp(k).keyf < large do
begin
outrect(result,100);
tofrom(result, inp(k),100);
inrec6(inp(k),100);
end;
close(result, ...);

Example 3:

You may read a magnetic tape file or backing sto rage area block by
block in this way:

for b:= inrec6(z,0) while b > 2 do

begin
<* b is now the block length in halfwords,
the standard actions simulate one word
containing <:<25><25><25>:> at end of document*>
inrec6(z,6);
<* the block is now available as one record*>

comment check that the last record is
the simulated end block;
inrecé(z,2);
if z.firstword <>
long <:<25><25><25>:> shift (-24) extract 24

‘ then error;

2. Procedure Descriptions, inrec6

Page 122

ALGOLS, User’s Guide, Part 2

2.76 intable

This standard procedure exchanges the current input alphabet used by
all the read procedures on character level.

Call:

intable (alpha) or
intable (0)

alpha (call value, integer array of one dimension).
Contains the character class and the value of
each character in the new input alphabet as
described below.

0 (call value, integer). A zero signals that the
standard alphabet is to be used.

intable (alpha):

The actual contents of alpha are used in all calls of read procedures,
until another array or the standard alphabet is selected. This means that
any change in the contents of alpha may have effects on the character
reading. If a read procedure is called at a place where alpha is
undeclared, an undefined alphabet is used.

To each character ’c’ delivered by the peripheral device is associated a
class and a value, determined by the read procedures in this way:

alpha(c+tableindex) = class shift 12 + value extract 12
Class in an integer 0 < = class <= 4095. Value is an integer, - 2048 <=

value <= 2047. The character ’c’ is an integer, 0 <= ¢ <= 255. The ISO
characters utilize only half of this interval. The standard integer

‘tableindex’ is normally 0, but you may use it to modify the alphabet.

The class determines how the value corresponding to a character is
handled:

class = 0, blind: The character is skipped by all read procedures.
class = 1, shift character: The value is assigned to tableindex and

the character is looked up again in the alphabet to
determine class and value.

class = 2, digits: The character is a decimal digit the value of
which is value - 48. To make sense, 48 < = value <= 57
should be fulfilled.

class = 3, signs: The character is the sign of a decimal number.
Value = 43 means +, value = 45 means -.

class = 4, decimal point: The character may be used as a decimal

point.

2. Procedure Descriptions, intable

ALGOLS, User’s Guide, Part 2 Page 123

class = §, exponent mark: The character may be used as the ’ of
Algol.
class = 6, letters: The character may be used as part of a text but

not as part of a number.

class = 7, delimiter: The character cannot be part of a text or a
number.
class = 8, terminator: The character is a delimiter as class 7, but

it will terminate a call of readall. If value is 25, it will
immediately terminate a call of read or readstring.

class > 8, other delimiters: The character is handled as class 7.

The elements 0:127 of alpha may be initialized with the ISO alphabet by
a call of the standard procedure isotable.

intable (0):

The standard alphabet given in (14) is used until a new alphabet is
selected. The value of tableindex has no influence on the alphabet.
When the program starts, the standard alphabet is selected
automatically.

You should not hesitate to use a special phabet table: The character
reading will be speeded up compared to what you could do in algol with
the standard alphabet, and the input algorithm becomes clearer.

The table takes space, but remember that 2*128 integers correspond to
one segment of a program (10 to 20 lines), and that much is easily saved
in the central loop of the input program.

Example 1: Number variants

Assume you want to read numbers coded in ISO but with space
regarded as blind information and with out exponent part. You may

then proceed like this:

isotable(table);
table(’sp’):= 0; table(’’’):= 7 ghift 12 + 7//;

comment define space, apostrophe, and other
special characters;
intable(table); tableindex:= 0;
read(z,...);
Example 2:
begin
begin

integer arrasy table (0:127);

2. Procedure Descriptions, intable

Page 124 ALGOLS, User’s Guide, Part 2

<* an alphabet is initialized in table *> .
table (’sp’):= ...
intable (table); tableindex:= 0;
intable (0);
<* if you forget returning to the standard alphabet before
leaving the block where table is declared, an undefined alphabet
Will be used *>
end block;

end program

Example 3:

See Example 3 of readall.

2. Procedure Descriptions, intable

ALGOLS, User’s Guide, Part 2 Page 125

2.77 integer

This delimiter, which is a declarator, is used in declarations and
specifications of variables of type integer.

Syntax:

integer <namelist>

Semantic:

The variables in namelist will all be of type integer, and occupy 24 bits in
the memory area.

The value of an integer is in the interval:

-8388608 <= value <= 8388607

Example 1:
integer i1;
integer i2, yes, no, price;

procedure pip (a);
integer a;

2. Procedure Descriptions, integer

Page 126 ALGOLS, User’s Guide, Part 2

2.78 integer divide (//)

This delimiter, which is an arithmetic operator, performs an integer
division.

Syntax:

<operandl> // <operand2>
Priority: 3

Operand types:

integer or long

Result type:

When both operands are of type integer the result is of type integer,
otherwise the result is of type long.

Semantic:

The result of the operator is defined as follows:
a//b = sign (a/b)* entier(abs (a/b))
Example 1:

a:= 35//12; <* a has the value 2 *>
b:= -13//3; <* b has the value -4 *>

2. Procedure Descriptions, integer divide (//)

ALGOLS, User’s Guide, Part 2 Page 127

2.79 invar

This standard integer procedure together with outvar, changevar, and
checkvar are intended for easy handling of records of variable length.
Every record must contain its own length in halfwords in its first word,
the length word. Invar makes the next record written by means of outvar
available as a zone record. A record checksum in the second word may
be checked, and the number of records are counted in the so called free
parameter in the zone descriptor (see getzone6). This procedure may
call the block procedure with the status 1 shift 11, checksum error, if the
record length wanted is < 4 or > remaining halfwords in the block or
odd or if the checksum is calculated and not equal to the value of the
second word in the record.

Call:
invar (z)

invar (return value, integer). The number of
halfwords left in the present block.

z (call and return value, zone). The name of the
record. Determines the document, the buffering,
and the position of the document.

Zone state:

The zone z must be open and ready for record input (state 0 or 5), i.e.
the zone must only have been used by invar or the like since the latest
call of open or setposition.

Free parameter:

The free parameter in the zone descriptor is used to count the number
of records accepted by invar. The value of this parameter is interpreted
as check wanted shift 23 + record_count where check wanted = 1
means that a checksum is calculated by invar and checked against the
second word in the record. The free parameter could be set in the
program by:

getzone6(z,ia); ia(11):= 1 shift 23;
setzoneb(z, ia);

See below for further details.

Blocking:

You may think of invar in the way that the procedure tests the value of
the first word just after the current logical position of the document.
Now invar exposes as many halfwords as the length word indicates,
including the two halfwords of this word.

2. Procedure Descriptions, invar

Page 128

ALGOLS, User’s Guide, Part 2

However all halfwords must be taken from the same block. If this is not
possible, the block procedure of the zone is called. See further on length
errors below.

If the length word is null, it is skipped and the next word from the
document is tried as length word. When there are no more in a block,
the block is changed. This covers skipping of blank block tails that may
be generated by outvar when the kind of the document is backing
storage (see outvar).

Length errors. Checksum:

If the length word is <> 0, it is expected to be even, >= 4 and <= the
number of halfwords remaining in the present block. If not all three
conditions are fulfilled, invar will give up and call the block procedure
(see below).

When the length word has passed the tests above, the contents of the
second word may be tested as a check sum of the record (see Example 2
below). If check is wanted (see free parameter above), invar tests if the
sum of all words in the record taken modulo 2**24 is equal to -3. If not,
invar calls the block procedure.

Block procedure, call conditions:
Invar may call the block procedure in two different situations:

a) The length word is not sensible (see above).
b) Record sumcheck is wanted, and the sum is not ok (see above).

The call conditions for the parameters to the block procedure are:

z: The zone state is after record input. The defect record is not
counted in the free parameter. The record starts just before the
length word and depends on the length word like this:

record_length:=

if length_word < 4

or length_word > remaining then
remaining

else

if record_length is odd then
length_word + 1 else
Length_word;

Remaining means the number of halfwords remaining in the
present block including the length word. The terms zonestate, free
parameter, and record length are explained in getzone6.

s: The status word parameter has the value 1 shift 11.

b: The halfwords transferred parameter is equal to the record length,
described above.

2. Procedure Descriptions, invar

ALGOLS, User’s Guide, Part 2 Page 129

After return from the block procedure, invar restarts its algorithm
by fetching the next logical record. A defect record will thus be
skipped if the block procedure simply ignores the call, (see
Example 2).

Example 1:

Your block procedure may test whether situation a) or situation b)
above has caused the block procedure to be called. This may be done as

follows:

procedure blpr(z,s,b);
zone z;
integer s,b;
begin
if s = 1 shift 11 then
begin integer field lengthword;
lengthword:= 2;
if b < 4 then
begin comment end of document; ...
end else
if b < z.lengthword then
begin comment length error; ...
end else
begin comment checksum error; ...

Example 2: Attempt to repair a defect record.

When you read a file from magnetic tape written by means of outvar,
you may try to make sense of blocks with parity error and where the
standard actions have given up.

This will only be waste of machine power if all records are needed in a
job. In such case it is better to give up once status errors occur. It must
be recognized, however, that situations could occur where it would be
essential to make as much sense out of a file as possible in one job and
then try to pick up the defect records in a later job. :

A block procedure which counts the number of wrong ’records’ and only
gives up when this number is too large may look something like this:

procedure after_parity (z,s,b);
zone z; integer s, b;
begin
own integer faults; integer field length;
integer array ia (1:20);
proc dure drop;
write (out, <:record dropped, expected::>,
z.length,
<: dropped::>, b, <: halfwords<10>:>);

2. Procedure Descriptions, invar

Page 130 ALGOLS, User’s Guide, Part 2

length:= 2;
if s shift (-18) extract 1 = 1 or
s shift (-16) extract 1 = 1 then
begin comment end of document or tapemark, simulate a dummy record and
switch off the sum check, in order to prevent invar from calling
the block procedure again;
z.length:= b:= min_length;
end_medium:= true;
getzoneb6(z, ia); ia(11):= ia(11) extract 23;
setzoneb(z, ia);
end
else

if s = 1 shift 11 then
begin

faults:= faults + 1

if faults > max then stderror (z,s,b);

if b <> z.length then drop

else .
begin comment maybe only checksum error;

if b<min_length or b>max_length then drop

else

begin
comment now check the contents of the possible record. 1f it does
not seem sensible then drop it, else set a mark that it may
be erroneous;

checkvar (z);
changerecé (2,0);
comment force a new checksum into the record and regret the record
so that invar may take it once more;
end;
end;
end s = 1 shift 11

else

if logand (s, -1 - (1 shift 22 <*parity error*> + .
1 shift 15 <*writing enabled*> +
1 shift 1 <*normal answer*> +
1 shift 0 <*hard error*>))

<> 0 then stderror (z,s8,b);

comment give up if hard error, except in connection with parity error, ring

indication, and/or normal answer;
end after_parity;

When the zone with this block procedure is opened, the give up mask
should contain the tapemark bit (or end document bit if reading from
backing storage), as the standard action would simulate a dummy block
of 2 halfwords, which invar would consider a length error. On the other
hand the give up mask should not contain the parity error bit, as the
standard action, 5 readings, is wanted for parity error. The bit for
checksum wanted should be set in the free zone parameter (see
getzoneo6):

2. Procedure Descriptions, invar

ALGOLS, User’s Guide, Part 2 Page 131

‘ open(z,18,<:...:>, 1 shift 18 + 1 shift 16);
setposition(z,1,0);
getzoneb(z,ia); ia(11):= 1 shift 23;
setzoneb(z,ia);
repeat
invar(z);
..... handle the record, note the error-merk;

until end_medium;

Example 3:
See Example of changevar.

2. Procedure Descriptions, invar

Page 132 ALGOLS, User’s Guide, Part 2

2.80 isotable

This standard procedure initializes an array with the ISO character table
for use in intable or outtable.

Call:
isotable (alpha)

alpha (return value, integer array of one dimension).
The elements alpha (0:127) of the array are
initialized with class shift 12 + wvalue of the
ISO characters, as defined in (14).

Example 1:

See Example 1 of intable.

2. Procedure Descriptions, isotable

ALGOLS, User’s Guide, Part 2 Page 133

2.81 Idink

This boolean procedure (LAN Device Link) creates in a zone an
external process of a given name (and maybe device number) with a link
to a given LAN (RC9000-10) or ADP (RC8000) controller main process
and a devicehandler of a given type, cf. ref. [25].

Call :
1dlin (z, devno, devname, devtype, cspname, reason)

1dlink (return value, boolean). True if the creation
succeeded, false otherwise. If false, see the
parameter reason for explanation.

z (call and return value, zone).
At call z describes the LAN main process (the
name in the zone) and the mode to be used (all
users/one user). If the devtype specifies a
3270 output handler, the zone also contains
the index of the devicehandler to which a link
shall be made. If the devtype specifies a 3270
input handler, the zone will at return contain
the index of the device handler to which a
link was made (returned in the parameter
reason, too).

devno (call and return value, integer).
The number of the external process to be used.
If devno = -1, the first free external process
of kind = 68 is used. In all cases, the number
of the process used is returned in devno.

devname (call and maybe return value, (string or long
expression, or array of any type). The
parameter contains the name of the external
process to be created, packed in the usual
way. If the first word of the name is zero, a
wrk-name is generated. An external process is
created and if devname is an array or a zone
record, the name used is returned in devname.

If create peripheral process fails, the link
will be removed and the procedure returns
false.

devtype (call value, integer).'Specifies the type of
the device on the ADP :

: CSP console handler
: IMC port handler

: mailbox handler

: 3270 input handler
: 3270 output handler

v WN =

2. Procedure Descriptions, ldlink

Page 134

cspname

reason

2. Procedure Descriptions, ldlink

ALGOLS, User’s Guide, Part 2

: lanstat handler .
: floppy disk handler

: CSP printer handler

: streamer handler

O 00 ~d O

(call value, (string or long expression, or
array of any type). The parameter is only used
for CSP device handlers (type = 1 or 8). The
parameter contains the name of the CSP device
to be reached by the link, packed in the usual
way.

(call and return value, long).

The call value is used as number of buffers to
be allocated if devtype = 2, IMC port handler.
If the value is not positive, the default
value, which is the number of free message
buffers of the calling process, is used
instead.

If the procedure returns true, reason will be

devtype = 2, IMC port handler :

reason =
maxsendsize shift 32 + buffers unused shift 24 +
0 shift 12 + device index

The value maxsendsize is the maximum number of
characters to be sent or received in out- or
input operations, incl. a possible header
character. The value may be used to determine
or check the size of zone buffers engaged in
IMC port communication. Please note that the
value is 16 bits wide.

buffers unused after having allocated the
specified number of buffers to the port.
Please note that the value is 8 bits wide.

The value buffers unused is the number of .

other devtypes :

reason =
0 shift 36 + 0 shift 24 +
0 shift 24 + device index

The value device index is the device index

used. The value is only relevant for devtype =

4, 3270 input handler, where the device index

should be reused for the corresponding 3270

output handler. The value is only given for

your information, because when the zone is

reused to link an outputhandler after having

linked an inputhandler, the index will still

be kept in the zone, and is automatically ‘

ALGOLS, User’s Guide, Part 2 Page 135

. reused for the output handler. If the
procedure returns false, reason has the coding

reason =

status shift 36 + result shift 24 +

0 shift 12 + 0

0 < status < 4095, result = 1,

status bit, normal answer :

status :

The create link result :

0 ok, link created
no monitor resources, i.e. no unused external
process of kind = 68

. 4 no free device handlers, or another resource

problem on the IFP/ADP

5 link already exists

status = 0 , result > 1,

dummy answer :

the main process (or the IMC port process) does not exist,

the calling process is not a user of the main process, or

could not reserve the IMC port process, etc.

status = 4095, result > 1,

create peripheral process failed :

result = result of create peripheral process

. Zone state

Zone state of the zone must be 0 = after open and is not changed by the
procedure.

The zone must have been opened with modekind = mode shift 12 +
kind, where

mode = 0 means only the calling process will be user of the external
process

mode =1 means all users of the IFP/ADP mainprocess will be users
of the external process

kind = 0, internal process

Function

2. Procedure Descriptions, ldlink

Page 136

ALGOLS, User’s Guide, Part 2

After parameter check, in case of devtype = 4 or 5, 3270 input handler
or 3270 output handler, the procedure establishes a device index : for
3270 input handler it becomes the non specific value 255, for 3270
output handler it is taken from the zone (free parameter) where it is
supposed to have been left over from the last link creation for an input
handler. In case of devtype = 1 or 8, CSP console or CSP printer, the
cspname is inserted in used share of the zone in mess + 8, ... mess + 14.
The other parameters (devtype, device index and device number) are
inserted in mess + 2, ... mess + 6, and the create link operation is sent
and waited for. If status > 0, the procedure returns false, if status = 0,
the actually used device number is returned in devno, and in case of
devtype = 4, 3270 input handler, the actually used device index is left in
free param’ of the zone. If the first word of devname is zero, a
wrk-name is generated for devname, and an external process is created
with the given name and the actually used device number. If ’create
peripheral process’ fails, the link is removed again, and the procedure
returns false with the result in reason. In case of devtype = 2, IMC port
handler, the external process (IMC port process) is reserved, and as
many buffers are allocated as the value of ’reason’ at call, if it is positive,
else the number of free message buffers of the calling process. The
procedure returns the value of maxsendsize and number of unused
buffers if <devtype> is 2, IMC port handler, in any case it returns the
value of the device index used on the device handler and returns true.

2. Procedure Descriptions, ldlink

ALGOLS, User’s Guide, Part 2 Page 137

2.82 ldunlink

This boolean procedure (LAN Devide Unlink) removes a link between
an external process of a given name or with a given device number and a
device handler on a LAN (RC9000-10) or ADP (RC8000) controller
main process given in a zone, cf. ref. [25].

Call :

1ldunlink (z, devno, devname, reason)

ldunlink (return value, boolean). True if the link was
removed, false otherwise.

z (call value, zone). At call z describes the
LAN main process (the name in the zone).

devno (call and return value, integer). The number
of the external process to be used (must be >=
0). If first word of devname is not zero, and
an external process of that name is found, its
device number overrules the device number
given, else the device number given is used.
In all cases, the number of the process used
is returned in devno.

devname (call value, string or long expression, or
array of any type). The parameter contains the
name of the external process to be removed,
packed in the usual way. If the first word of
the name is zero, the device number given in
devno is used.

reason (return value, long).

Irrelevant if the procedure returns true
(reason = 0 shift 36 + 1 shift 24 + 0).

If the procedure returns false, reason has the
coding :

reason =
0 shift 36 + result shift 24 +

0 shift 12 + 0

result = 3, the device number does not
identify an external process with a link to a
device handler on the LAN main process given
in the zone.

Zone state

Zone state of the zone must be 0 = after open, and is not changed by
the procedure.

2. Procedure Descriptions, ldunlink

Page 138 ALGOLS, User’s Guide, Part 2

Function

After parameter check, the external process device number is identified.
If the name in devname identifies an external process, its device number
is used, else the device number given in devno is used. The number used
is returned in devno, and a removelink operation is sent, waited for and
checked.

2. Procedure Descriptions, ldunlink

ALGOLS, User’s Guide, Part 2 Page 139

2.83 len

This integer standard procedure returns the number for non-zero
characters found in an array.

Call:
len (arr)

len (return value, integer). The number of
characters found in the parameter array from
character positions no. 1 and until the last
non-zero character or until the last character
position in the array.

arr (call value, array of any type or zone record).
‘ Character position no. 1 is the 8 most

significant bits in the word with halfword
index 1, the last character position is the 8
least significant bits in the last word of the
array. For boolean arrays, the lower bound and
the upper bound must suit the word boundaries,
i.e. lower bound must be odd (lower field index
must be even), and the array must contain an
even number of elements.

2. Procedure Descriptions, len

Page 140 ALGOLS, User’s Guide, Part 2

2.84 less than (<)

This delimiter, which is a relational operator, yields the value true or
false.

Syntax:

<operandl> < <operand2>
Priority: 5

Operand types:

integer, long, or real.

Result type:
Always boolean

Semantic:

The relation takes on the value true whenever the corresponding
relation is satisfied for the expressions involved, otherwise false.

In case one of the operands is different from type integer the relation is
executed as a subtraction. Thus, you may be prepared for overflow,
underflow, or spill.

Example 1:

a:= b <c;

if d < q then else ...;
while k < L do ...;

2. Procedure Descriptions, less than (<)

ALGOLS, User's Guide, Part 2 Page 141

2.85 less than or equal (< =)

This delimiter, which is a relational operator, yields the value true or
false.

Syntax:

<operandl> <= <operand2>
Priority: 5

Operand types:

‘ integer, long, or real.

Result type:

Always boolean

Semantic:

The relation takes on the value true whenever the corresponding
relation is satisfied for the expressions involved, otherwise false.

The relation is always executed as a subraction. Thus, you may be
prepared for overflow, underflow, or spill (see Example 3 of monitor).

Example 1:

. q:= a <= ¢C;
if d <= k then else ...;

while x <=y do ...;

2. Procedure Descriptions, less than or equal (< =)

Page 142 ALGOLS, User’s Guide, Part 2

2.86 lifesort

This standard procedure makes available that zone record which is to be
the next record in a sorted string of records from a zone. The winning
record is selected among the active and inactive records in the zone, and
at the same time all inactive records are activated.

The user is supposed to move the record away from the zone before
next call of any sorting procedure.

Call:

lifesort (z, key) or liftsort (z)

z (call and return value, zone). The name of the
selected record.
key (call value, integer procedure or empty). The ‘

name of a procedure for comparison of two
records (see procedure newsort).

The key parameter is omitted if standard sequencing is used (see
procedure startsort6).

Zone state:

The zone state must be 9, in sort, i.e. startsort6 (or initsort) must have
been called. The state is not changed by the procedure.

Example 1:

See Example 1 of newsort for a user specified key procedure.

Example 2: .

See Example 2 of deadsort.

2. Procedure Descriptions, lifesort

ALGOLS, User’s Guide, Part 2 Page 143

2.87 In

This real standard procedure performs the mathematical function In.

Call:
In (x)
1n (return value, real). The Napierian logarithm of r.
r chlg.value, real, long, or integer).
Accuracy:
‘ r=1 gives In = 0
0.5<=1r <2 gives absolute error below 2.2'-10

0.25 <= r < 0.5 or
2<=1r<4 gives relative error below 1.8'-10

r < 0.25 or
4 <= r gives relative error below 1.2'-10

Alarm:

The run is terminated if r <= 0.

Example 1:
|

A procedure which gives the decimal logarithm may look like this:
real procedure log(x);

value x; real x;
log:= In(x) / In(10);

2. Procedure Descriptions, In

Page 144

ALGOLS, User’s Guide, Part 2

2.88 lock

This integer standard procedure immediately transfers a number of
program or context/virtual activity data segments to memory and locks
tem: i.e. they will not be released at a later time caused by some request
for space for other segments.

Call:
lock (one or more parameter pairs);

lock (return value, integer). Number of segments locked
as a result of this call of lock. May include
lock’s own segment although not specified.

pair (call value, integer, label or procedure). Each
parameter pair specifies a number of segments to be
locked.

Lock scans the parameters from left to right and evaluates each
parameter pair according to its type:

- a procedure identifier indicates the entry segment of the
procedure.

(Notice that the name of a type procedure without parameters is a
function designator i.e. an arithmetic expression evaluated at call
time, and cannot be used here).

- a label expression defines a point in the program indicating a
segment.

- an integer expression defines a segment number in the program,
numbered consecutively 0,1,2, ... when it is first parameter or when
it is second in a pair of integer expressions. When it is second in a
pair, the first one being a procedure identifier or a label
expression, it indicates the segment numbered:
segment indicated by first parameter + integer.

If the segment number indicated by the second parameter exceeds the
last program or context/virtual activity segment, it is reduced properly.

Now lock transfers the segments in the interval indicated by the pair
including the segments indicated, excluding those already locked, to
memory and locks them i.e. all the segments in the interval are locked.

Segments already in memory but unlocked will be transferred to
memory and locked.

The segment of lock itself may be locked although not specified, if its
place in memory is ’overhauled’ by the segments transfer red to
memory.

2. Procedure Descriptions, lock

ALGOLS, User’s Guide, Part 2 Page 145

. If progmode <= 0 at call, the number of segments thus specified (abs
progmode) will be released prior to the locking of new segments (cf.
2.126), and at return progmode = 1, i.e. locking passive.

Segment numbers of all segments of the program, including external
procedure segments and the first virtual data segment, may be obtained
from a compilation (algol or fortran) with the option survey.yes (cf.
(15)). Segments of the non resident runtime system may be locked, too,
specified by segment number. The runtime system takes up the first 15
segments of the object program:

No. functions Name:
0 : resident part of runtime system no name
7 : will not be locked by lock -
8 : alarm segm. 0, only active at runtime alarm, <:alarm segm0:>
9 : alarm segm. 1, only active at runtime alarm, <:alarm segmi:>
10 : declaration of zones, init data/zone common, <:zone declar:>
1" : long integer operations, <algolcheck:>
call user blockproc, stderror
12 : i/o: inblock, outblock, check <check >
13 : i/o: standard error actions, parent,00 <:check spec:>
14 : power function : a%**x <:power func.:>
15 : extent area, parent message, label alarm
16 : first main program segment line interval
n : last main program segmt -
n1 first line interval external procedure
segment name external
nmmo last external procedure segm last external -
el e first virtual date segment no name

Error Messages:
The procedure may terminate the program with the runtime alarm:

param <kind> lock
called from .

where kind is coded:

kind = paramno * 10 - explanation

2. Procedure Descriptions, lock

Page 146

Explanation = 1,2,3:

Explanation = 4:
Explanation = 5:

Example 1:

ALGOLS, User’s Guide, Part 2

The parameter is an integer, label or
procedure identifier, but the segment
numbers in the pair (first, last) relate:
first > last

The second parameter of the pair is
missing

The parameter is neither a procedure
identifier, a label expression, or an
integer expression.

If you want to lock in memory segment 11 (long division and
multiplication), two segments containing procedure readin, and one or
more segments surrounding label seglockl to label seglock2, this could

be done by the call:

lock(11,11, readin, 2, seglock1, seglock2);

Example 2:

All program segments excluding context/virtual activity data segments

are locked:

lock (0, progsize);

Note: segments 0-7 are not locked, they are the resident runtime system.

Example 3:

All context /virtual activity data segments existing so far are locked:

lock (progsize, 8388607);

2. Procedure Descriptions, lock

ALGOLS, User’s Guide, Part 2 Page 147

2.89 locked

This integer standard procedure transfers the segment numbers (0,1,...)
of the segments, which are locked for the moment, to an integer array
parameter.

Call:
locked (ia)

locked (return value, integer). Number of segments
locked at the moment.

ia (return value, integer array). ia(l), ia(2),..
ia(locked) is the list of segment numbers for
the segments locked at the moment.

Example 1:
If the call
locked (ia);

is used after the call shown in Example 1 under lock, the results could
be:

ia(1)
ia(2) = 24
ia(3) = 25
ia(4) = 32
ia(5) = 33
ia(6) = 34

1

2. Procedure Descriptions, locked

Page 148 ALGOLS, User’s Guide, Part 2

2.90 logand

This long standard procedure performs the function logical and (logical
multiplication) on two 48 bit entities a and b. If the type length of a
and/or b is smaller than 48 bits, they are extended by repetition of the
sign bit.

Call:
logand (a, b)

logand (return value, long). Bitpattern equal to (a and
b) performed bit by bit after a possible
extension of the parameters a and b.

a,b (call values, short string (text portion), real,
long, integer, or boolean). The two parameters do .
not have to be of the same kind. They are - if
necessary - extended and they are handled as
described below.

Handling of a and b according to kind:

String: It is tested that a string parameter describes a text portion
or a short string (see (15)). This is a 48 bit entity.

Real: A real is represented by 48 bits. No conversion.

Long: A long is represented by 48 bits. No conversion.

Integer: An integer is extended to a long as if the operator extend

had been applied. Boolean: A boolean is considered a
short integer. The 12 bit boolean is extended to a 48 bit
long according to the algorithm:

int:= boo extract 12;

if int > 2047 then int:= int - 4096;

param:= extend int;

The rules for extension imply that actual parameters with the values ‘
true, -1, and extend (-1) are equivalent. Note that the rules also imply

that the effect of an integer with the value 2048 differs from the effect of
a boolean with the value false add 2048.

Example 1:

See Example 2 of invar.

Example 2: Information retrieval
Each record in a certain file has an element inf that contains binary
information in each binary position (sex, salary on hour basis or not, ...).

A statement that writes out the identification for each record that fulfil
all the criteria in a search element read, could look like this:

2. Procedure Descriptions, logand

ALGOLS, User’s Guide, Part 2 Page 149

. for i:= inrecé (z, length)
while z.ident <> endident
do

if logand (searchcrit, z.inf) = searchcrit then
write (out, "nl®, 1, z.ident);

2. Procedure Descriptions, logand

Page 150 ALGOLS, User’s Guide, Part 2

2.91 logor

This long standard procedure performs logical or (logical addition) on
two 48 bit entities a and b. If the type length of a and/or b is smaller
than 48 bits, they are extended by repetition of the sign bit.

Call:
logor (a, b)

logor (return value, long). Bit pattern equal to (a or
b) performed bit by bit after a possible
extension of the parameters.

a,b (call values, short string (text portion), real,
long, integer, or boolean). The two parameters do
not have to be of the same kind. They are - if
necessary - extended and they are handled as
described for logand.

Example 1:

About the same as Example 2 for logand, but you are now searching for
records that are not in conflict with the searc criteria i.e. each found re
cord should only contain all, some or none of the information found in
the search criteria. This could be done by replacing

logand (searchrit, z.inf) = searchrit

by:

logor (searchrit, z.inf) = z.inf

2. Procedure Descriptions, logor

ALGOLS, User’s Guide, Part 2 Page 151

2.92 long

This delimiter, which is a declarator, is used in declarations and
specifications of variables of type long.

Syntax:

long <namelist>

Semantic:

The variables in namelist will all be of type long, and occupy 48 bits in
the storage area.

The value of a long is in the interval:

-140 737 488 355 328 <= value <= 140 737 488 355 327.

All values can be assigned to the variable by use of shift and the like, but
if you assign by constants or character reading procedures you are

confined to the range:

-140 737 488 355 327 <= value <= 140 737 488 355 327

Example 1:

tong 11;
long 12, yes, no, price;

procedure pip(a);
long a;
Example 2:

The greatest possible positive and negative long values can be assigned
by the statements:

max_pos:= extend (-1) shift (-1);
max_neg:= extend 1 shift 47;

2. Procedure Descriptions, long

Page 152 ALGOLS, User’s Guide, Part 2

2.93 long

This delimiter, which is a transfer operator, changes the type string and
real to type long.

Syntax:

long <operand>
Priority: 1

Operand type:

real or string.

Result type:

long.

Semantic:

Changes the type of a string or a real to type long. The binary pattern of
the operand is unchanged. The binary pattern of a string and a real is
described in (14).

Note: This use of the delimiter long is totally different from its use in a
declaration or specification.

Example 1:

1:= long <:abcde:> add 'f’;

Example 2:

See the examples in real and replace real with long where real is used as

a transfer operator.

Example 3:
See Example 1 of swoprec6.

2. Procedure Descriptions, long

ALGOLS, User’s Guide, Part 2 Page 153

2.94 message
This delimiter, which is a compiler directive, may print a message during

the translation of a program. Messages follow the same rules as
comment.

Syntax:

; message <text not containing ";"> ;
may replace any ; (semicolon)

begin message <text not containing ";"> ;

may replace any begin
Semantic:
The text between message and semicolon is printed on current output if
the program is translated with the parameter message.yes.
Example 1:
You can spare the listing of a long algol program and still keep track of
the line numbers. Put 1 or 2 messages on each page of the program (for
instance as page head) and translate it with: algol message.yes (the

default value). The messages are then printed with their line numbers
attached and you can easily find any other line given its line number.

2. Procedure Descriptions, message

Page 154 ALGOLS, User’s Guide, Part 2

2.95 minus (-)

This delimiter, which is an arithmetic operator, can be used both as a
dyadic and as a monadic operator.

1. Dyadic:
Syntax:

<operandl> - <operand2>

Priority: 4

Operand types:

integer, long or real.

Result type:

<integer> - <integer> is of type integer

<integer> - <long> is of type long
<integer> - <real> is of type real

<long> - <integer> is of type long
<long> - <long> is of type long
<long> - <real> is of type real
<real> - <integer> is of type real
<real> - <long> is of type real
<real> - <real> is of type real
Semantic:

This operator yields the normal arithmetic difference of the expressions
involved. .

2. Monadic:
Syntax:

- <operand>
Priority: 4

Operand type:

integer, long, or real.

2. Procedure Descriptions, minus

ALGOLS, User’s Guide, Part 2 Page 155

. Result type:
- <integer> is of type integer
- <long> is of type long
- <real> is of type real
Semantic:

This monadic operator yields the "opposite” value of the operand.
Example 1:

5-7

8-q

-5-a

s shift (-11)
(-1) shift (-1)

2. Procedure Descriptions, minus

Page 156 ALGOLS, User’s Guide, Part 2

2.96 mod

This delimiter, which is an arithmetic operator, yields the remainder
corresponding to an integer division.

Syntax:

<operandl> mod <operand2>
Priority: 3

Operand types:

integer or long. .

Result type:

When both operands are of type integer, the result is of type integer,
otherwise the result is of type long.

Semantic:
The value of i mod j is defined as
i-i//5%

The sign of i mod j is the same as the sign of i.

Example 1: Cyclical counting

Counting i = 1,2,3,1,2,3,1,... may be done in this way: ‘
iz=imod3+1;

A longer but slightly faster version is:

i:= if i =3 then 1 else i + 1;

2. Procedure Descriptions, mod

ALGOLS, User’s Guide, Part 2 Page 157

2.97 monitor

This integer standard procedure is the algol equivalent of the monitor
procedures, i.e. the algol interface to the monitor. You may use it to
handle peripheral devices in a non-standard way and to program
operating systems and executive functions in algol.

In most cases the algol procedure will only transform the parameters to
the form required by the monitor, and the description below describes
mainly this transformation. You will have to consult the Monitor
manuals (1) and (2) for the details and the ideas behind each entry.

Be aware that the monitor tables have halfword addresses.
If the requirements stated below are not fulfilled, or if the situation
termed ’parameter error’ in (2) occurs, the run will be terminated with

the alarm: entry.

Values of fnc not mentioned below will terminate the program with the
same alarm.

Call:

monitor (fnc, z, i, 1ia)

monitor (result value, integer). In most cases the
result of the corresponding call of a monitor

procedure, the meaning of which is found in the
manual, (2).

fnc (call value, integer). A function code
specifying the monitor procedure to be called.
z (call and return value, zone). The zone

descriptor contains in most cases the name of
the process or catalog entry concerned.

i (call and return value, integer). Used for
various purposes, e.g. device number, message
buffer address.

ia (call and return value, integer array). Used for
various purposes, e.g. tail of catalog entry,
contents of answer. Various lengths of ia,
counted from lexicographical index 1, are
required in the various cases.

Whenever the array is used, it is used from
lexicographical index 1 and the required length
is stated in each case, measured in words.

In most cases only some of the last 3 parameters are actually used by the
procedure. The value of fnc determines the function as follows:

fnc = 4, process description:
monitor result, i.e. process description address, 0 if

the process does not exist.
z (call value). Contains the process name,

2. Procedure Descriptions, monitor

Page 158

ALGOLS, User’s Guide, Part 2

i dummy
ia dummy
fnc = 6, initialize process:

monitor result, i.e. 0 means process initialized, 1,2,3
means not initialized.

z (call value). Contains the process name.
i dummy
ia dummy

fnc = 8, reserve process:

monitor result, i.e. O means process reserved, 1,2,3
means not reserved.

z ' (call value). Contains the process name.
i dummy
ia dummy

fnc = 10, release process:

monitor result dummy

z (call value). Contains the process name.
i dummy
ia dummy

fnc = 12, include user:

monitor result, i.e. 0 means included, 2,3,4 means not

included.
z (call value). Contains the process name.
i (call value). Deviced number.
ia dummy

fnc = 14, exclude user:

monitor result, i.e. O means excluded, 2,3,4 means not

excluded.
z (call value). Contains the process name.
i (call value). Device number.
ia dummy

The format of messages and answers used in the following 6 functions,
and in 70, 82, 84, 124, can be found in (2) and (3) and in the description
of getshare6.

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 159

fnc = 16, send message:

monitor buffer address, 0 if the buffer claim is

exceeded.

z (call value). Contains the process name of the
receiving process.

i (call value). The number of a share with in z.

The share state must at call time be 0 or 1, at
return time it is the buffer address. The
message sent is given in the share descriptor.
(see getshare6).
Note that you may change the message in the
share by means of the procedure setshare6.

ia dummy

The value of "current activity no" is used as message identification. This
is stored in the message buffer (buffer address - 2), which later (e.g. in
wait event) may supply the number of the sending activity (see (19)),
concurrent i/o transfers).

fnc = 18, wait answer:

monitor result, i.e. 1 means a normal answer, 2,3,4,5
means dummy answers.

z (call value). Determines together with ’'i’ the
buffer address.
i (call value). The number of a share with in z.

The share state must be the buffer address at
call time, at return time it is O.

ia (return value, length >= 8). The answer is
stored here.

If the program is in activity mode, and the give up mask in the zone
includes 1 shift 9, this function will execute an implicit passivate
statement just before call of the monitor procedure.

fnc = 20, wait message:

monitor result, i.e. process description address of the
sender, positive for a normal message, negative
for a message from a removed process, or O if
the buffer claim is exceeded.

z (return value). The process name is stored here.
i (return value). Buffer address.
ia (return value, length >= 8). The message is

stored here.

2. Procedure Descriptions, monitor

Page 160 ALGOLS, User’s Guide, Part 2

fnc = 22, send answer: .
monitor result dummy

z dummy

i (call value). Buffer address.

ia (call value, length >= 9). The first 8 elements

contain the answer, the 9th element contains the
result, which is 1 for a normal answer, 2,3,4,5,
for a dummy answer.

fnc = 24, wait event:

monitor result, i.e. O for a message, 1 for an answer.

z (return value). The name of the sending process
is stored here if a message was received.
i (call and return value). Last and next buffer
address.
ia (return value, length >= 8). If a message is
received, it is stored here. .

If an answer is received, the message
identification (in buffer address -2) is stored
in ia(l).

In this case the buffer address returned in i
corresponds to a message buffer address in the
share state of some zone (see getsharef).

The message identification has the following
meaning:

ia(1)>0: the activity number of the activity,
which sent the message

1a(1l)=0: the message was sent in monitor or
neutral mode
ia(1)<0: the message was sent in disable mode.

(cf. fnc=16, send message).

Note that concerning the name of the sending process supplied in z for
messages, and the message identification supplied in ia(1) for answers,

the ALGOL equivalent of wait event differs from the monitor .
procedure wait_event and equals the monitor procedure test_event.

fnc = 26, get event:

monitor result dummy

z dummy

i (call value). Buffer address pointing to a
message. An answer must not be released in this
way - use wait answer (or procedure check)
instead.

ia dummy

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 161

fnc = 28, test users/protectors/reserver:

monitor result, 0 means process tested 3, 4, not tested.
If result=0, further information is returned in

i.
z (call value zone). Contains the name of the
external process.
i (return value, integer) Contains further
information:
bit 23=1: internal process 1is |user of external
bit 22=1: internal process 1is reserver of external
bit 21=1: other processes are users of external
bit 20=1: another process 1is reserver of external
bit 19=1: internal process has write protected external
bit 18=1: other processes have write protected external
ia <call value, length >=4). contains the name of

the internal process. If the first word of the
name is zero, it means calling process.
fnc = 30, set writeprotect

monitor result, i.e. 0 means area process write
protected, 1,2,3 means not writeprotected.

z (call value). Contains the area process name.
i dummy
ia dummy

fnc = 32, remove writeprotect:

monitor result, i.e. 0 means writeprotection removed, 3
means not removed

z (call value). Contains the area process name.
i dummy
ia dummy

fnc = 34, set number of active processors:

monitor result, i.e. 0 means function executed, 1, 2
mean function not executed

z dummy

i (call value). The number of processors set
active

ia dummy

The format of the catalog entry tails used in the following 3 functions is
described in (6).

fnc = 40, create entry:
monitor result, i.e. 0 means entry created, 2,3,4,5,6,7

means entry not created.

2. Procedure Descriptions, monitor

Page 162 ALGOLS, User’s Guide, Part 2

z (call value). Contains the entry name.

i dummy

ia (call value, length >= 10). Contains the tail of
the entry.

fnc = 42, lookup entry:

monitor result, i.e. 0 means entry looked up, 2,3,6,7
means not looked up.

z (call value). Contains the entry name.
i dummy
ia (return value, length >= 10). The tail of the

entry is stored here.

fnc = 44, change entry:

monitor result, i.e. 0 means changed, 2,3,4,5,6,7 means
entry not changed.

z (call value). Contains the entry name.
i dummy
ia (call value, length >= 10). Contains the new

tail of the entry.

fnc = 46, rename entry:

monitor result, i.e. 0 means entry renamed, 2,3,4,5,6,7
means entry not renamed.

z (call value). Contains the present entry name.
i dummy
ia (call value, length >= 4). Contains the new

entry name.

fnc = 48, remove entry:

monitor result, i.e. 0O means entry removed, 2,3,4,5,6,7
means entry did not exist or entry is not

removed.
z (call value). Contains the entry name.
i dummy
ia dummy

fnc = 50, permanent entry:

monitor result, i.e. 0 means entry made permanent,
2,3,4,5,6,7 means entry not permanent.

z (call value). Contains the entry name.
i (call value). Catalog key.
ia dummy

fnc = 52, create area process:

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2

monitor
z

i

ia

Page 163

result, i.e. 0 means area process created,
1,2,3,4,5,6 means process not created.
(call value). Contains the process name.
dummy

dummy

fnc = 54, create peripheral process:

monitor

z
i
ia

result, i.e. 0 means process created,
1,2,3,4,5,6 means process not created.
(call value). Contains the process name.
dummy

dummy

fnc = 56, create internal process:

monitor

z

i
ia

result, i.e. 0 means process created, 1,2,3,6
means process not created.

(call value). Contains the process. The process
will be created in the buffer area of z.
dummy

(call value, length >= 9). Contains the
parameters in this way:

ia(l) buffer index for start of process

ia(2) buffer index for last of process

ia(3) buffer claim shift 12 + area claim
ia(4) internal claim shift 12 + function mask
ia(5) mode

ia(6) lower limit of max base

ia(7) upper limit of max base

ia(8) lower limit of std base

ia(9) upper limit of std base

fnc = §8, start internal process:

monitor

z

ia

result, i.e. O means process started, 2,3,6
means process not started.

(call value). Contains the process name. The
process must have been created inside the zone
buffer.

(call value). The number of a share within z.
The share state must at call time be 0 or 1, at
return time it is -process description address.
dummy

fnc = 60, stop internal process:

monitor

z

i

result, i.e. O means stop initiated, 3,6 means
stop not allowed.

(call value). Determines together with i the
process.

(call value). The number of a share within z.
The share state must at call time be -process

2. Procedure Descriptions, monitor

Page 164 ALGOLS, User’s Guide, Part 2

description address. At return time it is the .
buffer address. Notice that the process name in
z is irrelevant.

ia dummy

The value of ’current activity no’ is used as message identification. It is
stored in the message buffer (address-2), which later (e.g. in wait event)
may be obtained to identify the sending activity.

fnc = 62, modify internal process:

monitor result, i.e. O means process modified, 2,3,6
means modification not allowed.

z (call value). Contains the process name.
i dummy
ia (call value, length >= 6). Contains the modified

registers (w0-w3, ex, ic).

fnc = 64, remove process:

monitor result,i.e. 0 means process removed, 1,2,3,5,6
means removal not allowed.

z (call value). Contains the process name.
i dummy
ia dummy

fnc = 66, test event:

monitor result
0 next event is a message,
1 next event is an answer,
-1 the event queue is empty or
next event is a message but claims exceeded

z (return value). If result = 0, the name of the
sending process is stored here, else z is .
unchanged.

i (call and return value).

At call the previous message buffer address. At
return the next message buffer address.

If result = -1, next message buffer address = 0
If result = -1 { is unchanged.

ia (return value, length >= 8).
If result = 0, the message is stored in ia
(1:8).

If result = 1, the message identification (from
the message flag) is stored on ia (1).
In this case, the message buffer address
returned in i corresponds to a message buffer
address in the share state of some zone, cf. the
procedure getshare6. The message identification
then has the following meaning:
ia (1) >0 : the activity number of the
activity which has sent the .

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 165

. message

ia (1) =0 : the message was sent in monitor
mode or in neutral mode

ia (1) <0 : the message was sent in disable
mode

cf. the procedure send message, fnc = 16.

fnc = 68, generate name:

monitor result, i.e. 0 means name generated, 2 means
name not generated.

z (return value). The generated name is stored
here.
i dummy
ia dummy
‘ fnc = 70, copy memory area:

monitor result of the copying, O meaning area copied, 2
or 3 area not copied.

z (call value). Contains the area to or from which
the copying will take place. The limits of the
copying are given by the zone parameters record
base and last halfword.

i (call value). The buffer address of the input or
output message defining sender’'s copy area. ia
(return value, length >= 9). Contains
information about the copying almost ready to be
used by send answer (see (3)):
ia(l) then should be set by the user
ia(2) if result < 0 then 0 else halfwords
copied
ia(3) if result < 0 then O else characters
copied
ia(9) if result = 3 then 3 else 1.

fnc = 72, set catalog base:

monitor result, O means catalog base set, 2,3,4,6 means
catalog base not set.

z (call value). Contains the name of a child
process or a first-word-null-name, meaning own
process.

i dummy

ia (call value, length >= 2). Contains the base to
be set.

ia(l) lower limit of the base
ia(2) upper limit of the base

fnc = 74, set entry base:

2. Procedure Descriptions, monitor

Page 166 ALGOLS, User's Guide, Part 2

monitor result, O means entry base set, 2,3,4,5,6,7 .
means entry base not set.

z (call value). Contains the entry name.

i dummy

ia (call value, length >= 2). Contains the entry
base to be set, as for the fnc = 72, set catalog
base.

fnc = 76, lookup head and tail:

monitor result, O means entry looked up, 2,3,6,7 means
entry not look up.

z (call value). Contains the entry name.
i dummy
ia (return value, length >= 17). The head and tail

of the entry is stored here. (The format is
described in (2).

fnc = 78, set backing storage claims:

monitor result, 0 means claims set, 1,2,3,6 means claims

not set.

z (call value). Contains the name of a child
process.

i dummy

ia (call value, length >= 4 + 2%*no of keys). The

first 4 words contain the name of the backing
storage document. The next:

ia (5) entry claim, key O

ia (6) segment claim, key O

ia (5+2*max key) entry claim, max key

ia (6+2*max key) segment claim, max key

fnc = 80, create pseudo process: .

monitor result, O means pseudo process created, 1,2,3,6
means pseudo process not created.

z (call value). Contains the name of the pseudo
process.

i dummy

ia dummy

fnc = 82, regret message:

monitor no result from this operation. Misuse will give

break 6.
z (call value). Determines together with ‘i’ the
buffer address of the message to be regretted.
i (call value). The number of a share within z.

The share state must be the buffer address at
call time. At return it is O,

ia dummy ‘I'

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 167

fnc = 84, general copy

monitor result, 0 means area copled, 2 and 3 mean area
not copied.

z (call value). Contains the memory area to or
from which the copying will take place. The
limits of the copying will be
z.first_field index and z.last_field_index.

i (call value). The message buffer address of the
input or output message defining sender’s copy
area.

ia (call and return value, length >= 9). At call ia

contains information about the copying wanted,
at return it contains information about the
copying performed, almost ready to be used by
send answer:

‘ call: return:

ia (1) function should be set by user

ia (2) first field index if result < 0 then O
else halfwords
transferred

ia (3) last field index undefined

ia (4) start relative unchanged

ia (9) dummy if result = 3 then 3 else
1

fnc = 86, lookup aux entry

monitor result, 0 means entry looked up, 2, 3, 6, 7 mean
. entry not looked up.

z (call value). Contains the entry name.

i dummy .

ia (call and return value, length >~ 21). Contains
the document name in word 18, ..., 21. At
return, the tail of the entry is stored in word
8, ..., 17.

fnc = 88, clear statistics in aux entry

monitor result, O means statistics initialized, 2, 3, 6,
7 mean statistics not initialized.

z (call value). Contains the entry name.

i dummy .

ia (call value, length >= 21). Contains the
document name in word 18, ..., 21.

2. Procedure Descriptions, monitor

ALGOLS, User's Guide, Part 2

fnc = 90, permanent entry in auxiliary catalog: .

monitor result, O means entry made permanent,
2,3,4,5,6,7 means entry not made permanent.

z (call value). Contains the entry name,.
i (call value). The catalog key.
ia (call value, length >= 4). Contains the name of

the backing storage document.

fnc = 92, create entry lock process

monitor result, O means entry lock process created, 1,
2, 3, 6, 7 mean entry lock process not created.

z (call value). Contains the entry name.

i dummy .

ia dummy .

fnc = 94, set priority .

monitor result, O means priority changed, 3, 6 mean
priority not changed.

z (call value). Contains the name of the child
process.

i (call value). Priority level offset.

ia dummy .

fnc = 96, relocate process

monitor result, O means that the child process 1is ready
to start in the new memory area starting in
z.field_index, 3, 6 mean that it is not.

z (call value). Contains the name of the child
process.
i (call value). Field index in zone record.

ia dummy .
®

fnc = 98, change address base

monitor result, O means that the logical address base of
the child process is changed, 3, 6 mean that it

is not.

z (call value). Contains the name of the child
process.

i (call value). Address displacement.

ia dummy .

fnc = 102, prepare backing storage:

ronitor result, i.e. 0 means chaintable allocated,
1,2,3,4,5,6,7 means chaintable not allocated.
z (call value). The zone record holds the chain

head. .

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 169

. =

dummy

fnc = 104, insert entry:

monitor result, i.e. O means entry inserted in
maincatalog, 1,2,3,4,5,6,7 means entry not
inserted in maincatalog.

z (call value). The zone record holds the chain
head.

i dummy

ia (call value, length >~ 17). Contains head and

tail of the entry.

fnc = 106, insert backing storage document:

monitor result, i.e. O means document inserted 1,2,4,6

‘ means document not included.
z dummy
i dummy
ia (call value, length >= 21). Contains the
document name in word 18, ..., 21.

fnc = 108, delete backing storage document:

monitor result, i.e. 0 means document removed, 1,2,4,5,6
means document not removed.

z dummy

i dummy

ia (call value, length >= 21). Contains the
document name in word 18, ..., 21.

fnc = 110, delete entries:

. monitor result, i.e. 0 means entries deleted, 1,2,3,4,6
means not deleted.
z dummy
i dummy
ia (call value, length >= 21). Contains the
document name in word 18, ..., 21.

fnc = 112, connect main catalog:

monitor result, i.e. 0 means catalog connected,
1,2,3,4,5,6,7 means catalog not connected.

z (call value). The zone record holds the chain
head.

i dummy

ia (call value, length >= 4). Contains the catalog
name.

2. Procedure Descriptions, monitor

Page 170 ALGOLS, User’s Guide, Part 2

fnc = 114, remove main catalog: .

monitor result, i.e. 0 means catalog removed, 7 means
main catalog not removed.

z dummy
i dummy
ia dummy

fnc = 118, lookup backing storage claims

monitor result, 0 means claims looked up, 2, 3, 6 means
claims not looked up.

z (call value). Contains the name of an internal
process. If the first word of the name is zero
it means calling process.

i dummy

ia (call and return value,
length >= 442 * no_of_keys.

ia (1) call value, name of the backing storage document

ia (4) -
ia (5) return value, entry claim, key = 0
ia (6) return value, segment claim, key = 0

ia (5 + 2 * maxkey), entry claim, key = maxkey
ia (6 + 2 * maxkey), segment claim, key = maxkey

fnc = 120, create aux entry and area process:

monitor result, i.e. O means entry and area process

created, 1,2,3,4,5,6 means entry and area

process not created. .
z (call value). Contains the area process name.
i dummy
ia (call value, length >= 21). Contains head and

tail in word 1, ..., 17, and the document name

in word 18, ..., 21.

fnc = 122, remove aux entry:

monitor result, i.e. O means entry removed, 1,2,3,6
means entry not removed.

z dummy

i dummy

ia (call value, length >= 21). Contains head and
tail in word 7, ..., 17 and the document name in
word 18, ..., 21.

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 171

fnc = 124, send pseudo message

monitor buffer address, 0 if the buffer claim is

exceeded.

z (call value). Contains the name of the receiving
process.

i (call value). The number of a share within z.

The share state at call time must be 0 or 1, at
return it is the buffer address. The message
sent is given in the share descriptor, cf. the
procedure getshare6.
Note that you may change the message in the
share by means of the procedure setshare6.

ia (call value, length >= 2). The pseudo process
description address is contained in ia (1). ia
(2) is for the time being not used.

The procedure works as the procedure send message (fnc = 16) with the
following two exceptions:

1) thereceiver process must be an internal process

2) the pseudo process is inserted as sender of the message buffer

The value of "current activity number” is passed on in the message flag
as for send message.

fnc = 126, set common protected area

monitor result, 0 means cpa set, 3 means cpa not set.

z (call value). Contains the process name.
i (call value). Contains the cpa limit.
ia dummy .

Example 1: Create a backing storage area

A backing storage area ’sldata3’ of ’s’ segments may be created and then
used like this:

begin zone 2(512,1,stderror);

integer array tail(1:10);

integer i;

open(z,4,<:sldata3:>,0);

<* The zone contains now the document name. The document is not initalized in
case of kind=4*>

tail(1):= s;

tail(2):= 3; <*on the disk with the most permanent resources*>

for i:= 3 step 1 until 10 do tail(i) := 0;

tail(6):= systime (7,0, 0.0); <*shortclock*>

if monitor(40<*create_entry*>,z,0,tail) > 0 then error(1);

outrec(z,...);

Example 2: Scope user of an area:

2. Procedure Descriptions, monitor

Page 172 ALGOLS, User’s Guide, Part 2

The scope user function consists of 2 steps. First the area is made
permanent with catalog key 3. Now, as key is >= min global key (see
(2)), the entry base may be set to the user base of the process.

Let the zone z be connected to the area to be scoped.

system(11)bases:(i,ia);

ia(1):= ia(5); ia(2):= ia(6); <* fetch the user base;*>
if monitor(50)permanent entry:(z,3,ia) <> 0 then
error(1)

else

if monitor(74)set_base:(z,0,ia) <> 0 then

error(2)

else ...

Example 3: Find scope of an entry:

As the catalog base of an internal process and of a catalog entry may
cover almost the full integer range they must be handled as longs when
relations of type <= or >= between them are calculated, in order to
prevent overflow.

system(11)bases:(i,bases);

monitor(76 <*head_and_tail*>, z,0,entry) <> 0
then goto error;

case entry(1) extract 3 + 1 of

begin

<*key 0, maybe temp *>

if entry(2) = bases(3) and
entry(3) = bases(4)

then scope:= 1 <*temp*>

else scope:= 6; <*undef*>

<*key 1 *>
scope:= 6; <*undef*>

<*key 2, maybe login *>

if entry(2) = bases(3) and
entry(3) = bases(4)

then scope:= 2 <*login*>

else scope:= 6; <*undef*>

<*key 3, user, project, or system *>
begin
l1:= entry(2); (2:= entry(3);
if L1 = bases(5) and
L2 = bases(6) then scope:= 3 <*user*>
else
if L1 = bases(7) and
12 = bases(8) then scope:= 4 <*project*>
else

if L1 <= extend bases(7) and

12 >= extend bases(8) then scope:= 5
<*gystem*>

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 173

else scope:= 6; <*undef*>
end

end case;

write(out,<:the scope is: :>,case scope of(
<:temp:>,<:login:>, <iuser:>,
<:project:>, <:system:>,<:*** j_.e. undef:>));

Example 4: Get the claims of a process on a given bs-device
boolean

procedure claimproc (keyno,bsno,bsname,entries,segm,slicelength);
value keyno;

integer keyno,bsno,entries,segm,slicelength;
long array bsname;

<*
claimproc (return, boolean). True if bsno>=-1 and bsno <= max_bsno
and keyno is legal else false. If claimproc is false then
all return parameters are zero.
keyno (call, integer) O=temp
2=login
3=user/project
bsno (call/return, integer). If call value is -1 then return
value is main backing storage device number, else bsno is
unchanged
bsname (return, long array 1:2). Name of called device
entries (return, integer). No. of entries of key=keyno on device
segm (return, integer). No. of segm. of key=keyno on given
device
slicelength (return, integer). Slicelength on given device
*>
begin

integer bsdevices,firstbs,ownadr mainbs,i;
long array field name;
integer array core(1:18);

system(5,92,core);

bsdevices:=(core(3)-core(1))//2;

firstbs:=core(1);

mainbs:= core(4);

ownadr:=system(6, i ,bsname);

if bsno<=1 or bsno>=bsdevices or

keyno<>0 and key<>2 and keyno<>3 then

begin .

claimproc:=false; goto exitclaim

end;

claimproc:=true;

begin integer array nemetable(1:bsdevices);

name:=18;

system(5,firstbs,nametable);

if bsno= -1

then <*find main device number*>

for bsno:= bsno + 1 while nametable(bsno+1) <> mainbs do;
system(5,nametable(bsno+1)-36,core); <*get chaintable*>

2. Procedure Descriptions, monitor

Page 174 ALGOLS, User’s Guide, Part 2

if core(10)=0 then goto exitclaim; .
bsname(1):=core.name(1); bsname(2):=core.name(2);
slicelength:=core(15);
system(5, ownadr+core(1),core); <*get process description*>
entries:=core(keyno+1) shift (-12);
segm:=core(keyno+1) extract 12 * slicelength;
end;
if false then
begin
exitclaim:
entries:zsegm:=glicelength:=0;
bsname(1) :=bsname(2):=0;
end;
end claimproc;

Claims on a specific device are found as follows:

bsno:=-1;

for bsno:=bsno+1 while .
claimproc(keyno,bsno,bsname, entries,segm,slicelength)
and

not (searchname(1)=bsname(1) and searchname(2)=bsname(2)) do;

Max claims are found as follows:
maxentr:=max:=maxslice:=0;

maxbs (1) :=maxbs(2):=0;
bsno:=-1;
for bsno:=bsno+1 while
claimproc(keyno,bsno,bsname,entries,segm,slicelength) do
if entries>0 and segm>max then
begin
maxentr:zentries; max:=segm; maxslice:=slicelength;
maxbs(1):=bsname(1); maxbs(2):=bsname(2);

™ o

Example 5: Renaming an entry

The procedure renames a catalog entry. The procedure works just like
the utility program rename, with the extension that a working name may
be returned.

integer
procedure renameproc (oldname, newname);
long array oldname, newname;
<*
renameproc (return integer) 0 ok
1 new name exists already
2 cat i/o error
document not mounted or
document not ready
3 oldneme not found '

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 175

. 4 name protected

5 name in use
6 name format illegal
7 catalog inconsistent

oldname (call long array) contains old name

newname (call long array) contains new name or <::>
if newname(1)=long<::> then
newname is a return parameter,
containing a wrk-name.

>*

begin
integer i; boolean wrk;
long array field laf;
zone zhelp(1, 1, stderror);
integer array ia(1:20);
wrk:=newname(1)=long<::>;
‘ if wrk then
begin
generate_next:
moni tor(68<*generate*>, zhelp, 0, ia);
getzoneb6(zhelp, ia);
laf:=2;
newname(1):=ia.laf(1); newname(2):=ia.laf(2);
end;

laf:=0;

ia.laf(1):=newname(1);

ia.laf(2):=if newname(1) extract 8 = 0 then long<::>
else newname(2);

open(zhelp, 0, oldname, 0);

renameproc:= i:= monitor(46<*rename*>, zhelp, 0, ia);

if i=3 then

begin <*oldname not found, or newname alreedy exists*>

i:=monitor(42<*lookup*>, zhelp, 0, ia);

. if i=0 then
begin

if wrk then goto generate_next else renameproc:=1
end;
end
end renameproc;

Example 6: Listing of an entry tail

Monitor 42, lookup entry, will place the catalog tail in an array, which
can be listed by the following procedure:

procedure list_tail (zout, tail);
Zone zout; integer array tail;

<* the procedure lists the contents of array tail as a catalog entry

zout (return, zone) zone for output

2. Procedure Descriptions, monitor

Page 176 ALGOLS, User’s Guide, Part 2

tail (call, integer array) contains entry tail ‘
*>

begin
integer n,i;
long array field docname;
real r;

docname:=2;
n:=tail(1);
if n>=0 then write(zout,<<z>,n) else

write(zout,<<z>,n shift (-12) extract 12,
<:..:>,n extract 12);

:=tail(2);
if n=0 or n=1 then write(zout,n) else
write(zout,<: :>,tail.docname);
n:=tail(9) shift (-12);
i:=6; ’
if not (n=4 or n>=32) and tail(6)<>0 then
begin
write(out,<:d.:>, <<zddddd.dddd>,
systime(6, tail(é), r)+r/1000000);
ii=7;
end;

while i<i1 do
begin
n:=tail(i);
if n>=0 and n<4096 then write(zout,<<z>,n) else

write(zout,<<z>,n shift (-12) extract 12,
<:.:>,<<2>,n extract 12);

end list_tail; .

Example 7: Creating a new entry

The procedure creates a new catalog entry with scope temp or changes
an alreay existing entry (with scope temp) according to the parameters.
The procedure works just like the utility program set, with the extension
that a working name may be returned.

integer procedure setproc (name, tail);

long array name; integer array tail;

<*

setproc (return, integer) 0 ok

1 change kind impossible
2 bs device unknown
3 change bs device impossible
4 no resources
5 in use

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 177

é name format illegal
7 catalog inconsistent

name (call, long array) contains the entry name.
if name (1) = long <::> a working name
is created and name is return parameter.
tail (call, integer array) contains the entry tail.
1 size or modekind
2:5 docname
6 shortclock, in case
shortclock is wanted in
the entry
7:10 remaining tail
*>

begin
integer i;
lon array field laf;
zone zhelp(1,1,stderror);
integer array ia(1:20);

open(zhelp, 0, name ,0);
for i:= 1 step 1 until 10 do ia(i):= tail(i);
<*tail could possibly be a fielded array. As
fielding once did not work in monitor the
contents of tail is moved to the non-fielded
array ia*>
setproc:= i:= monitor(40<*create*>,zhelp,0,ia);

if name(1)=long<::> then
begin <*get wrkname*>
getzonebé(zhelp,ia);
laf:=2;
name(1):=ia.laf(1);
name(2):=ia.laf(2);
end;
if i=3 then
begin <*entry exists*>
i :=monitor(42<*lookup*>,zhelp,0,ia);
if i<>0 then
begin
setproc:=7; goto exit_setproc
end;
if tail(1)<0 or ia(1)<0 then
begin
if tail(1)>=0 or ia(1)>=0 then
begin
setproc:=1; goto exit_setproc
end;
goto change
end;
if tail(2)=0 or tail(2)=1 then goto change;
if tail(3) extract 8=0 then tail(4):=tail(5):=0;
if tail(2)<>ia(2) or tail(3)<>ia(3) or
tail(4)<>ia(é) or tail(5)<>ia(5) then
begin

2. Procedure Descriptions, monitor

Page 178 ALGOLS, User's Guide, Part 2

setproc:=3; goto exit_setproc .
end;

change:
for i:= 1 step 1 until 10 do fa(i):= tail(i);
i:=monitor(44<*change*>,zhelp,0,ia);
if i=6 then i:=4;
setproc:=i;
end entry exists;

exit_setproc:
end setproc;

In case an array containing head_and tail exists, it may be used as
follows:

iaf:= 14; setproc(name, head_and_tail.iaf);

Example 8: Changing an entry .

The procedure changes the specified entry. The procedure works just
like the utility program changeentry.

integer procedure changeentryproc (name, tail);

long array name;

integer array tail;

<*

changeentryproc (return, integer)

0 ok
1 change kind impossible
2 cat i/o error, doc. not mounted or not ready
3 name not found
4 name protected
5 name in use
6 name format illegal
7 catalog inconsistent
8 change bs device impossible
9 claims exceeded .

name (call, long array)
contains the entry name

tail (call,integer array)
contains new entry tail

*>
begin
integer i;
integer array ia(1:10);
zone zhelp(1,1,stderror);

open(zhelp,0,name,0);

:= monitor(42<*lookup*>,zhelp,0,ia);
if i<>0 then
begin

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 179

changeentryproc:=i; goto exit_changeentryproc
end;

if tail(1)<0 or ia(1)<0 then
begin
if tail(1)>=0 or ia(1)>=0 then
begin
changeentryproc:= 1; goto exit_changeentryproc
end;
goto change;
end;

if tail(2)=0 or tail(2)=1 then goto change;
if tail(3) extract 8=0 then tail(4):=tail(5):=0;
if tail(2)<>ia(2) or tail(3)<>ia(3) or
tail(4)<>ia(4) or tail(5)<>ia(5) then
begin
changeentryproc:=8; goto exit_changeentryproc
end;
change:
<*tail could be a fielded array, cf. example 7*>
for i:=1 step 1 until 10 do
fa(i):= tail (i);
i:=moni tor(44<*change*>,zhelp,0,ia);
if i=6 then i:=9;
changeentryproc:=i;

exit_changeentryproc:
end changeentryproc;

In case the programmer only wants to change shortclock and maybe
size, it may be done as follows:

begin
integer i;
zone 2(1,1,stderror);
integer array ia(1:10);

open(2z,0,<:pip:>,0);

close (z, true);

i:=monitor(42<*lookup*>,2,0,ia);

if i<>0 then

begin <* alarm, see lookupproc (ex. 9)*> end;

ia(1):=36; <*new size*>

ia(6):= systime (7, 0, 0.0); <*shortclock*>

i:=monitor(44<*change*>,z,0,ia);

if i<>0 then

begin <* alarm, as changeentryproc, except é=claims
exceeded *>

end;

2. Procedure Descriptions, monitor

Page 180 ALGOLS, User’s Guide, Part 2

Example 9: Lookup of an entry .
The procedure performs a lookup of the specified name.

integer procedure lookupproc (scope, name, tail);
long array scope, name;
integer array tail;
<*
lookupproc (return, integer)
0 found
1 The call param scope does not contain a legal
scope name
2 cat i/o error
3 not found
6 name format illegal

scope (call, long array)
contains the name of a scope or <::>.
if scope(1)=long <::> then scope will
be a return parameter which may be <:***:> ‘

name (call, long array)
contains the name of the entry

tail (return, integer array)
contains tail of the entry:
1 size or modekind
2:5 docname
6 shortclock, in case shortclock is found in
the entry
7:10 remaining tail
*>

begin
integer scopeno, permkey, i;
long 11, 2;
zone zhelp(1, 1, stderror);
integer array bases(1:8), ba(1:2), head_and_tail(1:17);
real array field raf; .

procedure return (val);
value val; integer val;
begin
lookupproc:= val;
for i:= 1 step 1 until 10 do tail(i):= 0;
if scopeno <> 6 then reset_base;
goto exit_lookupproc;
end;

procedure reset_base;
begin

close(zhelp, false);

open(zhelp,0,<::>,0);

monitor (72<*set bases*>, zhelp, 0, bases);
end;

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 181

‘ lookupproc:= 0;

l1:= scope(1) shift (-8) shift 8; <*first 5 chars*>
scopeno:= 6;
for i:= 0 step 1 until 5 do
if L1 = long (case i+1 of (
<::>, <:temp:>, <:login:>,
<:user:>, <:proje:> <:syste:>))
then scopeno:= i;
if scope = 6 then return(1); <*illegal scope specified*>

system (11<*catalog bases*>, 0, bases);
i:= if scopeno < 3 then 3 else
if scopeno = 3 then 5 else 7;

ba(1):= bases(i); ba(2):= bases(i+1);

open(zhelp,0,<::>,0);

monitor (72<*set cat base*>, zhelp,0,ba);

close (zhelp, true);

open (zhelp,0,name,0);

i:= monitor (76<*head_and_tail*>, zhelp,0,head_and_tail);
‘ if i<>0 then return(i);

if scopeno>0 and scopeno<5 and
(head_and_tail(2) <> ba(1) or
head_and_tail(3) <> ba(2))

then return(3); <*entry not found*>

permkey:= head_and_tail(1) extract 3;
if scopeno=1 and permkey<>0

or scopeno=2 and permkey<>2

or scopeno>2 and permkey<>3
then return(3); <*entry no found*>

if scopeno=5 then
begin
if not (head_and_tail(2) < ba(1) or
head_and_tail(3) > ba(2))
then return(3); <*entry not found*>
end;

<*now the entry has been found, find the scope
if this was not specified*>
if scopeno = 0 then
begin
l1:= head_and_tail(2);
l2:= head_and_tail(3);
case permkey+1 of

begin
<*0*> if |1 = bases(3) and
L2 = bases(4)
then scopeno:= 1 <*temp*>
else scopeno:= 6; <*undef*>

<*1*> gcopeno:= 6; <*undef*>
<*2*> if L1 = bases(3) and

L2 = bases(4)

2. Procedure Descriptions, monitor

Page 182 ALGOLS, User's Guide, Part 2

then scopeno:= 2 <*login*> .
else scopeno:= 6;<*undef*>

<*3*> if 11
12
else
if 11 = bases(7) and
{2 = bases(8) then scopeno:= & <*project*>
else
if 11 <= extend bases(7) and
L2 >= extend bases(8) then scopeno:= 5 <*system*>
else scopeno:= 6;<*undef*>
end case;

bases(5) and
bases(6) then scopeno:= 3 <*user*>

scope(2):= 0;

movestring (scope, 1, case scopeno of (
<:temp:>, <:login:>, <:user:>,
<:project:>,<:system:>,<:¥**:>))-

end scopeno = 0; .

<*assign the catalog tail to the return parameter*>
for i:= 1 step 1 until 10 do

tail(i):= head_and_tail(i+7);
reset_base;

exit_lookupproc:
end lookupproc;

If the entry of smallest scope should be looked up, the previous
procedure is "too much", as this can be done by the following procedure
or similar statements:

integer procedure lookup (name, tail);
long array name; integer array tail;
begin
zone zhelp(1,1,stderror);
integer i; .
open(zhelp,0, name ,0);
lookup:= i:x= monitor(42<*lookup*>,zhelp,0,tail);
if i<>0 then
for i:=1 step 1 until 10 do tail(i):=0;
end Lookup

where lookup will contain the value corresponding to lookupproc with
the exception of the value 1.

Example 10: Wait

The procedure waits as many seconds as specified by the parameter.

procedure pause (time);
integer time ;

o [

2. Procedure Descriptions, monitor

ALGOLS, User’s Guide, Part 2 Page 183

integer array ia(1:20);
zone clock(1,1, stderror);

open (clock, 2, <:clock:>, 1 shift 9);

<*implicitly passivated if called in activity*>

getshareé(clock, ia, 1);

iac4):= 0;

ia(5):= time;

setshareé(clock, ia, 1);

if monitor (16<*send message*), clock, 1, ia) = 0 then
system(9,6,<:<10>break:>); <*buffer claim exceeded*>

monitor (18<* wait answer*>, clock, 1, ia);

end pause;

Example 11: See Example 4 of system.

2. Procedure Descriptions, monitor

Page 184 ALGOLS, User’s Guide, Part 2

2.98 movestring

This integer standard procedure is used for moving textstrings of various
kinds.

Call:
movestring (ra, i, st);

movestring (return value, integer). The number of
elements in ra to which a string portion has
been assigned. It is negative if the string
was too big for the array.

ra (return value, boolean, integer, long, real,
double or complex array or zone record). The
string is stored in ra(i), ra(i+l), and so .
on. For arrays of more dimensions the
lexicographical ordering is used.

i (call value, integer). See ra above.

st (call value, string). Layout or text string
terminated by a NULL character.

Moves either a layout or a whole textstring until a null character is
encountered or the array is filled. The various string expressions are
defined in (15).

Example 1:

A textstring can be inserted in a long array:

begin
long array la(1:10);

movestring (la, 1, <:some text:>); .

2. Procedure Descriptions, movestring

ALGOLS, User’s Guide, Part 2 Page 185

2.99 multiply (*)
This delimiter, which is an arithmetic operator, yields the product of the
two operands.

Syntax:

<operandl> * <operand2>
Priority: 3

Operand types:

integer, long, or real.

Result type:

<integer> * <integer> is of type integer
<integer> * <long> is of type long

<integer> * <real> is of type real
<long> * <integer> is of type long

<long> * <long> is of type long
<long> * <real> is of type real
<real> * <integer> is of type real
<real> * <long> is of type real
<real> * <real> is of type real
Semantic:

The operation may include a type conversion. Real values are
represented with a relative precision of about 3’-11 (cf. (15)). This
means that real variables holding an integral value is represented with
full precision in the interval -2**35 < = real <= 2**35-1.

As multiplication of long values includes call of subroutines (cf. (15)),
and cannot be performed by built in operations, a representation of
certain long variables in real variables may be advantageous (cf. (15)).

Example:
i:= 5%a;

je:= i*(b+s);
r:=k * z.laf(4) * arr(7*c)

2. Procedure Descriptions, multiply

Page 186

ALGOLS, User's Guide, Part 2

2.100 newactivity

This long standard procedure initializes an empty activity with a
procedure (a coroutine), and starts the activity.

Call:
new_activity (actno, virt, proc, params);

new_activity (return value, long). The value is
composed of two integers:
activityno shift 24 add cause
describing the way in which newactivity
returns (see below).

actno (call value, integer). The identification
of the activity to be initialized. The
activity must be empty.

virt (call value, integer). Determines whether
or not the designated activity will share
stack area with another activity:
virt = 0: The designated activity will
not be virtual, i.e. it will have its own
stack area.
virt > 0: must be a legal activity
number. The activity actno, will be
virtual, i.e. share stack area with the
activity numbered virt.
If virt < actno, virt must define a
non-empty virtual activity.

proc (call value, to type procedure). The
activity actno is initialized with this
procedure, which is called with the
actual parameters stated in the parameter
list params,
The procedure must not be a type

procedure.

params (call values). A (possibly empty) list of
parameters to be used in the call of
proc.

Storage resources for variables etc. are allocated in the stack, the top of
which is defined by the runtime system variable, last_used.

The stack administration is for activity purposes supplied with another
runtime system variable, max_last used, defining the upper limit for last
used. Stack overflow is detected by comparison of these two variables.

To each activity is allocated a maximum contigous stack area, defined by
the pair: (initial last_used, max_last_used) for the activity. The very first
call of new activity for each activity, determines the values of the
corresponding initial last_used, max_last used). When an activity is
entered (by activate), the runtime system uses the stack allocated to the
activity. When an activity returns to the monitor block (by passivate),
the runtime system uses the stack allocated to the monitor block.

2. Procedure Descriptions, newactivity

ALGOLS, User’s Guide, Part 2 Page 187

Buffer areas and share descriptors belonging to zones declared in
activities will be allocated in the stack area for the activity, and never in
the high end partition of memory.

Function:

new activity must be called at the monitor block level (cf. procedure
activity).

The execution of:
result := new_activity (actno, virt, proc, params);
now proceeds as follows:

0) If the procedure is a type procedure (function), new_activity
terminates with an alarm.

1) If the block level of the call is not the monitor block level,
new_activity terminates with an alarm.

2) If the program is not in monitor mode, the run is terminated with an
alarm.

3) Hactno < 1 or actno > max_no_of activities or virt < 0 or virt >
max_no_of_activities, the run is terminated with an alarm.

4) If the activity actno, is not empty, new_activity returns with the
result = actno shift 24 add (-1).

5) If the stack area is not allocated, the actual value of last_used
(monitor last used) defines the stack and initial last used for the
activity.

6) If the activity is to be virtual, and a shared virtual occupies the stack
area, the stack area is transferred to the virtual storage file in one
output operation. If, however, the shared virtual waits for an i/o
operation to complete, newactivity returns with the result:
shared_virtual shift 24 add (-2).

7) The procedure, proc, is called with params as actual parameters,
and the program is now in activity mode. It is not checked, that this
parameter list corresponds to the formal specifications in the
procedure declaration. The procedure returns:

- executing a passivate statement or

- leaving through its final end or

- because of a runtime alarm.

defining the value of result. At return, the program is back in
monitor mode.

8) If a stack area was not allocated,, when newactivity was called, the
following is done at return from newactivity: The masimum
last_used appearing during the execution in activity mode is selected
to represent max last used of the activity, and at the same time
last_used of the monitor block.

2. Procedure Descriptions, newactivity

Page 188 ALGOLS, User’s Guide, Part 2

9) If the activity is to be virtual, max last_ used of the activity is .
increased to extend the stack area to the nearest multiple of 512
halfwords and a record in the virtual storage file is reserved to hold
the stack area of the activity.

The transfers between stack and virtual storage file (swops) are
initiated by newactivity or activate, when an activity, not at present
occupying the stack area, is to be activated (restarted).

The virtual storage file is the same one as used for context blocks.

If the designated activity is empty, but has been initialized before in a
previous call of new_activity, the stack area is a priori fixed by limits
defined in the very first call of new actnvxty for the designated activity. A
non-empty activity becomes empty, 1f it:

- leaves throuth its final end or
- terminates with a runtime alarm.

Result values: .
The return values activityno shift 24 add cause have the following
meaning:

activity _no: The identification of the activity causing the return.

In case of cause = -2, however, the activity waiting
for an i/o operation to complete.

cause indicate the return cause:

cause = -3: new_activity returned because of an alarm in a

started activity, which is now empty.

cause = -2: new_activity returns, because the designated actmty
is virtual and shares storage with another activity
waiting for an i/o operation to complete (see the

parameter virt).

"
'
[aary

cause new_activity returns because the designated activity .

is not empty.

I
e

cause new_activity returns because a started activity

terminated via its final end. The activity is now
empty.

cause = 1: new_activity returns because a started activity is
passivated by a programmed passivate statement.

cause = 2: new_activity returns because a started activity is
passivated by an implicit passivate statement in the
zone i/o system.

Example 1:

If a minimum space is needed in the stack for an activity (for later
procedure calls, arrays in inner blocks etc.) this may be assured by

2. Procedure Descriptions, newactivity

ALGOLS, User’s Guide, Part 2 Page 189

. calling the following procedure from an activity, during its very first
execution (cf. 8 in the description above) and before its first passivation;

procedure claim (n); value n; integer n;
begin array a (1:n); end;

Example 1 of activity shows the use of the procedure.

Example 2:
begin integer i, j; <*monitor block*>

procedure p (n, m);

integer n, m;

begin integer s, t;

.. <*activity mode*>
s:=2; t:=3;

‘ passivate;

end;

procedure q(x, Y, 2);
value x, y, z; real x, y, z;
begin integer k, (;
...<*activity mode*>

k:=b; 1:=5;

passivate;

end;

<*neutral mode*>

activity (5);

<*monitor mode*>

for i:=1, 2 do

new_activity (i, 0, p, i, j);

for i:= 3, 4, 5, do
. new_activity (i, 3, q, 0, 0, 0);

In this example, 5 activities are created and initialized. Activity no. 1 and
2 are both started with the procedure p. The virtual activities no. 3, 4,
and 5 are all started with the procedure q. In the figure above is shown
the contents of stack and virtual storage after initialization of activity no.
5.

Note that activity no. 1 and 2 via name parameter work on common
variables. Note also, that the virtual record of activity no. 5 is empty,
because the stack is still in memory.

2. Procedure Descriptions, newactivity

Page 190 ALGOLS, User’s Guide, Part 2

2. Procedure Descriptions, newactivity

ALGOLS, User’s Guide, Part 2 Page 191

2.101 newsort

This standard procedure creates a zone record in memory which is to
take part in a sorting process. The contents of the record is initially
undefined, but the user is supposed to assign values to the record
variables before next call of any sorting procedure. The so defined
record becomes an active record in the sorting process (see procedure
outsort).

Call:

newsort (z, key) or newsort (z)

z (call and return value, zone). The name of the
record created.
key (call value, integer procedure or empty). The

name of a procedure for comparison of two
records (see below).

The key parameter is omitted if standard
sequencing is used (see procedure startsorté6).

Zone state:

The zone state must be 9, in sort, i.e. startsort6 (or initsort) must have
been called. The state is not changed by the procedure.

Sequencing:

The integer procedure key is supplied by the user, when a non-standard
sequencing is wanted. It determines which of two records is to appear
first in a sorted string of records:

Call:

key (recordl, record?)

recordl, record?, (call values, arrays). The name of
two records to be compared.
key (return value, integer). The result

of comparison of recordl and
record2. This return value must
adhere to the following rules,
recordl before record2: key < 0
recordl after record2 : key > 0
sequence unimportant : key = 0

Example 1:

2. Procedure Descriptions, newsort

Page 192 ALGOLS, User’s Guide, Part 2

This is an example of a key procedure which can be used to sort a ‘
number of records of length 10 double words on ascending number of
identical double words within a single record.

integer procdure mostequals(v, W);
real array v, W ;
begin
integer procedure equals(x);
real array X ;
begin
integer count, i, j, k;
real z;
count:= 0;
for i:= 1, i+1 while i<= 10 and count < { do
begin
z:= x(i); k:= 1;
for j:= i + 1 step 1 until 10 do
if z = x(j) then k:= k + 1;
if k > count then count := k;
end; "I.’
equals:= count
end equals;

mostequals:= equals(v) - equals(w)
end mostequals;

Note that the structure of a record (for instance the record length) is
supposed to be known to the procedure as global information (for
instance by certain values of certain fields in the record).

Example 2:

100 records of length 10 double words per record are stored in array
B(1:100,1:10). These records are to be sorted on ascending number of
equal double words within a single record. Therefore, the key procedure
of Example 1 is used.

begin "I'

zone 2(1199,1,sorterror);
<*buffer length as required by initsort*>
integer i, j;
initsort(z, 10);
for i:= 1 step 1 until 100 do
begin
newsort(z, mostequals);
for j:= 1 step 1 until 10 do z(j):= B(i,j)
end;
for i:= 1 step 1 until 100 do
begin
outsort(z, mostequals);
for j:= 1 step 1 until 10 do B(i, j):= z(])
end
el 1;

Example 3: .

2. Procedure Descriptions, newsort

ALGOLS, User’s Guide, Part 2

begin

zone 2(1022,1,sorterror);
<*buffer length as required by startsorté*>
integer i, j;
integer array keys(1:2, 1:2);
keys(1,1):= 4; keys(1,2):= &;
keys(2,1):=-4; keys(2,2):=20;

<* definition of sequencing, see startsorté*>
startsorté(z, keys, 2, 40);
for i:= 1 step 1 until 100 do
begin

newsort(z);

for j:= 1 step 1 until 10 do z(j):= B(i, })
end;
for i:= 1 step 1 until 100 do
begin

outsort(z);

for j:= 1 step 1 until 10 do B(i,j):= z(j)
end

end;

Page 193

Same as Example 2, but now the sorting is on ascending double word
one followed by descending double word five (standard sequencing).

2. Procedure Descriptions, newsort

Page 194

ALGOLS, User’s Guide, Part 2

2.102 not (-,)

This delimiter, which is a monadic logical operator, yields the logical
negation of the operand.

Syntax:

not <operand> or -, <operand>
Priority: 6

Operand type:

boolean
®

Result type:
boolean

Semantic:

The negation of a boolean gives the result false if the boolean is true
and the result true if the boolean is false.

Example

1: not b

not (a=2)

not (not p) is equivalent to p

not (p and q) is equivalent to not p or not q

not (p or q) is equivalent to not p and not q

not p or q is equivalent to p => q '

2. Procedure Descriptions, not (-,)

ALGOLS, User’s Guide, Part 2 Page 195

2.103 not equal (< >)

This delimiter, which is a relational operator, gives the value true or
false.

Syntax:

<operandl> <> <operand2>
Priority: 5

Operand types:

integer, long, or real.

Result type:
always boolean.

Semantic:

The relation takes on the value true whenever the bitpattern of the two
operands are equal, otherwise false.

The relation is performed as a bit by bit comparison of the two operands
(after a possible type conversion whenever the operands are of different

types).

Example 1:

o ¢ d o

if m <> idle then ... else ...
while empty <> full do ...

2. Procedure Descriptions, not equal (< >)

Page 196

ALGOLS, User’s Guide, Part 2

2.104 open

This standard procedure connects a document to a given zone in such a
way that the zone may be used for input/output with the high level zone
procedures.

Call:
open (z, modekind, doc, giveup)

z (call and return value, zone). After return, z
describes the document.

modekind (call value, integer. Mode shift 12 + kind. See
below.

doc (call value, string or any type array i.e.
boolean, integer, real, long, double real,
complex). A text string or an array containing
a text, specifying the name of the document as
required by the monitor, i.e. a small letter
followed by a maximum of 10 small letters or
digits.

giveup (call value, integer). Used in connection with
the checking of a transfer. See below.

Doc:

The call value, doc, may be either

- a string variable or a string expression

- a long variable or a long expression

- any type array (boolean, integer, long, real, zone record).

In case of an array, it is supposed to contain text, packed as text
portions, i.e. 6 characters to a double word, 3 to a word.

In case of a string or a long variable or expression, it is supposed to
contain either a string point or a text portion.

The name is inserted as the process name of the zone.

Note: the name will not cleared by a call of close, only by another call of
open or setzone (set zone6).

Modekind:

Specifies the kind of the document (terminal, backing storage, magnetic
tape, etc.) and the mode in which it should be operated (even parity,
odd parity, etc.).

The kind of the document tells the input/output procedures how error
conditions are to be handled, how the device should be positioned, etc.
This kind has nothing to do with the kind mentioned in (1). As a rule,
the procedures do not care for the actual physical kind of the document,
but disagreements may give rise to bad answers from the document. If
you, for example, open a backing storage area with a kind specifying
printer, and later attempt to output via the zone, the backing storage

2. Procedure Descriptions, open

ALGOLS, User’s Guide, Part 2

Page 197

area will reject the message because the document was initialized as
required by printer.

If kind is not one of the numbers 0,2,4,...,20 an alarm occurs.
Mode may be anything as far as the procedure open is concerned.
Below table gives a brief overview of the systems present interpretation

of mode and kind combinations. For further details, you should consult

the manual belonging to the proper external process.

Kind:

0
2

Name of process and interpretation of mode:

internal process

any mode

interval clock process

mode = 0: time interval is specified in
seconds

mode = 2: time interval is specified in 0,1
millisecs.

mode = 4: time interval in seconds specifies
a clock value

mode = 6: time interval in 0.1 millisecs.
specifies a clock value

backing storage area

IDA801 RC834X Storage Modules:

output mode:

mode = 1: read after write to correct
correctable errors

input mode:

none

Other Disc Storage Modules:

mode = 0, specifies full error recovery.

mode = 2, specifies suppression of automatic error
recovery. Will override mode = 4.

mode = 4, specifies limited error recovery on parity errors
occuring at an input operation.

disc process

IDA801 - RC834X Disc Storage Modules: output mode:
mode = 1: read after write to correct correctable errors
input mode:

none

Other Disc Storage Modules:

mode = 0: i/o operations concern the data part of
segments, full error recovery.

mode = 1: i/o operation concern the address part of
segments, full err »r recovery.

mode = 2: suppression of automatic error recovery,
override mode =4

mode = 3: mode 1 + mode 2

2. Procedure Descriptions, open

Page 198

10

12

14

16

2. Procedure Descriptions, open

ALGOLS, User’s Guide, Part 2

mode = 4: limited error recovery on parity error at input
mode = §: mode 1 + mode 4

terminals

CSP terminals, see ref. [25], other terminals: input modes:
mode = 0, intended for conversational operation by means

of keyboard cf. (3)

mode = 2, paper tape input from teleterminal, ISO
characters in even parity.

mode = 4, paper tape input from teleterminal, no parity.

mode = 8, as mode = 0, except the input is invisible i.e.
the characters are rubbed out on the screen.

output modes:

mode = 0, normal text mode i.e. 7 bit ISO characters,
with or without parity..

mode = 2, transparent text mode i.e. 7 bit ISO
characters, even parity.

mode = 4, transparent output mode i.e. 8 bit characters, no
parity.

paper tape reader

mode = 0, odd parity.

mode = 2, even parity.

mode = 4, no parity.

mode = 6, flexowriter to ISO conversion.

paper tape punch

mode = 0, odd parity

mode = 2, even parity

mode = 4, no parity

mode = 6, ISO to flexowriter conversion.

mode = 8§, even parity (< 10> implies <13> <10>
<127>).

_ line printer

CSP printers, see ref. [25], other printers:

mode = 0, the answer is returned when the transmitted
block has been written.

mode = 2, the answer is returned when the transmitted
block has been received.

mode = 4, the block is supposed to contain formatted data,
cf. (3).

card reader

mode = 0, punched binary.

mode = 10, punched decimal with conversion.

mode = 64, mark sense binary.

mode = 74, mark sense decimal with conversion.

mode = 256, basic cards.

See [3] for further information.

ALGOLS, User’s Guide, Part 2

18

Page 199

magnetic tape
modekind is:
mode shift 12 + 18

where
mode =

bgl shift 9 + speed shift 7 + trail shift 4 + density shift 2 +
parity shift 1

bgl = block gap length, values 0, 1 ,0:s8td, 1: long

speed . - 0, 1 , 0: low, 1 : high

trail cf. ref. (13 , - 0, .., 7

density eond recording , - RC9000-10 : 0, ..., 3, cf. below
- RC8000 : 0,1 cf. below

parity - 0, 1 , 0 :o0dd, 1: even

RC9255 9 Track Streamer Unit

block gap length : unused

speed : unused, automatic selection
between 25/75 ips

trail : only output, specifies that the

last n (<7) characters from the
output area are not to be output

density : 0 : 6250 bpi GCR
2 : 3200 bpi DDPE
parity : unused, always odd

RC9250 9 Track Streamer Unit

block gap length unused

speed unused, automatic
selection between 50/100 ips
trail : as for RC9255
density : 0 : 6250 bpi GCR
1 : 1600 bpi PE
2 : 3200 bpi DDPE
parity : unused, always odd

RC8344 9 Track Streamer Unit

block gap length : the values of std and long depend on
the speed, the density and streaming or
start/stop

speed : low : 25 ips
high : 75 ips

trail : as for RC9255

density : 0 : 6250 bpi GCR
1 : 1600 bpi PE

.

parity unused, always odd

RC8343 9 Track Streamer Unit
block gap length : the values of std and long depend on

the speed, the density and streaming or
start/stop

2. Procedure Descriptions, open

Page 200 ALGOLS, User’s Guide, Part 2

speed : low : 12.5 ips low dens. / .
25 ips high dens.

high : 100 ips low dens. /
50 ips high dens.

trail : as for RC9255

density : 0 : 3200 bpi DDPE
1 : 1600 bpi PE

parity : unused, always odd

RC3715 9 Track Tape Unit

block gap length s unused
speed : unused, always 45 ips
trail : as for RC9255 when controlled by IDA801,

else n < 5, the last n characters from
the last double word are not output

density : 0 : 1600 bpi PE
1 : 800 bpi NRZ
parity : unused, always odd

RC Streaming Casette Tape

mode 0 simulated MT
mode 1 fixed blocklength of 512 characters

For further information see [3].

RC3625/26 Casette Tape Unit

mode =

SLEN shift 20 + ECMA shift 19 + T shift 16 + dens shift 2
parity shift 1

ECMA 1 for ECMA version 1 (read only),
0 otherwise.

0, normal

1, slew mode

SLEW

T see description of 9-track tape.

dens = 1, = 4, 800 bpi NRZ
parity = 0, odd

Common for kind 18

If you use T <> 0 during output you should set the word defect bit (1
shift 7) and the stopped bit (1 shift 8) in your give up mask and after a
check of halfwords transferred simply ignore the bit in your block
procedure.

Initialization of a document

Open prepares the later use of the document according to kind:

Internal process, interval clock process, backing storage area, disc
process, terminal:

2. Procedure Descriptions, open

ALGOLS, User’s Guide, Part 2 Page 201

Nothing is done. When a transfer is checked later, the necessary
initialisation is performed.

Paper tape, card reader:
First, open checks to see whether the reader is reserved by another
process. If it is, the parent receives the message

wait for <name of document>

and open waits until the reader is free. Second, open initialises the
reader and empties it. Third, open initialises the reader again (in order
to start reading in lower case), sends a parent message asking for the
reader to be loaded, and waits until the first character is available.

Paper tape punch, line printer:
Open attempts to reserve the document for the job, but the result of the
reservation is neglected.

Magnetic tape:
If the tape is not mounted, a parent message is sent requesting the tape
to be mounted. The message is sent without wait indication (see (7)).

Some of these rules have been introduced to remedy a possible absence
of an advanced operating system, like BOSS.

Giveup:

The parameter giveup is a mask of 24 bits which will be compared to the
logical status word (15) each time a transfer is checked. If the logical
status word contains a one in a bit where giveup has a one, the standard
action for that error is skipped and the block procedure is called instead
(the block procedure is also called if a hard error is detected during the
checking).

The bit 1 shift 9 in giveup has a special meaning:

If the zone is opened with this bit set to one, and the program is in
activity mode, then an implicit passivate statement is executed in the run
time systems check routine and in monitor (18 ...) making concurrent
i/o transfers possible in a program containing corotines. For further
informa tion cf. (19).

The bit 1 shift 10 in give up has a special meaning, too: If the zone is
opened with the bit set to one, and the zone is in any other state than 4
(after declaration, after close) or 9 (in sorting) when the block declaring
the zone is left again, then the block procedure is called.

Zone state:

The zone must be in state 4, after declaration. The state becomes
positioned after open (ready for input/output) except for magnetic
tapes, where setposition must be called prior to a call of an input/output
procedure.

The entire buffer area of z is divided evenly among the shares and if the
document is a backing storage area, the share length is made a multiple
of 512 halfwords. If this cannot be done without using a share length of
0, the zone state becomes "after open with buflength error" (64) or

2. Procedure Descriptions, open

ALGOLS, User’s Guide, Part 2

"open on magtape with buflength error” (64 +8). ‘
If any input/output procedure is called with the zone in that state, a run

time alarm, zone state, terminates the program.

The logical position becomes just before the first element of block 0, file

0.

Example 1:
The normal usage of a tape reader named ’reader’ goes like this:

begin zone z2(4*21*512*2,2,stderror);
open(z,18,<:mtdp0001:>,0);
read(z,...);...
close(z, true);

end;

If you replaced stderror with the procedure ’list’:

procedure list(z,s,b); .
zZone z; integer s,b;
write(out,<:<10>:>,s,b);

and called open with 1 shift 1 instead of 0, the block procedure would be
activated after each tape transfer and you would get a complete log of
the actions of the tape. (The procedure ’list’ should print in a better way
to be really useful).

Example 2:

Assume you need two magnetic tapes in a job. Then the best
communication with the operating system is obtained in this way:

open(21,18, <:mtdp1706:>,0);
open(z2,18, <:mtdp1712:>,0);
setposition(z1,1,0); setposition(2z2,1,0);

If none of the tapes are mounted, the operating system may get the .
messages:

message <proc> mount mtdp1706
(caused by open(z1,...))
message <proc> mount mtdp1707
(caused by open(z2,...))
pause <proc> mount mtdp1706
(caused by setposition(zi...))

and the job is stopped by the operating system until the tape waited for
has been mounted.

Example 3:
Nearly all document names will be supplied as data to the algol program

and in many cases the kind and mode are given as data too. A
convenient way of doing this is to use the following syntax of the data: .

2. Procedure Descriptions, open

ALGOLS, User’s Guide, Part 2 Page 203

. <kind and mode> <document name> <possibly a fileno>

Kind and mode are represented as the mnemonic code of the fp-utility
program ’set’. The algol program may then look like this:

begin
boolean procedure openvar(z,giveup);
zone z; integer giveup;
begin array text(1:3); integer i,j;
openvar:= true; j:= 0;
readstring(in,text,1);
for i:= 1 step 1 until 17 do
if text(1) = real(case i of
(<:ip:>,<:bs:>, <:tuw:>,<:tro:>,<:tre:>,...))
then j:= i;

if readstring(in,text,1) > 2 or j = 0 then
openvar:= false
. else
open(z,case j of(0,4,8,10,2 shift 12 + 10,...),
text, giveup);
if j > 15 then <*magnetic tape*>
begin read(in,i);
setposition(z,i,0)
end;
end openvar;
begin zone master, trans,new(256*2,2,stderror);
if -,(openvar(master,0) and
openvar(trans,0) and
openvar(new,0)) then dataerror
else
begin
inrec6(master,ml); inrec6(trans,t1);...

2. Procedure Descriptions, open

Page 204 ALGOLS, User’s Guide, Part 2

2.105 openinout

This standard procedure changes the buffer size and the sizes and
locations of the shares of the zones in a zone array, making it ready for
record input/output by the procedure inoutrec.

Call:
openinout (za, inputzone)

za (call and return value, zone array). The
buffersize and the sizes and locations of the
shares in the zone array are changed for all
the zones in the zone array, making it ready
for record in/output by the procedure
inoutrec. The number of zones in the array .
must exceed 1, of course, and the number of
shares in each zone must be the same for all
zones.

inputzone (call value, integer, long or real). The zone
za (inputzone) is selected as input zone,
leaving all the others as outputzones. The
value of input zone must be in the interval
1,2,...no of zomnes.

Zone state:

The zone states of all zones in the array must be 0 or 8, opened or
opened on magtape, or 64+0, 64+8, meaning opened with buflength
error or opened on magtape with buflength error, cf. getzone6. The zone

state of each zone will become 32, or 32+8 if magtape and not
positioned, i.e. ready for inoutrec, maybe after setposition. In each zone,

then, only setposition may have been called since the lastest call of open.

For magnetic tape, no positionoperation may still be pending (cf. .
setposition) or a share state alarm oc curs. A possible pending position
operation may be claimed by the call check (za(index)).

The entire buffer area of the zone array is collected as one contigous
storage space, locating all share descriptors in the top of the area. The
entire buffer area is divided in no of shares * 2+ 1 buffer areas of length
equal to the zone buffer area of the first zone in the array, the desired
blocklength, (cf. buflengthio). If the document connected to any zone is
a backing storage area or a disk, the length is made a multiple of 512
halfwords. If this cannot be done without using a buffer area length of
zero, the buflength error bit, 64, is added to the zone state of all zones.

Blocking:

The entire buffer area of all the zones in the array is collected as one
contigous storage space, moving all share descriptors to the top of the

area.

The entire buffer area is divided in no of shares x 2+1 buffer areas of .

2. Procedure Descriptions, openinout

ALGOLS, User’s Guide, Part 2 Page 205

the desired blocklength, cf. above.

The buffer area described in each zone becomes the entire buffer area,
while the record description is unchanged (no record) and the logical
position of the document stay unchanged.

the first share of all zones becomes used share and will describe the first
buffer area.

The next shares in the input zone will describe the next buffer areas in
sequence, and common to all the output zones the next shares will
describe the buffer areas succeeding the input buffer areas, also in
sequence.

Assume that each zone has 3 shares, one input zone, two output zones:

input zone: outputzone 1, 2

share(1l) share(l) share(l)

share(2)

share(3)

share(2) share(2)

share(3) share(3)

Free param, partial word:

The procedure, together with inoutrec/changerecio, expellinout and
closeinout, makes special use of the fields "free param" and "partial
word" in each zone descriptor of the zone array. The procedure
openinout will set "free param” of all zones to point to the input zone,
and "partial word" in each zone will contain its own index in the zone
array. The procedure expellinout will change the value in partial word to
the address of the zone itself, and the procedure closeinout will
reinitialize "free param" and "partial word" in all zones with the values 0
and 1, resp.

Example 1:

See Example 1 of inoutrec.

2. Procedure Descriptions, openinout

Page 206

ALGOLS, User’s Guide, Part 2

2.106 opentrans

This standard procedure outputs a transaction head of a format 8000
transaction, and initiates a zone for character writing. Opentrans may be
regarded as the reverse operation of waittrans. Note, that no waiting
takes place.

Call:

opentrans (z, format, destination, auxl, aux2)

z (call and return value, zone). Specifies
the document to which transactions are
transferred.

format (call value, integer). Defines the format

of the transaction to be sent:

: read modified format

: short read format

: write format

read buffer format

: read status format

connect format

destination (call value, integer). Designates the
receiver of the transaction, i.e. display
terminal, computer, or RC8000 application.

auxl (call value, integer). Depending on the
format of the transaction, auxl specifies
the attention type, write command code, or
is not used.

aux?2 (call value, integer). Depending on the
format of the transaction, aux2 specifies
the cursorposition, write control
character, or is not used.

AUV WN -

Note that in communication with display terminals, only format 3 (write
format) makes sense, while the other formats may be sent to computers
or other RC8000 applications.

For further details about format, aux1, and aux2 see waittrans.

Zone state:

The zone must be open and ready for opentrans (state 0 or 13), i.e. since
the latest call of open, setposition, or closetrans. The state becomes 3,
i.e. the zone is ready for character output by means of the procedures
writefield, write, outtext, etc.

2. Procedure Descriptions, opentrans

ALGOLS, User’s Guide, Part 2 Page 207

See Example 1 of inoutrec.

2. Procedure Descriptions, openinout

Page 208

ALGOLS, User's Guide, Part 2

2.107 openvirtual

This standard procedure closes the present virtual storage connected the
program, writing back present values of owns, common blocks (in
FORTRAN programs), context blocks and stack pictures of virtual
activities before it connects a backing storage area to the calling
program as a virtual storage according to the description in (15).

Call:
openvirtual (filename)

filename (call value, string). A text string specifying
the name of the backing storage area to be used
as virtual storage.
The program file itself is used as virtual
storage in case of the empty string.

The procedure must not be called within a context block. For further
information, [15].

Note 1:

The structure of own variables and context blocks in the calling program
must be exactly the same as in the program file specified by filename.
Remember in this connection also the own variables included into the
program by external procedures (see Example 1). The following algol
standard procedures and those with the following names as document
names are using own variables:

activity
closetrans
fpproc
read
write

Note 2:

If in an ALGOL or FORTRAN program containing DATA statements
or zone common blocks in the main program or in any subroutine,
openvirtual is called at a time when the present virtual storage is the
program file itself, it must be retranslated before another startup.
Explanation: At program startup, DATA and ZONE initialization of
COMMON variables is activated as code allocated in the COMMON
block area of the program file. If openvirtual has written back the values
from the common blocks, this code is destroyed. In this case the
procedure ‘virtual’ should be used.

Example 1:

2. Procedure Descriptions, openvirtuel

ALGOLS, User’s Guide, Part 2 Page 209

' When two programs are using the same virtual storage, the following
procedure could be declared in the outermost block of each program, to
avoid confusion in the structure of own variables. Notice, that only one
of the procedures sharing the same document name, and thus the same
owns, need be included in the list.

procedure insert_owns;
if false then
begin integer i;
<*the following list must contain a call of all external procedures using
own variables. The procedure is never called*>,
read(in,i);
write(out,i);

end insert_owns;

2. Procedure Descriptions, openvirtuel

ALGOLS, User’s Guide, Part 2

2.108 or (and !)

This delimiter, which is a logical operator, yields the logical or (logical
sum) of the two operands.

Syntax:
(or)
<operandl> () <operand2>
)
Priority: 8
Operand types: .
boolean
Result type:
boolean
Semantic:

The logical sum of the two operands is evaluated. The logical sum is
performed bit by bit in parallel on the twelve bits of the two operands.
The truth value of the result pattern, when used in conditional or
repetitive statements, is determined by the last (rightmost) bit in the
pattern (0=false, 1=true).

Example 1: ‘
Input checking of number range:

if a < 10 or a > 100 then error;

Example 2:

until found or i>10;

2. Procedure Descriptions, or (and !)

ALGOLS, User’s Guide, Part 2 Page 211

2.109 out

This standard identifier is a preopened zone variable for output on
character level. The actual file connected to the zone is the current
output file of the file processor. Out must be left in a state ready for
output of characters when the run is terminated.

Example 1:

An FP source file containing

p = algol :
begin write(out,12,<:a:>) end
o f47 ; select f47 as current output,
; see ref. 6.
P ; execute
. [4] ; execute
oc ; terminate the use of 47

will generate the following text in the file f47:

12a
end 7
12a
end 7

2. Procedure Descriptions, out

Page 212 ALGOLS, User’s Guide, Part 2

2.110 outchar

This standard procedure prints one single character on a document.

Call:

outchar (z, i)

z (call and return value, zone). Specifies the
document, the buffering, and the position of the
document.

i (call value, integer). The last 8 bits of the

integer are printed as a character.

Zone state:
®

As for write.

Blocking:

As for write.

Example 1:

outchar (z, 12 <*ff*>);

outchar (z, 'nl’');

outchar (z, a); <*the character with the IS0

value of the variable a*>
outchar (z, 'a'); <*the character a*>

Example 2: .
See Example 1 of readchar.

2. Procedure Descriptions, outchar

ALGOLS, User’s Guide, Part 2 Page 213

2.111 outdate

This standard procedure prints a date on a document.

Call:

outdate (z, i)

z (call and return value, zone). Specifies the
document, the buffering, and the position of the
document.

i (call value, integer). The value of the integer

specifies day, month, and year according to the
formula day*100 00 + month*100 + year.

The procedure prints the date in the following fixed format
<day>.<month>.<year>

where the three fields consist each of 2 digits. No check is performed to
assure that the date makes sense.

The current value of date is easily determined by the standard
procedure systime.
Zone state:

As for write.

Example 1:

The procedure can, of cause, also print an ISO date in the format
<year>,<month>.<day>

e.g., the call

outdate (2, round systime (5, 0, 0.0));

will print the current date.

2. Procedure Descriptions, outdate

Page 214 ALGOLS, User’s Guide, Part 2

2.112 outindex

This integer standard identifier is used by all character printing
procedures, when a non-standard alphabet is selected. See outtable.

The default value of outindex is 0.

2. Procedure Descriptions, outindex

ALGOLS, User’s Guide, Part 2 Page 215

2.113 outinteger

This standard procedure prints an integer or a long with a specified
number of the last digits preceded by a decimal point. The number may
be preceded by a larger number of spaces than a usual layout. The
procedure is especially designed to print amounts of currency.

Call:
outinteger (z, pos, dec, amount)

z (call and return value, zone). Specifies the
document, the buffering, and the position of
the document.

pos (call value, integer). The absolute value of
pos specifies the total number of character
positions to be printed. pos should be inside

the range:
abs (pos) <= 132.
dec (call value, integer). Specifies the number of

digits after the decimal point. dec should be
inside the range:
0 <= dec <= min (abs (pos)-3, 15)

amount (call value, integer or long). The integer or
long to be printed.

The procedure prints an integer or a long with a specific number of
characters as given by the absolute value of the prameter pos. If pos is
nega tive and amount = 0 then a number of spaces equal to the absolute
value of pos is printed. If pos is outside the allowed range, the procedure
will output 132 characters.

Positive values of amount are printed without a sign whereas a negative
amount is preceded by a minus sign. Character positions not occupied
by digits and a possible sign and/or decimal point are converted to
spaces in front of the integer.

An integer is always printed correctly even if the number of character
positions is not adequate.

Zone state:

As for write.

Blocking:

As for write.

2. Procedure Descriptions, outinteger

Page 216 ALGOLS, User’s Guide, Part 2

Example 1: .
The program

| begin
| long a;
| for a:= 123456789,
1111100,
0:
12345678901234 do
begin
outchar (out, ’:’);
outinteger (out, -12, 2, a);
outchar (out, ’:’);
outchar (out, ’nl’);
end;
end

will print the following text on current output: .

1234567.89:
11111.00:

£123456789012.34:

2. Procedure Descriptions, outinteger

ALGOLS, User’s Guide, Part 2

Page 217

2.114 outrec

This integer standard procedure is the ALGOL S version of outrec6. A
document may be filled sequentially by means of outrec, because the
next call of outrec will create a record which is transferred to the next
elements of the document.

Call:

outrec (z, length)

outrec

length

(return value, integer). The number of
elements, of 4 halfwords each, available for
further calls of outrec before change of block
takes places.

(call and return value, zone). The name of a
record. Determines further the document, the
buffering, and the position of the document
(15).

(call value, integer, long or real). The
number of elements, of 4 halfwords each in the
new record. Length must be >= 0.

For further description see outrec6.

Outrec, instead of outrec6, may be used with advantage when the
document is considered to contain reals.

Example 1: Storing a matrix on backing storage

An n*n-matrix m may be output row by row to a backing storage area
f13 in this way:

begin zone save((n+127)//128%128*2,2,stderror);
open(save,4,<:f13:>,0);
for i:= 1 step 1 until n do

begin

outrec(save,n);
for j:= 1 step 1 until n do save(j):= m(i,j);

end;

close(save, false)

end;

The zone declaration assures that the rows later may be read one by one
and used directly.

2. Procedure Descriptions, outrec

Page 218

ALGOLS, User’s Guide, Part 2

2.115 outrec6

This integer standard procedure creates a zone record which later will
be transferred to a document. The contents of the record are initially
undefined but the user is supposed to assign values to the record. The
document may be filled sequentially by means of outrec6 because the
next call of outrect will create a record which is transferred to the next
halfwords of the document.

Call:
outrecé (z, length)

outrecé (return value, integer). The number of
halfwords available for further calls of
outrecbé before change of block takes place.

z (call and return value, zone). The name of a
record. Determines further the document, the
buffering, and the position of the document
(15).

length (call value, integer, long or real). The
number of halfwords in the new record. Length
must be >=0. If length is odd, 1 is added.

Zone state:

The zone z must be open and ready for record output (state 0 or 6; see
getzone), i.e. the zone must only have been used for record output since
the latest call of open or setposition. To make sense, the document
should be an internal process, a disc process. a backing storage area, a
terminal, a line printer, a punch, a plotter, or a magnetic tape. In the
latter case setposition (z,...) must have been called after open (z,...).

Blocking:

Outrec6 may be thought of as transferring the record to the halfwords
just after the current logical position of the document and moving the
logical position to just after the last halfword of the record. The user is
supposed to store information in the record before outrect is called
again.

Because the output is blocked, the actual transfer to the document is
delayed until the block is changed or until close or setposition is called.
The full record goes into the same block, so if the block cannot hold a
record of the length at tempted, the block is changed in this way:

1. Documents with fixed block length (backing storage): The
remaining halfwords of the share are filled with binary zeroes, and
the total share is output . s one block.

2. Documents with variable block length (all others): Only the part of
the share actually used for records is output as a block.

2. Procedure Descriptions, outrec6

ALGOLS, User’s Guide, Part 2 Page 219

The transfer is checked as described in (15). The record becomes the
first halfwords of the next share, but if the record still is too long, an
alarm occurs.

A record length of 0 is handled as for inrec6.

Example 1: records of variable length

Records of variable length, with the length stored as the first word of the
record, are output like this:

open(z,...); setposition(z,...);
repeat
..... :<*compute length*>
outrec6(z, length);
z.first_word:= length;

close(z,true);

Compare this with Example 1 of changerec6. The version here may be a
little bit faster.

2. Procedure Descriptions, outrec6

Page 220 ALGOLS, User’s Guide, Part 2

2.116 outsort

This standard procedure makes available a zone record which is the
winner of the active records in the zone. The user is supposed to move
this record away from the zone before next call of any sorting procedure.

Calk

outsort (z, key)

or

outsort(z)

z (call and return value, zone). The name of the
selected record.

key (call value, integer procedure or empty). The
name of a procedure for comparison of two
records (see procedure newsort). ‘

The key parameter is omitted if standard sequencing is used (see
procedure startsort6).

Record selection:

The zone record made available by outsort is selected among the active
records in the zone z.

The record selected is the one which, according to the sequencing
mechanism (procedure key or standard sequencing), is the first record
in a string of sorted active records in the zone (the winner).

The status of the selected record is changed from active to nonexisting.
Zone state:

As for newsort.

Example 1:

See Example 1 of newsort for a user specified key procedure.

Example 2:

See Example 2 of newsort.

Example 3:

See Example 3 of newsort.

2. Procedure Descriptions, outsort

ALGOLS, User’s Guide, Part 2 Page 221

Example 4:

Merging of k sorted input files into one output file. The input files are
stored on k magnetic tapes. The record length is one double word, and
end of file is signalled by reading end of file mark. Input is read via zone
array x (k, buflength, shares, endpr), and output is written via zone
y(buflength, shares, endpr). Sequencing is on ascending longs.

begin

zone z((k+1)*((6+2)//4)+3+6, 1, sorterror);
<*sorterror: see startsorté*>

zone array x(k, buflength, shares, endpr);
zone y(buflength, shares, endpr);
long field Lf; integer field no;
integer n, i;
integer array key(1:1, 1:2);

procedure endpr(z, s, b); zone z; integer s, b;

begin
if s shift (-16) extract 1 = 1 then
begin
n:=n - 1; goto loop
end
else stderror(z, s, b);
end;

key(1,1):= 3; key(1,2):= 4;
startsorté (z, key, 1, 6);
for i:= 1 step 1 until k do
open(x(i), 18, string tape(i), 1 shift 16);
open(y, 18, string tape(k+1), 0);
for i:= 1 step 1 until k do
setposition (x(i), 1, 0);
setposition (y, 1, 0);
ln:= 4; no:= 6;
n:= k;

<*read the first record from each input file.

The block procedure assumes at least one record in each file*>
for i:= 1 step until k do
begin

inrec6(x(i), 4); newsort(z);

z.lf:= x(i).lf;

z.no:= i;
end;
loop:
if n <> 0 then
begin

outsort(z); outrecb(y,é);
y.lf:= z.Lf;

i:= z.no;

inrec6(x(i),4); newsort(z);
z.lf:= x(i).lf;

z.no:= i;
goto loop;
end;

2. Procedure Descriptions, outsort

Page 222 ALGOLS, User’s Guide, Part 2

stop: o

close (y,true);
for i:= 1 step 1 until k do close (x(i),true);
end;

2. Procedure Descriptions, outsort

ALGOLS, User’s Guide, Part 2 Page 223

2.117 outtable

This standard procedure exchanges the current output alphabet used by
all the write procedures on character level (write, outchar, outtext etc).

Calk:

outtable (alpha)
or
outtable (0)

alpha (call value, integer array of one dimension).
Contains the character value of each character
in the new output alphabet, as described below.

0 (call value, integer). A zero signals that the
standard alphabet is to be used.

outtable (alpha):

The actual contents of alpha are used in all calls of character printing
procedures, until another array or the standard alphabet is selected.
This means that any change in the contents of alpha may have effects on
the character printing. If a charater printing procedure is called at a
place where alpha is undeclared, an undefined alphabet is used.

To each character °c’ in the interval lower index to upper index of alpha
the output character value is defined in this way:

converted_char :=~ alpha (¢ + outindex) extract 12
character_class:= alpha (¢ + outindex) shift (-12)

If the character class equals 1, i.e the converted character is a ’shift
character’ the value of converted char is assigned to outindex and the
converted character is looked up again in the alphabet to determine
class and value.

If converted char > 255 or ¢ + outindex is not a legal index in alpha the
character will not appear in the output. The standard integer outindex is
normally 0, but you may use it to modify the alphabet.

The character conversion defined by outtable is performed after a
possible conversion of special characters on account of replace char.

The array may be initialized with the ISO alphabet by a call of isotable.

2. Procedure Descriptions, outtable

Page 224

ALGOLS, User’s Guide, Part 2

2.118 outtext

This standard procedure prints a text stored as text portions in a real
array or a zone record. The procedure prints a specific number of
characters. If the string is shorter, it is supplemented with spaces, and if
it is longer, it is cut.

Call:

outtext (z, pos, ra, i)

z (call and return value, zone). Specifies the
document, the buffering, and the position of the
document.

pos (call value, integer). The absolute value of pos

specifies the total number of character
positions to be printed. Pos should be inside

the range:
abs (pos) <= 132, see below.
ra (call value, real array). The text to be output

is stored in ra(i), ra(i+l), and so on. For
arrays of more dimensions the lexicographical
ordering is used.

i (call value, integer), see ra above.

The procedure prints a number of characters as given by the absolute
value of the parameter pos. If pos is negative a NL character is output
before the counting starts. If pos is outside the allowed range, the
procedure will output 132 characters.

The characters to be printed are supplied from a string of text portions
in a real array or a zone record. The characters are taken from the array
until either the string has been exhausted or the number of characters as
given by pos has been output.

If the text string is exhausted before the wanted number of characters
are printed, ending spaces (see replacechar) are printed as the following
characters.

The string is considered exhausted when the last element of the array
has been printed or when a null character is met.

Zone state:

As for write.

Blocking:

As for write.

2. Procedure Descriptions, outtext

ALGOLS, User’s Guide, Part 2 Page 225

Example 1:

The statements

movestring (ra, 1, <:this is a text:>);
outchar (out, ‘*’);

outtext (out, 20, ra, 1);

outchar (out, ‘*’);

will print the following line on current output:

*thisisa text *

2. Procedure Descriptions, outtext

Page 226 ALGOLS, User’s Guide, Part 2

2.119 outvar

This integer standard procedure is intended for output of variable
length records so that they may be read by means of invar. Outvar
makes an output record ready and fills it from an array of double word
type (or a zone record). The first word of the element with
lexicographical index 1 in the array must contain the length of the
wanted record. The second word in the new record will contain a
checksum.

Call:
outvar (z, a)

outvar (return value, integer). The number of halfwords
available for further calls of outvar before
change of block takes place, exactly as for .
outrecb.

z (call and return value, zone). The name of the
record. Determines further the document, the
buffering, and the position of the document (15)

a (call value, real, long, double real or complex
array or zone record). An array to be copied
into the zone record. The first word of the
element with lexicographical index 1 contains
the number of halfwords to be copied. If the
number is odd, 1 is added.

Zone state:

The zone z must be open and ready for record output (state 0 or 6), i.e.

the zone must only have been used by outvar or the like since the latest

call of open or setposition. The free parameter (see getzone6) in the
zone descriptor is used to count the number of records made by means

of outvar. Usually only backing storage and magnetic tape documents ‘
make sense.

Blocking:

Outvar may be thought of as transferring the data in the array to the
halfwords just after the current logical position of the document and
moving the logical position to just after the transferred elements. The
full record is placed in the same block, so if the present block cannot
hold a record with the attempted length, outvar changes block exactly as
outrect, i.e. on backing storage unused parts are filled with binary nulls,
and on all other documents only the used part is output.

Reco 'd format, checksum:
The record consists of 2 words containing information on the record,

followed by an arbitrary number of words. The record length must not '

2. Procedure Descriptions, outvar

ALGOLS, User’s Guide, Part 2 Page 227

‘ exceed the blocklength.
The 2 first words contain the record length measured in halfwords in the
first word an a checksum in the second word. The value of the checksum
word is chosen so that the sum of all words in the record taken modulo
2**24 is equal to -3.
Note that the call outvar (z,z) produces one record identical to the last
one.

2. Procedure Descriptions, outvar

Page 228 ALGOLS, User’s Guide, Part 2

2.120 overflows

This integer standard identifier determines the action on floating point

overflow:

overflows < 0 The execution is terminated when overflow
occurs.

overflows >= 0 The value of overflows is increased by one when

overflow occurs. The result of the operation
which caused the overflow is 0.

When the execution starts, overflow is -1. A floating point over flow
occurs when a real operation gives a result outside the range of real
variables.

Example 1:

To check whether a real overflow occurred during the evaluation of an
expression, proceed as follows:

overflows:= 0; Evaluate the expression;

if overflows > 0 then
handle the overflow situation;

2. Procedure Descriptions, overflows

ALGOLS, User’s Guide, Part 2 Page 229

2.121 own

This delimiter, which is a declarator, is used to declare own variables of
any type.

Syntax:
own long <namelist>; declares own long variables
own real <namelist>; declares own real variables

own integer <namelist>; declares own integer variables
own boolean <namelist>; declares own boolean variables

Semantic:

Own variables have the same scope as other variables declared in the
same block. Upon reentry into the block, they will, however, have values
which are unchanged from their value at exit from the block. Upon the
first entry into a block, the own variables of that block will have the
binary pattern zero, meaning that own booleans are initially false, own
integers and own longs are initially 0, and own reals contain a pattern
equivalent to real <::>.

If a variable is declared own in the body of a recursively called
procedure or in an activity procedure, the same location is used in all
dynamic incarnations of that procedure.

Note:

In a program using the context procedure openvirtual the number of
own variables in the program and in a non empty data file connected to
the program by openvirtual/virtual must be exactly the same.

Example 1:

If you want to abort a program after 100 calls of an error procedure it
could be done in this way:

procedure error (...);

begin
own integer no_of_err;
no_of_err:= no_of_err + 1;
if no_of_err > 100 then
<*abort action*>
else

2. Procedure Descriptions, own

Page 230 ALGOLS, User’s Guide, Part 2

2.122 passivate

This standard procedure deactivates the executing activity, establishing
its restart point (waiting point).

Call:
passivate

If the program is not in activity mode, the run is terminated with an
alarm. The restart point is defined as the statement following the
passivate statement. Passivate returns to the call of activate (or
newactivity), which entered the current activity, defining the cause = 1
(return values of activate and newactivity). The program is now back in
monitor mode.

Note:

An implicit passivate statement is found in the standard i/o system in
check and monitor (18,...) (cf. description of entry 18 of monitor) This
implicit passivate statement supplies the return value cause = 2 (for
activate and newactivity). Note also that activity termination caused by
runtime alarms and by execution of the final end of an activity, are
regarded as implicit passivate statements, defining return causes -3 and
0 of the corresponding newactivity and activate statements. The
passivate statement will always return to the corresponding
newactivity/activate statement in monitor mode.

Example 1:

See Example 1 of activity.

2. Procedure Descriptions, passivate

ALGOLS, User’s Guide, Part 2 Page 231

2.123 plus (+)

This delimiter which is an arithmetic operator can be used both as a
dyadic and a monadic operator.

1. Dyadic:
Syntax:

<operandl> + <operand2>
Priority: 4

Operand types:

integer, long, or real.

Result type:

<integer> + <integer> is of type integer
<integer> + <long> is of type long
<integer> + <real> is of type real

<long> + <integer> is of type long
<long> + <long> is of type long
<long> + <real> is of type real
<real> + <integer> is of type real
<real> + <long> is of type real
<real> + <real> is of type real
Semantic:

This operator yields the normal arithmetic sum of the expressions
involved.

2. Monadic:
Syntax:

+ <operand>

Priority: 4

Operand types:

integer, long, or real.

2. Procedure Descriptions, plus (+)

Page 232 ALGOLS, User’s Guide, Part 2

Result type: .
+ <integer> is of type integer

+ <long> is of type long

+ <real> isof typereal

Semantic:

This monatic operator yields the value of the operand.

Example 1:
18+9

+ 18+¢c
c+b

2. Procedure Descriptions, plus (+)

ALGOLS, User’s Guide, Part 2 Page 233

2.124 pos

This integer standard procedure searches among characters in an array
for a given substring and returns its first character position, or zero if
the substring is not found.

Call:

pos (sub, arr)
or
pos (sub, arr, startpos)

pos (return value, integer). If the character
substring given in sub is found in arr, pos
is the position of its first character in its
first appearance within arr. If it is not
found, pos is zero.

sub (call value, array of any type or zone
record). The character sequence from
character position no. 1 to the last non zero
character or to the last character position
in sub is searched in arr.

arr (call value, array of any type or zone
record). The characters in arr from character
position no. 1, or from the character
position given in startpos, until the last
non zero character position or until the last
character position are searched for the
substring given in sub. Concerning boolean
arrays, cf, 2.xx, len.

startpos (call value, integer). The parameter is

optional. If given, the search in arr starts
in character position no. startpos.

2. Procedure Descriptions, pos

Page 234 ALGOLS, User’s Guide, Part 2

2,125 priority

Aritmetic and boolean expressions are in principle evaluated from left
to right with addition of the rules of priority given in the sections 3.1.1.
and 3.4.1. (15).

The priorities of the operators listed from high to low priority are

1: abs entier extend long real round string
2: %% add extract shift

3: *» / // mod

4: + -

5: < <= - De= > O

6: not -,

7: and &

8: or !

9: =>

10: ==

An expression included in parentheses is evaluated by itself before its
value is used in subsequent calculations.

Example 1:

The two boolean expressions:

1: entier b ** abs i/15 > 17 and p <= 4
2: ((((entier b) ** (abs i))/15) > 17) and (p<=4)

are equivalent.

Example 2;
The two arithmetic expressions:

1: p/b*c/d/e - a * b/c .
2: ((((p/D)*c)/d)/e) - ((a*b)/c)

are equivalent.

2. Procedure Descriptions, priority

ALGOLS, User’s Guide, Part 2 Page 235

2.126 progmode

This integer standard identifier controls the paging algorithm of the run
time system, in such a way that program (and context data) segments
may be locked in memory. The value of progmode is used only when the
paging algorithm is activated, ie. when a segment requested (called
current segment) is not in memory. The value specifies whether the
current segment should be locked or not. A locked segment will never be
a victim, when the paging algorithm needs space in memory for another
segment, ie. a locked segment will remain in memory. The value of
progmode determines the action as follows:

progmode >0 _ (bitpattern):

1 shift 0: Lockmode is passive, i.e. the current segment is not
locked.

1 shift 1: The current segment (program or context data) is
locked.

1 shift 2: If the current segment is a program segment, it is locked.

1 shift 3: If the current segment is a context data segment, it is
locked.

progmode = 0:

All segments locked are released again, ie. these segments may be
victims again.
progmode < 0:

The latest: abs (progmode) locked segments are released. This number
may be calculated by means of the standard variable: blocksread.

Another (program structure dependent) locking method is described in

procedure lock.
The default value of progmode is 1.

2. Procedure Descriptions, progmode

Page 236 ALGOLS, User’s Guide, Part 2

2.127 progsize

This integer standard identifier holds at any time in the lifetime of an
ALGOL or FORTRAN program the size of the program in segments,
i.e. program segments excluding virtual storage segments (owns/context
data/virtual activity stack pictures/COMMON data blocks/zone

COMMON data blocks), ie. the size of the program right after
translation minus one segment.

Example 1:
See Example 2 of lock.

Example 2:
See Example 3 of lock.

2. Procedure Descriptions, progsize

ALGOLS, User’s Guide, Part 2 Page 237

2.128 random

This real standard procedure computes two pseudo-random numbers, a

real and an integer.

Call:

random (i)

random (return value, real). A pseudo-random number
determined by i. 0 < random < 1.

i (call and return value, integer). At call time
the latest pseudo-random number generated (or a
starting value for the ge neration). At return
the next pesudo-random number. 0 < i < 8 388
587.

Method:

Multiplicative generation with a period of 8 388 586. The starting value

is not critical, because a result of 0 is prevented explicitly in the

procedure.

Example:

A random integer 0 <= p < 99 can be found in this way:

p: = entier (random (i) * 99);

2. Procedure Descriptions, random

Page 238 ALGOLS, User’s Guide, Part 2

2.129 rc8000

This boolean standard identifier is true if the program is executed on
RC8000, otherwise false. Because the value is evaluated at run time, a
binary program may be moved from RC8000 to RC9000-10 (and vice
versa) still maintaining the correct definition of RC8000.

2. Procedure Descriptions, rc8000

ALGOLS, User’s Guide, Part 2 Page 239

2.130 read

This integer standard procedure inputs a sequence of numbers given in
character form on a document or in an array, converts them to algol
values, and assigns them to variables.

Call:
read (z, one or more destination parameters)

read (return value, integer). The absolute value of
read gives number of destination variables to
which numbers were input. If one or more illegal
numbers are read the value of read is negative.

z (call and return value, zone or call value,
array of type boolean, integer, long, real,
double real or complex). In case of a zone it
specifies the document, the buffering, and the
position of the document cf. (15).
In case of an array, it contains the characters
packed 3 to a word starting in the word with
halfword index 1.

destination (return value, integer, long, real, or arrays
of the stated types, zone record or call value,
boolean).
Each parameter is handled according to its type
as follows:

boolean A boolean must be followed by an integer
parameter. The integer value is used as "max
charcount" (cf. below) for the next destination
parameter, i.e. a single destination variable or
the destination variables of an array or a zone
record.
The default value of "max charcount" is
"infinity". If the integer parameter is non
positive, the parameter pair is ignored.

other Read assigns numbers to the destination
allowed parameters from left to right. A simple
types parameter is used as one destination variable.

An array is used as a sequence of destination
variables, and read fills the entire array in
lexicographical order.

Finishing each destination parameter, read
resets "max charcount" to its default.

Syntax of numbers

Read skips all blind characters (class 0, cf. (15). Among the remaining
characters, ’read’ accepts as a number any sequence of numbr
constituents (class 2 to 5) terminated by some other character (class >
5) or by "max charcount" characters having been read, whichever occurs
first. Leading characters of class > 5 are disregarded unless they contain

2. Procedure Descriptions, read

Page 240 ALGOLS, User’s Guide, Part 2

the EM character (see below). If the number constituents fulfil the rules ‘
for algol numbers cf. (14), the number is assigned to a destination
variable. If it is not an algol number or if it exceeds the range of the
destination variable, the greatest positive number of the appropriate
type is assigned instead, and the return value of read becomes negative.

However, the "greatest” negative value of an integer or long variable
cannot be read by the procedure, because a negative number is read as a
positive value and the sign is changed afterwards.

For the same reason, rounding of a negative real value to accomodate a
destination variable of type long or integer will result in the rounded
positive value with a negative sign, i.e. -1.5 becomes - 2.

Terminating reading:

Read scans the document and each time it meets a number (in the sense
defined above) it stores it into the next destination variable. When the
parameter list is exhausted, read returns. The reading stops '
immediately, however, if an EM character is met or, in case of reading

from an array, when the first character after the upper index element is

to be read, whichever occurs first. The following destination variables

are unchanged. In this situation the value of read is useful.

Zone state:

As for readchar.

Blocking:
As for readchar.

Example 1: reading and checking a matrix

An n*n-matrix is recorded on current input as n followed by the matrix .
elements. It may be read in this way with a simple check added:

if read(in,n) < 1 or n > 200 then
goto dataerror;
begin real array matrix(1:n,1:n);
if read(in,matrix) < n*n then goto dataerror;

The matrix might for instance be recorded like this:
3

1.507 -6.017 2.446
-6.017 3.852 0.025

2.336 0.025 -8.170

It will be wise to check that a n'w line terminated the last number. That
is done as follows:

2. Procedure Descriptions, read

ALGOLS, User’s Guide, Part 2 Page 241

‘ repeatchar(in); readchar(in,i);
if i © 'nl’ then
goto dataerror;

2. Procedure Descriptions, read

Page 242 ALGOLS, User’s Guide, Part 2

Example 2: .

The following character sequence represents S numbers as shown:

a- 1.7bcd-12345678 9'60 3+10ee

1 2 3 4 5
If it is input by the call read (z,ij,k,1,s,t), the variables will become:

i,j.k,(integers): grest,2,great(range exceeded)
r,s,t(reals): 9160,great,unchanged(EM met)

Read itself has the value -5.

Example 3:

The following character sequence appears on current input:
123456789012345

When read by the call:

read (in, true, 3, ia)

Where ia is declared integer array ia (1:5), the variables will become:

123, 456, 789, 12 and 345

2. Procedure Descriptions, read

ALGOLS, User’s Guide, Part 2 Page 243

2.131 readall

The integer standard procedure inputs a mixture of numbers in
character form, text strings, and single characters stored on a document
or in an array. These items are stored in an array and their kind is
stored as a code in a parallel array. The procedure is designed for fast
input on character level with possibility for extensive checking of the
input. Readall is often used in combination with intable.

Call:
read_all (z, val, kind, index)

read_all (return value, integer). The number of elements
in val to which items have been assigned. If
read_all terminates because val or kind is
full, the value of read_all is minus number of
elements.

z (call and return value, zone or call value,
array of type boolean, integer, long, real,
double real or complex). In case of a zone, it
specifies the document, the buffering, and the
position of the document cf. (15).

In case of an array, it contains the
characters, packed 3 to a word, starting in the
word with halfword index 1.

val (return value, integer array, long array, or
real array). The items are stored in val
(index), val (index + 1), and so on. For arrays
of more dimensions, the lexicographical
ordering is used.

kind (return value, integer array). The kinds of the
items are stored here, so that kind (i)
describes the contents of val (i).

index (call value, integer). See description of val
above.
Syntax of items:

Readall divides an input string into items in this way:

1. All blind characters are skipped (class 0).

2. A delimiter character (class > = 7) is stored as a single character.

3. A character string starting with a letter (class 6), consisting of
letters and number constituents (class 2 to 6), and terminated by a
delimiter (class > = 7) is stored as a text string. The delimiter is
not a part of the text string.

4. The remaining parts of the input string are stored as numbers in
the way described under read.

In many cases the rules for text strings and numbers are inconvenient. It

will then pay to use an alphabet (see intable) defining most characters as
delimiters of various classes and input one line of characters at a time.

2. Procedure Descriptions, readall

Page 244 ALGOLS, User’s Guide, Part 2

An example of the further handling of the characters is shown in .
Example 2 of readchar.

2. Procedure Descriptions, readall

ALGOLS, User’s Guide, Part 2 Page 245

Storing of items:

1. Blind characters are not stored.

2. A single character is stored in one element:
val (i): = character value; kind (i): = character class.

3. A text string is packed as portions of 6 8-bit characters. The
characters are packed from left to right. A portion is stored in 4
halfwords, i.e. one real or long, or possibly two integers. The
corresponding elements of ’kind’ becomes 6. A null character is
packed after the last character of the text string and the
corresponding portion is filed up with null cha racters. A text
packed in this way is easy to use as a string parameter.

4. A number is stored in one element:
val (i): = converted number;
kind (i): = 2 for a legal number,
kind (i): = 1 for an illegal or syntactically wrong number.

Terminating reading:

Readall returns as soon as a terminator (class 8) has been input and
stored, or in case of reading from an array when the first character after
the upper index element is to be read, whichever occurs first. If val or
kind is filled up before that, readall returns with a negative value. In that
situation, the last character read is not stored. You may get the
character by means of repeatchar, but you cannot expect to continue
reading as if nothing has happened, because readall may have
terminated in the middle of a text string and the next character may be a
digit or a delimiter.

Zone state:

As for readchar.

Blocking:

As for readchar.

Example 1:

A line input by read_all with the standard alphabet to an iteger array
may be printed and ’reshaped’ in this way:

begin
zone 2(...);
integer array ia, kind (1:...);
long array field laf;
integer i, j, n;

n:= readall (z, is, kind, 1);

if n < 0 then
write (out, <:illegal:>)
else

for i:= 1 step 1 until n-1 do

2. Procedure Descriptions, readall

Page 246

ALGOLS, User’s Guide, Part 2

case kind(i) of
begin
<*kind 1*> write (out, <:illegal:>);
<*kind 2*> write (out, <<-dddddd>, ia(i));
<*kind 3,4,5*> ;;;
<*kind 6*> begin
laf:= (i-1)*2;
ji= (urite (out,<: :>,ia.laf) +5)// 6*2;
it=i+]-1;
end;

<*kind 7*> if ia(i) < ‘sp’ then
write (out, <: :>, false add ia(i), 1)
end case;
write (out, *nl", 1);

Example 2:

The following character sequence represents 9 items if it is read with the
standard alphabet:

ab:al.2c, 17.56 12345678<NL>

12 345 67 8 9
If it is input by readall as in Example 1, the result becomes:
1 2 3 4 5 6 7 8 9 0 1
ia ab 0 58 at. 2c 44 32 18 32 great 10
kid6 6 7 6 6 7 7 2 7 1 8
readall=11

The print-out of Example 1 will look like this:

ab : al.2c , 18illegal

Example 3: Typical adp-input
A list of employees is recorded in this way:

<identification number><department number><status>,
<surname>,<first names><NL>
<identification number> ...

For example:
451 552, bell, robert george

If you read this kind of input with readall and the standard alphabet, you
would not have checked that the names are free of digits. Furthermore
you would have troubles accepting the spaces in the names as name
constituents. Instead, you may use an alphabet table of 2*128 entries
(see intable).

2. Procedure Descriptions, readall

ALGOLS, User’s Guide, Part 2 Page 247

The first 128 entries describe the alphabet used during reading of the
numbers. All letters are here described as shift characters which switch
to the last 128 entries (class = 1, value = 128).

In this last part of the table, space and all letters are described a text
constituents. All digits are delimiter symbols. In both parts of the
alphabet table, new line and end medium are terminators.

An input program which checks the syntax and outputs the list as a

sequence of records may look like this (the procedure error contains
besides alarm message also setting of a boolean error found):

2. Procedure Descriptions, readall

Page 248 ALGOLS, User’s Guide, Part 2

intable(alphabet); .
comment insert some pseudo values at the end

of the kind table, so that the scanning

below is terminated in all cases;
kind(max+1):= kind(max+2):= 5;

<*field assignments*>

lgth:= 2; ident:= 4; dept:= 6; stat:= 8; ename:= §;

table index:= 0; error_found:= false;

for n:= readall (z, val, kind, 1) while val(1) < ’‘em’ do

begin
if val(1) = 'nl’ then <*nothing*>
else
if n > max or n<1 then error(1, <:line length:>)
else
if kind(1)<>2 or val(2)<>'sp’ then error(2,
<:identification:>)
else

begin i‘l'
<*check department*>
i:= 2;
repeat i:= i+1; <*skip spaces*> until val(i) <> ’sp’;
if kind(i) <> 2 then error(3, <:department:>)
else
begin
dept_inx:= i; <*save index for department*>
<*check status*>
if kind(i+1)<>6 or val(i+2)<>’,’ then
error(4, <:status:>)
else
begin
val(i+1):= ...; <"transform status*>
<*check surname*>
for i:= i+2, i+1 while kind(i)= 6 do;
<*skip surname*>
if val(i)<>’,’ or i = dept_inx+3 then
error(5, <:surname:>)
else .
begin
<*check first names*>
f_names_inx:= i+1; save index for first names*>
for i:= i+1 while kind(i) = 6 do; <*skip first names*>
if kind(i)<>8 or i=f_names_inx then
error(6, <:first names:>)

else
begin
<*|ine accepted*>
recl:= (i-dept_inx-1)*2; <*record length*>
outrecé(empl, recl);
empl.lgth := recl;
empl.ident:= val(1);
empl .dept := val(dept_inx);
empl.stat := val(dept_inx+1);
vname:= (dept_inx+2)*2; <*namefield in array val*>
tofrom(empl.ename, val.vname, recl-8); '

2. Procedure Descriptions, readall

ALGOLS, User’s Guide, Part 2 Page 249

end line accepted;
end check first names;
end check surname;
end check status;
end check department, identification, linelength, newline;

if val(n)= ’em’ or error_found then

repeatchar(z);

tableindex:= 0; error_found:= false;
end for n:= readall;

2. Procedure Descriptions, readall

Page 250 ALGOLS, User's Guide, Part 2

2.132 readchar

This integer standard procedure inputs one non-blind character from a
document and supplies the character value and character class. Blind
characters are skipped automatically.

Call:
readchar (z, val)

readchar (return value, integer). The class of the
character cf. (14).
z (call and return value, zone). Specifies the
document, the buffering, and the position of
the document cf. (15).
val (return value, integer). The value of the
character cf. (14). .

Zone state:

The zone must be open and ready for character reading (state 0, 1, or 2,
see getzone6), i.e. since the latest call of open or setposition, the zone
must only have been used for character reading. To make sense, the
document should be an internal process, a disc process, a backing
storage area, a terminal, a paper tape reader, a card reader, or a
magnetic tape. In the latter case setposition (z,...) must have been called
after open (z,...).

The first character read is normally the character just after the logical
position of the document, but after a call of repeatchar it is the
character just before the logical position.

When readchar returns, the logical position is just after the last
character read. The zone record is not available (it is of length 0). .
Blocking:

Just after open or setposition or whenever a block of the document is
exhausted, the next block is transferred and checked as described in

(15). On a terminal this means that an entire line must be typed before

any of the characters in the line are available to readchar.

Example 1: Copying

A sequence of characters may be copied and counted in the following
slow, but simple way. The copying stops when a termination character

(class 8) is met.

i:= -1;

for i:= i + 1 while readchar(inz,c) <> 8 do

2. Procedure Descriptions, readchar

ALGOLS, User’s Guide, Part 2 Page 251

outchar(outz,c);
outchar (outz, ‘em’);

Blind characters may be copied, too, if another alphabet is selected (see
intable).

Example 2: Syntax check

An octal signed integer may be read and checked by means of a state
table. Each entry in the table gives the new state of the routine and the
action to be performed when a character of that class is read in that
state. The actions are shown as numbers, explained below.

input classes: 2 sign: 3 digit: & other:

state:

-1, start after gsign, 1 after digit, 2 start 3
2, after sign after error, 4 after digit, 2 after error, &
5, after digit after error, 4 after digit, 2 start, 5
8, after error after error, 3 after error, 3 start, 5

Action 1: set sign.

Action 2: include digit in number.
Action 3: no action.

Action 4: set error indication.

Action 5: complete number with sign.

This scheme is easiest to implement if a special alphabet is selected by
means of intable. The digits 0 to 7 are given class 3. Plus and minus are
given class 2. All other non-blind characters are given class 4. Class 1
cannot be used because of its shift action.

The algorithm may then be written like this:

<*assign the alphabet*>
for c:= ‘nul’ step 1 until ’del’ do
alpha(c):= (if c='+’ or c=’-'! then 2 else
if c>’/’ and c<'8’ then 3 else
if c='em’ then 8 else 4)
ghift 12 + ¢c;
inable (alpha);
state:= -1;
<*The possible states are:

start=-1, after sign=2, after digit=5, after error=8*>
gign:= 1; number:= 0; error:= false;

repeat
index:= readchar (z, c) + state;

<*find the index for the 4 rows state table,

seen as a one dimensional array*>
action:= case index of

2. Procedure Descriptions, readchar

Page 252 ALGOLS, User’s Guide, Part 2

(1,2,3, 4,2,4, 4,2,5, 3,3,5);
state:= case index of
(2:51-11 81518: 8151'11 8:8:'1):

state action of
begin
<*1, sget sign*>
sign:= 44 - ¢; < +=43, -=45 *>
<*2, include digit*>
if number >= 1 gshift 20 then
begin error:= true; state:= 8 end
else
number:= number shift 3 + ¢ - 70’;
<*3, no action™>
H
<*4, set error indication*>
error:= true;
<*S, terminate number*>
number:= number * sign;
end case;
until action = 5;

A shorter solution might be found for this particular problem, but the
main advantage of the method is that it applies to a lot of other input
problems and the time spent per character will hardly depend on the
complexity of the input syntax. The algorithm above may be speeded up
if readall is used instead of readchar to input a big portion of characters.
The character classes 2, 3, and 4 must then be replaced by 9, 10, 11 or
the like.

A further increase in speed is possible if the input is performed
blockwise by means of inrec6 and the characters are unpacked as shown
in Example 3 of extract.

2. Procedure Descriptions, readchar

ALGOLS, User’s Guide, Part 2 Page 253

2.133 readfield

This integer standard procedure inputs the next field designator of a
format 8000 transaction.

Call:
readfield (z, fieldtype, aux)

readfield (return value, integer). Defines the type of
the first character of the field according to
the fieldtype table shown below. If the field
does contain data, this value is 8, otherwise
it is the fieldtype of the next field (or ETX

or EM).

z (call and return value, zone). Specifies the
document from which current transaction is
input.

fieldtype (return value, integer). The type of the
field designator, according to the fieldtype
table shown below.

aux (return value, integer). The interpretation
depends on fieldtype see table be low).

On exit the zone is positioned at the first character of the data. If there
is no data, the zone is positioned at the next field designator, or ETX
(end transaction), or EM.

The connection between fieldtype and aux is as follows:

field- Iso

type Command char aux

1 SBA: Set buffer address 17 char position

2 SF: Start field 29 attribute char

3 IC: Insert cursor 19 undefined

4 EUA: Erase unprotected to addr 18 char position

5 PT: Program tab 9 undefined

(] RA: Repeat to addr 20 char shift 12 +
charposition

7 EXT: End of text 3 undefined

8 All others (i.e. data) undefined

9 EM: 25 undefined

10 USM 31 undefined

Zone state:

The zone must be in state 1,2,10, or 11, i.e. after character reading or
after waittrans. The new state becomes 1 or 2, ready for character
reading.

2. Procedure Descriptions, readfield

Page 254 ALGOLS, User’s Guide, Part 2

If the zonestate is after waittrans, readfield returns the fieldtype .
corresponding to the first character after the transaction head, i.e.
fieldtype = 8 if there is no field designator.

On the other hand, if the zone state is after character reading, readfield
always returns the fieldtype of the next field designator, causing a skip of
possible unread data fields.

Example 1:

See Example 1 of activity (the procedure get_input_data).

2. Procedure Descriptions, readfield

ALGOLS, User’s Guide, Part 2 Page 255

2.134 readstring

This integer standard procedure inputs a text string given as 8-bit
characters on a document or in an array. The text string is packed in a
way which makes it easy to use as a string parameter.

Call:

readstring (z, arr, 1)
or
readstring (z, arr, i, max_charcount)

readstring (return value, integer). The number of
elements in arr to which a text portion has
been assigned. If readstring terminates
because arr is full, the value of readstring

. is negative.

z (call and return value, zone or call value,
array of type boolean, integer, long, real,
double real or complex). In case of a zone,
it specifies the document, the buffering,
and the position of the document cf. (15).
In case of an array, it contains the
characters, packed 3 to a word, starting in
the word with halfword index 1.

arr (return value, integer, long, real, double
real, complex array or zone record). The
text is stored in arr (i), arr (i+l), and so
on. For arrays of more dimensions the
lexicographical ordering is used.

i (call value, integer). See arr above.

max_charcount (call value, integer). The reading
terminates when "max charcount" characters
have been read, cf. below about terminating
reading.

‘ The parameter is optional, the default being
"infinity".

Syntax of a test string:

Readstring skips all blind characters (class 0, cf. (14)). Among the
remaining characters, read string accepts as a text string any sequence of
text constituents (class 2 to 6) terminated by a delimiter (class > 6).

Leading characters of class > 6 are disregarded unless they contain the
EM character (see below).

The text constituents, omitting all blind characters, are packed into arr
with 3 8-bit characters to a word. The characters are packed from left to
right. The character values packed are given by the values in the
alphabet selected for the moment (see intable). The values given by the
standard ISO alphabet are shown in (14).

2. Procedure Descriptions, readstring

Page 256 ALGOLS, User’s Guide, Part 2

A null character is packed after the last character of the string and the
corresponding element (at most the double word) of arr is filled up with
null characters. The terminator is read, but not packed into arr. If read
in the zone z, it can be examined by means of:

repeatchar (z); readchar (z,c);

2. Procedure Descriptions, readstring

ALGOLS, User’s Guide, Part 2 Page 257

Terminating reading:

Normally, readstring returns when the text and the terminator have
been read. The reading stops immediately, however, if an EM character
is met, if arr is filled, if "max charcount” characters have been read, or
reading from an array, when the first character after the upper index
element is to be read, whichever occurs first.

When the array is filled, the value of readstring is negative, and the

textstring is not terminated by a null character. The last character read
is the last one packed in arr.

When an EM character is met the reaction depends on its position. If
the EM character appears as terminator of the text the reading is
terminated as usual. When the EM character appears as a leading
delimiter, however, the value of readstring becomes zero, and the first
element of arr is undefined.

Zone state:

As for readchar, 2.120.

Blocking:
As for readchar, 2.120.

Example 1: input and output of text

A text (for instance a heading) may be input and later printed in this
way:
begin long array text(1i:n);
intable(ia); comment define space etc. as text
constituents;

if readstring(in,text,1) < 0 then dataerror;

write(out, text);

Example 2:

See Example 3 of open.

2. Procedure Descriptions, readstring

Page 258 ALGOLS, User’s Guide, Part 2

2.135 real

This delimiter, which is a declarator, is used in declarations and
specifications of variables of type real.

Syntax:

real <identifier list>

Semantic:

The variables in the identifier list will be of type real, and occupy 48 bits
in the memory.

The value of a real is in the interval: .

-1.6'616 <= value <= 1.6'616

The real must not have more than 14 significant digits or 14 decimals.

Example 1:

real r1;
real r2,yes,no,price;

procedure pip(a);
real a;

2. Procedure Descriptions, real

ALGOLS, User’s Guide, Part 2 Page 259

2.136 real

This delimiter, which is a transfer operator, changes the type string and
long to type real.

Syntax:

real <operand>

Priority: 1

Operand type:

long or string.

Result type:
real.

Semantic:

Changes the type of a string expression or a long primary to type real.
The binary pattern of the operand is unchanged. The binary pattern of a
string and a long is described in (14).

Note that this use of the delimiter real is totally different from its use in
a declaration or specification.
Example 1:

Let s be a formal string parameter which actually is a text string. In the
procedure the statement:

r:= real(case i of(<:abs:>,<:long text:>,s));

will assign a text to r. Depending on the value of i, r will hold a packed
text, a string point (i.e. a long text string reference), or the string value
of the formal parameter s.

In the first two cases and in the third case with s describing a literal text
string, the text may be printed in this way:

write (out,string r);

2. Procedure Descriptions, real

Page 260 ALGOLS, User’s Guide, Part 2

Example 2: Computing a layout ‘

Assume you want to print numbers with a layout depending on the
relative accuracy, eps, of the numbers. If the layout is to be used many
times, it is wise to hold it in a real variable like this:

d:= -In(eps)/In(10) + 0.5;

if d <3 then d:= 3 else

if d > 6 then d:= 6;

r:= real (case d-2 of
(<<-d.dd’-dd>, <<d.ddd’ -dd>,
<<-d.ddd’ -dd>, <<-d.ddddd’ -dd>));

write(out, string r, X, ¥,...);

Example 3:

See Example 1 of swoprec6.

2. Procedure Descriptions, real

ALGOLS, User’s Guide, Part 2 Page 261

2.137 repeatchar

This standard procedure makes the latest character read from the zone

specified available for reading once more.

Call:

repeatchar (z)

z (call and return value, zone). Specifies the
document, the position of the document, and the
latest operation on z.

After a call of repeatchar(z), the next character read from z is the

character just before the logical position of the one, ie. the latest

character read. Note that the logical position is unchanged.

Zone state:

If repeatchar is to have any effect, the zone should be in the state ’after

character input’ (state 1), i.e. one of the read procedures must have

been called since the latest call of open or setposition working on that

zone. The zonestate becomes 2, ’after repeatchar’.

In all other states repeatchar is blind, and the state is unchanged.

The definition of repeatchar implies that several calls of repeatchar

have the same effect as one call, i.e. only one character can be repeated.

Example 1:

See Example of read.

2. Procedure Descriptions, repeatchar

Page 262 ALGOLS, User’s Guide, Part 2

2.138 replacechar

This integer standard procedure changes the special characters printed
by write, writeint, outtext, and outinteger to user defined characters.
The special characters are: leading space, space in number, +, -, decimal
point, exponent mark, * (alarm printing), and ending space (fill
character).

Call:
replace_char (special, newchar)

replace_char (return value, integer). The character
value of the present special character,
which may be used for restore purposes.

special (call value, integer). Defines which
special character is to be replaced:

: leading space

space in number

+ (positive sign)

- (negative sign)

(decimal point)

' (exponent mark)

ending space (fill character)

* (termination star).

fill character used to fill up

current word when terminating writing

into array

newchar (call value, integer). The character
value to replace the present special
character. If newchar > 255 or newchar <
0 the character will not appear in the
output.

oUW EO

Note!

If the termination star is replaced by a character value > 255 or < 0, the
character last output in the last position will not be destroyed.

Example 1:

The statements

c1:= replace_char (1<*space in number*>, ’.’);

c4:= replace_char (4<*decimal point*>, /,7);

write (out, <<ddd ddd ddd.dd>, 133542876.25);

will print:

133.542.876,25

The old values of the special characters may be restored by

2. Procedure Descriptions, replacechar

ALGOLS, User’s Guide, Part 2 Page 263

replace_char (1, c1);
replace_char (4, c4);
Example 2:
The statements
for i:= 1 step 1 until 8 do
replace_char (i-1, case i of (
ltl' l.l' IPI' lml' Idl' IEI' I-I' -1)):
write (out, << dd dd.d+ >, 12345.678, -11);
will print:

%12, 34d6E 1p-+***11dOm- - -

2. Procedure Descriptions, replacechar

ALGOLS, User’s Guide, Part 2

2.139 resetzones

This standard procedure resets the buffersize and number of shares of
each zone in a zone array to the size and number they had right after
declaration.

Call:

resetzones (za)

za (call and return value, zone array). The
buffersize and no of shares are reset for all
zones za (1),...,za (no of zones) to the values

given in the declaration. The procedure is the
"undo" of the procedure initzones.

Zone state:

The state of each zone must be 4, after declaration, and is not changed
by the procedure.

2. Procedure Descriptions, resetzones

ALGOLS, User’s Guide, Part 2 Page 265

2.140 resume

This standard procedure works as the context operator continue, except
that the context label is cleared after execution, cf. (15).

Call:

resume

2. Procedure Descriptions, resume

Page 266 ALGOLS, User’s Guide, Part 2

2.141 round

This delimiter, which is a monadic arithmetic operator, rounds the value
of a real expression to the nearest integer value or cuts the value of a
long expression to an integer. The operation may cause integer
overflow.

Syntax:

round <operand>

Priority: 1

Operand type:

long or real.

Result type:

integer.

Example 1:

Two reals with absolute value below 2**23 may be integer divided in this
way:

round i1 // round i2

Example 2:

In the following statement you will get integer overflow if r is outside (@)
integer range:

writeint (z, round r);

2. Procedure Descriptions, round

ALGOLS, User’s Guide, Part 2 Page 267

2.142 setfpmode

This standard procedure sets or removes a userbit from fp’s mode word.

Call:
setfpmode (modebit, bool)
modebit (call value, integer). O<=modebit<=1l.
bool (call value, boolean).
True => the bit is set,
false => the bit is removed.
The standard FP modebits are numbered beyound 11, and cannot be

changed by setfpmode. The ok-bit and the warning-bit, however, can be
changed by the standard identifier errorbits.

Example 1:

If you in an algol program p execute the statement:
set_fp mode(5, true);

then in the jobfile:

4 ...

50 p data

60 if 5.no

70 ...

80 ...

line 70 will be skipped.

2. Procedure Descriptions, setpfmode

Page 268

ALGOLS, User’s Guide, Part 2

2.143 setposition

This boolean standard procedure terminates the current use of a zone
and positions the document to a given file and block on devices where
this makes sense. The positioning will only involve timeconsuming
operations on the document if this is a magnetic tape.

Call:
setposition (z, file, block)

setposition (return value, boolean). True if a
magnetic tape positioning has been
started, false otherwise.

z (call and return value, zone). Specifies
the document, the position of the
document, and the latest operation on z.

file (call value, integer). Irrelevant for
documents other than magnetic tape.
Specifies the file number of the wanted
position cf. (15).

Files are counted 0, 1, 2,

File O will normally contain the tape
volume label, so that file 1 is the first
file available for data. A negative value
of file will unload the tape.

block (call value, integer). Irrelevant for
documents other than magnetic tape and
backing storage. Specifies the block
number (segment number when backing
storage) of the wanted position cf. (15).
Blocks are counted 0, 1, 2, .

A negative value of block will lead to
param alarm.

Setposition proceeds in 3 steps: Terminate the current use, write tape
mark, and start positioning.

Terminate current use:

If the zone latest has been used for output (state 3, 6, and 7, see
getzone6), the used part of the last block is sent to the document. A
block sent to a backing storage area is not filled with zeroes, contrary to
outrec6, or outvar. If the zone latest has been used for character output,
the termination may involve output of one or two nulls in order to fill
the last used word of the buffer.

Next, all the transfers involving z are completed, the input transfers are

just waited for, and the output transfers and other operations are
checked as usual.

Write tape mark:

2. Procedure Descriptions, setposition

ALGOLS, User’s Guide, Part 2 Page 269

If the document is a magnetic tape which latest has been used for
output, a tape mark is written.

Start positioning:

Setposition assigns the value of block to the zone descriptor variable
'segment count’ and returns then for all devices other than magnetic
tape.

If the document does not exist or if the job is not a user of the device,
setposition sends a parent message asking for stop of the job until the
tape is ready.

If the name of the document is zero (<::>), the tape requested is a
work tape, and setposition accepts as the future name the name
returned by the parent (which means that setposition changes the
document name in the zone accordingly).

Setposition starts the tape positioning, by sending a setmode operation,
the result of which is ignored and a move operation to the external
process. The positioning is not waited for until the first time the zone is
used for input or output, or the first time setposition (z,..) is called
again. That may be used for simultaneous positioning of more tapes (see
Example 3).

If the value of file is negative, an unload message will be sent. Only if it
is checked later on (input, output, setposition, close), will the move
operation be sent, resulting in a mount tape request, as the tape was
unloaded.

The positioning is complete as soon as file and block match the monitors
count of the tape position for that device. Checking against tape labels is
not performed.

Zone state:

The zone must be open when setposition is called (state 0, 1, 2, 3, §, 6, 7,
or 8). Setposition changes the zone state to opened and positioned (0).

The logical position of a magnetic tape or a backing storage area
becomes just before the first element of the block specified by file and
block. The logical position is unchanged for other devices.

Example 1: Online conversation

When you alternately write out something on a terminal and read from
it, you must make sure that the output really is sent to the terminal and
does not stay in the buffer. Assume that you run with Boss as parent and
that you have online yes as job parameter, assume further that your
program is started with <program name> term. Such a conversation
may then be programmed like this:

2. Procedure Descriptions, setposition

Page 270 ALGOLS, User’s Guide, Part 2

repeat "I’

write(out,<:type yes or no:>);
setposition(out,0,0);
readstring(in,ra,1);

until...;

Example 2: Random access to backing storage (relative organized file)

Let the backing storage area bs25 contain records of 80 halfwords
originally output in shares of 128 elements (= 1 segment, 512
halfwords). You may get record j (the records being numbered 0,1,2...)
in this way:

begin zone z(128,1,stderror);
<*double buffering will not pay in this case*>
open(z,4,<:bs25:>,0);

ji= .o
setposition(z,0,j//6); .
<* 6 records are stored on one segment*>;

for i:= j//6*6 step 1 until j do inrecé (z,80);

Example 3: Simultaneously tape positioning

Let z1 and z2 be two zones which describe magnetic tapes positioned at
file 2 or 3. If you start reading from file 1 in this way:

setposition(21,1,0); inrecé(zi,p);
setposition(22,1,0); inrec6(z2,p);

then the call of setposition(zl,.) will start rewinding zl, and
inrec6(z1,p) will wait for the rewind, upspace file 1 (file 0 is usually
short), and read the first block. First at that moment, the rewind of file
z2 will be started.

The following solution will rewind the two tapes simultaneously:

setposition(z1,1,0); setposition(z2,1,0);
inrecé(z1,p); inrecé(z2,p);

If file 0 should be long, it is better to upspace the tapes simultaneously
too.

setposition(z1,0,0); setposition(22,0,0);

setposition(z1,1,0); setposition(z2,1,0);

Example 4: Output of tape mark and empty file

Two tape marks in sequence i.e. an empty file may be output in this way:
outrecé(z,...);

getposition(z,f,b);
setposition(z,f+1,0);

2. Procedure Descriptions, setposition

ALGOLS, User’s Guide, Part 2 Page 271

‘ outrec6(z,0);
setposition(z,f+2,0);

A call of outrec6(z,0) is also useful when you generate a magnetic tape
file which may happen to be empty. If you omit outrec6(z,0), the tape
mark may be omitted.

2. Procedure Descriptions, setposition

Page 272 ALGOLS, User’s Guide, Part 2

2.144 setshare

This standard procedure is the ’reverse’ of getshare, in the sense that it
assigns values to a share descriptor. The procedure is the Algol 5
equivalent of setshare6.

Call:

setshare (z, ia, sh)

z (call and return value, zone). Specifies the
share together with sh.
ia (call value, integer array, length >= 12 counted

from lexicographical index 1). The contents of

ia have the meaning explained in getshare. The
contents of ia (1), ..., ia (12) are transferred

to the share descriptor, provided that the .
restrictions below are fulfilled.

sh (call value, integer). The number of the share
within z,
Restrictions:

The following restrictions apply to the values of ia:

ia(1) Share state. As for setshare6.

ia(2) First shared. Must be a buffer index.
ia(3) Last shared. Must be a buffer index.
ia(4) Operation. As for setshare6.

ia(12) Top transferred. As for setshare6.

2. Procedure Descriptions, setshare

ALGOLS, User’s Guide, Part 2 Page 273

2.145 setshare6

This standard procedure is the 'reverse’ of getshare6, in the sense that it
assigns values to a share descriptor.

Call:

setshare6 (z, ia, sh)

z (call and return value, zone). Specifies the
share together with sh.
ia (call value, integer array, length >= 12,

counted from lexicographical index 1). The
contents of ia have the meaning explained in
getshare6. The contents of ia (1), ..., ia (12)
are transferred to the share descriptor,
provided that the restrictions below are

fulfilled.

sh (call value, integer). The number of the share
within z.

Restrictions:

The following restrictions apply to the values of ia:

ia(1) Share state. Only if the state of the share descriptor is 0 or 1
at call time, will ia (1) be transferred. In this case ia (1) must
beOor 1.

ia(2) First shared. Must be a halfword index in the zone buffer.

ia(3) Last shared. Must be a halfword index in the zone buffer.

ia(4) Operation shift 12 + mode. If operation is odd, ia (5) and ia
(6) are restricted to absolute addresses within the zone
buffer.

ia(12) Top transferred. Must be an absolute ad dress corresponding
to a block within the zone buffer.

If the restrictions are violated, an alarm occurs. The restrictions are
natural, in the sense that the following always is allowed (provided that
sh is a share number and ia has at least the elements ia(1), ..., ia(12):
getshare6(z,ia,sh);

setshare6(z,ia,sh);

Example 1:

See Example 10 of monitor.

Example 2:

See Example 1 of activity (the procedures sense and senseready).

2. Procedure Descriptions, setshare6

Page 274 ALGOLS, User’s Guide, Part 2

2.146 setstate

This standard procedure changes the zone state.

Call:

setstate (z, state)

z (call and return value, zone). The zone state of
z is changed to the value of state.
state (call value, integer). The new zone state.

2. Procedure Descriptions, setstate

ALGOLS, User’s Guide, Part 2 Page 275

2.147 setzone

This standard procedure is the ‘reverse’ of getzone, in the sense that it
assigns value to a zone descriptor. The procedure is the ALGOL 5
equivalent of setzone6.

Call:

setzone (z, ia)

z (call and return value, zone). The zone
descriptor of z is changed.
ia (call value, integer array, length >= 17 counted

from lexicographical index 1). The contents of
ia have the meaning explained in getzone. The
contents of the ia (1), ..., ia (17) are
transferred to the zone descriptor, provided
that the restrictions below are fulfilled.

Restrictions:
The following restrictions apply to the values of ia:

ia(1) Mode shift 12 + kind. As for setzone6.

1a(14) Record base. As for setzone6.

ia(15) Last byte. As for setzone 6.

ia(16) Record length. Measured in ele ments of 4 halfwords each,
other wise as for setzone6.

ia(17) Used share. As for setzone6.

2. Procedure Descriptions, setzone

Page 276

ALGOLS, User’s Guide, Part 2

2.148 setzone6é

This standard procedure is the ’reverse’ of getzone6 in the sense that it
assigns values to a zone descriptor.

Call:

setzone (z, ia)

z (call and return value, zone). The zone
descriptor of z is changed.

ia (call value, integer array, length >= 17,
counted from lexicographical index 1). The
conents of ia have the meaning explained in
getzone6. The contents of ia (1), ..., ia (17)
are transferred to the zone descriptor, provided
that the restrictions below are fulfilled.

Restrictions:

The following restrictions apply to the values of ia:

ia(1)

ia(14)
ia(15)
ia(16)
ia(17)

Mode shift 12 + kind. The range of the kind is 0 < = kind

< = 20. The kind must be even.

Record base. Must be an absolute address corresponding to a
record within the zone buffer. Record base must be odd.

Last halfword. Must be an absolute address within the zone
buffer.

Record length in halfwords. Must correspond to a record
within the zone buffer.

Used share. Must be the number of a share within z.

If the restrictions are violated, the run is terminated. The restrictions
are natural, in the sense that the following always is allowed (provided

that ia(1), .., ia(20) exist): o

getzoneb(z,ia);
setzoneb6(z,ia);

Example 1:

See Example 2 and Example 3 of getzone6.

2. Procedure Descriptions, setzone6

ALGOLS, User’s Guide, Part 2 Page 277

2.149 sgn

This integer standard procedure yields -1 or 1 according to the sign of
the parameter.

Call:
sgn (r)
sgn (return value, integer). sgn is 1 for r>= 0, -1
for r < 0.
r (call value, integer, long, or real).
Example 1:
. a:= sgn (r)*r; <*

is equivalent with

a:= abs (r)*>

2. Procedure Descriptions, sgn

Page 278 ALGOLS, User’s Guide, Part 2

2.150 shift

This delimier, which is a pattern operator, is used for packing and
unpacking of reals, longs, integers, booleans, and strings.

Syntax:

<operandl> shift <operand2>

Priority: 2
Operand types:
<operand1>: boolean, integer, long, real or string.

<operand2>: integer, long or real. ‘

Result type:

The result is of the same type as <operand1>.

Semantic:

Shift treats <operandl> as a binary pattern cf. (14). <operand2> is
rounded to an integer if it is long or real. This value is then used to
indicate the number of bits <operand1> is to be shifted.

The shift is to the left if the (possibly rounded) value of <operand2> is
positive and to the right if the value is negative. The shift is a logical
shift, which means that zeroes are shifted in to the right or left.

Example 1:

See Examples of add, extend, extract, and long.

2. Procedure Descriptions, shift

ALGOLS, User’s Guide, Part 2 Page 279

2.151 sign

This integer standard procedure yields 1, 0, or -1 according to the sign of
the parameter.

Call:

sign (r)

sign (return value, integer). sign is 1 for r > 0, O
for r = 0, and -1 for r < 0.

r (call value, real, long, or integer).

Example 1:

a:= sign (r)*r; <*
equivalent with

a:=abs (r)*>

Example 2:

case sign (master.ident - trans.ident) + 2 of begin
<* -1: master < trans*>

<* 0: master = trans*>
<* 1: master > trans*>

end case;

2. Procedure Descriptions, sign

Page 280 ALGOLS, User’s Guide, Part 2

2.152 sin

This real standard procedure performs the trigonometric function sine.

Call:
sin (r)
sin (return value, real). Is the trigonome tric
function sine of the argument r, in radians with
-1 <= sin <= 1.
r (call value, real, long, or integer). The
argument in radians.
Accuracy:
abs (r) < pi/2 gives a relative error below 1.2’-10
abs (r) > = pi/2 To the relative error of 1.2’-10 must be added
the absolute error of the argument, r*3’-11. This
means that sin is completely undefined for abs
(r) > 3’10, and then the result is always 0.
Example 1:

sin (pi/6); <*is 0.5%*>

2. Procedure Descriptions, sin

ALGOLS, User’s Guide, Part 2 Page 281

2,153 sinh

This real standard procedure performs the mathematical function sinh.

Callk:

sinh (r)

sinh (return value, real). Is the mathematical
function sinh of the argument r.

T (call value, real, long, or integer). -1000 < r
< 1000.

Accuracy:

. r = 0 gives sinh = 0

abs (r) < In (2)/2 gives a relative error below 1.0’-10.

(n-0.5)*In(2) <= abs(r) < (n+0.5)*In(2) gives a relative error below
1.2’-10 + n*7’-11.

Alarm:

If abs(r) > = 1000, a runtime alarm occurs (Sinh 0).

2. Procedure Descriptions, sinh

ALGOLS, User's Guide, Part 2

2.154 sortcomp

This integer standard procedure compares two records by using the
comparison code generated by procedure startsort6, changekey6, or
initkey.

Call:
sortcomp (z, a, b)

sortcomp (return value, integer). The result of the
comparison, as follows:
sortcomp < 0: a < b
sortcomp = 0: a=b
sortcomp > 0: a > b

where a <b (or a > Db) means that the record a would
precede (or succed) the record b if the records .
were sorted. The equal sign means, that the
order is immaterial.

z (call value, zone). The zone associated with
the comparison code (see procedure startsorté
or initkey).

a (call value, array). The name of an array with
lower index = 1 (or zone) holding the first
record.

b (call value, array). The name of an array with
lower index = 1 (or zone) holding the second
record.

Example 1:

See Example 1 of deadsort.

Example 2: .
A comparison of the records in zone no. i and zone no. j of zone array x.

The key types, relative addresses, and sequencing rule are the same as

in Example 1 of initkey. The statement

diff:= sortcomp (z, x(i), x(j));

will result in diff having the symbolic sign value of x(i) - x(j), when x(i)
and x(j) are considered to be real numbers to be compared.

2. Procedure Descriptionsm sortcomp

ALGOLS, User’s Guide, Part 2 Page 283

2.155 sqrt

This real standard procedure yields the square root of the parameter.

Call:

sqrt (r)

sqrt (return value, real). The square root of r.

r (call value, real, long, or integer). r >= 0.
Accuracy:

r=0 gives sqrt = 0.
r>0 gives a relative error below 6.4’-11.

Alarm:

If r < 0, a runtime alarm occurs (sqrt 0).

Example 1:

c:= sqrt(a**2 + b**2);

2. Procedure Descriptions, sqrt

Page 284

ALGOLS, User’s Guide, Part 2

2.156 startsort6

This integer standard procedure initiates a sorting process in a zone,
and generates a piece of comparison code, so that the procedures
newsort, outsort, deadsort, lifesort, and sortcomp can be used with that
zone as parameter.

Call:

startsort6 (z, keydescr, noofkeys, reclength)

startsorté (return value, integer). The maximum number
of records which can be kept in the zone.

z (call value, zone). The name of the zone used
for sorting.
keydescr (call value, integer array). The array holds

information about types and relative
locations (halfword numbers) of key fields in
a record.

noofkeys (call value, integer). Number of key fields
(rows) in keydescr.

reclength (call value, integer). Maximum number of
halfwords in the records which are to enter
the sorting process.

Zone declaration and the length of the record:

The length of the key code generated by startsort6 varies according to
the value of noofkeys. A zone capable of holding N records at one time
+ the key code must be declared as follows:

zone z((N+l)*((reclength + 2)//4) + 3%noofkeys + 6, 1,
error)

where reclength is the maximum record length measured in halfwords.
The meaning of noofkeys is described below. The value of reclength
must be even and positive.

The error procedure must be supplied by the user. It has the same form
as an ordinary block procedure i.e. error (z, s, b), where z is a zone, and
s and b are integers (call values only). The error condition is indicated
by the values of s and b; s is the error type, for which the following
conventions hold:

s=1: attempt to input more than N records to the zone z. b = no.
of inactive records in the zone.

s=2: attempt to output a record from the zone z holding no active
records. b = no. of inactive records in the zone.

s=3: attempt to call changekey6 (or initkey) with active records

present in the zone. b = no. of active records in the zone.

Zone state:

2. Procedure Descriptions, startsort6

ALGOLS, User’s Guide, Part 2 Page 285

The zone must be in state 4, after declaration. The state becomes 9, in
sort.

Description of keys and the number of keys:

The integer array keydescr must be declared at least

integer array keydescr(1:noofkeys, 1:2);

The value of noofkeys must fulfil

0 < noofkeys < = min(reclength, 170)

Each row in the array holds a description of a key field in the record to
be sorted.

Column one in the array holds information about the key field type and
the rule of sequencing. For the key field type the following conventions
hold:

Value Key Field Type Sequencing
+1 12 bit signed integer ascending
-1 12 bit signed integer descending
+2 24 bit integer ascending
-2 24 bit integer descending
+3 48 bit long ascending
-3 48 bit long descending
+4 48 bit real ascending
-4 48 bit real descending
+5 12 bit unsigned integer ascending
-5 12 bit unsigned integer descending

When sorting alphabetically, three ISO characters packed in one 24-bit
integer or six characters packed in one 48-bit long, can be treated as one
key field.

Column two in the array is the relative position of the keyfield, within
the record, specified by the number of the last halfword in the field, as
for a field variable. The relative position must be <= min (reclength,
2046).

Note on the value of startsorté6:

The value returned by startsort6 is the number of records which in the
normal situation may be placed in the zone. In one situation, however,
one more record may be placed in the zone by means of newsort. This is
the case after the call of startsort but before a call of outsort or life sort.
Therefore startsort6 may yield values from -1 and upwards. The
meaning of the value -1 is that no record can possibly be placed in the
zone, but the zone may of course be used for sortcomp. The value 0
means that a call of newsort will yield space for one record. This space
may be used for temporary storage of data.

2. Procedure Descriptions, startsort6

Page 286 ALGOLS, User’s Guide, Part 2

Example 1: .

See Example 3 of newsort, where a zone to hold 100 records of length 10
double words per record is declared.

2. Procedure Descriptions, startsort6

ALGOLS, User’s Guide, Part 2 Page 287

. Example 2:

See Example 4 of outsort, where a zone for k-way merging of two word
records is shown.

Example 3:
A simple error procedure would be the following:

procedure sorterror (z, 8, b);
zone z; integer s, b;
begin
case s of
begin
write (out, <:input error in sort:>);
write (out, <:output error in sort:);
begin
write (out, <:initializing error in sort.:>);
. stderror (z, s, 4*b)
end
end;
write(out, <: no of inactives =:>, <<dddd>, b);
goto errorhandling
end;

The call of stderror will cause the number of active halfwords to be
printed and the execution is terminated.

2. Procedure Descriptions, startsort6

Page 288 ALGOLS, User’s Guide, Part 2

2.157 stderror

This standard procedure terminates the program with a runtime alarm
(the program gives up) specifying an error condition on a peripheral
device. It is used as the block procedure of zones where the program
wants to give up in case of device errors or in blockprocedures to give
up explicitly in case of ’give up’ bit (hard errorbit) in the status word.

Call:

stderror (z, s, b)

z (call value, zone). Specifies the name of the
document.

s (call value, integer). The logical status word
after a device transfer.

b (call value, integer). The number of halfwords .
transferred.

The program is terminated with the run time alarm:

giveup <value of b> algolcheck
called from ...

The file processor prints an inerpretation of the logical status word ’s’
after the alarm message from the algol program.

However, if the error situation is trapped by a traplabel (see trap), the
file processor is not activated. In this case the logical status word can be
made available to the program by the standard procedure getalarm.
Example 1:

See Example 2 of inrec6, where stderror is used in two ways: in a zone
declaration, and as a procedure call in a user specified block procedure. ‘

2. Procedure Descriptions, stderror

ALGOLS, User’s Guide, Part 2 Page 289

2.158 stopzone

This standard boolean procedure terminates the current use of a zone
and optionally, if the document connected to the zone is a magnetic tape
which latest has been used for output, it may write a tape mark.

Call:

stopzone (z, mark)

stopzone (return value, boolean). True, if input/output
may continue without repositioning, false if
it takes a positioning to continue
input/output (cf. be low).

z (call and return value, zone). Specifies the
document, the position of the document, and
the latest operation on z.

mark (call value, boolean). If the document is a
magnetic tape and z latest has been used for
output and mark is true, a tape mark is
written to terminate the file, else no mark is
output.

Stopzone proceeds in two steps: terminate the current use and may be
write a tape mark.
The steps are exactly as described in setposition

Zone state:

The zone must be open when stopzone is called (state 0,1,2,3,5,6,7 or 8).
Stopzone changes the zone state to "opened” and positioned" (0) and
stopzone returns true, except for magnetic tape, which has latest been
used for input, when the zone state becomes "opened but unpositioned"
(8) and stopzone returnes false.

Logical position:

The logical position for a backing storage area (or a disc) becomes just
after the last block output or just after the last block input, which also is
the physical position. If the input is multishared, this position is (no of
shares -1) shares ahead of the latest available input. If input (or output)
is continued without a reposition, then, that many shares are skipped.
The logical position for a magnetic tape becomes just after the last block
output, which also is the physical position, so output may continue
without a reposition. In case of input, the logical position becomes just
after the last block available as input, but in case of multishared input,
the physical position will be (no of shares - 1) shares ahead, so a
reposition will have to take place before continued input/output,
whether it should continue from the latest block available as input or a
number of blocks really should be skipped.

2. Procedure Descriptions, stopzone

Page 290 ALGOLS, User’s Guide, Part 2

2.159 string

This delimiter, which is a specificator, is used in specifications of
variables of type string.

Syntax:

string <namelist>

Semantic:

The variables in the namelist will all be of type string.
Example 1:

procedure pip(text);

string text;
begin

c:= long text;

2. Procedure Descriptions, string

ALGOLS, User’s Guide, Part 2 Page 291

2.160 string

This delimiter, which is a transfer operator, changes the type real or
long to type string. The operator is required when a string stored in real
or long variables is used as a parameter of type string.

Syntax:

string <operand>
Priority: 1

Operand type:

long or real

Result type:

string.

Semantic:

The value of string <operand> has the same binary pattern as the value
of the operand. The binary pattern of a string is described in (14).
Depending on the value of the operand, the resulting pattern may mean
a layout, a complete text string, or a text portion. Note that this use of
the delimiter string is totally different from the string specification.

Example 1: Layout
See Example 2 of real.

Example 2: A long string

Let the real array ra(1:n) hold a sequence of text portions terminated by
a null character. Such contents of a ra may for instance have been
obtained by readstring.

This variable text may be used as a string parameter in this way, for
instance:

i:= 1; write(out,string ra(increase(i)));

Write will reference the second parameter, which in turn calls
increase(i) and yields the value of ra(1). At the same time i becomes 2.
Write will print the text portion held in ra(1) and if it does not contain a
null character, write will reference the second parameter again, and so
on until the null character signals the end of the text.

2. Procedure Descriptions, string

Page 292 ALGOLS, User’s Guide, Part 2

An easier way to output a text stored in an array is

write (out, ra);

Example 3:

See Example 1 of real (operator).

2. Procedure Descriptions, string

ALGOLS, User’s Guide, Part 2 Page 293

2.161 swoprec

This standard procedure is the ALGOLS version of swoprec6. It gives
you direct access to a sequence of elements of 4 halfwords each of a

document so that they may be updated directly.

Call:
swoprec (z, length)

swoprec (return value, integer). The number of elements
of 4 halfwords each left in the present block
for further calls of swoprec.

z (call and return value, zone). The name of the
record. Specifies further the document, the
buffering, and the position of the document cf.

(15).

. length (call value, integer, long, or real). The
number of elements of 4 halfwords each in the
record. Length must be >= 0.

Except that the record length is measured in elements of 4 halfwords
each, swoprec works as swopreco.

2. Procedure Descriptions, swoprec

Page 294

ALGOLS, User’s Guide, Part 2

2.162 swoprec6

This standard procedure gives you direct access to a sequence of
halfwords of a document. The halfwords become available as a zone
record, and you may modify them directly without changing the
surrounding elements of the document. This makes sense for a backing
storage area, only.

The procedure works as a combination of inrec6 and outrec6 in the
sense that it gets a sequence of halfwords from a document and later
transfers them back to the same place of the document. The document
may be scanned and modified sequentially by means of swoprec6.

Call:
swoprec6 (z, length)

swoprecbh (return value, integer). The number of
halfwords left in the present block for
further calls of swoprecé.

z (call and return value, zone). The name of the
record. Specifies further the document, the
buffering and the position of the document cf.
(15).

length (call value, integer, long, or real). The
number of halfwords in the record. Length must
be >= 0. If it is odd, 1 is added.

Zone state:

The zone z must be open and ready for record swop (state 0 or 7, see
getzone), i.e. the zone must only have been used for record swop since
the latest call of open or setposition. To make sense, the document must
be a backing storage area.

Blocking:

Swoprec6 may be thought of as transferring the halfwords just after the
current logical position of the document and moving the logical position
to after the last halfword of the record.

Because the records are blocked, the actual transfer back to the device
is delayed until the block is full or until close or setposition is called.

All halfwords of the record are taken from the same block and when the
block cannot supply a record requested, the block is transferred back to
the document and the next block is read. The checking of all transfers
takes place as described in (15). If the block still cannot supply the
record, the run is terminated. A record length of 0 is handled as for
inrec6.

2. Procedure Descriptions, swoprec6

ALGOLS, User’s Guide, Part 2 Page 295

If the zone contains 3 shares, one of them is used for input, while
another is used for output, and the last holds the current record. This
ensures maximum overlapping of communication and input-output.

Be careful to use the same share length as that with which the backing
storage area was written, because the unused parts of the blocks
otherwise might be treated as significant data.

Example 1: direct updating

Each double word of the backing storage area ma28 may be added to
the corresponding double word of the area ma30 in this way:

begin zone ad(512*2,2,endarea),res(512*3,3,endarea);
boolean endfile; integer i;
procedure endarea(z,s,b);
zone z; integer s,b;
if s extract 1 = 0 then
begin endfile:= true; b:= 2048; end

else

stderror(z,s,b);
open(ad,4,<:ma28:>,1 shift 18);
open(res,4,<:ma30:>,1 shift 18);
endfile:= false;

for i:= inrecé(ad,2048) while -,endfile do
begin

swoprecé(res,2048);

for i:= 1 step 1 until 512 do

res(i):= real(long res(i) + long ad(i));
comment only if we are sure that overflow will not occur:

end;
close(ad, true); close(res,true);

Example 2: swopvar

The following procedure performs sequential updating of variable length
records by means of swoprec6. Note that the checksum of a possibly
changed record must be calculated by a call of checkvar before the call
of swopvar.

integer procedure swopvar (z);

zone z;

<*swopvar (return value, integer). The number of
halfwords left in the present block for
further calls of swopvar/swoprec6.

z (call and return value, zone). The name
of the record. Specifies further the
document, buffering and the position of
the document.

>

begin

integer b;
integer field tngf, sumf;

2. Procedure Descriptions, swoprec6

Page 296 ALGOLS, User’s Guide, Part 2

lngf:= 2; sumf:= &4;
for b:= swoprecé (z, 4) while z.lngf = 0 do
swoprecé (z, b);
:= z.lngf;
changerecé(z, 0);
swopvar:= swoprecé (z, b);
if checkvar (z) <> z.sumf then
blockproc (z, 1 shift 11, b);
end;

2. Procedure Descriptions, swoprec6

ALGOLS, User’s Guide, Part 2 Page 297

2.163 system

This integer standard procedure gives access to various system and job
parameters. Some of the functions of system require knowledge of the
job organisation cf. (6) and the multiprogramming system cf. (1) and (2).
Be aware that monitor tables are with halfword addresses.

Call:
system (fnc, i, arr)
or

system (fnc,i,s)

system (return value, integer). Meaning depends on fnc.

fnc (call value, integer). Specifies the function of
system.

i (call or return value, integer). Meaning depends
on fnc.

arr (call or return value, array of various types).

Meaning depends on fnc.
Notice that whenever real array is allowed, zone
record is, too.

s (call value, string). Meaning depends on fnc.

The value of fnc is restricted to 1 <= fnc <= 15, with the following
meaning:

System(l,i,arr), floating point precision

No function.

System(2,1i,arr), free memory, program name

system The number of halfwords available in the low end
partition of the job process for reservation of
further variables leaving only 1024 halfwords for
program segments. When called in an activity, no
1024 halfwords are left for segments.
[15] gives the rules for computing the number of
halfwords occupied by a set of variables.

i (return value, integer). Gets the same value as
system.
arr (return value, integer, long, real, double, or

complex array, length >= 2 doublewords).

The name of the document which holds the program
file is assigned to the first 2 doublewords of
arr. The document is always a backing storage
area.

System (3,1i,arr), array bounds

2. Procedure Descriptions, system

Page 298

ALGOLS, User's Guide, Part 2

system The lower index bound for arr.

i (return value, integer). The upper index bound
for arr.
arr (call value, array of any type, incl. boolean,

double precision and complex). If the array is of
more dimensions, the lexicographical index is
used as the value of system and i. If called from
fortran program and the array is of more
dimensions, the successor function is used for
the value of system and {i.

System (4,1,arr), file processor parameter

This call does not make sense if the program was translated with the
parameter fp.no, and called with the fp-command

<program> <integer>
The presence of the file processor may be tested by system (13, ...

system The preceding separator and the length of item i
in the call of the program, packed as
separator shift 12 + length
system is 0 if i specifies a non-existing item.
i (call value, integer). The number of an item in
the file processor command which called the
program. The items are counted from O and up.
arr (return value, integer, long, real, double real,
or complex array, length >= 2 double words).
For an integer item the value is converted to a
real, in case of long array extended to a long,
and assigned to the first two words of arr.
For a text item, the value is assigned to the
first and second double word of arr.
In case of more text, it is moved to arr,
doubleword by doubleword, until the text ends or
arr is full.

An item is a name or an integer together with the preceding separator.
The following two examples show the numbering of items:

s source a .b r-pip a b ¢
0 1 2 3 01 234

The exact format of separator and length is given in [6]. The values
relevant in a program call are listed below:

separator 0: ()
) can only occur when i= 0
2: <NL>)
4: <Sp>
6: =
8:
length 2: the next separator follows

4: integer item

2. Procedure Descriptions, system

ALGOLS, User’s Guide, Part 2 Page 299

10: text item
8*n+10: generalized text item (n=1,2,...,7)

System(5,1,arr), copy memory area

system 1 if the moving was ok, 0 otherwise.

i (call value, integer). The absolute address of a
memory location cf. (4) or (5).
arr (return value, integer, long, real, double or

complex array). System attempts to copy the
memory area from absolute address i and on into
the first word of arr and on.

The copying stops when either arr is full or when the word referenced is
outside the visible memory. In the latter case system becomes 0. The
copying takes place word by word, so that for instance memory (i) and
memory (i+2) go into the first element of arr if arr is a multi word type
array.

It is necessary to copy areas in connection with some of the entries in
procedure monitor, but you may also use system (5,...) for investigations
of tables in the monitor cf. (2) and in that way, e.g, find the set of
external processes in the actual job host system.

System (6,1,arr), own process, any message

system The process description address for the job
process, i.e. the process which executes the
program cf. (1).

i (return value, integer). If the message queue of
the job process is empty, i becomes O.
If the buffer claim of the job process is
exceeded by finding a message in the queue, i
becomes -1.
Otherwise i becomes the buffer address for the
first message in the queue.

arr (return value, integer, long, real, double or
complex array length >~ 2 double words). The name
of the job process is assigned to the first 2
double words of arr.

System (7,1i,arr), primary output

system The "process description address" for the primary
output process cf. (2) and (6). The "process
description address"™ is not to be trusted, since
it either is no real process description address,
or the process description has moved to another
location. The name and kind is to be trusted,

though.

i (return value, integer). The kind of the primary
output process.

arr (return value, integer, long, real, double or

complex array, length >= 2 double words).

2. Procedure Descriptions, system

Page 300 ALGOLS, User’s Guide, Part 2

The name of the primary output process is .
assigned to the first 2 double words of arr.

System (8,1,arr), parent description

system The process description address for the parent of

your job.

i (return value, integer). The kind of the parent
process (always 0).

arr (return value, integer, long, real, double or

complex array, length >= 2 double words).
The name of the parent process, is as signed to
the first 2 elements of arr.

2. Procedure Descriptions, system

ALGOLS, User’s Guide, Part 2

Page 301

System (9,1i,s), run time alarm

i

S

(call value, integer). The value to be printed
following the alarm cause. Layout is <<-ddddd>.
(call value, string). The text to be printed as
the alarm cause. At most 9 characters will be
printed. Usually the text should start with an NL
char.

This entry terminates the program execution with a runtime alarm
similar to the standard alarms. It is intended for use in library
procedures, where it may terminate the users program if he supplies
wrong parameter values. When a program is terminated in this way the
ok bit becomes false.

System (10,1,s)

or

System (10,1i,arr), parent message

system The result of the answer from the parent or 0

arr

meaning that the message has not been sent as the
message claim is exceeded. The normal result is 1
cf. (2).

(call value, integer). Only significant if the
third parameter is a string. If so, the value 1
will indicate a request to the parent to stop the
process until the answer arrives.

(call value, string). A text of up to 21
non-blind characters will be sent as a print
message to the parent. If the text is shorter
than 21 characters, the text will be supplemented
with null characters. If it is longer, it will be
cut to 21 characters.

(call and return value, integer, long, real,
double or complex array, length >= 8 words). The
contents of the first 8 words will uncritically
be sent as a message to the parent. If the wait
indication is set in the first word (the last bit
is 1, cf. (20), the answer is awaited in the
array, otherwise it is awaited in an anonymous
location, and the contents of the array is
unchanged.

The parent messages defined for the moment are described in (20).

System (11,i,arr), catalog bases

system always = 0 (null).

1
arr

dummy

(return value, integer, long, real, double or
complex array, length >= 8 words). Contains the
catalog ''ases associated with the job process.
1st and 2nd word: the catalog base

3rd and 4th word: the standard base

2. Procedure Descriptions, system

Page 302 ALGOLS, User’s Guide, Part 2

Sth and 6th word: the user base .
7th and 8th word: the max base

The user base is only defined when FP is present in the job process.

The standard base gives the temp scope or the login scope, the user base
gives the user scope, and the max base gives the project scope. The
catalog base is the base used for the moment, usually it is the standard
base.

System (12,1,arr), internal activity description
This entry is intended for debugging purposes.

system The number of activities declared by the
procedure activity. O means called in neutral
mode, in this case the values of arr are
undefined.

i (call value, integer). Defines the number of .
the activity in question. If i=0 only the value
of system is determined.

arr (return value, integer, long, real, double or
complex array, length>~ 2 double words). The
internal activity description for the specified
activity is stored in arr (1) and on for as
many words as arr contains.

If declared integer array arr (1:13), the
contents of arr will be:

arr(l): If the activity is waiting in an implicit
passivate statement, arr (1) is the message
buffer address, otherwise arr (1) = O.

arr(2): The number of the activity at present using the
allocated memory space for the stack. This
number is only interesting for virtual
activities sharing the same storage area.

arr(3): The current "mode" of the program when system .
(12,...) is called:
>0: activity mode (system called from activity

no: arr(3)).
<0: disable mode (system called from activity
no: -arr(3)).

=0: monitor mode.

arr(4): First addr: The absolute address of first word
in the activity stack.

arr(5): Stack bottom: The absolute address of last addr
+ 1 in the activity stack.

arr(6): Last used: The absolute address defining the
current stack top for the activity.

arr(7): Virtual. If this value is 0, the given activity
uses a memory resident stack of its own. If the
value is >0, it defines a word no in the
virtual storage, in which case the given
activity shares memory space with at least one
other activity; here the value of arr (2) may ‘

2. Procedure Descriptions, system

ALGOLS, User’s Guide, Part 2

arr(8):

arr(9):

arr(10):
arr(ll):
arr(12):

arr(13):

Page 303

be of interest.

State of the activity:

=0: The activity is empty, i.e. after
declaration, after execution of final end,
or after runtime alarm termination.

=1: The activity is waiting in a passivate
statement, written in the procedure.

=2: The activity is waiting in a passivate
statement in the zone i/o system.

=3: The activity is waiting in an activate
statement, i.e. it has activated another
activity.

If the activity is executing (i.e. system (12)

is called from the activity itself), arr (8)

shows how the activity latest was passivated.

Youngest zone. Head of the zone chain of the

activity. If arr (9) = 1 shift 22, this chain

is empty for the moment,

CSR. The context block stackref of the given

activity.

CZA. The context descriptor chain for the given

activity.

Trap chain. The chain of trap labels for the

given activity.

Limit last used. The absolute address of the

highest stack top so far for the activity.

Last used oscillates between stack bottom and

first addr, updating limit last used each time

it is exceeded. The difference between limit

last used and first addr designates the so far

not used part of the activity stack.

System (13, 1, arr), fp present, compiler version and
release, rts segments

system
i

arr

0 means fp is present in the job process

1 means that it is not

(return value, integer). The version number of

the compiler, which translated the program.

(return value integer, long, real, double or

complex array,

length > = 2 double words).

Release and rts segment information is stored

in the first word of arr and on.

If arr is declared integer array arr (1:4), the

values will be:

arr(l) release no shift 12 + subrelease no

arr(2) release year shift 12 + month*100+day

arr(3) no of resident rts segments. Since the
segments of the program are numbered
0,1,..., progsize, arr (3) will be the
number of the first non-resident
rts-segment.

arr(4) no of rts segments, resident and non
resident. May also be interpreted as

2. Procedure Descriptions, system

Page 304 ALGOLS, User’s Guide, Part 2

the number of the first program .
segment.

System (14, i, ia), latest answer

system Undefined.
i (dummy)
ia (return value, integer, long, real, double or
complex array, length >= 16 halfwords).
If declared integer array ia (1l:11) the array
contains:
ia (1) - 1ia (8): latest answer received in
the i/o0 system of the
runtime system, i1.e. the
answer to the latest i/o
operation caused by a
blockchange in the call of
any character or block
input or output procedure .
throughout the entire
program.
ia (9) - ia (11): dummy .

System (15,1i,arr), free memory, virtual data file name

system The number of halfwords available in the low
end partition of the job process for
reservation of further variables leaving only
1024 halfwords for program segments. When
called in an activity, no 1024 halfwords are
left for segments.
Ref. [15] gives the rules for computing the
number of halfwords occupied by a set of
variables.

i (return value, integer). The number of
halfwords available in the upper end partition
of the job process for reservation of further .
zone buffers and share descriptors, leaving
only 1024 halfwords for program segments. The
value is not different when called in activity
mode, only activities will never allocate zone
buffers in the high end partition.

arr (return value, integer, long, real, double, or
complex array, length >= 2 doublewords).
The name of the document which holds the
virtual data file is assigned to the first 2
doublewords of arr. The document is always a
backing storage area.

Example 1: Reserving a maximum array
The following program reserves the greatest array possible at that point

of the algorithm. However, the program in the inner block will probably
run very slowly because of frequent transfers of program segments from .

2. Procedure Descriptions, system

ALGOLS, User’s Guide, Part 2 Page 305

the backing storage (unless it has sufficient storage space beyound the
address 1M for paging). Furthermore, the program will not be able to
call a procedure, as this again is a block needing reservation.

begin integer i; array arr (1:2);
begin array ra (1:system(2)free core:(i,arr)//4);
length:= i//4; ...

If you instead programmed like this:

begin integer i; array arr(1:2);
system(2,1,arr); <* free core *>
begin array ra(1:i//4-p);

you would have to subtract some value p corresponding to the further
locations occupied by the block declaration of the inner block (see ref.

[15]).

Example 2: Array bounds

An array of arbitrary dimensions might be zero set by means of the
following procedure:

procedure clear(ra); array ra;
begin integer low,up;
for low:= system(3,up,ra) <* bounds *>
step 1 until up do
ra(low):= 0;
end;

Example 3: Message buffers available

A program may find the number of message buffers it may use for
communication with other processes:

begin integer array descr(1:14); integer i,bufs;
long array la(1:2);
comment first the process description address of the job is found, next the
description is copied to descr;
system (5<*move core*>,
system(6<*own process*>, i,la), descr);
bufs:= descr(14) shift (-12) extract 12;
comment the description format is given in (2).

The program should now restrict itself to using bufs - 1 double buffered
zones simultaneously.

2. Procedure Descriptions, system

Page 306

ALGOLS, User’s Guide, Part 2

Example 4: Opening to a *hidden’ area

Suppose you want to connect a zone to an area with scope project, but
the area is ’hidden’ behind an area with the same name on scope user.
The following procedure may do the job.

procedure openproject(z,doc,giveup);
zone Z;
string doc; integer giveup;
begin zone myself(1,1,stderror);
integer array catbase(1:8);
<*the name must be empty in the open call used
by setcatbase*>
open(myself, 0,<::>,0);
system(11,0,catbase); <*bases*>
<*now set the catalog base to max base*>
catbase(1):= catbase(7);
catbase(2):= catbase(8);
monitor(72,mysel f,0,catbase); <*set catbase*>
<*now open, crete area process, establish the
name table address and leave the zone just
opened*>
open(z,4,doc,giveup);
inrec6(z,0);
setposition(z,0,0);
<*in case of output to the area the process
must be reserved*>
monitor (8, z, 0, catbase); <*reserve process*>
<*at last set the catalog base to standard*>
catbase(1):= catbase(3);
catbase(2):= catbase(4);
monitor(72,mysel f,0,catbase); <*set catbase*>
end;

Example 5: Conversion of files

The procedure converts the specified file on the specified printer and
paper, when the program is executed as part of a Boss job. The
procedure works exactly as the utility program convert.

integer procedure convertproc(name,printer,paper):
long array name;

long printer; integer paper;
<*

convertproc (return, integer)

ok

cfbuf exceeded

name not found

login scope

temp resources exceeded

nam. in use

name is not area

name is not a text file

attention status at remote batch term.

NO WM S WN -0

ey
o

2. Procedure Descriptions, system

ALGOLS, User’s Guide, Part 2 Page 307

. 20 device unknown

21 device not printer
22 parent device disconnected

name (call, long array contains the name of the
file

printer (call, long) contains the name of the
printer:

<::>output on remote printer if any is
present

<:std:>output on standard printer, local
to the host

<:printername:> output on the remote
printer with the specified name(max 5

chars)
*>

begin integer array m(1:8);
. long field Lf;
m(1):= 30 shift 12 + 1 shift 9 + 1;
Lf:= 6;
m.lf:= if printer = long<::>
then long<:conv:> else printer;
m(4):= paper;
Lf:= 12;
m.lf:= name(1);
Lf:= 16;
m.lf:= if name(1) extract 8 = 0
then 0 else name(2);
system(10<*parent message*>,1,m);
convertproc:= m(1);
end convertproc;

Example 6:

Further examples on the use of system can be found in the Examples 2,
. 3, 4, and 9 of monitor.

Example 7:

See Example 1 of w_activity.

2. Procedure Descriptions, system

Page 308 ALGOLS, User’s Guide, Part 2

2.164 systime

This real standard procedure gives access to the real time clock in the
monitor and to the CPU time used by the job. Further, it may convert
elapsed time into date and clock.

Call:
systime (fnc, time, r)

systime (return value, real). Meaning depends on fnc.

fne (call value, integer).

time (call value, real or integer). Is a time
expressed in elapsed seconds since midnight 31
December 1967.

r (return value, real). Meaning depends on fnc.

The value of fnc is restricted to 1 <= fnc <= 7 and determines the
meaning of systime as follows:

fnc = 1, time measuring

systime The CPU time used by the job. The time is given
in seconds with an accuracy of: RC9000-10: 20
milliseconds, RC8000: the length of a time
slice, usually 25.6 milliseconds.

time Base for real time measurement.

r Real time given as the number of seconds
elapsed since the moment given by ’'time’.
Real time is given with an accuracy of :
RC9000-10: 20 milliseconds, RC8000: 0.1
milliseconds, but the limited accuracy of reals
may cause a somewhat greater error.

fnc = 2, date and clock (ddmmyy)

systime Becomes day*100 00 + month*100 + year
corresponding to time. The year is taken modulo

100.
time The time to be converted to date and clock.
r Becomes hour*100 00 + minute*100 + second.

Fractions of a second are cut off.

fnc = 3, set clock

This function is usually forbidden in a job process. If so the execution is
terminated.

systime Undefined.
time The real time clock is initialised with the

2. Procedure Descriptions, systime

é

ALGOLS, User’s Guide, Part 2

value of time.
Not changed.

Page 309

2. Procedure Descriptions, systime

Page 310

ALGOLS, User's Guide, Part 2

fnc = 4, 1SO date and clock(yymmdd)

systime Becomes year*100 00 + month*100 + day
corresponding to time. The year is taken modulo

100.
time The time to be converted to date and clock.
r Becomes hour*100 00 + minute*100 + second.

Fractions of a second are cut off.

fnc = §, time measuring (ISO date and clock)

systime Becomes year*100 00 + month*100 + day.
The year is taken modulo 100.

time Base for real time measurement.

r Becomes hour*100 00 + minute*100 + second.
Fractions of a second are cut off.

This function works as systime (1,...); systime (4,..);

fnc = 6, transforms shortclock to decimal time

systime Becomes year*100 00 + month*100 + day.
The year is taken modulo 100.

time Shortclock.

r Becomes hour*100 00 + minute*100 + se cond.
Time is given with an accuracy of 2 minutes.

fnc = 7, get shortclock

systime Becomes shortclock.
time Base for real time measurement.
r Becomes shortclock.

Example 1: Timing a loop

The following program prints the CPU time and real time used by a part
of the program as seconds with 2 decimals:

cpu:= systime(1,0,base);

The program part to be timed;

cpu:= systime(1,base,time) - cpu;
comment complete timing before printing;
write(out,<<dddd.dd>,cpu,time);

If the time measured is short compared with the accuracy, you should
compensate for the time spent by calling systime, and make a loop that
executes the statement(s) several thousand times (here you must
compensate for the loop). The cpu time will depend some vhat on the
activities of other processes. The real time used is highly dependent on
other processes.

2. Procedure Descriptions, systime

ALGOLS, User’s Guide, Part 2 Page 311

In RC8000, the real time measuring shown above will be inaccurate with
about 1 millisecond for each year that has passed since 1967. This is due
to the limited accuracy for the real numbers. An accuracy of 0.1
millisecond may be obtained by measuring relatively to a base, like this:

systime(1,0,base);

cpu:= gystime(1,base,time);
The program part to be timed;
cpu:= systime(1,base,t) - cpu;
time:= t - time;

In RC9000-10, you may compensate for the limited accuracy by timing a
loop over several thousand repetitions.

Example 2: Print date and clock

systime(1,0,time);

write(out,<< dd dd dd>, systime(4,time,r), r);

will produce output like this:

80 05 28 22 53 37

The same can be obtained in this shorter version:

write (out,<< dd dd dd>, systime(5, 0, r),r);

Example 3: Print shortclock

write (out, <<dddddd.dddd>,
systime(6,tail(6),r) + r/1 000 000);

will output the shortclock stored in tail(6).

Example 4: Get shortclock

tail(6): = systime(7,0,short);

2. Procedure Descriptions, systime

Page 312 ALGOLS, User’s Guide, Part 2

2.165 tableindex

This integer standard identifier is used by all the character reading
procedures when a non standard alphabet is selected. See intable.

The default value of tableindex is 0.

Example 1:
See Example 3 of readall.

2. Procedure Descriptions, tableindex

ALGOLS, User’s Guide, Part 2 Page 313

2.166 tofrom

This standard procedure is intended for copying sets of data to one
array field from another.

Call:
tofrom (to_field, from_field, size)

to_field (return value, boolean, integer, long,
real, double, or complex aray or zone
record). The contents of from_field (see
below) are copied into to_field. The
copying starts with the halfword with
index 1 and ends with the halfword with
index size.

from field (call value, boolean, integer, long, real,
double or complex array or zone record).
The contents are copied into to_field. The
copying starts with the halfword with
index 1 and ends with the halfword with
index size.

size (call value, integer). The number of
halfwords to be copied.
Size must be >= 0.

The reference halfword of both to_field and from_field must be a right
hand halfword, i.e. odd valued field variables should not be used to
indicate the array parameter.

The procedure performs an action equivalent to

begin long field Lf; integer field intf;

boolean field bf;

check size...;

for Lf:= 4 step 4 until size do
to_field.lf:= from_field.lf;

intf:= size - 1;

bf:= size;

if size mod 4 > 1 then
to_field.intf:= from_field.intf;

if size mod 2 > 0 then
to_field.bf:= from_field.bf;

end;

The parameters are only evaluated once. For one dimensional arrays
the copying by means of tofrom is faster than a repetitive loop when 8 or
more double words are moved.

When executed on a CPU capable of doing the "move halfword"
instruction, the cop-ing is performed by this instruction, unless the two
array fields overlap and data is moved towards higher addresses (cf.
Example 1). Copying by means of the "move halfwords" instruction is
even faster than any repetitive loop.

2. Procedure Descriptions, tofrom

Page 314 ALGOLS, User’s Guide, Part 2

Example 1: Zerosetting an array

On account of the above shown equivalence a large array can be cleared
(each element is set to the binary value zero) by setting the first double
word to binary zero and then let tofrom do the rest. Suppose that the
array arr is declared

real array arr(low:up)

and that raf and rafl are real array fields, then

raf:= 4*low; rafl:= raf - 4;

arr.raf1(1):= real <::>;

tofrom(arr.raf,arr.raft, (up-low)*$);

may do the job.

Example 2:
See Example 2 of inrec6.

2. Procedure Descriptions, tofrom

ALGOLS, User’s Guide, Part 2 Page 315

2.167 tofromchar

The procedure copies a number of characters from one array field,
starting in a given character position, to another array field, starting in a
given character position.

Call :

tofromchar (to_field, to_pos, from_field, from_pos,
chars);

to_field (return value, array of any type, zone

record). The target array field to which
characters are copied.

to_pos (call and return value, integer). At call
the character position in the target array
field where the first character should go,
at return the character position after the
last character copied.

from _field (call value, array of any type or zone
record). The source array field from where
the characters are copied.

from_pos (call and return value, integer). At call
the character position in the source array
field from where the first character should
be taken, at return the character position
after the last character copied

(frompos+chars).

chars (call value, integer). The number of
characters to be copied. The number must be
> 0,

Character position

The character positions in an array field are numbered 1, 2, 3, ..
Position no. 1 is the 8 most significant bits of the word with halfword
index no. 1. If one of the start positions, to_pos and from_pos, or one of
the end positions, to l_pos + chars and from_pos + chars, exceeds the
bounds of its array field, a field alarm occurs.

Copying

The reference halfword of both the to_field and the from_field must be
a right hand halfword, i.e. odd field values should not be used to indicate
the array fields (or an 'oddfield alarm occurs).

The procedure performs the copying by doing as many consecutive

double word assignments as possible, in case the source and target

2. Procedure Descriptions, tofromchar

Page 316 ALGOLS, User’s Guide, Part 2

relative character positions within the word boundaries are the same, or
double word load, single word store with one or two character shifts in
between to outbalance the position differences.

The copying will go towards high or towards low addresses to prevent
overwriting already copied characters.

The parameters are only evaluated once.

2. Procedure Descriptions, tofromchar

ALGOLS, User's Guide, Part 2

Page 317

2.168 trap

This standard procedure assigns a value to the traplabel of an algol
block, so that the program itself may control run time alarms.

Call:

trap (tlabel) or
trap (no)

tlabel (call value, label). The value of tlabel, which

no

To

defines a program point, is evaluated and
assigned to the traplabel of the block, where
the procedure is called. tlabel must be local
to this block.

(call value, integer). When no = O the
traplabel of the block, where the procedure
call took place, is cleared. When no<0 an
alarm is provoked.

each algol block (even an incarnation of a context block) is

associated an anonymous label variable, called the traplabel of the block.
At block entry this variable is cleared (in context blocks initialized as
other context variables). Assignment of a label value to the traplabel is
done by a call of trap(tlabel).

When an alarm occurs, the run time system proceeds as follows:

Depending on the value of the standard variable trapmode, the
ususal alarm message is printed as described in (15).

Instead of terminating the program, the traplabel of the block where
the alarm occured, is examined. If the value of the traplabel is not
zero, a jump (goto) is made to the program point defined by that
label.

If the value of the traplabel is zero, the dynamically enclosing block
is entered, and the traplabel of this block is examined as described
above. If no non-zero label value is found in any active block, the
program terminates as described in (15).

When the program point defined by the traplabel is entered caused
by an alarm, the traplabel is cleared - to prevent endless loops in
traproutines. Finally the type of alarm is signalled in the standard
variable: alarm_cause.

The traplabel of a block can be cleared by the call: trap(0).

When trap(no) is called, where no< >0, a run time alarm is provoked,
with the text

trap <no>

18:

If this alarm is trapped by a non-zero traplabel, the value of alarmcause

2. Procedure Descriptions, trap

Page 318 ALGOLS, User's Guide, Part 2

alarmcause = <no> shift 24 add (-13). ‘

This call of trap is intended for use as termination of a traproutine in
give up situations. The explicit value of alarm cause makes it possible for
traproutines in dynamicly enclosing blocks to detect give up situations
from traproutines in dynamicly inner blocks.

Example 1: tracing program flow

When debugging programs it may be convenient to trace the program
flow at some points in the program. A procedure facilitating this might
be:

procedure trace(n); integer n;

begin
trap(finis); <*traplabel := finis*>
trap(n); <*provoke alarm*>
finis:

end; .

If the procedure is called somewhere in the program the error message
will be

trap <n> zone/trap

called from Lline <*call point in procedure trace*>
called from Lline <*call point in program*>

called from

called from

After this message the program will continue at the traplabel of the
procedure trace, i.e. from the code following the label finis, and just
return to the program.

Example 2: Time out of endless loops

If a program is executed as part of a Boss job (which will be the case in
many online applications) the trapsystem supplies a possibility for
writing pieces of code controlling endless loops of the program itself:

begin integer array mess(0:7);

trap(timeout);

mess(0) := 28 shift 12 + 3 shift 5;

mess(6) := 30;

wess(7) := 1000;

system(10,0,mess);

<*send timer message to Boss, expecting an interrupt (break 8) after 30

seconds*>

<*now the critical code is executed*>

timeout: <*traproutine:*>

caus * := slarmcause extract 24;
type := alarmcause shift (-24);

2. Procedure Descriptions, trap

ALGOLS, User’s Guide, Part 2 Page 319

' if cause = -9 and type = 8 then
begin
<*a parent break has occured, i.e. timer break from Boss*>
end else

begin <*some other alarm occured*>
trapmode := 1 shift 13;
<*ignore trap message*>
trap(1); <*give up*>
end;

2. Procedure Descriptions, trap

Page 320 ALGOLS, User’s Guide, Part 2

Example 3: Traproutines in two levels .

The following sketch illustrates the use in two block levels:

begin alarms occuring here will cause a program
<*declarations*> termination

trap(alarm_1);

alarms occuring here will cause the program
begin to continue at alarm_1
<declarations>

trap(alarm_2);

alarms occuring here will cause the program

to continue at alarm_2
if false then alarms occuring here will cause the program .
begin to continue at alarm_1
atarm_2:
<*traproutine2*>
end
end;
if false then alarms occurring here will cause a program
begin termination
alarm_1:
<*traproutinel*>

end;

2. Procedure Descriptions, trap

ALGOLS, User’s Guide, Part 2 Page 321

2.169 trapmode

This integer standard identifier is used in connection with suppression
of errormessages.

The value of trapmode is a bitpattern, which may cause the printing of
an error message to be ignored. To each value of alarm cause extract 24
corresponds a bit in trapmode, which is tested by the run time system,
when an error message has to be printed, according to the following
algorithm:

cause:= alarm cause extract 24;

if cause >= 0 then cause := 0;

if trapmode shift cause extract 1 = O then

output error message;

The default value of trapmode is 0.

Example 1:
The statement:
trapmode := 1 shift 7 + 1 shift 10;

causes the printing of the standard error message for real overflow to be
ignored. After normal program termination the message;

end <no of segments transferred>

will not appear in the output.

By means of trapmode it is possible to program your own alarm output
routine.

Example 2:

See Example 2 in trap.

2. Procedure Descriptions, trapmode

Page 322 ALGOLS, User’s Guide, Part 2

2.170 underflows

This integer standard identifier determines the action on floating point
underflow:

underflows < 0
The execution is terminated when underflow occurs.
underflows >= 0

The value of underflows is increased by one when underflow occurs. The
result of the operation which caused the underflow is 0.

When execution starts, underflows is 0.

A floating-point underflow occurs when a result gets closer to zero than
1.6-617 without being zero exactly.

Example 1:

To check whether a real underflow occured during the evaluation of an
expression, proceed as follows:

underflows:= 0;

Evaluate the expression;
if underflows > 0 then handle the underflow situation;

2. Procedure Descriptions, underflows

ALGOLS, User’s Guide, Part 2 Page 323

2.171 value

This delimiter, which is a specificator, is used in specifications.

Syntax:

value <identifier list>

Semantic:

The value specificator specifies, that the formal parameters mentioned
in the identifier list are called by value cf. (14).

When a formal parameter of arithmetic type (integer, long, or real) is
value specified, the actual parameter may be of any arithmetic type.

Example 1:

procedure p (a, b, ¢);

value a, b, c;
integer a;

real b;
long c;
begin ... end;

<*all of the following procedure calls are lLegal*>
p (1, 0.5, extend 2);
p (0.5, extend 2, 1);
p (extend 2, 1, 0.5);

2. Procedure Descriptions, value

GG

Page 324 ALGOLS, User's Guide, Part 2

2.172 virtual

This standard procedure connects a backing storage area to the calling
program as a virtual storage like openvirtual, but with out writing back
anything into the virtual storage area being disconnected (cf.
openvirtual).

Call:
virtual (filename)

filename (call value, string). A text string specifying
the name of the backing storage area to be
connected as virtual storage.
In case of the empty string, the program file
itself is connected as virtual storage. .

Function:

The procedure works as openvirtual, except that the contents of own

core and internal context descriptions are not transferred to the virtual

storage area being disconnected. The procedure is useful when

- you don’t have writeaccess to the program file

- the program file is a file of compressed programs

- the program is a FORTRAN program with DATA initialization of
COMMON variables and/or ZONE COMMONS, and it should
start over and over again without having to be recompiled.

On the other hand, it is not possible to restart the program connecting

to the program file after a break down without a recompilation.

2. Procedure Descriptions, virtual

ALGOLS, User’s Guide, Part 2

Page 325

2.173 wactivity

This integer standard procedure waits for an event (message or answer)
in the event queue, supplying the identification of the responsible

activity.

Call:

w_activity (buf)

w_activity

buf

Function:

(return value, integer). The value
designates the kind of the event received
from the event queue (see below).

(call and return value, integer). If the
call value is 0, the event queue is scanned
from the beginning, otherwise the value must
be the address of a message buffer belonging
to the calling process. In the latter case,
the event queue is scanned from the event
arriving after the given buffer. (cf.
monitor 24, wait event).

The return address is the address of the
next buffer in the queue.

The procedure waits for an event (message or answer) in the event
queue, similar to the call monitor (24,...).

The procedure must be called in monitor mode, otherwise the run is
terminated with an alarm.

The intended use of w_activity is scheduling activities concurrently
executing i/o transfers.

See also monitor (66,...), test event.

Result value:

The return value of w_activity designates the kind of the event and the
identification of the responsible activity:

-1: The event is an answer, and there is no activity at present waiting
for that answer.

0: The event is a message, sent by a process (by send_message)

>0: The event is an answer, and the value of w_activity is an activity
number. The designated activity is waiting for the answer just
received, i.e. the activity is waiting in an implicit passivate

statement.

2. Procedure Descriptions, wactivity

Page 326 ALGOLS, User's Guide, Part 2

Example 1: '

The following procedure, using monitor (24,..) and system (12,..) is
equivalent to w_activity:

integer procedure wait_activity (buf);
integer buf;
begin

integer result, actno, buf;

zone z(1, 1, stderror);

integer array ia(1:13);

result:= system (12,0,7a); <*activity descr*>
if result = 0 then system (9,0, <:<10>mode:>);
result:= monitor(24,z,buf,ia);

actno:= fa(1);

if result = 1 <*answer*> then

begin

if actno > 0 then .
begin
system (12, actno, ia);
if ia(1)= buf then result:= actno
else result:= -1;
end
else result:= -1;
end;
wait_activity:= result;
end wait_activity;

Example 2:

See Example 1 of activity.

2. Procedure Descriptions, wactivity

ALGOLS, User’s Guide, Part 2 Page 327

2.174 waittrans

This integer standard procedure awaits the arrival of a format 8000
transaction. On arrival the transaction head is input and converted to
integers, which on return are assigned to return parameters of the
procedure.

Call:

waittrans (z, format, destination, auxl, aux2)

wait_trans (return value integer). The field_type of
the first field of the transaction (see

readfield).

z (call and return value, zone). Specifies the
document from which transactions are
arriving.

format (return value, integer). Defines the format

of the transaction:

unknown format

read modified format

short read format

write format

read buffer format

read status format

connect format
In communication with display terminals, the
transaction format will always be 1, 2, or
4. The formats 0, 3, 5 and 6 may be actual
in communication with other computers or
other RC9000/RC8000 applications.

destination (return value, integer). Designates the
originator (sender) of the transaction, i.e.
display terminal, computer, or RC9000/RC8000
application (see below).

auxl (return value, integer). Depending on the
format of the transaction, auxl, the AID
code specifies the attention type, write
command code, or is undefined (see below).

aux?2 (return value, integer). Depending on the
format of the transaction, aux2 specifies
the cursorposition, write control character,
status byte or is undefined (see below).

AUV P WNH-O

Function:

The orginator of the transaction is returned in destination as a pair of
numbers (cu, dev);

cu shift 12 + device

where cu is the communication unit, and device is a display terminal,
computer, or an RC9000/RC8000 application. cu and device are ISO

2. Procedure Descriptions, waittrans

Page 328 ALGOLS, User’s Guide, Part 2

characters converted to integers in the range 0,1,2,....., 127. The routing
of transactions and connection between integers and process names is
done by the environment.

The interpretation of aux1 and aux2 depends on the transaction format
as follows (cf.(7), (18) and appendix B):

Format 1,2 and 4:

aux1 is the attention key identification (AID) as shown in the table
below.

aux? is the cursor position defined as an integer in the range 0,1,..., 1919.
The cursor position is a conversion of the 2-character ISO character
representation of the cursor address. (aux2 is undefined when format =
2).

Format 3:

auxl is the write command code (WCODE) and aux2 is the write
control character (WCC).

WCODE defines the type of write operation as shown in the table
below.

WCC is a bitpattern defining the modes of display terminal output
operations by the following bits:

1 shift 0: Reset "Modified Data Tag" (MDT) bits

1 shift 1: Keyboard Restore

1 shift 2: Sound alarm

Format 5:
aux1 is the command byte STATUS and aux2 the status byte.

Format 6:
aux1 is the command byte CONNECT and aux2 is undefined.

Format 0:
aux1 and aux2 are undefined.

|
\
2. Procedure Descriptions, waittrans

ALGOLS, User’s Guide, Part 2

Page 329

Format aus1 aux2
No: Name: Code: Name: value: Name:
0 illegal - undefined - undef ined

1 read modified

1 SEND (129)
2 PF1 (130)
3 PF2 131

13 PF12 €(141)
19 PF13 €147)
20 PF14 (148)
21 CURSEL (149)
42 MSR (170)
43 3278MsR (171)
45 PF15 (173)

54 PF24 (182)

0-1919 cursor pos.

2 short read 14 PA1 (142) - undefined
15 PA2 (143)
16 PA3 (144)
17 CLEAR (145)
22 PA4 (150)
23 PAS (151)
24 USM (152)
27 RESET (155)
34 PA6 (162)
38 PA10 (166)
3 write 49 WRT Q7 128+(0-63) wcC

53 EWRT (181)
55 cey (183)
63 EAJ (191
50 RB 178)
54 RM (182)
62 RAA €190)

128+(0-63) WcCC
128+(0-63) ccc
- undef ined
- undef ined
- undef ined
- undef ined

4 read buffer

*18 PF13 (146)
32 NO AT (160)
33 NO AP (161)

0-1919 cursor pos.

5 read status

28 STATUS (156)

0-295 status byte

6 connect

29 CONNECT (157)

- undefined

* in special systems only

2. Procedure Descriptions, waittrans

Page 330

ALGOLS, User’s Guide, Part 2

Zone state:

The zone state must be ready for character reading, or ready for
waittrans (state 0, 1, 2, 10, or 11 ie. since the latest call of open, only
setposition, character reading or waittrans). On exit from waittrans, the
character reading states 1 or 2 are changed to 9 + 1 or 9 + 2, ie,, zone
state = "after waittrans", to ensure that the next call is readfield or a
new call of waittrans.

If the application using waittrans is a Boss job, the zone must be opened
with mode kind = 10: open (z, 10, <name of input>, <give up>);

Alphabet:

The character input table used by the algol character reading procedures
is changed, so that later calls of these procedures translate the
characters: SBA, SF, IC, EUA, PT, RA and ETX to class = 8 and value
= 25, causing an EM-reaction, when character reading procedures
attempt exceeding a transaction field.

However, the procedure readchar may continue reading beyond this
pseudo EM, in which case a field designator may be lost.

Example 1:

See example 1 of activity (the procedure input_link).

2. Procedure Descriptions, waittrans

ALGOLS, User’s Guide, Part 2 Page 331

2.175 write

This integer standard procedure prints text, numbers, and single
characters on a document or into an array. Any number of such items in
any sequence may be output by one call of write.

Call:
write (z, one or more source parameters)

write (return value, integer). The absolute value of
write gives the number of characters printed.
Write is negative if a parameter error as been
encountered, otherwise write is positive.

z (call and return value, zone or return value,
array of type boolean, integer, long, real,
double or complex).

In case of a zone, it specifies the document,
the buffering, and the position of the document
cf. (15).

In case of an array, the characters will be
packed into the array, 3 to a word, starting in
the word with lexicographical index 1.

source (call value, string, integer, long, real,
boolean, or array of type integer, long, real,
double or complex or zone record).

The source parameter specify what is to be
printed.

Function:

If write is not called as a formal procedure, all parameters, which are
not string expressions have been evaluated before write was entered.
Now, write scans the source parameters from left to right. Each
parameter is evaluated if it was not evaluated before write was entered,
and then it is handled according to its type as described below.

If the parameter z is an array, the writing stops when the array is full
and the remaining parameters are abandoned.

string:

A text string is printed as the corresponding sequence of characters. The
null character which terminates the string is not printed. A layout string
is stored and used for printing of succeeding numbers in the parameter
list. Layouts are described below.

real, long, integer:

The number is printed as a sequence of ISO characters according to the
latest layout in the list. If no layout has appeared in the present
parameter list, the standard layout << -dd.dddd> is used to print a
real, and the standard layout << d> is used to print an integer or a
long.

2. Procedure Descriptions, write

Page 332 ALGOLS, User’s Guide, Part 2

A real number printed with an integer or long layout, i.e. no decimal ‘
point and no exponent part, will be rounded to the correct value, but
notice that negative values are printed as a sign followed by the possibly
rounded positive value.

A real number is printed with a relative accuracy of about 6’-11,
provided that the layout has a sufficient number of significant digit
positions.

boolean:

A boolean parameter must be followed by an integer parameter. If the
boolean contains the bit pattern "true" cf. (14) the parameter pair is
used as a fill parameter (see below). Otherwise the last 8 bits of the
boolean pattern cf. (15) are printed as a character as many times as
specified by the integer parameter. If the integer is <= 0, nothing is
printed.

array:

An array of type integer, long, real, double or complex or a zone record

is considered to contain a text stored as text portions, in an integer array ‘
possibly ending with half a text portion cf. (15).

Starting with the element with lexicographical index 1, cf. (14), the text
portions are printed word by word, in lexicographical order until either a

null character is met, or the upper index is reached. If the
lexicographical lower index is greater than 1, the array parameter is
considered to be an erroneous parameter - see below.

unknown type or type violation:

If a source parameter cannot be classified as above or rules of
parameter types are violated, write will print one of the runtime
warnings:

param <integer> write
called from...

or

index <integer> write
called from

or

string <integer> write
called from...

on current output zone. The <integer> will be

<parameter no>*100 + kind

kind is one of the kinds in (10), page 39.

Next, write will print the alarm text

<:<10>***write: param<l0>:>

in the zone or array used as target for writing, drop the parameter and

continue interpretation of its parameter list. .

2. Procedure Descriptions, write

ALGOLS, User’s Guide, Part 2 Page 333

Writing into a zone:

Zone state:

The zone used must be open and ready for character printing (state 0 or
3, see getzone6), i.e. since the latest call of open or setposition, only
character output may have been made on that zone. To make sense, the
document should be an internal process, a backing storage area, a disc, a
terminal, a tape punch, a line printer or a magnetic tape. In the latter
case setposition(z,...) must have been called after open(z,...).

First character:
The first character is printed just after the logical position of the
document.

Last character:

When write returns, current word is filled up with NULL characters (if
not already filled up), its value will tell how many characters were
written, disregarding the possible terminating fill characters, and the
logical position of the zone points to just after the last character of
current word.

The zone record is not available (it is of length 0).

Writing into an array:

Zone state:
Is irrelevant.

First character:
The first character is printed in the first position of the word with
lexicographical index 1.

Last character:

When write returns, current word word is filled up with ‘DEL’ character
or any other character set by replacechar (8, character) (if not already
filled up) and its value will tell how many characters were written
disregarding the possible terminating fill characters, but apart from that
there is no logical position preserved.

Blocking:

When writing into an array, the array is the block, and when it is filled
with characters, write returns abandoning further source parameters.
Layouts:

The symbols of a layout give a symbolic representation of the digits,
spaces, and other symbols as they will appear in the printed number.
Indeed, the finally printed number will have exactly the same numer of

printed characters as is present in the layout (except in case of alarm
printing, see below).

2. Procedure Descriptions, write

Page 334

ALGOLS, User’s Guide, Part 2

The general form of a layout is a sequence of layout characters enclosed
in < <>. The sequence of layout characters is composed like this:

<spaces><sign><number part><exp.part><sign><fill>
The number part is composed of a sequence of digit positions like this:
<first letter><d’'s><zeroes>

where one point representing the position of the decimal point may be
inserted between two of the digit positions. A space or _ may be inserted
between any two digit positions which then are sepa rated by a space in
the finally printed number.

Layout constituents:

<spaces>:
Concist of a (possible empty) sequence of spaces or ’s. They will
appear as that many spaces in the printed number.

<sign> is empty:
A positive number is printed without a position for the sign. A negative
number is printed with an alarm layout (see below).

<sign> is -
The sign of the number is printed as space for a positive number, - for a
negative number.

<sign> is +:
The sign of the number is printed as + for a positive, - for a negative
number.

<sign> can be placed either in front of the <number part>, or in the
end of the layout (before a possible <fill>). In the first case the sign of
the number is printed as a leading sign in front of the first digit or first
digit position depending on <first letter> of the <number part>.

When <sign> is placed in the end of the layout, the sign of the number
is printed after the last digit in a position defined by <fill> and <first
letter> of the <number part>.

<first letter> is z:

Digit positions preceding the first non-zero digit are printed as zeroes.
A possible leading sign is printed in front of the first digit position, while
a possible sign in the end is printed just after the last digit position.

<first letter> is d:

Digit positions preceding the first non-zero digit are printed as spaces if
they are in front of the first digit position before the point, and as zero
es otherwise. A possible leading sign is printed just before the first digit
printed, while a possible sign in the end is printed just after the last digit
position.

<first letter> is f:

Digits are printed as for <first letter> = d. A possible leading sign is
printed in front of the first digit position, while a possible sign in the end
is printed just before the last fillposition.

2. Procedure Descriptions, write

ALGOLS, User’s Guide, Part 2 Page 335

<first letter> is b:
Exactly as for <first letter> = d, except if all digits are 0. Then all the
layout positions are printed as spaces.

<d’s>:

Consist of a (possibly empty) sequence of the letter d. The length of this
sequence + 1 (for the first letter) give the maximum number of printed
significant digits. All numbers will be correctly rounded to the number of
significant digits printed but notice, that negatlve values are printed as
the sign followed by the possibly rounded positive value.

<zeroes>:

Consist of a (possibly empty) sequence of zeroes. If a non-empty
exponent is specified, the significant digits of the number are allowed to
move to the right, using the digit positions g;ven by <zeroes>. This is
done in such a way that the decimal point is kept in the position
specified and the exponent part is made divisible by m+1, where m is
the number of zeroes in the layout. Unused digit positions to the right of
the point are printed as spaces.

<exp.part> is empty:
No exponent is printed as the digit positions must be able to hold the
digits of the number. Otherwise an alarm layout is used.

<exp.part> is <sign> <first letter> <d’s>:
The exponent part is printed as the symbol ’ followed by a tens exponent
printed as an integer with the layout <sign> <first letter> <d’s>. <first
letter> cannot be b in this case, and the exponent <sign> cannot be
placed in the end. If <first letter> is d or f and the tens exponent is 0,
the entire exponent part is printed as spaces.

<fill>:
Consist of a (possible empty) sequence of spaces or _’s. They will appear
as that may spaces in the end of the printed number, and the number is

printed with a fixed number of printing positions, even in case of alarm
printing (see below).

Limitations:

Write refuses to print real numbers with more than 12 significant digits.
If more are attempted only the first 12 are used.

The number of digit positions in front of the decimal point must not
exceed 15. The number of digit position after the decimal must not
exceed 15.

The number of digit positions in an exponent part must not exceed 3.

The number of leading spaces plus the number of digit positions in front
of the last space must not exceed 16.

Alarm printing:

2. Procedure Descriptions, write

Page 336

ALGOLS, User’s Guide, Part 2

If a negative number is printed without a sign position, a minus is
inserted consuming one extra position.

If an integer is printed with a layout containing too few d’s but no
zeroes, no decimal point, and no exponent part, the necessary number of
d’s are inserted.

If a number in other cases is too large to be printed with the layout
given, an exponent part is inserted with the necessary number of digit
positions. An existing exponent part is just extended with one or two d’s.

A number which is too small to be printed with the specified number of
significant digits is printed with fewer significant digits.

When the layout contains a non-empty <fill> of m positions, the first
m-1 positions may be used for the alarm layout. If this is not enough, the
number is cut off, and a termination star (*) is printed in the fill
position.

Fill parameter:

The parameter pair (true, integer) has a special meaning: it defines the
number of printing positions for the next parameter to be printed,
depending on the type of the parameter:

If the next parameter is a string, the defined number of printing
positions will be printed. If the string value is too long (i.e. there is not
room for at least one ending space), it will be truncated - the last
character being a star (*).

If it is shorter than the defined number of printing positions, it will be
extended by ending spaces.

If the next parameter is a pair (boolean, integer), the pair (true, integer)
will be ignored.

If the next parameter defines a number value, and the most recent
layout contains ending spaces (see above), the pair (true, integer) is
ignored.

If the next parameter defines a number value, and the most recent
layout does not contain ending spaces (that includes the standard
layouts), the pair (true, n) will print the number value using n printing
positions. If more positions are needed, for the number and one ending
space, the value is truncated, the last character being a star, (*)
otherwise it is extended by ending spaces.

Replacing characters:

All special characters used in a layout or by a fill parameter may be
changed by means of the procedure replacechar.

All characters output by write (and any other character printing
procedure) may be changed by selecting an output character table (see
outtable.)

2. Procedure Descriptions, write

ALGOLS, User’s Guide, Part 2 Page 337

Example 1:

write (out,<:<10>:>, %“a", &4, -12,
<<_+ddd.dd>,<: and:>,13)

will produce this line of output:

saaa -12 and +13.00

Example 2:
The call
write(out,s,<:,:>,r,<:,:>)

where s is a layout string and r is a real will print as shown below with
various layouts:

<<d.dd dd> <<-zddd> <<_+fdd00> <<-bd.000’-d>
,0.00 12, , 0000, , + 1230, , -1.2 ,
,0.1235, ,-0012, ,- 1, , .
,-0.1235, , 1235, , +12300, , -0.012' &4,
,1.23 4571, ,-1235'12,, +12300'3, ,12. ’-4,
Example 3: Tabulation
write(out,true,100,string text, string text2);
will print text2 in position 100 and on, except if text is longer than 99

characters or contains new line characters. See also Example 1 of
outtext.

Example 4:
Printing with ending sign and fill positions in layout:
The statement
for L:=1, 12, 123, 1234, 123456,
-1, -12, -123, -1234, -123456 do
write out, <:::>, string layout,l,6<::<10>:>);

will print as shown below for various layouts:

<<ddd- > <<zdd+ > <<fdd+ > <<ddd.d- > <<ddd.000+ >

1 : 001+ : : 1 +: : 1.0 s ¢ 1.00+
: 12 s 012+ @ @12 +: :12.0 : :12.0 +
2123 : 123+ @ 123 + @ :123.0 : :123.0 +

1234 @ 1234+ 1234 + 2123.471 @ @ 0.12374+
2123456 @ :123456%: :123456*: :123.5'3 : : 12.3 4+
s 1- @ :001- 1 -: : 10- : : 1.0 -
: 12- @ :012- 12 -: :12.0- : :12.0 -
$123- @ :123- 123 - : :123.0- : :123. -

2. Procedure Descriptions, write

Page 338 ALGOLS, User’s Guide, Part 2

$12%4- : :1234- ;1234 - @ :123.411-
2123456%: :123456%: :123456*: :123.5/3-

: 0.123'4-
: 12.3 '4-

Example 5: Printing with fill parameter:

write (out,
“ni%, 1, true, 10, <:example:> ,

“nt*, 1, true, 7, <:example:> ,
“nt*, 1, true, 5, 12345 R
“nlv, 1, true, 6, <<d> , 26,
“ni", 1, true, 2, “a" P G
snl, 1, true, 7, “b* 2,
“nlu, 1, true, 2, <<d.d >, 3.4,
walv, 1);

will print the following text:

sexample : ‘

texampl®*:
123*:
26 :
za%:
:bb:
:3.4

2. Procedure Descriptions, write

ALGOLS, User’s Guide, Part 2 Page 339

2.176 writefield

This standard procedure outputs a field designator in a format 8000
transaction.

Call:
writefield (z, fieldtype, aux)

z (call and return value, zone). Specifies the
document to which the current format 8000
transaction is output.

fieldtype (call value, integer). The type of the field
designator to be output according to the
table shown below.

aux (call value, integer). The interpretation
depends on fieldtype (see table below).

Zone state:

The zone must be in state 3 (ready for character output), and is left
unchanged.

The connection between fieldtype and ux is as follows:

field 1s0

type command char aux

1 SBA: Set buffer address 17 char position

2 SF : Start field 29 attribute char

3 IC : Insert cursor 19 not used

4 EUA: Erase unprotected to addr 18 char position

5 PT : Program tab 9 not used

6 RA : Repeat to addr 20 char shift 12 +
charposition

7 ETX: End of text 3 not used

10 USM: Unsolicited Message 3 not used

Character position is an integer in the range 0,1,.., 1919, which is a
conversion of the 2-character ISO character representation of the cursor
address.

An attribute character, which contains a bitpattern, defines the start of a
field and the characteristics for all character locations of the field. (The
field ends at the nex attribute charac ter).

bit no characteristic
2 x shift 5 x= 0: unprotected, - 1: protec'.ed
3 x shift 4 x= 0: alphanumeric, 1: numeric
4,5 x shift 2 x= 0: norm bright
x= 2: high bright

2. Procedure Descriptions, writefield

Page 340

ALGOLS, User’s Guide, Part 2

x= 3: non-display
7 x shift 0 Modified Data Tag (MDT);
identifies modified fields during
read modified generation:
x= 0: not modified, 1: modified.

For further information see (17), (18), and appendix B.

Example 1: Move cursor

The procedure moves the cursor to a specified line (0-23) and position
(0-79):

procedure cursor (z, line, pos);

zone 2;

integer line, pos ;
writefield (z, 1, line*80 + pos);

Example 2:

The following procedure erases all fields, unprotected as well as
protected, in the lines specified by the parameters, by writing spaces.

procedure erase (z, linel, line2);
zone z;
integer line1l, line2 ;
begin
writefield (z, 1, Line1*80 + 0);
<* the same as cursor (z, linel, 0)*>
writefield (z, 6, ‘sp’ shift 12 + Line2*80 + 79);
writefield (z, 1, Line1*80 + 0);
<*now the lines are ready for building new fields*>
end;

Example 3:

The following procedure creates a screen picture, in which each line
consists of a protected field with the text line <lineno> and an open
alphanumeric field:

procedure setmask (z, dest);
zone 2; integer dest;
begin
opentrans (z, 3<*write*>, dest, 49<*write*>, 3);
for Line:= 0 step 1 until 23 do
begin
writefield (z, 1, Line*80); <*set buf.adr*>
writefield (z, 2, 1 shift 5); <*set field prot.*>
write (z, <:line:>, << dd>, line);
writefield (z, 2, 0); <*set open field*>
if line=0 then
writefield (z, 3, 0); <*insert cursor*>
writefield (z, 6, 'sp’ shift 12 + Line*80 + 79);

2. Procedure Descriptions, writefield

ALGOLS, User's Guide, Part 2 Page 341

<*clear rest of the line with sp-char*>
end;
closetrans (2);
end;

2. Procedure Descriptions, writefield

Page 342 ALGOLS, User’s Guide, Part 2

2.177 writeint

This integer standard procedure is primarily intended for printing
entities which are held in integer or long variables, but which should be
printed as decimal fractions e.g. amount of currency. The procedure
works almost as write except that writeint refuses to print real variables
and that longs and integers may be printed with a decimal point placed
according to a layout.

Call:
writeint (z, one or more source parameters)

writeint (return value, integer). The absolute value of
writeint gives the number of characters
printed. Writeint is negative if a parameter
error has been encountered, otherwise writeint ’
is positive.

z (call and return value, or return value, zone
array of type boolean, integer, long, real,
double or complex).

In case of a zone, it specifies the document,

the buffering, and the position of the

document (see ref. 15).

In case of an array, the characters will be

packed into the array, 3 to a word, starting

in the word with lexicographical index 1.
source (call value, string, integer, long, boolean,

or array of type integer, long, real, double

or complex or a zone record).

Specifies what is to be printed.

Writeint evaluates its parameters as write. The parameters are handled
as for write, except that the appearance of a real will be considered to be
a parameter error, and integers and longs may be printed with a decimal
point inserted, see below.

Zone state:

as for write.

Blocking:

as for write.

Layouts:

Layours are written as described for write. If a layout with a decimal
point appears in the parameter list, subsequent numbers (i.e. integers
and longs) will be printed with a decimal point inserted. Consider a
layout with "dec" d’s or zeroes ap pearing to the right of the decimal

2. Procedure Descriptions, writeint

ALGOLS, User’s Guide, Part 2 Page 343

' point. The subsequent numbers will then be printed as if they were
devided by 10**dec.

Zeroes in layouts to writeint will be handled as d’s. A possible exponent
part will be printed as spaces.

Alarm printing:

If a negative number is printed without a sign position, a minus is
inserted consuming one extra position.

If the layout contains too few d’s, the necessary number of d’s is inserted
to the right. The decimal point is moved the same number of places.

Example 1:
In order to illustrate alarm printing, consider the following program:

begin long number, layout; integer k,L;
number := 0;
for L := 0 step 1 until 9 do
begin
number := -sgn{number) * (abs number * 10 + 1);
k : = 18;
for layout := long << zd dd.dd>,
long <<+b ddd ddd.dd>,
long <<-fd.ddd>,
long <<-d.dd dd> do
k:= k-18+writeint(out, string layout, “sp",
18-k, <:,:>, number, <:,:>);
write (out, "nl%, 1)
end
end

which will produce the following output:

, 00 00.00, s , , 0.000, , 0.00.00,
, -00 00.01, , -0.01, ,-0.001, ,-0.00 01,
, 00 00.12, . +0.01, , 0.012, , 0.00 12,
, -00 01.23, . -1.23, ,-0.123, ,-0.01 23,
, 00 12.34, . +12.34, , 1.234, , 0.12 34, -
, -01 23.45 . -123.45, ,-12.345, ,-1.23 45

, 12 34.56, , +1234.56, , 123.456, , 12.3 456,

, =12 345.67, , =12 345.67, ,-1234.567, 123 .4567,
. 12 3456.78, ., +123 456.78, , 12345.678, . 123 4.5678,
, -12 34567.89, ,-1 234 567.89, ,-123456.789, ,-123 45.6789,

2. Procedure Descriptions, writeint

Page 344 ALGOLS, User’s Guide, Part 2

2.178 zone

This delimiter, which is a declarator, is used in declarations and
specifications of zones and zone arrays. Details about input/output are
given in [15].

Zone declaration:

zone <list of zone segments>;

A zone declaration declares one or more zones. One zone segment is
composed in this way:

<list of zone identifiers> (buf,sh,blproc)

buf (integer). The number of elements of 4
halfwords each in the entire buffer area. See
below.

sh (integer). The number of shares. See below.

blproc (procedure with 3 parameters: a zone and two

integers). The block procedure. It may be
called by blockproc or when an operation on a
document is checked by a high level zone
procedure cf. (15).

Zone array declaration:

Zone array <list of zone array declarations);

A zone array declaration declares one or more zone arrays. One zone
array declaration is composed in this way:

n (integer). The number of zones in the zone
array.

buf (integer). The number of buffer elements of 4
halfwords each in each of the n zones.

sh (integer). The number of shares in each of the
n zones.

blproc (procedure with 3 parameters: a zone and two

integers). The block procedure associated with
each of the n zones.

Zone and zonearray specification:

zone <list of zone identifiers>;

Specifies one or more formal parameters as zones.

zone array <list of zone ar-ay identifiers>;

Specifies one or more formal parameters as zone arrays.

2. Procedure Descriptions, zone

ALGOLS, User’s Guide, Part 2 Page 345

Memory Allocation

If the job process has sufficient memory space beyond the address 1 M
Halfwords, the high end partition, the entire buffer area and all the
share descriptors of the zone, the list zones or the zones in the
zonearray will be allocated there.

If there is not enough memory space in high end partition, then the
active area will be allocated in the normal variable stack in the low end
partition. (cf. the procedure system, entry 15).

Zone or zone arrays declared in activities, but outside disabled blocks,
will always be allocated in the normal variable stack in low end partition.

Buffer length:

The buffer area of a zone may be divided in any way among the sh
shares. The procedure ’open’ will divide the buffer area evenly among
the shares.

The buffer area of a zone array is divided evenly among the n zones.
This distribution can be changed by a call of procedure initzones and
reset by a call of the procedure resetzones.

The buffer area of a zone array is divided in another way by the
procedure openinout and reset by the procedure closeinout.

Shares:

Each of the sh shares may be used for one uncompleted operation on a
document or for one running process cf. (15).

In high level zone procedures, sh specifies the number of buffers used
for input/output to the document connected to the zone. In these cases
sh will usually be 1, 2, or 3 ((15) contains hints about when to use 1, 2, or
3).

Zone state:

Just after the declaration of a zone the state becomes 4, and no
document is connected to the zone. The zone record describes the entire
buffer area, which has an undefined contents. All the shares are free and
each of them describes the entire buffer area.

Zone record:

The zone record may be thougth of as a real array, the elements of the

which are numbered 1, 2... record length.

Example 1:

2. Procedure Descriptions, zone

Page 346 ALGOLS, User’s Guide, Part 2

The following block head declares 3 zones. Two references to the record '
of ‘new’ are also shown.

The standard zone ’out’ is not accessible inside the block, because it is
redeclared.

begin
zone new,old(2*512,2,stderror),out(25,1,stderror);
new(1):= new(1024):= 0;

Example 2:

Two zone arrays must be declared as shown below, because zone array
zal,za2(...) is forbidden. One reference to the record of zai(1) and one
to the record of zal(3) are shown. The use of a subscripted zone as a
parameter is shown too.

begin zone array za1(3,2*512,2,stderror),
za2(3,2*512,2, stderror);

real field ref; .

ref:=6;
2a81(1,1024):= za1(3).rf:= 0;
open(za2(3),4 shift 12+18,<:mt123456:>,0);

2. Procedure Descriptions, zone

ALGOLS, User’s Guide, Part 2 Page 347

A: References

Part numbers in references are subject to change as new editions are
issued and are listed as an identification aid only. To order, use package
number.

1 PN:991 11255
RC9000-10 System Software
delivered as part of SW99101-D, RC9000-10 System Overview
This title is equivalent to the RC8000 manual Monitor Part I,
System Design (PN: 991 03577)

2 PN:991 11259
Monitor, Reference Manual
delivered as part of SW9890I-D, Monitor Manual Set
in the RC8000 documentation this was PN: 991 03588

3 PN:99103435
Monitor, Part 3, Definition of External Processes
The cited document is an RC8000 manual. In RC9000-10 systems
equivalent manuals are contained in the SW9890I-D, Monitor
Manual Set.

5 PN:99104162
RC8000 Computer Family, Reference Manual

6 PN:99111263
System Utility Programs, Part 1
PN: 991 11264
System Utility Programs, Part 2
These two titles are delivered with SW8010I-D, System Ultility
Manual Set
PN: 991 11294
System Utility Programs, Part 3
This title is delivered with SW8585-D, Compiler Collection
Manual Set

7 PN:99111274

BOSS User’s Guide
delivered as part of SW81011-D, RC9000-10 BOSS Manual Set

Appendix A. References

Page 348

Appendix A. References

10

11

12

13

14

15

16

17

18

20

21

22

ALGOLS, User’s Guide, Part 2

PN: 991 11260

Operating System s, Reference Manual

delivered as part of SW98901-D, Monitor Manual Set.

In the RC8000 documentation, this manual was PN: 991 03581

PN: 991 11292
RC Fortran, User’s Manual
delivered as part of SW8585-D, Compiler Collection Manual Set

PN: 991 11296

Code Procedures and The Runtime Organisation of ALGOL
Programs

this document is not included in any package, but is available on
request.

R.M. De Morgan et al.:
Modified Report on the Algorithmic Language Algol 60.
The computer Journal, Vol 19, no. 4 pp 364-379.

J.W. Backus et al.: .

Revised Report on the Algorithmic Language Algol 60 (ed. Peter
Naur),

Comm. ACM 6 no.1 (1963), pp 1-17.

ISO: R646 - 1967 (E),
6 and 7 bit coded character set for information processing
interchange.

PN: 991 11278
ALGOLS, Reference Manual
delivered as part of SW8585-D, Compiler Collection Manual Set

PN: 991 11279
ALGOLS, User’s Guide, Part 1
delivered as part of SW8585-D, Compiler Collection Manual Set

PN: 991 11288
Mathematical and Statistical Routines, Reference Manual
delivered as part of SW8585-D, Compiler Collection Manual Set

PN: 990 00168
Format8000 Display System

IBM 3270 Information, Display systems, component description
GA 27-2749-4

PN: 991 11277
Parent Messages in BOSS
delivered as part of SW81011-D, RC9000-10 BOSS Manual Set

PN: 990 00469
A Coroutine System Written in ALGOLS

PN: 991 11290
ALGOL Coroutine System, User’s Guide
delivered as part of SW8585-D, Compiler Collection Manual Set

ALGOLS, User’s Guide, Part 2 Page 349
® 23 PN: 99104985
RC855 IBM 3270 BSC Emulator, Reference Manual
24 PN:991 11262

LAN Device Processes, Reference Manual
delivered as part of SW9890I-D, Monitor Manual Set

Appendix A. References

Page 350

ALGOLS, User’s Guide, Part 2

B: Survey Of Format8000 Transactions

Read Modified Format (1):

CU| DEV| AID| CUR

Short Read Format (2):

CU DEV AID ETX

Appendix B. Survey of Format8000 Transactions

{

*
—* *
A?DR CHAR ETX

ALGOLS, User's Guide, Part 2 Page 351

‘ * N«
Write Format (3): | SBA | ADDR
5% 2w] -
*
Cul DEV| ESC | WOODE|{ WCC 0 IC CHAR 0 ETX

[agR] | ’
l
[Ra | AfpRjcHAR |

0 0

(SBA must be the first cammand)

Appendix B. Survey of Format8000 Transactions

Page 352 ALGOLS, User’s Guide, Part 2

write Control Character (WCC)

7 6 5 4 3 2 1 0

| L—Reset MDT bits (modified data tag)

Keyboard Restore
Sound Alarm

Attribute Character (ATR):

7 6 5 4 3 2 10

vz 1 11 v |

A AT T_{\ = MDT bit (modified)
0 = not modified
11 = non—display
10 = high bright
19 rl..g ;}display
00 = norm-brigh .

{ 1 = numeric
0 = alphanuméric

(1= protected
L 0 = unprotected

Appendix B. Survey of Format8000 Transactions

ALGOLS, User’s Guide, Part 2

Page 353

Field Type (in readfield /writefield)

Command type

SBA
SF
IC
EUA
PT
RA
ETX
data
EM
USM
ESC

[
P OVvooO~NONUL P WN

char

17
29
19
18

9
20

3

25
31
27

meaning

set buffer address

start field

insert cursor

erase unproctected to addr
program tab

repeat to addr

end of text

end medium

unsolicited message
escape

Appendix B. Survey of Format8000 Transactions

char

129
130
131
132

141
147
148
149
170
171
173

182

142
143
144
145
150
151
152
155
162

166
146
160
161
156

157

.Pﬁgl' .?54
Attention Ident (AID):
Name type
SEND 1
PF1l 2
PF2 3
PF3 4
PF12 13
PF13 19
PFl4 20
CURSEL 21
MSR 42
3278MSR 43
PF15 45
PF24 54
PAl 14
PA2 15
PA3 16
CLEAR 17
PA4 22
PAS 23
USM 24
RESET 27
PA6 34
PA10O 38
*PF13 18
NO AT 32
NO AP 33
STATUS 28
CONNECT 29

Aprondin B, Suivey of Format8090 Transactions

ALGOLS, User's Guide, Part 2

format

read modified

short read

read buffer .

read status

connect

ALGOLS, User’s Guide, Part 2 Page 355

Write Command (WCODE):

Command char format
write 49 write
erase/write 53

copy 55

erase unprotected 63

read buffer 50

read modified 54

read modified all 62

Appendix B. Survey of Format8000 Transactions

