RCSL No: 30-M270
Edition: April 1981

Author: Lars Bone Jgrgensen

Title:

CPU820 MICROPROGRAMMED TESTS
User's Guide

i ¢ REGNECENTRALEN
[af 1979

RCSL 42-11592

CPUB20, test, microprogrammed tests, power up test, CPU test, memory
test, cache test.

Abstract:
This manual is a user's guide to CPU820 microprogrammed tests.

(32 printed pages)

Copyright © 1981, AJS Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no-
tice. RC is not responsible for typographical or arithmetic errors
which may appear in this manual and shall not be responsible for
any damages caused by reliance on any of the materials presented.

RCSL 42-11592

|
|
|
i
|
i
Keywords:

TABLE OF CONTENTS PAGE

-I. INI'RODUCTION © 0 0 500000000 PIPIOTELIPIEIEOEOEOECEEPIOIOIEONNOIEOEONOLIEOEOOIEEOLETILES 1

2. R)"JER[JPTEST 9 00000000000 P SV PLOIELOIENOEEOESEIOEOEOIEOCIEIOPOEOIEEOIDOITRES 2

3. MICROPROGRAMMED TEST seeeeoccesssccesscossssossssssacas
3.1 Operating via OCP tieesesecsascvssscsnssscnsncscnsss

3.2 Operating via TCP teeeesccccsccsssccssssonsscennas

3.3 CPU TESt eeevesssccossssesscsssssssssscsncscsccnns

3.4 MemOry TeSt ceeeesessssesosceoesssonssaccnassssssas
3.4.1 Normal MOde eeeeessseessssesssccessscsssans

3.4.2 Short MOAe ceeeesescescsosesssssscsnnssssaan

3.4.3 Memtest AlgOrithm ceevecerrssssseccosconsans 8

~N N S U s S

3.5 Cache TeSt seeevetsssessscerssssssssssnncnsasssnss 10
3.5.1 Cache Test AlgOrithm seeeecececoscscasesass 11
3.6 Error MeSSAgeS seeeseesssesccssssosssssorssscescnces 12
3.6.1 Operating via OCP ceesseeesccosscccnensanes 12
3.6.2 Operating via TCP tuvveeccevoccccnssocsssaee 12
3.6.3 Description Of Error TYPES cecesecscesssees 13

APPENDIX:

A' LISTOF'IHE'ICPCGWMANIB @S2 0000000 s000 0000000 RReREE 25

INTRODUCTION 1.

The microtest consists of two parts.

The first part is started after power up, and ensures that the
TCP (technician's control panel) is functioning properly.

The second part is a more camplete test which is divided in a CPU
test, a Memory test, and a Cache test. These tests can be
controlled either by the OCP or the TCP. A

PONER UP TEST

This is a very simple test with the purpose of checking the TCP.
The test is using the three indicators on the front panel of the
CpU821.

Registers and operations used in the TCP handling is tested, and
the test is terminated by checking the TCP input and output
procedures.

Description

The test is started at power up if the second mode switch on the
CPU821 PCBA is set (fig. 1).

At first the three indicators on the front panels are tested, and
a loop is entered where the four different u-instruction cycle

lengths are tested (fig. 1).

Pressing the autoload botton on the OCP makes the test continue.

Three different tests are executed and in case of errors the
erroneous testnumber is displayed by the indicators, while the
test is looping.

The CPU is continuing with the tests until the autoload button is
pressed again.

Then the test writes the text "TYPE OCTAL NUMBER:" on the TCP,
and the operator is supposed to enter an octal number terminated
by a <CR>.

The number is echoed by the test, and in that way the input and
output procedures are tested.

aélgﬁ.e—gea dot visible = 0
P

0000 | Nomal mde of coperation
1 X X X | Power restart

X 1 X X | Power—up test mode

X X 1 X | Continous test mode
XXX1 Console used as TC

CPUCLOCK 156-6 Jd UJ || L L
1 (] [[(] [[

CPMIR 156-8 J U LJ U | ! LI
] [[[1! 1

JMPCLOCK 156-12 g L L I .
I I] [}

Jue 177-8 : ' : ! f L
| | | | | !

'] | [} | 1

Time in ns LS00y 200 . | 250 . 300 . 300 -
. :r_ A?,;ocaz_"cczf =le

Figure 1: Mode switches on the CPU821, and timing diagram.

3. MICROPROGRAMMED TEST 3.
3.1 Operating via OCP 3.1
The test is started when the autoload botton at the OCP is
activated. Depending on the third mode switch on the CPU821 (fig.
1) the test is either run in short mode or in normal mode. In the
latter case the test is performed continuously.
The test is broken and restarted if the autoload botton is
activated.
On the front panel of the CPU821 there is a switch to disable the
test, in case the coredump produced after autoload is needed.
3.2 Operating via TCP 3.2

The test is started with the following commands typed on the TCP:

T0: CPU test, Memory test normal mode, Cache test

T1: CPU test, Memory test short mode, Cache test

T2: CPU test

T3: Memory test normal mcde

T4: Memory test short mode

T5: Cache test

T6: Clear and size memory W3 = last location in memory
T7: Loop to adjust deskew delay.

Indications

Before every test the TCP bell is activated, and the indicators
on the front edge of CPU821 are showing the kind of the current
test.

Break
The test is breaked if any command is typed on the TCP.

CPU Test

. 3.3

The CPU test consists of nine independent tests, each formed by a

number of test loops.

After an error is detected it is possible to loop in the

erroneous test.

1)

2)

3)

5)

6)

7)

Test of the immediate u-instruction.

The Q-register is loaded with pattern of shifting 'zeroes',
and checked.

Test of arithmetic and logic operations.
The arithmetic and logic operations of the ALU are checked.

Test of the ALU-registers, the scratch-pad-file, and the
internal registers IC and LC.

A one 1s shifted through both registerfiles and the IC and IC
registers.

The ALU-register stack is read both from the A and B files.

Test of shift operations.
Doubleshift is tested. All values of the SI-field (Shift
input) is tested with both left and right shifts.

Test of jumpconditions.
It is tested that all jumpconditions, controlled by

microinstructions, can be set and cleared.

Test of halfword manipulator.
The halfword manipulator functions are tested with odd and
even i/o0 address, and with two different datapatterns.

Test of external interrupts.

It is tested that interrupt level 0-7 does not set interrupt.
It is also verified that simulating interrupt on level 8-63
set the proper interrupt level, and that the interrupt level
is able to clear the simulated interrupt.

3.3

8) Test of registers defined by instruction register, and test of
prefetch.
Four different instructions are stored in the locations 0-6.
The instructioncounter is set to 0, the instructionregister is
loaded and a prefetch is started. The W-register according to
the W-field in the instructionregister is tested and a new
prefetch is started.
In that way all four values of the W-field is tested.
The WPRE-field, X-field, DISP, and DISP+IC are tested in a
similar way.

9) Test of the i/o protection system.
The value of bit 10:11 and bit 20 of the i/o statusregister are
tested after read with protection and write with protection.

The i/o addresses and the protection registers have the value
shown in fig. 2.

i/o addresses v } l, ¥ *

' CPA LLIM ULIM
base base

i/o addresses } t L & b

0 LLIM ULIM Ccpa A
base base

Figure 2: The value of i/o addresses and protection registers.

3.4

Memory Test 3.4

3.4‘1

Normal Mode 3.4.1

3'4.2

The total number of i/o operations performed by the memory test
is 6*D*N*MEMSIZE, where N = number of addressbits and D = number
of different datapatterns.

After the program is started the memory is loaded with 0's. The N
address bits indicates up to 2**N = MEMSIZE words in the memory,
each address is read and verified to be all 0's.

Then a single 1 is substituted in one bit position, and the
altered word is written back in the same location. Finally the
word 1is reread to verify that the newly entered 1 is still there.
This is repeated for each of the 24 data bits.

After the word has been filled with 1's the first bit position is
substituted with a 0, and this is repeated until the word is all
0's again.

So far 48*MEMSIZE*3 i/o operations has been counted, and the
whole procedure is repeated but reading the memory in reverse
order from MEMSIZE to 8 giving 48*MEMSIZE*6 operations.

The factor N is accounted for by repeating these series of tests

N times using a different bit for incrementing through all
addresses by 2, by 4, by 8, and so on.

Short Mode 3.4.2

In this version the 48 data patterns is reduced to two patterns:
10101,0 and
01010,1

Incrementing through the addresses in reduced to N/2 times.

This reduces the total number of operations to 6*MEMSIZE*N.

3.4.3

Memtest Algorithm

integer procedure getdata (cause);
integer cause;
begin

if short mode then

begin

newdata: = if cause = 1 then 8'25252525 else

8'52525252;
end else
begin
newdata: = newdata shift 1;
if cause <=24 then cause: = cause + 1;
end
end getdata;

camnment size memory;

for ic: = 8, ic+2 while —,iocerror and DATI = DATO do
begin
DATO: = ic;:

write (ic, DATO);
read (ic, DATI);
end;

comment clear memory;

for wrkl: = ic, wrkl-2 while wrk1>8 do

write(wrkl,0),

W3: = ic-2; caomment last location in memory

camment start of MEM test
olddata: = 0 ; newdata: = 0; size: = ic;

start: = 8; stop: = size;
Wl: = 2;

while W1 <size do

3.4.3 .

begin

for down: = false, true do
begin
for cause: = 0 step 1 until if shortmode then 1 else 47
begin
newdata: = getdata (cause);

if -, down then

begin
for W0: = 8 step 2 until W1-2 do
for ic: = w0 step Wl until last do
begin

read (ic, DATI);

if ioerror then ERROR;

write (ic, newdata);

if ioerror then ERROR;

if DATI <> olddata then olddataerror;

read (ic, DATI);

if joerror then ERROR;

if DATI <> newdata then newdataerror;
end for ic;
olddata: = newdata;

end <*if up*>

else

begin
for WO: = last step =2 until last = W1 + 2 do
for ic: = WO step -W1 until 8 do
begin

read (ic, DATI);
if ioerror then ERROR;
write (ic, newdata);
if ioerror then ERROR;
if DATI <> olddata then olddataerror;
read (ic, DATI);
if ioerror then ERROR;
if DATI <> newdata then newdataerror;
end for ic;
olddata: = newdata;
end down;

end for cause;

do

3.5

10

Wl: = if shortmode then W1 shift 2 else
W1 shift 1;
end while Wl < size;

Cache Test 3.5

The cache memory is initialized in a consecutive area of 4 k

words (the hit area) starting at location 0, by means of
testwrite.

The values are 0, 2, 4 ...8'20000 and the valid bit is set.

The memory is checked from the start of the hit area to the top
of memory and from location 0 to the start of hit area.

In the hit area the contents of memory locations and hit status
are checked.

A new value is written in the same location and reread in a mode

where the cache memory is bypassed to see if the writing was
sucessful.

Outside the hit area it is checked that the status was a miss,

and that the contents of memory are unchanged.

The test is repeated with the cache memory initialized from 4 k
to 8 k, and so on, until the top of memory.

If more than one set is present the same test is run with the
second set.

If two sets are present it is checked that reading two words with
a difference in addresses of 4 k, will initialize both sets.

1

Cache Test Algorithm 3.5.1

3.5.1
o

If CaM -, available then goto continue;

Count=-and-init~chache-modules;

size-and-char-mem;

for set: =0, 1 do

begin

mask: = if set = 0 then bit 17 else bit 19;

if set present then

begin
camcontrolregister: = if set = 0 then 8'50 else 8'30;
camment set + testwrite;

for startwindow: = 0 step 8'20000 until last do
begin

"

for wrk: = 0 step 2 until 8'20000 do
begin
CAMTD: = wrk; <*cam testdata*>
read (startwindow + wrk, DATI);
<*write testdata*>
end;
camcontrolregister: = camcontrolregister or 3;
for ic: = startwindow step 2 until startwindow + size do
begin
if ic mod size < startwindow then
begin
read (ic mod size, DATI, IOSTATUS);
if IOSTATUS and mask = 0 then camhiterror;
if DATI <> ic then camreaderror;
end else
if ic <startwindow + 8'20000 then
begin
read (ic, DATI, IOSTATUS);
if IOSTATUS and mask <0 then camhiterror
if DATI <> ic - startwindow then camreaderror;
write (ic, ic);
cambypass: = 1;
read (ic, DATI);

12

if DATI <> ic then camwriteerror;
cam bypass: = 0; ‘l'
end else
begin
read (ic, DATI, IOSTATUS);
if IOSTATUS and mask = 0 then camhiterror;
if DATI <> 0 then camreaderror;
end
end for ic;
end for startwindow;
size and clear mem;
end if set present;
end for set;

3.6 Error Messages 3.6

3.6.1 Operating via OCP 3.6.1

In case of errors the autoload lamp will begin to gleam with a

period of 0.5 sec.

3.6.2 Operating via TCP 3.6.2

In case of errors the following text will be displayed:

ERR
C(wrk0)
C(wrkl)
C(wrk2)
C(IC)

C(wrk0) is the contents of the register wrk0, which is the number

of the erroneous test.

After an error it is possible to proceed in three ways:

1) Type P at the TCP: Proceed the test.

13

2) Type N at the TCP: Loop in the test.
The subsequent error messages are suppressed.

3) Type a TCP command: The test is broken and the cammand

is executed.

3.6.3 Description of Error Types 3.6.3

|
[\S)
.

Buserror
(wrkl 1=NACK 2=timeout 4=parity)
IC : Address

0 : Newdata error in MEM test
wrkl = read data, wrk2 = expected data

IC : address

1 : Olddata error in MEM test
wrkl = read data, wrk2 = expected data
IC : address
2 : Hit error in CAM test
wrkl ¢ bit 17, 19 of iostatus
wrk2 : expected value, IC : address
3 : Read error in CAM test
wrkl : read data, wrk2 : expected data

IC : address

4 : Write error in CAM test
Error when writing data memory
wrkl : written data, wrk2 : expected data
IC : address

5 : No hit with two sets in CAM test.
With two sets present it is not possible to load the
same location in both sets.
wrkl : status of first i/o status.

wrk2 : status of second i/o status.

Test of immediate operand instructions
wrkl : read data, wrk2 : expected data

100-246

Test of arithmetic and logic operations.
Operations and datapatterns can be found in the
u-program listing.

wrkl : result of operation, wrk2 : expected result.

300~-440

Test of ALU~- and Scratchpad registers,
IC and IC registers.
wrkl : contents of register, wrk2 : expected contents.

500-507

500

501

502

503

504

505

Test of u-instruction shiftoperations
wrkl : result of shift, wrk2 : expected result

: Test of double shift, wrkl,Q = 0,8'40000000

o

is shifted left.

Test of shift input (zero)
wrkl = =1 is shifted left with S1 = zero

Test of shift input (zero)
wrkl = -1 is shifted right with S1 = zero

Test of shift input (shiftlink)
wrkl = 8'40000000 is shifted left twice.

First time with S1 = zero, second with S1

shift link.

Test of shift input (shift link)
wrkl = 1 is shifted right twice.

First time with S1 = zero, second with SI shift link.
Test of shift input (add condition)

Addcorndition: = 1. wrkl = 0 is shifted left with

S1 = addcondition.

15

506 : Test of shift input (F(0))
wrkl : = 8'40000000 and F(0):
wrkl is shifted right with S1

]
——

F(0).

507 : Test of shift input (sign)
wrkl: = wrk2: = 8'40000000.
wrkl + wrk2

wrkl:
wrkl is shifted right with S1 = sign (sign = F10) error

overflow).

540-555 : Test of jumpconditions

540 : Condition = DBUS(0) (negative)
wrk2:
wrk2:

"

0, test condition is false
8'40000000, test condition is true.

541 : Condition is F <> 0 (non zero)
wrk2: = 0, test condition is false
wrk2: = 1> test condition is true.

542 : Condition is arithmetic overflow

wrk2: = 0-8'40000000, test condition is true.

wrk2: 8'40000000+1, test condition is false.

543 : Condition is carry fram ALU bit(0)
wrk2: = -1 + 1, test condition is true

wrk2: = 0 + 1, test condition is false.

544 : Condition is F(0) exor overflow (sign)
wrk2: = 8'40000000 - 1, test condition is true.
wrk2: 8'37777777 + 1, test cordition is false.

545 : Condition is DBUS(0) <> DBUS(1)

wrk2: = 8'60000000, test condition is false.
wrk2 = 0, test condition is false.

wrk2: 8'40000000, test condition is true.

wrk2: = 8'20000000, test condition is true,

546

547

550

551

552

553

554

555

16

Condition is DBUS(1) < DBUS(2)

wrk2: = 8'30000000, test condition is false
wrk2:
wrk2:
wrk2:

0, test condition is false.
8'20000000, test condition is true.
8'10000000, test condition is true.

Condition is link < carry
wrk2: = (8'40000000+1) shift 1, test conditions is true.
wrk2: = (=1-1) shift 1, test condition is false.

Condition is LC(0) = 1 (loop counter <0)

wrk2: = LC: = 0, test condition is false.
wrk2: = LC: = 8'40000000, test condition is true.
condition is LC(0) = 1 or maxloop (0) = 0

wrk2: = 48; LC: = 8'40000000 (maxloop is loaded too)
repeat
test condition is false;
wrk2: = wrk2 -1;
LC: = LC -1;
until wrk2 = 0;
test condition is true;

condition is LADR(0:20)<>0 (not w-address)
wrk2: LAST: = 0; test condition is false.
wrk2: LAST: = 8'10, test condition is true.

condition is LADR(0) = 1 (not memory address)
wrk2: = LAST: = 0, test condition is false.
wrk2: = LAST: 8'40000000, test condition is true.

condition is CPUST(0) = 1 (monitormode)
wrk2: = CPUST(1): = 8'40000000, test condition is true.
wrk2: CPUST: = 0, test condition is false.

condition is CPUST(1) = 1 (escapemode)
wrk2: = CPUST: = 8'20000000, test condition is true.
wrk2: = CPUST: = 0, test condition is false.

17

600-637 Test of halfword manipulator wrkl
expected result.

result, wrk2 =

600

Function = load halfword = 0, odd 1
(SBUS(0:23) 12 ext 0 con DBUS(12:23))
datapattern = 8'7777;

601 : Function = load halfword, odd
datapattern = 8'7777;

]
—

602 : Function = load halfword, odd 0
(SBUS(0:23) 12 ext 0 con DBUS(0:11))
datapattern = 8'7777

603 : Function = load halfword, odd = 0
datapattern = 8'77770000.

604

X3

Function = extended load = 1, odd = 1
(SBUS(0:23) 12 ext DBUS(12) con DBUS(12:23))
datapattern = 8'7777.

[}
—

605 : Function = extended load, odd
datapattern = 8'77770000.

606 : Function = extended load, odd 0
(SBUS(0:23) = 12 ext DBUS(0) con DBUS(0:11))
datapattern = 8'7777.

607 : Function = extended load, odd = 0
datapattern = 8'7777.
610 : Function = store halfword = 2, odd = 1

(SBUS(0:23) = 12 ext 0 con DBUS(12:23))
datapattern = 8'7777.

611

Function = store halfword, odd = 1
datapattern = 8'77770000.

612

613

614

615

616

617

620,622

621,623

624,626

625,627

630,632

(1)

18

Function = store halfword, odd = 0
(SBUS(0:23) DBUS(12:23) con 12 ext 0)) .
datapattern = 8'7777.

Function = store halfword, odd = 0
datapattern = 8'77770000.

Function = set mask = 3, odd = 1
(SBUS(0:23) 8'77770000)
datapattern = 8'7777.

1]
—

Function = set mask, odd
datapattern = 8'77770000.

Function = set mask, odd
(SBUS(0:23) = 8'7777)
datapattern = 8'7777.

Function = set mask, odd = 0
datapattern + 8'77770000.
Function = extend halfword = 4

(SBUS(0:23) = 12 ext DBUS(12) con DBUS(12:23))
datapattern = 8'7777.

Function = extend halfword
datapattern = 8'77770000. .

Function = swop word = 5
(SBUS(0:23) = DBUS(12:23) con DBUS(0:12))
datapattern = 8'7777.

Function = swop word
datapattern = 8'77770000.

Function = swop left halword = 6
(SBUS(0:23) = 12 ext 0 con DBUS(0:11))
datapattern = 8'7777.

19

Function = swop left halfword
datapattern = 8'77770000.

. 631,633

634,636 : Function = swop right halfword
(SBUS(0:23) = DBUS(12:23) con 12 ext 0)
datapattern 8'7777.

635,637 : Function = swop right hal fword

datapattern = 8'77770000.

701-713 : Test of external interrupts.

. 701 : Interrupt occurred with ILEV = 0-7

wrk2 = simulated interrupt level.

711 ¢ Interrupt did not occur when ILEV = 8-63
wrk2 = simulated interrupt level.

712 : The received ILEV and the simulated ILEV are not equal.
wrkl = received ILEV, wrk2 = simulated ILEV.
713 : The simulated interrupt can not be cleared

wrk2 = simulated ILEV.

. 1000-1023

Test of registers defined by instruction register, and

test of prefetch instructioncounter.

wrkl
wrk2

contents of register,

expected contents.,

1000 : Test of W-register

W-FIELD(0:1) = 0

1001 : Test of W-register
W-FIELD(0:1) =1

1002 : Test of W-register
. W-FIELD(0:1) = 2

1003

1004

1005

1006

1007

1010

1011

1012

1013

1014

1015

1016

1017

.

20

Test of W-register
W-FIELD(0:1) = 3

Test of WPRE-register
W-FIELD(0:1) = 0

Test of WPRE-register
W-FIELD(0:1) = 1

Test of WPRE-register
W-FIELD(0:1) = 2

Test of WPRE-register
W-FIELD(0:1) = 3

Test of X-register
X-FIELD(0:1) = 0

Test of X-register
X-FIELD(0:1) = 1

Test of X-register
X~-FIELD(0:1) = 2

Test of X-register
X-FIELD(0:1) = 3

Test of DISP register
DISP = 12

Test of DISP-register
DISP = 0O

Test of DISP-register
DISP = 2

Test of DISP-register
DISP = 4

21

. 1020 : Test of DIC-register (DISP+IC)
DISP = -2, IC = 8'37777776.

1021

Test of DIC-register
DISP =0, IC =0

1022

Test of DIC-register
DISP = 2, IC = 2

1023 : Test of DIC-register

DISP = 4, IC = 4

.

1100-1127 : Test of i/o protection system.

wrkl bit(10:11) + bit(20) of i/o status register.
wrk2 expected bit(10:11) + bit(20)

IC = Base register

LAD: logical address

CPA: common protected area register
LLIM: lower limit register
ULIM: upper limit register

—
pu—
o
o
o

IAD <0<CPA<LLIM<ULIM

operation = read with protection

1101 IAD <0<CPA<LLIM<ULIM

operation = write with protection

1102 : O<LAD<CPA<LLIM<ULIM

operation = read with protection

1103 : O<LAD<CPA<LLIM<ULIM

operation = write with protection

.

1104 : O<CPA<LAD<LLIM<ULIM

operation = read with protection

1105

1106

1107

1110,1112

1111,1113

1114

1115

1116,1120

1117,1121

1122

1123

1124

1125

22

O<CPA<LAD<LLIM<ULIM

operation = read with protection

0<CPA<LLIM<LAD<ULIM

operation = read with protection

0<CPA<LLIM<LAD<ULIM

operation = write with protection

0<CPA<LLIM<ULIM<LAD

operation = read with protection

0<CPA<LLIM<ULIM<LAD

operation = write with protection

LAD<O<LLIM<ULIM<CPA
operation = read with protection

IAD<O<LLIM<ULIM<CPA

operation = write with protection

0<LAD<LLIM<ULIM<CPA

operation = read with protection

O<TAD<LLIM<ULIM<CPA

operation = write with protection

0<LLIM<LAD<ULIM<CPA
operation = read with protection

¢ O<LLIM<LAD<ULIM<CPA

operation = write with protection

O<LLIM<ULIM<LAD<CPA

operation = read with protection

O<LLIM<ULIM<LAD<CPA

operation = write with protection

23

1127 : O<ULLIM<ULIM<CPA<LAD

operation = write with protection

1177 : Error in BASE register
a wrong absolute address is calculated.

24

25

LIST OF THE TCP COMMANDS

Commands for u-program diagnostic:

R<1oc><CR>

RUN. Starts u-instruction execution from <loc>. (RO <CR>, will
reset the CPU as by power up)

XW<CR>
Examine the six working registers used in the u-program. If
you are interested in the contents of the registers, the
canmand must be entered first, as the registers are used in
the common TCP procedures.

T<testnumber><CR>
TEST. Start execution of the test with the number <test numbers>

RCB000 commands:
When the CPU is running it is only possible to stop it from
the TCP by typing the character <BELL> (=cntr G).

XR<no><CR>
Examine register number <no>.

LR<NO> : <cont><CR>

Loads register <no> with the value <cont>

XM<1loc><CR>
Examine memory location <loc>.

XN<no><CR>
Examines <no> memory locations, starting after the last
location inspected.

IM<loc> : <cont><CR>
Load memory location <loc> with the value <cont>.

LN<CR> .

Load the next memory location.

XD<CR>
Examine the eight dynamic registers (W0, W1, W2, W3, STAT, IC,
CAUSE, SB)

XS<CR>

Examine the eight static registers
(CpA, BASE, LLIM, ULIM, ILIM, INF, SIZE, MONTOP)

RETURN LETTER

Title: CPU820 MICROPROGRAMMED TESTS, RCSI. No.: 30-M270
User's Guide
A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved”

Other comments?

Name: Title:

Company:
Address: —

Date:

Thank you

421 1288

................. Do not tear - Fold hereand staple
Affix
postage
here
e §REGNECENTRALEN
- af 1979

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

