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1. Purpose and Form of the Library 

The purpose of the program library is to supply the users with reliable 

and efficient procedures and programs concerning the general problems in 

numerical and statistical analysis. The library will be gradually expan- 

ded to cover also more special problems; also new publications may su- 

persede older ones. 

Only thouroughly tested algorithms are accepted, but in order to 

speed up distribution an algorithm may be accepted even if the descrip- 

tion is incomplete. 

The algorithms are available on paper tape with an accompanying des- 

cription, usually as external procedures or complete programs. The det- 

ailed formats are described below. Some of the algorithms belong to the 

standard user package and are available at each installation, and the 

remaining ones may be acquired through RC System Library. Each algorithm 

is classified by means of a set of keywords or descriptors as explained 

below. 

2. Formats of Tapes 

An Algol program tape starts with the File Processor commands necessary 

for translating and storing of the program on a backing storage area un- 

der the same name. Correspondingly a procedure tape contains the neces- 

sary commands for translating as an external procedure, 

The normal program tape format is: 

<name> = set <No. of segments> 

<name> = algol 

<50 Spaces> 

begin 

message <name>, version <date>, RCSL <No.>3 

<remaining Algol program text> 

<Form Feed character> 

<End-of-Medium character>
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The normal procedure tape format is: 

<name> = set <No. of segments> 

<name> = algol 

external 

<50 Spaces> 

<1. line of Algol procedure declaration> 

message <name>, version <date>, RCSL <No.>3 

<remaining Algol procedure text>; 

<50 Spaces> 

comment <description of procedure parameters>3; 

<Form Feed character> 

<End-of-Medium character> 

The only console command necessary to input such tapes is the command 

defining the paper tape reader as current input medium. 

The format of procedure tapes is chosen so that it is easy to cut 

out the ’naked’? procedure text, with or without the last comment. When 

translated as an external procedure (inputting the whole tape) the com- 

piler gives a warning message because the end matching the external is 

missing: 

1. line ddd source exhausted 1 end missing 

but the translation and storing will be completed normally. 

3. Format of Procedure Description 

The complete description of a procedure has the following sections: 

1. Function and Parameters, 

A short description of the type of problem the procedure solves; the 

procedure heading with complete specifications; a concise description 

of the parameters classified as Call parameters, Return parameters, 

Call and Return parameters, or Other parameters (e.g., parameters 

used with Jensen’s device).
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Method. 

A detailed description of the mathematical or statistical method and 

of algorithmic subtleties with suitable references to literature. 

Accuracy, Time, and Storage Requirements. 

A summary of the available information on the numerical accuracy, the 

execution time, the core store and backing store requirement for the 

translated program, and the number of lines of the procedure text in- 

cluding the last comment. 

Test and Discussion. 

A comparison with other, similar procedures; a survey of the performed 

test runs and a few characteristic test results; a simple Algol pro- 

gram showing a typical application of the procedure; a few results 

from runs with this program. Suggestions for changes in the algorithm 

to meet special needs. 

References. 

References to the relevant literature, if any. 

Algorithm. 

The complete text of the procedure tape including the FP-commands, the 

Algol text, and the comments. This section may be omitted in case of 

very long procedures or procedures programmed in machine language. 

The description may be incomplete but it will at least contain section 1, 

Function and Parameters. 

he Distribution and Classification 

The programs and procedures are available through the normal RC System 

Library and the most fundamental ones are contained in the standard user’ s 

package. 

They are classified by means of a set of descriptors according to 

the system adopted by RCSL, Each algorithm has at least one descriptor 

from each of the three columns: 



Mathematical 

Statistical 

and one or more subject descriptors, like 

Complex arithmetic 

Db. prec. arithmetic 

e Special functions 

Bessel 

Ganme. 

Complete descr. 

Incomplete descr. 

Introduction - 4 - 

Algol procedure 

Algol program 

In standard user’s package Slang subroutine 

Matrix 

Inversion 

Eigenvalues 

Kigenvectors 

Linear equations 

Slang program 

Fortran subprogram 

Fortran program 

Integration 

Multi 

Diff. equations 

These descriptors are preferably chosen among the keywords appearing in 

Computing Reviews.
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real procedure adapint(a, b, f, x, delta, order) 

1. Function and parameters. 

Call parameters: 

ay Dd real values. The endpoints of the interval over 

which the integration is carried out. It is al- 

lowed to have b < a. 

delta real value. The permitted error relative to Ia. 

Return parameter: 

adapint real procedure. The approximation of the integral 

of f(x) obtained by the procedure. 

Other parameters: 

C4 real. The function f(x) given as an expression in x. 

f and x are used as ’Jensen parameters’, 

x real. The independent variable used in the expres- 

sion f(x). x need not be initialized. Upon exit 

x = sign(e-Iaxdelta)xe, where e is an estimate of 

the abs error. So x > O indicates a failure and 

x <= 0 a success. 

2 e Method. 

The real procedure adapint calculates the integral of a function 

f(x) from a to b within a prescribed accuracy given by the parameter: 

delta. This is achieved by making further subdivisions of those subin- 

tervals, where the error is too large - and only of those, These subdi- 

visions are stopped when the desired accuracy is obtained or when the 

number of subdivisions reaches its permitted upper bound. In all cases 

the procedure delivers on exit an approximation to the integral and an 

indication of success or failure. 

The procedure is particularly useful when the function f(x) exhibits 

an almost singular behaviour within the interval (a, b) like 1/sqrt(x+1-6) 

over (0, 1). etc. In such cases it is almost always possible to get through 

by a proper choice of the governing parameter: delta.



~2-= 

The method uses a 7-point formula, and all subdivisions are nonde- 

structive (i.e. all fumction evaluations are used). The successive subdi- 

visions are carried out so that the squares of the estimates of the abso- 

lute error in all subintervals finally obtained are uniformly distributed. 

The calculation is considered successful if e <= Ia X delta, where e = 

abs(the estimate of the absolute error) and Ia is the integral of abs f 

over (a, b). Ia is computed by the procedure but not delivered as return 

value. Upon exit x is assigned the value sign(e-Iaxdelta)xe. So a success 

is indicated by x = 0 or x = -ecD, and a failure by x = e>0, Since Ia 

usually is not known in advance, it is necessary to have a realistic esti- 

mate of Ia before running the procedure, so that delta can be properly 

fixed. This estimate may be obtained either by an honest guess or by means 

of the procedure itself. It must be noticed that the estimate of the error 

(se) made by the procedure usually is 10 - 100 times as large as the ac- 

tual error. 

Ex, The call adapint(0,5,exp(x),x,y»-4) gives adapint = 147.4131649 (true 

value = 147.413159.e50) and x ™ -1.2y-3, success (actual abs error = 

58y=5). 

3, References. 

The present algorithm is the result of many experiments made at Regnecen- 

tralen during the last years and is not described in the literature. For 

a similar algorithm, see: 

[1] H. O’Hara, and Francis J, Smith: The evaluation of definite integrals 

by interval subdivision, The Computer Journal, Vol 12.2 (May 1969), p. 

179-182, 

h, Algol procedure 

adapint = set 4 

adapint = algol index.no message,yes 

external 

real procedure adapint(a,b,f,x,delta); message adapint version 1.10.69; 

value a,b,delta; real a,b,f,x,delta;



begin array A(1:60)3 boolean selection,ex; integer p,Sign3 

real e,fe,fa,fb,h,x1,x2,x4,x6,x7,f1,f2,f4, f6,f7, base, r,s,t, 

sa, 8b, hmin, sum, eps, dev, dds 

Signi=sign(b-a) 3 h:=sabs(b-a) 3 hmin:=h/182003; selection: =true3 

eps :=(6615/192xdelta)»x2/(if h=0 then 1 else h); sum:=dd:=0; 

xiaxhsa(atb)/2;fh:=f3 xssasfar=fsx:se:=bsferafbi=f 3 

xsax2s=(etxh) /2;f2: =f 3x:=x6:=(b+x) /2;f6:=f; 

s:sabs(Lxeh+fatfb)x2; base:=sxhs3 p:#=33 goto TEST; 

STGRE: 

if abs(3xfb-8x£7+6xf6-f4)<abs( 3xfa-8xf1+6xf2-£4) then 

begin 

A(p) :=b 3A(pt1) s=fb sA( p+2) s=£73A(p+3) :=£6 5 
biser:sasfbsafe:=fasar=x4sfarafh; 

x6 9x1 sf6s=f1 sx4s=x2sfhs=P23s3=2xsa 

end 

else 

STORE2 s 

begin 

A(p) :=a3A(p+1) s=fazA(p+2) :=f1 3A(p+3) :=£25 
asaxtsfasafh sx: ax6 sf: =£6 3x63 =x7 3 £6: =£7 38:3 =2Xsb 

end$ 

x2ax2:a(atxl) /2;f2:=f3 

TEST s 

x29Kx1 2=(9+x2) /2321 =f 3x2=x7 2=(b+x6) /2;£7: =f sh: =abs(b-a) 5 

sarsabs(4xPre+fatf) ssbs=abs(4xf6+fb+f4) sbase:=(sa-s+sb) xhtbases 

rs=P2+f6 sstmfi+f73t:=fatfb3 

dev: =(B84xr-64xs+1 5xt-7OXf4) exh; ex: sdev>basexeps 5 

if (h-hmin)xy9>ebs x4Ap<56Aex then 

begin 

ps=pths goto if selection then STORE else STORE2 

end 3 

sum? =sumt(2016xr+2048xs+549xt+HOOKxe) xh 3 

ddi:mdevxh+dd; if ex then eps:=(16xeps+dev/basexx2) /4; 

tf p>O then 

begin 

selection:=false; 

timA(p)3 if (t-a)x(a-e)<0 then



begin 

bswes3 fbs=fe3 esaas fes=fa 

end 

else 

begin 

bsaasfb:=fa 

end; 

azst3 fas=A(pt1); f2:=A(pt2)3 f:=a(pt3); 

xhem(atb)/23 x:=x6:—(xlt+b)/23 P6:=f3 x2:=(atrxh) /2; 

s:=ebs(4xfl+fatfp)x23 p:=p-4s goto TEST 

end from STORE$ 

adapint:=Signxsum/132303 dd:=16/6615xsqrt(dd) ; 

xtsif dd>deltaxbase/12 then dd else -dd 

end adapint; 

end
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1. Function and Parameters. 

besselik calculates the modified Bessel functions: 

I0(x),.0.,1n(x) and KO(x), ooo, kn(x) ° 

Procedure heading: 

procedure besselik (n,x,1,K) 3 
value n,x3 real x3 integer n3 
array I,K3 

Call parameters: 

n : (real or integer) (real is rounded to nearest integer) 
maximum order of the Bessel functions. 

n mist be >=0,. 
x : (real or integer) the argument, must be > 0. 

Return parameters: 

I : (real array I(O:n) ) 
the values of the calculated functions: 

I(0)=I0(x),.+0,1(n)=In(x). 
K : (real array K(O:n) ) 

the values of the calculated functions: 
K(0) =KO(x), -06,K(n)=Kn(x). 

2. Method. 

First besselik calculates all the values of Ij(x), see [1]. 

The recurrence is performed from an upper bound nb. If x+14<=n+3 

this integer is set equal nt otherwise x+1h. 
Then i(nb,x) is assigned the value of (x/2)xmb/(1x2x...»nb), 

while i(nb+1,x),...,i(n,x) is set to 0. 
i(nb-1,x),e0e)1(0,x) 

i(j-1,x) = 2xj/xxi(j,x) + i(j+1,x). 

But since Ij(x)/i(j,x) is the same number for all j<=nb, Ij(x) 
can be calculated from the formula 

nb 

exp(x) = I0(x) + 2x} Ik(x) 
k=} 

by replacing x by abs x. 

ren KO(x) and Ki(x) are calculated by polynomial approximation 
see L2]: 

n 
\ 

KO(x) := P1((x/2)x@) = -1n(x/2)xI0(x) ; 
Kite) s= P2((x/2)xxe) /x +1n(x/2)xI1(x) 3 

KO(x) := P3(2/x) /exp(x) /sart(x) ; 
Kit) = Pita ey atta 

where Pi(x) is a polynomial of 6. degree. 

are then computed from the recurrence formula
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Further values of Kj(x) are calculated by the recurrence formula: 

K[it1] = 2xi/xxckfi) + K(i-1). 

Accuracy, Time and Storage Requirement. 

Accuracy: relative error <p-7 
Time: approx. 10 + 0.5xXn ms 

QoS. x=2 , n=10: 11 ms 
x=10, n=40: 29 ms 

Storage requirement: 3 segments of program and 8 local real variables. 

Typographical length: 87 lines incl. last comment. 

Test and Discussion. 

The algorithm is similar to the GIER procedure 0.No. 179. [3]. 

Below program gives the following output: 

begin 

comment here the procedure is copied unless it is already 

translated as an external; 

integer 1,n3 real x3 
write(out,<:<12><10> n x3>,false add 32,13,<:1(n):>, 

false add 32,18,<:K(n)<10>:>) ; 
AGAIN: 

read(in,n)3 if n=-1 then goto END; 
begin array K,1I(O:n) 3 
read(in, x) ; 
pesselik(n,x,I,X) 3 
write(out,<:<10>:>,<<dd>,n,<<dd.dd>, x, 

<< -d,ddddd dddddy-dd>,I(n),K(n) ); 
goto AGAIN 
end inner block; 

END: 
end 

datas 

0, 0,01 
O, 0.5 
Oy, 5 
1,5 
10, 5 
20, 5 
~l, 

n Xx I(n) K(n) 

0 0.01 1.00002 50003 0 472124 47460, 0 
0 0.50 1.06348 33708, 0 9.24419 07256 -1 
0 5.00 2.72398 71829, 1 5.69109 83816, -3 
1 5.00 2.43356 Le1lby 1 WO4W61 33826, -3 

10 5,00 4.58004 4h196y -3 242036 28020, 0 
20 5.00 5.02423 93598y-11 .82700 05078, 8
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Algorithm. 

pesselik=set 3 

besselik=aligol 

external 

procedure besselik (n,x,I,K)3 
value n,x3 real x3 integer n5 
array I,K; 

begin integer i,nb,m3; 
real a, jO,j1,j2, sum, xhalfs 
ms=n 3 
nb:=x+143 
if nb<=n+4 then nb:=n+t3 
xhalf:=x/23 
if x<=y-150 then nb:=0 
else 
begin 

jis=13 
i:=0; 

for t:=si+1 while jl>y-150Ai<=nb do j1:=j1xxhalf/13 
nb:=1-1 

end; 

eomment nb is the upper bound for recurrence; 

if nb<=n then 
begin 

for it=nbt1 step 1 until n do I(i):=0; 
mi=nb 

end 3 

sum$=j23=03 
for i:=nb step -1 mtil 1 do 

begin 

if i<=m then I(1i):=313 
jO:=1/xhalfxj1 + J23 
sums =sumt jo 3 
j2s=j13 Jissjo 

end recurrence loop;
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sum: =exp{ x) /(2xsum-j0) $ 
ae=1(0) :=jOxsum; 
jes=joxsumg if n>O then I(1):=323 
for it#m step -1 until 2 do I(1):=1(i)xsun; 
comment all values of I0(x),..0,in(x) are calculated; 
if xhalf<1 then 
begin 

jO:=xhalfxx2 3 

j124in(x)=.6931471813 
at=K(0):+((((( s00000740 xjO + .00010750)xjo 

+ 00262698)xjo + .03488590)xjo 
+ 423069756)xjO + .42278420) xjo 
=.57721566 - jixa; 

if n>O then. 
j22=K(1) 24((((((=.00004686 xjo - .00110404) xjo 

~301919402)xjo - .18156897) xjo 
OTe TESTO} 0 + 615445144) xjo 
+ 1 /x + j1xje 

end 

else 

begin 

j0:=1/xhalf3 
jisssqrt(x) xexp(x) 
at=K(0):=(((((( .00053208 xjo - .00251540)xj0 

+,00587872)xjo - .01062446)xjo 
+502189568)xjoO - 07832358) xjo 

| +1.625331414) /513 
if n>o then 
ge¢=K(1) $3((((((-.00068245 xjo + 500325614) xj0 

* 2400780353)xjo + 01504268) xjo 
= .03655620)xjO + .23498619) xjo 
+1425331414) / 31 

end calculating KO(x) and K1(x) by 
polynomial approximation 3 

for 1:42 step 1 until n do 
begin 

sum: 2K(1) :=at(i-1) /xhalfxj23 
azaj23 j2s:=sum 

end rectirrence loop 
end besselik3 

cottment 

besselik calculates the modified bessel functions: 

£0(x) ,00,In(x) and KO(x),..6,Kn(x). 

Call parameters: 
n : (real or integer) 

maximim order of the Bessel functions. 

n must be >=0. 
x i (real or integer) the argument, must be > 0. 

Rettirn parameters: 
t : (real array I(O:n) ) 

the values of the calculated functions: 

I(0)=I0(x),«+e,1(n)=In(x). 
K : (real array K(O:n) ) 

the values of the calculated functions: 

K(0) =KO(x),...,K(n) =Kn(x) ; 

-4.
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1. Function and Parameters. 

besseljy calculates the Bessel functions of first 
kind to oat os aaa os and the Bessel functions of second 
kind Yo(x),¥1 X),000,N x) of integer order and with real 

argument. 

Procedure heading: 
procedure besseljy (n,x,J,Y¥)3 
value n,x3 integer n3 real x3 array J,Y3 

Call Parameters: 
n (integer or real) (real is rounded to nearest integer) 

maximum order of the Bessel functions. 
n must be >=0. 

x (integer or real) the argument, must be <0, 

Return Parameters: 

J (real array J(O:n) ) 
the calculated values of the functions 

J(0)=J0(x) , +0e,d(n) =Jn(x). 
Y (real array Y(O:n) ) 

the calculated values of the functions 

¥(0) =¥0(x), +«0,¥(n)=Yn(x). 

2. Method. 

First the functions Ji(x) are calculated. 

For abs x <= »-5 the procedure uses a truncated power 

expansion 

J(i)(x) = (x/2)>«i/i 

for 1 = O,t,eeeyn. 

For abs x > y»-5 the values are found by recurrence, see [1] 

j(4-1) (x) = ext/xxj(4) (x) -5(4+1) (x) 

for i = nb-2,nb-3,.00,1, where j(nb)(x)=0 and j(nb-1) (x)= -150. 
nb is an even integer found as a function of x and n, within 
the limits given in [2]. 

After recurrence J(i)(x) is found as 
nb/2 

J(i) = 54) (x) /(5(0) (20) 42x & 32x) (29) 

Tor 1 = O,lyecee,Ne
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Then YO(x) and ¥1(x) are found from the summation theorems, 
see [1]: 

YO(x) = 2/pi x((gammatin(sbs(x/2) ) )xJO(x) 
nb/2 

- x ((-1)xxp/( 2p) xI( 2xp) (x) )) 
p= 

Y1(x) fot x( -1/xxJ0(x)+(1n(abs(x/2) )+gamma-1)xJ1(x) 

‘s ((-1)x((at1) /2) x4xo/(oxxe-1) xJ0(x) )) 

for odd values of o. The upper bound nb/2 is a substitute 
for infinity, see [2]. 

3. Accuracy, Time and Storage Requirements. 

Accuracy? relative error <p-7 
Time: if abs X <=y=5: approx. 5 ms 

else approx. 10 + 0./xn ms. 
CeSe x=2 , n=20: 17 ms 

x=10, n=40: 28 ms 
Storage requirements: 2 segments of program and 8 local real variables. 

(during translation 3 segments). 
Typographical length: 75 lines incl. last comment. 

4, Test and discussion. 

The algorithm is similar to the GIER procedure 0.No. 208, [3]. 

Below program gives the following output: 

pegin 

comment here the procedure is copied unless it is already 

translated as an external 5 

integer i,n3 real x3 

write(out,<:<12><10> n —-x:-:>, false add 32,13,<:d(n):>, 
false add 32,18,<:¥(n)<10>:>) 3 

AGAIN: 

read(in,n)3 if n=-1 then goto END; 
pegin array J,Y(0:n)3 
read(in,x) 3 
pesseljy(n,x,J,Y)3 
write(out,<:<10>:>,<<dd>, n, <<dd.ddd>, x, 

<< -d,ddddd dddddy-dd>,J(n),Y(n) ); 
goto AGAIN 3 
end inner block; 

END: 
end 

data: 

0, 9.001 

O, 065 

0, 5 
1, 5 
10, 5 

20, 5 

“i,
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x J(n) ¥(n) 

0.001 9499999 75004, =1 =4..47141 66116, 0 
0.2500 9.38469 807244, -1 ~' 44518 73352 =1 
5,000 -1.77596 77133» 1 -3.08517 62526y -1 
5.000 =3.275T9 13760y -1 1247863 14542, -1 
5.000 1246780 26472, -3 2.51291 10098, 1 
5,000 2.77033 00515y-11  - 5.93396 52068, 8 
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[2] 
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[4] 

[5] 

6. 

Randels and Reeves: Notes on Emperial bounds for Generating 

Bessel Functions. Comm, ACM, v.1, No. 5, 3. 

Tove Asmussen: Bessel J and Y, Gier System Library, 

O.No. 208, Regnecentralen, April 1964. 

British Association Mathematical Tables, Vol. VI, 
Bessel Functions, zero and unity, Cambridge University 

Press, 1958, 

British Association Mathematical Tables, Vol. X 
Bessel Fumctions, order 2 to 20, Cambridge University 
Press, 1952. 

Algorithm. 

besseljy=set 3 
bessel jy=algol 
external 

procedure besseljy (n,x,J,¥)3 
value n,x3 integer n3 real x; array J,Y3 

begin integer a,nb,N$ 
real jO,j1,sum,y0,y1,y23 
boolean even$ 

sums=abs X$ 

x:=j1:=x/23 
yOs=y13=03 
y2:=1n(sum) -0.11593151565843 
if sum=)-5 then 

begin 

J(0) s=sum:=j0:=13 
for nbi=1 step 1 until n do J(nb) :=J(nb-1)xx/nb 

end 
else
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begin 

Ns=n+1$ 

if n>10 then 

begin 

for N:=N-1 while (sum/N)>N<y-100 do J(N):=03 
N:=N+1 

end 3 
nb:=0.525xsum+13 3 
no:=ex(if nb <=N//2 then N//2+1 else nb); 
J 139-1503 
jO2:=sum:=0;5 

even: =false 3 

az=(-1)>((nb-2) //2) 3 
for nb:=nb-1 step -1 until 2 do 

begin 
if nb<N then J(nb) s=if even then jO else jl3$ 

if even then 

begin j1:=nb/xxjO-j13 yO:sa/nbXxjOt+yO end 
else 

begin 

jOs=nb/xxj1-J503 
yl s=axnb/(nbx@-1)xji+y13 
as=-2$ 
sum: =sumt jo 

end$ 

even: ==,even 
ends 
j0:=51/x-J03 
sum: =2Xsumt jo $ 
J(0) :=j0/sum; 
if n>O then J(1):=j1/sum; 
for nb:=N-1 step -1 until 2 do J(nb):=J(nb) /sum 

ends 
x(0): =y0 3=0 .63661977236758x(Lxy0+y2xjo) /sum3 
if n>O then Y(1):=y1:=0.63661977236758x 

(-30/x/2+(y2-1) xj 1-y1x4) /sum; 
for nb:=2 step 1 until n do 
begin 

Y¥(nb) :=y2:=(nb-1) /xxy1=y03 
yOs=yi3 yli=ye 

end 
end besseljy3 

comment . 

besseljy calculates the Bessel functions of first 
kind JO(x),J1(x),..e,Jn(x) and the Bessel functions of second 
kind Yo(x), *vi(x),.0.,¥n x) of integer order and with real 

argument. 

Call Parameters: 

n (integer or real) 
maximum order of the Bessel functions, 

n must be >=0, 

x (integer or real) the argument, must be <0, 

Return Parameters: 

J (real array J(O:n) ) 
the calculated values of the functions 

70) s70C) “sego(n) aC) « 
YX (real array Y(O:n) 

t e oes y Vv f the functions 
x(0) efor pesesl tang of x)



a 8 REGNECENTRALEN 

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS 

RCSL no: -. . 

Edition: September 1970 

Author: Bo Jacoby 

Titie: beta 

( RG 4000, Software, beta, Algol Procedure, ISO Tape 

Abstract: beta(x, y) approximates the beta function. 

peta(x, y) = integral from 0 till 1 of(1-t)xx(x-1)xtxx(y-1)xat. 

6 pages. Sa Be ee 

ee 

fe system LIBRARY @G¢eeecoeoetsceseecesceegeaeceoeoeesceecoeosoe oe eee eee ee Sees 

DK-2500 VALBY - BUERREGAARDSVEJ 5 + TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN 



beta - 1 = 

Beta function, beta(x, y) 

1. Function and parameters. 

beta(x,y) approximates the beta function. 

beta(x,y)= integral from 0 ti11 1 of(1=t)xx(x-1) xtxx(y=1)xdt 

procedure heading: 

real procedure beta(x,y) 3 

value xX,y3 real x,y3 

procedure identifier: 

beta : (real) 

approximate function of arguments not resulting 

in under - or overflow, in which case beta is 

undefined, 

call parameters: 

X,Y : (real or integer) 

arguments. 

2. Method. 

The value of beta(x,y) is calculated in the range 1<mx<=2, 1<my<=2 

by means of the forma 

beta(x, y) sganma(x+1)xgamma(y+1) /x/y/gemma(x+y) or 

beta(x, y) =gamma(x+1) xgamma(y+1) /x/y/(xty-1) /gamma(xty-1) 
according to whether xty<=3 or xty>3. 

The value of gamma(z) is approximated in the range 2<=z<=3 by a 

rational function of z-2, which is given as approximation 5231 

in reference (1) * 

For arguments outside the range 1<=x<=2, 1<=sy<=2, reductions are 

performed according to the formula: 

beta(xt1,y) =x/(x+y) xbeta(x, y)
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3. Accuracy and time requirement. 

The maximum relative error will be about 

max(1, (abs(x)+abs(y))x=10 

The c.p.u.-time used for a call of beta is crudely 

5+0.1X(abs(x)+abs(y)) milliseconds. 

4, = Test. 

testprogram and output: 

begin 

real b,xX;,y3 

for overflows:=0 while read(in,x,y)=2 

do 

begin 

b:=beta(x, y) 3 

write(out,<:<10>x=#!>,<<-ddd.@,x,<: y=>, 

Y,<: beta(x, y) =:>,<<dddddddddddd000y-ddd>, b, 

<<  ddy-dd>, abs(b-ganma(x) xganma(y) /gamma(xty) ) )3 
setposition(out,0,0) ; 

end; 

end 3 

x= 0.5 y= 0.5 beta(x,y)= 3141592653760y -12 Oy 0 

x= 1.0 y= 1.0 beta(x,y)= 1000000000000y-12 58-12 

x= 100.0 y= 1.0 beta(x,y)=100000000004000p-16 4S ya ht 

-0.5 beta(x,y)= -10783381324400,-12 Oy 0 x2 10.0 y
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5. Algol procedure. 

pbetasset 2 

betazalzol 

external 

real procedure beta(x,y) 3 

value X,y$ 

real xX,y3 

begin 

real h,w$3 

for w:30,x 

do 

begin 

if wad 

then h:=1 

else 

begin 

X25Y5 

yaw 

end 

ed 

if »2 

then 

begin 

for x:=x-1 step -1 until 1 

do h:=hxx/(xty) ; 

X3=xX+1 

end 

else 

if x<1 

then 

for x:=x step 1 until 1 

do h:shx(xty) /x 

end 

3 

ws=xty=1 3 

if wo2 

then



begin 

h:sth/(wxxxy) 3 

Wi =wWe2 

end 

else 

begin 

hesth/(2%y) 5 
Wiswe] 

end 

for ws=(((((( 
039301346419 xw 

+4142928007949) xw 

+1.09850630453 )xw 

+34 36954359131 ) xw 
+12,8021698112 )xw 

+22.9680800836 )xw 

+43.9410209189 ) 

/ 
((( w 
-7+15075063299) xw 
+h, 39050474596) xw 

+43.9410209191 ) 

while y>0 

do 

begin 

if x0 

then 

begin 

hesh/ws 

Ws x=15 

x30 

end 

else 

begin 

hs shxw3 

Wiay~1 3 

ya 

end 

end 

beta-4.-
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3 

beta: #hxw 

end beta; 

6. Reference. 

(1) J.P. Hart and oth.: 

Computer Approximations, 

John Wiley and Sons, 1968, p. 130-136
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1. Function and Parameters. 

1.1 Decompose: 

Decompose calculates upper and lower triangular matrices u and 1 

such that l*u=a, where a is a given n*n square matrix. With the 

additional requirement u(“,i)=1, the decompositicn is unique 

if a is non-singular. In orcer to ensure numerical stability, 

row-exchanges are performed (explicitly) and information about 

these exchanges is stored for further use in subsequent procedures 

handling the decomposed matrix. 

Implied procedure head: 

boolean procedure decompose(a,p,mode) 3 
value mode3 

array 23 
integer array p3 

integer mode; 

Call parameter: 

mode : (integer or real). This parameter governs the 

precision in the calculation of the inner-products 

in the algorithm: 

mode=O : The inner-products are calculated in normal 

floating point mode. 

mode=1 : The inner-products are calculated by means 

of intermediate variables of 45 bits mantis- 

sa and 24 bits exvonent, 

Call and Return Parameter: 

a : (real array or zone record with nxn elements). Con- 

tains at entry the square matrix t¢ be decomposed, On. 

exit, each element of a is replaced by the correspond-~ 

ing element of u or l. (The diagonal of u is not stored). 

In case of a one-dimensional array or a record, the 

elements of a must be stored row-wise. 

Return Parameters: 

decompose : (boolean). True if the matrix a is non-singular, 

otherwise false. 

p : (integer array with n elements). Contains information 

about the row-exchanges. (see section 2.Method).



1.2 Solve: 

Solve calculates the solution-vector x to the system of equations 

axx=b, where a is a n%n square matrix, decomposed by a previous call 

of decompose, and where b is a colum vector containing the given 

righthand side. Thus, the solution of several systems of equations 

with the same matrix of coefficients requires one call of decompose 

followed by a number cf calls of solve. 

Implied procedure heed: 

procedure solve(a,p,mode,b)3 
value mode; 

array a,b} 
integer array p$ 
integer mode} 

Call Parameters: 

mode 

a 

: (real or integer). cf. decomp se. 

: (real array or zone record with n¥n elements). Con- 

tains the decomposed coefficient-matrix as produced 

by decompose, 

: (integer array with n elements). Contains informae 

tion on the rowexchanges of the matrices held in a. 

Call and Return Parameter: 

ie) : (real array oz zone record with n elements). Con- 

tains on entry the given right-hand side. On exit, 

the corresponding solwticns are stored in b. 

1.3 Parameter-check, 

In case of wrong parameters the run is terminated with an error 

message on current output consisting of the procedure name (decomp 

or solve) and a number, indicating the wrong parameter as follows: 

1: The number of elements of a is different from n*x2 (n being the 

number of elements cf p). 

Wrong content of p (solve only). Indicates an impossible row- 

exchange or an attempt to solve a singular system of equations. 

mode<O or mode>1. 

The number of elements cf b is different from n (solve only).



2. Method. 

Decompose produces the triangular metrices 1 and u inn steps, 

in the k-th of which the k-th colum of 1 and the k-th row of u 

(0 <= k <= n-1) are calculated by 

(2.1) 1: a( 5X) :=a(J,4)-sum a(j,i)*a(i,k) 3  js=k,kt1,...,n-1 

veel 
(2.2) ut a(k,j):=(a(k,j)-sum a(i,j)*a(k,1))/a(k,k)3  j:=k+1,k+2,...,n-1 

i=0 

During the calculation of the elements of 1, the k-th pivotal index, piv, 

is found using the criterion 

abs a(3,k)/2**ex(j) = maximum with respect to j 

where ex(j) is the initial maximum exponent of the numbers constituting 

the jeth row. 

This pivotal strategy is chosen on two counts: It is simple, and none is 

known to be universally better (cf. [1]). 

If all elements of the colum of 1 tums out to be (exactly) zero, p(1) 

is set equal to 2048, and the procedure exits with the value false. 

Otherwise, p(k) 1s set to the pivotal index, piv, and if piv is greater 

than k, ex(piv) is set to ex(k) and the k-th and the piv-th row of a are 

exchanged before the elements of u are calculated. 

Solve proceeds in two steps: First, the equations 

1*y=b 

is solved for y, exchanging the elements of b as described by Dy, after 

which the finai scelution x is found by solving 

U*X=y 

Here, b is successively replaced by y and x. The formilae used are analogous 

to those of (2.1)-(2.2): 

(2.3) 1: (i) 1=(o( x) sum b(i)*a(k,i))/a(k,k) $3 k:=0,1,++.,n-1 
i=0 

n-1 

(2.4) ui p(k) :=b(k)-sum_ b(i)*a(k,t) 8 ksme2,n=35 0009150 
i=k+1 

During the first step, it is checked that n > p(k) >= k. If this check 

fails, the rm is terminated as described in section 1.
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If the value of the parameter mode is 1, the inner-products of (2.1)-(2.4), 

i.e. expressions of the form 

-(sum r(i)*s(1)+r(k)*(-1)) 

are calculated by retaining hS pits cf each product and adding this to 

a sum of 45 significant bits. (The exponent is kept in 24 bits). 

Thus, instead of the rounding errors in each miltiplicaticn and addition, 

introduced by the normal floating-point operations, an error is introduced 

only in the final rounding of the sum to a floating-point number. However, 

it should be noted that only to a certain extent this procedure can cope 

with a severe cencellation of significant bits that may arise when a 

product is added to the sum. 

The following peculiarities, due to the fact that the procedures are 

written in the assembler language SLANG 3, should be mentioned: 

a) The error message constituents lin.eq.1 and lin.eq.2 occur in 

these messages instead cf ext<line number>. The possibilities are: 

lin.eqe1 : Overflow/underflow in calculations outside the inner~ 

product procedure. 

lin.eq.2 : a) Overflow/underflow in the inner-product procedure. 

(If mode=1, this can happen only in the final rounding 

to a floating-point number). 

b) The parameter errors as described in section 1.3 

Some examples are shown in section 4, 

b) The formal parameter p contains as explained the pivotal indices; 

however, the k-th index is not found in p(k) (1.e. the word number 

k of p), but in the k-th byte of p. A possible way of unpacking 

these indices is shown in the program in section 4. 

The remaining bytes of p are used for the exponents ex(k). 

ce) As stated implicitly in section 1, the index bounds and the 

number of indices of the actual array-parameters are irrelevant. 

Only the number of elements in the declaration is taken into 

consideration.



3, Accuracy, Time and Storage Requirements. 

Accuracy: Depends on the problem and cn the choice of the 

parameter mode. 

The table below shows the median-error (in mits of 40719) 

of 11 sets of equations, consisting of equally distributed 

random numbers (= 49201 4920)- The error is expressed as the 

residual norm relative to the norm of the right-hand side. 

(The Euclidian norm is used). 

order error error 

mode=0 mode=1 

10 2.6 109 
20 39 2aD 

30 Toh 4,0 
Lo 9.5 5.0 
50 ot 8.3 

60 21 7.6 

10 33 8.7 

Time: Based on recorded solution-times for the systems mentioned 

above, the following execution-times in msec., expressed 

as functions of the order, holds within +10 pet. for orders 

between 50 and 100: 

mode=0 mode=1 

decompose 0.02%(1+10/n) xn**3 0.08%(1+5/n) *n**3 

solve O.07snx*e 0. D*n#*2 

Storage Requirements: 2 segments of program 

O variables. 

hh, Test and Discussion. 

As may be expected, the results obtained for mode=1 are significantly 

better than those for mode=O0 only if n is sufficiently large. On the 

other hand, if the system is ill-conditioned, the results can be widely 

different even for small n. As an example, the system 

10 7 8 7 32 

75 65 23 
as 8 610 9 bp: 33 

7 5 9 10 31
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the exact scluticn of which is (1,1,1,1), yields the results: 

mode=0 = 

decomposed matrix: 

7,0000000000' O 721428571432! -1 8.5714285716' -1 721428571432! 1 

8,0000000000' 0 2.8571428570! -1 1.1000000002' 1 1.1500000002" 1 

70000000000! 0 0,0000000000' © 3,0000000001' 9 1.6666666667' 0 

1.0000000000! 1 =1.44285714296! -1 1.0000000014! 0 -1,6666666791? -1 

piv ex solutions 

1 h =4,00000C0459' Oo 
2 4h 9,9999992456' -1 
3 4 4.0000000186' 0 

3 4 9.9999998884'! -1 

mode=1: 

decomposed matrix: 

7.0000000000' 0 7.1428571432' -i 8.5714285716! -1 To 1428571432! =1 

8,0000000000' 0 2.8571428570' -1 1,1000000002' 1 1.1500000002' 1 

7.0000000000' 0 =2.9103830457'-11 3,000000000E' C 16666666665 ! 

4.0000000000' 1 =1.4285714290! -1 1.0000000009' © -1.,6666666733' -1 

piv ex solutions 

1 4 = 4.00000G0082' 0 

2 4 9,9999998644! -4 
3 h =7,0000000034! 0 

3 4 9.9999999800! -1 

The Euclidian error-icrm is 9.1'-8, 1.6'-8 respectively. 

The following program was used 

lin.eq. test parameter error etc. 
begin integer di,d2,d3,d4,mode$ 

underflows:==13 

- reed(in,d1,d2,43,d4,mode)s 
pegin array a(1:a1), »( a2:43)3 

integer array p(1:d4). piv(1:2*a4)s 
integer i,j,k; 
read(in,a,b)3$ 
if -,decompose(a,p,mode) then write(out,<:<1C>sing:>)3 
write(out,<:<10>decomposed matrix: :>)3 
k3=13 
for i:=1 step 1 until di do 
begin write(out,<:<10>:>)$ 

for j:=1 step 1 until dl do 
begin write(out,<< -d.dddddddddd'-dd>, a(k))3 

ks=k+] 
ends



j:=p(i)3 
piv eels shift (-12) extract 123 
piv(2*1):=j extract 123 

end3 
sotve(esPimode,) 5 
write(out,<:<10><10> piv ex  solutions:>)3 
for 1:=1 step 1 until db do 
write(out,<:<10>!>,<< ddddd&, piv(:) ,piv(i+al), 

<< -d, ddddddddda' -dd>, b(1+42-1)) 
end block 

end 

This program produces the error-messages shown below when the input is 

4, 1, 25 2, O; Ay Ty 1; 

where a means the four elements of a 2*2 matrix: 

I) at 1, 2, 1, 2 

solve 2 lin. ea 2 
called from line 21-22 

II) as "hoo, '-hoo, "hoo, '-40o 

real lin, eq. 1 

ealled from line 8-8 

III) az: 1, 8'615, 0.5, -8'615 

real lin. eq. 1 

called from line 21-22 

IV) as 1, 12615, 0.5, -12'615 

real lin. eq. 2 
called from line 8.8 

5. References 

[1] Forsythe, G end Moler, C.B.: Computer Solution of Linear Alesbraic 

Systems. Prentice-Hall. 1967. 

6. Algorithms. 

Since the procedures are written in SLANG, the algorithms wil 

not be given,
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Solution of the eigenproblem for real matrices 

eberlein(n, a, t, tmx, first, result). 

1. Function and parameters. 

It is possible to chose one of several forms of solution according 

to the rules given in the parameter list. 

If the iteration process does not converge within the given number 

of iterations or converges to a matrix that is not of block diagonal 

form, no solution is found. This situation is indicated by the boolean 

parameter, first. 

Input parameters: 

n H the order of matrix a. 

result : if result is true then in case of convergence the 

eigenvalues will be placed in the two first columns 

of matrix a. 

Input/Output parameters: 

alisn,i:n}] : at entry the matrix for with the eigenproblem is to 

be solved, 

At exit one of the following three situations can 

oceur: 

1) if convergence occurs and result is false :



t{1:n,1:n] 

the real eigenvalues occupy diagonal elements 

while real and imaginary parts of complex conjugate 

eigenvalues occupy diagonal and off diagonal corners 

of 2x2 blocks on the main diagonal. 

2) if convergence occurs and result is true : 

the eigenvalues will be placed in the two first 

columns according to the following rules 

a real eigenvalue x = a{j,j] makes 

alj,1] = x 

and alj,2] = 0 

a complex conjugate pair of eigenvalues 

x + ixy = alj,j] + ixalj,J+1] 

and x - ixy makes 

alj,1] 

alj,2] = 

afj+1,1] = x 

and afj+1,2] = -y 

3) 1f convergence fails no eigenvalues can be 

calculated as a result of the procedure call. 

The matrix, a, is equal to the transformed matrix. 

During a new call of ,eberlein, it ts possible to 

try whether more iterations will result in conver- 

if first is false at entry and tmx > O then t 

given at ‘entry is multiplied by the transformation 

matrix calculated in the procedure. 
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Eigenvectors of real eigenvalues occupy columns of 

the transformation matrix. Eigenvectors corresponding 

to complex conjugate eigenvalues given by 

afj,j] + ixals,J+1] 

and alj,3] - ixald,d+71] 

are formed as 

t{k,j} + ixtlk,J+1] 

and t[k,j] - ixtlk,§+1] 

where k = Tye yeoee ° 

+mx : at entry: 

the maximum number of transformations performed is 

abs(tmx). If tmx < 0 then t is unaltered. 

at exit tmx records the number of transformations 

performed. 

first : at entry tells whether t is a result of a foregoing 

@ 
transformation or not. ( see under t{1:n,i:n] ). 

at exit first is true if convergence occurs in less 

than tmx iterations otherwise first is false. 

The procedure is based on a modification of a generalized Jacobi-me- 

thod [1]. There exists no proof of convergence for this special modifica- 

tion, but mumerical experiments have shown the worth of the method. 

A transformation matrix T transforms the matrix A into a matrix of 

block diagonal form A’ = T ‘AT. 

r The transformation matrix T is generated from a sequence of two-di- 

mensional transformations T,(k, m), where (k, m) is the pivot pair. 



Each T, is of the form RS where R is a rotation and S a shear. 

Let Bay) Th and Says i= 1,2, ..., mn, J #1, 2, «s , m be the 

elements of A, R and 5 respectively. 

Then the rotation is determined as 

Yr =r = cos x 
kk mm 

Pm = “Tak m «Sin x 

Ty" ag (kronecker-delta) i # k, mand j # k, m 

where x are given by 

tan 2x = (a + Bic (ee - am) 

@ x being chosen so that after the transformation the norm of the k-th co- 

lumn is greather than or equal to the norm of the m-th column. 

The shear is determined by 

Ss, #s = coshy 
mm kk 

Sim Smk ™ -sinhy 

S45 = ij otherwise 

y is chosen to reduce the Euclidean norm of 

-1 
Ay, = (T, qT, eae T,) A(T, tT, eee T,). 

r In particular 

tanhy = (ED - H/2)/(G + 2(B* + D*)) 

where 

2 2 2 2 G = ( +ac +al +a‘,) 
thin * tk 7 Pim * Fmt 

cos2x(2 (a - 8:,8,_ )) ibkom Komi ik@im 
’ 

wm
 " 

2,22 _ 22 | 22 
~sinax( | (acy + tm - St 7 Ant)? 

itk,m 
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The process will normally result in a matrix A’ with real eigenva- 

lues on the diagonal and complex conjugate eigenvalues in 2x2 blocks on 

the main diagonal (eigenvalues a,, + ia ). 2x2 blocks because the pro- 
JJ - Sd+1 

cess theoretically results in 

2 all> Hatll> ...> [Hell 

where latl| is the norm of the i-th column of A’, 

If however more than two eigenvalues are of the same norm the above 

picture does not hold. This also happens if the matrix Ay at some step is 

near a more general solution of block diagonal form, because the conver- 

gence criteria then may stop the process, 

The procedure however results in a form with 2x2 blocks obtained by 

interchanging rows and columns if necessary. 

A matrix of the form aI + S where I is the identity matrix and 5 is 

skew symmetric, and cases with blocks of this form cannot be handled by 

the procedure, (If the form not it self is a solution), There is no 

quarantee that the transformation method used will not result in conver- 

gence to a form embedding blocks from which the procedure cannot calcu- 

late the eigenvalues. In testexamples this did happen, but only in spe- 

cial cases chosen to examine the stability of such solutions. Notice that 

if the number of iterations performed is less than the maximum number of 

iterations allowed and ,first, is false then the resulting matrix is of 

the above mentioned form, 

The eigenvectors are calculated from the rows of the transformation 

matrix, as described in the data list. 

Numerical examples have shown that eigenvectors corresponding to 

multiple eigenvalues are normally linear dependent, (Except for numerical 

errors). 

The algol procedure is based on an algorithm developped by Eberlein 

and Boothroyd [2]. The following changes are however made: 

1. A program part ensures that the eigenvalues are placed in 

1x1 and 2x2 blocks on the main diagonal. Matrices obtained 

as a result of convergence for which 1x1 and 2x2 blocks can 

not be constructed results in alarm message through the pa- 

rameters first and tmx. 



2, the parameter list is changed. 

3, a new dynamical form of convergence criterion is introduced. 

The convergence criterion is based on the four reals ep, eps, eps, 

and epse. 

At the start of the procedure ep, eps and eps1 are calculated as 

ep = max x yh 

eps = max x 1.00199 

eps1 = max x 4-3 

6 where 

max = maximam(|a, ,I ) 1,321, 2, ..., nm. 

If for a single value of eps1 

lay, - a5, < eps1 or (lay, + ay, < eps? and las, - a,,| < eps1) 

no more transformation are carried out before after a change of eps1. If 

eps1 < eps convergence has occured, otherwise a new value of eps1 is cal- 

culated as eps1 = eps1/10. The above value of eps makes sure that the re- 

sulting epsi is near to and less than eps. eps = max x 79 could cause an 

extra serie of iterations with eps! = max x 4-10 because of rounding er- 

rors. 

6 As pivot pairs are only chosen pairs of elements for which 

(la, - 854 > eps 2 and las, -'a,, > eps 2) 

or ja,, + a, > eps 2 
ij 

If only identity transformations occurs as 4 result of this rule then a 

new value of eps2 is calculated as eps2 = eps2/10. Numerical experiments 

have shown that this extra mechanism is necessary to ensure convergence 

of some ill conditioned numerical examples. 

The starting value of eps2. for every new value of eps’ is epse = 

eps 1/10. 

If epse gets less than ep convergence 4s not obtained by this algo- 

rithm and the process is stopped. 

@ The values of ep, eps, eps1, and eps2 are results of experiments re- 

ducing the computation time about 30 per cent compared with a program ma- 

king transformations for all pairs of elements cyclically. 



3, Accuracy and storage Requirements, 

Accuracy 

In case of convergence the following inequalities holds for the ele- 

ments of A? 

la - & 
1j sil 

13 * 84! 

¢ eps or 

la ¢ eps and lass - a5; ¢ eps 

for i= 1, 2, ... , n-1 and j = i+1, i+2, ... , n where 

eps = max(|elements of original matrix, al )x-9 

Storage requirements 

1) ALGOL 5, index check: 7 tracks of program and 52 local variables 

2) ALGOL 5, no index check: 6 tracks of program and 52 local varia- 

bles, 

Typographical length 167 lines of program exclusive the comment after the 

last end.



4, Test and discussion 

The procedure has been tested on the ALGOL 5 system for matrices of 

order < 12. 

The testprogram makes besides call of ~- eberlein - a calculation of 

testnorm = |[A x x - x xXlI/{l x x| | 

where A is the matrix for which the eigenproblem is solved, x is a calcu- 

lated eigenvector and the corresponding eigenvalue, 

Calculation of - testnorm - is made by a real procedure testnorm( 

n, A, t, k, complex, x1, x2) in the testprogram. 

A list of input parameters, results, and calculated values of - 

testnorm - is delivered by the testprogram. 

The starting values and following calculation of eps1 and eps2 are 

obtained as results of experiments resulting in 30 per cent decrease in 

execution time in solving testexamples.



@ Example no 1 

Time: 

ALGOL 5, core storage, no index check 0.36 sec. 

Input parameters: 

n a 3 

tmx = 50 

matrix a: 

1.000 0,000 0.010 
0.100 1.000 0.000 
0.000 1.000 1.000 

@ Results: 

tmx == «15 
first = true 

Eigenvalues after 15 iterations 

1 1. 1000000000 
2 0.9499999999 +0,0866025403x4 
3 0.9499999999 -0,.0866025404xi 

Eigenvectors: 

1 

~0 2745741273 
=0.2745741274 
~2.7457412704 

eo =. 
0.3262845267 +0.1836278766xi 

~0.0041158575 ~0. 374 3846272xi 
32216866940 +1.9075675104x1 

3 
0. 3262845267 ~0, 1836278 766xi 

, 0.0041 158575 +0. 3743846272xi 
~3.2216866940 =1.69075675104Xx1 

Testnorm for corresponding eigenvalues and eigenvectors 

no, of eigenvalue testnorm 

1262210



Example no 4 

Time: 

ALGOL 5, core storage, no index check 

Input parameters: 

n T 
tmx = 100 

matrix a: 

1 1 0 
-1 0 1 
=1 @) 0 
-1 0 6) 
=] 0 0 
=] 0 0) 
«1 (0) 0 

Results: 

tmx = 64 
first = true 

o
o
0
o
0
o
?
+
?
0
0
 

O
o
0
0
o
-
0
0
0
 

o
o
-
0
O
0
0
0
 

Eigenvalues after 64 iterations 

“
O
N
 

F
u
n
 

-0.9999999982 
0.7071067794 
0.7071067794 
~0.7071067788 
-0.7071067788 
0.0000000001 
0.0000000001 

Eigenvectors: 

1 
-0 25585067124 
0.0000000001 
~0.5585067124 
0.0000000001 

-0 5585067123 
00000000000 

-0.5585067125 

021107710832 
-0 04232186137 
-0.7543150660 
-0.9101086283 
=0 6799337 S446 
-0.4868900143 

-0.1557935621 

+0.7071067790X4 
~0.7071067790xi 
+0.7071067790Xi 
-0.7071067790xi 
~0.9999999956xi 
+0.99999999 56x41 

+0 .3310964522xi 
+0,4868900143xi 
+0, 3761189310xi 
+0 .0636714003xi 
=0.2674250515xi 
=O .4232186137x1 
~0.3124475306x1 

- 10 « 

10.1 sec. 

o
-
0
O
0
0
0
0



Testnorm for corresponding eigenvalues and eigenvectors 

-0.1107710832 
~0 .42352186137 
=0 67543150660 
-0.9101086283 
-0.799337 5446 

-0.1557935621 

004530114436 
06001930025 
-0.0609645978 
0.72687 18886 
0.2738604449 
0. 1266788860 
0.7878364866 

0.45301 14436 
0.6001930025 
-0.0609645978 
0.72687 18886 
0.2738604449 
0. 1266788860 
0.7878364866 

0.5486381922 
0.7859088684 
0.2372706765 
-0.0000000002 
0.5486381923 
0.7859088687 
0.2372706767 

0.5486381922 
0. 7859088684. 
0.2372706765 

0 .0000000002 
0.54863281923 
0.7859088687 

0.2372706767 

no. of eigenvalue 

N
E
D
 

and 3 

and 5 

and T 

=0.3310964521x1 
~0.4868900143x1 
0.3761 189310xi 
#0 .0636714003x1 
+0 .2674250515x1 
+0.4232186137Xi 
+0 6 3124475306x1 

-0.6611576004xi 
+0.1266788858xi 
0. 3263325577X1 
-0.4735141167x4 
+0, 1876434837Xi 
-0.6001930026xi 
-0.1471815591xi 

+0.6611576004x1 
~0.1266788858xi 
+0 6 3263325577X1 
+0.04735141167xi 
-0. 1876434837x1 
+0.6001930026xi 
+0 .1471815591XL 

+0 .2372706779Xi 
=0 631136751 34xi 
-0.5486381898xi 
+0,0000000002x1i 
+0 .2372706781X1 
-0.3113675132x4 
-0.5486381901xi 

~0.2372706779Xi 
+0..3113675134xi 
+0.5486381898xi 
-0.0000000002xi 
-0.2372706781xi 
40 .31136751352x4 
+0, 5486381901x1 

testnorm 

2.0n “9 

Zelny 9 

5Oy ~9 

5 oy “9 

-11- 
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. @ Exemple no 11 

Time: 

ALGOL 5, core storage, no index check 2.43 sec. 

Input parameters: 

n = 
tm = 100 

matrix a: 

1 ) 9) 0 
1 1 0 0 
¢) 1 1 ) 
) fe) 1 1 

 ) Results: 

tmx 80S 
first = true 

Eigenvalues after 45 iterations 

1 120014985857 +0.0014992361xi 
2 1.0014985857 ~0.0014992361Xi 
3 0.9985014113 +0.0014978791xi 
4 0.9985014113 ~-0.0014978791xi 

Elgenvectors: 

1 
-0.0000637318 +0 .0000264041xi 
00124657185 +0.0300779129x1 

5 8782571872 +14.1901547856xi 
6694..9278156800 +2771.1941409600xi 

«020000637318 -0.0000264031xXi 
-0.0124657185 -0 .03007791 29x1 
5.8782571872 = =14..1901547856xi 

6694.9278156800 -2771.1941409600x1 

0.0000637404. +0 .0000264010xi 
-0.0124478455 -0 203007121 14xi 
~5 .87822285h2 +14.1910426896x1 

6696 .9885651200 -2775.7892716800x1i 

0.0000637404 -0.0000264010xi 
-0,0124478455 +0.0300712114x1 

-5 8782228542 -14.1910426896x4 
6696 .9885651200 +2775.7892716800xi 



Testnorm for corresponding eigenvalues and elgenvectors 

no, of eigenvalue testnorm 

1 and 2 1539 -9 

3 and 4 18% “9 

Example no 12 

Input parameters: 

n = 3 

tmx == 50 

matrix a: 

1.000 1.000 1.001 
=1 2000 1.000 0.000 

~1 e000 0,000 1 2000 

Results: 

tmx = 28 
first = false 

Limiting matrix after 28 iterations 

1.00y +0 ~1.17y +0 7.60y ~1 

1-17» +0 1.00y +0 2.22y -1 

=7.60y -1 -2.22y -1 1.00, +0 

-13-
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6. Algorithm 

eberlein=set 7 

eberlein=aigol 
external 

procedure eberlein(n,a,t, tm, first, result) ; 
value n; 
boolean first, result; 
integer n, tmx; 

array 2,3 

comment 1 5 

begin 
real eps,ep, aii, aij,aji,h,g,hj,aik, aki, aim, ami, tep, tem, d, c,e, akm, amk, CX, Sx, 

cotex, sig, cotx, cos2x, sindx, te, tee, yh, den, tanhy, chy, shy,c1,c2,51,82, 

tki, tmi, tik, tim, eps1, eps23 

integer i, j,k,m,it,nless1 5 
boolean mark, left, right; 

mark := right := false; 

1f tm > O then 
begin 

right := true; 
if first then 
for i := 1 step 1 until n do 

begin 

comment identity matrix is formed in t; 

t(i,i) := 13 
for j := i+] step 1 until n do t(1,j) := t(j,1) := 03 

end 
ends 

tmx := abs(tmx); 
comment computation of the maximum absolute element of a3 

ep := 03 

for 1 := 1 step 1 until n do 
for j := 1 step 1 until n do 

if abs(a(i,j)) > ep then ep := abs(a(i,Jj)); 
comment 2 5 
eps 32 EpXxl .001 p-93 
eps! 23 epXy~-33 
ep t= epXy-143 
first <:= true; 
nless1 := ne15 

comment main loop , tmx iterations; 

for it := 1 step 1 until tmx do 

pegin 
eps2 := eps1/103 
comment compute convergence criteria; 

for i := 1 step 1 until n do 
begin 

aii := a(i,i); 
for j := i+1 step 1 until n do 

begin 

aij := a(i,j); 
aji := a(j,i); 
if (abs(saij-aji) > eps1 and abs(aii-a(j,j)) > eps1) 

or abs(aij+aji) > epsi then goto cont 
end 

end convergence test, all i,J3 
goto next_eps1; 
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7 @ comment next transformation begins; 
cont: mark := true; 

for k := 1 step 1 until nless1 do 

form := k + 1 step 1 until n do 
begin 

h := g :=hj := yh := 03 
ad := a(k,k) - a(m,m); 
akm := a(k,m)3 
amk := a(m,k) 3 
e := akm + amk;3 

:= akm = amk; 
if (abs(e) <= eps2 or abs(d) <= eps2) 

and abs(c) <= eps2 then goto skip; 
for i := 1 step 1 until n do 

begin 

aik := a(i,k); 
aim := a(i,m); 
te := alk X aik; 

tee := aim X aim; 

r yh := yh + te - tee; 
if ick and i<om then 

begin 
aki := a(k,i); 
ami := a(m,i); 
h :=h + akixemi - aikxaim; 
tep := te + amixamt; 
tem := tee + akixaki; 
gz := g + tep + tem; 

hj :* hj - tep + tem; 
end 

end i; 

h s= h + h; 

if abs(c)<=ep then 
begin 
comment take R as identity matrix; 

cx := 13 

sx := 03 

end else 
r begin 

comment compute elements of R3; 
cotex := d/e3 
sig := 1f cotex<d then -1 else 13 

cotx := cot2x+(sigxsqrt(1+cot2x02)) ; 
sx := sig/sqrt(1+cotx«e2) ; 
cx $= sx X cotx; 

end 3 
if yh<O then 

begin 

tem := cx; 

eX i= Sx; 
sx = -tem; 

end 
COS2XK t= CxXX2 - 8x}; 
sin2x := 2XxsxxXcx3 
d t= dXcos2x + cxXsin2x3 

h 
den. 

‘@ tanhy 

hxcosex = hjxsinex; 
g + 2x(exe + dxd); 
(exd - h/2) /den; ee

 
68
 

8
e
 

u 
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@ comment compute elements of 5; 

chy := 1/sqrt(1 - tanhyxtanhy) ; 
shy := chyxXtanhy; 
comment elements of RxS = T; 
cl := chyxXcx - shyXsx; 

c2 := chyXcx + shyxsx$; 
$1 s= chyxsx + shyxcx3 
s2 := shyXcx + chyXsx3 
comment decide whether to apply this transformation; 
if abs(si) > ep or abs(s2) > ep then 

begin 
comment at least one transformation is made so; 

mark := false; 

comment transformation on the left; 
for i := 1 step 1 wntil n do 

begin 
aki := a(k,i); 
ami := a(m,i); 
a(k,i) := clXaki + s1xami; 

@ a(m,i) := s@xaki + c2xami; 
end left transformation; 

| comment transformation on the right; 
for i := 1 step 1 until n do 

begin 
aik := a(i,k); 
aim := a(i,m); 
a(i,k) := c2xaik - s2xaims 
a(i,m) := clxaim - s1xaik; 
if right then 

begin 
comment form right vectors; 

tik :2 t(1,k)3 
tim 33 t(i,m)3 
t(i,k) := cOxtik - s2xtim; 
t({i,m) := c1lxtim - sixtik; 

end 
end right transformation 

end; 

@ skip: 
end k,m loops; 

if mark then 
begin 
comment 3 3 

if eps2 < ep then goto stop; 
eps2 := eps2/103 
goto cont; 

end else goto new loop; 
next epsi: ~ 

- eps] := eps1/103 
comment 4 ; 
if eps! < eps/2 then 

begin 
tmx 3= it - 13 
goto done; 

end; 

new_loop: 

end it loop; 
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r stop: 

first := false; 
tmx := itel; 

done: 
if first then 

begin 
comment 5 5 

for 1 := 1 step 1 until n-2 do 
begin 

mark := false; 
ali := a(i,i); 
for j := i+1 step 1 until n do 
if abs(aii-a(j,j)) <= eps A abs(a(i,j)-a(j,1)) > eps then 

begin 
if mark then goto stop; 
mark := true; 

if j = i+1 then goto next; 
for k := 1 step 1 until n do 

begin 

@ aik := afte k)3 
a(i+i,k):= a 55k3 
a( j,k) := alk; 

end; 

for k := 1 step 1 until n do 
begin 

aki := a(k,i+1)3 
a(k,i+1):= a(k, J); 
a(k,j) := aki; 
if right then 

begin 
tki 23 t(k,i+1); 
t(k,i+1):= t(k,j)3 
t(k,j) := tki; 

end; 

end; 
next: 

end3 
end; 

r comment the eigenvalues are placed in the first two columns; 
left := right := false; 
if result then 
for i := 1 step 1 until n do 

begin 
if -,right and i <n then 
left := abetaft, yt) cart 2}} > eps and 

abs(a(i,i)-a(i+1,i+1)) <= eps; 
aft 32 if right then a(i-1,1) else a(i,i); 
a(i,2) := if left then a(i,it+1) else 

if right then -a(i-1,2) else 03 
right := lefts; 
left := false; 

end; 
end3 

end eberlein; 
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 ) comment 

1. eberlein solves the eigenproblem for a real matrix by means of a sequence 

of Jacobi-like transformations. 

Input parameters: 

n 3 the order of matrix a. 

result 4 if result is true then in case of convergence the 

eigenvalues wlll be placed in the two first colums 
of matrix a. 

Input/Output parameters: 

ali:n,1:n] $ at entry the matrix for with the eigenproblem is to 

be solved, 

@ At exit one of the following three situations can 

oceur: 

1) if convergence occurs and result is false : 

the real eigenvalues occupy diagonal elements 

while real and imaginary parts of complex conjugate 
eigenvalues occupy diagonal and off diagonal corners 
of 2x2 blocks on the main diagonal. 

2) if convergence occurs and result is true : 

the eigenvalues will be placed in the two first 
columns according to the following rules 

a real eigenvalue x = alj,j] makes 

alj,1] = x 
and alj,2] = 0 

@ a complex conjugate pair of eigenvalues 

x + ixy = alj,j] + ixalj,j+1] 

and x - ixy makes 

alj,1] = x 
al j,2] = y 
al j+1,1] = x 

and al j+1,2] = -y 

3) if convergence fails no eigenvalues can be 
calculated as a result of the procedure call. 
The matrix, a, is equal to the transformed matrix. 
During a new call of ,eberlein, it is possible to 
try whether more iterations will result in cone 
vergence or not. ( first is set to false ). 
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tli:n,i:n] : if first is false at entry and tmx > 0 then t 
given at entry [Ss multiplied by the transformation 

matrix calculated in the procedure. 

Eigenvectors of real eigenvalues occupy columns of 
the transformation matrix. Eigenvectors corresponding 

to complex conjugate eigenvalues given by 

alj,j] + ixalj,j+1] 
and alj,3] - txelj, +1] 

are formed as 

t{k,j] + ixt{k, j+1] 
and t{k,§] - ixt[k, j+1] 

where K = 1,2, eceest e 

@ tmx > at entry: 

the maximum number of transformations performed is 

abs(tmx). If tmx < 0 then t is unaltered. 

at exit tmx records the number of transformations 

performed, 

first : at entry tells whether t is a result of a foregoing 
transformation or not. ( see under t[1:n,1:n] ). 

at exit first is true if convergence occurs in less 
than tmx iterations otherwise first is false. 

« A dynamical form of the convergence criterion is introduced, which 
are based on the four reals ep, eps, eps1, and eps2. 
In case of convergence of the iteration process the resulting matrix, 

a satisfies 

e ( abs(a(i, Jj) - a(j, 1)) < epst 
(V abs(a(i, i) - a(j, 5))™< eps) 
A ebs(a(i, j) + a(3, 1)) < eps 

where eps! < eps/2 

3. If convergence is not obtained and the resulting transformation ma- 
trix is the identify matrix then if eps2 = eps2/10 < ep the process 
is stopped {no solution) otherwise a new transformation is made with 
eps2 = eps2/10. 

4, If epst < eps/2 the convergence criterion is fulfilled and the itera- 
tion process is stopped. If eps! > eps the calculation is continued 

with the new value of eps. 

5. A look up for the eigenvalues is made and at the same time it is con- 
trollet whether the resulting matrix 1X1 and 2x2 is on block diagonal 

form or not. 
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If the matrix does not consist of 1X1 and 2x2 blocks this is (if pos- 
sibly) obtained by interchange of rows and columns on the a and t ma- 
trices. 
Special forms of matrices that fulfil the convergence criterion are 
not of block diagonal form (with at most two -valid- elements in a row 
or colum) and the procedure eberlein can not solve the eigenproblem 
for these special matrices;



7. Testprogram. 

begin 

real procedure testnorm(n,A,t,k,complex ,x1,x2 ); 

value n,k,complex ,x1,x2¢3 
array A,t3 

| poolean complex; 

| integer n,k; 

| real x1,x23 
comment The procedure performs a test of eigenvalues and corresponding 

eigenvectors calculated by procedure ebverlein; 

begin 

integer i,j; 

real sum,sum1,sumd ,norm; 
sum := norm := 05 

for i := 1 step 1 until n do 

begin 

@ sum1 := sum2 := 0; 
for j := 1 step 1 until n do sum1 := sumi+A(i,j)xt(j,k)3 

if complex then 

for j := 1 step 1 until n do sum2 := sum2+A(i,j)xt(j,k+1)3 
sum := (if complex then 

(sum1-x Ixt(i jk )+xext(d ,k+1) )xx2 
+(sum2-x2x t(4 jk =x txt(i ,k+1) )xx2 
else 
(sumt-x1xt(1,%))xx2 ) + sum; 

end; 

for i := 1 step 1 until n do norm := norm+t(i,k)xx2; 

if complex then 
for i := 1 step 1 until n do norm := norm + t(4,k+1)xx23 

x1 s= if complex then sqrt(x1xx2+x2xx2) else abs x13 

testnorm :=sqrt(sum/norm)/x13 
end procedure testnorm; 

integer i,j,n,no,m,layoutno , tmx, total ,res; 

boolean b1,b2,complex,first,result; 

r real im,x1,x2,layout; 
read data: 

Total := 03 
i:sread (in,no,n,m,res )3 
corment 

no = example no, 
n = order of matrix, 
m = value of tm, 
res = integer code for result; 

if i <4 then goto stop; 
tmx : =m; 

result := res = 1; 

write (out,<:<10>Example_no:> ,<<dd@ ,no, 
£:<10><10>Input parameters :< 10><10>n =:> ,<<ddd@ ,n, 

3< 10> tmx_ = Dj tmx 636 10> 10 matrix are ); 
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begin 

array a,t,A(1:n,1:n)3 
read (in, layoutno ); 
comment layout no serves a choice between three layouts in 

output of the unaltered matrix a; 
layout := case layoutno of (real<< -dd®, 
realx< _-d,dd@ ,realx<__d® yreal<<=d, @);° 
write Tout,<:<10D>); 7 
for j := 1 step 1 until n do 

begin 

write (out,<:<10>s>)35 
for 1 := 1 step 1 until n do 

begin 

comment input and output of matrix a; 

read (in,a(j,i)); 

A(j,i) := a(3,i)s 
write (ont, s tring layout ,a(j,i)); 

end 

© end; 
first := true; 

new eber: 

~ eberlein(n,a,t,tmx,first,result ); 
write (out, £2< 10>< 10>< 10> Results :< 10>< 10> tmx ___=D ,<<-dd® , tmx); 
if first then 

write (out ,<:<1@first = true») else 
write (out, *¢3< 10> first7=" false >); 
if - wresult or ~,first” then 

begin 

write (out,< :< 10>< 10>< 10> Limi ting matrix after:>, 
"<<aa@> , total+tmx ,<: itérations1@ >); 

for J := 1 step 1 "until ndo 7 
begin 

write (out,<:<10 >); 
for i := 1 step 1 until n do 
write (out,<<_-d.ddytd@ ,a(j,t)); 

end 

end else 
@ begin 

write (out,< 2< 10>< 10>< 10> Eigenvalues _ afters, 
{<ada@ , sotal+tmx ,<: iterations< 10> >)3 

for i := 1 step 1 until.ndo 7 
begin 

write (out ,<:<1 => ,<<d@ ,i, 
"<< -dada ddddadaaad> a(i,1))s; 

tf a(i,2) <> OThen 
write (out,<<__+ddad.dddddaddad ,a(1,2),<:xt2>)5 

end; 

if m= 0 then goto next; 
write (out,<:< 10<19< 10> Eigenvectors :< 10> > ); 
b1 := b2 := false; 

for i := 1 step 1 until n do 

begin 

write(out,<:< 10> > ,<<d@ ,1,6:< 1 > ); 
bi := + b2 and a(i, 2) or rs 



for 3 := 1 step 1 until n do 

Tf b1 

write 

write 

be := b4; 

b1: 

and; 

write (out, 

-~ ah. 

if b2 and mO then t(j,i-1) else 

if b2 and m0 then Meee yj) else 
if mC then t(j,i) else iG J)3 
(out ,<< -dadd , ddadddadad> yim); 
if be andmO then ~i(j,t) else 

if b2 and mO then -t(4.3) else 

4f b1 and mO then t(3,i+1) else 
if b1 and moO then (141,35) else 0; 

or b2 ther 

(out,<<__+¢ddd.c Laddddddd@ ,im,<:x > )5 
(out, e270 >); 

<10><1@<10><10>Testnorm for corresponding: , 

eigerivalues and eigenvettors<10>< 10>< 10>, 
ral 

<3 

<: 

<:no, cf eigenvalue 
4 7 
4341 

testnorm 10 >, 

> 233 
b1 := false; 
for i := 1 step 1 until n do 

begin 

1 := a(i,1); 
2 := a(i,2); 

complex := x2 © 0; 
b1 := -,b1 and complex; 
if bi or -,complex then 

im := testnorm(n, A,t,i,complex ,x1 x2 )3 

if b1 then 
begin 

write (out ,<:<10 > ,<<__ edd 41,62 andy itt, 
St kd. Ara , im); 

end else 
if -, complex then 

begin 

write(out,<:<1@ > ,<<__-d@ ,i, 
<3 7 > 

end; 

end; 

end; 

next: 
if-, first snd tm = m then 

begin 
totel := total+tmx; 

tmx s= m3 

if total <= 3xm then 

end; 

write (out ,<:<12 2 )5 

end; 

goto read data; 

stop: ~ 

end testprofram 

KEI Fa Te) 

goto new eber 
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procedure fft(A, B, m, analysis); 

1. Function and parameters: 

Call parameters: 

m integer value. m determines the dimension N = 2xxm of A 

and B. m must be < 2h to be meaningful, but the largest 

possible value is m = 13 in a computer with 128 k bytes 

storage capacity (corresponding to 32 k reals). 

analysis integer value. analysis = +1 gives + sign in the sun, 

i.e. a Fourter-synthesis is carried out. 

analysis = ~1 gives - sign in the sum, i.e. a Fourier- 

analysis is carried out. 

Call and Return parameters: 

A, B(O:N-1) real arrays. They mst on entry contain the real and 

imaginary part of X(t) in normal order. Upon exit they 

contain the real and imaginary part of the Fourier sum 

Y(s), also in normal order. 

2. Method. 

The procedure fft calculates the Fourier sum 

¥(s) = Sum(X(+t) exp(+2pixixtxs/N)), N = Dom, t = 0, 1, eee , N-1 
t 

for s = 0, 1, «+. , N-1 by means of the Cooley-Tukey algorithm (the ’Fast 

Fourier Transform’). 

The first part of the procedure (p:= 03 --- shift (m-j-24) ends) de- 

livers the data A, B in reverse binary order. The second part (p:= T3 eco 

p:= pl end) performs the summation in place. So it is possible to carry out 

the summation with the data A, B in reverse binary order simply by omit- 

ting the first part. 

The loss of accuracy is almost proportional to m and is for m = 8 

about 1 significant decimal, 

The running time is proportional to Nxm and is for m = 13 about 45 

seconds,



4, References. 

About the Cooley-Tukey algorithm and its implementation, see: 

[1] Cooley, J.W., and Tukey, J.W.: An algorithm for the machine calcula- 

tion of complex Fourier series. Math. Comp. 19, 90 (April 1965), p. 

297-301. 

[2] R.C. Singleton: On computing the fast Fourier Transform. Commmica- 

tions of the ACM, Yol. 10, N. 10, (October 1967), p. 647-654. 

4, Algol procedure. 

( 
fft=sset 2 

fft=algol message.yes index.no 

end) 

external 

message fft version 01.07.71., RCSL NO 31-D%, correction by dh; 

procedure fft(A,B,m, analysis) ; 

value m,analysis; integer m, analysis; array A,B; 

begin integer i,j,k,n,p,p1,q,92, 50,431,323 

real v,x0,x1,yO,y1,¢,C¢1,¢c¢,C2,5,S8,581,82}3 

ns=1 shift m-13 v:=3.141592653593 p:=03 

for i:=0 step 71 until n do 

begin 

if i<p then 

begin 

ez=A(1) 3A(1) :=A(p) sA(p) 53 
e:=B(i) 3B(i) :=B(p) sB(p) s=c 

end 3 

ks=p shift (2h-m)3; j:=-+13 

for j:=j+1 while k<O do k:=k shift 1; 

p:=(-8388607-1+k) shift (m-j-2l) 

end3 

gé:=p3=1 35813=0.03 

for i:=1 step 1 until m do 

pegin 

ssi=ss13v:i=v/2.03



$81:=sin(v) 3cc:=2.0xXss1xss1 3 Q:=p-13p1:=ptp; c1:=s8:-0.03 

for j:=0 step 1 until q do 

begin 

if j=q2 then ci:#8:=0.03 cs=1.0-cl1$3 

if j<qe then 

begin 

c23:=c3s2t=s 

end 

else 

begin 

C2i=-S 3S2:3=¢ 

ends 

if analysis<O then s2:=-s23 

for k:=0 step pl until n do 

begin 

jlssjtk3 je:=jitps 

x1:8A(32)xe2-B( j2)xs23 y1:=A( 52) xs2+B( j2) xe23 

A( 52) :5A( 51) -x1 3B( J2) :=B( 31) -y13 

A( 51) :=A(51)+x13B( 51) :=B(51)+y1 
end; 

e1:s¢1+(cexctssxs) 3 s:=st(ssxXc-cexs) 

end 3 

g2:=p3p:=p1 

end 

end $ 

comment call parameters: 

m (integer value). m determines the dimension N=2xn 

of A and B. m mst be >=0 and <2 to be meaningful 

but is in practice more limited since the core store 

has to contain the two arrays A and B plus some few 

other variables. 

analysis (integer value). For analysis<O a Fourier analysis 

is carried out: Y(s):=SUM(X(+t)exp(-2pixixtxs/N)). 

For analysis>=0 a Fourier synthesis is carried out: 

Y¥(s) :=SUM(X(+) exp(+2pixixtxs/N)).



call and return parameters: 

A, B(0:N-1) 

ends; 

(real arrays). They must on entry contain the real 

and imaginary part of the given data X(+)=A(+)+ixB(+) 

in normal order. Upon exit they will contain the 

real and imaginary part of the Fourier sum 

Y¥(s)=A(s)+ixB(s), also in normal order;
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1. Function and Parameters 

Given n data points (xi, yi) with weights pi, where i = 1, 2, ... , 

n. The procedure fit computes the coefficients of a polynomial P(k, x), 

of degree k, such that the quantity 

i =n 

SUM(pix(yi - P(k, xi))xx2) (1) 
i=1 

is minimum. 

Bounds on the permissible order of P(k, x) may be specified in the 

procedurecall so that 

lower bound <= order <= upper bound. (2) 

Moreover, the procedure will within these bounds select an order which is 

best in the following sense: Set the minimum value of (1), which is a 

function of the order, be denoted by v(order) and let 

d(order) = v(order)/(n - order - 1), 

which is an estimate of the restvariance. The procedure will then select 

the smallest order in the interval (2) such that d(order) <= d(order+1) 

or if this does not occur then order = upper bound. This means that the 

procedure increases the order of P(k, x) only if the accuracy can be im- 

proved by doing it. 

The procedure head is: 

procedure fit(i, pi, xi, yi, C, 1, u); 

value 1, u 3 

integer i, 1, v3 

real pi, xi, yi 3 

array Cc 3 

Call parameters: 

1 : (integer) The lowest permissible order of P(k, x) 

u : (integer) The highest permissible order of P(k, x) 
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Return parameters: 

C(O:u) : (array) Contains the coefficients of the fitted polynomial 

P(i, x) = C(0)+C(1)xx+C(2)xox2+ 2.2. +C(1) Hoe 

where i is the order of P as determined by the procedure. If 

i <u the remaining array elements are undefined. 

Call and Return parameters: 

i : (integer) In the call i gives the number of data points (xi, 

yi) in the input. Upon exit i is the order of the fitted po- 

; lynomial P. 

@ Moreover i is used as index parameter in the expressions for 

pi, xi, yi. 

pi : (real) An expression (using the parameter i) giving the 

weight of point no. i. 

xi : (real) An expression (using the parameter i) giving the x- 

coordinate of point no. i. 

yi : (real) An expression (using the parameter i) giving the y- 

coordinate of the point no. i. 

2. Method 

@ The following description is based upon [1] where details and proofs 

are given. 

Instead of expressing the approximating polynomial P(k, x) directly 

as a sum of powers of x, we write P(k, x) as a linear combination of po- 

lynomials (0, x), f(1, x), £(2, x), ... . The polynomial f(j, x) is a 

polynomial in x of proper degree j, which means that it effectively con- 

tains a term xxxj (and the highest degree of x is not jel): 

j=k 

P(k, x) = SUM(c(3)xf(j, x)), (3) 

j= 
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where k is the degree of the approximating polynomial P. The coefficients 

e(j) are to be determined, The polynomials f(j, x) are orthogonal with 

respect to the datapoints (xi, yi) and the weights pi , i = 1, 2, ... ,n.e: 

i=n 

SUM(pixf(j1, xi)xf(j2, xi)) =0, for j1 > je. 

i=] 

When jl = je we define 

i=n 

SuM(pixf(j, xi)xf(j, xi)) =w(j)3 § =0, 1, 2, .... 
i=1 

The orthogonal polynomials can be computed recursively by means of a 

three-term recurrence relation 

£(j+1, x) = (x - a(j))xf(5, x) - b(3)xf(j-1, x), § = 0, 1, 2, o-- (4) 

The recursion begins with f(0, x) = 1, and b(0) = 0. The coefficients 

a(j) and b(j) are determined by 

i=n. 

a(j) = SUM(pixxixf(j, xi)©e@)/w(i)3 9 =0, 1, 2, ... (5a) 
i=1 

b(3) = wj)/w(5-1)3 J = 1, 2, 3, .-. (5b) 

The coefficients e(j) in (3) can be computed as 

i=n 

e(j) = SUM(pixf(j, xi)xyi)/w(3) 
i=] 

or - because the polynomial f(j, x) is orthogonal to P(j-1, x) - one also 

have, except for j = 0: 

i=n 

e(j) = SUM(pixf(j, xi)x(yi - P(j-1, xi)))/w(j). 
i= 1 
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This is numerically more convenient, because 

R(j+1, i) = yi - P(j, xi) 

ean be computed having the previous value: 

R(j+1, 1) = R(J, 1) - c(§)xt(5, x1). 

This holds because the polynomials f are orthogonal such that: 

P(j, x) = P(j-1, x) + c(§)xt(3, x). 

During the computations the procedure performs the following steps: 

first it is tried to fit the given data points by means of a polynomial 

of order = lower bound, and then order = lower bound + 1 and so on. Each 

time the order is increased by one a new polynomial is generated, but 

this is easily done because the coefficients c(j) already found are un- 

changed (This would not have been the case if an ordinary power expansion 

was used.) The sum of squares v(j) (see (1)) is computed (also recursive- 

ly) from v(j-1): 

v(j) = v(j-1) - w(3)xe(5)»@. 

From v(j) the rest variance d(j) is determined 

a(j) = v(5)/(n-J-1). 

When the rest variance decreases, i.e. when 

d(m-1) > d(m), 

the degree of the approximating polynomial is increased by one and (un- 

less m = upper bound) a polynomial of degree m+ 1 is tried, and so on 

until 

d(j-1) <= a(3) 

in which case j - 1 is chosen as the degree (provided that J - 1 <= upper 
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pound). This corresponds with 

(n-j) xw( j)xe( j)e2 <= v(j-1), 

which is used as stop-criterion. 

When now a degree k has been chosen the polynomial (3) has to be 

transferred into a polynomial (a sum of powers): 

j =k 

P(k, x) = SUM(C(j)xo«)). 

j = 1 

This is done recursively by means of e(i, j) where e(i, 0) = c(i) and 

c(i) = e(i, iti). The transformation is performed when e(i, j+1) is ex- 

pressed by means of e(i, j). At a certain stage of the proces we have 

ie=j-] isk 

P(k, x) = SUM e(i, i+1)xood + SUM e(i, j)xf(i-5, x) xxx). (6) 

i=0 i=j 

When we put j =O and j =k +1 in (6) we get the above-mentioned connec- 

tions with c(i) and C(i). Writing (6) for a certain j and for j + 1 we 

get a relation containing f(i-j-1, x)xx. By means of the recurrence rela- 

tion (4) we get 

f(j, x)xx = £(j+1, x) + a€j)xt(j, x) + b(3)xf(j-1, x) 

-which is introduced in the relation determined above. When we equate 

terms with a common factor f(i-j, x) we get the recurrence relation 

e(i, j+1) := e(4, 5) - e(it1, §+1)xa(i-j) - e(1+2, §+1)xb(i-J5+1) 

Where 1 > j > 03 e(k+1, §+1) = e(k+2, j+1) = 0. From this relation the 

coefficients e(i, i+1) = C(i), i =0, 1, ... , kK, are obtained, and they 

are the desired coefficients in the power expansion of P(k, x). 
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3, Time, and Storage Requirements 

Time: (2+k) xn, mS, where k = order of the polynomial obtained, n = the 

number of data points. 

Storage Requirements: 3 segments + 25 + 4 xk +8 Xn words, where k = 

order of the polynomial, n = the number of data points. 

Program text: 29 lines on 2 segments. 

h, Test and Discussion 

The procedure has been run with some examples. 

Example. 

A table of y = x©Q-xx<5 with weights p = xxe+1. The variance is sum( 

px(y-P(x) )@) )/(n-o-1) 

10 points, 1-56, u=8, order = 8 103.000 ms 
coefficients: 

-2.61591-3 
1.63066-1 
2.88315 9-1 

~1.947339 0 
6.81127 9-1 
513975 O 

“2 ° 37 534 0 

-4..90519 0 
® 4.361973 O 

Pp x v P(x) v-P(x) 

1.004905 0 -7.00000n-2 1468066y-6 -1.19751 9-2 142-2 
1.73960 0 8.60000 y-1 -2.13100y-1 -2.04917 9-1 -8.2-3 
4.20410 O 1479000» O 1.70282, 2 1.70282, 2 6.8y-5 
1.09610 O -3.100009-1 2.83648 5-3 1.11621 9-2 -8.3y-3 
12 ZBUUOn 0 6.20000 ~1 -7.G0762y-2 -9.69892y-2 1.9 -2 
3.40250 0 1.550009 0 4.26933 1 4.26938 1 -5.5-4 
10302509 0 -5.50000 9-1 4.57231 p-2 4. BB4OMyR-2 24-3 
1 T4HLO» O 3.80000y-1 -7.75830n-3 9.78251 y-3 -1.8y-2 
2.716109 0 14310009 O 7.503715 0 7250219 0 1.5y=3 
1.624109 0 =7.90000p=1 1.87854 -1 1688112921 -2.6y-4 variance = 1.20y-3 

10 points, 1 = 7, u =9, order =8 114.000 ms variance = 1.20n-3 

10 points, 1 = 8, u =9, order = 8 112.000 ms variance = 1.20y=3 

10 points, 1 = 8, u = 9, order =9 121.000 ms 
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coefficients: 

2.793909 
2.79397 9-9 
6.51926 =9 

-5 82077 »-9 
1.303858 

-1.00000y 0 

-1.73750-8 
1.68802y-9 

-0.29104)=9 
1.00000, O 

9) x 

1.00490» O -7.00000y-2 
1.73960y 0 
4.20410 0 1479000y O 
1.09610» O -3.10000y-1 
1.38440. 0 
5.40250 0 1455000y O 
1030250 0 -5.50000y=1 
10144H0% 0 
2.71610, O 1.31000y 0 
1.624105 O -7.90000y=1 

15 points, 1 =6, u =8, 
coefficients: 

5 633629-2 
2.88497 4-2 
1.92269 0 

-1.79384) 0 
-7 203926, 0 
8.64038, 0 
2.95869 0 
-1.04081 1 
5612527 0 

Pp x 

1.00490, 0 -7.00000y-2 
1.73960y 8 .60000y=1 
4204-101 1.79000, O 
1.09610 O -3.10000y-1 
138440 % 6.20000 9-1 
3.40250y 1.55000, 0 
1.30250 0 -5.50000y=1 
10 TO. 
2.716104 1631000, 0 
1.62410, O -7.90000y-1 
1.01960, 1040000 y=1 
2.14490. 1207000, 0 
5.000001) 2.00000 O 
1.01000 y 
1.688905 

= 1.00000 5-1 

0 
0 
© 
0 
fe) 
) 
) 
0 43,80000y-1 
0 
) 
0 
© 
) 
@) 
O 8.40000y,-1 

Vv 

1.68066 +6 
8.60000y-1 -2.13100y~1 

1.70282 2 
2,83648)-3 

6.20000y-1 -7.80762y-2 
4 26933. 1 

4572312 

3 .B0000 9-1 -7475830n-3 
7250DT19 O 
1.87854 9-1 

order = 8 

v 

1.68066 9-6 
~2.13100y-1 
1.792825 2 
2.83648 5~3 

-7.80 7625-2 
426933 1 

45723142 
-7.75830=3 
7503719 O 
187854 9-1 

-5 37617 “5 
4.35907 n=1 
480000, 2 

9.99900 y-6 
-2.06964y-1 

RCSL 31-D129 

P(x) 
1.68323 )-6 
2.13100 y-1 
1.70282, 2 
2.83648 5-3 

-7.80642)-2 
426933 1 
457231 9-2 

-7.75830y-3 
72503719 0 
1.87584 -1 

145.000 ms 

P(x) 
-4..85023y-2 
-2.47513y-1 
1.70294, 2 
8.91634 -2 

-4.,.89320,-2 

4.265805 1 
1.71621 9-2 

5 50052 -2 
7+55223— O 
1.91326 y-1 
-2.17621 9-2 
L34033 9-1 
4.79998, 2 

-3 89867 9-2 
-2.38302y-1 

v-P(x) 
-2.6-9 

-7 5-9 
~1.59-9 
-2.7 9-9 
1099-9 

-0 4 =9 

-2.9 9-9 

3. Tw-9 

v~P(x) 
4 .Qy-2 
By A2 

-8 6-2 

~2.9 9-2 
352 
2.Qyn2 

~6..3-2 
4. .Qy-2 
~3 599) 
2.22 
1.9193 
185-3 

3 o9p-2 

3 ol ne variance 

Page 7/10 

variance = 9.00y 9 
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15 points, 1 = 7, u =9, order = 163.000 ms 
coefficients: 

3612529 n-9 
-1.95578 98 
5.02680+8 
-7.89296-8 
-6..37956y-8 

=1.00000y 0 
-1.64146,-7 
2.26632 y-7 
2.112605 9-7 
1200000 0 

p x v P(x) v-P(x) 
1.00490» O -7.00000y-2 1.68066y-6 1.68593 9-6 -5.39-9 
1073960 0 8.600009-1 -2.131009-1 -2.131009-1 4.999 
4204105 O 1279000 O 1.70282y 2 1.70282» 2 3.0y-8 
1.096109 0 -3.10000y-1 2.83648y-3 2.83649 y-3 -1.3 9-8 
1.384409 0 6.20000 y-1 -7.80 762-2 -7.80 762-2 6.2n-9 
5 YOL50y 0 1655000,p O 4.26933 1 4.26933y 1 3.0y-8 
1.302505 0 =5.50000 9-1 4.57231 y-2 465723122 -1.4y-8 
11440 O 3.800001 -7.758309-3 -7.758300-3 2.9 9-9 
2.71610» O 14631000) O 7.503719 O 7.50371 O 1.8y-8 
12624109 O =7.90000y-1 1.687854 p-1 1.87854 y-1 125-8 
1.01960 O 1640000 9-1 -5.37617 9-5-5. 37604 = 5 14-9 
2.144909 0 1.070009 O 4.35907 n-1 4.35907 y-1  4.9n-9 
5.00000» O 2.00000, 0 %.80000y 2 4.80000» 2 6.0y-8 
1601000% O -1.00000y=1 9499900y-6 1.00051 n=5 -6. 19-9 
168890 0 8.30000 p-1 -2.,06964y-1 -2.06964y-1 5.2-9 variance 0.00 0 

15 points, 1 = 8, u = 10, order =9 176.000 ms variance = 0.00y 0 

15 points, 1 =4, u=11, order =9 171.000 ms variance = 0.00» 0 
end 

The employed program: 

begin integer i, 11,n,k,j,h3 real x,v,t,t0,q,s,a3 array C(0:12); 

real procedure p(dum); integer dum; 

begin 

x= (31X1) mod 101x(3/100)-13 

KXKD = XK § 

1422 

y: 

pes 

end D3 

for n:= 10,15 do begin 

i1l:s -13 

for ks= 6 step 1 until 9 do begin 

tO3= time+25600; 
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for j:= 0, j+10 while t < tO do begin 

ise nz fit(i,p(i),x,v,C,k,k+2); t:= time 

end$ 

t= (t-t0+25600) /33 

write(out,<:<10><10>:>,n,<: points, order:=>, i, << ddd.000>, 

_ by<3 mst>) 5 

if i > i1 then begin 

write(out, <:<10>coefficients::>) 5 

for j:= 0 step 1 until i do 

write(out,<:<l0>2>,<<-d.dddddy-d>, C(j));3 

write(out,<: 

p x v P(x) veP(x) :>)3 

end i > 11; 

s:= 03 j:= 13 

for 1:= 1 step 1 until n do begin 

ai= p(i) 3 az= C(i); 
for hi= j - 1 step -1 until 0 do a:= axtC(h); 

if j > 11 then write(out,<:<10>i>,<<-d.dddddy-d>, a,x, V, a, 

<< -d.dy-d>, v-a) 3 

ss=s + (y-a)xxexq 

end i; 

write(out,<<-d.ddy-d>,<: variance:=, 

1f n =j+1 then 99 else s/(n-j-1))3 

1133 j 

end k; 

end n 

end 

5. References 

[1] Forsythe, George E.: Generation and Use of Orthogonal Polynomials for 

Data-Fitting with a Digital Computer. Jour. Soc. Indust. Appl. Math. 

5 (1957) pp. 74-88. 
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6, Algorithm 

external procedure fit(i,pi,xi,yi,C,1,u); value l,u; 

integer i,1,u; real pi,xi,yi; array C; 

pegin integer j,k,n; 

real fj,r,rf,f,fx,f1,a,b,c; 

array F,F1,X,R(1:1),A,B(O:u) 5 

nisis) rs=rf:=f:=fx:=b:=05 

for i:=1 step 1 until n do begin 

fj:=F(i)sssart(pi); Fi(i):=03 

X(i) s=xi3 

| R(i):syixfj; rvisrtR(i)oes rfr=rf+R(1)xfJ3 

@ fi=f+Pjxfj3  fx:=fx+X(1)xfjxt3 

end i$ 

for i:=0,k+1 while k<l | (iu A fxr<(n-i)xrfxrf) do begin 

kist; at=A(k):=fx/f3  ¢c:=C(k):=rf/f3 

fis=f3 ri=erf:=f:=fx:=05 

for j:=1 step 1 until n do begin 

R(j) :=R(j)-F(j) xcs rs=r+R(j)oes 

£52=(X(j)-a)xF(j)-pxP1(5)3 F105) =F(3) 3 FC) £43 

rfrarft+R(j)xfj3  fiefetjxt3s fxrafx+X(3j)xfsxfj 

end j3 

b:=B(k) :=f/f1 

end i$; 

) if Pox<(n-k-1)xrfxrf then C(k+1):=rf/f else k:sk-13 

is=k+13 

for 1:50 step 1 until k do begin 

O(k) :=C(k) -A(k-1) xC(k+1) 3 

for j:=k-1 step -1 until 1 do (3) :=C( 5) -A( 3-1) xC( j+1) -B(J-1) xc( j+2) 

end 1 

end fit; end 
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Gamma function, gamma(z) 

Function and parameters. 

gamma(z) approximates the gamma function in the range 
-301<z<301. 

Procedure heading: 
real procedure gamma(z) ; 
value z; real z3 

Procedure identifier: 
gamma. : (real) 

approximated function of an argument not 

resulting in under- or overflow, in which 

case gamma is undefined. 

Call parameter: 

Zz : (real or integer) 
argument, values equal to nonpositive 

integers and values exceeding the range 
above will give floating point under- 

or overflow. 

Method ° 

The value of gamma(2+x) is approximated in the range 

0<=x<=1 by a rational function given as approximation 5231 

in (1) with the numerator degree 6 and denominator degree 3. 

For arguments outside the basic range 2<=z<=3, successive 
multiplications or divisions are performed according to 

the recurrence formula: 

gamma(z+1) =zXgamma(z) 

The value of the argument is not controlled in any way.
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4, Accuracy, Time- and Storage Requirement. 

5.1 Accuracy. 

The error estimates given below assume the argument to be 

exactly represented. 

Outside the range -2<z<7 the increment in gamma(z) caused 
by an increment of one unit in the last binary place of z 
will be greater than the computational error of the proce- 

dure in any case. 

The error estimates are given as functions of: 
u:= abs(entier(z-2) )+6 

max rel error : uX2.9y-11 

safe upper bound for the relative error 

of gamma(z). 

rel mean error: sqrt(u)X1.2y-11 
relative mean error (standard error) of 
gamma(z) assuming a random distribution 
of rounding errors and mantissas of 

floating point numbers. 

The probability of a relative error greater 

than 3x(rel mean error) is less than 0.01. 

3.2 Time Requirement. 

Approximate cpu-time: z>=2: 720 + entier(z-2)x81 usec 
z< 2: 720 + entier(z-2)x72 usec 

3.3 Storage Requirement: 

Codelength: 1 segment. 

Typographical length: 47 lines incl. last comment. 

4, Test and discussion. 

The procedure has been compared with a double precision 
procedure and with values of the gamma function given in (2). 
The results are in accordance with the theoretical estimate 

of the mean error,
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Simple testprogram with data and output: 

begin 

comment: here the procedure is copied (without the first 
3 lines) unless it is already translated as an 
external; 

real Z, 3 
write(out,<:<12> 

Zz gamma(z)<10>:>) ; 
AGAIN: 

overflows: =underflows :=05 

read(in,z) 3 
write(out,<:<10>:>,<<-d.dd ddd ddd dddy-ddd>, z); 
if z>1000 then goitc FINISH; 

g:=gamma(z) ; 
if overflows>0 then 

write(out, false add 32, 15, <:overflow:>) 
else if underflows>0 then 

write(out, false add 32, 15, <:underflow:>) 
else write(out, 

<< -d.dd ddd ddd dddy-ddd>, g); 
goto AGAIN; 

FINISH: 

ends 

data: 0.5, 1, 10, 301, 302,-0.5,-300.9,-301.9, 1001 

output: 

Zz gamma( z ) 

5.00 000 0CO 000y -1 1.77 245 3685 088, 0 
1.00 000 000 000y 0 1.00 000 000 000, 0 
1.00 000 000 000, 1 3.62 880 000 000y 5 
3.01 000 000 000, 2 3.06 057 512 208y 614 
3.02 000 000 000y 2 overflow 

=-5.00 000 000 000y -1 -3.54 490 770 176y 0 
-3.00 900 000 016y 2 -1.95 307 772 968y-616 
-3.01 900 000 016, 2 underflow 
1.00 100 000 000, 3 

end 

5. References, 

(1) J.F.Hart and oth.: 
Computer Approximations, 
John Wiley and Sons, 1968, p.130-136 

(2) M.Abramowitz and I.H.Stegun: 
Handbook of Math. Functions, 

National Bureau of Standards, 1965, p.253-275.
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gamma = set 1 

gamma = algol 

extemal 

real procedure gamma(z) 3 
value 2; real 23 

begin 
real h;3 

h:=1.03 

if z>2.0 then 
begin 

for z:=z-1.0 step -1.0 until 2.0 do h:=hxz; 
Z3=Z=-120 

end 

else if z<1.0 then 
begin 

for z:=z step 1.0 until 0.0 do h:=h/z; 
h:=h/z/(z+1.0) 

end 

else begin h:=h/z3 z:=z-1.0 end; 
gamma: =(((((((+.039 301 346 419)xz+.142 928 007 

+1.09 850 630 453)xz+3.36 954 359 
+12.8 021 698 112)xz+22.9 680 800 
+43.9 410 209 189) / 

((((+1.00 000 000 000)xz-7.15 075 063 
+4.39 050 474 596)xz+43.9 410 209 

end gamma; 

comment: 

ganma(z) approximates the gamma function in the 
~301<2<301. 

Procedure identifier: 

gamma, : (real) 
approximated function of an argument not 

resulting in under- or overflow, in which 
case gamma is undefined. 

Call parameter: 

Zz : (real or integer) 
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94g) xz 
131) xz 
836) xz 

299) xz 
191) xh 

range 

argument, values equal to nonpositive 

integers and values exceeding the range 
above will give floating point under- 

or overflow,
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1. Function and parameters . 

Let a denote a real symmetric matrix of order n, and let ev(1), 

ev(2), «se. , ev(n) denote the eigenvalues for this matrix arranged in 

an increasing sequence, that is ev(1) < ev(j) whenever 1 <j. 

Let ml and m2 be prescribed integers so that 1 < mi < m < ne 

The procedure householder calculates the eigenvalues ev(m1), 

ev(mi+1), ose , ev(m2) and, if wanted the corresponding eigenvectors. 

Procedure head: 

householder(n, m1, m2, a, ev, x, epsi); 

value n, mil, m2, eps13 

real eps1$ 

array a, eV, X3 

integer mi, m2, n3 

Call parameters: 

n : the order of the given matrix; 

mi : an integer, 1 < ml <n, denoting the number of the small- 

est eigenvalue to be calculated. 

m2 : an integer, m1 < me <n, denoting the number of the greatest 

eigenvalue to be calculated. 

a : a real array a(1:nx(n+1) /2); 

a must contain the lower triangular part of the given sym- 

metric matrix in the following way: 

the diagonal element number i is stored in a(ix(i+1) /2) 

L=1, 2, ese  n3 

the element in the i?th row and j’th columm where j <i is 

stored in a((i-1)xi/2+j). 

Call/Return parameters: 

epsl : at entry eps! is positive or negative. 

if eps1 is positive the eigenvectors are calculated. The 

absolute value of eps! is a quantity affecting the precision 

to which the eigenvectors are computed (See part 2.2)3 

at exit eps1 denotes an upper bound for the error in any of 

the calculated eigenvalues. 



Return parameters: - 

ev 2 a real array ev(mi:m2) containing the calculated eigenvalues. 
x 2 a real array x(mi:m2, 1:n+2); if the eigenvectors are cal- 

culated, they are stored in x in such a way that x(k,1), eos 

x(k,n) denotes the eigenvector corresponding to ev(k) ; 
(for each k x(k,n+1) = x(k,n+2) = 03 these quantities are 
only introduced for ease of programming). 

2. Method 

@ The method consists of four parts, tridiagonalisation, calculation of 

eigenvalues, calculation of eigenvectors, and backtransformation, 

2.1. Tridiagonalisation 

A matrix is said to be on tridiagonal form, if all elements that are 

not in the diagonal or just over or under the diagonal, are zero. 

Let A be the given symmetric matrix of order n, 

A, is transformed - by n-2 orthogonal transformations - to a matrix 

on triangular form. 

Each transformation Pi(i = 1, 2, ... , n-2) is of the form 

P, =I. Ou We 

e@ where I is the identity-matrix and Wy is the row: 

wy = (wy Waar ces Wy pigs Oy eee 0). 

and Wy the corresponding colum, 

Let Aaa = PLA, P, a = 1, 2, eee 9 ne2 

For each 1 the terms Yay Wao» eee y Ya net are chosen in such a 

way that 

0) TL 
1 e Wy We = 1 

fe) 
2. In Asay the elements in the rows number Ny Nel, wee y 

n-it2 are the same as in A, The row number 

n-i+1 is put on ’triangular’ form, 



Let the elements of Ay be denoted a,.. Put 
ij 

t=n-i, 

. a2 2 2 
Stema = Oeiay1 * Stejo tee t Ska ee 
h, = sigma + BLL yt sqrt(sigma). 

(+ is used if a > 0 else - is used.) t+1,t = 

It comes out, that “4, ? Wy, D2 eee Yi, + must be chosen as follows 

= (a..4 4 4 sart(sigma))/sart(2h,). 

,/sart(2h, ) j WwW 
1, 2, oe 9 t=1. i,j *tt+1,4 

By memos 

= (a et, 1? Peee,2? 88° 2 ter ter Att 
+ “sartl ete), Oy eee , 0). 

one will obtain 

U,U t 
Po =T- i 

1 h 
i 

and by introducing the vectors Pas and the scalar k, as follows 

Py = Ayu, /b, 
T 

Ky = 3, P,/(2h,) 

4 = Py - Kyu, 
a rather simple calculation will show that 

T T 
aay = AL Wd” - aay 

since Asay is synmetric one is only calculating the lower triangular 

part of the matrix, 

The above equation is used for the calculation of the first t rows 

(t = n-i) in Agaae The row number t+1 is on triangular form with the 

diagonal element unchanged from A, and the element 

(t+1,%) = Stet t sqrt(sigma). The rows number ttl, ... , n are ace 
cording to 2° - unchanged from A, 
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At entry the lower triangular part of the given matrix is stored in 

the array a. For each i the array a is used only to store the lower 

triangular part of the first t rows of Asad? The other rows are on 

triangular form, and the diagonal and subdiagonal elements from these 

rows are stored in to arrays c and b. 

The row number t+1 of the array a is used to store information enough 

to determine the transformation Pie Now, Pi is determined by the vector 

a, and the scalar hye By replacing in the array a the element Beet 

by Beet t + sqrt(sigma) one obtain that the non-zero elements of the 

ttl row in a are exactly the vector Uys Furthermore from these ele- 

ments h, can be determined. Recalling that 

h, = sigma + a sqrt(sigma). 
= t+i,t 

and denoting by sigma, the square-sum of the elements in a, one will 

obtain 

2 2 
Foeee F Bead ted 

sqrt(sigma) = 2h,. 

sigma, = +a + sart(sigma))* = 1 41,1 

esigma + 8s 

Soh, = sigma, /2. 

For further information about this part see [4], [6]. 

2.2, Calculation of eigenvalues 

This is based on the following theorem: 

let Ciy eee ys CO, denote the diagonal element and Dos cee y db, the sub- 

diagonal elements of a symmetric triangulator matrix. For each real 

number xO let the sequence %, (x0), tp(x0), seo y +, (x0) be defined - 

if possible - as follows 

t, (x0) c,- x0 

t,(x0) = (c, = x0) - vf/t, (x0). 1 = 2, oy me 

Let h(x0) denote the number of negative +, (x0). 

Then h(x0) is equal to the number of eigenvalues less than or equal to 

x0. 

Assume that the eigenvalues are arranged in an increasing sequence and 

that the k’th eigenvalue, ev(k), is to be calculated. Let x1 and x2 be 

real numbers satisfying x1 < ev(k) < x2. Such numbers exist, e.g. if 

norm is denoting the infinity norm of the matrix then x1 = -norm and 

x2 = norm will do.



Let xO = (x1 + x2)/2. - 

h(x0) is calculated by using the above mentioned formular for +, (x0) 

LT=1, 2, soo y Ne 

A new pair (x1, x2) is defined in the following way: 

if h(x0) >= k then x1:= x1 and x2:= x0 else x1:= x0, x2t= x2. 

For the new pair the procedure is repeated, This is done as long as 

x2 = X1 > 2Xy-10X(abs(x1) + abs(x2)) + eps! where eps! is a prescribed 

quantity. 

At the end one puts ev(k):= (x1+x2) /2. 

Since abs(x1) and abs(x2) always are bounded by norm, it follows that 
r the error in any eigenvalue is bounded by 4Xxy-10xnorm + eps1. This 

number is calculated and stored in eps1. 

When calculating the k’th eigenvalue, h(x0) is determined for some 

x0. The value of h(x0) gives information not only about the k’th 

eigenvalue, but in general about the eigenvalues of the matrix. By 

introducing an array p(i) satisfying for each i p(1) < ev(i) this in- 

formation is stored as follows: 

if p(h(x,) + 1) < x0 then p(h(x0) + 1):= x0; 

when calculating the k’th eigenvalue one is at the start putting 

x1:= max p(1), ee. , p(k) 3 x2:= ev(ktt); 
For further information about this part see [2], [5], [6]. 

@ 2.3. Calculation of eigenvectors 

The matrix is as m 2,2 a symmetric matrix on triangular form with 

diagonal elements C1» Cos eee C, and subdiagonal elements Dos se be 

Let ev denote a calculated eigenvalue. 

Finding an eigenvector corresponding to ev is equivalent to solve the 

system 

(c, - ev) x, + DpX, = 0 

box, + (c, - eV) Xp + bx, = 0 

: (I) 

bo *n-2 + (cy - ev)% +bx =0 
nn 

@ b%ye1 * (c. - ev) x, = 0 

where (x, pee. x.) denote the wanted eigenvector. 
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A natural way to solve this system would consist in putting X, = 1 

finding Xp from the first equation, Xz from the next and so on3 but, 

as shown in [4], a method like this will often - for several reasons 

- give hopeless, inaccurate results. 

Using a method developed by J.H. Wilkensan ([4]), one is instead sol- 

ving a system derived from (I) by replacing the zeros on the right 

side by suitable quantities das soe y do. 

These equations are solved by successive elimination of the variables 

X19 Xs eee » Xue? but some kind of pivoting is necessary; for each i, 

x; is illiminated from the equation, which has the numerical largest 

coefficient in %, 3 more precisely, at the first step we are considering 

the two first equations 

(c, - ev) x, + Dox, = 4, 

box» + (c, - ev) X, + b3%, =d,. 

The equation which has the numerical largest coefficient is x, is de- 

noted 

= qq? 
Bix, + 4X + TX, = A 

from this equation x, is calculated and the expression inserted in the 1 
other equation. The so obtained equation in Xp and X is denoted 

= q? UpXot VoXs, d 

At the i’th step we are considering the two equations 

= qQ? u,x, + ViXsey as 

- ev)x,,, + a. i+] br X440 = 

again the equation which has the numerical largest coefficient in X, 

is denoted 

recs + (cs, 441° 

= q?? 
PiXs * U%i4y tT TiXayo = dy 

from this equation Xs is calculated and the expression inserted in the 

other equation. 

In this way we obtain the following system: 

33 PyX + IX + PX, qs 

33 

PoXp + InXs + Tox, = A 

= qa? 
Ps o%y-0 + I-21. * Vn qn 

= aq? 
Poi *ne] + Snot a 

Py*, = ay?» 
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We now assume, that dis d., coe y a. were chosen in such a way, that 

ai’, ay’, eee » a? are all equal to one. 

This system is solved in the natural way and the obtained vector 

normed. (and again denoted Xpp eee y x). It can be proved ([4]) that 
this vector will usually be a good approximation, at least it will 

never be hopeless inaccurate, 

A vector with sufficient accuracy is obtained by solving the above 

system once again, but replacing the terms d’’, ... , a? by the coor- 

dinates in the first approximation Xj, oo8 » Xe 

For further information about this part see [3], [4], [6]. 

ry 2.4. Backtransformation 

The problem is to transform the calculated eigenvectors (for the tri- 

angular matrix) to eigenvectors corresponding to the original matrix, 

Recalling that the original matrix was transformed to a matrix on tri- 

diagonal form by n-2 orthogonal transformations Pi» Pos eer y P 2? it 
easily follows, that if 24 is an elgenvector for the triangular ma- 

trix then 

P Poses Pn2 Zn is an eigenvector for the original matrix, 

Putting P,P eco 
i itt 

z 
n-2 n=] i 

one will obtain PiZs +1 = Ze 

and the wanted vector Za9 is calculated in n-2 steps. Using the nota- 

= 2. 

tion from 2, 1 (tridiagonalisation) one will get 

u,ul u,v, 2 
ivi Z. =Z ~ atut z (because P =I - i i+] hy i+] hy ° 

The non-zero elements of u, are stored in the t + 1 row (t=n- i) of 

the array a and h, = sigma/2, where sigma denotes the square-sum of the 

elements in Uy (see 2.1). 

Accuracy, Time and Storage Requirements 

Accuracy: The accuracy in the. eigenvalues depends on the value of the 

call parameter eps1.
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It easily follows from_the description of the method part 

2.2, that the error in any eigenvalue is bounded by 

4 & 10 X norm + eps! where norm denotes the infitity norm 
of the triangular matrix. 

For further information on this part see 4, Test and Dis- 

cussion. 

Time This depends on the wanted accuracy, that is the term eps], 
and first of all on the order n of the matrix equation. Ge- 

nerally the execution time will be proportional to nx, 

Using eps1 = y»-10 and denoted by 

I : The execution time when all eigenvalues and all eigen- 

vectors are calculated 

II : The execution time when all eigenvalues but no eigen- 

vectors are calculated. 

III: The execution time when only the greatest eigenvalue and 

the corresponding eigenvector are calculated. 

the greatest execution times (in sec.) obtained were as follows: 

Order of 

the matrix I II III 
5 0.32 0.25 0.09 

10 1.32 0.89 0.28 
15 3.22 1.99 0.68 
20 6.30 3.63 1.39 
25 10.75 5.91 =. 2.46 

The following example illustrates the connection between the execution 
time and the value of epsi, where all eigenvalues and eigenvectors for 
@ matrix of order 20 are calculated: 

eps] = pot w=5 »~6 w7t n-8 w-9 710 
Time = 4.88 5.15 5.4k 57k 59h =, 16 6.30 

Storage requirements: 9 segments of program 

Typografical length : 149 lines



4, Test and Discussion . 

The procedure has been tested by several matrices, essentially the 

following four types (denoting by a(ij) the element in the i’th row 

and the j’th colum and by n the order of the matrix in question): 

Type I : a(i,j) = a(j,i) =n -1i+ 1. This matrix has well-separa- 

ted eigenvalues given by 

L ra 

2(1=cos (same pi) 
ev(i) = i= 1, 2, «ee yn 

Type IZ : a(i,j) = a(j,i) =1 for all i, j. 

All eigenvalues are 0 except one which is n 

Type III : a(i,j) = a(j,i) =0 for i = j else 1. 

All eigenvalues are -1 except one which is nel. 

Type IV : a(i,j) = 0 for j < i-1 and j > i+1. 

a(i,i-1) = a(i,it1) = 1. 

a(i,i) = abs (= -i) 2121, 2, ...,m 
The matrix has a number of extremely close, but not coinci- 

dent eigenvalues. 

When all eigenvalues and all eigenvectors are calculated, a measure 

for the error for the whole procedure is obtained by checking the 

identity Ax, = ev(k) x, for each k. 

Finding the largest deviation in any coordinate and using as testnorm 

the mean of these k numbers, the following results are obtained:



-~ 10 - 

Matrix Value of eps! 

. pot p-6 »-8 »- 10 

Type I order 10 3ely-5 90-7 1.5y-8 3.2n-9 
Type I order 20 Teltned 125-6 1.6y-8 = 33..9 8 
Type I order 25 2.0 —'t 261-6 5 .2y-8 261y-8 

Type II order 10 142y+5 Zo30-7T = 169-9 = 3 By 10 
Type II order 20 3.5 y=5 Teby-8 3.1-9 240-10: 

Type II order 25)  i5y-5 3.5y-7 4.6y-10 = 6 410 

Type III order 10 142-5 9e3y-8 14-9 167-10 

Type III order 20 1.2yn=5 6.7y-8 643-10 = 4 Bye 0 

Type III order 25 5.4y-6 TeOn-8 1.59-9 6.0y=10 

Type IV order 11 2e1y-3 9 .8y-6 2e1y-7 961-9 

Type IV order 15 6.7 y=3 6 .8y-5 60-7 167-7 

Type IV order 21 1.5y-2 1 99-3 6.3n-4 = 19-6 

The jacobi algorithm solves almost the same problem as householder 3 

The only difference is, that the jacobi procedure necessarily calcu- 

lates all the eigenvalues (and eigenvectors), while it is possible 
with the householder procedure only to calculate some of the eigenva- 

lues (and eigenvectors). Calculating all eigenvalues and all elgenvec- 

tors and using in householder eps! = y-10 a comparison between the two 

procedures gave the following results: 
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Matrix Testnorm ~ Testnorm Time | Time 

for for for = for 

householder  jacobi householder jacobi 

Type I order 5 1 o4y-9 0.8y-9 0.35 | 0.27 

Type I order 10 De2y-9 40-9 1.35 2.02 
Type I order 15 242-8 10-8 | 3.29 : 6.61 

Type I order 20 35-8 2. 29-8 6.30  th.g9e2 

Type I order 25 261-8 3 .2y-8 “11412 29,08 

Type II order 5 Te0y-10 509-10 0.20 | 0.07 

Type II order 10 166-10 O.1p=10 0.53 0.22 
Type II order 15 40-10 10-10 161300255 

Type II order 20 459-10 166-10 1.98 0.97 
Type II order 25 T oly-10 162-10 3.46 1.38 

Remembering that the matrices of type I have well-separated eigenva- 

lues, and that the matrices of type II have all but one elgenvalue 

equal to zero, one might draw the following conclusion: 

The procedure householder is to be preferred in case of matrices with 

separated eigenvalues, because of higher speed, or in cases, where on- 

ly one or a few eigenvalues are wanted. | 

The procedure jacobi is to be preferred in case of matrices with coin- 

cident eigenvalues. 

Example 

We consider a symmetric matrix of order n. The term m1 denotes the 

number of the smallest, m2 the number of the greatest eigenvalue to be- 

calculated. The eigenvectors are calculated only if the tern eps1 is 

positive. Input is the value of the quantities n, ml, m2, eps and the 

lower triangular part of the matrix. 
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Testprogram - 

begin 

integer n, ml, m2, i, k;3 

real eps1$ 

boolean vect; 

read(in, n,m1,m2,eps1)3 vect:= eps > 0; 

begin 

array a(1:nx(n+1)/2), x(mi:m2, 1:n+2), ev(m1:m2) ; 

for i:= 1 step 1 until nx(n+1)/2 do read(in, a(i)); 

householder(n, mi,m2,a,ev,x,eps1) ; 

@ write(out, <:Eigenvalues <10><10>:>) ; 

for i:= mi step 1 until m2 do 

write(out, <<dd>, i, < -dddd.ddddddddd>, ev(i), <:K10>:>)3 

if vect then 

begin 

write(out, <:<10> Eigenvectors<10>:>) 3 

for k:= ml step 1 until m2 do 

begin 

write(out, <:<10>:>, <<dd>, k, <:<10>:>)3 

for 1:= 1 step 1 until n do 

write(out, << -dddd.ddddddddd>, x(k, i), <:<10>t>)3 

end k3 

end vect3 

@ end 3 

end$ 

For the matrix of order 5: 5 hk 3 2 1 

4 6 0 4& 3 

3 0 7 6 5 

2 4h 6 8 7 ' 

1 3 5 T 9 

using ml = 3, m2 = 5 and eps! = y»-8 the complete output is: 

Eigenvalue 

3 4848950119 
@ i 7.51372)158 

5 22406875316 



Bigenvectors 

3 
-0.547172796 . 
0.312569920 

~0,618112076 
0.115606593 
0455493746 

-0.550961958 
-0. 709440337 
02340179132 
0.083410953 
0265435679 

0245877938 
0. 302396039 
00453214523 
O.5TTITI152 
0.556384584. 

end 

For the matrix of order 10: 10 9 8 7 6 5 4 

9 9 8 7 6 5 4 
8 8 8 7 6 5 4 

7 7 7 7 6 5 4& 
6 6 6 6 6 5 4& 

5 5 5 5 5 5 4 
h hbk hk Woy 

3 3 3 3 3 3B 3 
2 2 2 2 2 2 2 

1° #1 1 1 1 1 1 

using ml = 1, m2 = 10 and eps! = -y-10 the complete output is: 

Rigenvalues 

06255679563 
0.273786762 
02307978528 
0.366208875 
0.465233088 
0643104132 
1.000000000 
12873023068 
2048917339 
«766068656 O
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6. Algol text 

householder = set 9 

householder = algol 

external 

procedure householder(n,m1,m2,a,ev,x,eps1) 3 
value n,m1,m2,eps1; 
real eps13 
array a,eV,X3 
integer mi,m2,n3 

begin 

integer i,j,k, 10, j0,11,t,t0,t13 
real h,s,k1 signa, at, bt, eps, bi, bi1,norm, x1, x2,x0,u, v3 
array e(1:n},r(O:n),p,b,q(1in+1) (1 n+2) 5 
boolean vect$ . 

the eigenva- 

of bisection 

ric matrices, 

oo
 

2
G
 

n
g



eps:=03 j:=nx(n+1)/23 
for i:=1 step 1 until j do eps!=eps + abs(a(i)); 
eps:=(3y-11) xeps/j3 
for 1:=1 step 1 until ne2 do 
begin 
tbism-i3 tO:=tx(t+1)/23 t1:=t0 +t; 
sigma:=0 3 
for k:=t0+1 step 1 until t1 do sigma:=sigmata(k)xx23 
ats=a(t1) 3 
b(t+1) s=bt:= 1f at>O then-sqrt(sigma) else sqrt(sigma) ; 
if abs(bt)>eps then 
begin 

h:=sigma-atxbt; a(t1) :=at-bt; 
for j:=1 step 1 until t do 
begin 

comment computation of pi; 

83503 jOr= (§j-1)xj/23 
for k:=1 step 1 until j do s:=sta(jO+k) xa(t0+k) ; 
for k:=j+1 step 1 until t do s: =sraliodiet) /2+3)xal tor) 3 
a(j) :=s/hs3 

end Jj; 
k1:=03 

comment computation of ki; 
for j:=1 step 1 until t do k1:=kit+a(t0+j)xq(j)3 
k1:=k1/2/h3 
comment computation of qi$ 
for j:=1 step 1 until t do q(3j):=q(j)-k1xa(t0+J) ; 
for j:= 1 step 1 until t do 
begin 

comment computation of the i+1 matrix; 

joz=(j-1)xj/23 
for k:=1 step 1 until j do 

a( j0+k) :=a( j0+k) ~a( t+) xa(1s) -a(t0+k) xq(j) ; 
end j3 

end abs(bt)>eps; 
end i3 
for it=1 step 1 until n do c(i) s=a(ix(i+1)/2); 
b(2):=a(2)3 b(1) :=(n+1) 3203 

comment the eigenvalues ev(m1),ev(mi+1), . . ,ev(m2) 
are now calculateds 

vect:=(if eps1<O then false else true) ; 
eps1:=abs(eps1) $ 
norms =0 $ 

for 1:=1 step 1 until n do 
begin 

h:=abs(b(i))+abs(c(1))+abs(b(i+1)); 
if norm<h then norm:=h3 

a(i):=b(1)xx2; | 
end i$; 

for i:=m1 step 1 until m2 do p(i):= -norm; 
for k :=m2 step -1 until m1 do 

begin 

comment computation of the k eigenvalue;



for it=m1 step 1 until k-1 do if p(1)>p(k) then p(k) := n( 
x1:=p(k)3 x2:= ( if k<n then ev(kt1) else norm); 
for x0:=(x1+x2)/2 while x2-x1>2xy-10x(abs(x1)+abs(x2))+ep 
begin 

h:=0$3 s:=73 
for i:=1 step 1 until n do 
begin 

s:=e(1)-x0-(if s<0 then q(i)/s else abs(b(1))xy10) ; 
if s<O then h:=h+13 

end i3 
if h>=k then x2:=x0 else x1:=x03; 

if p(ht1)<xO then p(ht+1) :=x03 
end x03 

ev(k) :=x03 
end k; 
eps1:=1/2xeps1+4x)»-10xnorm; 

if vect then 
begin 
comment computation of the eigenvectors corresponding 
to the calculated eigenvalues; 
eps:= (3y-11)xnorm; 
for k:=m2 step -1 until m1 do 
begin 

comment the pivotal equations are calculated; 

uz=e(1)-ev(k) 3 v:=b(2) ; 
if abs(v)<eps then v:=eps3 
for is=1 step 1 until. n-1 do 
begin 
bi:=b(it1)3 if abs(bi)<eps then bi:=eps; 
bil:= tase) 3 if abs(bil)<eps then bil:=eps; 
if abs(u)>abs(bi) then 
begin 

oft): seus q(i):=v3 r(i):=03 
i+1) :=bi/u; 

us ne( +1) -ev(re) -m( 141) v3 vi=bil; « 
end 

else 
begin 

tt 4: z=bi3 q(1):=c(it+1) -ev(k) 5 
i):=bi13 m(it1):=u/bi3; 

ut=v-m(it+1)x(e(it+1) -ev(k)) 3 
vis-m(i+1)xbil;3 

ends 

end 13 
aft) :=q(n) :=r(n) :=x(k,n+1) :=x(k,nt2) :=h:=03 

):sif abs(u)>eps then u else eps; 
for is=n step -1 until 1 do 
begin 
comment the first approximation; 

x(k, 1) :=(1-q(1) x(k, tt) -r(i pak, 1+2))/p(1) 
heshtx(, i); 

end3 

L)s 

B51 do 
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h:=sqrt(h) s 
for i:s1 step 1 wmtil n do x(k, 1): =x(k,1)/h; 
h:=03 
for i:=n step -1 until 1 do 

begin 

comment the second approximation; 

x(k, 1) (x(k, 1) -a( 4) xx(ic, 141) -r(4)x(Ie, 142) ) /p( 4) 5 
hrshtx(k, 1)x23 
end 3 

h:=sqrt(h) $ 
for i:=1 step 1 until n do (I, 1) s=x(k, i) /h; 

end k3 

comment the calculated eigenvectors are now transformed 
to eigenvectors corresponding to the original matrix; 

for k:=m1 step 1 until m2 do 
begin 

for j:=m-2 step -1 until 1 do 
begin 
trm-j3 t0:=tx(t+1)/23 sigma:=03 
for i:=1 step 1 until t do Siemarmsigmata(t0+i) x2; 
if sigma<>o then 
begin 

83303 
for 1:=1 step 1 until t do s:=sta(t0+i)xx(k, 1) 3 
83-2xs/sigma; 
for 1:=1 step 1 until t do 

x(k, 1) s=x(k, 1)+sxa(tO+4) 
end sigme<>0; 

end j3 
end k¢ 

end vect; 

end 3 
ends 

-17-
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boolean procedure invertsym(n, A)3 

1. Function and parameters. 

boolean procedure invertsym(n, A); 

value n integer n3 array A$ 

Function 

The procedure inverts a symmetrical n X n matrix M(i:n, isn) of 

which the lower part is stored as a one-dimensional array A(1inx(n+1) //2) 

so that 

Mr, s) = M(s, r) = A(rx(r-1)//2 +s) for 1 < $ <r<n. 

On return the inverse of M is found stored in A and the procedure is gi- 

ven the value true. This is only in case the call of the procedure has 

been a success, If it is a failure (i.e. if M is singular) the procedure 

has the value false, but even in this case the result M’ found in A is 

with meaning, since M’ will have the property that M’ x B is a solution 

of the matrix equation M X X = B whenever this equation hag a solution. 

Moreover, the degenerate elements may be found as those diagonal ele- 

ments for which the corresponding rows and columms are ideritically zero. 

Parameters 

call parameter: 

n integer. The order of M 

call and return parameter: 

A(1snx(n+1) //2) array. Must on entry contain the lower half of M, 

so that M(r, s) = M(s, r) = A(rx(r+1)//2+S). 

At return A will contain the inverse of M 

stored in the same way 

return parameter: 

invertsym boolean procedure. It is false if M iis singular 

else true. 



2. Mathematical Method. 

The method is by Gauss-Jordan elimination using pivoting n times. In 

each step there are 3 cases, 

Case 1: There is an index r, which has not been used as pivot index in an 

earlier step and for which the diagonal element M(r, r) is $ O. Let E be 

the set of all such indices. A new pivot index is selected from & in the 

following way: For each r in E the quantity | 

m(r) = max abs Mr, s)/abs M(r, r) rin&E 

(maximum over s in E, s ¢ r) | 

is computed, and the pivot index r is chosen arbitrarily among those in- 

dices which make m(r) attain its minimum A pivoting is carried out with 

M(r, r) as pivot element, and in a boolean array B(1:n) the r’th element 

is set to false to indicate that this index cannot be used in later steps. 

The pivoting means that the elements M(i, k) are replaced by 

Mi, k) - Mi, r)xM(r, i)/M(r, r) fori¢rAk#¢r 

Mr, k)/M(r, r) fori¢rAke=r 

- Mi, r)/M(r, r) forisrAké¢r 

1/M(r, r) forizerAke=r 

The result of this transformation is not a symmetrical matrix but 

Mr, s) = -M(s, r) if r has been pivot index, and s has not 

(i.e. B(r) = false, B(s) = true) 

M(s, r) in all other cases, 

Oniy the lower part of M is stored in A, since the upper part may be 

reestablished by means of B, 

Case 2: M(r, r) = 0 for all r not used as pivot indices before, but there 

are elements Mr, s) #0 outside the diagonal (i.e. for r #'s) for some r 

and s not used as pivot indices before. In this case two new pivot indices 

rand s have to be chosen. First s is chosen arbitrarily among such pos- 

sible indices. Next to choose r, let E be the set of the indices r #5 

not used before as pivot indices and for which Mr, s) + 0. For each r in 

E the quantity 

m(r) = max abs Mr, k)/abs Mr, s) 

where k runs over all indices +r and +s not used as pivot indices. Now 

r is chosen such that m(r) attains its minimum (which possitily is zero). 

In the boolean array B the r’th and s’th element are set to false to ine 

dicate that these indices may not be used in the following steps. Now a 

pivoting is carried out with M(r, s) and Ms, r) as pivot elements. This 

means that the matrix elements M(i, k) are replaced by 



| 
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Mi, k)-M(i, r)xM(s, k)/M(r, s)-M(i, s)xM(r, k)/M(r, s) for itrAitsAktr/Ak+ts 

Mi, r)/M(r, s) for id\kss 

-M(r, k)/M(r, s) for i=s/\ktr 

Mi, s)/M(r, s) _ for k=rAi¢s 

-M(s, k)/M(r, s) - for i=r/Ak+s 

1/M(r, r) for isrAkss 

As in case 1 the result is not a symmetrical matrix, but the upper part 

may be reestablished in the same manner from the lower part, 

Case 3: There are no matrix elements M(r, s) +0, where r and s have not 

been pivot indices. In this case the submatrix of M obtained by taking 

only the indices not used as pivot indices is identical zero. This means 

that M is singular. The value of the procedure is then set to false and 

the remaining rows and columns are set to zero, so that the result deliv- 

ered in A may have the property mentioned in the section above. 

If it is possible to do the pivoting n times without ever entering 

case 5 then M is nonsingular. So the value of the procedure is set to 

true, and the result of the algorithm delivered in A is the ‘inverse of 

M 

3. Accuracy, time and storage requirement 

Accuracy 

In practice the relative error measured as ||AxX - B[|/||X]] has 

been found to be about y-10. This is not an exact error bound. Theoreti- 

cal error bounds are discussed in detail in literature, SEC 686 Forsythe 

and Moler (ref). 

Time: .14x(n+1)xx3 mS 

Storage requirement 

Program length: 6 segments 

variables: 23 + 2.5Xn words in stack. 

Typographical length: 145 lines, 6 segments. 



L., Test and discussion 

The procedure is intended for use in such cases where ‘the total ma- 

trix M is too big for the available store. A program using decompose and 

solve will be faster than a program using invert Sym even af the program 

must generate the matrix M from the half matrix A. 

The procedure has been tested by some random matrices and by @ re- 

presentative set of singular matrices. : 

The following program will read n, A and write out the inverse of A: 

Program to read a symmetrical matrix and output its inverse. 

begin integer n, 1, j, k, 13 

read(in, n)3 

begin array A(1:(nx(n+1)) shift (-1))3 

read(in, A); 

if -, invertsym(n, A) then write(out, <:<10> A is singular: >)3 

write(out, <:<10>:>) 3 

for i:= 1 step 5 until n do 

begin 

jis if i+ 4 <n then i+ 4 else n; 

for ki= i step 1 wmtil j do write(out, << ddd>, k)3 

for k:= i step 1 until n do 

begin 

write(out, <:<10>:>, <<ddd>, k); 

js if i +4 <k then i + 4 else k; 

for 1:= i step 1 until j do 

write(out, <<_-d.ddddddy-ad>, A((kx(k-1)) shift (- 1) +1)); 

end k; 

write(out, <:<12><10>:>) 

end i 

end A 

end program$ 



5. Reference 

Georg Forsythe and Cleve B. Moler: Computer solution of Linear Algebraic 

Systems, Prentice-Hall, Inc. (1967). 

6. Algorithm 

invertsym = set 6 

invertsym = algol 

external 

boolean procedure invert_sym(n,A) ; 

message invert sym, 13 11 69, RCSL 53-M5; 

value n3 integer n3 array A3 

begin integer i,j,k,r,5,t,r1,51,DP3 

real m, aj,ak,ar,aj1,mp$ 

boolean bj,mf3 

array M(1:n)3 boolean array B(1:n)3 

i:=03 

for p:= 1 step 1 until n do 

begin 

m:=0$ 

for k:=p-1 step -1 until 1 do 

begin 

if abs A(i+k)> m then m:= abs A(i+k); 

if abs A(itk)>M(k) then M(k):=abs A(i+k) 

end k3; 

M(p) := mg B(p):= true; i:=itp 

end p3 

tssn3 mps=-13 mfs=trues 

for j:=n step -1 until 1 do 

begin 

if mf then 

begin 



if abs A(i)>M(j)xmp then 

begin 

if M(j)=0 then mf:=false else mp:=abs A(i)/M(j); p:=3 

end abs A(i)>M(j)>mp 

end mf; 

Mj):=03 issi-j 

end j; 

next_pivot: 

st=p3 r:=(sx(s-1))shift(-1); 

if mp>o | -,mf then 

begin comment this is the normal case where 

there has been found a pivot-element 

in the diagonal 3 

B(s):=false; t:=t-13 ar:=A(r+s):=1/A(r+s); mp:=-13 mf:=true3 

for j:=n step -1 until 1 do if j<os then 

begin 

2=(5x(5-1))shift(-1)3 bj:=B(j);  mz=M(j) 5 
aj:=if s<j then A(its)xar else 

(if bj then ar else -ar)xA(r+j); 

for k:= 1 step 1 until j do if k<s then 

begin 

ak:=A(k+i):=A(kti)-(if k<s then A(kt+r)xaj else 

(if B(k) then aj else -aj)xA((kx(k-1))shift(-1)+s)); 

if bj then begin if mf then begin if k<j then 

begin 

if abs ak>M(k) then M(k):= abs ak; 

if abs ak>m then begin if B(k) then m:=abs ak end} 

end end end bj 

end k$s 

if s<j then A(its):=aj else A(r+j):=if bj then -aj else aj; 

if bj then 

begin 

if mf then 

begin 

if abs ak>mxmp then 

begin 



if m=0 then mf:=false else mp:=abs ak/m; p:=j 

end abs ak>mx<mp 

end mf; 

M(j) :=0 
end bj 

end j3 

goto next pivot 

end mp>O | -,mf; 

if mp=0 then 

begin comment this is the exceptional case where 

all diagonal-elements are zero3 

B(s):=false; m:=03 

for j:=s-1 step -1 until 1 do if B(j) then 

begin 

i:=(jx(j-1)) shift(-1)3 ak:=0; 

for k:= s-1 step -1 until 1 do if B(k) then 

begin 

if abs A(if k<j then kti else j+(kx(k-1))shift(-1))>ak then 

ak:=abs A(if k<j then kti else j+(kx(k-1))shift(-1)) 

end k3 | 

if abs A(r+j)>mxXak then 

begin 

8133j3 

if ak=0 then goto L3 

mz=abs A(r+j) /ak 

end 

end j3 

L: t:=t-23 ri:=(s1x(s1-1))shift(-1); 

ar:sA(r+s1):=1/A(r+s1)3 B(s1):=false; mp:=-1; mf:=true3 

for js=n step -1 until 1 do if jomj<csl then 

begin 

iz=(jx(j-1))shitt(-1) 3 bj:=B(j)3  m:=M(j)3 
aj:=if s<j then A(its)xar else 

(if bj then ar else -ar)xA(r+j); 

ajls=if s1<j then A(it+ts1)xar else 

(if bj then ar else -ar)xA(ri+j)3 



for k:=1 step 1 until j do if kos A k<s1 then 

begin 

ak:=A(itk):=A(itk)-(if k<s then A(rtk)xaj1 else 

(if B(k) then aj1 else -aj1)xA((kx(k-1))shift(-1)+s)) 

-(if k<s1 then A(ri+k)xaj else 

(if B(k) then aj else -aj)xA((kx(k-1)) shift(-1)+s1))3 

if bj then begin if mf then begin if k<j then 

begin 

if abs ak>m then begin if B(k) then m:=abs ak ends 

if abs ak>M(k) then M(k):= abs ak 

end end end bj 

end k$ 

if s<j then A(its):=aj1 else 

A(r+j):=if bj then -aj1 else aj13 

if si<j then A(its1):=aj else 

A(ri+j):=1f bj then -aj else aj; 

if bj then 

begin 

if mf then 

begin 

if abs ak>m<mp then begin 

if m=O then mf:=false else mp:=abs ak/m3 p:=3 

end abs ak>mp 

end mf$ 

M( 5) s=0 
end bj 

end j3 

goto next _pivot 

end m=03 

invert_sym:= t=0 5 

if t<o then 

begin 

i:=03 

for j:=1 step 1 until n do 

begin 

for ki=1 step 1 until j do if B(j) | B(k) then A(itk) s=03 

L:=it3 

end j 

end t<>o 

end invert_sym3 



comment 

Parameters 

call parameter: 

n integer. The order of M 

call and return parameter: 

A(1:nx(n+1) //2) array. Must on entry contain the lower half of M, 

so that Mr, s) = Ms, r) = A(rx(r+1)//2+8). 

At return A will contain the inverse of M 

stored in the same way 

return parameter: 

invertsym boolean procedure. It is false if Mis singular 

else true;
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1. Function and Parameters, 

Jacobi calculates all the eigenvalues and, if desired, the correspond- 

@ ing eigenvectors of a symmetric matrix by the method of Jacobi, 

Procedure head: 

real procedure jacobi(a, lambda, x, vect,maxscan) ; 
value vect,maxscan; 
array a, lambda, x; 
boolean vect; 

integer maxscan} 

Call parameters: 

a : 

vect 3 

maxscan : 

@ real array containing the given matrix. 

(boolean) . If vect is true, the eigenvectors will be 

calculated. 

(integer or real). If the value of maxscan is > 0, 

at most this number of scans are performed in the 

procedure. If the value is 0, no limitation is imposed 

on the number of scans. (see section 2. Method). 

Return parameters: 

jacobi : 

lambda — : 

x Hy 

@ Parameter check: 

(real). Contains the number of rotations ‘in the 

last two bytes and the number of scans in the 

first two bytes. If the procedure exits because 

the maximum number of scans is reached, the negative 

number of scans is stored. Hence the sign of the 

procedure value reveals its success. 

(real array). Contains on exit the calculated 

eigenvalues. 

(real array). If the eigenvectors are wanted, they 

are stored as column-vectors in x. The eigenvector 

associated with the eigenvalue lambda(i) is stored 

in x(.,1). 

The orders of the matrix a and the vectors x and lambda are not given 

as parameters, but are checked by the procedure in this way:
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First, the upper subscript bound of the array lambda is assigned 

to the order. Then it is checked that the arrays are declared 

a(1:order, 1:order) (1) 
lambda( 1:order) (2) 
x(1:order, 1 :order) (4) 

(this last check is performed only if the eigenvectors are 

wanted; in fact, if vect=false, x can be any real array and is 

never touched). 

In case of error, the execution is terminated by the error-message 

on current output 

jacobi <error-number> 

where <error-number> is the sum of the numbers attached to each wrong 

array as Stated above. Thus the declaration 

a(1:order,O:order) 
lambda(1:order) 
x(1:order) 

yields the error-number 5 if vect=true, otherwise 1, 

This initial check of the parameters implies that there is no need 

for index-check in the procedure. 

2. Method. 

The method consists of a number of scans of all the super-diagonal 

elements of the matrix. If the element in question is greater in 

absolute value then a certain threshold (approximately the current 

root-mean-square of all super-diagonal elements ), a rotation is per- 

formed, so designed that this element becomes zero. 

The exit condition is that the current threshold is less than 

5y-13xinitial threshold (or that the maximum number of scans is reached). 

Since the procedure converges at least quadratically, little time is saved 

by reducing the accuracy. 

Just before exit, the super- and main-diagonal elements are reestablished 

so that the matrix is unchanged on exit. 

For further details, see [1].



3. Accuracy, Time and Storage Requirement. 

Accuracy: The relative error of the eigenvalues and, if the eigen- 

vectors are calculated, the greatest element of (xtxx-I) 

is unlikely to exceed nx(the relative machine accuracy, 

appr. By-11).6 This applies also to the greatest element 

of (axx-xxL)/max(lambda). However, if the magnitudes of 

the eigenvalues are highly different it may happen that the 

eigenvalues of low magnitude are determined less accurate, 

It can be shown (see [1]) that the absolute error of the 

eigenvalues is bounded by 

ax| [L| |/sart(1-nI)x(nI/(1-sqrt(1-nI))+nA), 

where 

L 

ni 

nA 

Time 

u diag( lambda) 

section 4, Test and Discussion) , 

Storage requirement: 

k, Test and Discussion. 

Several matrices have been tried by the test program (or slightly 

modified versions) at the end of this section. 

5 segments of program 

| [exxerxL| 1/1] /L1]. 

| |xtxx-I|] 3; xt is x transposed, 

Generally proportional to nxx3 when n is large (see 

18 local real variables. 

The table below shows the type and order of the matrix in question, the 

number of scans, the number of rotations, the time consumed by 

the procedure (in sec.), and the norms nI and nA as defined in 

section 3, (the infinity-norm is used.) 

type n scan 

a 10 14 
a 20 17 
b 15 " 
c 
a. 8 11 

rotation 

180 

796 
2T 

é5 

time 

1.9 
14.6 
4,8 

"28 

ni 

1.7 
Tol 
1.2 

7:6 

n-9 
w-9 

00 
3-10 

8. 3=10 
2e1y9 
Detne10 

B72 10 



The types represent the following matrices: 

° a) HBH-matrices. The general element of a n-th order matrix is 

@ given by a(i,j)=a(j,i)=n-i+1. The eigenvalues are 

1(1)=0.25/sin((2xi-1) xpi/(4omnt2) ) xxe 

b) The matrix 

a(i,j)=a(j,i)=if i<>j then 1 else 10x(i-1) 

c) The matrix 

a(i,j)=a(j,i)=if i=) then 0 else 1 

All eigenvalues are ~-] except for one which is n-1. 

ad) The matrix and the complete output of the testprogram for this case are: 

S matrix: 

611 
196 899 

-192 113 899 
ho7 -192 196 611 
-8 -71 61 8 411 

52 9-43 4g 4b -599 411 
-ig 8 8 59 208 208 99 
29 -44 52 -23 208 208 -911 99 

scans= 1 rotations= 69 time= 0.68 sec. 
nI = 7.6y-10 nA = 6,1y-10 

eigenvalues: 

102004901895 
1 .0000000002, 
1 .0000000003y 
9 8048646596 y 

@ 2..5609435927 
10200000004 
1.0199019515y 

-1.0200490187 

Ly 
W
E
N
O
 

PD
 

(O
h 

ty
 

tn
 

end 

Test program: 

test1 jacobi 

begin integer n; 
for underflows:=-1 while read(in,n)>0 do 
begin real x,eli,ela,maxi,normi, norma, la, layout, tO, ti, si,sa3 

array a,t(i:n,i:n),1(1:n) 3 
integer i, j,k,laynos; 

read(in, layno) ; 
@ for i:=1 step 1 until n do 

for j:=1 step 1 until i do 
begin read(in,x) ; 

a(i,j) z=a( j,i) :=x 
end;



tO:ssystime(1,0,1a) ; 
for 1:20,i+1 while t1<t0+2.56 do 
begin x:=jacobi(a,1,t,true,0) ; 
t1:=systime(1,0, 1a) 

end 3 

t0:=(t1-t0) /1; 

maxl:=normi:=norma:=0 3 

for i:=1 step 1 until n do 
begin si:=sa:=03 

for j:=1 step 1 until n do 
begin eli:=ela:=0; 

la:=1( 5) ; 
for k:=1 step 1 until n do 

begin eli:seli+t(k,i)xt(k, j); 
ela:=elat+a(i,k)xt(k, Jj) 

end k; 

if i=j then eli:=eli-1; 

ela:=ela-t(i, j)xla; 
si:=sitabs eli; 
sa:3satabs ela 

end j3 

if si>normi then normi:=si; 
if sa>norma then norma:=sa; 
if abs 1(1)>maxl then maxl:=abs 1(1) 

end i; 

layout: =real(case layno of (<<d>, <<dd>, <<-dd>, <<-ddd>, <<-ddda>, 
<<d>, <<d>,<< -d,dddd>,<< -d.ddddd>)) ; 

write(out,<:<12>matrix::>) ; 
for i:=1 step 1 until n do 
begin k:=03 
write(out,<:<10>:>) ; 
for j:=1 step 1 until i do 
begin write(out,string layout,a(i,j)); 

k:=k+layno; 
if k>70 and j<i then 
begin write(out,<:<10>:>, false add 32,layno) ; 

k:=layno 
end 

end } 
end write matrix; 

write(out,<:<10><10>scans=:>,<< -ddad>, x shift(-24) extract 2h, 
<: rotations=:>,x extract 2k, 
<3 time=:>,<< ddd.00>,t0,<: sec.:>, 
<:<10>nI =:>,<< d.dy-dd>, normi, 
<: nA =:>,norma/maxl, 
<:<10><10>eigenvalues:<10>:>) ; 

for i:=1 step 1 until n do 
write(out,<<-d.ddddddddddy-dd>, 1(4) ,<:<10>:>) 

end read n 
end 

5. References 

[1] Kahan, W. and Green, D, : Eigenvalues and Eigenvectors of a Real 

Symmetric Matrix. (Unpublished but copies of the paper are achievable 

on demand)



6. Algorithm 

jacobi=set 5 
jacobi=algol index.no 

external 

real procedure jacobi(a, lambda, x, vect,maxscan) ; 
message jacobi, version 20.11.69, RCSL NO: 55-D61; 
value vect,maxscan} 
integer maxscan; 

boolean vect}; 

array a, lambda, x; 
begin real eps,t,ave,s,u, thresh, dlow,d,c,aij,ajj3 

integer i,j,11,3Jj,jl,n,nrscan,nrrot; 
boolean again; 

i:=if system(3,n,lambda)<>1 then 2 else 0; 
jrmsystem(4,i1,a); 
if j<ont1 or Liconx(n+1) then i:=1+1; 
j:=system(3,1i,x) 5 
if (j<on+1 or ticonx(nt+1)) and vect then i:=i+h; 
if i>0 then system(9,i,<:<10>jacobi :>); 

if vect then 
for i:=1 step 1 until n do 
begin x(i,i):=1; 

for j:=i+1 step 1 until n do x(1,j):=x(j,i):=0 
end x:=identity; 

d:=0; 
for i:=1 step 1 until n do 

begin lambda(i):=a(i,i); 
for j:=i+1 step 1 until n do d:=dta(i,j)xxe 

end i; 

nrscan:=nrrot:=0; 

if d>0O then 

begin dlow:=y-7xd}3 
ave:=(n-1)xnx0.55; 
thresh: =sqrt(d/ave) ; 
eps :=5y-15xXthresh3 

Scaniagain:=false; 
nrscan:=nrscant1; 

for i:=n-1 step -1 until 1 do 

for j:=i+1 step 1 until n do 
begin comment scan; 

aij:sa(i,j); 
if abs aij >= thresh then 

begin ajj:=a(j,J)3 
si=ajj-a(i,i) 
t:=abs alj; 
if stt<os then 

begin comment rot<>o; 

again:=true; 
nrrot:=nrrot+1 5 

if abs s<=)-6Xt then s:=c:=0.70710678118 else 
begin t:=aij/s3 

$230.25/sqrt(txx2+0.25); 
e:=sqrt(s+0.5)3 
$3=2xtxs/c 

end rot<pi/4; 

a 
BJ 



for ii:=1 step 1 until i do 
begin t:=a(ii,i); u:sa(ii, Jj); 

a(ii,i) :=cxt-sxu; 
a(ii, j) s=sxtt+exu 

end; 

jls=j-1; 
for fi:=i+1 step 1 until jl do 
begin t:=a(i,ii); u:=sa(1i,j); 

a(i, ii) :=cxt-sxu; 
a( li, j) :=sxt+exu 

end; 

a(j, J) :#sxaij+oxajJ; 
a(i,i):=cxa(i,i)-sx(exaij-sxajj) 5 
for ii:=j step 1 until n do 
begin t:=a(i,ii); u:=a(j,ii); 

a(i, ii) :=cxt-sxu; 
a( j,ii) s=sxtt+cxu 

end; 

if vect then 
for ii:= 1 step 1 until n do 
begin t:=x(ii,i); u:=x(ii,j)3 
x(ii, 1) s=cxt-sxu; 
x(4i, j) :=sxt+exu 

end; 

3 =deat jxxe 5 
if d<dlow then 
begin d:=0;3 

for iis=n-1 step -1 until 1 do 
for jj:2ii+1 step 1 until n do 
d:=dta(ii, jj) x2; 

dlow: =y-7xd 

end; 

thresh: =sqrt(d/ave) ; 
if thresh<eps then goto quit 

end rotation 
end aij 

end scan3 

if again and (maxscan>0=>maxscan>nrscan) then goto scan; 

if again then nrscan:=-nrscan}3 

quit:for i:=1 step 1 until n do 
begin t:=a(i,i); 

a(i,i):=lembda(1i); 
lambda(i):=t; 
for j:si+1 step 1 until n do a(i,j):=a(j,1i) 

end i 

end d>0;3 

jacobi:=0.5 add nrscan shift 24 add nrrot 
end jacobi; 

comment 

Call parameters: 

a : a real array containing the given matrix. 
vect : (boolean) . If vect is true, the eigenvectors 

will be calculated, 
maxscan : (integer or real). If the value of maxscan is > 0, 

at most this number of scans are performed in the 
procedure. If the value is 0, no limitation is imposed 

on the number of scans. 
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Return parameters: 

jacobi 

lambda 

(real). Contains the number of rotations in the 
last two bytes and the number of scans in the 
first two bytes. If the procedure exits because the 
maximum number of scans is reached, the negative num- 
ber of scans is stored. Hence the sign of the procedure 
value reveals its ‘success, 

: (real array). Contains on exit the calculated 
eigenvalues, 
(real array). If the eigenvectors are wanted, they 

are stored as column-vectors in x, The eigenvector 
associated with the eigenvalue lambda(i) is stored 

in x(.,1)3
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1. Function and parameters 

Let F denote a real, twice differentiabel function in n variables, 

and suppose that the first order derivatives of F are given analyti- 

cally (that is, as expressions depending upon the n variables). 

Suppose that in a given area the function is bounded below and has a 

minimum. From a reasonable good starting point the procedure finds 

this minimum by finding a point at which all the first order deriva- 

tives are zero (that is, smaller than a prescribed quantity). 

Procedure head: 

minimum(n, i, x, F, delta, eps, point) ; 

value n3 

integer i, n3 

real eps, F, delta; 

array x, points 

Call parameters: 

ni the number of variables for the given function. 

Call/Return parameters: 

point: a real array point(i:n); 

at entry point containes the starting poirt for the 

procedure $3 

at exit point containes the coordinates of the point 

at which the minimum is obtained; 

eps: a real quantity affecting the precision tc which the 

minimum is calculated. Consider the norm cf the vector 

consisting of the first order derivatives. If this 

norm is smaller than eps, then the procedure will stop; 

at exit eps containes the norm of the vector described 

above. 

Return parameters: 

minimum: the value of the obtained minimum;



Other parameters: 

Fs a real procedure denoting the given function. In a pro- 

gram in which the procedure minimum is called, F mst 

be declared in the following way: 

real procedure F(x); 

array X3 

F3= the given expression}; 

delta: a real procedure delta(i, x) denoting for each i the 

partiel derivative of F with respect to the variable 

x(1) 
In a program in which the procedure minimum is called, 

delta must be declared in the following way: 

real procedure delta(i, x); 

integer i; 

array x$ 

deltas= case i of (06, ees ; weed 

In the parenthesis there must be n expressions, where 

the i-th expression denotes the partiel derivative of F 

with respect to the variable x(1i)3 

2. The method 

Let F denote a function in n variables, and let x denote the n-dimen- 

sional point with coordinates (x(1), x(2), ... , x(n)). F is said to 

have a minimum at a point x0, if there exist a small area including 

x0, in which the value of F at each point is greater than F(x0). 

Most of the various methods for finding a minimum for a function in 

variables has one idea in commen: They are all iterative processes 

based upon a roul, which for each point specifies a certain direction 

in which the next point of the process is to be found, and for each 

such direction specifies how to find the next point. Now, suppose that 
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the function is differentiabel. By the gradient of F at the point x - 

denoted gradient (x) - we understand the n-dimensional vector, which 

as the i-th coordinate has the partiel derivative of F with respect 

to x(i) at the point x. 

The method used in the following program is essentially based upon to 

papers of A.A. Goldstein ((2), (3)). We suppose, that the function is 

twice differentiabel and that the gradient is given analytically. It 

is well known, that the gradient will vanish at a minimumpoint. 

Let the points of the iterative process be denoted x1, x2, X34, «+. xk, 

eee, Where x1 is given by the input array point. 

For each k fi(xk) denotes the n-dimensional vector which terminates 

the new direction. 

We choose fi(x1) = gradient (x1). 

For each k the number h{k) is defined as: 

bh(k) = r X norm(n, fi(xk)). 

r is calculated at the beginning of the program in such a way that 

h(1) < 1/5. 

norm is denoting the ordinary n-dimensional Euklidian norm. 

Then the algorithm, at each point xk, consists of the following two 

DIRECTION: 

We compute an n Xn matrix, which is an approximation to the matrix 

consisting of the second order derivatives of F. 

For each j let F(j) denote the vector, which has the j-th coordinate 

equal to 1 and the others equal to zero. 

We then compute the matrix Q( xk) which has the j-th column equal to 

(gradient(xk + h(k) x F(j)) - gradient(xk)/h(k). 

If the matrix Q(xk) is singular (it is has no inverse) then 

we define the new direction fi(xk) by 

fi(xk) = gradient(xk). 

Suppose now, that Q(xk) has an inverse, which we denote P(xk). 

If (gradient(xk), P(xk) x gradient(xk)) > 0 

(where ( ,  ) denotes the ordinary innerproduct) then we define 

fi(xk) by 

fi(xk) = P(xk) x gradient(xk).
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If (gradient(xk), P(xk) x gradient (xk)) <0 

then we define fi(xk) by 

fi(xk) = gradient(xk). 

KONSTANT : 

The next point in the process is now obtained on the form 

xk - ek X fi(xk) 

where gk is a constant calculated as follows: 

Let product = (gradient(xk), fi(xk)). 

Let f1 = F(xk). 

Let £2 = F(xk - gk x fi(xk)). 

Then gk is calculated such that 

f2<f1 and (f1 - £2) < gk X product. 

It can be proved, by using the Taylor formula, that such a gk always 

exists, and that xk calculated in this way will converge to a minimum- 

point for F.((2), (3)). From a numerical point of view however, gk 

might fail to exist, and in this case the procedure will stop. 

3, Accuracy, Time and Storage Requirements 

Accuracy: As measure of accuracy we use the norm of the gradient. If 

the procedure succeeds, then at the end this norm is smaller 

than the call parameter eps. 

Time: This depends on the wanted accuracy and first of all on the 

problem in question, so it is not possible to give general 

rules for this. (See 4. Test and Discussion). 

Storage requirements: 10 segments of program 

Typographical length: 248 lines. 

h, Test and Discussion 

The procedure have been tested on several functiones among which we 

deseribe the two most difficult problems:



1. Minimising the function in two variables 

F = 100 x (x(2) - x(1)2) xx 2+ (1 - x(1)) « 2 

First we consider the problem 1: 

The function F has minimum at the point (1, 1) with fuactionvalue 0. 

Value of eps 

pn 4 nO 

Minimum 0.999999 592 0.999999 592 
02999999183 0.999999 183 

Fe.-value 0.000000000 0000000000 

Gr.-norm 7 D0-5 42-7 

: Ex,-time 0.76 0.73 

@ (the execution time is in seconds). 

»-8 

1 000000000 
1 000000000 

0 .000000000 

5.1-8 

0.15 

2, Finding a solution to the following three non-linear equations: 

sin(x(1)xx2) + exp(x(2)) x x(3) - 4 =0 

x(1) + x(2) + x(3) - 3 =0 

x(1) + x(2)x@ + x(3)0G - 14 =0 

This is done by minimising the square-sum of the three equations. 

Starting at the point x(1) = -1.2 and x(2) = 1 and using different 

values of the term eps, the following results were obtained: 

710 

J 000000000 
1 000000000 

0 «000000000 

1-79-10 

0.75 

It follows, that the procedure succeeds in all situations, and that 

smaller values of eps does not affect the execution time. This last ob- 

servation however can not be stated in general, (see below under problem 

2). 

Using eps pO and using different starting points the following results 

were obtained:
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Starting- -1.200000000 0.000000000 -0.500000000 2000000000 
point 1000000000 1 «000000000 -0. 500000000 0250000000 

Execution- 

time 0.75 0.49 0.71 0.80 

In all 4 situations the minimum was obtained at the point: 

1 000000000 
1 eOO0000000 

with the functionvalue 0.000000000 and gradient norm 5.1»-€. 

Again the procedure succeeds in all 4 situations. 

Next, consider the problem 2 in three variables. Starting at the point 

x(1) = 0, x(2) = 0, x(3) = 2.5 and using different values cf the term 

eps, the following results were obtained: 

Value of eps 

4 -6 78 710 

Minimum 0.097831561 0097830233 0.097830224 0.097830224 
02512917627 02512919004 0.512919014 02512919014 
2.389250732 2.389250762 2.389250762 2,389250762 

Fe.~value 0.000000000 0.000000000 0000000000 0 .000000000 

Gr.-norm 5 B89-5 39-7 3 .2y-8 3 .2y-8 

Ex, -time 1.96 2655 3.81 3.97 

It follows, that the procedure succeeds in the first three situations, 

but that it is not possible to make the gradient norm smaller than 

3.2y-8, so in this sense the procedure does not succeed in the last si- 

tuation. In this case smaller values of eps gives greater execution 

time, even if the obtained minimumpoints are practically the same in the 

last three cases. 

Using eps = y-S and using different starting points the following results 

were obtained: 

Starting- 
point 

Execution= 

time 

0 .000000000 
0 .000000000 
2500000000 

3.81 

0 .000000000 
0 ,000000000 
1 «000000000 

1.97 

0. 500000000 
1 000000000 
22000000000 

5.09 

7 00000000 
1 2000000000 
1 000000000 

245



In all 4 situations the minimum was obtained at the point: 

0 .097830223 

0.512919014 
2.389250762 

with the functionvalue 0.000000000 and gradient norm 3.2y-8 

It follows, that the procedure succeeds in all 4 situations. 

Example 

Consider the function 

F = 100 x (x(2) - x(1)xx2) xk 2+ (1 - x(1)) x 2 

Starting at the point x(1) = -1.2 and x(2) = 1 the following program 

might be used to find the minimum of F: 

Testprogram 

begin 

integer i, Jj; 

real a, eps; 

array xX, point(1:2)3 

real procedure F(x) 3 

array X3 

F:= 100 x (x(2) - x(1)~2) xx 2 + (1 - x(1)) > 23 

real procedure delta(i, x); 

integer i5 

array X3 

delta:= case 1 of (-400xx(1) x (x(2) - x(1)~e@) - 2x (1 - x(1)), 

200 x (x(2) - x(1)xx2)); 

point(1):= -1.23; point(2):= 13 eps := »-8; 

at= minimum(2, i, x, F(x), delta(i, x), eps, point); 

write(out, <:Minimum obtained at the point <10>:>)3 

for j:= 1 step 1 until 2 do 

write(out, <:<l0>:>, <<-dddd,ddadddddd>, point(j))>5 

write(out, <:<10><10> Minimumvalue =:>,<<-dddd.dddddaddé>, a) 5 

write(out, <:<10><10> Gradient norm=:>, <<-d.dy-dd>, eps) 3 

end $



This will give the following output: 

Minimum obtained at the point 

1 000000000 

1 000000000 

Minimumvalue = 0.000000000 

Gradient norm = 1.0’ -8 

end 

De 

In the program we use a boolean procedure inverse to find the inverse 

(if it exist) of an n X n matrix. 

The procedure is based upon Simpel Gaussian illimination and is only 

introduced in order to make the program complete. Qne could use any 

other procedure of this sort, for ex. decompose-solve from RC mathe- 

matical procedure library. 

Since a minimum of the function F is a maximum of the function -F, 

the procedure will of course be able to find maximum as well as mini- 

mum. 
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6. Algol _ text 

minimum = set 10 

minimm = algol 

external 

real procedure minimum(n,i,x,F,delta,eps, point) ; 

value n$ 

integer i,n; 

real eps,F,delta; 

array X, point; 

begin 

integer j$ 

real h,g,g¢1,gamma,r,f1,f2,f3,product,k,s; 

array psi,y,z,b(1:n),p,a(1:n, 1:n) ; 

real procedure norm(n,a) ; 

value n$ 

integer n3 

array a3 

begin 

comment this is the ordinary norm in the n-dimensional Huklidian 

space $ 

real h3 

h:=Osfor i:=1 step 1 until n do h:=hta(i)~©@; 

norm: =sqrt(h) ; 

end 3 

real procedure innerproduct(n, a,b) ; 

value n3 

integer n3 

array a,b$3 

begin 

comment this is the ordinary innerproduct in the n-dimensional
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Euklidian space; 

real h; 

h3=03 for i:=1 step 1 until n do h:=h+a(i)xb(4) 3 

innerproduct :=h3 

end3 

procedure equal(n,a,b) 3 

value n; 

integer n35 

array a,03 

begin 

comment the procedure identifies two arrays; 

for it=1 step 1 until n do b(i):=a(i); 

end$ 

boolean procedure inverse(n,a,b) ; 

value n3 

integer n$ 

array a,b$ 

comment the procedure finds the inverse ( if it exists ) of the 

matrix a by Gaussian illimination.If the inverse exist,it is 

stored in b.If the inverse does not exist,inverse is false; 

begin 

integer i,j,k,m, pivotnrs 

real pivot,s$ 

array c(1:n,1:n),x(1:n),a(1:n)s 

inverse: =true $ 

for m:=1 step 1 until n do 

begin 

comment for each m one is solving the linear system,which on the 

wright side has the m-th colum in the wnit-matrix,and cn the left 

side the given matix as coefficientmatrix and the m-th colum in 

the wanted inverse as unknown$3 
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for j:=1 step 1 until n do 

for i:=1 step 1 until n do c(i,j):=a(i,d)3 

for i:s1 step 1 until n do d(i):=(if i=m then 1 else 0)3 

for k:=1 step 1 until n-1 do 

begin 

comment among the last n-k+1 equations one is finding the equation, 

which has the numerical largest coefficient in x(k); 

pivot:=03 pivotnr:=0 5 

for i:sk step 1 until n do if abs(e(i,k))>pivot then 

begin pivot:=c(i,k)3; pivotnr:=i; end; 

if pivot=0 then begin inverse:=false; goto ENDsend; 

comment if pivot=0 then the given matrix has determinant; 0 and 

consequently no inverse$ 

if pivotnr<k then 

begin 

comment equation number k is replaced by equation number pivotnr 

and vica versa$ 

st=d(k)3 d(k):=a(pivotnr) 3 d(pivotnr) :=s; 

for j:=k step 1 until n do 

begin 

x(j):=c(k,j)3 ¢e(k,3):=¢e(pivotnr, j)3 ¢(pivotnr, j) :=x(j) 3 

end 

end if pivotnr<k3 

for i:=k+1 step 1 until n do 

begin 

comment x(k) is calculated from the k-th equation, and the 

expression inserted in the following n-k equations $ 

a( i) s=a(41)-d(k) xe(i,k) /e(k,) 3 

for j:=k+1 step 1 until n do 

e(i,j)s= e(4,5)-c(i,k)xe(k, j)/clk,k) 3 
end 3 

end k3 

if e(n,n)=0 then begin inverse:=false; goto ENDsend else 

x(n) :=d(n)/e(n,n) 5 

for i:=n-1 step -1 wntil i do 

begin 

comment for each i x(i) is calculated from the equation 

e(1,i)xx(1) + c(4,i+1)xx(1+1) +... te(4,n)xx(j) = a(i), 
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where x(i+1),. . . x(n) are known; 

st=03 for jin step -1 until i+1 do s:=s+c(i,j)xx(j)3 

x(i)s=(a(i)-s)/e(i,1) 3 

end; 

for it=1 step 1 until n do b(i,m) :=x(i); 

end m3 

END: end; 

procedure search(n,g,y,psi, £2) s 

value n,g3 

integer n35 

real g,f23 

array y,psi; 

begin 

comment the procedure finds the value of the function to be 

minimised, that is kxF,at the point obtained from y by going the 

distance g in the direction -psi; 

for i:=1 step 1 until n do x(1):=y(i)-expsi(i); 

£22 Skx¥ 5 

end3$ 

equal(n, point, x) sequal(n,x,y)3 k:=15 

for i:=1 step 1 util n do psi(i):=delta; 

comment psi is the gradient of F at the starting points; 

equal(n,psi,b) 3; h:=product:=norm(n, psi) 5 

if h<1 then r:=1/5 else r3=1/(5xh) 5 

KONSTANT : 

* comment at each step of the iterativ process the procedure will 
3 

goto KONSTANT and run through the following.A point y and a 

direction psi is given,and the problem is to find a konstant ¢g 

such that the point y-gXpsi can be used as the next points 

hi=norm(n, psi); equal(n,y,x) 3 

if h/product<1/10 then
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begin 

comment psi is too small relativ to the gradient which implies, 

that the greatest possible progress is too smali.We therefore 

consider the function kxFf,where k is defined below; 

k:=(h/product)xx(1/n) 5 

for i:=1 step 1 until n do psi(i) :=(1/k)»xnxpsi(4) ; 

for i:=1 step 1 until n do b(1):=kxdelta; 

hs=norm(n, psi) 3 

if h<1 then r:=1/5 else r:=1/(5xh); 

ends 

he=rxh3 £1:=O?3 

comment h is used below as the small quantity in the approximation 

of the second order derivatives of F,r is introduced in order to 

insure, that this quantity is not too big «t the beginnings 

product :=innerproduct(n,b, pst) $ 

gs=13 g13=03 

search(n, 1,y, psi, f2) $ 

if £1-f2>=1/4xproduct then 

begin 

f1i:=f23 equal(n,x,y)$ goto DIRECTION; 

ends 

comment in this case we use g=1/4 and the next point is 

therefore obtained as y-1/4xpsi; 

st=a( if s<1 then »-10 else 1/SX»-10 )3 

6 for g:=2¢/2 while f1<=f2 do 

begin 

search(n,g,y, psi, £2) $ 

if e<s then begin equal(n,y,x); goto END; end; 

end 3 

comment if g is smaller than s (see the definition of this term) 

then the next point of the process will be practically equal to 

the present,and we must therefore conclude, that the procedure is 

unable to make further progress; 

gi=2xe3 equal(n,x,z)3 

if (£1-f£2)<exproduct then goto SECOND else 

begin 

comment in this case the functionvalue at y-gxpsi is smaller 

rd) than f1,but the condition f£1-f2<exproduct is not satisfied and
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® therefore g is too small; 

- glisgs gt=exXe5 

FIRST: 

g2=(e1+g) /23 
search(n,2,y, psi, f2) 3 

if f1<f2 then goto FIRST else 

begin 

if (f1-£2)<gxproduct then 

begin equal(n,x,y)3 f1:=f23 goto DIRECTION; end else 

begin g:=2Xe-213 21:=(e+e1)/23 goto FIRST; end; 

| end3 

end3 

SECOND: 

$ comment in this case the functionvalue at y-gxpsi is smaller than 

f1 and the condition f1-fe<exproduct is satisfied.We therefore 

look for a smaller g for which this condition is satisfied and 

with a smaller functionvalue than before; 

g:=(gi+e)/23 search(n,2,y,psi, £5) 5 
if fe<=f5 then 

begin equal(n,z,x) sequal(n,x,y)3 f1:=f23 goto DIRECTION’ 

end else 

begin 

if (£1-f3)<exproduct then 

pegin f2:=f3; equal(n, x,z) 3 goto SECOND;end 

© else goto THIRD; 

end 3 

THIRD: 

3 comment in this case the functionvalue is smaller thar. before, 

but the condition mentioned before is not satisfied,so g is 

too smalls; 

gr=exg-g13 g1:=(gte1)/23 e:=(ete1) /23 
search(n,g,y, psi, £3) 3 

if (f1-f£3)>=exproduct then goto THIRD else 

begin 

if f£3>=f1 then goto THIRD else 

) begin equal(n,x,y)3 f1:=f33 goto DIRECTION; end; 

ends.
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DIRECTION : 

3 comment at each step of the iterativ process the procedure will 

goto DIRECTION and run through the following.A point x is given 

and the problem is to determine the direction in which the next 

point is to be founds 

for i:=1 step 1 until n do b(i):=kxdelta; 

product :=norm(n,b) 3 

if product<kxeps or product<y-10 then goto END; 

comment if product<kxeps then the wanted accuracy is obtained. 

if product<,-10 then in most situations it will be meeningless 

to look for further progress; 

for j:=1 step 1 util n do 

begin 

comment an approximation to the matrix consisting of the second 

order derivatives of kxF is calculated and the result stored in q3 

for i:=1 step 1 until n do x(i):=(if i=j then y(i)+h else y(i))s 

for i:=1 step 1 until n do p(i,1):=kxdelta; 

for i:=1 step 1 until n do a(i,§):=(p(i,1)-b(1)) /hs 

end js 

if -,inverse(n,q,p) then goto STEEPEST else 

begin 

comment if the inverse of q exist,then the vector psi is 

obtained by multiplying the inverse matrix with the gradient; 

for i:=1 step 1 mtil n do 

begin 

psi(i):=03; for j:=1 step 1 until n do 

psi(i):=psi(i)+p(4, 3) xb(3) 5 
end $ 

ends 

if innerproduct(n, psi, b)<=0 then goto STEEPEST else 

goto KONSTANT; 

comment if innerproduct(n, psi, b)<=0 then we can not be sure to 

find a point with smaller functionvalue in the direction psi, 

and therefore psi can not be used.If the innerproduct is >0 

then psi is the new direction; 

STEBPEST 

equal(n,b,psi); goto KONSTANT;
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comment the gradient is used as the new direction; 

END: 

s comment the present value of the relevant quantities are stored 

in the return parameters 5 

for it=1 step 1 until n do b(i) :=delta; 

minimm:=F3 eps:=norm(n,») 3 

for i:=1 step 1 until n do point(i):=x(1); 

ends 

end$ 
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pzero(order, coef, root) 

1. Function and parameters 

pzero caleulates all roots (complex or real) of 2nd, 3rd and Mth order 

polynomials with real coefficients. 

Call: pzero(order, coef, root) 

pzero is a boolean procedure which is false if order > 4 or order < 2 

or coef(order) = 0. In this case no computations are made, 

otherwise pzero is true. 

order (call value, integer) 

specifies the order of the polynomial. 

coef (call value, array) minimum bounds(o:order) 

specifies the coefficients of the polynomial 

p(z):= SUM(coef(i)xzxxi), i:= 0, 1, ... , order. 

root (return value, array) minimum bounds(1:order, 1:2) 

If pzero is true then root specifies the calculated roots 

Zi, 1:3 1, 2, eee , Order so that 

Re zi = root(i, 1) and 

Im zi = root(i, 2). 

2. Method 

2.1. General 

Extremely large or small roots are detected at the first stage of com- 

putation, and further computations are executed on the quotient poly- 

mial, where quotient polynomial everywhere in this description 

means p(z) / PRODUCT(z - zi) 

where zi are the roots allready found by pzero. 

The (quotient) polynomial is now normalized so that coef(order) 

equals le



2,2. Second order polynomials: p(z) = zxx2 + bxz +c 

The quantity d:i= bXx<@ - hxe determines whether the roots are complex 

(ad <0) or real (4 > 0). 

If the roots are real then the numerically largest root is calculated 

from 

z1:= (-b - sqn(b)xsqrt(d))/2 

and the remaining root from 

z2i:= if z1 = 0 then 0 else ¢/z1 

otherwise the roots are calculated from 

zi:= (-b + ixsqrt(-d))/2 

and 

gei= (-b - ixsqrt(-d))/2 

where i is the imaginary unit. 

2.3. Third order polynomials: p(z) = zxx3taxzxx2+bxz+e 

If there are miltiple roots then all of the roots are calculated di- 

rectly from the coefficients a,b and c, otherwise one real root is 

determined by a Newton Iteration whereafter the remaining two roots 

are calculated from the quotient second order polynomial (see 2.2). 

Analysis and iteration starting point: 

The transformation w =z + a/3 yields 

p(z) = 0 <=} a(w) = wx + Owte =0. 

Define 

r= 27Xexx2 + UXxan3. 

a) 1 real and 2 complex conjugate roots: 

are called 2xk, -k + im and -k - ixm 

where i is the imaginary unit. 

a(w) = wxd + (moe ~ 3X02) XW - Oxkx(kxx2 + m2) 

implies 

r = [2amx(moe + 9xXIO0@) doe > 0 

and defining 

f(m) = 4 x Je| = 8x|kx(koe + moxe)| > 8x/k] oS 

yields - 

(4x}e|)>x«<(1/3) > 2x]k| 



b) 3 real roots: 

are called k, m and -k - m where k is the numerically largest root. 

a(w) = wos - (KOO + mX 2 + km) XW + kOomX(k + m) 
implies 

r= -[(k - m)x(2xk + m)x(k + 2xm) ]~2 < 0 (x) 

and defining 

f(m) = 4xfda]/3 = 4xjpoxe + mee + komm /3 

yields 

min f(m) = f(-d/2) = kee 

SO 

® 2x sart(|a|/3) > |X| 

From (x) and (xx) we see that 

r<0O => real roots 

r=0O => multiple roots 

r>0 = complex roots 

and iteration starting point s is chosen to be 

s 3= Oxsqrt(|d|/3) if r <0 

(uxle[)xx(1/3) if r> 0. 

The quotient second order polynomial: 

is calculated from 

@ (zxx2 + pxz + q)x(z - 21) = 2XxX3 + axZxXxX2 + DXz + 

where 21 is the real root obtained by iteration. 

If ja +21] > |al/8 then p is calculated from 

pesart zl 

and 

qi=b+ pxzi if |b + pxzi| > |b|/8 

-~c/z1 if |b + pxz1| < [b|/8 

otherwise 

q:= -c/z1 

and 

) p= (q - b)/z1. 



2.4. 

-. 

Fourth order polynomials: p(z) = zx + axxzxx3 + bxzxxe + cxz + a 

IT: 

LIT: 

IV a) 

b) 

A linear transformation w =z + a/4 yields 

p(z) = 0 <=> q(w) = wok + Ixwexe + mw + n = 0, 

now the sum of the transformed roots equals zero, 

The transformed roots are calculated using the method of Descartes. 

This method involves the solution of a third order equation, and 

this is performed as described in 2.3. 

The roots are now accepted if |Re zi| > |a|/32 so at least one root 

mist be accepted unless they all equal zero. 

if one root is accepted by III 

then the reciprocal roots are calculated from 

axzxxl. + eXzxx3 + DXZxX2 + axz + 1 = 0 

as described in 2.4-I, II and III. 

If one of the reciprocal roots is accepted then we have two accep- 

ted roots, so the remaining two roots are calculated as described 

in IV b, otherwise the former accepted root is not used. The number 

of accepted reciprocal roots then determines whether further calcu- 

lations are performed as described in IV, b, c ord. 

if two roots are accepted by III (or Iv) 

then the quotient second order polynomial is calculated and solved 

as described in 2.2. | 

if three roots are accepted by III (or Iv) 

then the remaining real root is calculated using the fact that the 

product of the roots equals d. 

if four roots are accepted by III (or IV) 

then no further calculations are performed by pzero. 



5. Accuracy, time- and storage requirements 

Sel. Accuracy 

If an actual equation is ill-conditioned and you want the roots to a 

specified degree of accuracy a much greater accuracy may be necessary 

in the intermediate calculations. On the other hand a user is not sup- 

posed to know anything about the conditioning of the actual equation, 

so standard input to RCLOOO of 48-bits reals is used. 

5.2. Time- and storage requirements 

Approximate cpu-time used by pzero: (order - 1)x0.02 sec. 

Codelength: 12 segments 

Typographical length: 22% lines incl. last comment. 

h, Test and discussion: 

pzero has been tested on the RC4OOO computer with a testprogram which 

performs 

1) generation of order and coefficients 

2) call of pzero 

@ 5) ealculation of root generated coefficients of the polynomial 

p(z) := PRODUCT(z - zi), 1:= 1, 2, ... , order 

kh) calculation of relative differences between the original and the 

root generated coefficients. 

Now the smallness of the differences is chosen as a measure of the 

goodness of pzero. 

pzero has been tested with a large number of both prepared il1l-condi- 

tioned coefficients and random coefficients input and in both cases 

with satisfying results. 

Some test examples (the eheck column describes the relative differen- 

@ ces): 

co



example number 1 

given equation 

coef(4)= 1.0000000000y 

coef(3)= 1.0000000000% 

coef(2)= 1.0000000000% 

coef(1)= 10000000000, 

coef(0)= 1.0000000000. 

calculated roots 

check 

=5 82-11 

5 82-11 

=5090) ~H 

0.00, 0 

De51BOTINUBY = 1+7 62034175772 = =1 

3e518079NN SH = 1-7 e20341 75772 2-1 

=8.5180794N32, -149.1129213536y 9-1 

85180794432, -1-961129213536y 89-1 

example number 2 

given equation 

coef(4)= 1.0000000000.) 

coef( 3) =-6 .86192746721 

coef( 2) =-8 ,8228487860 5 

coef(1)= 6.8619274672, 

coef(0) =+1.17715121415 

calculated roots 

34309637339 =1 

10000000000 fo) 

304309637335y = =1 

-1.0000000000 1 0) 

example number 43 

given equation 

coef(4)= 1.0000000000, 

coef( 4) =-1 4215286873 

coef(2)= 7.1429889252,, 

coef(1) =-1 243694899111 

eoef(0)= 8.5480296736y 
calculated roots 

44050104852, 

44051469640, 0 

hhos1eghehe, oO 

929999999956, -1 

6) 

=
 

o
O
 

—
 

—
 

O
o
 

check 

0.00, 0 

~6 609-11 

0.00% 0 

0.00) 0 

check 

0.004 0 

1.04 -10 

3063 -10 

6.97» -10 

xi 

xi 

x1 

XL 



example number 4 

given equation check 

coef(4)= 1.0000000000, 0 

coef(3) =-2.4628394422, O 4,32 -11 

coef(2)= 2.7192690981,») O 0.00, 0 

coef(1)=-1.22042538468, O 4.77» -11 

coef(0)= 2.05400678555 -1 1442 -10 

calculated roots 

647204851918 = 1411559340115» «= -2 Xt 
647204851918) = -1-1.1559340115y -3 xt 

6474371201885  =14+1.1667236046, -3 Xi 

® 667437120188,  -1-1.1667236046, -3 xt 

example number 5 

given equation check 

coef(4+)= 1.0000000000, 0 

coef (3) ==5.9418329952, 0 0.00» 0 

coef(2)= 1.3239517255" 1 0.00, 0 

coef(1)=-1.3111166744 = =891 = 7010 -11 

coef(0)= 48690226978, 0 2.439% -10 

calculated roots 

1485458289) 0 

14844816864, 0 

@ 1.4859465301n 0484572795336, 
14859465301, — O-8.2145'72793336y 

' im
 

xi 

1 iE
 

XL 

6. Complete algol text: 

pzero=set 12 

pzero=algol 

external 

message pzero,version 22/5-70,RCSL 53-Mi; 

poolean procedure pzero( order, coef, root) ; 

value order $3 

integer order 3 

© array coef, root; 



begin 

array arr(0:4); 

integer accept,i3 

real x,push,a,b,c,d3$ 

boolean ok$ 

procedure order; 

begin 

real a,b,c,d,x, push; 

integer 13 

push:=arr(3) /; 

e:=((-3xpushx<2+arr(2)) xpush-arr(1))xpush+arr(0) 3 

b:=(pushxarr(3) -arr(2))x2xpushtarr(1) 3 

ats 3xarr(4)xx2/8t+arr(2) 3 

if b<O then 

begin 

order3( 2xa, axe-lxc, -bx<2) $ 

for 1:50,1+1 while root(i,2)<0 or root(i,1)<0 do; 

xs=root(i,1)3 

d:=b3 

bs satx3 

as=sqrt(x) $ 

xisd/a3 

if abs(b-x)>abs(btx) then b:=b-x else 

begin 

b3=b+x3 

asa, 

end 3 

b3=b/2 

end elise 

if axxe<ixe then 

begin 

bessqrt(c) 3 

az=sqrt(2xb-a) 

end. else 

begin 

bisatsen(a)xsqrt(acce-lxe) /23 

a3=0 

end 3



order2(a,b,1)3 

order?(-a,if b=0 then O else c/b,3); 

xtsabs push/8; 

for 1:=1,2,3,4 do 

if abs({root(i,1)-push)>x then 

begin 

accept: =I+accept 3 

root(accept, 1) :=rvot(i,1)-push; 

root(accept, 2) : =root(i, 2) 

end 3 

axites 

@ end order 

procedure crder3(a,b,c) 3 

value a,b,c53 

real Ayb, C$ 

begin 

real puch,p,q,Fr; 

push: =-a/33 

ps =exxX2~3xXb $ 

q:=(-2xpushx<2+b) xpush+e 3 

r3=(27Xc-ax( 18Xb-4xarxx2) )xe+bxx2x(4xb-axr2) 3 

e if abs r<=((27xabs ctabs ax(18xabs bt+4ixaxx2))xabs ¢ 

+bxxex(4xabs btaxx2))x3-11 

then 

begin 

d:=(axx2+3xahs b)x3y-113 

Lf ptd<O then goto newton3 

qz=if p-d<O then 0 else sgn(q)xsqrt(p)/3; 

root(1,1):=roct(2,1) :=pushtq; 

root(3,1):=push-2xq3 

root(1,2) ssroct(2, 2) :=root{3, 2) :=03 

goto exit 

ends; 



~ 10 = 

newton: 

ri=spush-sgn(q)x(if r<O snd p>=0 then 2xsqrt(p)/3 else(4xabs a) xx(1/3)) 3 

for p:=((2xr+a)xmo2-c) /((3xr+2xa) xr+b), 

((2xrta) xmoxr-c) /((3xr+2xa) xr+b) 

while abs(p-push)<abs(r-push) do r:=p; 

reot(1,1):=r3 

root(1,2)s=03 

pisarr; 

Qi =bD+DXr 3 

q:=if abs p<abs a/8 or abs q<abs b/8 then -c/r else q3 

p:=if abs p<abs a/8 then (q-b)/r else p; 

@ order2(p,q,2) 3 

exit: 

end order; 

procedure crder?2(b,c, first) ; 

value b,c, firsts; 

real b,c3 

integer first; 

begin 

real d3 

ds =bxx2-4.xe 3 

d:=sen(d)xsqrt(abe d); 

@ if d<O then 

begin 

root(first,1) :=root(1+first,1):=-b/2; 

root(first,2) :=4/23 

root(1+first, 2) :=-d/2 

end else 

begin 

d:=root( first, 1) :=(~b-sgn(b) xa) /2; 

root(1+first,1):=1f d=0 then 0 else ¢/d; 

root(firet, 2) :=root(1+first,2) :=0 

end 

end order23 

@ accept:=0$3 

ok:=pzero:=order>1 and order<5 and coef(order)<>0; 



if -,ok then goto finis; 

for i:=order step -1 until O do arr(+):=coef(1); 

Lows 

x:eif arr(1)=0 then arr(0) else -arr(0)/arr(1); 

for i:50,1+1 while arr(i)-arr(1+i)xx=arr(i) do 

if i=order-1j then 

begin 

for i:=0 step 1 until order-1 do arr(i):=arr(1+1); 

goto eomb 

end 3 

x:=-arr(order-1) /arr(order) ; 

r for i:30,1+1 while arr(i)xx-arr(i-1) =arr(i)xx do 

iP it=order-1 then goto comb 3 

goto normal; 

comb : 

reot(order,1):=x; 

root(order, 2) :=03; 

order: =order~1 3 

if order>1 then goto low; 

root(1,1):=-arr(0) /arr(1) 3 

root(1,2) :=03 

goto finis; 

normal: 

x:=arr(order) ; 

@ for i:sorder step -1 until O do arr(1):=arr(i)/x; 

case order-1 of 

begin 

ordera(arr(1),arr(0),1)3 

order3(arr(2),arr(1),arr(0)); 

begin 

order} ; 

select: case accept of 

begin 

begin 

arr(4) :=root(1,1)3 

x:=coef(0) ; 

@ for 1:30,1,2,3 do arr(i):=coef(4-1) /x; 

accept: =03 

-i1-



order: 

if accept>] then 

begin 

for 1:=51,1+1 while i<=accept and 1<5 do 

1f rcot(i,2)=0 then root(41,1):=1/root(i,1) 

else 

begin 

x:=root(i, 1)xx2+root(1, 2) x2; 

root(i,1) s=rcot(1+1, 1) :=root(i,1)/x3 

root(i,2) :=root(i, 2) /x3 

root( 141, 2) :=-root(i,2); 

1:=]43 

end 3 

end else 

begin 

root(2,1):=1/root(1,1) 3 

root(1,1) s=arr(4) ; 

accept :=2 

end3 

x:=coef(4) ; 

for 1:30,1,2,3 do arr(i):=coef(1)/x; 

gota select 

ends 

begin 

d:=-root(1,1)-root(2, 1); 

e:=root(1,1)xroot(2,1)-root(1,2) xroot(2, 2) ; 

b:sarr(0)/c3 

a:sif abs (arr(1)}/b-d)<abs (arr(3)-d) 

then arr(3)-da 

else (arr(1)-bxd) /c; 

order2(a,b, 3) 

end $3 

~12- 
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begin 

arszif root(1,2)=0 

then root(1,1)x(root(2, 1) xroot(3,1)-root(2, 2) xroot(3, 2)) 

else root(3,1)x(root(1,1)xx2+root(1,2)xx2) 5 

root(4,1):=arr(0)/a; 

root(4,2) :=0 

end; 33 

end 

end 

end 3 

finis: 

 ) end pzero; 

comment : 

pzero( order, coef, root) calculates real and complex roots 

of end, 4rd and ith order polynomials with real coefficients: 

p(z)= coef(order) xzxxorder+.. .+coef(1)xz+coef(0). 

pzero is false if order>4 or order<2 or coef(order)=0, 

otherwise pzero is true. 

order (call value,integer) specifies the order of the 

polynomial. 

coef (call value,array) specifies the coefficients of 

@ the polynomial, 

root (return value,array). 

If pzere is true then root specifies the roots of 

the polynomial: zi, i=1,2,...,order so that 

Re zi = root(i,1) 

Im zi = root(i,2) 3 

end;
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1. FUNCTION and PARAMETERS. 

Ruige kutta solves a system of first order ordinary differential 

equations on the form 

ax(j)/dt = f(t, x(1), x(2), ... , x(n))3 gj = 1, 2, ..., 7 

with given initial values using the parameter t as integration variable. 

The procedure heading is: 

boolean procedure runge kutta(?, x, t, eps, dts, max, fstop); 

value 

integer 

real 

procedure 

array 

Call parameter: 

eps: 

eps ; 

maxs 

t, eps, dts, fstop; 

A real variable. 

The tolerance for the relative error, The procedure 

tries to control the steplength such that the accumu- 

lated relative error does not exceed eps*(b-a) where 

bea is the length of the integration interval. eps must 

be positive and should be chosen between 107! and 10711 

depending on the accuracy wanted. It is recommended to 

choose eps > ,,+8 because with smaller eps the proce- 
= 10 

dure may often use an excessive amount of work for on- 

ly a slight improvements of the results. 

Call/Return parameters: 

Xs a real array, declared as: array x(1:n). The index 

bounds must be 1 and n = the number of equations, re- 

spectively. 

On entry, x contains the initial values of the depen- 

dent variables. 

On exit, x contains the result, i.e. the values of 

these variables at the point where the stop condition 

is fulfilled. 

If the lower index bound of x is not 1, the run is 

terminated with the alarm message <:rungekut:>. 



dts: 

Return parameter: 

runge_kutta: 

Other parameters: 

f: 

a real variable. 

On entry, t contains the initial value of the indepen- 

dent variable. 

On exit, t contains the final value at the point where 

the stop condition is fulfilled. 

an integer variable. 

On entry, max denotes the maximum number of integration 

steps to be performed by the procedure. 

On exit, max contains the number of steps actually per- 

formed counting accepted as well as rejected steps. 

a real variable. 

On entry, dts contains the initial step size. The pro- 

cedure integrates in the t-direction given by the sign 

of dts. If dts = 0, the entire length of the interval, 

fstop-t, is used as first guess on the step size. On 

exit, dts contains the estimated size of the next step. 

This is useful if integration is continued by repeated 

calls of the procedure. 

On exit, the boolean procedure is true when the integra- 

tion was succesful, i.e., the max number of steps was 

sufficient. If the max number of steps was used before 

reaching the stop criterion the procedure returns with 

the value false, the parameters t and x containing the 

current values. 

A procedure with 3 parameters, declared with the hea- 

ding: 

procedure f(x, t, dxdt); 

real t3 

array X, dxdt; 

The call 

f(x, t, k) 

where the array x contains the values of the dependent 

variables and t the value of the integration variable, 



must assign to k the function values, i.e. 

k(j) = ft, X(1), eo 5 X(n))3 J = Tyeeeyne 

Neither x nor t may be changed by the procedure. 

fstop: A real expression used as stop criterion: 

If fstop is constant, integration continues until 

t = fstop, i.e., fstop is simply the final t-value. 

If the value of fstop changes during the integration, 

the procedure terminates when fstop = 0. 

The parameter fstop is called once initially and once 

per accepted step; the initial value may be zero with- 

out terminating the integration. 

2. METHOD, 

2e1. Mathematical formulae 

Tne fifth order Runge Kutta formulae used are derived by Zonneveld 

[1]. They use 6 intermediate points in each interval and one additional 

point for the error and step control, thus requiring 7 calls per step of 

the procedure f. 

The formulae are exact up to and including the fifth order term of 

the Taylor expansion and gives an estimate of this last term, which is 

used to determine whether the step should be accepted or not; at the 

same time it is used to estimate the size of the next step as explained 

below, 

2.2. Termination. 

The procedure may be terminated in four ways: 

a) When + = fstop. This is used when integrating over a fixed interval, 

say a to b3 the procedure should be called with b as the last parame- 

ter, and with max sufficiently large. 

b) When fstop = 0, If the value of fstop is not constant, integration 

continues until fstop changes sign; then a zero-finding algorithm is 

entered to find the point where fstop = 0. The algorithm is an adap- 

tively adjusted weighting between regula falsi and bisection; it ite- 

rates until the length of the root enclosing interval is smaller than 
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107 oO" wnere mu is the smaller of the 2 last accepted regular steps. 

For details see comment 8 and 9 to the algorithm. 

c) If the number of steps permitted (max) is exceeded, The return para- 

meters of the procedure allow continued integration and this feature 

may be used to monitor the integration of tricky functions: If you 

call the procedure repeatedly with a small value of max, the calling 

program gets a chance to react on intermediary values, if necessary. 

This exit is also used to prevent the procedure from cycling: 

There is no lower limit on the adaptive step length, hence you may 

- unintentionally - call the procedure with parameters causing a very 

lengthy integration with extremely small steps. The value of the pro- 

cedure being false shows this to be the exit cause, and the parameters 

t and x always contain the actually achieved values. 

d) If the procedure is called with a second parameter X which is not an 

array with lower index bound 1, the procedure immediately terminates 

the run with the alarm message 'rungekut',. 

2.3. Error Control. 

Accumulated error estimate, 

Tne error control algorithm tries to distribute the total error in 

proportion to the total variation of the sought function x. It may be 

shown that a suitable way is to adapt the step length dt such that 

(2.1) [local error| as epsxdt*(variation(x) + eps*|x|); 

Under certain hypotheses on the function x(t) this leads to an accumula- 

ted error over the interval (a, b) which approximately satisfies 

(2.2) [SSosecrror | as eps « |b - al 

If the length of the integration interval |b-a] always were known at 

call time, this factor might be included in the step length algorithm. 
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But |b~a.| is not known when integrating with a variable fstop parameter, 

and aS a consequence the procedure always works in accordance with (2.1) 

and (2.2). 

When integrating a system of equations, say n equations, expressions 

(2.1) and (2.2) are substituted by 

local error | 

(2.3) max |saceseton(a}FepseTa]| 7 eps * at 

The formula in [1] doesn't give the local error, but estimates the 5th 

© order term in the Taylor series by 

Sth order term = (kO*21 ~ k2*162 + k3¥22k — khe125 + k5*42)/1b 

but since the formula for y is exact up to and including this 5th term 

it is reasonable to use the estimate 

local error = 5th order term * dt 

and hence (2.3) becomes 

(2.5) max |ponng oth order term | . n '(Cvariation(x)+eps*]x])¥eps” 

Aceept criterion 

For each equation the procedure calculates, in every step, 

(variation(x) + eps*abs(x)) * eps s = 

f = abs(5th order _term)/s 

and 

sft = max(f), max over all equations. 

In accordance with (2.5) the step is accepted if sft <= 1, and rejected 

otherwise. In the extrapolation algorithm for the length of the next 

step the procedure tries continuously to keep sft slightly smaller than 

1, thus safely fulfilling (2.5). 



Step estimation after reject (sft > 1). 

In sft the denominator s may be considered locally constant and 

hence we have appr. 

sft = some constant * h*x*5 , 

Therefore the new, optimal step length should be 

(2.6) bnew =h * %/ 1/sft 
put because of slightly easier calculation and in order to introduce a 

safety margin the following formula is used instead: 

hnew = 0.95 * h « Mi /ste . 

Remark: Because the procedure is especially suited to integrate tricky 

equations the formula is deliberately chosen so that the step length may 

become arbitrarily small. 

Step extrapolation after accept (sft <= 1). 

The optimal new step length is again given by (2.6), but since sft 

may become arbitrarily small - or even equal to zero - this extrapolation 

is replaced by a formula giving a reasonable limited maximum growth of 

h and behaving like (2.6) in the neighbourhood of sft = 1. Following 

Zonneveld [1] we approximate > Si/ste by 

(2.7) m =1/(1 + sft) + 0.45 

with the range 0.95 to 1.45 instead of i to infinity, and modify this by 

using a one step memory in the algorithm: the last accepted values of m 

and h are kept and used in the final extrapolation 

(2.8) hnew = h * (h/h_old*m +m - m_old) . 

The effect of equation (2.8) is to introduce an 'overrelaxation' based 

on the development of h and mu over the last two steps: If h_ old <h and 

ma old < mu, then hnew will become larger than estimated by (2.6) or 

(2.7): if e.g. sft = 0 over several steps, then h will grow approximate- 

ly as 1, 2, 5, 18, 97, .«.. If, on the other hand, sft = 1 over several 

steps, equation (2.8) cautiously makes h smaller slowly: mi is 0.95 stea- 

dily and h will diminish approximately as 1, 0.8, 0.6, O.45, we. 



2.4. Round-off errors. 

It may be shown that even when all. arithmetic operations are per- 

formed with correct rounding, as in RC4OOO, the accumulated round-off 

errors in the summation of x-values are reduced considerably by using 

quasi-double precision; see Mdller [2]. Therefore the summation of t and 

x is done using quasi-double precision. 

Since this works equally well in 36-bits and in 33-bits arithmetic, 

the procedure gives almost.identical results when working in the low and 

in the high precision mode of RC4O00: When working with large values of 

eps, eps >= 107! the results from the tests are identical in low and in 

high precision; with eps < 107!" the procedure often uses more steps in 

the low precision mode, but the resulting errors are in many cases the 

same as in the high precision mode. 

3, TIME and STORAGE REQUIREMENT 

The procedure uses 60 + 12 * N local variables (reals) and 1 local 

procedure with no parameters. The translated procedure has a length of 6 

segments, 

The execution time for the procedure itself is approximately + 7N 

msec per step where N is the number of equations. The figure includes 

call of the f-procedure but the time for executing the body of this pro- 

cedure must be added (it is called 7 times per Runge-Kutta step). 

4, EXAMPLES of USE. 

Problem 1: Solve two differential equations, say, 

y' = t + sin(y-z) 

z' = t/y 

over the interval 0.5 < t < 3.5 with initial values y(o.5) =1, 

z(0.5) = 2, and with a relative error smaller than 1 promille. The solu- 

tion is wanted for t = 4.5 only. 



Solution 1: The program structure of the solution is as follows: 

1) In the program block head is declared: 

integer Max; 
real t, dt; 
array YZ(1:2)3 
procedure Fi(x, t, dx); 
array x, ax3 real t; 

begin 

dx(1) := t + sin(x(1) - x(2)); 
dx(2) := t/x(1); 

end; 

2) The procedure is then called: 

@ t= 0.53 dts= _.-23 Max:= 600; 
YZ2(1):= 13 vZ2(2P:= 25 
if -,rungekutta(F1, YZ, t, 10 

then begin 

comment: error action; 

end3 

-3, dt, Max, 3.5) 

After this call YZ(1:2) contain the solutions y(3.5) and z(3.5), Max 

contains the number of steps used, and dt the last estimated step size. 

Problem 2: The solution to problem 1 is wanted printed out for t = 1, 

125, 2,5 e@eo 9 3.56 

Solution 2: With the same declarations as above the procedure is now 

called inside a loop: 

@ t= 0.53 dtr= 223 
YZ(1):= 13 Yz(39:= 2; 
for tsluts= 1, 1.5, 2, 2.5, 3, 3.5 do 
begin 

Max:= 1003 

if -, rungekutta(F1, YZ, t, 10 
then begin 

comment: error action 

ends 

write(..., YZ(1), YZ(2), ...)3 
end; 

-3, dt, Max, tslut) 

Problem 3: The solution to problem 1 is wanted at the point where y has 

a minimm, i.e., where y' =0, 

Solution 3: With the same declarations and initialization as in solution 

1, the procedure is called with the same parameters except for the last 

@ ones



if -, rungekutta(F1, ..., ¢ + sin(¥Z(1) - ¥Z(2))) then --- 3 

Problem 4: In order to analyze the behaviour of the procedure on the 

differential equations of problem 1, a printout is wanted for every 10 

steps of integration. 

Solution 4: With the same declarations as above the procedure is called as 

follows: 

t3= 0.53 dts= 23 
yZ(1):= 13 YZ(29:= 23 
for t:= t while t < 3.5 do 

begin 

Max:= 103 

rungekutta(F1, YZ, t, .,-3, dt, Max, 3.5)3 
weite(out, ses, t, YZ1), YZ(2), ..)3 

end 3



. 

- 10 - 

5. TEST 

The procedure was tested on Several examples among which were: 

Test 1: The three equations 

yl' =y2, y2' = y3, 

yo! = 2 * (y1*y3 + y2*x2) 
over the interval 0 < t < 1.5 with the initial values 

yl=0O,y2=1,y520. 

The solution is y1(t) = tg(t), which tends to infinity. At t = 1.5 

the values are appr. yl = 14, y2 = 184, y3 = 5000. 

6: The two equations Test 

yi! = y2 * y1¥*2 , 

y2! = - 1/y1 

over the interval O<t< 4 with initial values y1 = y2 = 1. The 

solution is 

y2(t) = cosh(t) - sinh(t) = exp(-t) 

y1(t) = 1/y2(t) = exp(t) 
As cosh(t) and sinh(t) approach each other, y2 grows rapidly and y1 

disappears, At t = 4 their values are yl = 55 and y2 = 0.02, 

3: One equation Test 

Test 

y! = texp * (1-t)4¥q 
over the interval 0 < t< 1, where p and q are given integers, and 

with the initial value y = 0. The solution is the betafunction with 

y(1) = B(pti, qt1). The test was run with p = q = 4 and with p = 2h, 

q = 49. The solution y(t) has extremely small variation, in the 

-21, but the first case appr. -3 and in the second case appr. 
10 10 

higher derivatives vary much more, 

5: The Volterra equations 

yi! = axyl - b¥*y1*y2 

ye! = cxyl*y2 - d*y2 

over some interval 0 <t<T, where a, b, c, and d are given con- 

stants, and with given initial values. The solution is periodically 

oscillating in both variables representing the growth of two con- 

flicting populations.
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The tests were mainly concentrated on the following points of in- 

terest: 

Step-correction algorithm: Several algorithms were tried, including the 

one proposed by Zonneveld [ref. 1] and the one used in the Gier Algol 

procedure [ref. 3]. Finally the present one was selected as the best in 

the sense of minimizing the number of steps required to obtain a certain 

accuracy. 

Eps and the resulting error: As developped in chapter 2 above it is ex- 

pected that the parameter eps and the resulting error are related appr. 

as follows 

Error = C * eps * vartation(y) * (b-a)3 

In all the tests except Test 3 this linear relationship was confirmed, 

and with a constant C between 0.1 and 0.02. Test 6 was the only case with 

C>1, namely C 100. Test 3 with p = 24 and q = 49 showed a more irre- 

gular relationship between Error and eps but still the accumulated error 

fell below the expected value with C = 1. 

Precision of the arithmetic: Several tests were carried out both with the 

normal 36-bits precision floating-point arithmetic and with 33 bits pre- 

cision, The results were almost identical but for small values of eps, 

107° and 1072? the procedure used more steps in the 33 bits mode. This 

may be explained as follows: The results are almost the same because the 

quasi-double precision works equally well in 36 bits and in 33 bits mode 

and, in fact, makes both of them look like a (40-50)-bits mode. But in 

the error control the calculation of the local error estimate is distur- 

bed considerably by the rounding to 53 bits mantissa. 

Comparison with other methods: The criterion used for comparison is the 

number of function evaluations (= calls of the f-procedure) plotted 

against the accumulated error (relative or absolute). 

For nice, smooth solutions it uses almost twice as many function 

evaluations as a good version of the Hamming predictor-~corrector proce- 

dure. In more 'difficult' cases (e.g., large higher derivatives) they 

perform equally well, by and large, but the predictor-corrector is more 

dependant on a judicious choice of initial step length; the Runge-Kutta 

procedure gives almost identical results for a wide range of initial step 

lengths.
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In [4] a number of methods were compared and one of the test pro- 

plems were Test 6. For large values of the error (> 5407) the present 

procedure performs very much like the extrapolated Runge-Kutta Arromx of 

[4]. For smaller errors it works considerably mich better than any of the 

cited procedures but this may be due to a better floating-point arithme- 

tic: 36-bits and quasi-double mode compared with the 28-bits precision of 

[4]. 

6, References. 

[1] J.A. Zonneveld: Automatic Numerical Integration. 

Mathematical Centre Tracts 8, Amsterdam 1964. 

[2] 0. M¢ller: Quasi Double Precision in Floating Addition. 

BIT 5 (1965), 37-50. 

[3] A. Jessen: Similtaneous First Order Differential Equations: 

runge kutta general procedure. 

Gier System Library No. 522, A/S Regnecentralen 1969. 

[4] Phyllis Fox: A Comparative Study of Computer Programs for integra- 

ting Differential Equations. 

Comm. ACM 15 (Nov. 1972), 941-948.



7. THE ALGORITHM 

runge kutta=set 6 
runge kutta=algol index.no 
external 

boolean procedure runge kutta(fx,x,t,eps,dts,max, fstop) ; 
value eps; ~ 
integer max; 

real t,dts,fstop,eps; 
procedure f£x3 
array X$3 

begin integer n3; 
if system(3,n,x)<>i then system(9,0,<:<10>rungekut:>) ; 

begin integer i,nt; 

poolean tstop,first; 
real cO0,c1,e0,e2,e3,e4,e5,dt0,dt,ho, 

h,m0,mu,b,sft,t1,qt,d,f,q,w,s3 
array a(0:27),dv(0:6) ,qx,x1,dx,11,ul(1:n),k(0:6,1:n); 

procedure evaluate; 
begin integer ic,it,1,to; 

real v3 

boolean last; 

it:=03; 

vsti; 
for to:=0 step 1 until 6 do 
begin fx(x,v,dx) ; 

last: =to>5 3 

Lts=sit+to3 
for t:=n step -1 until 1 do 
begin k(to,1):=dx(1)*dt; 

vi=03 

for ic:=to step -1 until 0 do 

viek(ic,i)*a(ittic)+v; 
if last then dx(i):=v:=v+qx(i); 
x(1) s=x1(1)4+v 

end3$ 

vi=dv(to) xdt+qt+t1 
end 3 

ti=Vv 

end evaluate; 
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comment 1: initialize; 

for i:=0 step 1 until 27 do 
a(i):=case i+1 of (2/9, 

1/12 1/4 , 
1/8 ,0 » 3/8 , 
53/125 4-27/25 126/125 ,56/125 , 
19/2h,-9/ 523/1h = 2/3 ,25/168 , 

-9/4 27/4 »-9/7 97 925/14 9 ’ 
35/336 0 »81/168 0 125/336 ,0 11/24) 

for i:=0 step 1 until 6 do 
dv(i):=case i+1 of (2/9,1/3,1/2,4/5415151)3 

e0:=3/23 e2:=-81/73 e3:=163 e4:=-125/143 e523; 
for is=n step -1 until 1 do 
begin ax(i):=03 

11(4) :=u1(4) s=x1(1) s=x(1) 
end 3 

nt:=max; 

cl:=cO:=fstop3 
t13=t35 

atO:sdt:=if dts=0 then (c0-t1) else dts; 
tstop:=true; 
runge kutta:=true3 
mu:=1.05$3 
qt3=05 

for nt:=nt-1 while nt>0 do 
begin comment 2: main loop; 

evaluate 3 

comment 3: error estimate; 

sfti=, 4-103 
for i:=n step -1 until 1 do 
begin ss=x(i)3 

if out then wate} iss else 
if s<il(i) then 11(1):=s3 
s:=(ul(i)-11(1i)+epsxabs s+,_-500) eps; 
f:= (abs(k(0,1) *e0+k(2, 1) *d24k(3, 1) xe3+k(4, 1) xel+k(5, 1) xe5)) /s 
if f>osft then sft:=f3 

end $3 

if sft<x=1 then 

begin comment 4: accept; 

e1:=fstop$ 

if tstop then 
begin tstop:=c0=cl; 

if tstop and (ci=t or dt*dt0<=0) then goto slut 
end 

else if cO*c1<O0 then goto slut; 

cO:= cl$ 

-14- 

3



comment 5: new dts; 

m0: =u $ 

mi:=1/(1+sft)+0.453 
bssdt/dt0o; 
83=dt0O; 
ato: =dt; 
at: =(bxmatm-mu0) «dt; 

comment 63 

qt:=dt0+qt-(t-t1) ; 
tis=st; 

if tstop and (cl-t-qt) /dt<1 then dt:=c1-t-qt; 
for i:=n step -1 until 1 do 

begin 

ax(i) :=dx(i)-(x(4)-x1(4)); 
x1(4) s=x(1) 

@ end 

end accept 

else 

begin comment 7: reject; 

for is=n step-1 until 1 do x(i):=«x1(1); 
ar=sqrt(sart(sft)) ; 
first: =dt0=dt; 
at: =dt*0.95/q3 
mu: =m*2xq/(q+1) 3 
if first then dt0:=dt; 

end reject 

end main loop; 
runge_kutta:=false; 

sluts 

max: =max-nt 5 

dts:=dt0; 
@ if cO0*c1<O then 

begin comment 8: terminating step; 

t=q:=wi=b:=0.993 
f:=h0:=0; 
h:=dt:=dt0; 

mu:sabs(if s/h<1 then s else h); 
for s:=h-hO while abs s>(abs att) +, 978 do 

begin comment 9: zero determination; 

f:=b; 

bi sc0+e1 5 

for is=m step-1 until 1 do x(i):=xi(1); 
if f*b<O then begin w:=q3 q:=d end; 
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dssb/(cO-c1) § 
:=(dxw-1)*s/2th; 

cyanate; 
f:=fstop; 
if f=0 then h:=dt; 
if cO*f<0 then 
begin cl:=f3 h:=dt end else 
begin cO:=f3 hO:=dt ends; 
d:=w:=((if b*xf>O then 1-w else -0.8)*0. Qxabs a+1)*w 

end zero determination; 
if cOxf>0 then 
begin dt:=h; 

for is=n step-1 until 1 do x(i):=xi(1i); 
evaluate 5 

end 

end terminating step 

end inner block 
end rungekutta; 
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8, COMMENTS 
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The main variables of the procedure are: 

A(0:27), DV(0:6), e0, e2, e3, e4, e5: Coefficients from the Runge-Kutta 

x1(12n): 

dx(1:n): 

gx(1sn): 

11, ul(1:n): 

dt: 

dato: 

tis 

qts 

sft: 

mu, muds 

el, cO: 

tstop: 

formulae 5 

Old values of x3 

Actual increments of x, such that x(1) = x1(i) + dx(i); 

Accumulated rounding errors of x3 

Lower and upper limits of x since entry, hence 

ul(i) - 11(1) is the variation of x(1i); 

New step length estimate; 

Last accepted step size; 

Last value of t, the integration variable; i.e., ti is 

the endpoint of the last accepted step and t is the end- 

point of the step being tested; 

Accumilated rounding error of t3 

Step accept criterion; 

New and old value of step size relaxation factor; 

New and old value of the stop criterion fstop; 

true if fstop = constant, false otherwise. 

comment 1: The array A is initialized with the coefficients of the Runge- 

Kutta formulae for k(1), k(2), ... of [1]. (Note that coefficients 

for k(6) precede those for k(5).) DV is initialized with the fac- 

tors on h corresponding to the k-s. e0 to e5 contain the coeffi- 

cients of the error estimate formula. The accumulators qx(i) and 

qt for the quasi double precision errors are reset. The lower and 

upper limits of variation 11(1) and ul(i) and the 'old' value of x 

x1(i) are all reset to the initial values x(i). The present and the 

old step length estimate, dt and dt0O, are set equal the entry value 

of the parameter dts; if this is zero the total length of the inte- 

gration interval is used as first guess. 

\ 

comment 2, Main loop: Here starts the main loop with one eyele per step. 

The loop consists of 

- function evaluation, 

- local error estimate, 

- actions when a step is accepted or actions when a step is rejected.
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comment 3, Error estimate: For each component x(i) the lower and upper 

limit is updated, the Runge-Kutta error estimate f is calculated in 

accordance with (2.5). The maximum over all components x(i) is de- 

noted sft. 

comment 4, Accept: The new step dt is accepted, x(i) contain the corre- 

sponding new x-values. The first action is to check the stop crite- 

rion: If fstop = constant, tstop is true and integration continues 

until t = fstop; the double if-statement ensures the correct setting 

of tstop in the first steps; the condition dt*dto < 0 ensures exit if 

the procedure is called with a dts much larger than the integration 

interval or if the step length extrapolation yields a crazy result. 

If fstop is not constant, exit is made when its sign changes 

(cO*e1 <0). 

comment 5, New dt: The size of the step just accepted is stored as dto, 

and a guess for the next step is calculated according to (2.8). 

While the very last step dt may be very small in order to ‘hit! 

exactly t = fstop, dtO always contains the last, normally calculated 

and accepted step length. Therefore dtO is used to set the return 

value of dts after the last step. 

comment 6: The following statements perform the quasi double precision 

arithmetic on t, using qt as error accumilator, and on x(i) using 

qx(i) as error accumlators. If the estimated new step length dt 

overshoots the goal t = cil, dt is regulated accordingly. Finally t1 

and x1(i) are updated. 

comment 7: The step is rejected, x(i) are reset to the old values x1(i) 

and a smaller step length dt is calculated according to section 

2.5. Furthermore mi, which in the next accepted step will be used 

as 'old value' mu0, is increased a little; this will make the dt- 

extrapolation after the first accepted step a little more cautious. 

In case the very first step is mich too large and hence rejected, 

dtO has to be re-initializeds this is done in the last statement of 

the loop, where dtO = dt is used to indicate the first step.
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comment 8, Terminating step: This section is entered only for variable 

fstop, in order to interpolate over the last accepted step to find 

the t-value and corresponding x(i)-s for which fstop = 0. The va- 

riables have the following contents (snapshot values) just before 

entering the interpolation itself (the statement: for s:= ...) 

t1, x1(1i): Old accepted values where fstop still had the origi- 

nal sign, say fstop = c0 > 0. 

t, x(i): Newest calculated point, where fstop = cl <0. 

h= dtO = distance from t1 to t. 

d, d, Wy, bs Contain initial values for different weights and 

coefficients used in the interpolation. 

 ] comment 9, Zero determination: t1 is used as the fixed base point. The 

end points of the 'newest' root-containing interval are ti + hO and 

+1 + h where fstop has the values cO and cl; s =h - hO is the 

length of this interval. The next point tested for fstop = 0 is 

t1 + dt, where dt is a weighted mixture of a bisection dt =h - 8/2 

and a slightly modified regula falsi dt =h + (cO + c1)/(cO - 81) 

* 8/2. 
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input: 

The procedures decompose and solve, RCSL No. 53-MT13 

must be present in RC4O00 before the solineq tape is input 
by the command i tre. 

Program call: 

The program is called by the command solineq datasource , 

e.g. solineg tre. Output will appear on current out. Data is 

tested by the program. 

Data: 

n : number of equations 

m number of right-hand sides 

coefficients of the equations a(1sn, 1:n) 
right-hand sides b(1 sn, 12m) 

output trim : - (minus) = standard trim is used, 
which means output of input data 

and solutions with max 0 lines 

per page, max 80 characters per 
line and 7 digits per number 

or 
4h numbers: inputout 

lines per page 

characters per line 

digits printed in output. 

inputout=0: input data is not printed 

inputout=1: input data is printed 

20<=lines per page<=100 
ho<=characters per line<=130 
3<=digits in output<=11. 

Standard trim is 1,70,80,7 

Examples: 

data set: 

2 1 

Tel & 
1.8 2.3 

8.1 17 

program call: 

o tpf 

soling trf 

punch output: 

Data: 

exe matrix 

@& 1,1% 72100000, 0 a 1,22 4.000000, 0 

a 2,1= 1.800000y 0 a 2,2= 2.300000» 0 

right-hand sides: 

b1i= 8.100000n 0 p2= 1.700000 1



SOLUTIONS 

x1==5.407448,, 0 X2= 1.1625225 1 

data set: 

n= 
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(oe
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program call: 

soldata=set 5 

soldata=edit trf 
f 
o ip 

solineq scldata 

printer output: 

SOLUTIONS 

set no 1 

x1= 2.95n-1 x2= 261 lx» 0 xX3=-1 Sy 0 

X5= 1.46y=2 XO2-6,. 399-2 

set no 2 

X1= 2.17 n-1 X25 2.51 0 = x3B=@7 94-1 
X5==3 089-1 x6=-1 87-1 

set no 3 

X1= 1239-1 x2= 2,24, 0 x3=-4.,80y-2 

x55=6 509-1 x6>=3.10y-1 
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xyes. 1 . pee | 

x4=-1 05-2 

xh= 1 «13-1
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Program listing: 

(clear solineq 
solineq=set 36 
solineq=algol 
end) 

begin 

comment program for solving a system of linear equations by 

means of two standard procedures : decompose + solve.3 

integer n,i,j,m,M,k,k1,ke,k3,digits,spi, 
linesperpage, charperline, linespergroup, nosperline, linesleft, blines 5 
real r,rn,rm,rr, lay, lay1, lay2; 
boolean first, consolinput, inputout, error,b1,biga,bighb, sp; 
array arr(1:2)3 

procedure changepage(left, wanted); integer left, wanted; 
begin 

if left<wanted then 

begin 

linesleft:=Linesperpage 3 

write(out,<:<12:>) ; 
end 

end changepage $ 

procedure alarm(r,s); real r3 string s; 
begin integer i3 

is=r3 

write(out,<:10>:>) 3 
if i=r then write(out,i) else write(out,r); 
write(out,s,<:<10>:>) 3 
error: =true 

end alarm; 

procedure notused3; 

begin boolean first; 
integer i, j3 

first: =true3 

repeatchar(in) ; 
rep: 

i:sreadchar(in, j); 
if -,consolinput and j<>25 or consolinput and j<>10 then 
begin 

if first then 

begin 

if j=1C or j=32 then goto rep 

else write(out,<:<10>Following was not input: :>) 
ends 

first:=false$3 
write(out, false add. jy 1) sgoto re 

end 
end notused ;
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procedure testnandms; 

begin 

n:=rn; 
if rm<on or n<1 or n>200 then 

alarm(m,<: is not an acceptable value of n:>); 
Ms=rm35 

if M<1 or M>100 or Mcrm then 

alarm(rm,<: is not an acceptable value of m:>); 
if error then goto STOP; 
system(2,i,arr); 
j2=0xn+tlpnxMebxnxnt200 § 
if joi then 
begin 

write(out,<:<10>A dataset of n= :>,<<d>,n) 5; 
ward seh out < and m= :>,<<d>,M)3 
write(out,<: 

is too big for this process and will result in a stack message. 

In this case you should increase your process by approx.<l0> >, 

<<d>, 100xround((j-i)/100), 
<: bytes or preferable more<10>:>) 3 

end 3 
end testnandms; 

procedure testmatrix(c,n,m,k, name, big) 5 
array c3 integer n,m,k3 string name; boolean big; 

begin integer i,j; boolean first; 

first: =true; 
big:=false; 
for i1:=1 step 1 until n do 

for j:=1 step 1 until m do 
if c(i, §j)>)616 and ixj<=k then 
begin 

if first then write(out,<:<l0>Dataerror in matrix:>, 
name,<:<10>Illegal number in element::>) 5 

write(out,<<dd>,<:<10>:>,1,<:, >, J); 
error :=true ; 

first:=Palse; 

end 

else if c(i, j)>9.99x9 then big:=true; 
if -,first then 
begin 

write(out,<:<10><10>:>) 3 setposition(out,0,0) ; 
ends 

end testmatrix; 

begin integer array ia(1:20)3 
getzone(in, ia); 
ri=r shift 24 add ia(2) shift Ob add ia(3); 
consolinput:=r=real<:conso:> add 108 or 

rsreal<:termi:> add 1103 

end 

error:=false; 

i:=read(in,rn,rm); 
if i<e2 then 
begin 

write(out,<:<10>empty reader<10>:>) ;
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if i=1 then 
begin 

© ni=rn3 
write(out,<:n=:>) 3 
if n=1m then write(out,n) else write(out, rn); 
write(out,<:<10>no input to m:>) ; 

end 3 

goto STOP 

ends 

testnandms 

begin array b(1:n),a(1:n,1:n),bm(1:n,1:M); 
integer array p(1:n)3 

inputout:=true $ 

linesperpage:=/03 

charperline:=803 
digits :=7 5 

sp:=false add 323 

@ k:=read(in,a); 
k1:=read(in, bm) ; 
rs 1005 

k2:=read(in,r) 3 
if k2=1 and r<p616 then k3:=read(in,m,rm,rr) else k3:=03 
notused; 

if k<onxn then 

begin 

write(out,<:<10>:>,<dd>,k,<: elements input to matrix, 
should be nXn=:>,nxn) 3 

error: =true 3 

ends; 

testmatrix(a,n,n,k,<: a:>,biga) ; 

if kl<ommM then 
begin 

write(out,<:<10>:>,<<dd>,k1, 
@ <: elements input to right-hand sides, 

should be nxXm=:>,nXM) ; 
error: =true $ 

end 

testmatrix(bm,n,M,k1,<: b:>,bigb) 3 

if k3=1 or k3=2 then write(out,<: 
output trim should be O or 4 and not:>,<<-d>,k3+1,<: numbers:>) 3 

if k2=1 and r<y616 then 
begin 

if roo and r<?1 then 

begin 

i:=r3 
write(out,<:<10>inputout must be either O or 1 and not:>)3 
if i=r then write(out,i) else write(out,r); 

end 
else inputout:=r=1; 

@ end3
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if k3>0 then 
begin 

is=rn; 
if i<om or i<20 or 1>100 then 
begin 

write(out, <:<10>:>) 3 

if i=rn then write(out,i) else write(out,rn); 
write(out,<: is not acceptable as lines per page:>) 3 

end 

else linesperpage: =1 § 

ends 

if k3>1 then 
begin 

Ls=rms 

if i<orm or i<40 or 1>130 then 
begin 

write(out,<:<10>:>) 3 
if i=rm then write(out,i) else write(out, rm) ; 
write(out, <: is not acceptable as characters per line: >)3 

end 
else charperline:=13 

ends 

if k3=35 then 
begin 

i:=rr3; 

if i<orr or 1<3 or i>ll then 
begin 

write(out,<:<10>:>) 3 
if i=rr then write(out,i) else write(out,rr); 
write(out,<: is not acceptable as digits in output:>); 

end 

else digits:=1; 

end3 

if error then goto STOP; 

ki:=if n>9O then 1 else 03 
i:sdigitstki+(if biga then 12 else 11)3 
charperline:s=charperline-i $ 
nosperline: =charperline//(i+1)+1; 
if nosperline>n then nosperline:=n 3 

sp1:=(charperline+i-nosperlinexi) //(nosperline-1)-13 
if spi<O then sp1:=0 else 

if spi> then sp1:=; 
linespergroup: =(n//nosperline)+ 

(if n mod nosperline =0 then 1 else 2)3 
plines:=3+Mx(linespergroupt(if Moi then 4 else 0)); 
linesleft:=Linesperpage $3 

layi:=sreal( case digits-2 of( 
<Knd,ddy-d>,<<-d. dddy-d>, <<-d.ddddy-d>, 
<K<-d. dddddy-d>,<<-d.,ddddddy-d>,<<-d. dddddddy-d>, 
<K-d, ddddddddy-d>, <<-d, dddddddddy-d>, <<-d. ddddddddddy-d>) ) ; 

lay2:=real(case digits-2 of( 
<K-d.ddy-dd>,<<-d.dddy-dd>,<<-d.ddddy-dd>, 
<ked., dddddy-dd>, <<-d. ddddddy-dd>, <<-d, dddddddy-dd>, 
<<-d, dddddddd,)-dd>, <<-d. dddddddddy-dd>, 
<<-d. ddddddddddy-dd>) );
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if inputout then 
begin 

begin 

write(out,<:<12><10> 
Data:<10><10>3>,<<d>,n,<:X:>,n,<: matrix:>) 3 

linesleft:=linesleft-43 
lay:=if biga then laye else lay’; 

for i:=1 step 1 until n do 

begin 

write(out,<:<10>:>) 3 
for j:=1 step 1 until n do 
write(out,if j mod nosperline=! then <:<10>:> else <::>, 

sp,if j mod nosperline=1 then 0 else spiti,<ias>, 

<<dd>,i,<:,:>,<<d>,j,if n-9 and j<i0 then <: =:> else <:=i>, 

string lay,a(i,§))3 
linesleft:=Linesleft-linespergroup3 

changepage(linesleft, linespergroup) ; 
end} 

if blines<=Linesperpage then changepage(linesleft, blines) 3 

changepage( linesleft, linespergroup) 3 
if M>1 then linespergroup: =Linespergroupt4 3 

write(out,<:<10><10><10>right-hand sides: :>) 3 
linesleft: =linesleft—43 
lay:=if bigb then lay2 else layi; 

for j:=1 step 1 until M do 
pegin 

if M>1 then write(out,<:<10><10><10>set not>,Jj,<:<10>:>) 3 
write(out,<:<10>:>) 3 
for i:=1 step 1 until n do 

write(out,if i mod nosperline=1 then <:<10>:> else <::>, 
sp,if 1 mod nosperline=1 then 3 else spl-i1+(if 
then 3 else if biga and -,bigb then 4 else 5), 

-,biga and bigb 

<:bs>,<<d>,i,if n>9 and i<iO then <: =:> else <:=i>, 

string lay,bm(i,j)); 
linesleft:=lLinesleft-linespergroup 
changepage( linesleft, linespergrour) 3 

ends 

write(out,<:<10>:>) 3 
linesleft:=Linesleft-1 3 
if M>1 then linespergroup:=linespergroup-443 

ends 

ends 

b1s=true; 

if -,decompose(a,p,1) then 
pegin 

write(out,<:<10>The given matrix is singular<10>:>) 3 
goto STOP 

ends 
if M>1 then linespergroup:=linespergroupt43 
for m:=1 step 1 until M do 

begin 

for i:=1 step 1 until n do b(i):=bm(i,m); 
solve(a,p,1,b) 3 
bigb:=falses; for i:=1 step 1 until n do if b(i)>9.9;9 
lay:=if bigb then lay2 else lay; 

then bigb:=true;
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if b1 then 

begin 

if -,inputout then write(out,<:<12>:>) ; 
if blines<=linesperpage then changepage(linesleft, blines) 5 

changepage(linesleft, linespergroup) ; 
write(out,<:<10><10><10>:>,false add 32, 

nosperlinex(12+spi+digits)//2-8,<:S OLUTION Ss); 
linesleft:=Linesleft-3 3 

ends 

if Mc1 then write(out,<:<10><10><10>set no:>,m, 
<:<10>:>) else write(out,<:<10>:>) 5 

for i:=1 step 1 until n do 

write(out,if i mod nosperline=1 then <:<10>:> else <tt>, 
sp,if i mod nosperline=1 then 3 else spi-1+(if -,biga 
and bigb then 3 else if biga and -,bigb then 4 else 5); 

<:xi>,<<@, i, 
if n>9 and i<iO then <: =:> else <:=:>, 

string lay,b(i))3 
linesleft:=Linesleft-Linespergroup 3 

changepage(linesleft, linespergroup) 5 
bi:=falses$ 

end m3 

write(out,<:<10><10><12>:>) 3 
end of blocks 

STOP: 

end 
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boolean procedure solvesym(n, m, A, X)3 

1. Function and parameters. 

The procedure solves the generalized linear algebraic equation 

MXX=B 

where M is a symmetrical n Xn matrix of coefficients, Bis a givenn Xm 

matrix and X is the unknown n X m matrix. 

In this procedure X and B are stored in the same array X, B on entry 

and X at return. 

The lower half of M(1:n, 1:n) is stored in an array A such that 

Ms, r) = Mr, s) = A(rx(r-1)//2 + 8). s <= 7. 

If Mis singular then the procedure will come out with the value 

false, For each degree of degeneration one of the diagonal elements in 

M, say A(sx(s+1)//2), is zero, and the corresponding elements of X, 

X(s, k), k= 1, 2, oe, m, must be zero or very small if the given equa- 

tion MX X = B has a solution, 

Procedure heading: 

boolean procedure solvesym(n, m, A, X)3 

value n, m$ 

integer n, m3 

array A, X; 

Call parameters: 

integer n The number of equations. 

integer m the number of right sides, 

real array A(1:mx(nt+1)//2) the lower half of the coefficient matrix 

Mr, s) = M(s, r) = A(rx(r-1)//2 + s), 5 <=r. 

Call and Return parameter: 

real array X(1:n, 1:m) is the right sides at call and the solutions at 

return. 

Return parameter: 

boolean solvesym. false if A is singular, true if A is nonsingular, 



2. Mathematical method. 

The method is the usual Gauss reduction with diagonal pivoting. The 

pivoting criterion is the following: 

In each step a new pivot index r is selected among the not used in- 

dices so that 

abs M(r, r) / max abs M(r, s) 

attains its maximum; and the reduction is carried out in the usual way 

by making the r’th colum = 0 under the diagonal. However, if all pos- 

sible diagonal elements are zero this can not be done. In that case an 

index r is found so that 

max abs Mr, s) 

str 

attains its minimum. 

If this minimum is zero then the whole row is zero and the matrix is 

singular. In this case the procedure value is set to false and the corre- 

sponding r is set to ’has been pivot element’, and the search for another 

vr is continued. However, if the minimum is > 0 then row k is replaced by 

(row k) + (row r) x M(k, r) for all k which have not been pivot index. 

This will make at least one diagonal element +0 and the pivot index may 

be selected as above. The process can now go on until there are zeros un- 

der the whole diagonal of M and the solution obtained by simple backward 

elimination. 

If M is singular some of the diagonal elements Mr, r) are zero. Du- 

ring the backward reduction the division by such a diagonal element is 

skipped. Moreover, the corresponding elements in the r’th row of X(r, k) 

= B(r, k) will have to be zero (or very small compared to the original 

values) in case the given equation has a solution. 

3. Accuracy, time and storage Requirement. 

ACCUrACY 

In practice the relative error measured as ||AxX ~ B||/||X|| has 

been found to be about »-10. This is not an errorbound, the errorbound 

has been discussed in detail in literature see e.g. Forsythe og Moler. 

(ref). 



For m= 1 the time is .2x(nt1)xx3 ms 

Storage requirement, 

The procedure is 4 seements long on backing-store, It uses 70 + 3.5 X 

| n words in stack. 

Typographical length: 103 lines, 4 segments. 

L., Test and discussion 

The procedure is intended for use in such cases where the total ma- 

trix M is too big for the available store. A program using decompose and 

solve will be faster than a program using solve_syn, even if the program 

must generate the matrix M from the half matrix A. 

@ The procedure has been tested by some equations with coefficients 

chosen at random and by a representative set of singular equations. 

The following program will read n, m, A, B, solve the linear alge- 

braic equation A X X = B and write out the X: 

Input, solution and output of a symmetrical set of linear algebraic equa- 

tions 

begin integer n, m, i, j, k, 13 boolean s3; 

read(in, n, m); 

begin array A(1:(nx(nt+1)) shift (-1)), B(isn, 1:m); 

read (in, A, B); 

S:= -, solvesym(n, m, A, B)3 

@ if s then write(out, <:<10> A is singular:>); 

write(out, <:<10>:>) 3 

for i:= 1 step 5 until m do 

begin 

jr= if ith <m then i+ 4 else m; | 

for k:= i step 1 until j do write(out, < dadd>, k)3 

for k:= 1 step 1 until n do 

begin 

write(out, <:<10>:>, <<ddd>, k, if s then (if A((kx(k+1)) shift (-1))=0 

then <:X_:> else <:__2>) else <:__:>)5 

for 1 := i step 1 until j do 

write(out, <<_-d.ddddddy-dd>, B(k, 1)) 

end k3 

@ write(out, <:<12><10>:>) 

end i 

end A 

end program: 



5. Reference 

George Forsythe and Cleve B. Moler: Computer Solution of Linear 

Algebraic Systems. Prentice-Hall, Inc. (1967). 

6. Procedure text. 

solvesym = set 4 

solvesym = algol 

external 

boolean procedure solve _sym(n,m, A, X) ; 

message solve sym, version 18 11 69, RCSL 53-M63 

value n,m; integer n,m; array A,X; 

begin integer i,j,k,r,s,t5 

real ai,ak,ar,mi; 

array M(1:n)3 integer array R(1:n); boolean array B(1:n)3 

j:=03 solve _sym:=true; 

for 1:= 1 step 1 until n do 

begin 

mis=03 

for k:=i-1 step -1 until 1 do 

begin 

if abs A(kt+j)> mi then mi:=abs A(k+ J); 

if abs A(k+j)>M(k) then M(k):=abs A(k+3) 

end k; 

M(i):=smizs B(i)s=true; j:=jt+i; 

end i; 

S3=13 

for t:= 1 step 1 until n do 

begin 

miz:=ak:=-13 

for is= 1 step 1 until n do if B(i) then 



begin 

aitsabs A((ix(i+1))shift(-1)); 

r if M(i)>0 then 

begin 

if mixM(i)<ai then 

begin 

if ai<o then 

begin 

miz=ai/M(i); s:=t 

end else if M(i)xak<1 then 

begin 

ak:=1/M(i); s:=t 

end 

end 

end (i) > 0 else 

@ begin 

R(t):=13 B(i):=false3 t:=t+13 

if ai=0 then solve sym := false 

end M(i)<o 

end i; 

if B(s) then 

begin 

r:=(sx(s-1))shift(-1)3 ar:= A(rts) ; 

if ar=O0 then begin ar:=-13 t:=t-1 end else R(t) :=83 

B(s):= false; 

for i:= 1 step 1 until n do if B(i) then 

begin 

@ j:=(ix(i-1)) shirt(-1) 3 

ai:sA(if i<s then r+i else jts)/arj; mi:=-1; 

for k:= i step -1 until 1 do if B(k)- then 

begin 

ak:= A( j+k) :=A(j+k) 

-aixA(if k<s then rt+k else (kx(k-1))shift(-1)+s) ; 

if abs ak>mi then 

begin 

if i=k then goto L13 

mis=abs ak 

ends 

if abs ak>M(k) then M(k):=abs ak; 

Li: end k3 

@ M(i):=mt; 
for k:=1 step 1 until m do X(i,k):=X(1,k)-aixX(s,k) 

end 1; 



if A(r+s)=0 then 

begin 

mi:=03 

for k:=1 step 1 until n do if B(k) then 

begin 

ssabs A(if k<s then rtk else (kx(k-1))shift(-1)+s) ; 

if ak>mi then mi:=ak3 

if ak>M(k) then M(k) :=ak; 

end k3 

B(s):= true 

end A(r+s)=0 

end B(s)3 

end t3 

for t:=n step -1 until 1 do 

begin 

s:=R(t); r:=(sx(s-1))shift(-1) 3; 

for i := t+1 step 1 until n do 

begin 

jr=R(1)3 at:=A(if j<s then r+j else (jx(j-1))shift(-1)+s); 

for k:=1 step 1 until m do X(s,k):= X(s,k)-aixX(j,k) 

end 13 

aiz= A(rts) 3 

if ai 0 then for k:= 1 step 1 until m do X(s,k):=X(s,k)/ai 

end t 

end solve sym$ 

comment 

Call parameters: 

integer n the number of equations. 

integer m the number of right sides. 

real array A(1:mx(n+1)//2) the lower half of the coefficient matrix. 

M(r, s) = M(s, r) = A(rx(r-1)//2 + 8) 

Call and Return parameter: 

real array X(1:n, 1:m) is the right sides at call and the solutions at 

return. 

Return parameter: 

boolean solvesym. false is A is singular, true if A is nonsingular; 
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© 1. Function and Parameters, 

1: Function: 

The boolean procedure evaluates one zero of the function F(x) within 

the interval a <= x <= b. The method is based on regula felsi and 
bisection combined with an adaptive parameter giving the weights of 
regula falsi and bisection, 

Call parameters: 

; a, bi 

eps: 

Return parameters: 

real value parameters specifying the end points 

of the interval within which the zero is caleu- 

lated, This interval is a<=x<=bifac< db, 

otherwise a <= x <= b, 

A real name parameter giving the accuracy with 

which the zero is determined, 

Relative accuracy may be specified by substitu- 

ting an expression like delta x x for eps. 

If eps specifies an accuracy that is not obtain- 

able calculations are stopped with the obtainable 

accuracy. 

a real name parameter being the independent va- 

riable in the expression giving F,. 

On exit the zero determined by zerol. 

Need not be initialized, 
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@ zeroil: The boolean procedure name is set to false if 

. F(a) > 0 and F(b) > 0 or F(a) <0 ana 
F(b) <0, otherwise zerol is true. 

Other parameters: 

F; @ real name parameter specifying the function for 

which the zero is to be evaluated, 

F mus +t be supplied as an expression depending 

on Xe 

% 2. Method 

The procedure calculates for each iteration a new value as a weighted 
mean between a regula falsi and a bisection value: 

a<x<b being the intervel in which the zero is to be evaluated, with 
fa = F(a) > 0 and fb = F(b) <0, the following algorithm is used: 

xr #a- fax (b- a) / (fb - fa) 
(i.e. x value obtained by regula falsi) 

xb=(b+a) /2 

( (1.e. x value obtained by bisection). 

The new value of x is now calculated as 

x = xr + (xb - xr) X vb 

where the weight factor, vb satisfies 0 < vb < 1. 

And the value of vb is calculated as 

vo := if a < xr and xr < b then vb x vb / 2 else 1; 
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i.e. if xr, the x value calculated by regula falsi method, is inside the 

new interval then regula falsi might be better than the x just calculated 

and more weight are given to regula falsi in the next iteration (i.e. 
smaller vb), otherwise the next iteration is pure bisection (vb = 1). 

f = sg x F(x) is evaluated for the new x value and a new interval (alb) 
is determined as: 

if f>0 then begin b := x3 fb := f end 

else begin b := x3 fa := f end; 

The factor sg is f = sg x F(x) is introduced in order to give a simple 

algorithm inside the iteration loop. 

Before starting iteration sg is initialized as 

8g := id fa >0O then 1 else -1; 

and all values of F are multiplied by sg, (i.e. fa >O and fb < 0). 

If the parameters specifying a and b gives > < a then a interchange of 

these two parameters are made in the start of the program. 

However if F(b) and F(a) are both either greater than or less than 0 then 
the method does not work and the boolean name zerol is set to false indi. 

cating that no zero is evaluated, otherwise zeroi is true. 

Dd» Accuracy and storage requirement. 

Jel. The accuracy is determined by the input parameter eps giving the 

absolute precision of the zero. If however an expression giving eps 

includes the factor x (the independent variable) then relative pre- 
cision is automatically used,
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If an accuracy higher, than the one obtainable in RC 4000, is spe- 

ecified then a result with the highest obtainable precision is deliv- 

ered. 

3.2. Storage requirements: 

1 segment + 9 real variables 

4, Test and discussion. 

zero! is tested by use of the 6 functions used in ref. 1 for test of Gier 

procedures. 

Results of this test using testprogram as given in section 7 are: 

Textexamples for : external boolean procedure zero1(x,F,a,b, eps) 

F(x) a b eps x iter 

5 33+2.6xx “9.9 2.1 ».6 -2.05? +0 8 

1n(x/0.7) 0.1 2 7.8 7.00? -1 12 

exp(x)-0.4 -5 1 xX? =T -9.167 -1 12 

sin(x)-sin(1.55) -3 1.59 7=5 1.597 +0 «11 

0x3 + X “0.5 2 ?.8+abs(x) x’ -6 1.937 =15 9 

2X5 -1 2 76 6.96? -7 2h 

x = the zero calculated by zero! 

iter = the number of references to F 

These result may be compared with results from ref. 1 showing that al- 

though using a very simple strategy zerol is very fast. 

5. References. 

Bo Munch-Andersen: Zero, Algol procedure, Regnecentralen October 1965, 

Gier System Library, Order No. 409. 



6. Algol program 

zerol=zset 1 

zero]1=algol 
external 

boolean procedure zeroi(x,F,a,b,eps) ; 
value a,b; real x,F,a,b,eps; 
begin 

real fa,fb,f,vb,sg,v,xr3 
comment 13 

zerol:= true; 

if a>b then begin f := a3 at=b3 b ssf end}; 
X 3 a3 
f := Fs; 

sg := if f>0 then 1 else -1; 
fa := sexf; 

if fa = 0 then goto out; 
xX 33 db; 

fb 3™ sexF3 

if fb = 0 then goto out; 
if fb > 0 then begin zerol := false; goto out end; 
vo 32 13 

next: 

Vv t= bea3 
x = (bta)/2; 
if v < 2xabs(eps) or v< 1.29-10xXabs(x) then goto out; 
comment 23 

xr 3= a-faxv/(fb-fa) ; 
x sm xr+(x-xr)xvb3 
fs sexF; 
if f = 0 then goto out else 
if f >0 then begin a := x3 fa := f end 

else begin b := x3 s= ff end; 
comment 33 
vb := ifa<xr and xr <b then voxv/2 else 13 
goto next; 

out: 

end} 

comment 

1: 
Reference: 

RC4OOO System Library 
Order No. 55-Diy 
A/S Regnecentralen, July 1969 
N. Schreiner Andersen 



sd Function: 

The boolean procedure evaluates one zero of the function 
F(x) within the interval a <= x <=b, The method is 
based on regula falsi and bisection combined with an adap- 
tive parameter giving the weights of regula falsi and 
bisection, , 

Call parameters: 

a,b 2 real value parameters specifying the end points 
of the interval within which the zero is calcu- 
lated. This interval is a<=x<=bifa<b 
otherwise b <= x <= a, 

eps: A real name parameter giving the accuracy for 
which the zero is determined, 

® Relative accuracy is specified through an expres- 
sion with factor x, i.e. xX,-7 gives a relative 
accuracy of y-7. 

If eps specifies an accuracy that is not obtain- 
able within RC4OOO calculations are stopped with 
the obtainable accuracy. 

Return parameters: 

x 3 a real name parameter being the independent 
variable in the expression giving F. 

On exit the zero determined by zero]. 

zerol 3 The boolean procedure name is set to false if 
F(a) > 0 and F(b) > 0 or F(a) <0 and 
F(b) <0, otherwise zeroi is true. 

o
N
 

c Other parameters: 

Fo: a real name parameter specifying the function for 
which the zero is to be evaluated. 
Fmust be supplied with an expression depending on x, 

2: In order to avoid that calculations can not Stop because of too small 
eps (below the precision obtainable on RCLOOO) a security is put in here 
causing stop on v < 1.2y-10xabs(x). 

3: A new weight, vb is calculated before next iteration; 

end zerol; 

‘e 



7. Testprogram 

A/S Regnecentralen 
Testprogram for procedure zerol 

NSA, 1 209.659, 

begin 

real procedure F(n); 
integer n3 
begin 

1 isa i+; 

F := case n of (5,33+2.6xx, 1n(x/0.7),exp(x)-0.4, sin(x)-sin(1.55), 
WX + X, XX5)3 

end F3; 

real x3 integer i3 

iter 

~d.ddy+dd>, x,<< 

-d,.ddy+dd>, x,<< 

-d e ddytdd>, X, << 

~d,ddytdd>, x,<< 

=a, ddy+dd>, Xy < 

write(out,<: 
Testexamples for : external boolean procedure zerol(x,F,a,b, eps) 

2>) 3 
write(out,<: 

F(x) a b eps 

32>) 3 

i ss 03 zeroi(x,F(1),-9.9,2.1, »-6) 3 
write(out,<: 
5 oD5+2.6xx 9.9 2.1 20 1>,<< 

1 := O03 zero1(x,F(2),0.1,2, »-8) 3 
write(out,<: 
1n(x/0.7) 0.1 2 »-8 1>,<< 

i := 03 zero1(x,F(3) ,-5,1,x%y=7) 5 
write(out,<: 
exp(x) -0.4 =5 1 XXp=7 >< 

1 2 03 zeroi(x,F(4),3,1.59, 0-5) 3 
write(out,<: 
sin(x)-sin(1.55)  --3) 1.59 pe 4>,<K 

23 O03 zero1(x,F(5),-0.5,2, »-8+abs(x) xp-6) 5 
write(out,<: 
x5 + X “0.5 2 p-S+abs( x) Xy-6 >, << 

1 := 03 zero1(x,F(6),-1,2, »-6) 3 
write(out,<: 
5 -1 2 y~6 2>,<< 

write(out,<:<10><10><10> 
x = the zero calculated by zero} 
iter = the number of references to F 

2>) 5 
end testprogram3 

-d.ddytdd>, x,<< 

-dd>,i); 

-dd>,i); 

-dd>,i); 

-dd>, 1) ; 

-dd>, i) 3 

~dd>, 1) 3 
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APPENDIX 

7+ PROGRAM MANUSCRIPT IN ALGOL 5, 

begin comment 
sgren henckel, 20 04 70. data-survey (re 4000-edition) 
an algol 5 translation of data-survey (gier-edition) of 3010693 

message data-survey, version 1, 200470, RCSL 53-S1; 

integer accno,cases, char, control, elem, em,first,last, 
Limitnumber, groupnunber, inftyp,margin,maxnumber, 
page, polex, ps, varnu$ 

integer array intens(1:49), sub(1:2), table(0:127)3 

real date, lay1,lay2, lay3,lay4,max,min,m1,m2,m3,m4,stdev3 

real array group(1:49), ident(1:19), name(1:8), 
obs(1:5000), owtput(1:2), tre(1:2h); 

boolean cross, groups, head,means,no, ok, space, variab 3 

- comment declaration of the procedures 

error, expeum, expfrac, fracdiag, grouping, head new page, 
histogram, information, moments, nffrac, outtest, phi, 
pstep, skip, syntax_error, terminators, textline, and trngen3; 

procedure error; 
begin 

information(<:error detected in (or after) variable numbers>) ; 
write(out,string lay1,varnu) ; 
if inftyp=0 then inftyp:= 13 

textline(2,margin,case inftyp of ( 
<:error in art of information:>, 
<:serror in subsets:>, 
<:error in number of constants in transgeneration information:>, 
<serror in art of transgeneration:>, 
<:which has too many observations :>, 
<serror in number of grouplimits:>, 

<:identification not terminated by <60>:>)); 

if inftypo and inftyp<7 then 
fexet ine) merginy<tor some syntactical error:>); 
textline(2,margin, 
<:run on this data set is terminated. copy of input:<10><10>:>) 3 
table(60):= emt353 char:= ps:= 03; repeatchar(in); 
for ps:= pstep while ps<250 and char<>25 do 
begin 

readchar(in,char)3 write(out,no add char,1) 
end copy max 250 characters or to end of medium; 
goto exit program ~ 7 

end error; ~ 
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real procedure expcum(obs); value obs; real obs; 
expeum:= if cbs>0.0 then 1.0-exp(-obs) else 0.03 

integer procedure expfrac(obs) $ value obs; real obs3 

expfrac:= -1n(1.0-obs)X10.03 

procedure fracdiag({fractile, cum,maxfrac, start, position, scale, text1, text2) ; 
value maxfrac, start, position, scale3 
integer procedure fractiles 

real procedure cum; 

real maxfrac, start, position, scale; 
string text1, texte; 
begin 

integer df,i,j, cumulative, relative; 
real expect, Prac, limit,maxcum, mincum, test; 

procedure print axe3 

begin ~ 
write(out,<:<10>:>, space, 23) ; 
for i:= 1C step -1 until 0 do write(out,<: ot>)3 
write(out,<:<10>:>) 

end print _axe; 

head new page; 

textTine{3,margin,<:fractile diagram in the :>); 
write(out,text1,<: distribution:>) ; 
Pexth inet Jomangint30,<:estinates of:>) 3 
textline(1,mergin, 
<:fraction upper class- position parameter =:>)3 

write(out, string lay3, position) ; 
textline(1,margin,<:in pet. limit:>) ; 
write(out, space, 16,<:scale parameter =:>,string lay3,scale, 
<:<10><10>:>,space,if start=0.0 then 19 else 2h,<< -d.d>, 
start, start+1.0,start+2.0,start+3.0,start+.0) ; 
print axe; 
cumulative:= relative:= 03 mincum:= 0.03 
test:= -accno; df:= -33 

for i:= 1 step 1 until limitnumber do 
begin 

j:= intens(1); cumlative:= cumlativetj; 
limit:= group(i); frac:= cumlative/accno; 
write(out,<:<10>:>,<< ddd.dd>, 
fracx100.0,string lay3,limit) ; 
if frac<maxfrac then 
write(out,space,if frac>0.0 then fractile(frac)+1 else 1,<:<88>:>) ; 
relative:= relativetj3$ 
limit:= (limit-position) /scale; 
maxcum:= cum(limit) $ 
expect:= (maxcum-mincum) xaceno 3 
if expect>5.0 then 

begin 

test:= relativeo@/expect+test; df:= df+1; 
relative:= 03; mincum:= maxcum 

end expect>5.0$3 

if groupnumber<21 then write(out,<:<10>:>) 
end i-lLoop; 
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print axe3 
expect:= (1.0-mineum) xaceno3 
if expect=0.0 then expect:= -63 
relative:= intens(groupnumber)+relative; 
if df>-1 then 
outtest(text2, relativexx2/expect+test, dft1) 
else 
textline(2,margin,<:chi sqare test omitted because df=0.<10>:>) 

end fracdiag3 

procedure grouping; 

begin 

integer i, j,poi1,poi2; 
real exobs, group1, groupe, length ; 
if -, groups then 

begin 

length:= stdev/(if aceno<100 then 2.0 else 3.0); 
length:= 1n(length)x.434294480 ; 
poil:= entier length; length:= length-poil; 
length:= if length<.0969100 then 1.0 else 

if length<.3979400 then 2.0 else 
if length<.7781513 then 5.0 else 10.03 

length:= 10.0xxpoiixlength; 

groupl:= group(1):= pentier(min/Length) +) .0) deneth; 
limitnumber:= entier((max-group1) /length)+1.03 
limitnumber:= if limitnumber>48 then 48 else 

if limitnumber<2 then 2 else limitnumber; 
for i:= 2 step 1 until limitnumber do 
group(i):= group1:= groupi+length; 
groups := ok 

end 1f -, groups, determining grouplimits; 

groupnumber:= limitnumber+1 3 
poil:= groupnumber//3; 
poi2:= (if groupnumber mod 3 = 1 then 1 else 0) + poil + poil3 
groupl:= group(poil);  group2:= group(poi2); 
group(groupnumber) := max+10.03 
for is= groupnumber step -1 until 1 do intens(i):= 03 
for i:= first step 1 until last do 
begin 

exobs:= obs(1)3 
j= if exobs>group2 then poi2 else 

if exobs>group1 then poil else 03 
for j:= j+1 while group( j)<exobs do; 

intens(j):= intens(j)+1 
end central grouping loop (i-loop) 

end grouping; 

procedure head new page3 

begin 

pages= paget1; pss= 03 
write(out,<:<12>:5,<< -dd dd dd>, date, space, 18, 
<:examination number:>, string lay2, poiex, space, 10, 
<:Ppage i>, page,<:<10>3:>, space, margin, 
<:sgh, data-survey<10><10>:>, string ident(pstep)) ;
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textline(2,margin,<:variable number:>); ps:= 03 
write(out, string lay1,varnu, string name(pstep) ,<:<10>:>) 3 
head:= no 

end head_new_ page 3 

procedure histogram} 
begin 

integer i,half,maxint, relative 3 
if limitnumber+control>26 then head new page; maxint:= 03 
for i:= groupnumber step -1 until 1°-do ~ 
if intens(i)>maxint then maxint:= intens(1); 
textline(2,margin,<shistogram: every X represents:>) $ 
maxint:= (maxint-1)//45+13 half:= maxint//2; 
write(out,string layl,maxint,<: observation :>, 
if maxint>1 then <:s:> else <::>) 3 
pext tine | Somargin, <rumber of upper class-~:>) 3 
textline(1, 10,<:cases Limit<10><10>:>) 3 
for i:= 1 step 1 until limitnumber do 

begin 

relative:= intenst i) 3 write(out, string layl,relative, 
string lay3,group(i),<: :>, 
cross, relative//maxint, 
if relative mod maxint>half then <:x<10>:> else <:<10>:>) 

end i-loop; 
relative:= intens(groupnumber) ; 
write(out, string lay, relative, space, 15, cross, relative//maxint, 
if relative mod maxint>half then <:x<l0>:> else <:<10>:>, 
space, 11,<:total<10>:>, aceno) 

end histogram; 

procedure information(text); string text; 
begin 

control:= control] $ 
if head then head new page; textline(1,margin, text) 

end information; ~ 7 

procedure moments; 
begin 

integer i3 
real deltal, delta2, exobs $ 
mi:= m23= m3:= mi:= mins= max:= 0.03 
exobs:= oba(first) $ 
for i:= first+1] step 1 until last do 

begin 
deltal:= obs(i)-exobss delta2:= deltalxx2; 
m1:= deltal+mi $ m2:= delta2+m? 3 
m3:= delta2xdeltal+m3; m:= delta2<x2+mls 
if deltai<min then min:= deltal else 
if deltal>max then max:= deltal 

end central summation-(i)-Loop; 
aceno:= last-first+1 $3 

min:= mintexobs; max:= max+texobs$ 
mi:= mi/aceno3; m2:= m2/accno; 
m3:= m3/acceno; m4:= m4/accno; 
ms= —.Oxm1xm3+m1Xx2x6 .OXm2-m1Xx4x3 .O+ml 3 
m>3= =m]m2x5.0+m1 XxX3x2,0+m3 $3
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s= aomix<e+me 3 mi3= ml+exobs$ 

if m2<=0.0 then 

begin 

textline(€,margin, 
<texamination terminated because variance=0.:>) 3 
goto new 

end variance=<0,.03 

m3:= m3/sqrt(m2) /m23 mi:= mt/m2/m2; 
m2:= m2xXacceno/(accno-1)3 stdev:= sqrt(m2); means:= ok 

end procedure moments $ 

integer procedure nffrac(obs) $ value obs; real obs3 

begin 

real p3 
p= if obs<.5 then obs else 1.0-obs$ 

p:= sqrt(In(p)x(-2.0)) 5 
pis ~(,27061%p+2.50753) /(( .O4UB1xp+.99229) xp 20) +p3 
nffrac:= (2.5+(if obs<.5 then -p else p))x10.0 

end nffrac $3 

procedure outtest(text,test,df); value test, df; 
string text; real test; integer df; 
begin 

textline(2,margin, text) ; 
write(out,<<-dddd, dd00>, test,<:<10> which has:>, 
string layl,df,<: degree:>, 
if df>1 then <:s:> else <::>,<: of freedom.<10>:>) 

end outtest$ 

real procedure phi(obs)3; value obs; real obs; 
begin 

real p3 
p:= 1.0/(abs obsx,33267+1.0) 3 
p= exp(-obsxx2/2.0)x((..9372980xp-. 1201676) xpt.4.361836) xpx, 398943 
phis= if obs<O.0 then p else 1.0-p 

end phi; 

integer procedure psteps$ 

pstep:= ps:= pst+1;3 

procedure skip; 
begin 

integer class; 

repeatchar(in); for class:= readchar(in,char) while class<>8 do 
end skips; 

boolean procedure syntax error(arr); real array arr3 

begin ~ 
integer i3 
boolean faults; 
fault:= no3 
for i:= elem step -1 until 1 do fault:= arr(i)>)100 or fault; 
syntax. error:= fault 

end proc Syntax_error;
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procedure terminators(new class); value new class; integer new class; 
begin 

integer i3 
for i:= 10,32,44 do table(i):= new class shift 12 +i 

end terminators; ~ 

procedure textline(lines, place, text) ; value lines, place; 
integer lines,place; string text; 

write(out,false add 10,lines, space, place, text) ; 

procedure trngen; 

begin 
integer i, j,kind; 
real consti, conste 3 
inftyp:= 4; 
for j:= 1 step 3 util elem do 
begin 

kind:= tre(j)3; consti:= tre(j+1); const2:= tre(j+2) ; 
if kind<1 or kind>3 then error; 
textline(1,margin,<:y = :>)3  control:= control+1 3 
ease kind of 

begin 

begin 

for i:= maxnumber step -1 until 1 do 
obs(i):= In(obs(1)+const1) xconst23 
write(out,<:1n:>) 

end case 13 
for i:= maxnumber step -1 until 1 do 
obs(i):= (obs(i)+const1)xxconst2; 
for 1:= maxnumber step -1 until 1 do 
obs(i):= (obs(i1)+const1)xconst2 

end case} 
write(out,<:(y+(:>, string lay3, constl, 
case kind of (<:))x(:>,<:))xx(:>,<:))x(s>), 
const2,<:).:>) 

end j-loop 
end procedure trngens 

comment date is found by calling systime, 
initializing part for variables; 

systime(1,0,m1)3 date:= systime(2,m1,m2); 
lay1:= real<< -d>; lay2:= real<<-dddd>; 
lay3:= real<<-ddddddd.d000>3 
layi:= real<< -dddd>; 
head:= ok:= variab:= trues; groups:= means:= no:= false; 
eross:= no add 88; em:= 8 shift 12+ 253 space:= no add 323 
namet}2 real<: 2> add 323 name(2):= real<:no na:> add 1093 
name(3):= real<:e yet:>3 
elem:= first:= last:= maxnumber:= poiex:= 13 
control:= page:= varnu:= 03 margin:= 8; 
output(1):= 1.03 output(2):= 0.03; inftyp:= 7;
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comment choosing alphabets; 
for char:= 127 step -1 until 1 do 

table(char) := ease char of ( 

Oy O; QO; Oy O; 0; O; Oy 0, 6, O; QO; O; QO, 0; O; QO; QO, 0; QO, 

Os 0; O; O; 8, Ts O; O; 0, Oy; O; 6, 6, QO; QO; O; QO, 6, Dy 6, 

6, 6, 35 6, 35 4, 6, 2; 25 2, 2; 2, ey 2, 2, 2, 2, 6, 6, 8, 

6, 6, O; Oy 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, QO; O; QO, 6, 6, 6, 6, 

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 6, 6, 6, 0, O) shift 12+ chars table(char):= char; 

e
e
 

tableindex:= 03; intable(table); 

write(out,<:<15>:>) 3 

comment start of input of datas readchar(in, char) ; 
skips avadetrinet in,ident,elem); skip; 
taentl 19) 8 ident 19) shift (-margin) shift margin; 
table(60) := em; 

datas 

repeatchar(in); readchar(in,char); if char<25 then error; 
table(60):= em +35; ‘terminators(0); inftyp:= readchar(in, char) ; 
terminators(7); table(60):= em; 
inftyp:= if inftyp<6 then 5 else if char=60 then 1 else 

if char=103 then 6 else if char=116 then 3 else 
if char=115 then 2 else if char=99 then 7 else 

if char=101 or char=25 then 4 else 03 
if inftyp=0 then errors 

input: 

case inftyp of 
begin 

begin 
variab:= ok3 information(<:execute mark:>)3 goto execute 

end case 1 (execute mark); 
__ begin 

© elem:= read(in, sub) 3 
if elem or sub(1)<1 or sub(1)>=sub(2) or sub(2)>maxumber then error; 
means := sub tH atizet and sub(2)=Last and means; 
first:= sub(1)3; last:= sub(2); 
information(<:subset specification: from case:>) 3 
write(out,string layl,first,<: to case:>, last) 

end case 2 (subsets) $ 
begin 

elem:= read(in,trg) ; 
if syntax error(tra) or elem mod 3 < 0 or elem<3 then error; 
information(<:transgenerations (successive) ::>); 
trngens groups:= mesans:= variab:= no 

end case 3 (transgenerations) ; 
if variab then goto exit program 
else ~ 
begin 

information(<:a missing execute mark at end of data is generated:>) ; 
goto execute 

a end missing execute3 
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begin 

if -, variab then 
begin 

information(<:extra examination (not specified by execute mark) :>) 3 
goto execute 

end variables too early; 
repeatchar(in); read(in,varnu,varnu,cases); skip3 
terminators(0)3 readchar(in,char); repeatchar(in) 3 
terminators(6)3; read string(in,name,2); skip; 
name(8):= name(8) shift (-8) shirt 8; 
terminators(7)$; head new page; 
groups:= means:= variab:=no3 ml:= 0.03; ps:=0 w

e
 

more: 
pabie(t 19): ems elem:= read(in, group) ; 
table(115):= em+903 repeatchar(in); readchar(in, char) ; 
if char=115 then elem:= elem-13 
for first:= elem step -1 until 1 do m1:= group(first)+m13 
if pstelem>3000 then error else 
for first:= 1 step 1 until elem do obs(pstep):= group(first) ; 
if char=115 then 
begin 

if abs(group(first)-m1)>)-2 then 
write(out,<:<10> checksum error: computed sum =:>, 
string lay3,m1,<: check =:>,group(first)) 3; 
means:= ok; mi:= 0.03 control:= control+1 

end checksum; 
if char<>e25 then goto more 
else 

table(115):= 6 shift 12 + 1153 
elem:= last:= maxnumber:= ps; first:= 13 

if last<ocases then 

write(out,<:<10> cases on tape =:>, 
string lay1,last,<: cases =:>,cases) ; 
if syntax error(obs) or elem<2 then error $ 
information(<:input of observations: total:>); 
write(out,string lay1,last,<: cases:>, 
if means then <: with:> else <: withouts>, 
<: checksum control:>)3; means:= nos control:= control+1 

end case 5 (variables) ; 
begin 

elem:= read(in, group) $ 
if syntax error(group) or elem>48 or elem<2 then error; 
limitnumber:= elem3 groups:= ok; 
for elem:= elem-1 step -1 until 1 do 

groups:= group(elemt+1)>group(elem) and groups; 
varlab:= -, groups and variab; 
information(<:group specification: limits=:>); 
for elem:= 1 step 1 until limitnumber do 

write(out,if (elem - 1) mod 5 = 0 then <:<10> 2> else <::>, 
string lay3,group(elem))3 control:= (1imitnumbert}) //5+control; 
if -, groups then 

textlinet | margin, <tbut these limits are rejected:>) 
end case 6 (given grouplimits) ; 
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begin 
read(in,output); skips 
information(<:output speification: histogram:>) ; 
write(out,if outntt 120-0 then <:, fractile normal:> else <::>, 

if output(2)>0.0 then <:, fractile exponential:> else <::>) 
end case 7 (ovtput specification) 

end case$ 
goto datas 

execute: 
if first>1 or last<maxnumber then 
begin 

textline(2,margin,<:first case =:>); 
write(out,string layl,first,<: and last case =:>, last) 

end printing of subset; 

if -, means then moments$ 

textline(3, 15,<:number of cases minimum maximm<10>:>) 3 
write(out, space, 19,string lay2,accno, space,9,string lay3,min,max) 
textline(3, 13, 
<:mean variance stand.dev. skewness kurtosis<10>:>) 3 
write(out,space,6,string lay3,m1,<< -dddd.dddy-d>,m2, 
<<-dddddd.d00000>, stdev,m3,m,<:<10>:>) 3 
outtest(<:t-test for mean=0 is t 3:>,m1/stdevxsqrt(aceno),aceno-1) ; 

:= stdev/sqrt(accno)x1.963 
comment m2 is here used as a temporary result; 
textline(2,margin,<:95 pet. confidence interval is :>)3 
write(out, string lay3,mi-m2,<: < mean <60>:>,m1+m2,<:<]0>:>) 3 - 
mé2:= stdevx23; comment now m2 again denotes the variance; 

grouping 3 histogram3 

if output(1)>0.0 then 
fracdiag(nffrac, phi, .9969,-2.0,m1,stdev,<:normal:>, 
<:chi square test for the normal distribution is chisq =:>)$ 

if output(2)>0.0 then 
fracdiag(expfrac, expcun, .9947,0.0,0.0,m1,<:exponential:>, 
<:chi square test for the exponential distribution is chisq =:>) 3 

new: 

poiex:= potext+13; control:= 03 heads:= ok; 
if variab then goto datas 
variab:= ok3 
goto inputs 

exit programs 
wFite(out,<:<1 2>:>) 

end program 
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APPENDIX, 

7e1. POSSIBLE ALTERINGS, 

It might he wanted to introduce different achioyn on cnd of data ree 

‘cord (code = 5) and <EM record> in order t: read several input tapes in 

one call of recordinput (else the output re-cords from the different in- 

put paper tapes (separated by an end of medium character) will be placed 

on different backing storage files). It might also be wanted to intro- 

duce new kinds of number codes (new kinds of tail conversion). This can 

be done by adding new subcases in case 6 (tail conversion case) and by 

altering a little in procedure error for possible new types of errors. 

Tec. PROGRAM MANUSCRIPT IN ALGOL 5. 

(; procedure record input has to be loaded by < i tre > 

clear recordinput ~ 
recordinput=set 19 
recordinput=algol index.no message.yes 
end $ 

) 
external 
boolean procedure 

record _input(maxchar,maxparam, realtext, realname, descriptor, tailcontent) ; 
value maxchar, maxparam, realtext, realname ; 
integer maxchar,maxparam, realtext, realname 5 
real array descriptor 3 

integer array tailcontent; 

begin 

comment 

procedure record input made october 1970 
on a/s regnecentralen kgbenhavn by s¢gren henckel. 

call parameters: 

maxchar = maximal number of characters in an input record>=0 

maxparam = maximal number of parameters in an output record>=1 

realtext = maximal number of reals used for one text>=0 

realname = maximal number of reals used for one name>=0 
descriptor =a real array declared descriptor(a:b) with 

a<=]<=2<=b and number of descriptors<=b. each element 

mist contain one descriptor as a short string 
(for long descriptors exactely the 5 first characters). 

tailcontent = an integer array declared tailcontent(e:d) with 

e<=.1<=|<=d and number of descriptors<=d. each 
element must contain one of the numbers 1,2,3,4, and 5 
showing what records of the corresponding kind is 

supposed to contain as parameters 

(see in head of case 6 for further details). 
tailcontent(-1):=number of segments for record output>=1 
taiteonvent{-t): number of different descriptors. 
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returmm parameters: 

if return value of the procedure is false, none of the 
parameters are altered, otherwise they contain 
the following quantities: 

descriptor(1:2):= document name 1, the backing storage used 
for record output (name senerated by the monitor) 

tailcontent(-1):= number of seements for record output (:=call value) 
tailcontent(0):= number of accepted records 
tailcontent(1): number of records on input tape 

3 new kinds of descriptors are added to the kinds 
introduced by the call: 

kind of descriptor=number of descriptorst1 
is used for indicating errors in records with 

@ unknown kind of descriptor, and these records 
have parameternumber:= 0, 

kind of descriptor=number of descriptors+2 
is used for indicating errors in the tail of a 
record with known kind of descriptor, these 

records have parameternumber:= 1, and 
parameter(1):= found kind_of_descriptor, 

kind of descriptor=number of descriptors+3 
is indicating an end of medium record or an 
end of data record, and has parameternumber:= 0, 

3 

message record_input, version 1, 28.10.70. RCSL 53-S73 

integer array table(0:127)s3 
real array paraneter{ | imax param) ; 
boolean array character(1:max char+1) 3; 

r integer i,j,char,class,date,descriptor length, 
descriptor start,kind of descriptor,lines written, 
number of descriptors,ok” record, page, parameter number, 
position, record, state, tall_start; 7 

real blank, text 3 
boolean error in_name, illegal char 3 

zone output_zone((max_parai+129) //128x256,2,error_in doc) 

comment 

declaration of the procedures 

class of input, error in doc, error, 
error head new page, and unpack character; 

integer procedure class of input; 

begin 7~ 
class of input:= read char(in, char) ; 
if char<S25 then 7~ 
begin 

r position:= position+i $ 
character(position):= false add char; 



if char=63 then illegal char:= true; 
if position>max char then error(17) 

end not end of medTum 
else ~~ 

error( 22) 
end procedure class of input 3 

procedure error in doc (connected zone, status, bytes) 3 
zone 7~ connected” zone} 
integer ~ status, bytes} 
begin 

boolean not first; 

not first:= false; 
if Tines written>54 then error head new page3 
write(oub,<:<10><10><10>!>, 7 7 
<:problems with the backing storage on :>, 

<<d>, tail content(-1) .<2 segments<10>:>, 
<:which iS used for record output.<10>status = :>)3 
for i:= 235 step -1 until 1 do 

if false add (status shift (-i)) then 
begin 

write(out,if not first then <: + 1 shift :> else 
<:1 shift :>,<<d5,i)3 
not first:= true 

end printing bit 0 to 223 
if false add status then write(out,<: + 1:>); 
write(out,<:<l0>bytes transfered = :>,<<d>,byes)3 error(2) 

end procedure error in doc3 

procedure error (error type) 3 
value error type$ 
integer error type3 
begin 

if (position-15)//71+lines written>54 then error head new page} 
comment error message cannot be printed on this Pages” 7 
lines written:= lines writtent5;3 

write[out,<:<10><10><TO><10>record number:>,<<-d>, record, 
case error type of ( 
<: contains illegal characters in the tail (shown as <64>):>, 
<: has no text start (:) before the first text:>, 
<3 cannot be output because of too many parameters:>, 

<: contains a name parameter not starting with a small letter:>, 
<: contains an illegal character in a name parameter :>, 

<: has overflow in leading part of a number parameter:>, 

<: has overflow in decimal part of a number parameter:>, 

<; has empty digit part in the decimal part of a number:>, 

<: has overflow in exponential part of a number:>, 
<: has an illegal sign in exponential part of a number:s>, 

<: has empty digit part in the exponential part of a number:>, 
<: has illegal termination after an exponential part:>, 

<: has some syntax error in a number parameter:>, 
<: has not empty parameter part (it must be empty) :>, 
<: contains an illegal character in the descriptor:>, 
<: has an illegal kind of descriptor:>, 
<: cannot be read because of typographical length:>, 
<: has been deleted in input (by >):>, 

- 19 -
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<: contains a long text which is cut to max characters:>, 
<: contains a long name which is cut to max characterss>, 
<: is an end of input record, input finished. :>, 
<: is an end of medium record. input finished.:>, 
<: has shown errors in call parameters (dimension or content) :>, 

<: caused the problems shown above.<10>mm terminnted.:>, 

<2 gave monitor trouble<l0>catalog func. forbidden in enll process:> 
<: gave monitor trouble<10>catalog input/output errori>, 

<i gave monitor trouble<l0>entry with same name already exsists:>, 
<: gave monitor trouble<10>the catalog is full:>, 

<3 gave monitor trouble<10>requested area size is not available:>, 

<: gave monitor trouble<10>name format is illegal:>) 
if position>O then <:<i0>copy of record::> else Ber 
j:= 153 comment 15 characters written on the last line; 

for is= 1 step 1 until position do 
begin 

write( out, character(i),1); 
js= itis 
if j=71 then 
begin 

write(out,<:<10>:>)3 j:= 03 
lines written:= lines written+1 

end new Tine in list ~ 
end list on character level on current output; 

if error type<17 then ok record:= ok record-13 
comment “an error record is made, but this is not an ok records 
if error type<15 then ~ 
begin 7 

parameter number:= 13 
parameter(1):= kind of descriptor3 
kind of descriptor:= number of descriptors+2 

end error In tail of a record with known kind of descriptor 
else 
if error type<18 then 

kind of descriptor:= number of descriptors+13 
state:= if error type<17 then 7 eTse 

if error type<23 then 
(case error type-16 of (8,1,7,7,5,5)) else 93 

goto action ~ 
end procedure error}; 

procedure error head new page3 

begin ~ 7~ 
lines written:= 13 page:= pagetl3 
writeTout,<:<12>:>,<<dd dd dd>, date, 
< record input syntax errors in data pages>, 

<<-d>, page, <:<10>:>) 
end procedure error head new _page3 

integer procedure unpack character 3 

begin 7 
tail start:= tail start+13 
chart= character(Tail start) extract 8; 
unpack character:= table(char) shift (-12) extract 12 

end procédure unpack _character; 

3 
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write(out,<:<15>:>)3 state:= 13; lines written:= 200; 
ok record:= page:= position:= record:= 037 

number _of descriptors:= tail_content(0) ; 
blank:= blank shift 483 record_input:= false; 

comment date is found by calling systime, if the date 
in the monitor is wrong, date is set to 2° 10 70; 
systime(1,0, text) ; date:= systime(2, text, text) ; 
j:= date mod 1003 comment j:= year; 

if j<70 then date:= 2810703 

if Systemtost ,deseriptor)>1 or i<number of _descriptors or i<e 

or system(3,i,tailcontent)>-1 or i<number of” _descriptors 
or tail content(-1)<1 or real_text<O or réalTname<0 
then error(23) ; 
comment check of dimension and content of call parameters; 

@ comment creating area for record output by calling procedure monitor; 
bablefo) t= tail content(-1)3 
open (outputzone, 4,<::>,0) 3 
i:= monitor(40, outputzone,0, table) ; 
if 1 0 then " error(2ei) 5” comment troubles with create entry3 

comment initializing of table(0:127)3 
for i:= 31 step -1 until 1 do table(i):=9 shift 12 + 633 
for i:= 15 step -1 wntil 1 do table(i+32):= 
ease i of (8,8,0,0,8,8,5,8,8,8,3,11,3,4,8) shift 12 + i + 323 
for i:= 57 step “1 until 4B do table(i Ses 2 shift 12 + i3 
for i:= 125 step -1 util 97 do 

table(i):= table(i-32):= 6 shift 12 + i; 
table(35):= table(36) := pete (63) S table(64) := 
table(94):= table(96):= table(126):= 9 shift 12 + 633 
table(9) := table(10):= table(11):= 
table(12):= table(32):= 11 shift 12 + 323 
table(25):= 10 shift 12 + 253 
table(58):= 12 shift 12 + 583 table(59):= 11 shift 12 + 593 

® eee Y O):= 10 shift 12+ 603 table(61):=8 shift 12 + 613 
table(62):= 10 shift 12+ 623 table(95):=8 shift 12 + 953 
table(0):= table(127):= table_index:= 03 
intable(table) ; 

comment of typographical reasons 

the program text is moved 3 positions to the lefts: 

action: 

case state of 

begin 

begin 

comment case 1 initializing before new record. 
reading and first check of the descriptor; 

record:= record+] 3 
kind of _descriptor:= parameter | number:= position:= 03 

r illegal” char:= false;3 
for class:= class of input while class>9 do; 
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comment skip of leading separators and terminators before descriptor}; 
descriptor start:= positions 

error in name:= class<63 
for cTass:= class of input while class<10 do 
if class<>2 and cTass<>6 then error in name:= true; 
descriptor length:= position-descriptor start; 
tail start?= position; ~ 
state:= if class>10 then 2 else if char=60 then 3 else 4 

end case 1 (reading and checking descriptor) ; 

begin 

comment case 2 reading the tail (which is not empty); 

for class:= class of input while class<>10 do; 
comment reading characters in the tail; 
state:= if char=60 then 3 else 4 

end case 2 (reading tail); 

begin 

comment case 3 accept record e.g. record terminated by <. 
check for hard errors and errors in kind of descriptors; 

if descriptor length>5 then descriptor length:= 53 
j:= descriptor start+descriptor length=1;3 
comment the characters in deserIptor are numbered 
descriptorstart, descriptorstart+1,descriptorstart+2, and so on, 
so j denotes the number of the last character in the checked 
part of the descriptor. for long descriptors only the 5 first 
characters are checkeds 
for i:= descriptor start step 1 until j do 
text:= text shift 5 add (character(i) extract 8); 
text:= text shift ((6-descriptor length)x8) ; 
comment now text contains the part of the descriptor 
which is used for determining kind of descriptor; 
if -,error in name then ~ 7 
for i:= number of descriptors step -1 until 1 do 

@ if descriptor(T)=Text then 
begin 

kind of descriptor:= i3 

iss T 7 
end determining kind of descriptor; 
if kind of descriptor=O”or error in name or illegal char 
then error(if error in name ~ Ehen 15 else ~ 

if kind of descriptor=0 then 16 else 1)3 
comment hard errors In record; 
state:= 6 

end case 3 (accept record); 

error(18)3; comment case 4 (delete record); 

begin 

comment case 5 end_of medium record or end of input records 

i:= outrec(outputzone, 0); 
@ if 1<2 then 
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begin 

outrec(outputzone, i) ; 
outputzone(1):= 0.0 

end active segment change; 

outrec(outputzone, 2) ; 
outputzones 1) i= 2.03 
outputzone 2):= number of descriptors+3; 

ok record:= ok record+7; ~ 
elose(outputzone, false) ; 
getzone(outputzone, table) 3 

descriptor(1):= blank add table(1) shift 24 add beenpt tn F 
descriptor(2):= blank add table(3) shift 24 add table(4); 
comment storing the generated name in deseriptor(1:2) 3 

tail content(0):= ok records 
tail” content(1):= records 
record input:= true3 
comment assigning all return parameters; 

if lines written>54 then error head new page: 
write(out,<:<10><10><10>survey from record<95>input:<10><10>:>, 
<:total number of records in input was :>,<<d>,record, 
<:<10>and of these were :>,ok record,<: accepted. :>) 3 
comment printing survey on current output; 

goto finish input 

end case 5 (end_of_medium record or end_of input record) ; 

begin 

comment case 6 conversion of the tail in all cases. 
the following case statement corresponds to the kind of tail 
e.g. what the tail is intented to contain 
(this is by call stored in tail content(1:number of _deseriptors) 
kind of tail=1 a number of texts (at least one)~ 
kind of tail=2 exactly one (non empty) name 
kind of tail=3 a number of numbers (mixed integers and reals) 

kind of tail=4+ must be empty (e.g. only separators are allowed) 

@ kind of tail=5 end of input record, a possible tail is ignored; 

tail start:= tail start-13 
comment for conversion of the tail it is comfortable to let 

tail start denote the character just before the first character 

in the tail (because of for-while statements) ; 

case tail_content(kind_of descriptor) of 
begin 

begin 

comment kind of tail=1 e.g. tail is a number of textss$ 

integer text start, words _ in _ text; 

boolean long “texts; 

long texts:= false; 
for class:= unpack character while class=11 do3 
comment skipping separators (not :) before first text 5 

if class12 then error(2); 
@ comment missing textstart before the first text; 
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for text start:= parameter number+1 while class<>10 do 

begin ~— ~ 
if text start<max __ param then 

parameter number:= text_start else error(3) 5 
for classt= unpack character while class=11 dos 

comment skipping separators (not : ) before texts 
words in text:= 13 

if class<Q then 
begin 

comment text is not empty; 

text:= blank add char; i:= 1; 

for class:= unpack character while class<9 or class=11 do 

begin 7 
text:= text shift 8 add char; 
is:= itl$ 

if i=6 then 
begin 

parameter number:= parameter _number+1 5 

if parameter number=max param 
then error(3); 
parameter(parameter number) := texts 
text:= blank; i:= 0; 
words in text:= words in text+1 

end one real filled ~ > 
end packing legal char in text; 
if words _in _ text>real_ text then 
begin 

long textss:= true; 

words in text:= real _text; 
parameter number:= text start+real _text; 
parancterf parame te? _ number) := 
parameter(parameter number) shift (-8) shift 8 

end cutting long text ~ 
else 

begin 

parameter number:= parameter number+1; 

parameter(parameter number) := 
text shift ((6-1)x6J 

end text not too long 
end packing not empty text 
else 

begin 

parameter number:= parameter number+13 

parameter(parameter number):= blank 
end packing empty text; 

parameter(text start):= words in text; 
comment words In text is placed ads a real the 
preceding parameter}; 

end converting texts3 

if long texts then error(19)3 
state:= 73 

end kind of tail=1 (e.g. tail is a number of texts)3 
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begin 

comment kind of tail=2 e.g. tail is a name; 

for class:= unpack character while class>10 dos 
comment skipping léading separators before name$ - 
if class=6 then texti= blank add char else crror(4); 
comment first character in name mist be 3 (small) letter 
and name must not be empty; 
is= 13 
for class:= unpack character while class<>10 do 
if class=2 or clasS=6 then 
begin 

text:= text shift 8 add char; 
is= i+13 
if i=6 then 
begin 

parameter number:= parameter number+13 
if parameTer number=max param 
then error(3)3 ~ 
parameter(parameter number) := text; 
text:= blanks i:= 0 

end one real filled 
end character legal in name 
else 

error(5) s 

parameter number:= parameter number+13 
if parameter number>real name then 
begin _ ~ ~ 

parameter number:= real name3 
Pavone ter} paraneter number) := 
parameter(parameter number) shift (-8) shift 83 
error(20) ~ 

end cutting name parameter to real name words (reals) 
with error message; ~ 

state:= 73 

parameter(parameter_number):= text shift ((6-i)x8); 
comment preparation of the last parameter as text parameter; 

end kind of tail=2 (e.g. tail is a name); 

begin 

comment kind of tail=3 
€.g. tail is a number of numbers (integers or reals) 3 

integer decimals, digit number, exponent, leading part; 
real decimal part,exponential part,exponent sign,sign; 
state:= 13 Comment state within one number parameter; 

convert numbers: 

case state of 
begin 

begin 

comment case 1 initializing and leading separators 3 

leading part:= 03; decimal part:= 0.03 
exponential _part:= sign:= T.0; 
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for class:= unpack character while class>10 do3 
comment skipping leading separators before leading part; 
state:= case class of (0,5,2,4,5,8,8,8,8,7,0,0) 

end case 1 (leading separators) } 

begin 

comment case 2 sign before leading part; 

if char=45 then sig¢m:= -1.03 
comment sign was initialized with sign:= 1.03 

class$:= unpack character; 

state:= case class of (0,3,8,4,5,8,8,8,8,8,8,8) 
end case 2 (sign); 

begin 

comment case 5 leading part; 

leading part:= char-483 
for class:= unpack character while class=2 do 
if leading part<833860 then 
leading part:= leading partx10+char-48 
else — ~ 
error(6) 3 
state:= case class of (0,0,8,4,5,8,8,8,8,6,6,6) 

end case 3 (leading part); 

begin 

comment case 4 decimal part; 

decimals:= digit number:= 0; 

for class:= unpack character while class=2 do 
if decimals<838860 then 
begin 

digit number:= digit number+1; 

decimals:= decimalsx10+char-48 
end not overflow 

else 

error(7) $ 
if digit number=0 then error(8); 
decimal Dart:= 10,.0x<x(-digit number) xdecimals3 
comment” scaling decimals to Correct size; 
state:= case class of (0,0,8,8,5,8,8,8,8,6,6,6) 

end case 4 (decimal part); 

begin 

comment case 5 exponential part; 

exponent:= digit number:= 03 

‘exponent sign:= 0.03 
for clasS:= unpack character while class< do 
if class=2 then 
begin 

if exponent sign=0.0 then exponent sign:= 1.03 
if exponent<60 then ~ 
begin 

digit _number:= digit _number+1 3 
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exponent:= exponentx10+char-48 
end not exponent overflow 

else 

error(9) 
end class=2 

else 

if exponent sim=™.0 then 

exponent sign:= if char=5 then -1.0 else 1.0 
else ~ 

error(10) 3 
comment end class<4; 
if digit number=0 then error(11); 
if class<O then error(12)3 
exponential part:= 10.0xx(exponentXxexponent sign) $ 
comment transforming exponential part to a Factorial part; 
if leading part+decimal part=0.0 then leading part:= 13 

comment numbers on the Porm +y-7 are accepted 
whereas 0.0n=7, Oy-7, and .Op-7 all gives 
wrong conversion to 0.0000001_ ; 
state:= 6 

end case 5 (exponential part): 

begin 

comment case 6 final conversion of one number $ 

parameter number:= parameter _numbert1 5 

if parameter number>max _param 
then error(3)3 
parameter(parameter number) := 
(leading | part+decimal part) Xexponential _partxsigns 
state:= If class>10 then 1 else 7 

end case 6 (final conversion); 

comment case 7 end of record and conversion, 

case 7 in the big case (case action) is outrec 
of correct converted record}; 

goto actions; 

comment case 8 syntax errors in numbers $ 

error(13) 
end case state by converting numbers; 

goto convert numbers 

end kind of taiI=3 (e.g. tail is a number of numbers); 

begin 

comment kind of tail=4 
e.g. tail is empty (only separators are allowed); 

for class:= unpack character while class<>10 do 

if class<9 then error(14); 
state:= 7 

end kind of tail=+ (e.g. empty tail); 
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begin 

comment kind of tail=5 e.g. end of input record 

works as an end of medium record, but without listnings 

position:= 0$ 

error(21) 
end case kind of tail=5 (*.7. end of input rceord) 

end case kind of tail statement at tall Conversion 
end case 6 (conversion of tail in 231 «-:es)3 

begin 

comment case 7 record reading, control, and conversion finished. 
outrec of the final parameters stored in parameter(1:parameter number) 3 

i:= outrec(outputzone,0) 3 
comment i:= elements left in used share; 

© parameter number:= parameter number+23 

comment Parameter number:= Glements in total output record; 
if i<parameter number then 
begin ~ 

outrec(outputzone, i) ; 
outputzone(1):= 0.0 

end active segment changes 
outrec(outputzone, parameter number) ; 
outputzone(1):= parameter numbers; 
outputzone(2):= kind of descriptor; 
for i:= parameter number step -1 until 3 do 
outputzone(i):= parameter(i-2) ; 
ok record:= ok record+13 
state:= 1 7 

end case 7 (outrec of correct record) ; 

begin 

comment case 8 record contains more than max char 

characters, these have been listed by calling error(17) 

r j denotes (from procedure error) number of characters 
written on the last line; 

for j:= j+1 while read char(in,char) <10 do 
begin ~ 

write(out,false add char,1)3 
if j=71 then 
begin 

write{out,<:<10>:>)3 j:= 03 
lines written:= lines written+] 

end new Tine ~ 
end Listing rest of records 

write(out,if char=60 then <:<60>:> else if char=62 then 
<:<62>:> else <: <<69><77T>>:>) ; 
if char=62 then 
begin 

position:= 03 state:= 4 
end deletion of large record (+error message , -list) 
else 

@ if char=60 then 
begin 

state:= 7; ok record:= ok_record-1 



end making error record (is not an ok_record) 
else 

state:= 53 comment large end of input record; 
end case 8 (record too large as text); 

comment case 9 problems with source for resulting records, 

this case is activated from the block preecdure error in doe which 
calls error(24) ; 7~ 
goto finish input 

end case state”at reading records; 

goto action$ 

finish input: intable(0) 
end external procedure record input; 
end ~
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