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Abstract.

On basis of "A Priory Prediction of Roundoff Error Accumulation
in the Solution of a Super-Large Gzodetic Normal Equation System"
by Peter Meissl it is discussed whether it is feasible to make
the NAD-adjustment on the computer of Geodetic Institute, RC
8000, and a parallel discussion is made on the Danish Network.

It is further discussed the number of digits there are needed in
such network computations.

At last it is shown how the use of Wilkinson's ideas concerning
single/double precision will change the safe estimate of the
global round off errors.

An example of the implementation is given using a dedicated
vectorprocessor developed by Geodetic Institute in cooperation
Wwith the manufacturer RC Computer.
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I. Introduction.

Using the same notation as in Meissl (1980) some definitions
should be repeated.

The normal equations A X = B resulting from least squares
ad justment are solved using Cholesky's method. Formation and
solution of the system are organized according to the Helmert
blocking scheme.

The elementary round off error is defined as

€cza®b - ahlhb (1)
where 4 is a mathematical correct operation on a and b while O
is the computer operation on a and b.
By true rounding is the expectation
E{e} = 0.

A B base machine with 7 digits gives the standard deviation (root
mean square error)

1 _ c -
(5{6 ;= T’]z B T (2)
where ¢ = 8¥ and

v=MIN{y|8Yy {ac b}

The round off errors perturb the normal equations

(A+¢c) (x+¢&)=Db4+q. (3)
giving an offset of the solution x by
£ = -Alex + AT 4. (1)
Let % be the number of nonzero products in the triangular
decomposition
i-1
815 7 2, Tki kg

then the number I1 of nonzero elements (a,., £ O or places (i,j)
. . . ij
of "fill in") is



n
N= § p:; +n (5)
i1 ii .

where n is the dimension of the matrix A.
The number of nonzero products to be evaluated and added during
the triangular decomposition phase is

T = "

i<n ij* (6)
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II. Round off estimates for the RC 8000.

The RC 8000 is a true rounding two complement machine with B =
2 and T = 36.

On the RC 8000 computer are estimates of the global round off
errors during the triangular decomposition as given in Meissl
(1980) Chapter 4.1.4

Elgy) ol¢,)
IBM 360 | 167 m 0.0028 m
CDC 6600 Om 0.025 m
RC 8000 | O m 102 m

and during backsolution

| E{g,} ofeg}
IBM 360 | 1.9 10~° m| 6.7 1013 m
CDC 6600 | 0 m 1.7 10710
RC 8000 | Om 7.7 1072

On RC 8000 is the refined estimate for a 2° by 2° quad given in
Meissl (1980) Chapter 8

O{gp} = 0.45m

It is seen that the mantissa of the RC 8000 is too short (36 bit)
to make the NAD network adjustment be feasible.



III. Estimate of the global round off errors

in the Danish Network.

The Danish Network has about 40.000 stations covering the whole
country. It is a homogeneous area network having no measurements
of extremely high precision. It has at present 3 Dopplerstations
and 9 Laplace azimuths. There are about 25.000 distances and about
330.000 directions with about 90.000 orientation unknowns (which
are eliminated by Schreiber's method).

In the following we consider true rounding machines only,
consequently E{ g }= 0.

From formula (4.48)

- be? 2 a2 3 T
l ! e 2 H
ol )}  [=—lelflixeT = liglP2 NIFF (7)
_ - () (+) (=) (d)
where ¢ = gpY bounds the quantities Cijk’ cijk’ Cig s cij

involved during the triangular decomposition of the
elements a5 to a(i51) (see (4.10) to (4.13) and
(4.17)),

d = g8Y bounds the right hand quantities dgé), dg;),
dg°), dgé) involved during the triangular decomposition
of the right hand side (see (4.23) and (4.25)),

| bounds the elements fij of A-?

and Ix Il = MAX{Ixil}.
i

Considering the d bound we see that d might be chosen as

v
d 3 M$N8 > 2 Mﬁx{aii}llxﬂ. (8)
Putting e = 2 MAX{aii} the formula (4.48) may be written
i

i 2
A A I LY Py (9)
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which shows how many digits of x are determined by the ad justment.
From this it follows that a safe estimate of the length t of the
mantissa required to determine x by D decimal digits is

310g[ (2T /3 + 2N/6) 1l£112] - D

T Tog B (10)

The ordering and dissection algorithm described by Mark (1981)
will give .

4o 10°

2y 109

80.000 * 500
80.000 ° 5502

n
and T = nw

]
3
E )
"

It is assumed that a;y is of the order of 102 - 10" then ¢ = 5
10“ and e = 4 10“. Expecting 1fl = 0.25 which corresponds to a

rms accuracy of 0.5 m, we get

%{ﬁ% { 0.016

of the Danish Network on RC 8000. The convergence of the nonlinear
problem will be weak and too many iterations of the adjustment
are claimed to reach to a stopping condition

"computational noise less than one
thousandth of the observational noise".

IV. Wilkinsons recommendations concerning the reduction

of normal equations.

Wilkinson has considered several reduction and backsolution
algorithm used on symmetric positive definite matrices and
shows that the Cholesky-reduction is the most efficient method
counting the number of operations. No futhermore pivoting is
needed by the Cholesky reduction.



Wilkinson (1963) recommends that the observation equations are
formed in standard mantissa length T, the normal equations are
formed by adding products of observation equations of double
length 27. The final step of the reduction (division by the
diagonal element or squareroot formation) will reduce the
mantissa length to the standard 1length + and during the
triangular decomposition the product sums of the reduced elements
are formed in double length 2T (see figure 1). The backsolution
can without difficulties be made in the standard mantissa length
T.

The method proposed by Wilkinson will reduce the effect of the
round off errors.

Assuming a rounding operation after each arithmetic operation we
have (d means double length operations)

for addition and subtraction

=27
ole} = S BT
ole} = /%2- 8" (11b)
where c = 8Y 3y Max{Jal, Ivl, lasbl, la-bl},

for multiplication to double length from two single length

operands

O{ed} = 0, (11c¢)
for division

ole} = ﬁ? g™" (11d)
where c=8Y ) a/b

and for squareroot operation
-T

oflel = :ﬁf' B (112)

where e =gY % sqrt( a ) .
Using (p) i1 .
P ) (+) -)
€53 = kzi (-eijk - eigk ) t e (12)
we get (p)
C..
oleh (o i 6 (13a)
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The round off errors from the squareroot operation and division

are not affected (s)
O{ei(iS)} ¢ _:;%__ g=T (13b)
oD
ol el ( H T, gy (13¢)
where
cig) = gy >

lrki rkj' , K o= 1,. yi=1 ’
i :
lkgl ros rkjl , 1= 1,...,i-1}
c§§) =2r,..8Y >2r.. ..
ii ii ii "ii
(d) - v l
and cii = rii BY > rii |rij .

Futhermore for the right hand side

()
L) % 2r (142)
(a) 2
1 -T
o{ﬂi Y 7 ) (14b)
where  alP) = vy Max (o, !, Ip{tTT
| bék'1) Ny /Tl s kelieen,is1
1 -
| 5 bék 1) rs Zrg Ly 1ie1 )
(d) _ Y (i-1)
and di = roy BY > ‘bi I

Recall the offset of the solution x in equation (4)

n n n
. = f..x. .. =~ f.. x f., X. e.
°r s j§1 13%3 £33 j§1 k=§+1( 13 % * ik %y %
n ¢ (15)
+ by s s M
j=1 1J J



Then n > 5
(&= £ 7, x5 0% {e;y)
j=1
+ 7 v (f..x, + £.,.x.)° 0%{ e, } (1
j=1 k=j+1 1JK 1k™] Jk
n 2 2
+ 3 £5. o {n.}
jz=1 M 300
R 2 - w27.(pP) 2, (s) 2., (d)
where o {cij} =0 {eij b+ o {eij } o+ o {eij }
2 _ 2..(p) 27,(d)y
and o< { “i} = o {n 11+ o {m i
Suppose a bound |If|l is available on the elements fij of A”]
NEIl = MAX {|fij|} = ng{yfiiw,
i, ] i
and Ix]] = MAX {Ixil}
i
and bounds cs and cm () () (=)
+ . -
cs '1<?2§$n{cijk ) Ciik k=1,...,i-1, ey |
em = MAX cg§), cgq)}
1€i<j¢n 11 iJ
and similiarly
- (") (+) _ (=)
ds = 1§§§n {dik y dip s k=1,...,n , dy },
am = Max {a{®}.
1€i¢n 1
When the elementary round off errors Qil) affects gi by
J
. (el) .
* f.. e J =k
(el) | i !
£;( €3k ) = : I (el) (17)
‘ e .
‘(fijx + fikxj) SN £k
then the double precision operations are bounded by
R R LN FT (18a)

and the single precision operations are bounded by

A e PR L L NPT (18b)
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and for the right hand side
(double) ds =21
O’{ei("ni )} < - ”f“B . (19a)

ol g (n{SimEle)y) (A peypT (19)

The number of double precision operations used during ths
triangular decomposition of A is

n n

Fg = = T (uyget) + gy, (20)
i=1 j=i+1

and the number of single precision operations is

n
FS = i;-‘ (uii+1) = 1. (21)

Similiarly for the right hand side

n

z (22)

Dy . Wiir
i=1

n n . (23)

s

"

By summation of elementary operations we arrive at the following
estimate (21)

{¢.}
En—xg-fr— ¢r (cstdB'2T+cm2T1)/3 +<Td1_}sj"|§ UdB-ZT-a-Tf-i?an)]%llfllB'T

2t

Due to th2 overestimation and the factorsb” this may be written

)
jﬁ%gﬁ‘ ¢ JO73 em Nl 87" (25)

where em =  MAX {c(S) cgq)}
1€i<j¢n J

¢ 2 .J7 8Y

ii ?

where BY is the smallest number bounding the elements aij of A.
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Using the earlier stated values of p, ¢ = cm and |l fll we get

ol ¢}
nap $ 079

Tt o ¢ 06107

which shows that it is safe to make the Danish network ad justment
with a standard floating point arithmetic of a 36 bits mantissa
however aczcumulating product sums with a floating point arith-
metic of a 72 bits mantissa, - but the NAD network adjustment is
still doubtful.

Looking on the refined estimate of the NAD network adjustment we
arrive at an estimate of any 2° by 2° quad

ol £}

25— ¢ 0.5 1073

which shows that it from point of view of arithmetic is safe to
make an adjustment of a network of the size of thes NAD network,
however has ths size fo the datamanagement problem not been
estimated and may not be able to be done by a computer of this
size,

V. The vectorprocessor at Geodetic Institute.

When the new RC 8000 computer at Geodetic Institute was installed
then it was decided that the configuration should include a
vectorprocessor operating in accordance with the principles
given by Wilkinson (1963). The vectorprocessor should be connec-
ted on the CPU-unibus of thz RC 8000 connecting all th= fast units
of the systemn.

It was decided to construct the GPU (Geodetic Processor Unit) in
cooperation between Geodetic Institute and RC Computer, Copen-
hagen, using existing hardware with changed microprograms.
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T.Krarup outlined the logical design and basic ideas of the unit
and the present writer developed the actual instruction set of
the unit including the microprogramming and the testing of the
unit aided by a small working group.

The design of the GPU and the connected software is so that more
than one GPU can be connected to onz RC 8000 system.

The GPU has an accumulator with a 79 bits mantissa against the
usual 36 bits. Products are calculated by a 71 bits mantissa from
two 36 bits operands. Accumulation is done by a 79 bits mantissa
except when the exponent difference is bigger than 76. The
accumulator content is normalized after each operation on the
accumulator content. True rounding takes place when the ac-
cumulator content is stored by adding a one bit in the position
followeding the least significand bit stored.

The GPU has the RC 8000 instruction set extended with vector
instructions intended for the Cholesky's algorithm. To name
three:

1) a single instruction calculate the inner product
af two vectors

2) a hardware squareroot function

3) the vector instruction : A := A + ¢ ° B, where

A and B are vectors and ¢ is a constant.

The problem of 1) weight singularities and 2) the global effect
of round off errors as described by Meisll (1980) are handled very
efficiently by the double precission accumulation of products so
the only not very significand round off errors takes place in

1) the computation of the squareroot of the diago-
nal elements followed by inversion to obtain the
inverse diagonal element

2) and the subsequent multiplication of the nondiago-
nal elements by an inverse diagonal element.

Timestudies show that the realtime usad whan the GPU is used
during generation, reduction and backsolution of the normal
equations is reduced by 25% and the cputime decreases by 88%.
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VI. Conclusion.

Meissl's findings outlined in the foregoing supplemented by the
very small round off errors in the accumulation in double
precission as shown in equations (11) and (24) demonstrates that
the efforts laid in the development of a special double precission
processor is well justified in spite of the fact that a very good
ordenary arithmetic of 10-11 decimal digits with true rounding
is available in the standard version of the RC 8000.

The double mantissa length floating point arithmetic circumvents
the problems of weight singularities so the need of
either introducing a bigsum and a smallsum and diciding

to which sum an addend should be added

or transform away the weight singularity.

The introduction of the GPU vectorprocessor parallel to the CPU
of the RC 8000 computer has given Geodetic Institute a very
efficient tool to handle big matrix operations.
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Postscript on the paper

The use of a Vectorprocessor

in Geodetic Applications

All the estimates in this paper and in "A Priori
Prediction of Roundoff Error Accumulation in the Solu-
tion of a Super-Large Geodetic Normal Equation System"
by Peter Meissl, should be decreassd by a two factor
because the sign has been counted as a significand
digit. This holds for a base-16 machine too!

The use of Wilkinson's ideas conserning single/double
precission ('digits/2' digits) is very efficient against
the occurence of weight singularities. In case of a
machine having too few significand digits it will
decrease the global effect of roundoff errors.

Another aproach to resolve the weight singularity is to
choose one stations as main station and let the others
strongly connected stations be considered as excentric
station to the main station. This is of cause not so
straight forward to program.

Using the transformation as proposed by Meissl this
might be done simply by scaling the observation equa-
tions. But be carefull to do this bty changing the
exponent of the number only. I.e. the scale factors are
multiples of the base of the machine.

K. Engsager.
Copenhagen 1982







