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1. Purpose and Form of the Library

The purpose of the program library is to supply the users with relisble
and efficient procedures and programs concerning the general problems in
numerical and statistical analysis. The library will be gradually expan-
ded to cover also more special problems; also new publications may su-
persede older ones,

Only thouroughly tested algorithms are accepted, but in order to
speed up distribution an algorithm may be accepted even if the descrip-
tion is incomplete.

The algorithms are available on paper tape with an accompanying des-
cription, usually as external procedures or complete programs. The det-
ailed formats are described below. Some of the algorithms belong to the
standard user package and are available at each installation, and the
remaining ones may be acquired through RC System Library. Each algorithm
is classified by means of a set of keywords or descriptors as explained

below,

2., Formats of Tapes

An Algol program tape starts with the File Processor commends necessary
for translating and storing of the program on a backing storage ares un-
der the same name, Correspondingly a procedure tape contains the neces-
sary commands for translating as an external procedure.

The normal program tape format is:

<name> = set <No, of segments>
<name> = algol
<50 Spaces>

begin

message <name>, version <date>, RCSL <No.>;
<remaining Algol program text>

<Form Feed character>

<End-of-Medium character>
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The normal procedure tape format is:

<name> = set <No, of segments>
<name> = algol
external

<50 Spaces>

<1, line of Algol procedure declaration>
message <name>, version <date>, RCSL <No.>;
<remaining Algol procedure text>;

<50 Spaces>

comment <description of procedure parameters>;
<Form Feed character>

<End-of-Medium character>

The only console command necessary to input such tapes is the command
defining the paper tape reader as current input medium.

The format of procedure tapes is chosen so that it is easy to cut
out the ’naked’ procedure text, with or without the last comment. When

translated as an external procedure (inputting the whole tape) the com-
piler gives g warning message because the end matching the external is

missing:
1e line ddd source exhausted 1 end missing
but the translation and storing will be completed normally.

3. Format of Procedure Description

The complete description of a procedure has the following sections:

1. Function and Parameters,
A short description of the type of problem the procedure solves; the
procedure heading with complete specifications; a concise description
of the parameters classified as Call parameters, Return parameters,
Call and Return parameters, or Other parameters (e.g., parameters

used with Jensen’s device).



2.

Se

De

Introduction = 3 =

Method.
A detailed description of the mathematical or statistical method and
of algorithmic subtleties with suitable references to literature.

Accuracy, Time, and Storage Requirements,

A summary of the available information on the numerical accuracy, the
execution time, the core store and backing store requirement for the
translated program, and the number of lines of the procedure text in-

cluding the last comment.

Test and Discussion.

A comparison with other, similar procedures; a survey of the performed
test runs and a few characteristic test results; a simple Algol pro-
gram showing a typical application of the procedure; a few results
from runs with this program., Suggestions for changes in the algorithm
to meet special needs.

References.
References to the relevant literature, if any.

Algorithm,
The complete text of the procedure tape including the FP-commands, the
Algol text, and the comments. This section may be omitted in case of

very long procedures or procedures programmed in machine language.

The description may be incomplete but it will at least contain section 1,

Function and Parameters.

L,

Distribution and Classification

The programs and procedures are available through the normal RC System

Library and the most fundamental ones are contained in the standard user’s

package.

They are classified by means of a set of descriptors according to

the system adopted by RCSL. Each algorithm has at least one descriptor

from each of the three columns:
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Mathematical Complete descr. Algol procedure
Statistical Incomplete descr, Algol program
In standard user’s package Slang subroutine

Slang program
Fortran subprogram

Fortran program

and one or more subject descriptors, like

Complex arithmetic Matrix Integration

Db, prec., arithmetic Inversion Multi

Special functions Eigenvalues Diff. equations
Bessel Eigenvectors ——

Gamma, Linear equations

These descriptors are preferably chosen among the keywords appearing in

Computing Reviews,
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- r
real procedure adapint(a, b, £, x, delta, order)

1. Function and parameters.

Call parameters:
a, b real values. The endpoints of the interval over

which the integration is carried out. It is al-
lowed to have b < a.
delta real value, The permitted error relative to Ia.

Return parameter:
adapint real procedure. The approximation of the integral

of f(x) obtained by the procedure.

Other parameters:
£ real, The function f(x) given as an expression in x.
f and x are used as ’Jensen parameters’?,
X real., The independent variable used in the expres-
sion f(x). x need not be initialized. Upon exit
x = sign(e-Iaxdelta)Xe, where e is an estimate of
the abs error., So x > 0 indicates a failure and

X <= 0 a success.

2 [} Method.

The real procedure adapint calculates the integral of a function
f(x) from a to b within a prescribed accuracy given by the parameter:
delta. This is achieved by making further subdivisions of those subin-
tervals, where the error is too large - and only of those, These subdi-
visions are stopped when the desired accuracy 1s obtained or when the
number of subdivisions reaches its permitted upper bound. In all cases
the procedure delivers on exit an approximation to the Integral and an
indication of success or failure,

The procedure is particularly useful when the function f(x) exhibits
an almost singular behaviour within the interval (a, b) like 1/sqrt(x+1,=6)
over (0, 1). etc. In such cases it is almost always possible to get through
by a proper choice of the governing parameter: delta.
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The method uses a T-point formula, and all subdivisions are nonde-
structive (i.e. all function evaluations are used). The successive subdi-
visions are carried out so that the squares of the estimates of the abso-
}Eis error in all subintervals finally obtained are uniformly distributed.
The calculation is considered successful if e <= Ia X delta, where e =
abs(the estimate of the asbsolute error) and Ia 1s the integral of abs f
over (a, b). Ia is computed by the procedure but not delivered as return
value, Upon exlt x 1s assigned the value sign(e-Iaxdelta)Xe., So a success
is Indicated by x = 0 or X = -e<0, and a failure by x = >0, Since Ia
usually is not known in advance, 1t 1s necessary to have a realistic esti-
mate of Ia before running the procedure, so that delta can be properly
fixed. This estimete may be obtalned either by an honest guess or by means
of the procedure itself. It must be noticed that the estimate of the error
(=e) made by the procedure ususlly is 10 - 100 times as large as the ac-

tual error.
Ex. The call adapint(0,5,exp(x),x,p-4) gives adapint = 147.4131649 (true

value = 147,413159,..) and x = -1.2-3, success {actual abs error =
5¢8=6) «

3. References,

The present algorithm is the result of many experiments made at Regnecen-

tralen during the lasst years and is not described 1n the literature., For

a similar algorithm, see:

[1] H. O’Hara, and Francis J., Smith: The evaluation of definite integrals
by interval subdivision. The Computer Journal, Vol 12,2 (May 1969), p.
179-182,

L, Algol procedure

adapint = set L
adapint = glgol index.no message,yes

external
reael procedure adapint(e,b,f,x,deltse); message adapint version 1.10.69;
value 8a,b,delta; real a,b,f,x,delta;



begin array A(1:60); boolean selection,ex; integer p,Sign;
real e,fe,fa,fb,h,x1,x2,xl4,x6,x7,f1,£2,th, £6,£7,base,r,s, t,
sa, sb, hmin, sum, eps, dev,dd;
Signimsign(b-a) 3 hi=ebs(b-a); hmin:=h/18200; selection:=true;
eps:=(6615/192xdelta)x2/(1f h=0 then 1 else h); sum:=dd:=0;
xi=xbs=(atb) /2;Ph:=Ff; xi=ajfai=fixi=ei=b;fer=fbsi=f;
xs=x2s=(atxlt) /2;£2: =f yx: =x6 e =(b+xl) /2;£6:=F;
s:mabs(bxfl+fat+fb) X2; base:=sxh; pi=-3; goto TEST;
STCORE:
1f abs(3xEb-BXET+6XE6-Lh)<abs(3xfa-BXL1+6xf2-f4) then
beglin
A(p) :=b3A(p+1) :=fb 3A(p+2) 2=£T3A(D+3) :=£6;
bime:=ajfbi=fesafajas=xh;fas=rl;
6%l 306 =1 jxhe=x23fhs=f2 352 =0Xsa
end
else
STORE2:
begin
A(p) :ma3A(p+1) :=fa;A(p+2) 1=£13A(p+3) :=f2;
asmxh;fa =l jxl s =xb s Pl =F6 3x6 : =xT 3 £6 : =£T 55 : =2Xsb
end;
xt=x2:=(atxl) /2;f2:=F;
TEST:
xs=x1:=(a+x2) /2;£1 1=f 3x: =xT :=(b+x6) /2;£7: =f shi=abs(b-8) ;
sa:mabs(UxE2+Latflh) ;sbs=abs(UxPE+Ib+Eh) sbase:=(sa-s+sb)Xn+base;
re=f2+P6 a1 mf 1+ L7 3t =Fa+fb;
dev: =(Blxr-6lxs+15xt-TOXEL) X@Xh; ex:=dev>basex@Xeps;
1f (h-hmin)xy9>ebs xUAP<SOAex then
begin
pe=p+h; goto 1f selection then STURE else STURE2
ends
sum s msumr+( 20 16X+ 2048Xs+549xt+U00LXEN ) X 5
dd:mdevxh+dd; 1f ex then eps:=(16xeps+dev/basexx2)/k;
1f p>0 then
begin
selection:=false;
t:mA(p) 3 1f (t-2)%(a-e)<O then



begin
bi=me; fbi=fe; ei=ma; fei=fa
end
else
begin
bi=gjfbi=fa
end;
at=t; fa:=A(p+1); f2:=A(p+2); flhi=A(p+3);
xhi=(atb) /2; x:=xS:=(xltb) /2; £6:=f; x2:=(a+xh)/2;
s:=gbs(Uxfl+fa+rfb)x23 pi=p-U; goto TEST
end from STORE;
adapint:=SignXsum/132303 dd:=16/6615xsqrt(dd);
x:=if dd>deltaXbase/12 then dd else -dd
end adapint;

end
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1s Function and Parameters.

besselik calculates the modified Bessel functions:
IO(X)’.O.,IH(X) and KO(X), oco,K-n(X) °

Procedure heading:
procedure besselik (n,x,I,K);
value n,x3 real x; integer nj
array I,K;

Call parameters:
n : (real or integer) (real is rounded to nearest integer)
maximum order of the Bessel functions,
n mist be >=0,
x : (real or integer) the argument, must be > O.

Return parameters:
I ¢ (real array I(0:n) )
the values of the calculated functions:
I(0)=I0(x) ; o o 0, I(n) =In(x) .
K ¢ (real array K(O:n) )
the values of the calculated functions:
K(0)=KO(x), +00,K(n)=Kn(x).

2. Method.
First besselik calculates all the values of Ij(x), see [1].

The recurrence is performed from an upper bound nb. If x+ib<=n+3
this integer is set equal n+l otherwise x+1k,

Then 1(nb,x) is assigned the value of (x/2)>mb/(1X2X,.«xnb),
while 1(nb+1,X%),...,1(n,x) is set to O.

i(nb-1,x5,°o°,i(0,x5

1(3-1,x%) = 2x§/xxi(j,x) + 1(3+1,%).

But since Ij(x)/1(Jj,x) is the same number for all j<=mb, Ij(x)
can be calculated from the formula
nb
exp(x) = I0(x) + 2x 3 Ik(x)
k=1
by replacing x by abs X.

?h?n Ko(x) and K1(x) are calculated by polynomial approximation
see L2]:

\
AN

Ko(x) := P1((x/2)xx2) -In(x/2)x10(x);
lKl(x) := P2((x/2)%x2) /x +In(x/2)x11(x) ;
Ko(x) := P3(2/x)/exp(x) /sqrt(x);
K1(§) i= Ph(efx);eig(x)fsgrt(x);

where Pi(x) is a polynomial of 6. degree.

are then computed from the recurrence formula
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Further values of Kj(x) are calculated by the recurrence formula:

K[1+1] = 2xi/x&(i) + K(i-1).

Accuracy, Time and Storage Requirement,

Accuracy: relative error <y-7
Time: approx. 10 + 0.5Xn ms
eeZe X=2 , n=10: 11 ms
x=10, n=4C: 29 ms

Storage requirement: 3 segments of program and 8 local real variables.
Typographical length: 87 lines incl. last comment.

Test end Discussion.
The slgorithm is similar to the GIER procedure O.No. 179. [3].

Below program gives the following output:

begin

comment here the procedure is copled unless it 1s already
translated as an external}

integer 1,n3 real X;

write(out,<:<12><10> n

x>, false add 32,13,<:I(n) 1>,
false add 32,18,<:K(n)<i10>:>);

AGATIN:
read(in,n); if n=-1 then goto END;
begin srray K,I(0:n);
read(in,x) 3
besselik(n,x,I,X);
write(out,<:<10>:>,<<dd>,n,<<dd,dd>, x,

<< -d,ddddd dddddy-dd>,I(n),K(n) );
goto AGATN;
end inner block;
END:
end
deta:
0, 0,01
0, 0.5
0, 5
1, 5
10, 5
2, 5
-1,
n X I(n) K(n)
0 0,01 1.00002 50003, O 4, 72124 47360, O
0 0.50 1.06348 33708, O 9.24k19 07256, -1
0 5.00 2,72398 71829y 1 3.69109 83816, =3
1 5.00 2.43356 Lo1hb, 1 L, okl61 33826, -3
10 5,00 4 58004 4k1964 =3 2.75856 28020, O
20 5,00 5,02423 93598 -11 .82700 05078, B



Se
(1]

[2]

[3]

(4]

5]

6o

References.

Goldstein and Thaler: Recurrence Techniques for the

besselik

Calculation of Bessel Functions, MTAC 13 (1959), p. 102.

Allen, E.E.: Polynomial Approximations to some modified

Bessel Functions, MTPAC Vol. 10, 1956, p. 162-16k,

Zachariassen, J.,: Bessel I and K, Algol procedure,
Regnecentralen, April 196k, GSL 0.No. 179.

British Association Mathematical Tables, Vol, VI,

Bessel Functions, zero and unity, Cambridge University

Press, 1958,

British Association Mathematical Tebles, Vol, X

Bessel Functions, order 2 to 20, Cambridge University

Press, 1952,

Algorithm,

besselik=set 3
besselik=aligol
external

procedure besselik (n,x,I,K);
value n,x3 real x; integer n;
array I,K;

begin integer i,nb,m;
real 8, jo,Jji1,Jj2,sum,xhalf;

mé=m3;
nbs=x+1b;
if nb<=n+3 then nbi=m+h;
xhalf:=x/2;
if x<=p=-150 then nbi=0
else
begin
Jie=1;
1:=0;
for 1:=1+1 while j1>p~150Ai<=nb do j1:=jixxhalf/i;
nbes=i-1
end;
comment nb is the upper bound for recurrence;
1f nb<=n then
begin
for it=mb+1 step 1 until n do I(i):=0;
m:=nb
end}
sumé=j2:=03
for 1:=nb step -1 until 1 do
begin
if i<=m then I(i):=j1;
JO:=1/xhalfXxj1 + j2;
sums =sum+jO 3
Jas=jts J1:=50
end recurrence loop;

-3 -
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sum: =exp(x) / (2xsum=j30) 3
a¢=I(0) t=jOXsum;
jos=joXsumg if n>0 then I(1):=j2;
for it#m step =1 until 2 do I(1):=I(i)xsum;
comment all values of I0(x),c00,In(x) are calculated;
if xhalf<l then
begin
JOt1=xhalfXX2;
Jre=in(x)=,693147181;
at=K(0) :=(((({ +000007LO X3jO + .00010750)%JO
+ ,00262698)%X3j0 + ,03488590) %30
+ 423069756)%30 + 42278420)x30
=, 57721566 - Jixa;
if n>0 then
J2e=K(1) 2=((((((-,00004686 xjO - ,00110404)xj0
-301919402) x50 - ,18156897)%3j0
-.-67278579ng0 + .15443144) x50
+ 1 /x + 31%32
end
else
begin
jO:=1/xhalf;
318=sqrt(x)xexp(x) 3
at=K(0) :=(((((( .00053208 x30 - .00251540)%30
+,00587872)xj0 - .010624k46) x50
+302189568)%3j0 - ,07832358)%j0
| +1.25331414) /313
if n>0 then
g24=K(1) 1=( (((({~.000682L45 xjO + 500325614)x30
" 2200780353)%j0 + .01504268) %30
=,03%655620) %30 + ,23498619)xj0
+1425331414) /31
end caleulating Ko(x) and K1{x) by
polynomial approximations
for 1i=2 step 1 until n do
begin
sum:=K(1) :=a+(1-1) /xhalfxj2;
a:#j23 j2:=sum
end trecdtirrence loop
end besselik}

coitment
besgelik eglculzates the modified bessel functions:

10(%) ) 600, In(x) and KO(x),.es,Kn(x).

0gll parameters:
n ¢ (real or integer)
maximim order of the Bessel functions,
n must be >=0,
x i (real or integer) the argument, must be > 0.

Retiirn parameters:
I : (real array I(0:n) )
the values of the calculated functions:
1(0)=I0(x) e e e, I(n)=In(x).
K : (real array X(O:n) )
the values of the calculated functions:
K(0)=K0(x), e 00, K(n)=Kn(x) ;

-4 -
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1e Iunction and Parameters.

besseljy calculates the Bessel functions of first
kind JO(x),J1$x),.°°,JnEX) and the Bessel functions of second
kind YO(X),Y1 x),ooo,Yn X) of integer order and with real
argument.

Procedure heading:
procedure besseljy (n,x,J,Y);
value n,x3 integer n3 real x; array J,Y;

Call Parameters:
n (integer or real) (real is rounded to nearest integer)
maximim order of the Bessel functions.
n must be >=0.
X (integer or real) the argument, must be <0,

Return Parameters:
J (real array J(O:n) )
the calculated values of the functions
J(0)=J0(x) 5 e e e, J(n)=In(x) .
Y (real array Y(0O:n) )
the calculated values of the functions
Y(O) =YO(X) s o,Y(n) =Yn(X) .

2. Method.

First the functions Ji(x) are calculated.

For abs x <= ;-5 the procedure uses a truncated power
expansion

J(1)(x) = (x/2)xxi/1
for 1 = 0,T,e0e,0.
For abs x > -5 the values are found by recurrence, see [1]
3(1-1)(x) = 2xi/xx3(1) (x)-3(1+1) (=)
for 1 = nb=2,nb=3,.00.,1, where j{nb)(x)=0 and j(nb-1)(x)=,x-150.
nb is an even integer found as a function of x and n, within
the limits given in [2],
After recurrence J(i)(x) is found as

nb/2

J(i) = j(i)(x)/(j(o)(x)+2><g'_15(2><m)(x)

for 1 = 0,71,ceeyN0
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Then YO(x) and Y1(x) are found from the summation theorems,
see [1]:

Yo(x) = 2/pi X((garmma+1n(abs(x/2)))xJo(x)

nb/2
- L;XZT ((-1)>xp/(2xp) xI(2>p) (x)))
p_'.".

Y1(x)

2/€ie><( -1/2J0(x) +(1n(abs(x/2) ) +gamma-1) xJ1(x)
4-433 ((=1)>x((a+1) /2)xtxo/( oxx2-1)xJ0(x) ) )

for odd values of o. The upper bound nb/2 is a substitute
for infinity, see [2].

3. Accuracy, Time and Storage Requirements.

Accuracy: relative error <p-7
Time: if abs X <=y=~5: 8pprox. 5 ms
else approx. 10 + 0.7>n ms,
€eZe Xx=2 , n=20: 17 ms
x=10, n=h0: 28 ms
Storage requirements: 2 segments of program and 8 local real variables.
(during translation 3 segments).
Typographical length: 75 lines incl. last comment,

4, Test and discussion.
The algorithm is similar to the GIER procedure O.No. 208, [3].
Below program glives the following output:

begin

comment here the procedure 1s copled unless it is already
translated as an external;

integer i,n; real x;
write(out,<:<12><10>n  x :>,false add 32,13,<:J(n):>,
felse add 32,18,<:¥(n)<10>:>);
AGATN:
read(in,n)j if n=-1 then goto END;
begin array J,Y(0:n);
read(in,x) 3
besseliy(n,x,J,Y);
write(out,<:<10>:>,<<dd>, n, <<dd.ddd>, x,
<< -d,ddddd dddddy-dd>,J(n),Y¥(n) );
goto AGATN;
end inner block;
END:
end

datas

0, 0.001
0, 045
0, 5
1, 5

10, 5
20, 5

-1,
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5.

besseljy = 3 -

X J(n) ¥(n)
0.001 9.,99999 75004y =1 b u7iky 661164 O
04500 9.38469 80724y, -1 <L, 4518 73352, -1
5,000  =1.77596 77133y =1 -3.08517 62526y =1
5,000 -3,27579 13760y -1 1.47863 143h2, -1
5,000 1.46780 26472, -3 -2,51291 10098, 1
5,000 2,77033 005155p=11  =5.93396 52968, B8
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Algorithm.

besseljy=set 3

bessel jy=algol
external

procedure besseljy (n,x,J,Y)3

value n,x; integer nj real X;

array J,¥;

begin integer a,nb,Nj
real jO,Jj1,sum,y0,yl1,v2;3
boolean even;

sumi=abs X}
x:=§1:=x/2;
yOi=y1:=0}
y2:=In(sum)=0.,1159315156504;
1f sum<=y-5 then
begin
J(0) :=sum:=30:=1;
for nbi=1 step 1 until n do J(nb) :=J(nb-1)xx/nb
end
else



besseljy = b4 -

begin
Nei=n+1}
1f n>10 then
begin
for N:=N-1 while (sum/N)>d<y,-100 do J(N):=0;
N:=N+1
end;
nb:=0,525Xsum+133
nb:=2X(if nb <=N//2 then N//2+1 else nb);
J13=p-1503
JOi=sum:=0;
event=false}
az=(~1)50((sb-2)//2) 3
for nb:=mb-1 step =1 until 2 do
begin
if no<N then J(nb):=if even then jO else j1;
if even then
begin J1:=nb/xXj0=~j1; yO:=a/nbXjO+y0 end
else
begin
JO:=nb/xxj1=303
y1 :=axnb/(nbXxx2-1)Xj1+y1;
as=-a}
sums=sum+joO
ends
even:=-,even
end;
JO:=31/x~3O;
sums =2Xsum+jO 3
J(0) :=30/sum;
if n>0 then J(1):=j1/sum;
for nb:=N-1 step -1 until 2 do J(nb):=J(nb)/sum
end;
Y(O) =y0 :=0.63661977236753X( lixyO+y2Xx3jo) /sum;
if n>0 then Y(1) :=y1:=0,63661977236758X
(-30/x/2+(y2-1)x31-y1x4) /sum;
for nb:=2 step 1 until n do
begin
Y(nb) :=y2:=(nb-1) /xxy1=y0;
yoi=yl; yli=y2
end
end besseljys

comment .

besseljy calculates the Bessel functions of first
kind JO(x),J1(x),..e,9n(x) and the Bessel functions of second
kind YO(X) Y1(x),.°., x) of integer order and with real

argument.

Call Parameters:
n (integer or real)
maximm order of the Bessel functions,
n must be >=0,
X (integer or real) the argument, must be <0,

Return Parameters:
J (real array J(0:n) )
the calculated values of the functions
J(o)-JO(x), ...,J(n)—Jn(x)
Y (real array ¥Y(O:n)

t e u%ated v iy the functions
O "’YO? ,o.o, .sl—Yn X
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beta = 1 =

Beta function,beta(x,y)

1. Function and parameters.

beta(x,y) epproximates the bets function.
beta(x,y)= integral from O t111 1 of(1=t)>x(x=1)xtxx(y=1)xdt

procedure heading:
real procedure beta(x,y);
value x,y3 real X,y;

procedure identifier:
beta : (real)
gpproximate function of arguments not resulting
in under - or overflow, in which case beta is

undefined,
call parameters:
X,y : (real or integer)
arguments,

2. Method.
The value of beta(x,y) is calculated in the range 1<=mx<=2, 1<=my<=2
by means of the formuls
beta(x,y) =gemma(x+1)Xgamma(y+1) /x/y/gemma(x+y) or
beta(x,y) =gammea(x+1) xganma(y+1) /x/y/(x+y-1) /gemma(x+y-1)
according to whether xty<=3 or x+y>3,
The value of gemma(z) is approximated in the range 2<=z<=3 by a
rational function of z-2, which is given as approximation 5231

in reference (1) .

For arguments outside the range 1<=x<=2, 1<=y<=2, reductions are
performed according to the formmla:
beta(x+1,y) =x/(xt+y) Xbeta(x,y)



beta=2-

3. Accuracy and time requirement.
The maximum relative error will be about

max( 1, (abs(x)+abs(y))xp=10
The c.peu.-time used for a call of beta 1s ecrudely

5+0.1%(abs(x)+abs(y)) milliseconds.

L, Test.
testprogram and output:

begln
real b,X,y;
for overflows:=0 whiie read(in,x,y)=2
do
begin
bi=beta(x,y);
write(out,<:<10>x=:>,<<-ddd.d>,x,<: y=:>,
¥,<: beta(x,y)=:>,<<dddddddddddd000,-ddd>, b,
<< ddy-dd>, abs(b-gamma(x) Xearma(y) /ganma(x+y) ) );
setposition(out,0,0);
end;
end;
x= 0.5 y= 0.5 beta(x,y)= 3141592653760, =12 0, O
x= 1.0 y= 1.0 beta(x,y)= 10000000000005-12  58,=12
x= 100,0 y= 1.0 beta(x,y)=100000000004000y-16  45g-1k4
-0.5 beta(x,y)= -10783381324400,-12 Op O

x= 10,0 y
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5. Algol procedure.

beta=sset 2

beta=algol

externsl

real procedure beta(x,y);
value X,y;

real X,y;

begin
real h,w;
for wi=0,x
do
begin
if w=0
then hi=1
else
begin
Xi=y;
yiamw
end

>
if o2
then
begin
for x:=x-1 step -1 until 1
do h:=hxx/(x+y) ;
X$=x+1
end
else
if x<1
then
for x:=x step 1 until 1
do hi=hx(x+y)/x
end
H
wi=x+y=-13
if w2
then



begin
hi=sh/(wxocy) 3
WsW=2

end

else

begin
h:=h/(20) 5
wWesW=1

end

for wa=((((((
039301346419 xw
+.142928007949 ) xw
+1,09850630453 ) xw
+3436954359131 )xw
+12,8021698112  )xw
+22,9680800836 ) xw
+43,9410209189 )
/
((( w
-T.15075063299) xw
+14,390504TL596) xXw
+143,9410209191 )
while y>0
do
begin
if x>0
then
begin
hi=h/w;
WimxX=1;
xs=0
end
else
begin
hi=hXw;
wimy.]
y =0
end

end

beta-L-
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?
beta:=hxw

end beta;

6. Reference.
(1) J.F. Hart and oth.:
Computer Approximations,
John Wiley and Sons, 1968, p. 130-136
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1. Function and Parameters.

1.1 Decompose:
DecomposSe calculates upper and lower triangular matrices u and 1
such that 1l*u=a, where a 1s a given n*n square matrix. With the
additional requirement u(Z,1i)=1, the decompositicn is unique
if a 1s non-singular. In orcer to ensure numerical stabllity,
row~-exchanges are performed (explicitly) and informstion about
these exchanges is stored for further use in subsequent procedures
handliing the decomposed matrix.
Implied procedure head:
boolean procedure decompose(a,p,mode)s;
value mode}
array ag
integer array ps
integer mode;
Call paremeter:

mode : (integer or real). This parameter governs the
precision in the calculation of the immer-products
in the algorithm:
mode=0 : The inner-products are calculated in normal

floating point mode.
mode=?1 : The inner-products are calculated by means
of intermediate varisbles of 45 bits mantis-
sa and 24 bits exponent.
Call and Return Parameter:

a : (real array or zone record with n¥n elements). Con-
tains at entry the square matrix t¢ be decomposed, On
exit, each element of a is replaced by the correspond-
ing element of u or 1, (The diagonel of u is not stored).
In case of a one-dimensional array or a record, the
elenents of a must be stored row-wiseo

Return Parameters:

decompose ¢ (boolean). True if the matrix a is non-singular,
otherwise false.

P : (integer array with n elements). Contains information

about the row-exchanges. (see section 2.Method).



1.2 Solve:

Solve calculates the solution-vector x to the system of equations

axx=b, where a is a n¥*n square matrix, decomposed by a previous call

of decompose, and where b is s column vector contalning the given

righthand side. Thus, the solution of several systems of equations

with the same matrix of coefficients requires one call of decompose

followed by a number of calls of solve,
Implied procedure heed:

procedure solve(a,p,mode,b)s
value modes

array a,bs

integer arrsy ps

integer mode;

Call Parameters:

mode

a

: (real or integer). cf. decompose.

: (real array or zone record with n¥n elements). Con-
tains the decomposed coefficient-matrix as produced
by decompose,

¢ (integer array with n elements). Contains informa-

tion on the rowexchanges of the matrices held in a.

Call and Return Parameter:

b

: (real array or zone record with n elements). Con-
tains on entry the given right-hand side. On exit,

the corresponding soluticns are stored in b.

1.3 Parameter-check,

In case of wrong parameters the run is terminated with an error

message on current output consisting of the procedure name (decomp

or solve) and a number, indicating the wrong parameter as follows:

1:

The number of elements of a is different from n¥x2 (n being the
nunber of elements cf D).

Wrong content of p (solve only). Indicates an impossible row-
exchange or an attempt to solve a singular system of equations.
mode<0 or mode>1.

The mumber of elements of b is different from n (solve only).



2. Method.

Decompose produces the triangular metrices 1 and u in n steps,
in the k-th of which the k-th columm of 1 and the k-th row of u

(0 <= k <= n-1) are calculated by
(2.1) 1: a(j,k):=a(j,k)—?u$ a(j,1)*a(i,k) 3 Ji=k,ktl,ee.,n-1

e
(2.2) us a(k,d) :=(a(k,j)-sum a(1,)*a(k,1))/a(k,k); J:=k+1,k+2,...,0-1

i=0
During the calculation of the elements of 1, the k-th pivotal index, piv,
is found using the criterion

abs a(,k)/2%%ex(j) = meximum with respect to J

where ex(j) is the initial maximum exponent of the numbers constituting
the j=th row,
This pivotal strategy is chosen on two counts: It 1s simple, and none 1is
known to be universally better (cf. [1]).
If a1l ~lements of the columm of 1 turns out to be (exactly) zero, p(1)
is set equal to 2048, and the procedure exits with the value false.
Otherwise, p(k) 1s set to the pivotal index, piv, and if piv is greater
than k, ex(piv) is set to ex(k) and the k-th and the piv-th row of a are

exchanged before the elements of u are calculated.

Solve proceeds in two steps: First, the equations

1%y=b
is solved for y, exchanging the elements of b as described by p, after
which the final sclution x is found by solving

URX=y
Here, b is successively replaced by y and x. The formilae used are analogous
to those of (2.1)-(2.2):

(2.3) 1: b(k):=(b(k)-§;; b(i)*al(k,i))/alk,k) 3 ki=0,1,...,0-1
i=0
n-1
(2.54) us b(k) :=b(k)~-sum b(i)*alk,1) 5 kim-2,n=3,400,1,0
1=k+1

During the first step, it 1s checked that n > p(k) >= ko If this check

fails, the run 1s terminated as described In section 1.



-4 -

If the value of the parameter mode is 1, the inner-products of (2.1)-(2.4),
i.e. expressions of the form

~(sum r(i)*s(1)+r(k)*(-1))
are calculated by retaining 45 pits cf each product and adding this to
a sum of 45 significent bits. (The exponent is kept in 2L bits).
Thus, instead of the rounding errors in each multiplicaticn and addition,
introduced by the normal floating-point operations, an error is introduced
only in the final rounding of the sum tc a floating-point number. However,
it should be noted that only to a certain extent this procedure can cope
with a severe cencellation of significant bits that may arise when a

product is added to the sum.

The following peculiarities, due to the fact that the procedures are
written in the assembler language SLANG 3, should be mentioned:
a) The error message constituents 1lin.eq.1 and 1lin.eq.2 occur in
these messages instead of ext<line number>. The possibilities are:
lin.eq.1 : Overflow/underflow in calculations outside the inner-
product procedure.
lin.eq.2 : a) Dverflow/underflow in the immer-product procedure.
(If mode=1, this can happen only in the final rounding
to a floating-point number).
b) The parameter errors as described in section 1.2
Some examples are shown in section k.,
b) The formal parametef p contains as explained the pivotal indices;
however, the k-th index is not found in p(k) (i.e. the word number
k of p), but in the k-th byte of p. A rossible way of unpacking
these indices is shown in the program in section k4.
The remaining bytes of p are used for the exponents ex(k) .
c) As stated implicitly in section 1, the index bourds and the
number of indices of the actual array-parameters are irrelevent.
Only the number of elements in the declaration is taken into

consideration.



3, Accuracy, Time and Storage Requlrements.

Accuracy: Depends on the problem and cn the choice of the
parameter mode,
The table below shows the median-error (in units of 10—10)
of 11 sets of equations, coneisting of equally distributed
random nunbers (-1020|1020). The error is expressed as the
residual norm relative to the norm of the right-hand side.
(The Buclidisn norm is used).

order error eryor
mode=0 mode=1

10 2.6 1.9

20 349 2,2

30 Tl L.0
4o 9.5 5.0

50 27 8.3

60 21 7.6
70 33 8.7

Time: Based on recorded solution-times for the systems mentioned
above, the following execution-times in msec., expressed
as functions of the order, holds within +10 pct. for orders
between 50 and 100:

mode=0 mode=1
decompose 0.02%(1+10/n) *n**3 0.08%(1+5 /n) *n**3
solve 0O *n*%2 0 o 3¥n¥*2
Storage Requirements: 2 segments of program

0 variables,

i, Test and Discussion,

As may be expected, the results obtained for mode=1 are significantly
better than those for mode=0 only if n is sufficiently large. On the
other hand, if the system 1is i1l-conditioned, the results can be widely

different even for small n. As en example, the system

10 7 8 7 32
7T 5 6 5 23
as 8 610 9 by 33
7 5 9 10 31
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the exact sciuticn of which is (1,1,1,1), yields the results:
mode=0:

decomposed matrix:
7,0000000000° 0O T.1428571432' -1 8.5714285716' -1 T.14285714321 -1
8.0000000000" O 2.8571428570' -1  1,1000000002' 1 1,1500000002' 1
7.0000000000' 0O 0,0000000000' C 3.000000000%1! O 1. 6666666667 0
1.0000000000" 1 =1.4285714296% -1 1.0000000014! 0 -1,66666667917 -1

piv  ex solutions
1 L 1.,0000000459' 0
2 L 9.9999992L56" -1
3 4 1.0000000186¢' ©
3 b 9.999999888L!' -1
mode=1:

decomposed matrix:
7.0000000000' O T7.1428571432' -1 8,5714285716' -1 7,1428571432% -1
8.0000000000' O 2.8571428570' =1 1.1000000002' 1 1.1500000002' 1
7.0000000000" 0 =2.91038%0L457'-11  3,000000000¢* ¢C 1.6666666665 1
1.0000000000' 1 =1.1285714290! -1 1.0000000009% 0 =1,6666666733" -1

piv ex solutions
1 L 1.,0000000082¢ O
2 4 9,99999986Lk4! -1
3 L 1.,0000000034' O
3 b 9,9999999800% -1

The Buclidian error-ncrm is 9.1'-8, 1.6'-8 respectlvely.
The following program was used

lin.eq. test parameter error etc.
begin integer di,d2,d3,d4,modes
underflows:=-1}
- reed(in,di,d2,d3,d4,mode) s
begin array az1:d1), b(a2:d3)3
integer array p(1:dlt). piv(i:2xdh);
integer i,J,k3
read(in,a,b)s
if -,decompose(a,p,mode) then write(out,<:<1C>sing:>);
write(out,<:<10>decomposed matrix:i>)s
ki=13
for i:=1 step 1 until d4 do
begin write(out,<:<10>:>)3
for j:=1 step 1 until dl do
begin write{out,<< -d.dddddddddd'-dd>,a(k))s
ki=k+1
end;



Jr=p(1)s
pivé2*i-1):=j shift (~12) extract 123
piv(2%1) :=j extract 123
ends
solvega,p,mode,b);
write(out,<:<10><10>  piv ex solutions:>);

for 1:=1 step 1 until a4 do
write(out,<:<10>:>,<< Adddd>,piv(:),piv(i+dl),
<< -d,d44ddddddat -dd>,b(1+d2-1))
end block
end

This program produces the error-messages shown below when the input is
)'l" Ty 2y 24 0y 8y 1, 1,

where a means the four elements of a 2%2 matrix:
I) a1, 2, 1, 2

solve 2 lin, eg, 2
called from line 21-22

II) a: '400, '-40O, 'LOO, '-L0O

real lin., eq. 1
called from line 8-8

III) a: 1, 8'615, 0.5, -8'615

real lin, eq, 1
called from line 21=22

V) a: 1, 12'615, 0.5, -12'615
real lin. eq. 2
called from line 8-8

5. References

[1] Forsythe, G znd Moler, C.B.: Computer Sclutlon of Linear Algesbraic
Systems. Prentice-Hall. 1967.

6. Algorithms,

Since the procedures are written in SLANG, the algorithms wIiil

not be given,
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Solution of the elgenproblem for real matrices

eberlein(n, a, t, tmx, first, result).

1. Function and parameters.

It is possible to chose one of several forms of solution according
to the rules given in the parameter list.

If the iteration process does not converge within the given number
of iterations or converges to a matrix that is not of block diagonal
form, no solution is found, This situation is indicated by the boolean

perameter, first,

Input parameters:

n : the order of matrix a.
result : if result is true then in case of convergence the

elgenvalues will be placed in the two first columms

of matrix a,

Input/Output parameters:

al1:n,1:n] : at entry the matrix for with the eigenproblem is to

be solved,

At exit one of the following three situations can

ocecur:

1) if convergence occurs and result is false :



t{1:n,1:n]

the real eligenvalues occupy diagonal elements
while real and imeginary parts of complex conjugate
eigenvalues occupy diagonal and off diagonal corners

of 2x2 blocks on the main diagonal.
2) if convergence occurs and result 1s true :

the eigenvalues will be placed in the two first
columns asccording to the following rules

o real elgenvalue x = a[},Jj] makes

ali,1] = x
and alj,2l = O

a complex conjugate palr of eigenvalues
x + ixy = al3,3] + 1xalJ,3+1]

and x - ixy makes

al3,1] =

ald,2] =

al3+1,1] = x
and alj+1,2] = -y

3) if convergence fails no eigenvalues can be
calculated as a result of the procedure call,
The matrix, a, is equal to the transformed matrix.
During & new call of ,eberlein, it is possible to

try whether more iterations will result in conver-

if first is fg}gg at entry and tmx > O then t
given at ‘entry 1is multiplied by the transformation

matrix calculated in the procedure.
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Eigenvectors of real elgenvalues occupy columns of
the transformation matrix. Eigenvectors corresponding

to complex conjugate eigenvalues given by

alJy,3] + 1xald,i+1]
and al3,3] - ixald,3+1]

are formed as

tlk, 3] + ixtlk,3+1]
and tlk,3] - ixtlk,3+1]

where k = 1,2,....,!1 .

+tmx : at entry:

the maximum number of transformations performed 1is

abs(tmx). If tmx { O then t is unaltered.

at exit tmx records the number of transformations

performed.
first . at entry tells whether t is a result of a foregoing
' transformation or not. ( see under t[1:n,1:n] ).

at exit first is tsgg if convergence occurs in less

than tmx 1terationé otherwise first is ga}ss.

The procedure is based on s modification of a generalized Jacobi-me-
thod [1]. There exists no proof of convergence for this sgpecial modifica-
tion, but numerical experiments have shown the worth of the method.

A transformation matrix T transforms the matrix A into a matrix of

block diagonal form A’ = T AT,
. The transformation matrix T is generated from a sequence of two-di-
mensional transformations Ti(k’ m), where (k, m) is the pivot palr,




Each 'I‘i i{s of the form RS where R is a rotation and S a shear,

Let aij’ r1J and sij’ i=1,2, esuyn, J=1,2, ... , nbe the
elements of A, R and S respectively.

Then the rotation is determined as

r = r = 0S8 X
kk mm

rkm = -rmk = .sin x

Py (kronecker-delta) 1 # k, mand j % k, m
where x are given by

tan 2x = (akm + amk)/(akk - amm)

‘ x being chosen so that after the transformstion the norm of the k-th co-
lumn is greather than or equal to the norm of the m-th column.

The shear is determined by

g, . = 8 = coshy
mm

kk
Sem ™ Smk ~ -sinhy
siJ = 13 otherwise

y is chosen to reduce the Euclidean norm of

-1
Ai+1 = (T1 T2 LK Ti) Ai(T1 TZ ¢ o0 Ti)o

. In particular

tanhy = (ED - H/2)/(G + 2(82 + 7))

where

E=am - o
D= cost(akk - amm) + sin2x(akm + amk)
2 2 2 2
G = ( + a5 +af +a%,)
1+k’maki 1k T %m 7 ®mt

cos2x(2 (a - 8.0.8,.))
thi.m k1%mi 1x%1im

?

je o]
L]

2,2 _ .2 _ 2
-stnzx( (e + ey, - ap - g )
1%k,m
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The process will normally result in a matrix A? with real eigenva-
lues on the diagonal and complex conjugate eigenvalues In 2x2 blocks on
the main diagonal (eigenvalues a,, + ia ). 2x2 blocks because the pro-

33 = 3

cess theoretically results in

2
Ha'll > a1 > o> 11"

where Ilaill is the norm of the i-th column of A’,

If however more than two eigenvalues are of the same norm the above
picture does not hold. This also happens 1f the matrix Ai at some step 1s
near a more general solution of block diagonal form, because the conver-
gence criteria then may stop the process.

The procedure however results in a form with 2x2 blocks obtalned by
interchanging rows and columns 1f necessary.

A matrix of the form al + S where I is the identity matrix and S is
skew symmetric, and cases with blocks of this form cannot be handled by
the procedure, (If the form not it self is a solution)., There is no
quarantee that the transformation method used will not result in conver-
gence to a form embedding blocks from which the procedure cannot calcu-
late the eigenvalues. In testexamples this did happen, but only in spe-
cial cases chosen to examine the stability of such solutions, Notice that
{f the number of iterations performed is less than the maximum number of
iterations allowed and ,first, is false then the resulting matrix is of
the sbove mentioned form,

The eigenvectors are calculated from the rows of the transformation
matrix, as described in the data list,

Numerical examples have shown that elgenvectors corresponding to
multiple eigenvalues are normally linear dependent, (Except for numerical
errors ).

The algol procedure is based cn an algorithm developped by Eberlein
and Boothroyd [2]. The following changes are however made:

1. A program part ensures that the eigenvalues are placed in
1«1 and 2x2 blocks on the main diagonal. Matrices obtained
as a result of convergence for which 1x1 and 2x2 blocks can

not be constructed results in alarm message through the pa-

rameters first and tmx.




2. the parameter list is changed.
3, a new dynamical form of convergence eriterion is introduced.

The convergence criterion is based on the four reals ep, eps, epsi,

and eps2.

At the start of the procedure ep, eps and epsl are calculated as

ep = max x =1k
eps = max x 1.,0014-9
eps1 = max x i~

' where

max = maximum(laijl) 1,3=1,2, «ou, 0.
If for & single value of epsi

|a.iJ - ajil < epst or (laij + ajil < eps1 and |aii - aJJI < eps1)

no more transformation are carried out before after a change of epsi, If

eps1 < eps convergence has occured, otherwise a new value of eps1 1s cal-
culated as eps1 = eps1/10. The above value of eps makes sure that the re-
sulting eps1 is near to and less than eps. eps = max x -9 could cause an
extra serie of iterations with eps? = max x 4-10 because of rounding er-

rors,

‘ As pivot pairs are only chosen pairs of elements for which

(|a1J - aji‘ > eps 2 and Iaii -'ajj' > eps 2)

or la,, + aji' > eps 2

1J
If only identity transformations occurs as a result of this rule then a
new value of eps2 1s calculated as eps2 = eps2/ 10, Numerical experiments
have shown that this extra mechanism is necessary to ensure convergence
of some 111 conditioned numerical examples.
The starting value of eps2. for every new value of eps? is eps2 =
eps1/10.
If eps?2 gets less than ep convergence is not obtained by this algo-
rithm and the process is stopped.
. The values of ep, eps, eps1, and eps2 are results of experiments re-
ducing the computation time about 30 per cent compared with a program ma-

king transformations for all pairs of elements cyclically.




3, Accuracy and storage Requirements,

Accuracy

In case of convergence the following inequalities holds for the ele-

ments of A?

|8. - 8

13 Jil
13 * 8yl

 eps or
la  eps and la.ii - anl < eps

for i =1, 2, «vs , n-1 and j = 141, 1+2, ... , n where

eps = max(|elements of original matrix, al )x,-9

Storage requirements

1) ALGOL 5, index check: 7 tracks of program and 52 local variables
2) ALGOL 5, no index check: 6 tracks of program and 52 local varia-
bles.

Typographical length 167 lines of program exclusive the comment after the

last end,




L4, Test and discussion

The procedure has been tested on the ALGOL 5 system for matrices of
order £ 12,

The testprogram makes besides call of - eberlein - a calculation of
testnorm = ||A x x - « x /11 x x| |

where A 1s the matrix for which the eigenproblem is solved, x is a calcu-
lated eigenvector and  the corresponding eigenvalue,

Calculation of - testnorm - is made by a real procedure testnorm(
n, A, t, k, complex, x1, x2) in the testprogram,

A list of input parameters, results, and calculated values of -
testnorm - is delivered by the testprogram,

The starting values and following calculation of epsi and eps2 are
obtained as results of experiments resulting in 30 per cent decrease in
execution time in solving testexamples.



‘ Example no 1
Time:
ALGOL 5, core storage, no index check 0.36 sec.

Input parameters:

n a 3
tmx = 50
matrix a:

1.000 0,000 0.010
0.100 1.000 0.000
0.000 1.000 1.000

’ Results:

tmx = 15
first = true

Eigenvalues after 15 iterations

1 1. 1000000000
2 0.9499999999 +0,0866025403x1
3 0.9499999999 ~0.0866025403x1
Eigenvectors:
]
-0.2745741273
-0.2745741274
-2, T457H12T04

0.3262845267 +0,1836278766x1
-0.,0041158575 ~0.37438ub272x1
-3,2216866940 +1,9075675104x1

3
0.3262845267 -0, 1836278766x1
, -0.0041158575 +0,3743846272x1
-3,2216866940 ~1.,9075675104x1

Testnorm for corresponding eigenvalues and eigenvectors

no, of eigenwvalue testnom

@ _
‘ 1:8m18

=10




Example no U
Time:

AIGOL 5, core storage, no index check

Input parameters:

n T

tmx = 100

matrix a:
-1 1 0
-1 0 1
-1 0 0
-1 0 0
-1 0 0
-1 0 0
-l 0 0

Results:

tmx = 6L

first = true

OCO0OO0OO=0O0

feNoNoR NoNoNel
OCO—=0000

Eigenvalues after 6L iterations

-3 OV OO -

-0.9999999982
0.70T1067794
0.707106779k

-0,70710677688

-0,7071067788
0.0000000001
0.0000000001

Elgenvectors:

1

-0.558506712k
0.0000000001
-0.558506712k
0.0000000001
-0.5585067123
0.0000000000
-0,5585067125

-0.1107710832
-0.4232186137
-0, 7543150660
-0,9101086283
=0.7993375446
-0,4868900143
-0.1557935621

+0,TOT106TT90X1L
=0,7071067790x1
+0,TOT106T790X1
-0.TOT106T7T790X4i
~0.9999999956x1
+0,9999999956x1

+0.331096U522x1
+0,4868900143x1
+0,3761189310x1
+0,0636714003x1
-0.26T74250515%1
-0,4232186137x1
-0,3124475306x1

- 10 =

10.1 sec.

- 00000



Testnorm for corresponding eigenvalues and eigenvectors

-0,1107710832
-0,.4232186137
-0,7543150660
-0,9101086283%
-047993375446
-0.4868900143
-0.1557935621

0.4530114436
0.6001930025
-0.,0609645978
0.7268718886
0.273860k4L49
0.1266788860
0.7878364866

0.4530114436
0.6001930025
-0,0609645978
0.7268718886
0.2738604449
0.1266788860
0.7878364866

0.5486381922
0.7859088684
0.2372706765
-0,0000000002
0.5486381923
0.7859088687
0.2372706767

0.5u86381922
0.785908868L
02372706765
~0,0000000002
0,5486381923
0.7859088687
0.2372706767

no, of elgenvalue

AN -

and 3
and 5
and T

=0.3310964521x1
-0,4868900143x1
-0,3761189310xi
-0,0636714003x1
+0,2674250515%1
+0,4232186137Txi
+0,3124475306%1

-0.,661157600L4x1
+0,1266788858xi
-0.326332557Tx1
-0.4735141167x4
+0, 187643483 Tx1
-0.6001930026x1
-0.1471815591xi

+0,661157600k4x1
-0, 1266788858x1
+0,3263325577Xi
+0 47351411671
-0, 187643483 7x1
+0,6001930026%1
+0,1471815591x1

+0,23T2T06TT9x1
-0.3113675134x1
-0,5486381898x1
+0,0000000002x1
+0.,2372706781x1.
-0.3113675132x1
-0.5486381901xi

~0.23727067T9%1
+0.311367513kx1
+0,5486381898x1
~0,0000000002x1

=0.2372706781x1 .

+0,3113675132x1
+0,5486381901x1

testnorm

2.0y =9
301m ”9
3.01} "'9
5¢9D ‘9

- 11 =
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- ' Exemple no 11
Time:
ALGOL 5, core storage, no index check 2,43 sec,
Input parameters:
n = L4
tmx = 100
nmatrix a:
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1
‘ Results:
tmx = bs
first = true
Eigenvalues after U5 iterations
1 1.0014985857 +0,0014992361x1
2 1.0014985857 -0.0014992361x1
3 0.9985014113 +0,0014978791x1
4 0.9985014113 -0,0014978791x1
Elgenvectors:
1
-0,0000637318 +0.00002640%1x1
-0,0124657185 +0,0300779129x1
5.,8782571872 +14,1901547856x1
6694 ,9278156800 +2771.1941409600xi
~0.,0000637318 -0.0000264031x1
-0,0124657185 -0,0300779129x1
5.8782571872  ~14,1901547856x1
6694,9278156800 ~2771.,1941409600x1
0.,0000637hok +0,0000264010x1
-0,0124l478455 ~0.0300712114x1
-5,8782228542  +14,1910426896x1
6696,9885651200 ~2775.7892716800x1
0,000063T7404L -0,000026L4010x1
-0,0124478455 +0.,03007121 1bx1
-5.8782228542 -14,1910426896x1
6696,9885651200 +2775.7892716800x1




Testnorm for corresponding eigenvelues and elgenvectors

no, of elgenvelue testnorm
1 and 2 1.510 "9
3 a-n-d- h 1.810 -‘9

Example no 12

Input parameters:

n = 3

tmx = 50

matrix a:

1.000 1,000 1.001
"‘1 .000 1.000 0.000
"1 .000 0.000 1 .OOO

Results:

tmx = 28

first = false

Limiting matrix after 28 iterations
100 +0 =1,17y +0 7.60m -1

1017]0 +O 1.00” +0 2.22]0 "1
=760y =1 =2,225 =1 1,00, +0

-13 -
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5. References,

{1] P.I. Eberlein: A Jacobi-like Method for the Automatic Computation of
Eigenvelues and Eigenvectors of an Arbitrary Matrix,
I. SIAM, vol. 10, No, 1, 1962,

[2] P.I. Everlein and John Boothroyd: Solution to the Eigenproblem by a

Norm Reducing Jacobi Type Method
Numerische Mathematik 11, 1-12 (1968).
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6. Algorithm

eberlein=set T
eberlein=algol
external

procedure eberlein(n,sa,t,tmx,first,result);
value n;
boolean first,result;
integer n,tmx;
array 8,t;
comment 1 ;
begin
real eps,ep,aii,aij,aji,h,g,hj,aik,aki,aim,ami,tep,tem,d,c,e,akm,amk,cx,sx,
cotax,sig,cotx,cost,sinEx,te,tee,yh,den,tanhy,chy,shy,c],c2,31,52,
tki,tmi, tik, tim,epsi,eps2;
integer i, Jj,k,m,it,nlessi;
boolean mark,left,right;
mark := right := false;
if tmx > O then
begin
right ¢= true;
if first then
for 1 :=1 step 1 until n do
begin
comment identity matrix 1s formed in t;
t(1,1) :=1;
for J := i+1 step 1 until n do (1,3) := t(J,1) :=0;
end
end;
tmx := abs(tmx);
comment computation of the maximum ebsolute element of aj
ep = 03
for 1 := 1 step 1 until n do
for J := 1 step 1 until n do
if abs(a(1,3)) > ep then ep := abs(a(i,J));
comment 2 ;
eps 1= epX1,0014~93
epsi 1= epXyp~3;
ep 1= epXp~1l;
first := true;
nless] = n-1;
comment main loop , tmx iterations;
for it := 1 step 1 until tmx do
begin
eps2 := eps1/10;
comment compute convergence criteris;
for 1 := 1 step 1 until n do
begin
ali := a(i,1);
for J := i+1 step 1 until n do
begin
el := a(i,3);
aji := a(J)i)5
if (ebs(aij-aji) > epsl and ebs(aii-a(J,J)) > epsi)
or abs(aij+aji) > eps? then goto cont
end
end convergence test, all 1,J;
goto next_pps1;
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i . comment next transformation begins;
cont: mark := true;
for k := 1 step 1 until nlessi do
form := k + 1 step 1 until n do

begin
h =g :=hj ¢t=yh t=0;
a :=alk,k) - a(m,m);
skm := a(k,m);
amk := a(m,k);
c := gkm + amk;
:= gkm - amk;

if (a2bs(e) <= eps2 or abs(d) <= eps2)
and ebs(c) <= eps2 then goto skip;
for i := 1 step 1 until n do

begin
aik := a(i,k);
aim := a(i,m);
te := alk X aik;
tee := aim X aim;
‘ yh = yh + te - tee;
if i<k and i<m then
begin
aki := a(k,i);
ami := a(m,i);
h :=h + akixXami - aikXaim;
tep := te + amiXemi;
tem := tee + agkiXakl;
g t= g + tep + tem;
hj :=hj - tep + tem;
end
end 1i;

h s= h + hj;
if abs(c)<=ep then
begin
comment take R as identity matrix;
cx 1= 1;
sx := 03
end else

. begin
comment compute elements of R;
cot2x := d/c;
sig t= 1f cot2x<0 then -1 else 1;
cotx := cot2x+(sigxsqrt(1+cot2xxx2));
sX := sig/sqri(1+cotxo@) ;

cx 1= sx X cotx;
end;
if yh<O then
begin
tem (= cx;
cX 1= sX3
sx = -tem;
end;

oS2x = CxXXX2 - 8XXX2;
sin2x = 2XsxXecx;

d := dXcos2x + cXsin2x;
h
den

"l. tanhy

hxecos2x - hjXsin2x;
g + 2x(exe + dxd);
(exd - h/2)/den;

e s S0
i




- 17 -
‘ comment campute elements of S;
chy := 1/sqrt(1 - tanhyxtanhy);
shy := chyxtanhy;
comment elements of RxS = T
¢l := chyXcx - shyXxsx;

2 := chyXcex + shyXsx;
s1 = chyXsx + shyXcx;
s2 := shyXcx - chyXsx;

comment decide whether to apply this transformation;
if abs(s1) > ep or abs(s2) > ep then
begin
comment at least one transformation is made so;
mark := false;
comment transformation on the left;
for i := 1 step 1 until n do
begin
aki := a(k,1);
ami := a(m,1);
a(k,i) := ciXaki + siXami;
‘ a(m,ij := s2xaki + c2xami;
end left transformation;
| comment transformation on the right;
for 1 := 1 step 1 until n do

begin
aik := a(i,k);
aim := a(i,m);
a(i,k) := c2xaik - s2xaim;
a(i,m) := cixaim - sixaik;
if right then
begin

comment form right vectors;
tik := t(1,k);
tim := t(i,m);
t(1,k) := c2xtik - s2xtim;
t(i,m) := cixtim - sixtik;
end
end right transformation
end;
. skip:
end k,m loops;
if mark then
begin
comment 3 3
if eps2 < ep then goto stop;
eps2 := eps2/10;
goto cont;
end else goto new loop;
next epsi: -
= eps1 := eps1/10;
comment L ;
if epsl < eps/2 then
begin
tox := it - 13
goto done;
end;

new_}oop:
end it loop;
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’ . stop:
first false;

tmx = ite1;
done:
if first then
begin
comment 5 ;
for 1 := 1 step 1 until n-2 do

begin
merk := false;
aii := a(i,i);

for j := i+1 step 1 until n do
if abs(aii-a(J,J)) <= eps A abs(a(i,J)-a(j,1)) > eps then
begin
if mark then goto stop;
maxrk := true;
if j = i+1 then goto next;
for k := 1 step 1 until n do

begin
‘ aik = a§1+1 k);
a(i+1,k):= a J,ks;
a(j,ks 1= aik;
end;
for k := 1 step 1 until n do
begin
aki := a(k,1+1);

a(k,1+1) := a(k, J) ;
a(k,j) := aki;
if right then
begin
tki 2= t(k,i+1);
t(k,1+1) := t(k,3);
t(k,J) = tki;
end;
end;
next:
end}
end;
‘ comment the eigenvalues are placed in the first two columns;
left := right := false;
if result then
for 1 := 1 step 1 until n do
begin
if ~,right and 1 < n then
left := abs(a21,1+1)-a(i+1,i)) > eps and
abs{a(1,1)-a(i+1,i+1)) <= eps;
a§1,1) := 1f right then a(i-1,1) else a(i,1);
a(1,2) := if left then a(i,i+1) else
if right then -a(1-1,2) else 03
right := left;
left := false;
end;

end;
end eberlein;
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'l’ comment

1. eberlein solves the eigenproblem for a real matrix by means of a sequence
of Jacobi-like transformations.

Input parameters:
n : the order of matrix s.

result : if result is true then in case of convergence the
eigenvalues will be placed in the two first columns
of matrix a.

Input/Cutput parameters:

a[l:n,]:n] : at entry the matrix for with the eigenproblem is to
be solved,

’ At exit one of the following three situations can
oceur:

1) if convergence occurs and result is false :
the real eigenvalues occupy disgonal elements
while real and imaginary parts of complex conjugate
eigenvalues occupy disgonal and off diagonal cormers
of 2x2 blocks on the main diagonal,
2) if convergence occurs and result is true :

the eigenvalues will be placed in the two first
columns according to the following rules

a real eigenvalue x = alj,Jj] makes

ald,1] = x
and a[j,2] = ©
‘ a camplex conjugate pair of eigenvalues

x + ixy = alJ,3] + ixaly, j+1]

and X - iXy makes

al§,1] = x
alj,2] =y
alJj+1,1] = x
and al j+1,2] = -y

3) if convergence fails no eigenvalues can be
caelculated as a result of the procedure call,

The matrix, a, is equal to the transformed matrix.
During a new call of ,eberlein, it 1is possible to
try whether more iterations will result in con-
vergence or not, ( first is set to false ).
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t[1:n,1:n] : 1if first is false at entry and tmx > O then t
given at entry Is multiplied by the transformation
matrix calculated in the procedure.

Eigenvectors of real eigenvalues occupy colums of

the transformation matrix, Eigenvectors corresponding
to complex conjugate eigenvelues given by

alj, 3] + ixalj,3+1]
and al§,3] - ixaly, 3+1]

are formed as

tlk, 3] + ixtlk,3+1]
and tlx, 3] - ixtlk,j+1]

Where k = ]’E,QCOO’n L
(" tmx ¢ at entry:

the maximm number of transformetions performed is
abs(tmx). If tmx < O then t is unaltered.

at exit tmx records the number of transformations
performed,

first : at entry tells whether t 1s a result of a foregoing
transformation or not. ( see under t[1:n,1:n] ).

at exit first is true if convergence occurs in less
than tmx iterstions otherwise first is false.

o A dynamical form of the convergence criterion is introduced, which

are based on the four reals ep, eps, epsl, and eps2,
In case of convergence of the iteration process the resulting matrix,

a satisfies

® ( abs(a(i, J) - a(y, 1)) < epsi
(v abs(a(1, 1) - a(j, 3))7< epsi)
A gbs(a(1, J§) + a(J, 1)) 2 eps

where eps1 < eps/2

3. If convergence is not obtained and the resulting transformation ma-
trix is the identify matrix then if eps2 = eps2/10 < ep the process
is stopped {no solution) otherwise a new transformation is made with
eps2 = eps2/10.

4, If epst < eps/2 the convergence criterion is fulfilled and the itera-
tion process is stopped. If epsl > eps the calculation is continued

with the new value of epsi,

5. A look up for the eigenvelues is made and at the same time it is con-
trollet whether the resulting metrix 1X1 and 2X2 is on block disgonsal
form or not.




- 21 =

If the matrix does not consist of 1X1 and 2x2 blocks this is (1f pos-
sibly) obtained by interchange of rows end colummns on the a and t ma-

trices,

Special forms of matrices that fulfil the convergence criterion are
not of block diegonel form (with at most two -valid- elements in a row
or colum) and the procedure eberlein cen not solve the elgenproblem

for these special matrices;



7. Testprogram,

begin
real procedure testnorm(n,A,t,k,complex,x1,xz);
value n,k,complex x1,x;
array A,t;
| boolean complex;
| integer n,k;
| real x1,x2;
comment The procedure performs a test of eigenvalues and corresponding
eigenvectors calculated by procedure everlein;
begin
integer 1,J;
real sum,suml,sumé ,norm;
sum := norm := O;
for i := 1 step 1 untll n do

begin
"' sum? := sum2 := Oj
for j := 1 step 1 until n do cum? := sum1+A(1,3 xt(J,k);

if complex then
for j := 1 step 1 until n do sum2 := sum2+A(1,3 )xt(J,k+1);
sum := (if complex then
(sum1-xTxt {1,k )+x2xt{1,k+1) )xx2
+(sum2-x2x t{3 k)=x1xt{1 k+1) )xx2
else
(sum1-x1xt{i,%))xx2 ) + sum;
end;
for i := 1 step 1 until n do norm := norm+t(i k)xx2;
if complex then
for 1 := 1 step 1 until n do norm := norm + t(7 ,k+1)xx2;
x1 = 1if complex then sqrit(x1xx2+x2xx2) else abs x1;
testnorm :=sqrt(sum/norm)/x1;
end procedure testnorm;

integer 1,j,n,no,m,layoutno,tmx,total,res;
boolean b1,b2,complex,first result;
’ real im,x1,x2,layout;
read data:
Total := 03
i:=read (in,no,n,m,res);

corment

no = example no,

n = order of matrix,

m = value of tmx,

res = integer code for result;

if 1 <4 then goto stop;

tmx ;=m;

result := res = 1;

write (out,<:<10>Example no:> ,<<add ,no,
< :{10><10> Input parameters:<10><10>n =:> <<dddd ,n,
< <100 tmx_ _=:>:tmx,<:<10><10>matrix:§??;);




o P
begin
array a,t,A(1:n,1:n);

read (in layoutno),
comment layout no serves a choice hetween three layouts in

cutput of the unaltered matrix a;
layout := case layoutno of (reald< -d4d®,
reald _-d.ddd ,reald<__d& ,reald<=d, d>),
wnme(mn<:<m>oL
for § := 1 step 1 until n do
begin
write (out,<:<10> > );
for 1 := 1 step 1 until n do
begin
comment input and output of matrix a;
read (in,a(J,i));
A(3,1) = a(3,1);
write (“ut s ring layout,a(J,1i));
end

"’ end;
first := true;

new eber:
- eberlein(n,a,t,tmx,first,result);
write (out, <1< 10> < 10> < 105 Results 1< 10>< 10> tmx =D <K-ddd ,tmx);
if first then
write \ouf {1 first
write (out, ’C <105 Pirst”
if - result or - ,first
begin
write (out < <1O><1O><1Q>L1mit1ng matrix after:,
'<<aad ,total+tmx <z 1tarations< 10> © );
for j := 1 step 1 ‘until n do "
begin
write (out,{:<10> D );
for 1 := 1 step 1 until n do
write (out,<{_-d.dd+dd ,a(J,1));
end
end else

= true: ) else
= false );
~then

. begin
write (out < <10><10><10>n¢genvalues after:,
<<dddd> total+tmx ¢ iterations< 10> D)
for i := 1 step 1 antil n Ao "
begin
write (out,<:<K10> D <Kad,i,
¢ -aadd.ddddadaade ,a(1,1));
1f a(1,2) & 0 Then
write (out,<__+4ddd.ddddcddddd> ,a(1,2),Cixl );
end;
if m = 0 then goto next;
write (out,K:<10><10><10>Eigenvactors:K10> > );
b1 = b2 := false;
for 1 := 1 step 1 until n do
begin
write(out ,{:<{10> » KD ,1,<: K10 D );
b1 = - b2 and a(i, 2) O o,
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for 3 := 1 step 1 until n do

im := if b2 and WO then t(j,1-1) else
if b2 and ™0 then t(l- ,J) else
if W C then t{j,i) elce .( ,J )5

write (out << -dddd . 4dddddaaddd> ,im);

fm 1= 1f b2 aRd TS0 then -4(Jj,1) elce

if b2 and D then -t(«,J) else

1f b1 and WO then t(Jj,i+1) else

if b1 and KO then t(1+1,j) else 0;

*f b1 or L2 tner

urite (out,{< +7d4d.¢3dddddddd ,im REFPBH

write (out, (.(10) D );

b2 = bi;
b1

a2nd;
write (out,<:{10><1><10><10>Testnorm_for_corresponding:>,
eigenvalues and eigenveCtors{10><10><10> >,

<l

<:

<:no, cf elgenvalue testnorm< 10> O,
<K

- \7. et e

N
tu

o

NN~

X
complex := x2 <> O;
b1 := -,b1 and complex;
if b1 or - ,complex then
im := eqtnorm(n A,t,i,complex,xT ,X2 )3
if b1 then
hegin
write(out, i K10> > KK _-dd> ,1,<:_ andD,i+1,
S \<d drad , 1m);
end else
if -, complex then
begin
write(out (K1 D K _-dd 1,
< —

¢

\(8 dyrdd> jim )3
end;
end;
end;
next:
if-, first »nd tox = m then
begln
total :=
tmx t= m;
if total <=
end;
write(out,<:<12>:>);
end;
goto read data;
stop: -
end testprogram

total+tmx;

3xm. then goto new eber
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procedure £ft(A, B, m, analysis);

1, Function and parameters:

Call parzmeters:

m integer value, m determines the dimension N = 2Xxm of A
and B. m must be < 24 to be meaningful, but the largest
possible value is m = 13 in a computer with 128 k bytes
storage capacity (corresponding to 32 k reals).

analysis integer value. analysis = +1 gives + sign in the sum,
l.e. a Fourier-synthesis 1s carried out.
analysis = -1 gives - sign in the sum, i.e. a Fourier-

analysis is carried out.

Call and Return parameters:

A, B(0:N-1) real arrays. They must on entry contain the real and
imaginary part of X(t) in normal order. Upon exit they
contalin the real and imaginary part of the Fourier sum
Y(s), also in normal order.

2. Method,
The procedure fft calculates the Fourier sum

Y(s) = Sum(X(t)exp(+2pixixtxs/N)), N = 20m, t =0, 1, e. , N-1
t

for 8 =0, 1, ees , N-1 by means of the Cooley-Tukey algorithm (the ’Fast
Fourier Transform’).

The first part of the procedure (p:= 0; --- shift (m-j-24) end;) de-
livers the data A, B in reverse binary order., The second part (p:= 13 eeo
p:= pl end) performs the summation in place. So it is possible to carry out
the summation with the data A, B in reverse binary order simply by omit-
ting the first part. '

The loss of accuracy is almost proportional to m and is for m = 8
about 1 significant decimal,

The running time is proportional to Nxm and is for m = 13 about 45

seconds,



3+ References,.

About the Cooley-Tukey algorithm and its implementation, see:

[1] Cooley, J.W., and Tukey, J.W.: An algorithm for the machine calcula-
tion of complex Fourier series. Math. Comp. 19, 90 (April 1965), p.
297=201.

[2] R.C. Singleton: On computing the fast Fourier Transform. Communice-

tions of the ACM, Vol. 10, N. 10, (October 1967), p. 6L7-654.,

4, Algol procedure,

(

fft=set 2

fft=algol message.yes index.no
end)

external
message fft version 01.07.71., RCSL NO 31-D3, correction by dh;
procedure £t(A,B,m,analysis);
value m,snalysis; integer m, analysis; array A,B;
begin integer i,j,k,n,p,p1,9,92,30,31,32;
real v,x0,x1,y0,y1,c,c1,ce,c2,s,s8,s81,52;
n:=1 shift m-1; v:=3,14159265359; p:=0;
for i:=0 step 1 until n do
begin
if i<p then
begin
c:=A(1) ;A(1) :=A(p) sA(p) :=c;
c:=B(1);B(1) :=B(p) sB(p) :=c
end;
k:=p shift (24-m); j:=-1;
for j:=j+1 while k<0 do k:=k shift 1;
p:=(~8388607-1+k) shift (m-j-2k)
end;
g2:=p:=13s81:=0.0;
for i:=1 step 1 until m do

begin
ss:=ss1;vi=v/2.0;



ss1:=sin(v);cc:=2.0XSs1XSs1; q:=p-1;pl:=ptp; cl:=8:=0,0;
for j:=0 step 1 until q do
begin
if j=q2 then c1:=3:=0,03 c:=1.0-cl;
if j<q2 then
begin
c2:=cys2: =g
end
else
begin
cli=-s3s2:=C
end;
if analysis<0 then s2:=-s52;
for k:=0 step p! until n do
begin
J1s=j+k; j2:=j1+Dp;
x1:=A(j2)xe2-B( j2) xs2; y1:=A(J2)xs2+B(Jj2)xc2;
A(32) :=A(31) -x13B(J2) :=B(31) -¥1;
A(31) +=A(371)+x13B(31) :=B(J1)+y
end;
c1:=c1+(cexet+ssXs) 3 si=s+(ssXc-cexs)
end;
q2:=p;p:=p1
end

end
comment call parameters:

m (integer value). m determines the dimension N=2Xxm
of A and B, m must be >=0 and <24t to be meaningful
but is in practice more limited since the core store
has to contain the two arrays A and B plus some few
other variables,

analysis (integer value). For analysis<O a Fourier analysis
is carried out: Y(s):=SUM(X(t)exp(-2pixixtxs/N)).
For analysis>=0 a Fourier synthesis 1s carried out:
Y(s) : =SUM(X(+t) exp(+2pixixtxs/N)).



call and return parameters:

A,B(0:N=1)

end;

(real arrays). They must on entry contain the real
and imsginary part of the given data X(t)=A(t)+ixB(t)
in normal order. Upon exit they will contain the
real and imaginary part of the Fourier sum
Y(s)=A(s)+ixB(s), also in normal order;
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1. Function and Parameters

Given n data points (xi, yi) with weights pi, where i =1, 2, ... ,
n. The procedure fit computes the coefficients of a polynomial P(k, x),
of degree k, such that the quantity

i=n
SuM(pix(yi - P(k, x1))xx2) (1)

i=1

is minimum.
Bounds on the permissible order of P(k, x) may be specified in the

procedurecall so that

lower bound <= order <= upper bound. (2)
Moreover, the procedure will within these bounds select an order wnich is
best in the following sense: Set the minimum value of (1), which is a
function of the order, be denoted by v(order) and let

d(order) = v(order)/(n - order - 1),
vhich is an estimate of the restvariance. The procedure will then select
the smallest order in the interval {2) such that d(order) <= d(order+1)
or if thils does not occur then order = upper bound. This means that the

procedure increases the order of P(k, x) only if the accuracy can be im-

proved by doing it.
The procedure head is:

procedure fit(i, pi, xi, yi, C, 1, u);

value 1, v
integer i, 1, u;
real pi, xi, yi H
array C H

Call parameters:

1 : (integer) The lowest permissible order of P(k, x)
u : (integer) The highest permissible order of P(k, x)
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Return parameters:
Cc(o:u) : (array) Contains the coefficients of the fitted polynomial

P(1, x) = C(0)+C(1)xx+C(2)x0@+ ... +C(1)xxxKi

where 1 is the order of P as determined by the procedure. If

i < u the remaining array elements are undefined.

Call and Return parameters:
i ¢ (integer) In the call i gives the number of data points (xi,

yi) in the input. Upon exit i is the order of the fitted po-

) lynomial P.
. Moreover 1 is used as index parameter in the expressions for
pi, xi, yi.
pi : (real) An expression (using the parameter i) giving the

weight of point no. 1.

xi : (real) An expression (using the parameter i) giving the x-
coordinate of point no. i.

yi : (real) An expression (using the parameter i) giving the y-

coordinate of the point no. 1i.

2. Method

. The following description is based upon [1] where details and proofs
are glven.

Instead of expressing the approximating polynomial P(k, x) directly
as a sum of powers of x, we write P(k, x) as a linear combination of po-
1ynomials £(0, x), £(1, x), £(2, x), ... . The polynomial £(j, x) is a
polynomial in x of proper degree j, which means that it effectively con-
tains a term xxxj (and the highest degree of x is not j=1):

J=k
P(k, x) = suM(e(J)xt(3, %)), (3)
J =1
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where k is the degree of the approximating polynomial P. The coefficients
c(3) are to be determined. The polynomials f(j, x) are orthogonal with

respect to the datapoints (xi, yi) and the weights pi , 1 =1, 2, ... ,n.:

i=n
SuM(pixf(j1, xi)xf(j2, xi)) =0, for j1 < j2.

i=1
When j1 = j2 we define
i=n
SuM(pixf(J, xi)xe(g, xi)) =w(j); 3 =0, 1, 2, cvu

1=

The orthogonal polynomials can be computed recursively by means of a

three-term recurrence relation
£3+1, x) = (x - a(J))xe(3, x) = p(IIXE(3-1, x), § =0, 1, 2, ... (4)

The recursion begins with £(0, x) = 1, and b(0) = 0. The coefficients
a(j) and b(j) are determined by

i=n .

a(Jj) = suM(pixxixf(J, xi)»@)/w(i); 3 =0, 1, 2, ... (52)
i=1

b(3) = w(3)/w(3-1)3 3 =1, 2, 3, ... . (5b)

The coefficients c(j) in (3) can be computed as

i=n
c(3) = suM(pixf(j, xi)xyi)/w(J)
i=1

or - because the polynomial f(j, x) is orthogonal to P(j-1, x) - one also

hagve, except for j = O:

i=n

c(J) = suM(pixf(J, xi)x(yi - P(3-1, x1)))/w(J).
i=1
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This is numerically more convenient, because

R(+1, 1) =yi - P(J, xi)
can be computed having the previous value:

R(J+1, 1) =R(J, 1) - c(J)xe(y, x1).

This holds because the polynomials f are orthogonal such that:

P(J, x) =P(3-1, %) + c(3)x£(4, x).

During the computations the procedure performs the following steps:
first it i1s tried to fit the given data points by means of a polynomial
of order = lower bound, and then order = lower bound + 1 and so on. Each
time the order is increased by one a new polynomial is generated, but
this is easily done because the coefficients c(j) already found are un-
changed (This would not have been the case if an ordinary power expansion

was used.) The sum of squares v(j) (see (1)) is computed (also recursive-

ly) from v(j-1):
v(3) = v(3-1) - w(3)xe(3)»e.

From v(j) the rest variance d(j) is determined
a3) = v(3)/(n-3-1).

When the rest variance decreases, i.e. when
d(m-1) > da(m),

the degree of the approximating polynomial 1s increased by one and (un-

less m = upper bound) a polynomial of degree m + 1 is tried, and so on

until
a(g-1) <= a(3)

in which case j - 1 1s chosen as the degree (provided that J = 1 <= upper
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bound) . This corresponds with

(n-g)xu(3)xe(§)x@ <= v(3-1),
which is used as stop-criterion.

When now a degree k has been chosen the polynomial (3) has to be

transferred into a polynomial (a sum of powers):

J=k
P(k, x) = SUM(C(J)xxxxJ) .
Jjg=1

This is done recursively by means of e(i, j) where e(i, 0) = c(i) and
c(1) = e(i, i+1). The transformation is performed when e(i, Jj+1) 1s ex-

pressed by means of e(i, j). At a certain stage of the proces we have

i=3-1 i=k
P(k, x) = SUM e(i, i+1)xoxi + SUM e(i, J)xf(i-j, x)xxxx]. (6)
i=0 i=3

Wnen we put J =0 and jJ =k + 1 in (6) we get the above-mentioned connec-
tions with c(i) and C(i). Writing (6) for a certain j and for j + 1 we
get a relation containing f(i-j-1, X)Xx. By means of the recurrence rela-

tion (4) we get
£(3, x)xx = £(3+1, x) + a(J)xe(3, x) + b(I)x€(3-1, x)

-which is introduced in the relation determined above., When we equate

terms with a common factor f(i—j, x) we get the recurrence relation
e(1, 3+1) :=e(1, J) - e(i+1, J+1)xa(i-3) - e(i+2, J+1)xb(1-j+1)
where 1 > j > 03 e(k+1, j+1) = e(k+2, j+1) = 0. From this relation the

coefficlents e(i, 1+1) =C(i), i =0, 1, ... , k, are obtained, and they

are the desired coefficients in the power expansion of P(k, x).
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3, Time, and Storage Requirements

Time: (2+k) X n, mS, where k = order of the polynomial obtained, n = the
number of data points,

Storage Requlrements: 3 segments + 25 + 4 X k + 8 X n words, where k =
order of the polynomial, n = the number of data points.

Program text: 20 lines on 2 segments.

4, Test and Discussion

The procedure has been run with some examples,

Example.

A table of y = 0Q-xXX5 with weights p = xxXx2+1. The variance is sum(
px(y-P(x))»2))/(n-0-1)

10 points, 1=6, u=8, order
coefficients:
-2.61591y-3

1.63066-1

2.88315y-1
~1.94733y O
-6.81127y~1

5.13975yp O
-2.3753k4y, O
-4,90519, 0

4.361974 O

8  103%.000 ms

P X v P(x) v-P(x)

1.00490, 0 =7.000005-2 1.680665-6 =1.197519=2 1.2y=2

1.7%3960, 0 8.600004-1 -2.131005=1 -2.04917p-1 -8.2p-3

4.20410,, O 1.79000, O 1.70282, 2 1.70282, 2 6.8y-5

1.096105 0 =3.100004-1 2.83648-3 1.1162143=2 -8.3-3

1.38440, 0 6.200004=1 =7.80762-2 -9.69892p-2 1.9y -2

3,40250,, 0 1.55000, O 4.26933, 1 4.,26938, 1 =5.5,-4

1.30250 O =5.500005-1 4.57231,-2 L.3340L4y-2 2.4y-3

1.14440, 0 3.800004-1 -7.758305-3 9.78251p=3 =1.8-2

2.716105 0 1.310005 O 7T7.503T1% O 7T.50219 O 1.5p=3

1.62410, 0 =7.90000p=1 1.8785ky-1 1.88112p=-1 -2.64-4 variance = 1.20y-3
10 points, 1 =7, u =9, order =8 114.000 ms variance = 1.20,-3
10 points, 1 =8, u =9, order =8 112.000 ms variance = 1.20,~3
10 points, 1 =8, u =9, order =9 121.000 ms
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coefficients:
2.7939Tp=9
2.7959T=9
-6.519264=9
-5.8207T1-9
1.30385,-8
-1.00000y4 O
=1.73750p=8
1.68802,-9
-0.29104,-9
1.00000y O

jo) X
1.00490, 0 -7.00000y-2

0
1.7596Om 0
4.20410,5 O 1.79000y O
1.096105 O =3,10000y-1
1.38440, O
3.,40250, O 1.55000y4 O
1.30250 O =5.50000y =1
1.14440, O
2.716105 0 1.31000, O
1.62410, O =7.90000y~1
15 points, 1 =6, u =8,
coefficients:
-5.63362,-2
2.88497,-2
1.92269, O
-1.7938k4y 0
-7.03926, O
8.64038, 0
2,95869, 0
-1.04081y 1
5.72527y O
P X
1.00490, O =7.00000y-2
1.73960, 0 8.600004~1
4, 20410y 1.79000y O
1.096105 O =3.100005~-1
1.3844o,, 6 .20000;-1
3.40250; 1.55000; O
1.30250y O =5.50000,~1
1o 14440y,
2.71610y 1.310004 O

1.624105 O =7.90000y =1
1.01960y 1.400005-1
2.14490, 1.,07000y O
5.00000; 2,00000y 0

1.01000y
1.68890,

-1.00000-1

0
0
0
0
0
0
0
0 3.800004-1
0
0
0
0
0
0
0 8.30000y-1

v
1.68066,-6

8.60000,-1 =2.13100p-1

1.70282, 2
2.83648,-3

6.20000;-1 =7.80762y=2

h.26955m 1
L,57231-2

3.800000-1 -7.75830,-3

150571 O
1.87850,-1

order = 8

v
1.68066,-6
-2.13100p-1
1.79282, 2
2.83648,-3
-7.807624-2
L.26933 1
h,57231-2
-7.75830y~3
T.50371y O
1.87854 =1
=5.3761T1p=5
L .35907 =1
4.80000y 2
9.999004-6
-2,06964-1

RCSL 31-D129

P(x)
1.68323,,-6
-2.131009=1
1.70282, 2
2.83648,-3
-7.80642,-2
L. 26933 1
4, 57231,4=2
-7.75830y-3
T7.50371y O
1.8758k4,-1

145,000 ms

P(x)
-4.85023,-2
~2.47513-1

1.70294, 2
8.9163h -2
-h-.89320m—2
4 ,26580, 1
1.71621 -2
5.50052;-2
7.55223y, O
1,91326y~1
-2.176214-2
b, 34033~1
4.79998, 2
-3.89867,-2
-2.38302,-1

v-P(x)
-T+50-9
-1.59-9
-2.Tp=9
1.91=9
-O.hm-9
-2.99=9
5-7m'9

v-P(x)
4.9,-2
3.04,-2

-8.64-2
3.50=2
2.9p-2

-6,3=2

-b,9y,-2

=3510=3
2.2=2
1.90=3
1.8m‘5
5°9m'2

301m-2 variance

Page 7/10

variance = 9,004 9
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15 points, 1 =7, u =9, order = 163.000 ms
coefficlents:
3.72529=9
-1.95578=8
3.02680,-8
-7.89296,-8
-6.37956y-8
-1.00000; O
-1.64146,-7
-2,26632,-7
2,112654=7
1.00000, O
P X v P(x) v-P(x)
1.00490,, 0 =7.00000p-2 1.680661-6 1.685935=6 =5.3-9
1.73960p O 8.600005=1 =2.13100p-1 =2.13100~1 4.9y-9
4.20410,, O 1.79000, O 1.70282, 2 1.702825 2 3.0,4-8
1.09610y O -3.10000,-1 2.836L8,-3 2.83649,-3 -1.3,-8
1.384L40, 0 6.200005-1 =7.80762y-2 -T7.80762p=2 6.24=9
3.40250 0 1.550004 O L4.26933, 1 L4,26933, 1 3.04-8
1.30250,y O =5,50000-1 L.57231p-2 L4.572315-2 -1.k4y-8
1.18840, 0 3.800004-1 =7.758304=3 =T.758305=3 2.91=9
2.71610 0 1.31000; O 7.503T13 O 7.50371 O 1.8,-8
1.624105 O =7.90000,-1 1.8785L,-1 1.8785bUy-1 1.59p=8
1.01960, 0 1.40000p-1 =5.376171-5 =5.3760ky=5 =1.4y-0
2.14490, 0 1.07000y O L4,3590Tp=1 4.35907;-1 L4.9y-9
5.00000, O 2.00000, 0 4.80000, 2 4.80000, 2 6.04-8
1.01000; 0 =1.00000y=-1 9.999005-6 1.000513=5 =6.19-9
1.68890,, 0 8.300004-1 -2.0696ky~-1 -2,0696Lky-1 5.24y-9 variance 0.00y, O

176.000 ms variance = 0.004 O

15 points, 1 =8, u = 10, order =9

171.000 ms variance = 0,004 O

15 points, 1 =4, u = 11, order =9

end
The employed program:

begin integer i, i1,n,k,j,h; real x,v,t,t0,q,s,2; array C(0:12);
real procedure p(dum); integer dum;
begin
x:= (31X1) mod 101x(3/100)~1;
X9 =305 3
1+xX0¢2

ye
b=
end D3

for ni= 10,15 do begin
il1:i= =13
for k:= 6 step 1 until 9 do begin
t0:= time+25600;
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for j:= 0, j+10 while t < t0 do begin
1:=n; £1t(1,p(1),x%,v,Cok,k+2); ti= time
end;
te= (£-10+25600) /33
write(out,<:<10><10>:>,n,<: points, order:=>, i, <<  4dd.000>,
O t,<: msD>);
if 1 > 11 then begin
write(out, <:<i0O>coefficients::>);
for ji:= 0 step 1 until i do
write(out,<:<10>:>,<<-d.dddddy,-a>, C(J));
write(out,<:
D P v P(x) v-P(x) >);
end 1 > 11;
8:= 03 J:=1;
for 1:= 1 step 1 until n do begin
a:= p(1) ; a:= C(1);
for hi= j - 1 step -1 until 0 do a:= axx+C(h);
if j > 11 then write(out,<:<10>:>,<<-d.dddddy-d>,q,X,V,a,
<< -d,dy-3>,v-3) 3
s:= s + (y-a)x&xq
end 1
write(out,<<-d.dd,~-d>,<: variance:=>,
1f n =j+1 then 949 else s/(n-j-1));
i1:= ]
end k;
end n

end

5. References

[1] Forsythe, George E.: Generation and Use of Orthogonal Polynomials for
Data-Fitting with a Digital Computer. Jour. Soc. Indust. Appl. Math.

5 (1957) pp. T4-88.
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6. Algorithm

external procedure f£it(i,pi,xi,yi,C,1,u); value 1,u;
integer i,1,u; real pi,xi,yi; array Cs
begin integer Jj,k,n;
real fj,r,rf,f,fx,f1,a,b,c;
array F,F1,X,R(1:1),4,B(0:u);
ni=i; ri=rfi=fi=fx:=b:=0;
for i1:=1 step 1 until n do begin
£3:=F(1) s=sart(pi); Fi(1):=0;

X(1) s=xi;
| R(1) :=yixfj; ri=r+R(1)xx2; rfi=rf+R(1)X£3;
. fa=P+ExF);  Fxre=Lx+X(1)XEIXE]

end i

for 1:=0,k+1 while k<l | (i<u A fxr<(n-1)xrfxrf) do begin
ki=t; a:=A(k):=fx/f; c:=C(k):=rf/f;
f1:=f; ri=rfi=fi=fx:=0;
for j:=1 step 1 until n do begin
R(J) :=R(J)-F(J)xc; ri=r+R(J)0e;
£3:=2(X(3) -a)F(§)-0>®1(3) s F1(3):=F(3); F(J):=L5;
rei=rf+R(j)xPy; Fi=f+fixfi; Exr=fx+X(J)XEIXEJ
end J;
be=B(k) :=f/1
end i;
‘ if fxa<(n-k-1)xrfxrf then C(k+1):=rf/f else ki=k-1;
1:=k+1;
for 1:=0 step 1 until k do begin
o(k) :=C(k) -A(k-1)xC(k+1) ;
for j:=k-1 step -1 until 1 do c(3) :=C(3)-A(3-1)xC(3+1)-B(3-1)xc(5+2)
end 1

end fity end
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Gamma function, gemma(z)

Function and parameters.

gamma(z) espproximates the geamma function in the range

Procedure heading:
real procedure garma(z);
value z; real z;

Procedure identifier:
gamme, : (real)
approximated function of an argument not
resulting in under- or overflow, in which
case gamma is undefined.

Call parameter:
z : (real or integer)
argument, values equal to nonpositive
integers and values exceeding the range
above will give floating point under-
or overflow,.

Method.,

The value of gamma(2+x) is approximated in the range

0<=x<=1 by a rational function given as approximation 5231
in (1) with the numerator degree 6 and denominator degree 3.
For arguments outside the basic range 2<=z<=3, successive
multiplications or divisions are performed according to

the recurrence formula:

gammsa( z+1) =zXgemma(z)

The value of the argument is not controlled in any way.
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Accuracy, Time- and Storage Requirement.

Accuracy.

The error estimates given below assume the argument to be
exactly represented.

Outside the range -2<z<7 the increment in gemma(z) caused
by an increment of one unit in the last binary place of z
will be greater than the computational error of the proce-
dure in any case.

The error estimates are given as functions of:
u:= abs(entier(z-2))+6

max rel error : uxX2,9-11
safe upper bound for the relative error
of gamma(z).

rel mean error: sqrt(u)xi.2p-11
relative mean error (standard error) of
gamma(z) assuming a random distribution
of rounding errors and mantissas of
floating point numbers.
The probability of a relative error greater
than 3X(rel mean error) is less than 0.01.,

Time Requirement.,

Approximate cpu-time: 2z>=2: 720 + entier(z-2)x81 usec
z< 21 720 + entier(z-2)x72 usec

Storage Requirement:

Codelength: 1 segment,

Typographical length: 47 lines incl. last comment.

Test and discussion.

The procedure has been compared with a double precision
procedure and with values of the gamma function given in (2).
The results are in accordance with the theoretical estimate
of the mean error.
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Simple testprogram with data and output:
begin

comment: here the procedure is copied (without the first
%3 lines) unless it is already translated as an
external;

real z, g;
write(out,<:<12>
z gamma(z)<10>:>) ;
AGAIN:
overflows:=underflows:=0;
read(in,z);
write(out,<:<10>:>,<<-d.dd ddd ddd dddy-ddd>, z);
if z>1000 then gotc FINISH;
g:=gamna(z) ;
if overflows>0 then
write(out, false add 32, 15, <:overflow:>)
else if underflows>0 then
write(out, false add 32, 15, <:underflow:>)
else write(out,

<< -d.,dd ddd ddd dddy-dda>, g);
goto AGAIN;
FINISH:
end;
datas 0.5, 1, 10, 301, 302,-0.5,-300.9,-301.9,1001
output:
z gamma( z)
5,00 000 0CO 000y -1 1.77 245 385 088, ©
1,00 000 000 000, O 1,00 000 000 000y O
1.00 000 000 000, 1 3.62 880 000 000, 5
3.01 000 000 000, 2 3,06 057 512 208y, 61k
3.02 000 000 000, 2 overflow
-5.00 000 000 000y, =1 -3.54 490 770 1764
-3.,00 900 000 016, 2 -1.95 307 772 968, -616
-3.01 900 000 0164 2 underflow
1.00 100 000 000, 3

end

5. References,

(1) J.F.Hart and oth,:
Computer Approximations,
John Wiley and Sons, 1968, p.130-136

(2) M,Abramowitz and I.H.Stegun:
Handbook of Math. Functions,
National Bureau of Standards, 1965, p.253-275.



; Algorithm.

zamma = set 1
gamms, algol
external

real procedure gamma(z);
value z; real z;

begin
real h;
h:=1,0;
if z>2.,0 then
begin
for z:=2-1.,0 step -1,0 until 2,0 do h:=hXz;
Z2:=Z=1.0
end
else if z<1.,0 then

begin
for z:=2 step 1.0 until 0.0 do h:=h/z;
h:=h/z/(z+1.0)
end
else begin h:=h/z; z:=2-1.0 end;
gamma:=(((((((+.039 301 346 L19)xz+.142 928 007
+1,09 850 630 453)xz+3,36 95k 359
+12.8 021 698 112)xz+22.9 680 800
+43.9 L10 209 189)/
((((+1.00 000 000 000)%z=T.15 075 063
+4,39 050 47h 596)xz+43.9 410 209
end gamms;

comment:

garma(z) approximates the gamma function in the
-301<z<301 ,

Procedure identifier:
gamma, ¢ (real)

approximated function of an argument not
resulting in under- or overflow, in which

case gamme is undefined.

Call parameter:
z : (real or integer)

gamma - 4 -

9L9) xz
131) Xz
836) xz

299) Xz
191) xh

range

argument, values equal to nonpositive

integers and values exceeding the range

above will give floating point under-

or overflow,
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1. Function and garameters -

Let a denote a’real symmetric matrix of order n, and let év(1),
ev(2), «s. , ev(n) denote the eigenvalues for this matrix arrenged in
an increasing sequence, that is ev(1) < ev(Jj) whenever 1 < Jo

Let ml and m2 be prescribed integers so that 1 <ml <m < ne

The procedure householder calculates the eigenvalues ev(m1),
ev(mi+1), cee , ev(m2) and, if wanted the corresponding eigenvectors.

Procedure head:

householder(n, ml, m2, a, ev, x, epsl);
value n, ml, m2, epsi;

real epsi;

array a, ev, X;

integer ml, m2, n;

Call parameters:

n : the order of the given matrix;

ml : an integer, 1 < ml < n, denoting the number of the small-
est eigenvalue to be calculated,

m2 ¢ an integer, ml < me <n, denoting the ﬁumber of the greatest
eigenvalue to be calculated.

a : a real array a(1l:nx(n+1)/2);
a must contain the lower triangular part of the given sym-
metric matrix in the following way:
the diagonal element number i is stored in a(ix(i+1)/2)
1=1,2, eee , n}
the element in the i’th row and j’th column where j < i is
stored in a((i-1)xi/2+j).

Call/Return parameters:

eps’ : at entry epsl is positive or negative.
1f eps1 is positive the eigenvectors are calculated. The
absolute value of eps1 i1s a quantity affecting the precision
to which the eigenvectors are computed (See part 2.2);
at exlt eps1 denotes an upper bound for the error in any of
the calculated elgenvalues.




Return parameters: -
ev : a real array ev(mi:m2) containing the calculated eigenvalues.
x ! a real array x(ml:m2, 1:n+2); if the elgenvectors are cal-
culated, they are stored in x in such a way that x(k,‘l), cos
x(k,n) denotes the eigenvector corresponding to ev(k);
(for each k x(k,n+1) = x(k,n+2) = 0; these quantities are
only introduced for ease of programming) .

2, Method

' The method consists of four parts, tridlsgonalisation, calculation of
elgenvalues, calculation of elgenvectors, and backtransformation.

2,1, Tridiagonalisation

A matrix is said to be on tridlagonal form, if all elements that are
not in the diagonal or just over or under the diagonal, are zero.
Let A1 be the given symmetric matrix of order n.

A1 1s transformed - by n-2 orthogonal transformations - to a matrix
on triangular form.

Each transformation Pi(i =1, 2, eee , n-2) 1s of the form

Pi =71 - 2wiw$

® where I is the ldentity-matrix and wf 1s the row:

wy = (wi’1, Vi,20 et s Wy in g5 O een, 0).

and LA the corresponding column,

I—ne.t Ai+1 = PiAiPi i = 1, 2’ eee n-2
For each 1 the terms Wi,]’ wi’e, ces Wi,n_i are chosen in such g
way that

0 T

1 L) Wi Wi - 1

0

27, In Ai+1 the elements in the rows number n, N=1, «ee ,
n-i+2 are the same as in Ai. The row number

h-i+1 is put on ’triangular’ form,




Let the elements of Ai be denoted a,.. Put

i
t=n-1,
' 52 2 2
SIEma = 8 q,1 * Bpg,o toeee F g g

hy = sigma + B, sqrt(sigma).

(+ is used if g > 0 else - is used,)

t+1,t =
It comes out, that wi 17 wi Dy eee wi " must be chosen as follows

= (ag,q, ¢ * sart(sigma)) /sare(2n,).

/sqrt(2h ) 3

w 1, 2, see o t-1o

1,5 © %41,
By introducing

= (a Be41,10 B4e2,20 00t 2 By toqr Bt

+ sqrt(sigma), Oy eee 5 0).
one will obtain

u,u T
P, =T - & i
1 h
i
and by introducing the vectors Pys 9y and the scalar ki as follows
Py = Ajuy/hy ' ‘

T

kg = uy"p,/(2n))

Y =P - kg
a rather simple calculation will show that

T T

B =8 - 097 - gy
s8ince Ai+1 is symmetric one is only calculating the lower triangular
Part of the matrix,
The above equation is used for the calculation of the first t rows
(t n-i) in Ai+1' The row number t+1 1s on triangular form with the
diagonal element unchanged from Ai and the element

(t+1,%) = B4q ¢+ sqrt(sigma). The rows number t+1, +ee , n are ac-

cording to 2° - unchanged from Ai




-4 -

At entry the lower trilangular part of the given matrix is stored in

the array a. For each 1 the array a 1s used only to store the lower
triangular part of the first t rows of Ai+1' The other rows are on
triangular form, and the diagonal and subdiagonal elements from these
rows are stored in to arrays c and b.

The row number t+1 of the array a is used to store information enough
to determine the transformation Pi‘ Now, Pi is determined by the vector
uiT and the scalar hi' By replacing in the array a the element a%+1’t
by B4t t + sqrt(sigma) one obtain tha; the non-zero elements of the
t+1 row in a are exactly the vector U Furthermore from these ele-
ments hi can be determined. Recalling that

hy = sigma + & sqrt(sigma).

- ttl,t
and denoting by sigma1 the square-sum of the elements in uiT one will

obtain

2 2
T T B, b

sqrt(sigma) = 2h, .

sigma, = + (o, + sqrt(sigma))? =

1 - 24,1

2sigma + 2a,_b+1
So by = sigma1/2.

For further information about this part see [4], [6].

2.2, Calculation of elgenvalues

This is based on the following theorem:

let Cis eee 5 Cp denote the diagonal element and b2, ces bn the sub-
diagonal elements of a symmetric triangulator matrix. For each real
nunber x0 let the sequence t.l(xo), t2(x0), ceo s ‘tn(xO) be defined -
if possible - as follows

t1(x0) c, - x0

t,(x0) = (¢; - x0) - v5/6, (x0).  1=2, ..., n.

Let h(x0) denote the number of negative ti(xo).
Then h(x0) is equal to the number of eigenvalues less than or equal to

X0,

Assume that the eigenvalues are arranged in an increasing sequence and
that the k’th eigenvalue, ev(k), is to be calculated. Let x1 and x2 be
real numbers satisfying x1 < ev(k) < x2. Such numbers exist, e.g. if
norm is denoting the infinity norm of the matrix then x1 = =norm and
x2 = norm will do,



Let x0 = (x1 + x2)/2. -

n(x0) is calculated by using the sbove mentioned formular for ti(xo)
1=1,2, eeo , N,

A new pair (x1, x2) is defined in the following way:

1f h(x0) >= k then x1:= x1 and x2:= x0 else x1:= x0, x2:= x2,

For the new pair the procedure is repeated., This is done as long as
X2 - x1 > 2%,-10X(abs(x1) + abs(x2)) + epsi where epsl is a prescribed
quantity.

At the end one puts ev(k):= (x1+x2)/2.

Since abs(x1) and abs(x2) always are bounded by norm, it follows that
’ the error in any eigenvalue is bounded by UxXy-10xnorm + epsi. This
nunmber is calculated and stored in epsi.

When calculating the k’th eigenvalue, h(x0) is determined for some

x0, The value of h(x0) gives information not only about the k’th

eigenvalue, but in general about the eigenvalues of the matrix. By

introducing an array p(i) satisfying for each 1 p(i) < ev(1) this in-

formation is stored as follows:

if p(h(xb) + 1) < x0 then p(h(x0) + 1):= x0;

when calculating the k’th eigenvalue one is at the start putting
x1:=max D(1), ees , D(k) ; x2:= ev(k+1);

For further information about this part see [2], [5], [6].

’ 2.3, Calculation of ei§envectors

The matrix is as m 2,2 a symmetric matrix on triangular form with
diagonal elements Cys» Cps see ¢ and subdlagonal elements bos eee bn.
Let ev denote a calculated eigenvalue.
Finding an eigenvector corresponding to ev is equivalent to solve the
system

(c1 - ev)x1 + DX, =0

box, + (c_I - ev)x2 + byXz =0

. (1)

bn-1xn-2 + (cn_.1 - ev)xn_1 +bx =0

n'n
‘ box .+ (cn - ev)xn =0

where (x1 s eee xn) denote the wanted eigenvector.
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A natural way to solve this system would consist in putting x1 =1
finding X5 from the first equation, x3 from the next and so onj but,
as shown in [4], a method like this will often - for several reasons
- glve hopeless, inaccurate results.
Using a method developed by J.H. Wilkensan ([4]), one is instead sol-
ving a system derived from (I) by replacing the zeros on the right
side by suitable quantities d1, cse dh'
These equations are solved by successive elimination of the variables
Xis Xpy ese xh_1, but some kind of pivoting is necessary; for each i,
X, is illiminated from the equation, which has the numerical largest
coefficient in X, more precisely, at the first step we are considering
the two first equations

(c1 - cv)x1 + box, = d,

byx, + (c2 - ev)x2 + b5x5 =d,.
The equation which has the numerical largest coefficient is X, is de=-

noted
= a7
DXyt ¥y + Xy = 4

from this equation x, is calculated and the expression inserted in the

1
other equation. The so obtained equation in X5 and x3 is denoted

=47
u2x2+ v2x3 da
At the 1’th step we are considering the two equations

= 3°
ux; + V%541 d;

- ev)x,,, + !

1+1 bi+1xi+2 =
again the equation which has the numerical largest coefficient in Xy
is denoted

bi+1xi + (ci+1 141°

= g2
Py¥y ¥ QX T X0 =4

from this equation Xy i1s calculated and the expression inserted in the
other equation.
In this way we obtain the following system:

22
pixi + qix2 + rix3 d1

2
PoXo * QX5 + Tox) = 43

= d7°?

pi-2xn-2 + qn-2xn-1 * vh-2xn d'n-2
=4d°°
pn--'lx'n-1 + qn-1xn dh-]

Pn¥p = dﬁ,‘
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We now assume, that d1, d2, coe dn were chosen in such a way, that
d;’, dé’, cee ’,d.;l, are all equal to one,

This system is solved in the natural way and the obtained vector
normed. (and sgain denoted Xys oo s xh). It can be proved ([4]) that
this vector will usually be a good approximation, at least it will
never be hopeless inaccurate,.

A vector with sufficient accuracy is obtained by solving the above
system once agaln, but replacing the terms 42°, ... , di’ by the coor-
dinates in the first approximation Xys eoe 5 X o

For further information sbout this part see [3], [4], [6].

‘ 2.4, Backtransformation

The problem is to transform the calculated elgenvectors (for the tri-

angular matrix) to elgenvectors corresponding to the original matrix.

Recalling that the original matrix was transformed to a matrix on tri-
diagonal form by n-2 orthogonal transformations P1, P2, ces Pn-2’ it
easlly follows, that if zn_1 is an eigenvector for the triangular ma-

trix then

P1P2... Pn-2 Zn-1 is an eigenvector for the original matrix,

Put'ting P.P XX

i7 14+

2
n-2"n-1 i
one will obtain Pizi +1 = Zi

and the wanted vector Z1s is calculated in n-2 steps. Using the nota-

=2,

tion from 2, 1 (tridiagonalisation) one will get

uuT uul'_Ll
, 171

z, =2 R (because P =1 -
i i+1 Ei i+ Ei *

The non-zero elements of u; are stored in the t + 1 row (t =n - i) of
the array a and hi = sigma/2, where sigma denotes the square-sum of the
elements in u, (see 2.1).

Accuracy, Time and Storage Requirements

Accuracy: The accuracy in the elgenvalues depends on the value of the
call parameter epsi,
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It easily follows from_the description of the method part
2.2, that the error in any elgenvalue is bounded by

b % =10 X norm + epsl where norm denotes the infitity norm
of the triangular matri;.

For further information on this part see 4, Test and Dis-

cussion,

Time This depends on the wanted accuracy, that is the term epsi,
and first of all on the order n of the matrix equation., Ge=-
nerally the execution time will be proportional to nxx2,

Using eps1 = =10 and denoted by

I : The execution time when g1l eigenvalues and all eigen-
vectors are calculated

IT : The execution time when all elgenvalues but no eigen-
vectors are calculated.

III: The execution time when only the greatest eigenvalue and

the corresponding eigenvector are calculated,

the greatest execution times (in sec.) obtained were as follows:

Order of
the matrix I II III
5 0.32 0.25 0.09
10 1.32 0.89 0.28
15 3,22 1.99 0.68
20 6.30 3.63 1.29
25 10.75 5.91 . 2.6

The following example illustrates the connection between the execution
time and the value of epsl, where all eigenvalues and eigenvectors for
a matrix of order 20 are calculated:

eps] = o=l =5 0~6 =7 0=8 -9 =10
Time = L,88 5.15 5ol 5Tk 5.4 6,16 6,30
Storage requirements: 9 segments of program

Typografical length 149 lines



4, Test and Discussion -

The procedure has been tested by several matrices, essentially the
following four types (denoting by a(i1j) the element in the i’th row
and the j’th column and by n the order of the matrix in question):
Type I : a(i,3) =2a(j,i) =n - 1 + 1, This matrix has well-separa~-

ted eigenvalues given by
1

- 121, 2, eee , 1
2(1-003(255; pi)

ev(i) =

Type II : a(i,J) = a(j,i) =1 for all i, j.

All eigenvalues are O except one which is n
Type IIT : a(i,J) = a(j,i) =0 for 1 = j else 1.

All eigenvalues are -1 except one which is n-1.
Type IV : a(i,j) =0 for j < i-1 and j > 1+1.

a(i,1-1) = a(i,i+1) = 1.
a(1,i) = abs(Egl -i) 1=1,2, .u. , n.
The matrix has a nunmber of extremely close, but not coinci-
dent eigenvalues,
When all eigenvalues and all eigenvectors are calculated, a measure
for the error for the whole procedure is obtained by checking the
ldentity Ax_ = ev(k)xk for each k.
Finding the largest deviation in any coordinate and using es testnorm

the mean of these k numbers, the following results are obtained:
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Matrix Value of epsi
, o=l 0=6 =8 0-10

Type I order 10 3e1p=5 9.0p-7 1.5p-8 3e29=9
Type I order 20 1oly-5 1.55-6 1.6p=8  3.9,-8
Type I order 25 2,0p-l 2,16 3,2p=8 2,18
Type II order 10  1.2p~5 3:30=T  1.9p=9  3.8yp-10
Type II order 20 3,5¢=5 768 3¢1p=9 2,0p-10.
Type II order 25 4.55-5 3.5p=T L,6p-10  6.4y-10
Type III order 10 1.25-5 9¢3y-8 1.4y-0 1eTp=10
Type III order 20 1,25=5 64 Tp-8 6.35=-10  L,3,-10'
Type III order 25 5.4,-6 7+0yp-8 1.5p-9 6.05=10
Type IV order 11 2,1y=3 9.8,=6 2e1p=T 9.1p~9
Type IV order 15 6,7,=3 6.8y-5 6.0y=T TeTo=T
Type IV order 21  1,5p=2 1.9p=3 6.3p=8  U,1y-6

The jacobi algorithm solves almost the same problem as houdeholder;
The only difference is, that the jacobil procedure necessarily calcu-
lates all the elgenvalues (and eigenvectors), while it is possible
with the householder procedure only to calculate some of the elgenva-
lues (and eigenvectors). Calculating all eigenvalues and all elgenvec-
tors and using in householder epsl = ;-10 a comparison betﬁeen the two

Procedures gave the following results:
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Matrix Testnorm - Testnorm Time % Time
for for for for

householder  jacobi  householder jacobi

Type I order 5 1.b4p-9 0.84-9 0.35 | 0.27
Type I order 10 3e29-9 L.0yp-9 1.35 = 2,02
Type I order 15 2.2,-8 1.0y-8 | 3.29 ‘ 6.61
Type I order 20 3,58 2,2,=8 6.30 = 14,92
Type I order 25 2,1,-8 3,2,-8 ‘11,12 29,08
Type II order 5 7+0p=10 5.0p=10 0.20 % 0.07
Type I order 10 1.65-10 0.1p=10 0.53 |  0.22
Type II order 15 4,0y-10 1.0p=10 1.13 0.55
Type II order 20 44,5410 1.69=10 .98 0.97

Type II order 25 7 olyy=10 1.25=10 3. | 1,38

Remenbering that the matrices of type I have Well-separatéd eigenva~
lues, and that the matrices of type II have all but one eigenvalue
equal to zero, one might draw the following conclusion:

The procedure householder is to be preferred in case of matrices with
separated elgenvalues, because of higher speed, or in cases, where on-
ly one or a few eigenvalues are wanted, ;

The procedure jacobl is to be preferred in case of matrices with coin-

cident eigenvalues.
Example

We consider a symmetric matrix of order n. The term mi deﬁotes the
number of the smallest, m2 the number of the greatest eigenvalue to be
calculated. The eigenvectors are calculated only if the térm epsl 1s
positive. Input is the value of the quantities n, ml, m2, Eps1 and the
lower triangular part of the matrix. ‘
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Testprogram -

begin
integer n, m1, m2, i, k3
real epsl;
boolean vect;
read(in, n,mi,m2,eps1)3 vecti= eps > 0;
begin
array a(1:nx(n+1)/2), x(mi:m2, 1:n+2), ev(ml:m2);
for 1:= 1 step 1 until nx(n+1)/2 do read(in, a(i));
householder{n, mi,m2,a,ev,x,eps1);
‘ write(out, <:Elgenvalues <10><10>:>);
for 1:= m] step 1 until m2 do
write(out, <<dd>, i, <<  -dddd.dddddddda>, ev(1l), <:K10>:>);
if vect then
begin
write(out, <:<10> Eigenvectors<io>:>);
for k:= ml step 1 until m2 do
begin
write(out, <:<10>:>, <<dd>, k, <:<10>:>);
for 1:= 1 step 1 until n do
write(out, <<  -dddd.ddddddddd>, x(k, 1), <:<10>t>);
end k3
end vect;

. end;

end;

For the matrix of order 5: 5 L 3 2 1
L 6 o 4 3
> 0 7 6 5
2 4 6 8 7 ‘
T3 5 7T 9

using m1 = 3, m2 = 5 and epsl = ;-8 the complete output is:

Eigenvalue
3 4,848950119
o ! 7.513724158

5 22,406875316




Eigenvectors

3
-0.547172796 -
0.312569920
-0,618112076
0.115606593
0.4554937h6

-0,550961958
-0,T094L033T
0.340179132
0.,083410953
0.265435679

0.2L45877938
0.302396039
0.453214523
0.577177152
0.55638L4584

end

For the matrix of order 10: 10 9 8 7 6 5 L4
9 9 8 7 6 5 4
8 8 8 7 6 5 L
T 7 7T 7 6 5 4
6 6 6 6 6 5 L
5 5 5 5 5 5 Lk
T T T T T T
3 3 3 3 3 3 3
2 2 2 2 2 2 2
11 1 1 1 1 1

using m1 = 1, m2 = 10 and epsl = -;~-10 the complete output is:

Eigenvalues

0.255679563
0.273786762
0.307978528
0.366208875
0.465233088
0.643104132
1.000000000
1.873023068

048917339

« 766068656

OOV OO\ FWND =

—

end
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6. Algol text

householder = set 9
householder = algol
external

procedure householder(n,ml,m2,a,ev,x,eps1) ;
value n,ml,m2,epsi;

real epsi;

array a,ev,X;

integer m1,m2,n;

begin

integer 1i,J,k,10,jO0,11,%,10,t1;

real h,s,k1 sigma,at,bt,eps,bi,bi1,norm,x1,x2,x0,u,v;
array c(]:nS,r(O:n),p,b,q(1:n+1),m(1:n+2);

boolean vect} :

the eigenva-

of bisection

ric matrices,

T .

g



eps:=0; j:=nX(n+1)/2;

for i:=1 step 1 until j do eps.=eps + abs(a(1));
eps:=(3y-11)xeps/J;

for 1:=1 step 1 until n-2 do

begin
tim-1; £0:=tX(t+1)/2; t1:=t0 +t;
sigma:=0;
for ke=tO+1 step 1 until t1 do sigma:=sigmat+a(k)xx2;
ats=a(t1);

b(t+1) :=bt:= if at>0 then-sqrt(sigms) else sqrt(sigma);
if abs(bt)>eps then
begin
h:=sigma~atxbt; a(t1):=at-bt;
for j:=1 step 1 until © do
begin
comment computation of pij
s3=0; jo:= (J-1)x3/2;
for k:=1 step 1 until j do s:=s+a(jo+k)Xa(t0+k) ;

for ki=j+1 step 1 until t do s: s+a(kx(k-1)/2+J)Xa(to+m),

a(3) s=s/h;
end j;
k1:=0;
comment computation of ki
for j:=1 step 1 until + do ki1:=ki+a(t0+j)xa(J);
k1:=k1/2/h;

comment computation of qij |

for j:=1 step 1 until + do q(J) :=q(j)-ki1xa(to+j);

for j:= 1 step 1 until t do |

begin
comment computation of the i+1 matrix;
30:=(3-1)x3/2;
for k:=1 step 1 until j do
a(30+k)--a(30+k)-a(t0+a)xq(k)-a(t0+k)Xq(J),
end j;
end abs(bt)>eps;
end 1;
for i:=1 step 1 until n do c(i):=a(ix(i+1)/2);
b(2):=a(2); b(1):=(n+1):=0;

comment the eigenvalues ev(mi),ev(mi+1), . . ,ev(m2)
are now calculated;

vect:=(if eps1<D then false else true);
eps1:=abs(epsi);
norm:=0;
for 1:=1 step 1 until n do
begin
h:=abs(b(i))+abs(c(1))+abs(b(i+1));
if norm<h then norm:=hj
a(i) :=b(1)xx2;
end i3
for i:=m1 step 1 until m2 do p(i):= -norm;
for k :=m2 step -1 until ml1 do
begin
comment computation of the k eigenvalue;

- 15 =



for i:=m1 step 1 until k-1 do if p(1)>p(k) then p(k):= p(
x1:=p(k); x2:= ( if k<n then ev(k+1) else norm);
for x0:=(x1+x2)/2 while x2-x1>2Xy-10X(abs(x1)+abs(x2))+ep
begin
h:=03 s:=1;
for 1:=1 step 1 until n do
begin
st=c(1)-x0-(if s<>0 then q(i)/s else abs(b(1))xy10);
if s<0 then hi:=h+1}
end 13
if h>=k then x2:=x0 else x1:=x0;
if p(h+1)<x0 then p(h+1) :=x0;
end x0;
ev(k) :=x0;
end k3
eps1:=1/2Xeps 1+lxy-10%n0rm;

if wveet then
begin
comment computation of the elgenvectors corresponding
to the calculated eligenvalues}
eps:= (3p-11)xnorm;
for k:=m? step -1 until mt do
begin
comment the pivotal equations are calculated;
us=c(1)-ev(k); v:=b(2);
if abs(v)<eps then vi=eps;
for i:=1 step 1 until n-1 do
begin
bis=b(i+1); if abs(bi)<eps then bii=eps;
bil:= $1+2), if abs(bi1)<eps then bil:=eps;
if abs(u)>sbs(bi) then
begin
21) s=u3 q(i):=v; r(i):=0;
i+1) :=bi/u;
us -c(i+1)-ev(k)-m(1+1)XV, vi=bil; .
end .
else
begin
pg ; :=b1; q(1):=c(i+1)-ev(k);
i):=bi1; m(i+1):=u/bi;
us=v-m(i+1)X(c(i+1)~-ev(k));
vi=-m(i+1)Xbi1;
end;
end 1;
$n+1) :=q(n) :=r(n) :=x(k,n+1) :=x(k,n+2) :=h:=0;
):=if abs(u)>eps then u else eps;
for it=n step -1 until 1 do
begin
comment the first approximation;
x(k, 1) :=(1-q(1) xx(k, 1+1)-r(1)><x(k 1+2)) /p(1) 5
h~=h+x(k i)xx2;
ends

1) s

51 do

- 16 -




he:=sqrt(h);

for i:=1 step 1 wntil n do x(k 1): =x(k, 1) /h;
h:=03

for i:=n step -1 wntil 1 do

begin

comment the second approximation;

x(k, 1) =(x(k, 1) ~a(1) Xx(k, 1+1) -r( 1) xx(k, 1+2) ) /p(1) ;

h-=h+x(k,1)xx2,

end;s

h:=sqrt(h);

for 1:=1 step 1 until n do x(k 1) :=x(k,1) /h;
end k3

comment the calculated eigenvectors are now transformed

to elgenvectors corresponding to the original matrix;

for k:=m1 step 1 until m2 do
begin
for j:=m-2 step -1 until 1 do
begin
ti=n-J; t0:=tx(t+1)/2; sigma:=0;
for i:=1 step 1 until t do sigma'-sigma*a(t0+i)xxa,
if sigma<0 then
begin
8:=0;
for 1:=1 step 1 until t do s:=s+a(t0+1)xx(k,1);
st==2Xs/sigma;
for i1:=1 step 1 until + do
x(k, 1) s=x(k, 1) +sxa(t0+1) ;
end sigma<>0;
end j;
end k3
end vect;
end;
end;

- 17 -
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boolean procedure invertsym(n, A);

1. Function and parameters,

boolean procedure invertsym(n, A);

value n integer n; array Aj

Function

The procedure inverts a symmetrical n X n matrix M(1:ﬁ, 1:n) of
which the lower part is stored as a one-dimensional array A(]:nx(n+1)//2)
so that

M(r, s) =M(s, r) = A(xx(r-1)//2 + &) for 1 < $ <r<n.

On return the inverse of M is found stored in A and the prdcedure is gi-
ven the value true. This is only in case the call of the pfocedure has
been a success, If it is a failure (i.e., if M is singular) the procedure
has the value false, but even in this case the result M’ found in A is
with meaning, since M’ will have the property that M’ X B is a solution
of the matrix equation M X X = B whenever this equation hag a solution.
Moreover, the degenerate elements may be found as those diagonal ele-

ments for which the corresponding rows and columns are idertically zero.
Parameters

call parameter:
n integer. The order of M

call and return parameter:

A(1:nx(n+1)//2) array. Must on entry contain the lower half of M,
so that M(r, s) = M(s, r) = A(rx(r+1)//2+3).
At return A will contain the inverse of M

stored in the same way

return parameter:
invertsym boolean procedure, It is false if M is singular

else true.




2. Mathematical Method.

The methed is by Gauss-Jordan elimination using pivotﬂng n times, In
each step there are 3 cases, j
Case 1: There is an index r, which has not been used as pi@ot index in an
earlier step and for which the diagonal element M(z, r) is%# 0, Let E be
the set of all such indices. A new pivot index is selected from E in the
following way: For each r in E the quantity |
m(r) = max abs M(r, s)/abs M(r, r) r in E
(maximm over s in E, s % 1) |
is computed, and the pivot index r is chosen arbitrarily ambng those in-
dices which make m(r) attain its minimum. A pivoting is car&ied out with
M(r, r) as pivot element, and in a boolean array B(1:n) the r’th element
is set to false to indicate that this index cannot be used &n later steps.
The pivoting means that the elements M(i, k) are replaced by
M(i, k) - M(i, »)xM(r, i)/M(r, v) fori $#rAk +r

M(r, k¥)/M(r, r) fori$#rAk=r
- Mi, r)/Mr, r) fori=rAk$r
1/M(r, r) fori=rAk=r

The result of this transformation i1s not a symmetrical matrix but
M(r, s) = -M(s, r) if r has been pivot index, aﬁd s has not
(i.e. B(r) = false, B(s) = true)
M(s, r) in all other cases,

Only the lower part of M is stored in 4, since the uppér part may be
reestablished by means of B,
Case 2: M(r, r) = 0 for all r not used as pivot indices before, but there
are elements M(r, =) % O outside the diagonal (i.e. for r % s) for some r
and s not used as pivot indices before. In this case Ezg new pivot indices
r and s have to be chosen, First s is chosen arbitrarily am@ng such pos-
sible indices. Next to choose r, let E be the set of the indices r $ 5
not used before as pivot indices and for which M(r, s) # O.iFor each r in
E the quantity :

n(r) = max abs M(r, k)/abs M(r, s)

where k runs over all indices # r and £ 5 not used as pivot indices. Now
r is chosen such that m(r) attains its minimum (which possiﬂly is zero).
In the boolean array B the r’th and s’th element are set toffalse to ine-
dicate that these indices may not be used in the following ﬁteps. Now =2
pivoting is carried out with NKr, s) and M(s, r) as pivot eﬂements. This
means that the matrix elements M(i, k) are replaced by




|
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M(1, k)-M(i, r)>xM(s, k)/M(r, s)-M(i, s)xM(r, k)/M(r, s) for idrAddsAk$rAkis

M1, r)/Mr, s) . for ifrAk=s
-M(r, k)/M(r, s) for i=sAk#r
M(i, s)/M(r, s)  for k=rAifs
-M(s, k)/M(r, s) ~ for i=rAk#s
1/M(r, 1) . for 1=rAk=s

As in case 1 the result is not a symmetrical matrix, but thé upper part
may be reestablished in the same manner from the lower part,

Case 3: There are no matrix elements M(r, s) #% O, where r and s have not
been pivot indices. In this case the submatrix of M obtainea by taking
only the indices not used as pivot indices i1s identical zer¢. This means
that M is singular. The value of the procedure is then set ﬁo false and
the remaining rows and colums are set to zero, so that the result deliv-
ered in A may have the property mentioned in the section abéve.

If it is possible to do the pivoting n times without e&er entering
case 3 then M is nonsingular. So the value of the procedure is set to
true, and the result of the algorithm delivered in A is the 'inverse of
M.

%« Accuracy, time and storage requirement

Accuracy

In practice the relative error measured as ||AXX - B||/||X]]| has
been found to be about y-10, This is not an exact error bound. Theoreti-
cal error bounds are discussed in detail in literature, see e.g. Forsythe

and Moler (ref).
Time: .14x(n+1)xx3 mS

Storage requirement

Program length: 6 segments
variables: 25 + 2.5Xn words in stack.

Typographical length: 145 lines, 6 segments.




4, Test and discussion

The procedure 1s intended for use in such cases where the total me-
trix M is too big for the available store. A program using%decompose and
solve will be faster than a program using invert _sym even if the program
mist generate the matrix M from the half matrix A. |

The procedure has been tested by some random matrices and by a re-
presentative set of singular matrices.

The following program will read n, A and write out the inverse of A:

Program to read a symmetrical matrix and output its inversq.
begin integer n, 1, j, k, 13
read(in, n);
begin array A(1:(mx(n+1)) shift (-1));
read(in, A);
if -, invertsym(n, A) then write(out, <:<10> A is singular >) s
write(out, <:<10>:>);
for i:= 1 step 5 until n do
begin
ji=1f i + 4 < n then 1 + 4 else n;
for ki:= 1 step 1 until j do write(out, << dda>, k)3
for ki= i step 1 until n do
begin
write(out, <:<10>:>, <<ddd>, k);
ji=1f 1 + 4 <k then 1 + Lk else k;
for l:= 1 step 1 until J do
write(out, << -d.ddddddy-dd>, A((xx(x-1)) shift ( 1) +1));
end k; |
write(out, <:<12<10>:>)
end 1
end A

end program;




5. Reference

Georg Forsythe and Cleve B, Moler: Computer solution of Linear Algebraic
Systems, Prentice-Hall, Inc. (1967).

6. Algorithm
invertsym = set 6
invertsym = algol

external

boolean procedure invert_sym(n,A) ;
message invert sym, 13 11 69, RCSL 53-M5;
value nj integer nj array Aj;
begin integer i, J,k,r,s,t,r1,s1,p;
real m, aj,ak,ar,ajl,mp;
boolean bj,mf;

array M(1:n); boolean array B(1:n);

1:=0;
for p:= 1 step 1 until n do
begin
m:=0;
for k:=p-1 step -1 until 1 do
begin
if abs A(i+k)> m then m:= abs A(i+k);
if abs A(i+k)>M(k) then M(k):=abs A(i+k)
end k3
M(p) := m3 B(p):= true; i:=i+p
end p3
ti=n; mp:=-13 mfi=true;
for ji:=n step -1 until 1 do
begin
if mf then

begin




if abs A(1)>M(j)>xmp then
begin
if M(3)=0 then mf:=false else mp:=abs A(1)/M(j); p:=j
end abs A(i)>M(j)>mp
end mf;
M(3):=03 ds=i-j
end j;
nexp_pivot:
s:=p; r:=(sX(s-1))shift(-1);
if mp>0 I ~-,mf then
begin corment this is the normal case where
there has been found a pivot-element
in the diagonal}
B(s):=false; t:=t-13 ar:=A(r+s):=1/A(r+s); mp:=-1; mf:=true;
for ji=n step -1 until 1 do if j<s then
begin
:=(3x(3-1))shift(-1); Dbj:=B(J); m:=M(j);
aj:=if s<j then A(i+s)Xar else
(if bj then ar else -ar)xA(r+j);
for ki= 1 step 1 until J do if k<>s then
begin
ak:=A(k+1) :=A(k+i)-(if k<s then A(k+r)xaj else :
(if B(x) then aj else -aj)xA((kx(k-1))shift(-1)+s));
if b then begin if mf then begin if k<j then
begin
if abs ak>M(k) then M(k):= abs ak;
if abs ak>m then begin if B(k) then m:=abs ak end}
end end end bj
end kj
if s<j then A(i+s):=aj else A(r+j):=if bj then -aj else aj;
if bj then
begin
if mf then
begin
if abs ak>mxmp then

begin




if m=0 then mf:=false else mp:=abs ak/m; p:=j
end abs ak>mXmp
end mf;
M(J):=0
end bj
end js
goto nex‘t_pivot
end mp>0 | -,mf;
if mp=0 then
begin comment this is the exceptional case where
all diagonal-elements are zero;
B(s):=false; m:=0;
for j:=s-1 step -1 until 1 do if B(j) then
begin
11=(5x(j-1))shift(-1); ak:=0;
for k:= s-1 step =1 until 1 do if B(k) then
begin
1f abs A(1f k<j then k+i else j+(kx(k-1))shift(-1))>ak then
ak:=abs A(if k<j then k+i else j+(kx(k-1))shift(-1))
end k3 |
if abs A(r+j)>mxak then
begin
81:=J;
1f ak=0 then goto L}
m:=abs A(r+J)/ak
end
end j3
L: t:=t-2; ri1:=(s1X(s1-1))shift(-1);
ar:=A(r+s1):=1/A(r+s1); B(s1):=false; mp:=-1; mf:=true}
for ji=n step -1 until 1 do if j<sAJ<s1 then
begin
1:=(gx(3-1))shift(-1); bi:=B(J); m:=1(J);
aj:=if s<j then A(i+s)Xar else
(if bj then ar else -ar)xA(r+j);
ajl:=if si<j then A(i+s1)Xar else
(1f bj then ar else -ar)xA(ri+j);




for k:=1 step 1 until j do if k<s A k<s1 then
begin
ake=A(i+k) :=A(1+k)-(if k<s then A(r+k)xajl else
(if B(kx) then ajl else -aj1)XA((kx(k-1))shift(~1)+s))
-(if k<s1 then A(ri+k)Xaj else
(if B(x) then aj else -aj)xA((kx(k-1))shift(-1)+s1));
if bj then begin if mf then begin if k<j then
begin
if abs ak>m then begin if B(k) then m:=abs ak endj
if abs ak>M(k) then M(k):= abs ak
end end end bj
end k3
if s<j then A(i+s):=ajl else
A(r+3) :=1if bj then -ajl else ajl;
if s1<j then A(i+s1):=aj else
A(r1+j) :=1if bj then -aj else aj;
if bj then
begin
if mf then
begin
if abs ak>mxmp then begin
if m=0 then mf:=false else mp:i:=abs a.k/m; p:=J
end abs ak>mp
end mf;
M(3):=0
end bj
end j;
goto next_pivot
end m=0;
invert sym:= t=0;
if +<0 then
begin
i:=0;
for j:=1 step 1 until n do
begin
for k:=1 step 1 until j do if B(3j) | B(k) then A(i+k):=0g
is=i+]
end Jj
end t+<0
end i.nvert_sym;




comment

Parameters

call parameter:

n integer. The order of M

call and return parameter:

A(1:nx(n+1)//2) array. Must on entry contain the lower half of M,
so that M(r, s) = M(s, r) = A(rx(r+1)//2+8).
At return A will contain the inverse of M

stored in the same way

return parameter:
invertsym boolean procedure. It is false if M is singular

else true;
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1. Function and Parameters,

Jacobl calculates all the eigenvalues and, if desired, the correspond-

. ing eigenvectors of a symmetric matrix by the method of Jacobi.

Procedure head:

real procedure jacobi(a,lambds,x,vect,maxscan);
value vect,maxscan;

array a,lambds,x;

boolean vect;

integer maxscan;

Call parameters:

a :
vect :
maxscan :

a resl array containing the given matrix,

(boolean) . If vect is true, the eigenvectors will be
calculated,

(integer or real). If the value of mexscan is > O,

at most this number of scans are performed in the
procedure, If the value is 0, no limitation is imposed

on the number of scans. (see section 2. Method).

Return parameters:

Jjacobi :

lanbda :
X :
. Parameter check:

(reel). Contains the number of rotations in the
last two bytes and the number of scans in the
first two bytes. If the procedure exits because
the maximum number of scans is reached, the negative
number of scans is stored. Hence the sign of the
procedure value reveals its success.

(real array). Contains on exit the calculsted
elgenvalues,

(real array)., If the eigenvectors are wanted, they
are stored as column-vectors in x. The eigenvector
associated with the eigenvalue lambda(i) is stored

in x(.,1).

The orders of the matrix a and the vectors x and lambde are not given

as parameters, but are checked by the procedure in this way:
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First, the upper subscript bound of the array lambda is assigned

to the order. Then it 1s checked that the arrays are declared

a(1:order, 1:order) (1)
lambde( 1:order) (2)
x(1:order,1:order) (&)

(this last check is performed only if the eigenvectors are
wvanted; in fact, if vect=false, X can be any real array and is

never touched).

In case of error, the execution is terminated by the error-messsge
on current output
Jacobi <error-number>>

where <error-number> 1s the sum of the numbers asttached to each wrong
array as stated above. Thus the declaration

a(1:order,0:order)

lambda(1:order)

x(1:order)
yields the error-number 5 if vect=true, otherwise 1,

This initial check of the parameters implies that there is no need

for index-check in the procedure.

2., Method,
The method consists of a number of scans of all the super-diagonal
elements of the matrix. If the element in question is greater in
absolute value than a certain threshold (epproximately the current
root-mean-~-square of all super-diagonal elements ), a rotation is per-
formed, so designed that this element becomes zero.
The exit condition is that the current threshold i1s less than
S5p=13Xinitial threshold (or that the meximum number of scans is reached),
Since the procedure converges at least quadratically, little time is saved
by reducing the accuracy.
Just before exit, the super- and main-disgonal elements are reestablished

so that the matrix is unchanged on exit.

For further details, see [1].



3+ Accuracy, Time and Storage Requirement.

Accuracy: The relative error of the eigenvalues and, if the eigen-

vectors sre calculated, the greatest element of (xtxx-I)

is unlikely to exceed nx(the relative machine accuracy,

appr. 5m-11)- This applies also to the greatest element

of (axx~-xXL)/max(lembda). However, if the magnitudes of

the eigenvalues are highly different it may happen that the

eigenvalues of low magnitude are determined less accurste.

It can be shown (see [1]) that the absolute error of the

eigenvalues is bounded by

2x||L||/sart(1-nI)x(nl/(1-sqrt(1-nI))+na),

where
L
nl
nA

Time

]

diag(lambda)

section 4, Test and Discussion)1

Storage requirement:

4, Test and Discussion.

Several matrices have been tried by the test program (or slightly

modified versions) at the end of this section.

5 segments of program

| laxx-xxt||/]]L]].

| |xtxx-I|| ; xt is x transposed.

Generally proportional to nxxX3 when n is large (sece

18 local real variables.

The table below shows the type and order of the mstrix in question, the

number of scans, the number of rotations, the time consumed by

the procedure (in sec.), and the norms nI and nA as defined in

section 3. (the infinity-norm is used.)

type n scan
a 10 14
a 20 17
b 15 1§
c
d g 11

rotation

180
796
327

5

time

1.9
14.6

4,8
48

nl

1.7
Tl
1.2

218

=9
»=9
b
»=10

84e3y=10
2¢1p=9
9 bye10

87310




The types represent the following matrices:
; a) HBH-matrices. The general element of a n-th order matrix is
‘ given by a(i,J)=a(j,i)=n-i+1, The eigenvalues are

1(1)=0.25/sin((2xi-1)xp1/(bxn+2) ) xx2

b) The matrix

a(1,3)=a(j,1)=if i<j then 1 else 10x(i-1)

¢) The matrix
a(1,j)=a(j,i)=1if i=j then O else 1

All eigenvalues are -1 except for one which is n-1.

d) The matrix and the complete output of the testprogram for this case are:

. matrix:

611
196 899
-192 113 899
ho7 192 196 611
-8 =71 61 8 L1
=52 <43 49 UL _599 L1y
-bkg .8 8 59 208 208 99
29 =4k 52 23 208 208 -911 99

scans= 11 rotations= 69 time= 0.68 sec.
nI = 7,64-10 nA = 6,1,=10

elgenvalues:
1.0200490189,
1.0000000002,,
1.0000000003,,
9.80L486465964,
o 2.5609435927
1.0200000004,
1.0199019515y
-1.0200490187y

1
N AN ANND PO W WD Wb

end

Test program:

testl Jacobi
begin integer nj;
for underflows:=-1 while read(in,n)>0 do
begin real X,ell, ela,maxl,normi,norme, la,layout,t0,t1,si,sa;
array a,t(1:n,1:n),1(1:n);
integer 1, j,k,layno;

read(in, layno) ;

‘ for i:=1 step 1 until n do
for j:=1 step 1 until i do
begin read(in,x);

a(i:-j) :=a(J:i)==x
end;



t0:=systime(1,0,1a);

for 1:=0,1+1 while t1<t0+2,56 do

begin x:=jacobi(a,l,t,true,0);
t1:=systime(1,0,1a)

end;

t0:=(1t1-t0) /1;

maxl:=normi:=norma:=0;
for i:=1 step 1 until n do
begin sii=sa:=0;
for j:=1 step 1 until n do
begin eli:=ela:=0;
la:=1(J);
for k:=1 step 1 until n do
begin eli:=eli+t(k,1)xt(k,j);
elat=ela+a(i,k)xt(k, j)
end k3
if i=j then eli:=eli-1;
ela:=ela~t(1, j)Xla;
sii=si+abs eli;
sa:=satabs ela
end j;
if si>normi then normi:=si;
if sa>norma then norma:=sa;
if abs 1(1)>maxl then maxl:=abs 1(1)
end i;

layout:=real(case layno of(<<d>, <<dd>,<<~dd>, <<~ddd>, <<-3dda>,
<KE>,<<d>, << ~d,dddd>,<< -d.dddda>)) ;
write(out,<:<12>matrix::>);
for 1:=1 step 1 until n do
begin k:=0;
write(out,<:<10>:>);
for j:=1 step 1 until 1 do
begin write(out,string layout,a(i,j));
k:=k+layno;
if 170 and j<i then
begin write(out,<:<10>:>,false add 32,layno);
k:=layno
end
end !

end write matrix;
write(out,<:<10><10>scans=:>,<< -dddd>,x shift(-24) extrect 2k,

<: rotations=:>,x extract 2l,
<: time=:>,<< ddd.00>,10,<: sec.:>,
<:<10>nl =:>,<< d.dy~dd>,normi,
< nA =:>,norma/maxl,
<i<10><10>eigenvalues:<10>:>) ;
for i:=1 step 1 until n do
write(out,<<-d.dddddddddd,-dd>, 1(1),<:<10>:>)
end read n
end

5. References

[1] Kahen, W. and Green, D, : Eigenvalues and Eigenvectors of a Resl
Symmetric Matrix. (Unpublished but coplies of the paper are achievable

on demand)



6. Algorithm

Jacobi=set §
Jacobi=algol index.no

external
real procedure jacobi(a,lambda,x,vect,maxscan);
message jacobi, version 20.11.69, RCSL NO: 55-D61;
value vect,maxscan;
integer maxscan;
boolean vect;
array a,lambda,x;
begin real eps,t,ave,s,u,thresh,dlow,d,c,aij,ajJd;
integer 1,J,11, 34, j1,n,nrscan,nrrot;
boolean again;

1:=1f system(3,n,lambda)<>1 then 2 else 0;
J:ssystem(j,ii,as;

if jon+l or ii<onx(n+1) then i:=i+1;
Je=system(3,11,x) ;

if (J<on+1 or 1ionx(n+1)) and vect then i:=i+h;
if 1>0 then system(9,i,<:<10>jacobi :>);

if vect then
for i:=1 step 1 until n do
begin x(1,1i):=1;
for j:=i+1 step 1 until n do x({,J):=x(j,1):=0
end x:=identity;

d:=0;
for 1:=1 step 1 until n do
begin lambda(i):=a(i,i);
for j:=i+1 step 1 until n do d:=d+a(i, j)xx2
end i;

nrscan:=nrrot:=0;

if d@>0 then

begin dlow:=y-Txd;
ave:=(n-1)>xnx0.55;
thresh:=sqrt(d/ave) ;
epsi=5y-13Xthresh;

scantagain:=false;
nrscan:=nrscan+i;
for 1:=n-1 step -1 until 1 do
for ji:=i+1 step 1 until n do
begin comment scan;
aij:=a(1,J);
if abs aij >= thresh then
begin ajj:=a(j,J);
s:=ajj-a(i,i$
ti=abs aij;
if s+t<>s then
begin comment rot<0;
again:=true;
nrroti=nrrot+1;
if abs s<=p-6Xt then s:=c:=0,70710678118 else
begin t:=aij/s;
8:=0,25/sqrt(txx2+0.25) ;
c:=sqrt(s+0.5);
s:=2xtxs/c
end rot<pi/h;

.
2




for ii:=1 step 1 until i do

begin t:=a(i1,1); u:=a(ii,J);
a(11,1) :=cxt-sxu;
a(ii, ) :=sxt+exu

end;

Jli=§-1;

for 1i:=i+1 step 1 until jl do

begin t:=a(i,11); u:=a(ii,j);
a(i,11) :=cxt-sxu;
a(ii,J) :=sxt+cxu

end;

a(J,J) s=sxaijrcxald;

a(1,1) :=exa(1,1) -sx(exaij-sxajd) ;

for iii=j step 1 until n do

begin ti=a(i,ii); ui=a(J,ii);
a(i,11) :=cxt-sxu;
a(Jj,i1) s=sxt+exu

end;

if vect then

for ii:= 1 step 1 until n do

begin t:=x(i1,1); w:=x(ii, J);
x(1i,1) :=cxt-sxu;
x(11, J) :=sxt+exu

end;

d:=d-aljxx2;

if d<dlow then

begin d:=0;
for ii:=n-1 step -1 until 1 do
for j3j:=1i+1 step 1 until n do

d:=d+a(ii, j3)xe;

dlow:=yp-Txd

end;

thresh:=sqrt(d/ave) ;
if thresh<eps then goto quit
end rotation
end alj
end scan;
if again and (maxscan>O=>mesxscan>nrscen) then goto scan;

1f again then nrscan:=-nrscan;

quit:for i:=1 step 1 until n do
begin t:=a(i,i);
a(i,1):=lambda(i);
lambda(i) :=t;
for j:=i+1 step 1 until n do a(i,j):=a(j,i)
end i
end d>0;
jacobi:=0.5 add nrscen shift 24 add nrrot
end jacobi;

comment
Call parameters:
a ! a real arraey conteining the given matrix.
vect : (boolean) . If vect is true, the eigenvectors

will be calculated.

maxscan : (integer or real). If the value of maxscen is > 0,
at most this number of scans are performed in the
procedure, If the value is O, no limitation is imposed
on the number of scans,
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Return parameters:

Jacobi

lambda

(real) . Contains the number of rotations in the

last two bytes and the number of scans in the

first two bytes. If the procedure exits because the
maximum number of scans is reached, the negative num-
ber of scans is stored. Hence the sign of the procedure
value reveals its ‘success.

: (real array). Contains on exit the calculated

eigenvalues,

(real array). If the eigenvectors are wanted, they
are stored as column-vectors in x, The eigenvector
associated with the eigenvalue lambda(i) is stored
in x(.,1);
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1. Function and parameters

Let F denote a real, twice differentiabel function in n variables,
and suppose that the first order derivatives of F are gilven analyti-
cally (that is, as expressions depending upon the n variables).
Suppose that in a given area the function is bounded below and has a
minimum, From a reasonable good starting point the procedure finds
this minimum by finding a point at which all the first order deriva-

tives are zero (that is, smaller than a prescribed quantity) .

Procedure head:
minimum(n, i, x, F, delta, eps, point);
value n3
integer 1, n;
real eps, F, delta;
array x, point;

Call parameters:
n: the number of varisbles for the given function.

Call/Return parameters:
point: a real array point(1:n);
at entry point containes the starting poirt for the
procedure;
at exit point containes the coordinates of the point

at which the minimum is obtained;

eps: a real quantity affecting the precision tc which the
minimm is calculated. Consider the noxm c¢f the vector
consisting of the first order derivatives. If this
norm is smaller than eps, then the procedure will stop;
at exit eps containes the norm of the vector described

above.

Return parameters:
minimmum: the value of the obtained minimum;



Other parameters:

Fa a real procedure denoting the given function. In a pro-
gram in which the procedure minimum is called, F must

be declared in the following way:

real procedure F(x);
array Xx;

F:= the given expression;

delta: a real procedure delta(i, x) denoting for each i the
partiel derivative of F with respect to the variable
x(1);
In a program in which the procedure minimum is called,

delta must be declared in the following way:

real procedure delta(i, x);
integer i;
array X3

deltat= case 1 of (ceey eoey ’ ced)s
In the parenthesls there must be n expressions, where

the i-th expression denotes the partiel derivative of F

with respect to the variable x(i);

2. The method

Let F denote a function in n variables, and let x denote the n-dimen-
sional point with coordinates (x(1), x(2), ... , x(n)). F is sald to
have a minimum at a point x0, if there exist a small area including
x0, in which the value of F at each point is greater than F(x0).

Most of the various methods for finding a minimum for a function i n
varisbles has one ides in commen: They are all iterative rrocesses
based upon a roul, which for each point specifies a certain direction
in which the next point of the process 1s to be found, and for each

such direction specifies how to find the next point. Now, suppose that
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the function is differentiabel, By the gradient of F at the point x -
denoted gradient (x) - we understand the n-dimensional wector, which
as the i-th coordinate has the partiel derivative of F with respect
to x(1) at the point x.
The method used in the following program is essentially based upon to
papers of A.A., Goldstein ((2), (3)). We suppose, that the function is
twice differentiabel and that the gradient is given amalytically. It
is well known, that the gradient will vanish at a minimumpoint.
Let the points of the iterative process be denoted x1, X2, X35, «ss XK,
eesy where x1 is given by the input array point.
For each k fi(xk) denotes the n-dimensional vector which terminates
the new direction.
We choose fi(x1) = gradient (x1).
For each k the number h(k) is defined as:

(k) = r X norm(n, fi(xk)).
r is calculated at the beginning of the program in such a way that
n(1) < 1/5.
norm is denoting the ordinary n-dimensional Euklidian norm.
Then the algorithm, at each point xk, consists of the following two

DIRECTICN:
We compute an n X n matrix, which is an approximation to the matrix

consisting of the second order derivatives of F.

For each j let F(j) denote the vector, which has the j-th coordinate

equal to 1 and the others equal to zero.

We then compute the matrix Q(Xk) which has the j-th coltmn equal to
(gradient(xk + h(kx) X F(j)) - gradient(xk)/h(k).

If the matrix Q(xk) is singular (it is has no inverse) then
we define the new direction fi(xk) by
fi(xk) = gradient(xk).

Suppose now, that Q(xk) has an inverse, which we denote P(xk).
If (gradient(xk), P(xk) X gradient(xk)) > 0
(where ( , ) denotes the ordinary imnerproduct) then we define
fi(xk) by
fi(xk) = P(xk) X gradient(xzk).
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Ir  (gradient(xk), P(xk) X gradient (xk)) <O
then we define fi(xk) by
£i(xk) = gradient(xk).

KONSTANT

The next point in the process is now obtained on the form
xk - gk X f£i{xk)

where gk is a constant calculated as follows:

Let product = (gradient(xk), fi(xk)).

Let £1 = F(xk).

Let £2 = F(xk - gk x £i(xk)).

Then gk is calculated such that

£2 < £1 and (f1 - £2) < gk X product.

It can be proved, by using the Taylor formula, that such a gk always
exists, and that xk calculated in this way will converge to a minimme
point for F.((2), (3)). From a numerical point of view however, gk

might fail to exlst, and in this case the procedure will stop.

3. Accuracy, Time and Storage Requirements

Accuracy: As measure of accuracy we use the norm of the gradient. Ir

the procedure succeeds, then at the end this norm is smaller

than the call parameter eps.

Time: This depends on the wanted accuracy and first of all on the

problem in question, so it is not possible to give general

rales for this. (See L. Test and Discussion).

Storage requirements: 10 segments of program

Typographical length: 248 lines.

)'l'.

Test and Discussion

The procedure have been tested on several functiones among which we

describe the two most difficult problems:



1. Minimising the function in two variables
F =100 x (x(2) - x(1)»x2) xx 2+ (1 - x(1)) xx 2

First we consider the problem 1:
The function F has minimum at the point (1, 1) with fuactionvalue O.

Value of eps
o=l 0=6
Minimum 04999999592 0.999999592
04999999185 0.999999183
Fc.-value  0,000000000 0.000000000
Gr.-norm Tedp-5 4,2,0-7
) Ex,-time 0.76 0.73
‘ (the execution time is in seconds).

10"8

1.000000000
1,000000000

0.000000000
5.1-8
0.75

2, Finding a solution to the following three non-linear equations:
sin(x(1)>x@) + exp(x(2)) x x(3) - 4 =0
x(1) + x(2) + x(3) -3 =0
x(1) + x(2)x@ + x(3)x3 - b =0
This is done by minimising the square-sum of the three equations.

Starting at the point x(1) = -1.2 and x(2) = 1 and using different
values of the term eps, the following results were obtained:

=10

1.000000000
1.,000000000

0.000000000
1.Typ=10

0.75

It follows, that the procedure succeeds in all 4 situations, and that

smeller values of eps does not affect the execution time. This last ob-

servation however can not be stated in general, (see below under problem

2).

Using eps

=8 and using different starting points the following results

were obtalned:
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Starting- -1.200000000 0000000000 -0, 500000000 2,000000000
point 1.,000000000 1000000000 -0, 500000000 0.250000000
Execution-
time 0.75 0.49 0.71 0.80

In all 4 situstions the minimum was obtained at the point:

1,000000000
1.000000000

with the functionvalue 0.000000000 and gradient norm 5.1p=E.

Again the procedure succeeds in all 4 situations.

Next, consider the problem 2 in three variables. Starting st the point
x(1) =0, x(2) =0, x(3) = 2.5 and using different values cf the term
eps, the following results were obtained:

Value of eps

m'h m-6 m'8 m-1o
Minimum 0.,097831561 0.0978%0233 0.0978%0224 0.,097830224

0.512917627 0.512919004 0.512919014 0.51291901k4

2.389250732 2.389250762 2.389250762 2,389250762
Fe.=-value 0.000000000 0.,000000000 0.000000000 0.,000000000
Gre.-norm 5¢8p-5 3e90-T 3.2,-8 342pp=8
Ex.=time 1.96 2455 3.81 3.97

It follows, that the procedure succeeds in the first three situations,

but that it is not possible to make the gradient norm smaller than

3.29=8, so in this sense the procedure does not succeed in the last si-
tuation. In this case smaller values of eps gives greater execution

time, even if the obtained minimumpoints are practically thz same in the

last three cases,

Using eps = -8 and using different starting points the following results

were obtained:

Starting-
point

Execution-

time

0.,000000000
0.,000000000
24500000000

3481

0,000000000
0,000000000
1000000000

197

0. 500000000
1.,000000000
2,000000000

5.09

1.000000000
1000000000
1000000000

2,45



In all b situations the minimum was obtained at the point:

0.097830223
0.51291901k
2,389250762
with the functionvalue 0,000000000 and gradient norm 3.2yp-8

It follows, that the procedure succeeds in all I situations.
Example

Consider the function
F =100 x (x(2) - x(1)xx2) xx 2 + (1 = x(1)) xx 2
Starting at the point x(1) = =1.2 and x(2) = 1 the following program

might be used to find the minimum of F:
Testprogram

begin
integer 1, Jj;
real a, eps;

array X, point(1:2);

real procedure F(x);
array X3
Fs= 100 % (x(2) - x(1)xx2) xx 2 + (1 - x(1)) xx 2;

real procedure delta(i, x);

integer 1i;

array X

deltas= case 1 of (-boOxx(1) X (x(2) - x(1)x<2) - 2 x (1 - x(1)),
200 X (x(2) - x(1)xx2));

point(1):= -1.2; point(2):= 1; eps = y-8;

a:= minimm(2, i, x, F(x), delta(i, x), eps, point);
write(out, <:Minimum obtained at the point <10>:>);

for j:= 1 step 1 until 2 do

write(out, <i<10>:>, <<-dddd.ddddddddda>, point(J));
write(out, <:<10><10> Minimumvalue =:>,<<-dddd.ddddddddd>, a);
write(out, <:<10><10> Gradient norm=:>, <<-d.dp-dd>, eps);

end;



This will give the following output:

Minimum obtained at the point
1000000000
1000000000

Minimmvalue = 0.000000000

Gradient norm = 1.0° -8

end

De

In the program we use a boolean procedure inverse to find the inverse
(if it exist) of an n X n matrix,

The procedure is based upon Simpel Gaussian illimination and is only
introduced in order to make the program complete, One could use any
other procedure of this sort, for ex, decompose-solve from RC mathe-

matical procedure library.

Since a minimum of the function F is a maximum of the funciion -F,

the procedure will of course be able to find maximum as well as mini-

Imine
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6. Algol text

minimm = set 10
minimm = algol
external

real procedure minimum(n,i,x,F,delta,eps,point);
value n}

integer 1,n;

real eps,F,delta;

array X,point;

begin
integer j;
real h,g,gl,gamma,r,f1,f2,£3,product,k,s;
array psi,y,z,b(1:n),p,a(1:mn,1:n);

real procedure norm(n,a);
value nj
integer n;
array aj
begin
comment this is the ordinary norm in the n-dimensional Euklidian
space}
real hj
h:=03for i:=1 step 1 until n do hi=ht+a(i)x;
norms=sqrt(h) ;

end;

real procedure innerproduct(n,a,b);
value nj
integer nj
array a,b;
begin
comment this is the ordinary imnerproduct in the n-dimensional
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Eukiidian space;

real hj;

h:=03 for i:=1 step 1 until n do hi=h+a(1)xo(1);
innerproducti=h;

end;

procedure equal(n,a,b);

value nj;

integer n;

array a,os

begin
comment the procedure identifies two arrays;
for i:=1 step 1 wntil n do b(i):=a(i);

end;

boolean procedure inverse(n,a,b);
value n;
integer nj
array a,b;
comment the procedure finds the inverse ( if it exists ) of the
matrix a by Gaussian illimination.If the inverse exist,it 1is
stored in b.If the inverse does not exist,inverse is false;
begin
integer i, Jj,k,m,pivotnr;
real pivot,s;
array c(1:n,1:n),x(1:n),a(1:n);

inverse:=true;

for m:=1 step 1 until n do

begin
comment for each m one is solving the linear system,which on the
wright side has the m=th colum in the unit-matrix,and cn the left
side the given matix as coefficientmatrix and the m-th column in

the wanted inverse as unknownj;
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for j:=1 step 1 until n do
for i:=1 step 1 until n do c(di,J):=a(i,J);
for i:=1 step 1 until n do d(i):=(if i=m then 1 else 0);
for k:=1 step 1 until n-1 do
begin
comment smong the last n-k+1 equations one is finding the equation,
which has the numerical largest coefficient in x(k);
pivot:=03 pivotnr:=0;
for 1:=k step 1 until n do if abs(e(i,k))>pivot then
begin pivoti=c(i,k); pivotnri=i; end;
if pivot=0 then begin inverse:=false; goto ENDjend;
comment if pivot=0 then the given matrix has determinan®, O and
consequently no Inverse;
if pivotnr<k then
begin
comment equation number k is replaced by equation number pivotnr
and vica versa;
se=d(k); da(k):=d(pivotnr); d(pivotnr):=s;
for j:=k step 1 until n do
begin
x(3) 1=e(k, 3) 5 c(k,j) :=c(pivotnr,j); c(pivotnr,j):=x(J];
end;
end if pivotnr<kj;
for i:=k+1 step 1 until n do
begin
comment x(k) 1s calculated from the k-th equation,and the
expression inserted in the following n-k equations;
a(1) :=a(1)-d(x) xe(i,k)/c(k,k) ;
for ji:=k+1 step 1 until n do
c(1,5) 2= c(4,3)-c(i,k)xe(k, j) /e(k,k) 5
end;
end k;
if c(n,n)=0 then begin inverse:=false; goto ENDjend else
x(n) :=d(n) /c(n,n) ;
for i:=n-1 step -1 until 1 do
begin .
comment for each i x(i) is calculated from the equation

e(1,1)>x(1) + o(d,i+1)xx(1+1) + . . o +c(i,n)xx(3) = a(i),
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vhere x(i+1),. « « x(n) are known;
s:=03 for j:=n step -1 until i+1 do st=s+c(i, 3)xx(3);
x(1)s=(a(1)-s)/c(1,1) 3
end;
for 1:=1 step 1 until n do b(i,m):=x(i);
end mj}
END: end;

procedure search(n,g,y,psi,f2);
value n,gs
integer n;
real g,f2;
array y,psis
begin
comment the procedure finds the value of the function to be
minimised, that is kXF,at the point obtained from y by going the
distance g in the direction -psij;
for 1:=1 step 1 wntil n do x(1):=y(i)-gxpsi(i);
2=k

end;

equal(n,point,x) sequal(n,x,y); k:=1;

for i:=1 step 1 until n do psi(i):=delta;

comment psi is the gradient of F at the starting point;
equal(n,psi,b); hi=product:=norm(n,psi);

if h<l then r:=1/5 else r:f1/(5Xh);

KONSTANT
. comment at each step of the iterativ process the procedure will

H
goto KONSTANT and run through the following.A point y and a
direction psi is given,and the problem 1s to find a konstant g
such that the point y-gxpsi can be used as the next point;
h:=norm(n,psi); equal(n,y,x);

if h/product<i/10 then
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‘begin
comment psi is too small relativ to the gradient which implies,
that the greatest possible progress is too small.We therefore
consider the function kXF,where k is defined below;
k:=(h/product)>x(1/n) ;
for i:=1 step 1 until n do psi(i) s=(1/k)>xx<axpsi(1) ;
for 1:=1 step 1 until n do b(1):=kxdelta;
he=norm(n,psi) ;
if h<l then ri=1/5 else r:=1/(5Xn);
end;
he=r¥h; £1:1=kF';
comment h is used below as the small quantity in the approximation
of the second order derivatives of F,r is introduced in order to
insure,that this quantity is not too big &t the beginning;
product:=innerproduct(n,b,psi) ;

g:=13 g1:=0;

search(n,1,y,psi,f2) 3
if £1-f2>=1/bxproduct then
begin
£1:=f2; equal(n,x,y); soto DIRECTION;
end;
comment in this case we use g=1/4 and the next point 1is
therefore obtained as y-1/lUxpsi;
s:=( if s<1 then y-10 else 1/sXy-10 );
‘ for g:=g/2 while f1<=f2 do
begin
search(n,g,y,psi, f2) 3
if g<s then begin equal(n,y,x); goto END; end;
end;
comment if g is smaller than s (see the definition of tkis term)
then the next point of the process will be practically equal to
the present,and we must therefore conclude,that the procedure is
unable to make further progress;
gi=2Xg3 equal(n,x,2);
if (£1-f2)<gxproduct then goto SECOND else
begin
comment in this case the functionvalue at y-gxpsi 1is smaller
. than f1,but the condition £1-Fo<gxproduct is not satisfied and
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therefore g is too smallj;

- gli=g; gi=aXg;

FIRST:

g:=(g1+g) /2;

search(n,g,y,psi,f2);

if £1<f2 then goto FIRST else

begin

if (£1-£2)<gxproduct then

begin equal(n,x,y); £1:=f23 goto DIRECTION; end else

begin gi=2xg-gl; gl:=(g+g1)/2; goto FIRST; end;

end;

ends

SECOND:
3
£1 and the condition f1-fo<gXproduct is satisfied.We therefore
look for a smaller g for which this condition is satisfied and
with a smaller functionvalue than before;

g:=(g1+g) /2; search(n,sg,y,psi,f3);

if f2<=f3 then
begin equal(n,z,x)sequal(n,x,y); £1:=f2; goto DIRECTION;

end else
begin

if (f1-f3)<gxproduct then

begin £f2:=f3; equal(n,x,z); goto SECONDjend

else goto THIRD;

end;

THIRD:

3 comment in this case the functionvalue is smaller thar. before,
but the condition mentioned before is not satisfied,so g is
too small;

gi=2xg-gl1; gl:=(g+e1)/2; gi=(e+e1)/2;

search(n,g,y,psi,£3);

if (£1-f3)>=gXproduct then goto THIRD else

begin

if £3>=f1 then goto THIRD else
begin equal(n,x,y); f1:=f3; goto DIRECTION; end;
end;.

s comment in this case the functionvalue at y-gXpsi 1s smaller than
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DIRECTION &
3 comment at each step of the iterativ process the procedure will
goto DIRECTION and run through the following.A point = is given
and the problem is to determine the direction in which the next
point is to be found;
for 1:=1 step 1 until n do b(i):=kxdelta;
productﬁ:norm(n,b);
if product<kxeps or product<p-10 then goto END;
comment if product<kxeps then the wanted accuracy is ¢btained,
if product<,-10 then in most situations it will be meeningless
to look for further progress;
for j:=1 step 1 until n do
begin
comment an approximation to the matrix consisting of the second
order derivatives of kKXF is calculated and the result stored in q;
for i:=1 step 1 until n do x(i):=(if i=j then y(i)+h else v(1));
for i:=1 step 1 wntil n do p(i,1):=kxdelta;
for i:=1 step 1 until n do q(i,J):=(p(1,1)-b(1))/h;
end j3
if -,inverse(n,q,p) then goto STEEPEST else
begin
comment if the inverse of q exist,then the vector psi is
obtained by multiplying the inverse matrix with the gradient;
for i:=1 step 1 until n do
begin
psi(i):=0; for j:=1 step 1 until n do
psi(i):=psi(i)+p(1,3)x0(3) 3
end;
ends
ifr innerproduct(n,psi,b)<:o then goto STEEPEST else
goto KONSTANT;
comment if innerproduct(n,psi,b)<=3 then we can not be sure to
find a point with smaller functionvalue in the direction psi,
and therefore psi can not be used.If the innerproduct is >0

then psi is the new direction;

STEEPEST ¢
equal(n,b,psi); goto KONSTANT;
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comment the gradient is used as the new direction;

END:

s comment the present value of the relevant quantities are stored
in the return parameters;

for i:=1 step 1 until n do b(i):=delta;

minimm:=F; eps:=norm(n,b);

for i:=1 step 1 wntil n do point(i):=x(i);

end;

ends
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pzero(order, coef, root)

1o Function and parameters

pzero calculates all roots (complex or real) of 2nd, 3rd and 4th order

polynomials with real coefficients.

Call: pzero(order, coef, root)
pzZETO is a boolean procedure which is false if order > U4 or order < 2
or coef(order) = 0, In this case no computations are made,
otherwise pzero is true.
order (call value, integer)
specifies the order of the polynomial.
coef (call value, array) minimm bounds(o:order)
specifies the coefficients of the polynomial
p(z) := SUM(coef(1)xzxxi), i:=0, 1, ... , oOrder.
root (return value, array) minimum bounds(1:order, 1:2)
If pzero is true then root specifies the calculated roots
zi, 1:= 1, 2, eee , Order so that
Re zi = root(i, 1) and
Im zi = root(i, 2).
2, Method
2.1+ General

Extremely large or small roots are detected at the first stage of com-

putation, and further computations are executed on the quotient poly-

mial, where quotient polynomial everywhere in this description

means

p(z) / PRODUCT(z - zi)

where zi are the roots allready foumnd by pzero.

The (quotient) polynomial is now normslized so that coef(order)

equals

Te



2.2, Second order polynomials: p(z) = zXX2 + bxz + ¢

The guantity di= bXX2 - hxe determines whether the roots are complex
(d <0) or real (4 > 0).

If the roots are real then the numerically largest root is calculated
from

z1:= (-b - san(b)xsqrt(d))/2
and the remaining root from

z2:= if z1 = 0 then 0 else ¢/z1

otherwise the roots are calculated from
z1:= (-b + ixsqrt(-d))/2

and
z2:= (<b - ixsqrt(-d))/2

where 1 is the imaginary unit.

2.3, Third order polynomials: p(z) = zXX3+axzXx2+bXz+c

If there are multiple roots then all of the roots are calculated di-
rectly from the coefficients a,b and ¢, otherwise one real root is
determined by a Newton Iteration whereafter the remaining two roots

are calculated from the quotient second order polynomial (see 2.2).

Analysis and iteration starting point:

The transformation w = z + a/3 yilelds

p(z) =0 <= q(w) =w3 + &Xw + e = 0.
Define

Ti= 2TXeXX2 + hXdx<3.

a) 1 real and 2 complex conjugate roots:

are called 2%k, -k + iXm and -k - iXn
where 1 is the imaginary unit.
a(w) = wo3 + (o2 = 3x0@)xw - 2&X(kXR + mxx2)

implies

r = [2mx(moR + 9xooR) I > 0
and defining

f(m) =4 x Je| = 8x|kx(ko@ + mxx@) | > 8x|k|x<3
yields -

(kxle])xx(1/3) > 2x|k]|




b) 3 real roots:

are called k, m and -k - m where k is the numerically largest root.
a(w) = w3 - (o + mxX 2 + kxm)xw + kxax(k + m)
implies
r = -[(k - m)x(2x + m)x(k + 2xm)]xx2 < 0 (xx)
and defining
f(m) = bx]d|/3 = bx|ko@ + mo2 + kowm]|/3
yields
min f(m) = £(-d/2) = kxx2
50

o 2 x sqre([a]/3) > ||

From (X) and (xx) we see that
r < 0 = real roots
r =0 = multiple roots
r > 0 = complex roots .
and iteration starting point s is chosen to be
s 3= 2xsqrt(|d|/3) if r <0
(bx]e])»x(1/3) if r > 0.

The quotient second order polynomial:

is calculated from
‘ (zxx2 + pxz + @)X(z = z1) = zZXX3 + axzXxX2 + bXz + ¢

where 21 is the real root obtained by iteration.

If |a + 21| > |a]/8 +then p is calculated from

p:=a + z1

and
Q:=Db + pXz1 if |b + pxz1| > |b]/8
- ¢c/z1  if |b + pxz1| < [b|/8
otherwise
q:= -c/z1
and

) p:= (q - b)/z1.




2.k,
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Fourth order polynomials: p(z) = 20 + axXxzxx3 + bxzXX2 + cxXz + 4

II:

III:

IV a)

b)

A linear transformation w =z + a/lt ylelds
p(z) =0 <=> g(w) = wodt + 1Xw2 + mxw + n = 0,

now the sum of the transformed roots equals zero.

The transformed roots are calculated using the method of Descartes,
This method involves the solution of a third order equation, and

this is performed as described in 2.3.

The roots are now accepted if |Re zi| > |a|/32 so at least one root

mst be accepted unless they all equal zero.

if one root is accepted by III

then the reciprocal roots are calculated from
Axzxxl + eXzXX3 + bXzXX2 + axXz + 1 =0
as described in 2,4-I, II and III.

If one of the reciprocal roots is accepted then we have two accep-
ted roots, so the remaining two roots are calculated as described
in IV b, otherwise the former accepted root is not used. The number
of accepted reciprocal roots then determines whether further calcu-

lations are performed as described in IV, b, ¢ or d.

if two roots are accepted by III (or IV)

then the quotient second order polynomial is calculated and solved
as described in 2.2, |

if three roots are accepted by III (or IV)

then the remaining real root is calculated using the fact that the
product of the roots equals d.

if four roots are accepted by III (or IV)

then no further calculations are performed by pzero,.




5. Accuracy, time- and storage requirements

5e1e Accuracy

If an actual equation is ill-conditioned and you want the roots to a
gpecified degree of accuracy a much greater accuracy may be necessary
in the intermediste calculations, On the other hand a user is not sup-
posed to know anything about the conditioning of the actual equation,
so standard input to RCHOOO of UB-bits reals is used.

5.2, Time- and storage requirements

Approximate cpu-time used by pzero: (order - 1)X0.02 sec,
Codelength: 12 segments
Typographical length: 222 lines incl. last comment.

L, Test and discussion:

pzero has been tested on the RCLOOO computer with a testprogram which

performs

1) generation of order and coefficients
2) call of pzero
. 3) calculation of root generated coefficients of the polynomial
p(z) := PRODUCT(z - zi), i:=1, 2, ... , order
4) calculation of relative differences between the original and the

root generated coefficlents,.

Now the smallness of the differences is chosen as a measure of the
goodness of pzero.

pzero has been tested with a large number of both prepared ill-condi-
tioned coefficients and random coefficients input and in both cases

with satisfying results.

Some test examples (the check column describes the relative differen-

' ces):

o




example number 1

given equation
coef(4)= 1.0000000000y,
coef(3)= 1.0000000000y,
coef(2)= 1.0000000000y,
coef(1)= 1.0000000000y,
coef(0)= 1.0000000000y

calculated roots

check

-5.82p=11
-5.82p-11
-5,90y ~U
0.00, O

34518079LL3L,  =1+7,2038175772, -1
34518079443k, -1-T,2034175772 -1
-8.518079432,, -149.1129213536, -1
-8.5180794L322,, ~1-9.1129213536, -1

example number 2

given equation
coef(4)= 1.0000000000y
coef(3)=-6.8619274672,
coef(2)=-8.8228487860,,
coef(1)= 6,8619274672,
coef(0)==1,17715121k41y

calculated roots
3.4309637339; -1
1.0000000000y, 0
3.4309637335, -1
-1.0000000000 0

example number 3

given equation
coef(L)= 1.0000000000y,
coef(3)=-1.4215286873
coef(2)= 7.1429889252,
coef(1)=-1.4369489911,
coef(0)= 8.,5480296736y,

calculated roots
L, 4050104852,
L. bos1h606k0, O
L. Lhosi120k2h2, 0O

949999999956y -1

0

- ) = - O

check

0.00, ©
~6.,605-11
0,005 O
0.00, O

check

0.005 O
1.0y =10
3,63y =10
6,97y =10

xXi
X1
Xi
Xi




example number Y4

given equation check
coef(L4)= 1.0000000000,, O
coef(3)=-2.4628%04k22,, 0 L4, 32, -11
coef(2)= 2,7192690981,, O 0.005 O
coef(1)=-1,2004258468,, 0 4,77y, -11

coef(0)= 2.0540067855, -1  1.42, -10
calculated roots
6.7204851918;,  =1+1.1559340115,, -2 xi
6.7204851918),  ~1=1.1559340115, -3 xi
6.7437120188  ~1+1.1667236046,, -3 Xi
’ 6.7837120188, -1-1.16672360k6, -3 xi

example number 5

glven equation check
coef(4)= 1,0000000000, O
coef(3)=-5,9418%29952,, 0O 0,00, O
coef(2)= 1.3239517255, 1 0.0045 O
coef(1)=-1.31111667k4, 1  T7.10y5 -11
coef(0)= 4,8690226978, O 2,39, -10

calculated roots
1.4854582L89, 0
1.,484481686kL, ©
® 1.4850465301,  0+8.4572793356,
1.4850465301  0-8.4572793336,

'
=

X1

1
=

Xi

6. Complete algol text:

pzero=set 12

pzero=algol

external

message pzero,version 22/5-T0,RCSL 53-Mi;
boolean procedure pzero(order,coef,root);
value order;

integer order;

‘ array coef,root;




begin

array arr(0:l);
integer accept,is
real x,push,a,b,c,d;

boolean ok}

procedure orderh;
begin
real a,b,c,d,x,push;
integer i}
push:=arr(3) /4;
c:=((-3xpushxx2+arr(2))xpush-arr(1) ) xpush+arr(0) ;
bs=(pushxarr(3) -arr(2))xexpush+arr(1) ;
ai==3Xarr(3)xx2/8+arr(2) ;
if b<>0 then
begin
order3(2xa, axx2-lixe, -bxx2) 3
for 1:=0,1+i while root(i,2)<>0 or root(i,1)<0 do;
xs=root(i,1);
d:=b;
bi=atxs
as=sqrt(x) ;
xi=d/a;
if abs(b-x)>abs(b+x) then bi=b-x else
begin
bi=b+x}s
as=-a
end;
bi=b/2
end else
if axxa<lixe then
begin
br=sqrt(c);
as=sqrt(2xb-a)
end else
begin
br=atsgn(a)xsqri(aoe-lixe) /23
a:=0
end;



orderZ(a,b,1);

order2(-a,if b=0 then O else c/b,3);

x:=abs push/8;

for i:=1,2,3,4 do

if abs{root{i,1)-push)>x then

begin
accepti=l+sccept;
root(accept, 1) :=root(i, 1) -push;
root(accept, 2) s =root(i, 2)

end s

axit:

‘ end orderh;

procedure crder3(a,b,c);
value a,b,c;
real a,b,c;
begln
real push,p,q,r;
push:=-a/3;
Dt =2XX2-3XDb $
q:=( -2xpushxx2+b) Xpush+c 3
r3=(27Xc-ax(18Xb-lxaxx2) ) xc+oxx2x( bxb-axx2) 3
‘ if abs r<=((27xabs ctabs ax(18xabs b+Lxaxx2))xabs c
+bxx2X(Uxabs b+axx2) Y XF,-11
then
begin
i:=(a>x2+3xabs b)XTyg-113
1f p+d<0 then goto nswton}
a:=1if p-d<0 then 0 else sgn(q)xsqrt(p)/3;
root(1,1) :=roct(2, 1) :=push+q;
root(3,1) : =push-2xq;
root(1,2) s=rnct(2,2) t=reot{3, 2) :=0;

goto exit

end;
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newton:
r:=push-sgn{q)X(if r<0 and p>=0 then 2Xsqrt(p)/3 else(lxabs a)>xx(1/3));
for pr=((2xr+a)xrxx@-c) /((3xr+2xa) xr+b),
((2xr+a)xrxx@-c) /({3xr+2xa) xr+b)
while abs(p-push)<abs(r-push) dc ri=p;
reot(1,1) :=r;
root(1,2) :=0;
pi=atr;
q:=b+pKr;
q:=if abs p<abs a/8 or abs g<abs b/8 then -c/r else qj
p:=if abs p<ebs a/8 then (q-b)/r else p;
' order2(p,q,2);
exit:

end order3;

procedure crder2(b,c,first);
value b,c,first;
real ' b,c;
integer first;

begin
real 4;
ds=bxx2-lxc;
d:=sgn(d)xsqrt(abs 4);
. if d<0 then
begin
root(first,1) :=root(1+first, 1) 1=-b/2;
root(first,2) :=d/2;
root(1+first,2) :=-4/2
end else
begin
d:=root(first, 1) :=(~b-sgn(b)xd)/2;
root(1+£irst, 1) :=if d=0 then 0 else c/d;
root(first,?2) s=root(1+first,2) :=0
end
end order2;

‘ accept:=0;
ok :=pzero:=order>1 and order<5 and ccef(order)<>0;




if -,0k then goto finis;
for i:=order step -1 until O do arr(?):=coef(i);
lows
x:=1if arr(1)=0 then arr(0) else -arr(0)/arr(1);
for i:=0,1+i while arr(i)-arr(1+i)xx=arr(i) do
if i=order-1 then
begin
for i:=0 step 1 until order-1 do arr(i):=arr(1+i);
goto comb
end;
x:==arr(order-1) /arr(order) ;
. for 1:=0,1+i while arr(i)xx-arr(i-1)=arr{i)xx do
if i=order-1 then goto conbj
goto normal;
comb:
rcot(order,1) :=x;
root(order,2) :=0;
orderi=order-1;
1f order>1 then goto lows
root(1,1) t=-arr(0) /arr(1);
root(1,2) :=0;
goto finisy
normal:
x:=arr(order) ;
. for 1l:=order step -1 until 0 do arr(i):=arr(i)/x;
case order-1 of
begin
order2(arr(1),arr(0),1);
order3(arr(2),arr(1),arr(0));
begin
orderl;
select: case accept of
begin
begin
arr(4) :=root(1,1);
x:=coef(0) 3
‘ for 1:20,1,2,3 do arr(1):=coef(L-1)/x;

accept:=03
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orderh:
if accept>1 then
begin
for 1:=1,1+1 while i<=acceph and 1<5 do
1f root(i,2)=0 then root(i,1):=1/root(i,1)
else
Pegin
xs=root(i, 1)Xx2+root(1,2)xx2;
root(i,1) s=rcot(1+1,1) :=root(1,1) /x;
root(1,2) :=root(i,2) /x;
root(1+1,2) :=-root(i,2) ;
1:=1+1
end;
end else
begin
root(2,1) :=1/root(1,1);
root(1,1) s=arr(l);
accept:=2
end;
xs=coef(l);
for 1:=0,1,2,3 do arr(i):=coef(i)/x;
gotc select

end;

begin
d:=-root(1,1)-root(2,1);
et=root(1,1)xroot(2,1)-root(1,2) xroot(2,2) ;
b:=arr(0)/c;
at=1f abs (arr(1)/v-d)<abs (arr(3)-d)
then arr(3)-4
else (arr(1)-bxd)/c;
order2(a,b,3)

ends
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begin
a:=1if root(1,2)=0
then root(1,1)X(roct(2,1)xroot(3,1)-root(2,2)xroot(3,2))
else root(3,1)X(root{1,1)xx2+root(1,2)xx2);
root(k, 1) :=arr(0) /a;
root(l,2) :=0
end;;;
end
end
end ;

finis:

. end pzero;

comment:
pzero(order,coef,root) calculates real and complex roots
of 2nd, 3rd and bth order polynomials with real coefficients:
p(z)= coef(order)xzxxordert., . . +coef(1)xz+coef(0).

pzero is false if order>h or order<? or cocef(order)=0,

otherwise pzero is true.

order (call value,integer) specifies the order of the
polynomial,
coef (call value,array) specifies the coefficients of
' the polynomial.

root  (return value,array).
If pzerc 1s true then root specifles the roots of

the polynomial: zi, i=1,2,...,0rder so that
Re zi = root(i,1)
Im zi = root(i,2);

end;
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31.D2o2k
December 1972

Chr. Gram

runge kutta

RC L4000, Software, Mathematics, Diff. equations

runge kutta solves a system of first ordinary diffe-
rential equations with given initial values by a fifth
order Runge-Kutta method with varisble step size, er-

ror-control, and flexible exit conditions. 20 pages.




1. FUNCTION and PARAMETERS.

Ruage kutta solves a system of first order ordinary differential

equations on the form
ax(j)/dt = fj(t, x(1), x(2), vee , x(n)); 3 =1, 2, saey n

with given initial values using the parameter t as integration variable.

The procedure heading is:
boolean procedure runge kutta(f, x, t, eps, dts, max, fstop);

value
integer
real
procedure

array

Call parameter:

eps:

eps;
max;

t, eps, dts, fstop;

A real variable.

The tolerance for the relative error. The procedure
tries to control the steplength such that the accum-
lated relative error does not exceed eps*(b-a) where
b-a is the length of the integration interval. eps must
be positive and should b= chosen between 10-1 and 10—11
depending on the accuracy wanted. It is recommended to

choose eps > _ .-8 because with smaller eps the proce-

= 10
dure may often use an excessive amount of work for on-

ly a slight improvements of the results.

Call/Return parameters:

X:

a real array, declared as: array x(1:n). The index
bounds must be 1 and n = the number of equations, re-
spectively,

On entry, x contains the initial values of the depen-
dent varigbles.

On exit, x contalns the result, i.e. the values of
these variables at the point where the stop condition
is fulfilled.

If the lower index bound of x i1s not 1, the run is

terminated with the alarm message <:rungekut:>.




dts:

Return parameter:

runge_kutta:

Other parameters:
f:

a real variable.

On entry, t contains the initial value of the indepen-
dent variable.

On exit, t contains the final value at the point where
the stop condition is fulfilled.

an integer variable.

On entry, max denotes the maximum number of integration
steps 1o be performed by the procedure.

On exit, max contains the number of steps actually per-
formed counting accepted as well as rejected steps.

a real variable,

On entry, dts contains the initial step size. The pro-
cedure integrates in the t-direction given by the sign
of dts, If dts = 0, the entire length of the interval,
fstop-t, is used as first guess on the step size., On
exit, dts contains the estimated size of the next step.
This is useful if integration is contlnued by repeated
calls of the procedure.

On exit, the boolean procedure is true when the integra-
tion was succesful, i.e., the max number of steps was
sufficient., If the mex number of steps was used before
reaching the stop criterion the procedure returns with
the value false, the parsmeters t and x containing the

current values.,

A procedure with % parameters, declared with the hea-
ding:

procedure f(x, t, dxdt);

real t;

array x, dxdt;
The call

f(x, t, k)

where the array x contains the values of the dependent

variables and t the value of the integration variable,




must assign to k the function values, i.e,
k(J) = fj(t, (1)) eeo 5 x(n)); 3 =1,.00,n.

Neither x nor t may be changed by the procedure.

fstop: A real expression used as stop criterion:
If fstop is constant, integration continues until
t = fstop, 1.e., fstop is simply the final t-value,
If the value of fstop changes during the integration,
the procedure terminates when fstop = 0.
The parameter fstop is called once initially and once
per accepted step; the initial value may be zero with-

out terminating the integration.

2, METHOD,

2.1, Mathematical formulae

The fifth order Runge Kutta formulae used are derived by Zonneveld
[1]. They use 6 intermediate points in each interval and one additional
point for the error and step control, thus requiring 7 calls per step of
the procedure f,

The formulae are exact up to and including the fifth order term of
the Taylor expansion and gives an estimate of this last term, which is
used to determine whether the step should be accepted or not; ab the

same time 1t 1s used to estimate the size of the next step as explained

below,

2.,2. Termination.

The procedure may be terminated in four ways:

a) #hen t = fstop. This is used when integrating over a fixed interval,
say a to b; the procedure should be called with b as the last parame-
ter, and with max sufficiently laree.

b) When fstop = 0, If the value of fstop is not constant, integration
continues until fstop changes sign; then a zero-finding algorithm is

entered to find the point where fstop = 0, The algorithm is an adap-
tively adjusted welghting between regula falsi and bisection; it ite-
rates until the length of the root enclosing interval is smaller than
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10-8*mu where mu 1is the smaller of the 2 last accepted regular steps.

For details see comment 8 and 9 to the algorithm.

c) If the number of steps permitted (max) is exceeded, The return para-
meters of the procedure allow continued integration and this feature
may be used to monitor the integration of tricky functions: If you
call the procedure repeatedly with a small value of max, the calling
program gets a chance to react on intermediary values, if necessary,

This exit is also used to prevent the procedure from cycling:
There is no lower limit on the adaptive step length, hence you may
- unintentionally - call the procedure with parameters causing a very
lengthy integration with extremely small steps. The value of the pro-
cedure being false shows this to be the exit cause, and the parameters

1t and x always contain the actually achieved values.

d) If the procedure 1s called with a second parameter X which is not an

array with lower index bound 1, the procedure immediately terminates

the run with the alarm message 'rungekut',

2.3+, Error Control.

Accumulated error estimate.

The error control algorithm tries to distribute the total error in
proportion to the total variation of the sought function x. It may be
shown that a suitable way is to adapt the step length dt such that

(2.1) |local error| as eps*dt*(variation(x) + eps*|x|);

Under certain hypotheses on the function x(t) this leads to an accumula-

ted error over the interval (a, b) which approximately satisfies

(2.2) 222227300 L &2 eps % |b - a

If the length of the integration interval |[b-a| always were known at
call time, this factor might be included in the step length algorithm.




-5 -

But Ib-al 1s not known when integrating with a variable fstop parameter,
and as a consequence the procedure always works in accordance with (2.1)
and (2.2).

When integrating a system of equations, say n equations, expresslons

(2,1) and (2.2) are substituted by

(2.3) max |-== local error __ ,
. - |variation{x)+eps*Tx]

and
aCC. error
(2.8)  mex ooyt raatzy

~= eps ¥ 4t

The formula in [1] doesn't give the local error, but estimates the 5th
. order term in the Taylor series by
5th order term = (kO*21 - k2x162 + k3%22L - kh%125 + k5xh2)/1k
but since the formula for y is exact up to and including this 5th term
it is reasonable to use the estimate
local error = 5th order term % dt

and hence (2.3) becomes

(2.5) max |pm-or2e0.QFGeT term |
. o '(varlatIion{x)+eps*]x])*eps”

Accept criterion

For each equation the procedure calculates, in every step,

(variation(x) + epsxabs(x)) * eps

8 =
T = abs(5th_order term)/s

and
sft = max(f), max over all equations.

In accordance with (2.5) the step is accepted if sft <= 1, and rejected
otherwise. In the extrapolation algorithm for the length of the next

step the procedure tries continuously to keep sft slightly smaller than
1, thus safely fulfiliing (2.5).




Step estimation after reject (sft > 1).

In sft the denominator s may be considered locally constant and

hence we have appr,
sft = some constant ¥ h*x5 ,

Therefore the new, optimal step length should be

(2.6) hnew =h * 5\/1/sft

but because of slightly easier calculation and in order to introduce a

safety margin the following formula 1s used instead:

hnew = 0,95 * h *l%/1/sft .

Remark: Because the procedure is especlally suited to integrate tricky
equations the formula is deliberately chosen so that the step length may
become arbitrarily small.

Step extrapolation after accept (sft <= 1),

The optimal new step length is again glven by (2.6), but since sft
may become arbitrarily small - or even equal to zero - this extrapolation
is replaced by a formula giving a reasonable limited maximum growth of
h and behaving like (2.6) in the neighbourhood of sft = 1. Following
Zonneveld [1] we approximate 5W’1/sft by
(2.7) mu = 1/(1 + sft) + 0.L5
with the range 0.95 to 1.45 instead of i to infinity, and modify this by
using a one step memory in the algorithm: the last accepted values of mu
and h are kept and used in the final extrapolation
(2.8) 'hnew =h * (h/h old¥m + mu - mu old) .

The effect of equation (2.8) is to introduce an 'overrelaxation' based
on the develcpment of h and mu over the last two steps: If h_pld < h and
m1_old < mu, then hnew will become larger than estimated by (2.6) or
(2.7): if e.g. sft = O over several steps, then h will grow approximate-

ly as 1, 2, 5, 18, 97, <.« If, on the other hand, sft = 1 over several

steps, equation (2.8) cautiously makes h smaller slowly: mu is 0.95 stea-
dily and h will diminish approximately as 1, 0.8, 0.6, 0.45, ...




2.4, Round-off errors.

It may be shown that even when all arithmetic operations are per-
formed with correct rounding, as in RCLO0O, the accumulated round-off
errors in the summation of x-values are reduced considerably by using
quasi-double precision; see Mgller [2]. Therefore the summation of t and
x is done using quasi-double precision.

Since this works equally well in 36-bits and in 33-bits arithmetic,
the procedure gives almost.identical results when working in the low and
in the high precision mode of RC4O0O: When working with large values of
eps, eps >= 10-7, the results from the tests are identical in low and in
high precisions with eps < 10—7, the procedure often uses more steps in
the low precision mode, but the resulting errors are in many cases the

same as in the high precision mode.

3. TIME and STORAGE REQUIREMENT

The procedure uses 60 + 12 % N local variables (reals) and 1 local
procedure with no parameters. The translated procedure has a length of 6
segments.,

The execution time for the procedure itself is approximately b+ 7N
msec per step where N is the number of equations. The figure includes
call of the f-procedure but the time for executing the body of this pro-
cedure must be added (it is called 7 times per Runge-Kutta step) .

4y, EXAMPLES of USE.

Problem 1: Solve two differential equations, say,
y' =t + sin(y-z)
z! = t/y
over the interval 0.5 < t < 3.5 with initial values y(0.5) =1,
z(0.5) = 2, and with a relative error smaller than 1 promille. The solu-

tion is wanted for + = 4.5 only.




Solution 1: The program structure of the solution is as follows:
1) In the program block head is declared:

integer Max;
real t, dt;
array YZ(1:2);
procedure F1(x, t, dx);
array x, dxj; resl t;
begin
dx(1) =t + sin(x(1) - x(2));
ax(2) := t/x(1);
end;

2) The procedure is then called:

. ti= 0,5; dt:= _ -2; Max:= 600;
YZ(1):= 1; v2(2Y:= 2;
if -,rungekutta(F1, Y7, t, 10
then begin
comment: error action;
end;

-3, dt, Max, 3.5)

After this call YZ(1:2) contain the solutions y(3.5) and z(3.5), Max
contains the number of steps used, and dt the last estimated step size.

Problem 2: The solution to problem 1 1s wanted printed out for t = 1,
1.5, 2, 80 L] 3'5!
Solution 2: With the same declarations as above the procedure is now

called inside a loop:

‘ ti= 0,55 dt:= __-2;
Y2(1):= 1; Yz(3Y:= 2;
for tslut:=1, 1.5, 2, 2.5, 3, 3.5 do

begin
Max:= 100;
if -, rungekutta(Fi, YZ, t, 10-3s 4%, Max, tslut)
then begin
comment: error action}
end;
write(.o., YZ(1), YZ(2), ...);
end;

Problem 3: The solution to problem 1 is wanted at the point where y has
a minimm, i,e., where y' =0,
Solution 3: With the same declarations and initiaslization as in solution

1, the procedure is called with the same parameters except for the last

. ones:



if -, rungekutta(Fl, ..., t + sin(Y2(1) - ¥YZ(2))) then --- ;

Problem 4: In order to analyze the behaviour of the procedure on the

differential equations of problem 1, a printout is wanted for every 10
steps of integration.
Solution 4: With the same declarations as above the procedure is called as

follows:

tei= 0,55 dts= _ -23
Y2(1):= 1; Y2(2Y:= 2;
for t:=t while t < 5.5 do
begin

Max:= 10;

rungekutta(F1, YZ, t, ..-3, dt, Max, 3.5);
write(out, ..., t, YZ(1Y, ¥2(2), ...)3
end;
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5. TEST

The procedure was tested on several examples among which were:

Test 1: The three equations

yit = y2 , y2! =y3,
y3' =2 % (ylxy3 + y2xx2)
over the interval O < t < 1¢5 with the initisl wvalues

y1=0,y2=1,395=0.
The solution is y1(t) = tg(t), which tends to infinity. At t = 1.5
the values are appr. yl = 14, y2 = 184, y3 = 5000.
6: The two equations

Test

y1' = y2 % yiex2 ,

y2' = - 1/y
over the interval 0 <t < 4 with initial values y1 = y2 = 1, The
solution is

y2(t) = cosh(t) - sinh(t) = exp(-t)

y1(t) = 1/y2(t) = exp(t)
As cosh(t) and sinh(t) approach each other, y2 grows rapidly and y1
disappears. At t = 4 their values are y1 = 55 and y2 = 0,02 ,
5: One equation

Test

Test

y' o= texp * (1-t)%4q
over the interval 0 <t < 1, where p and q are given integers, and
with the initial value y = 0. The solution is the betafunction with
y(1) = B(p+1, g+1). The test was run with p = q = 4 and with p = 24,
q = 49, The solution y(t) has extremely small variation, in the
-21, but the

first case appr. -3 and in the second case appr.

10 10

higher derivatives vary much more.
5¢: The Volterra equations

y1' = axyl - bxylxy2

y2! = cxyl*y2 - dxy2
over some interval O <t < T, where a, b, ¢, and 4 are given con-
stants, and with given initial values. The solution is periodically
oscillating in both variables representing the growth of two con-
flicting populations.
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The tests were mainly concentrated on the following points of in-

terest:

Step-correction aslgorithm: Several algorithms were tried, Including the

one proposed by Zonneveld [ref. 1] and the one used in the Gier Algol
procedure [ref. 3]. Finally the present one was selected as the best in

the sense of minimizing the number of steps required to obtain a certain

accuracy.

Eps and the resulting error: As developped in chapter 2 above it is ex-

pected'that the parameter eps and the resulting error are related appr.
as follows

Error = C * eps * variation(y) * (b-a);
In all the tests except Test 5 this linear relationship was confirmed,
and with a constant C between 0.1 and 0.,02. Test 6 was the only case with
C > 1, namely C =¢ 100, Test 3 with p = 24 and q = 49 showed a more irre-
gular relationship between Error and eps but still the accumulated error
fell below the expected value with C = 1.

Precision of the arithmetic: Several tests were carried out both with the
normal 36-bits precision floating-point arithmetic and with 33 bits pre-
cision, The results were almost identical but for small values of eps,

10-8 and 10-9, the procedure used more steps in the 33 bits mode, This
may be explained as follows: The results are almost the same because the
quasi-double precision works equally well in 36 bits and in 33 bits mode
and, in fact, makes both of them look like a (L0-50)-bits mode. But in
the error control the calculation of the local error estimate is distur-
bed considerably by the rounding to 33 bits mantissa.

Comparison with other methods: The criterion used for comparison is the
number of function evaluations (= calls of the f-procedure) plotted

against the accumulated error (relative or absolute) .

For nice, smooth solutions it uses almost twice as many function
evaluations as a good version of the Hamming predictor-corrector proce-
dure, In more 'difficult! cases (e.g., large higher derivatives) they
perform equally well, by and large, but the predictor-corrector is more
dependant on a judicious choice of initial step length; the Runge-Kutta
procedure glves almost identical results for a wide range of initial step
lengths,
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In [4] a number of methods were compared and one of the test pro-
blems were Test 6. For large values of the error (> 510-5) the present
procedure performs very much like the extrapolated Runge-Kutta Arromx of
[4]. For smaller errors it works considerably much better than any of the
cited procedures but this may be due to a better floating-point arithme-
tic: 36-bits and quasi-double mode compared with the 28-bits precision of
[41.
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7. THE ALGORITHM

runge kutta=set 6
runge Xutta=algol index.no
external

boolean procedure runge kutta(fx,x,t,eps,dts,max,fstop);
value eps; -

integer max;

real t,dts,fstop,eps;

procedure fx;

array X;

begin integer nj;
if system(3,n,x)<>1 then system(9,0,<:<i1O>rungekut:>);

begin integer i,nt;
boolean tstop,first;
real cO,cl,e0,e2,e3,el,e5,dt0,dt,h0,
h,mu0,m,b,sft,t1,q9t,4,f,q9,w,s;
array a(0:27),dv(0:6),qx,x1,dx,11,ul(1:n),k(0:6,1:n);

procedure evaluate;
begin integer ic,it,1,to;
real v
boolean last;
it:=0;
vi=tl;
for to:=0 step 1 until 6 do
begin fx(x,v,dx);
last:=to>5;
iti=it+to;
for i:=n step -1 until 1 do
begin k(to,i):=dx(1)*dt;
vi=03
for ic:=to step -1 until O do
vi=k(ic,1)*a(it+ic)+v;
if last then dx(i):=vi=v+qx(i);
x(1) s=x1(1)+v
end;
ve=dv(to) ¥dt+qt+t1
end;
ti=v
end evaluate;

- 135 -
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comment 1: initialize;

for 1:=0 step 1 until 27 do
a(i) :=case i+1 of (2/9,

1/12 ,1/h ,

1/8 s0 ,3/8 .

53/125 ,-27/25 ,126/125 ,56/125

19/24h -9/ ,23/1h - ,2/3 ,25/168

'9/,"' !27/)‘l' 9‘9/7 L 925/1L|' »0 9
35/336 ,0 ,81/168 0 ,125/336 ,0 ,1/21) 3

for i:=0 step 1 until 6 do
av(i) t=case i+1 of (2/9,1/3,1/2,4/5,1,1,1);
e0:=3/2; e2:=-81/T7; e3:=16; el:=-125/1k4; e5:=3;
for i:=n step -1 until 1 do
begin gx(i):=0;
131(1) s=ud (1) s =x1(1) s=x(1)
end;
nt:=max;
cl:=cO:=fstop;
t1:=t;
dt0:=dt:=if dts=0 then (cO-t1) else dts;
tstopi=true;
runge kutta:=true;
mi:=1,05;
qt:=0;

for nt:=nt-1 while nt>0 do
begin comment 2: main loop;
evaluate;

comment 3: error estimate;

sfti=, -10;
for i!=n step -1 until 1 do
begin s:=x(i)3;
if s>ul§i) then uléi;:=s else
if s<11(1i) then 11(1):=s;
st=(ul(1)-11(1) +eps*abs s+, .~500)*eps;
fi= (abs(k(o,i)*eo+k(2,1)*é9+k(3,i)*e3+k(h,i)*eu+k(5,i)*es))/s 3
if f>sft then sft:i=f;
end;
if sft<=1 then

begin comment 4: accept;

c¢l:=fstop;
if tstop then
begin tstopi=cO=cl;
if tstop and (ci=t or dt*dtO0<=0) then goto slut
end
else if cOx¥c1<0 then goto slut;
cO:= c13;



comment 5: new dt;

mi0s = 3
muz=1/(1+sft)+0.45;
bs=dt/dt0;

8:=dt0;

dt0:=dt;

dt: =(bxmrtmm-mo0) *¥dt

corment 63

gb:=dto+qt-(t-t1);

ti1s=t;

if tstop and (c1-t-qt)/dt<l then dt:=cl-t-qt;

for i:=n step -1 until 1 do

begin

ax(1) :=ax(1)-(x(1)-x1(1));

x1(1) :=x(1)

"' end
end accept
else

begin comment 7: reject;

for 1:=n step-1 until 1 do x(i):=x1(1);
a:=sqrt(sqrt(sft));
first:=dt0=4dt;
dt:=dt*0.95/q;
mus =mux2%q/(g+1) 3
1f first then 4tO:=dt;
end reject
end main loop;
runge_kutta:=false;

slut:
max:=max-nt;
dts:=dt0;
‘ if cO*c1<0 then

begin comment 8: terminating step;

t=qi=w:=b:=0,99;
f:=h0:=0;
hi:=dt:=4t0;
mis=abs(if s/h<i then s else h);
for s:=h-hO while abs s>(abs dt+mu)*1 O-8 do

begin comment 9: zero determination;

fi:=b;

bi=cO+c1;

for i:=n step-1 until 1 do x(i):=x1(1);
if f#b<0 then begin wi=qg; q:=d end;
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d'=b/(c0-c1),
:=(dxw-1)*s/2+h;
evaluate,
fi=fstop;
if f=0 then h:=dt;
if cO¥f<O then
begin cl:=f; h:=dt end else
begin c0:=f; hO:=dt end;
dr=wi=((1f b*f>0 then 1-w else -0.8)*0. 9*abs a+1) *w
end zero determination;
if cO*f>0 then
begin dt:=h;
for 1:=n step-1 until 1 do x(i):=x1(1);
evaluate;
end
end terminating step
end inner block
end rungekuttaj;
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The main varisbles of the procedure are:
A(0:27), DV(0:6), €0, e2, e3, el, e5: Coefficients from the Runge-Kutta

x1(1:n):
ax(1:n):
ax(1:n):
11, ul(1:n):

at:
dto:
t1:

qgt:
sfte
ma, muOs
cl, cO:

tstop:

formulae;

0ld values of xj;

Actual increments of x, such that x(1) = x1(1) + dax(1);
Accumilated rounding errors of x;

Lower and upper limits of x since entry, hence

ul(i) - 11(i) is the variation of x(i);

New step length estimate;

Last accepted step size;

Last value of t, the integration variable; i.e., t1 is
the endpoint of the last accepted step and t is the end-
point of the step being tested;

Accumulated rounding error of t;

Step accept criterion;

New and old value of step size relaxation factor;

New and 0ld value of the stop criterion fstop;

true if fstop = constant, false otherwise.

comment 1: The array A is initialized with the coefficients of the Runge-
Kutte formulae for k(1), k(2), ... of [1]. (Note that coefficients
for k(6) precede those for k(5).) DV is initialized with the fac-

tors on h corresponding to the k-s. e0 to e5 contain the coeffi-

cients of the error estimate formula, The accumulators gx(i) and

qt for the quasi double precision errors are reset. The lower and

upper limits of variation 11(1) and ul(i) and the 'old' value of x
x1(i) are all reset to the initial values x(i). The present and the
0ld step length estimate, dt and dt0, are set equal the entry value
of the parameter dts; if this is zero the total length of the inte-

gration interval is used as first guess.

\

comment 2, Main loop: Here starts the main loop with one cycle per step.

The loop consists of
- function evaluation,

- locel error estimate,

- actions when a step is accepted or actions when a step is rejected.
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comment 3, Error estimate: For each component x(1) the lower and upper

1imit is updated, the Runge-Kutta error estimate f is calculated in
accordance with (2.5). The maximum over all components x(i) is de-

noted sft.

comment 4, Accept: The new step dt is accepted, x(1) contain the corre-

sponding new x-values, The first action is to check the stop crite-
rion: If fstop = constant, tstop is true and integration continues
until t = fstop; the double if-statement ensures the correct setting
of tstop in the first steps the condition dt*dto < 0 ensures exit if
the procedure is called with a dts much larger than the integration
interval or if the step length extrapolation yilelds a crazy result.
If fstop is not constant, exit is made when its sign changes

(cO*e1 < 0).

comment 5, New dt: The size of the step just accepted is stored as dto,

and a guess for the next step is calculated according to (2.8).
While the very last step dt may be very small in order to 'hit!
exactly t = fstop, dtO always contains the last, normally calculated
and accepted step length. Therefore dt0 is used to set the return
value of dts after the last step.

comment 6: The following statements perform the quasi double precision
arithmetic on t, using gt as error accumulator, and on x(i) using
ax(i) as error accumlators., If the estimated new step length dt
overshoots the goal t = c1, dt is regulated accordingly. Finally t1

and x1(i) are updated.

comment 7: The step is rejected, x(i) are reset to the old values x1(i)
and a smaller step length 4t is‘calculated according to section
2.3, Furthermore m, which in the next accepted step will be used
as 'old value! muO, is increased a little; this will mske the dt-
extrapolation after the first accepted step a little more cautious.
In case the very first step is much too large and hence rejected,
dt0 has to be re-initialized; this is done in the last statement of
the loop, where dtO = dt 1s used to indicate the first step.
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comment 8, Terminating step: This sectlon 1s entered only for variable

fstop, in order to interpolate over the last accepted step to find
the t-value and corresponding x(i)-s for which fstop = 0., The va-
riables have the following contents (snapshot values) just before

entering the interpolation itself (the statement: for si= ...)

1, x1(1): 014 accepted values where fstop still had the origi-
nal sign, say fstop = c0 > O,

t, x(1): Newest calculated point, where fstop = ¢1 < O,

h = dt0 = distance from t1 to t.

4, q, w, bs Contain initial values for different welghts and

coefficients used in the interpolation.

‘ comment 9, Zero determination: t1 is used as the fixed base point. The
end points of the 'newest! root-contailning interval are t1 + hO and

t1 + h where fstop has the values cO and cl1; s =h - hO is the
length of this interval. The next point tested for fstop = 0 is

t1 + dt, where dt is a weighted mixture of a bisection dt =h - s/2
and a slightly modified regula falsi dt =h + (cO + c1)/(cO - s1)

* s/2,
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input:

solineq - 1 -

The procedures decompose and solve, RCSL No. 53-MT13
must be present in RCLODD before the solineq tape is input

by the command 1 tre,

Program call:

The program is called by the command solineq datasource ,
e.80 So0lineq tre. Output will appear on current out. Data is

tested by the program,

Data:

n
m
a(1:n,1:n)
b(1:n,1:m)

oubput trim

Examples:

data set:
21

7.1 b

1 .8 2.5

8.1 17

program call:

o tpf
soling trf

punch output:

Data:

2X2 matrix

a 1,1= T.100000y O

a 2,1= 1,800000y, O

right-hand sides:

b1= 8,100000:, O

number of equations

nunber of right-hand sides
coefficients of the equations
right-hand sides

- (minus) => standard trim is used,
which means output of input data
and solutions with max 70 lines
per page, max 80 characters per
line and 7 digits per number

or

4 nunbers: inputout

lines per page

characters per line

digits printed in output.
inputout=0: input data is not printed
inputout=1: input data is printed
20<=lines per page<=100

Lho<=characters per line<=130

<=digits in output<=ii.

Standerd trim is 1,70,80,7

a 1,2= 4,000000; O

a 2,2= 2050000010 0

b2= 1.700000y 1
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SOLUTIONS

‘ x1==5,407448,, 0 x2= 1,162322, 1

data set:

n=5

[
N

O VP—=C OWFD®I—p B

£ OWN  wvEu s
q W 0= Ol O
o £ =100 =

W U1 OV 0 = Lo Ut D
F-10v 0 M0 puUIw

[0
O

program call:

soldata=set 5
soldata=edit trf
f

o 1lp

solineq scldata

printer output:

SOLUTIONS

. set no 1

X1l= 2.9510-1 x2= 207710 0 X5="1 '5)"'10 0 XLI'="103,4'10"1
x5= 1,46y-2 x6=-6,39-2

set no 2
X1= 2.17y=1 x2= 2,51y O x3==T 49ly-1 xl=-1,05,-2
%X5==3,08)~1 x%6=-18T-1

set no 3

x1= 1.39,-1 x2= 2,24, 0 x3=-4,80,-2 xh= 1,13,-1
X5=-6.5010—1 X6=-3.1010—1
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Program listing:

(clear solineq
solineg=set 36
solineg=algol

end)

begin
comment program for solving a system of linear equations by
means of two standard procedures : decompose + solve.}

integer n,i,j,m,Mk,k1,k2,k5,digits,sp1,

linesperpage, charperiine,linespergroup,nosperline,linesleft,blines;
real r,rn,rm,rr,lay,layl,lay2;

boolean first,consolinput,inputout,error,bl,blga,bigh,sp;

array arr(1:2$;

procedure changepage(left,wanted); integer left,wanted;
begin
if left<wanted then
begin
linesleft:=linesperpage}
write(out,<:<12>:>);
end
end changepage}

procedure alarm(r,s); real r; string s;
begin integer i}
it=r;
write(out,<:10>:>);
if i=r then write(out,i) else write(out,r);
write(out,s,<:<10>:>);
error:=true
end alarm;

procedure notused;
begin boolean first;
integer 1,5;
firsti=true;
repeatchar(in) ;
rep:
i:=readchar(in, j);
if -,consolinput and j<25 or consolinput and j<>10 then
begin
if first then
begin
if J=1C or Jj=32 then goto rep
else write(out,<:<10>Following was not input: :>)
end;
first:=false; _
write(out,false add j,1);goto re
end
end notused;
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procedure testnandm;
begin
ns=rn;
if rn<n or n<l or n>200 then
alarm(rn,<: 1s not an acceptsble value of n:i>);
Mi=rm;
if M<1 or M>100 or M<rm then
alarm(rm,<: is not an acceptsble value of m:>);
1f error then goto STUP;
system(2,1,arr);
J 2+ =X+ IXAHUxn>xn+200 3
if j>1 then
begin
write(out,<:<10>A dataset of n= :>,<<d>,n);
write§out,<: and m= :>,<<d>,M);
write(out,<:
is too big for this process and will result in a stack message.
In this case you should increase your process by approx.<i0> :i>,
<<&>, 100xround( (j-1) /100),
<: bytes or prefersble more<iO>:>);
end;
end testnandm;

procedure testmatrix(c,n,m,k,name,big) ;
array c; integer n,m,k; string name; boolean big;
begin integer i,Jj; boolean first;
firsti=true;
bilgi=false;
for 1:=1 step 1 until n do
for j:=1 step 1 until m do
if e(1,3)>pb16 and ixXj<=k then
begin
if first then write(out,<:<10>Dataerror in matrix:>,

name,<:<10>Illegal number in element::>);

write(out,<<dd>,<:<10>:>,1,<:,:>,J);
error:=true;
first:=false;
end
else if c(1i,3)>9.99,9 then big:=true;
if -,first then
begin
write(out,<:<10><10>:>); setposition(out,0,0);
ends
end testmatrix;

begin integer array ia(1:20);
getzone(in,ia);
ri=r shift 24 add ia(2) shift 24 add 1a(3);
consolinput:=r=real<iconso:> add 108 or
rareal<itermi:> add 1103
end;

error:=false;
i:=read(in,rn,rm);
1f i<>2 then
begin
write(out,<:<10>empty reader<iO>:>);
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if i=1 then
begin

' n:=rn;
write(out,<:n=:>);
1f n=rn then write(out,n) else write(out,mm);
write(out,<:<10>no input to m:>);
end;s
goto STOP
end;

testnandm;

begin array b(1:n),a(1:n,1:n),bm(1:n,1:M);
integer array p(1:n);

inputout:=true;
linesperpage:=70;
charperline:=80;
digits:=7;

sp:=false add 32;
o k:=read(in,a) ;
k1:=read(in,bm) ;
ri=,100;
k2:=read(in,r);
1f k2=1 and r<616 then k3:=read(in,rn,rm,rr) else k3:=0;
notused;

if k<nxn then
begin
write(out,<:<10>:>,<<dd>,k,<: elements input to matrix,

should be nxn=:>,nXn);
error:=true;s
end;

testmatrix(a,n,n,k,<: a:>,biga);

if k1M then
begin
write(out,<:<10>:>,<<dd>, k1,
. <! elements input to right-hand sides,
should be nxm=:>,nXM) ;
error:=true;
end;

testmatrix(bm,n,M,k1,<: b:>,bigh);

if k3=1 or k3=2 then write(out,<:

output trim should be O or 4t and not:>,<<-d>,k3+1,<: numbers:>);

if k2=1 and 1< 616 then
begin
if 0 and »>1 then
begin
i:=r;

write(out,<:<tO>inputout must be either O or 1 and not:>);

if i=r then write(out,i) else write(out,r);

end
else inputouti=r=1;

' end;
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if k5>0 then
begin
i:=rn;
if i<rn or i<20 or i>100 then
begin
write(out,<:<10>:>) 3
if i=rn then write(out,i) else write(out,rn);
write(out,<: is not acceptable as lines per page:>);
end
else linesperpage:=i}
end}
if k3>1 then
begin
is=rm;
if i<rm or i<hO or 1>130 then
begin
write(out,<:<10>:>) 3
if i=rm then write(out,i) else write(out,rm);
write(out,<¢ is not acceptable as characters per line:>);
end
else charperline:=i;
ends
if k3=3 then
begin
ii=rr;
if i<rr or i<3 or 1>11 then
begin
write(out,<:<10>:>);
if i=rr then write(out,i) else write(out,rr);
write(out,<: is not acceptsble as digits in output:>);
end
else digits:=i;
end;

if error then goto STOP;

kl:=if n>9 then 1 else O3
i:=digits+ki+(if biga then 12 else 11);
charperline:=charperline-i}
nosperline:=charperiine//(i+1)+1;
if nosperline>n then nosperlinet=n;
spl:=(charperline+i-nosperlinexi)//(nosperline-1)-1;
if sp1<0 then spl:=0 else
if spi>h then spl:=h;
linespergroup:=(n//nosperline)+

(if n mod nosperline =0 then 1 else 2);
blines:=3+Mx(linespergroup+(if M>1 then 4 else 0));
linesleft:=linesperpage;}

layl:=real( case digits-2 of(
<<=d,ddy-3>,<<-d.dddy-d>, <<-d,ddddy-a>,
<<=d.dddddy-d>,<<-d,dddddd;-d>, <<-d,dddddddy-d>,
<<-d.,dddddddd -d>, <<-d.ddddddddd, -d>, <<-d.dddddddddd,-&>) ) 3

lay2:=real(case digits-2 of(
<<-d,ddy-dd>,<<-d.dddy-dd>,<<-d.dddd,-dd>,
<<~d.ddddd;-dd>,<<-d,ddddddy-dd>, <<-d.ddddddd,~-dd>,
<<-d,dddddddd; -dd>, <<=-d.ddddddddd,,-dd>,
<<~d,dddddddddd,-da>) ) ;
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if inputout then
begin
begin
write(out,<:<12><10>
Data:<10><10>>,<<d>, n,<:X:>,n,<: matrixi>);
linesleft:=linesleft-l;
lay:=if biga then lay2 else layl;
for i:=1 step 1 until n do
begin
write(out,<:<10>:>) ;
for j:=1 step 1 until n do

write(out,if j mod nosperline=! then <:<10>:> else <:i>,
sp,if j mod nosperline=1 then O else spi+i,<ial>,
<<dd>,1,<,1>,<<8>, J,1if >0 and j<10 then <: =:> else <i=i>,

string lay,a(1,3));
linesleft:=linesleft-linespergroup;
changepage(1linesleft, linespergroup) ;
end;

if blines<=linesperpage then changepage(1inesleft,blines);

changepage( linesleft,linespergroup) ;

if M>1 then linespergroup:=linespergroup+h;
write(out,<:<10><10><10>right-hand sides::>);
linesleft:=linesleft-3;

lay:=if bigb then lay2 else layi;

for j:=1 step 1 until M do

vegin

if M>1 then write(out,<:<10><10><10>set no:>,J,<:<10>:>);

write(out,<:<10>:>) 3
for 1:=1 step 1 until n do

write(out,if i mod nosperline=1 then <:<10>:> else <i:i>,

sp,if 1 mod nosperline=1 then 3 else spl-1+(if
then 3 else if biga and -,bigb then 4 else 5),

-,biga and bigb

<tb>,<<d@>,1,1f n>6 and i<i0 then <i =:i> else <i=i>,

string lay,bm(i,J));
linesleft:=linesleft-linespergroup;
changepage(linesleft, linespergrour) ;
end;
write(out,<:<10>:>);
lineslefti=linesleft-1;
if M>1 then linespergroup:=linespergroup-k;
end;
end;

b1 i=true;

if -,decompose(a,p,1) then

vegin
write(out,<:<10>The given matrix is singular<io>:>);
goto STCP

ends;

if M>1 then linespergroup:=linespergroup+h;

for m:=1 step 1 until M do

begin
for 1:=1 step 1 wntil n do b(i):=bm(i,m);
solve(a,p,1,b);
bigb:=falses for i:=1 step 1 until n do if b(1)>9.949
lay:=if bigb then lay2 else layl;

then bigbi=true;
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if b1 then
begin _
1f -,inputout then write(out,<:<12>:>);
1f blines<=linesperpage then changepage(linesleft,blines);
changepage(linesleft, linespergroup) ;
write(out,<:<10><10><10>:>,false add 32,
nosperlinex(12+spi+digits)//2-8,<:S 0 LU T I O N S:>);
linesleft:=linesleft-3;
ends
if M<>1 then write(out,<:<10><10><10>set no:>,m,
<:<10>:>) else write(out,<:<10>:>);
for i:=1 step 1 until n do
write(out,if 1 mod nosperline=1 then <:<10>:> else <ii>,
sp,if 1 mod nosperline=1 then 3 else spl-1+(if -,biga
and bigh then 3 else if biga and -,bigb then 4 else 5),
<X I>,<<E>, 1,
if n>9 and i<i0 then <¢ =i> else <i=:>,
string lay,b(i));
linesleft:=linesleft~-linespergroup;
changepage(linesleft, linespergroup) ;
bli:=false;
end m;

write(out,<:<10><10><12>:>) ;
end of block;

STOP:

end
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boolean procedure solvesym(n, m, A, X);

1. Function and garameters.

The procedure solves the generalized linear algebraic equation
MXX=28B

where M is a symmetrical n X n matrix of coefficients, B is a given n Xm
matrix and X is the unknown n X m matrix.

In this procedure X and B are stored in the same array X, B on entry
and X at return.

The lower half of M(1:n, 1:n) is stored in an array A such that
M(s, r) = Mr, s) = A(xx(xr-1)//2 + 8). s <=1,

If M is singular then the procedure will come out with the value
false, For each degree of degeneration one of the diagonal elements in
M, say A(sx(s+1)//2), is zero, and the corresponding elements of X,
X(s, k), k =1, 2, oes, m, must be zero or very small if the given equa-

tion M X X = B has a solution,

Procedure heading:

boolean procedure solvesym(n, m, A, X);
value n, m;

integer n, m;

array A, X;

Call parameters:
integer n The number of equations,
integer m the number of right sides.

real array A(1:mx(n+1)//2) the lower half of the coefficient matrix
M(r, s) =M(s, r) = A(rx(r-1)//2 + 8), s <=r.

Call and Return parameter:
real array X(1:n, 1:m) is the right sides at call and the solutions at

return,

Return P_arameter:
boolean solvesym, false if A is singular, true if A is nonsingular,




2, Mathematical method.

The method is the usual Gauss reduction with diagonal pivoting. The

pivoting criterion is the following:
In each step a new pivot index r is selected among the not used in-
dices so that
abs M(r, r) / max abs M(r, s)
attains its maximum; and the reduction is carried out in the usual way
by meking the r’th columm = O under the diagonal. However, if all pos-
sible diagonal elements are zero this can not be done. In that case an
index r is found so that
max abs M(r, s)
s$r
attains 1ts minimum,
If this minimum is zero then the whole row is zero and the matrix is

singular. In this case the procedure value 1s set to false and the corre-
sponding r is set to ’has been pivot element’, and the search for another
r is continued. However, if the minimm is > O then row k is replaced by
(row k) + (row r) x M(k, r) for all k which have not been pivot index.
This will make at least one diagonal element % O and the pivot index may
be selected as sbove, The process can now go on until there are zeros un=-
der the whole disgonal of M and the solution obtained by simple backward
elimination.

If M is singular some of the diagonal elements Mz, r) are zero. Du-
ring the backward reduction the division by such a diagonal element is
skipped, Moreover, the corresponding elements in the r’th row of X(r, k)
= B(r, k) will have to be zero (or very small compared to the original

values) in case the given equation has a solution.

3o Accuracy, time and storage Requirement.

Accuracy.
In practice the relative error measured as ||AXX - B|[/[|X|| bhas
been found to be about y-10. This is not an errorbound, the errorbound

has been discussed in detail in literature see e.g., Forsythe og Moler.

(ref).




For m = 1 the time is .2X(n+1)xx3 ms

Storage requirement,
The procedure is U4 segments long on backing-store, It uses 70 + 3.5 X

\ n words in stack.

Typographical length: 103 lines, 4 segments.

i, Test and discussion

The procedure is intended for use in such cases where the total ma-
trix M is too big for the available store., A program using decompose and
solve will be faster than a program using solve_sym, even if the program
must generate the matrix M from the half matrix A,

‘ The procedure has been tested by some equations with coefficients
chosen at random and by a representative set of singular equations,

The following program will read n, m, A, B, solve the linear alge-
braic equation A X X = B and write out the X:

Input, solution and output of a symmetrical set of linear algebraic equa-
tions
begin integer n, m, i, j, k, 13 boolean s;
read(in, n, m);
begin array A(1:(nx(n+1)) shift (-1)), B(1:n, 1:m);
read (in, A, B);
s:= =, solvesym(n, m, A, B);
‘ if s then write(out, <:<10> A is singular:>);
write(out, <:<10>:>);
for 1:= 1 step 5 until m do
begin
ji=if ith < m then 1 + L4 else m; |
for ki= 1 step 1 wntil j do write(out, << dad>, k)3
for ki= 1 step 1 until n do
begin
write(out, <:<10>:>, <<ddd>, k, if s then (if A((kx(k+1)) shift (-1))=0
then <:X_:> else <:_:>) else <:_:>);
for 1 :=1 step 1 until j do
write(out, <<_-d.dddddd,-dd>, B(k, 1))
end k3
. write(out, <:<12><10>:>)
end 1
end A

end programs




5« Reference

George Forsythe and Cleve B, Moler: Computer Solution of Linear
Algebraic Systems. Prentice~Hall, Inc. (1967).

6. Procedure text.

solvesym = set U4
solvesym = algol
external

boolean procedure solve_gym(n,m,A,X);
message solve sym, version 18 11 69, RCSL 53-Mb;
value n,m; integer n,m; array A,X;
begin integer i,Jj,k,r,s,t;
real al,sk,ar,mi;
array M(1:n); integer array R(1:n); boolean array B(1:n);

J:=0; solve_gym:=true;
for 1:= 1 step 1 until n do
begin
mi:=0;
for k:=i-1 step -1 until 1 do
begin
if abs A(k+j)> mi then mi:=abs A(k+J);
if abs A(k+3)>M(k) then M(k):=abs A(k+J)
end k;
M(1):=mi; B(1i):=true; j:=j+i;
end i;
s:=13
for t:= 1 step 1 until n do
begin

mis=ak:=-1;
for 1:= 1 step 1 until n do if B(i) then




begin
al:=abs A((ix(1+1))shift(-1));
C ) 1f M(1)>0 then
begin
if mixM(i)<ai then
begin
i1f ai<>0 then
begin
mis=al/M(1); s:=i
end else if M(i)Xak<l then
begin
ak:=1/M(1); s:=i
end
end
end (1) > 0 else
"' begin
R(t):=1i; B(i):=false; t:=t+1;
if ai=0 then solve sym := false
end M(1)<0
end i;
if B(s) then
begin
ri=(sx(s-1))shift(-1); ar:= A(r+s);
if ar=0 then begin ar:=-1; t:=t-1 end else R(t)£=s;
B(s) := false;
for i:=1 step 1 until n do if B(i) then
begin
‘ Je=(ix(i-1))snift(-1);
al:=A(1f i<s then r+i else j+s)/ar; mi:=-1;
for k:= 1 step -1 until 1 do if B(k) then
begin
akt= A(j+k) :=A(j+k)
-aixA(1if k<s then r+k else (kx(k-1))shift(-1)+s);
if abs ak>mi then
begin
if i=k then goto L1}
mi:=abs gk
end;
if abs ak>M(k) then M(k):=abs ak;
I1: end k3

o M(1) s=mi;

for k:=1 step 1 until m do X(i,k):=X(1i,k)-aixX(s,k)

end 1j;




if A(r+s)=0 then
begin
mi:=0;
for k:=1 step 1 until n do if B(k) then
begin
s=abs A(1f k<s then r+k else (kx(k-1))shift(-1)+s);
if ak>mi then mii=ak;
if akoM(k) then M(k) :=ak;
end k3
B(s) := true
end A(r+s)=0
end B(s);
end 13
for t:=n step -1 until 1 do
begin
s:=R(t); ri:=(sx(s-1))shift(-1);
for 1 := t+1 step 1 until n do
begin
J:=R(1); ai:=A(if j<s then r+j else (JX(j-1))shift(-1)+s);
for k:=1 step 1 until m do X(s,k):= X(s,k)-aixx(J,k)
end 1ij
als= A(r+s);
if ai<> 0 then for ki:= 1 step 1 until m do X(s,k):=X(s,k)/ai
end t

end solve sym;
comment

Call parameters:

integer n the number of equations.

integer m the number of right sides.

real array A(1:mx(n+1)//2) the lower half of the coefficient matrix.
M(r, s) =M(s, r) = A(rx(r-1)//2 + 8)

Call and Return parameter:

real array X(1:n, 1:m) is the right sides at call and the solutions at
return,

Return parameter:
boolean solvesym. false is A is singular, true if A is nonsingular;
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(‘ 1. Function and Parameters,

1: Function:

The boolean procedure evaluates one zero of the function F(x) within
the interval a <= x <= b, The method is based on regula falsi and
blsection combined with an adaptive parameter giving the welghts of
regula falsl and bisection.

Call parameters:

) a, b:

eps:

Return parameters:

real value parameters specifying the end points
of the interval within which the zero is calcu-
lated, This interval is a <= x<=b if g < b,
otherwise a <= x <= b,

A real name parameter giving the accuracy with
which the zero is determined,

Relative accuracy may be specified by substitu-
ting an expression like delta X x for eps.

If eps specifies an accuracy that 1s not obtain-

able calculations are stopped with the obtainable

accuracy,

a real name parameter being the independent ve-
riable in the expression giving F,

On exit the z e r 0o determined by zeroil.

Need not be initialized,
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‘ zeroi: The booleen procedure name 1s set to false if
' F(a) > 0 and F(b) > 0 or F(a) < 0 and
F(b) < 0, otherwise zerol is true.

Other parameters:
F: a real name parsmeter specifying the function for
which the zero is to be evaluated,

F must be supplied as an expression depending

on X.

% 2. Method

The procedure calculates for each iteration a new value as a weighted
mean between a regula falsi and a bisection value:

8 < X < b being the intervel in which the zero is to be evaluated, with
fa = F(a) > 0 and fb = F(b) < 0, the following algorithm is used:

xr =g - fax(b-a)/ (fb - £a)
(1.e. x value obtained by regula falsi)

x=(b+a) /2
( (1.e. x value obtained by blsection).

The new value of x is now calculated as
X=xr+ (xb - xr) X vb
vhere the welght factor, vb satisfies 0 < vb < 1.

And the value of vb is calculated as

Vb = 1f a < xr and xr < b then vb X vb / 2 else 1;
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i.e. 1f xr, the x value calculated by regula falsi method, 1s Inside the
newiinterval then regula falsi might be better than the x Just calculated
and more weight are given to regula falsi in the next iteration (i.e.

smaller vb), otherwise the next iteration is pure bisection (vb = 1),

f = sg X F(x) 1s evaluated for the new x value and a new interval (a|v)
is determined as:

if £ > 0 then begin b := x; fb := £ end
else begin b := x; fa := f end;

The factor sg 1s f = sg X F(x) is introduced in order to glve a simple
algorithm inside the iteration loop.

Before starting iteration sg is initialized as
8g := 1d fa > O then 1 else =13
end all velues of F are mltiplied by sg, (i.e. f2 > 0 and b < 0).

If the parameters specifying a and b gives b < & then a interchange of
these two parameters are made in the start of the program,

However if F(b) and F(a) are both either greater than or less than 0 then

the method does not work and the boolean name zerol is set to false indi-
cating that no zero is evaluated, otherwise zeroi is true.

3. Accuracy and storage requirement.

J¢1. The accuracy is determined by the input parameter eps giving the
absolute precision of the zero., If however an expression giving eps
includes the factor x (the independent variable) then relative pre-

cision is automatically used,
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If an accuracy higher, than the one obtainable in RC 4000, is spe-
cified then a result with the highest obtainable precision is deliv-
ered,

3.2, Storage requirements:

1 segment + 9 real varisbles

4, Test and discussion,

zerol 1s tested by use of the 6 functions used in ref, 1 for test of Gier

procedures,
Results of this test using testprogram as given in section 7 are:

Textexamples for : external boolean procedure zeroi(x,F,sa,b,eps)

F(x) a b eps X iter
5¢33+2,6%x 9.9 2.1 ) -2,05° +0 8
1n(x/0.7) Oel 2 ’.8 7.00° -1 12
exp(x)-0.4 -5 1 po S -9.16° -1 12
sin(x)-sin(1.55) -3 1.59 ’-5 1.59° +0 11
K3 + X -0,5 2 ? _B+abs(x) X’ -6 1.63’-15 9
WOK5 -1 2 ’.6 6.96° -7 24

x = the zerc calculated by zero!
1ter = the number of references to F

These result may be compared with results from ref. 1 showing that al-
though using & very simple strategy zerol is very fast,

5. References.

Bo Munch-Andersen: Zero, Algol procedure, Regnecentrslen October 1965,
Giler System Library, Order No. 409,




6. Algol program

zerol=aset 1
zerol=algol
external

boolean procedure zeroi(x,F,a,b,eps);
value g,b; real x,F,a,b,eps;
begin
real fa,fb,f,vb,sg,v,xr;
comment 13

zerol := true;
if & > b then begin f (= a; a :t=b; b :=f end;
X = a3
f :=F;
sg := if £ > 0 then 1 else -1;
fa = sgxf;
if fa = 0 then goto out;
X = Db;
b 1= sgXF;
if fb = 0 then goto out;
if b > 0 then begin zerol := false; goto out end;
vb = 1;

next:
Vv (= baa;
x = (bta)/2;
1f v < 2xabs(eps) or v < 1.2,-10xabs(x) then goto out;
comment 2;
xr := a-faxv/(fb-fa);
x = xr+(x-xr)xvb;
T = apF;
if £ = 0 then goto ocut else
if £ > O then begin a := x; fa := £ end

else begin b 1= x3 = f end;

comment 3;

Vb := if a < xr and xr <b then vavb/2 else 1;

goto next;
out:
end;
comment
1:

Reference:

RCUOO0 System Library

Order No. 55-Di4

A/S Regnecentralen, July 1969
N. Schreiner Andersen




‘ Function:
The boolean procedure evaluates one zero of the function
F(x) within the interval a <= x <=b, The method is
based on regula falsi and bisectlon combined with an adap-
tive parameter giving the weights of regula falsi and
bisection, ’

Call parameters:

a,b : real value parameters specifying the end points
of the interval within which the zero is calcu-
lated., This Interval is a<=x<=b if a < b
otherwise b <= x <= a,

eps: A real name parameter giving the accuracy for
which the zero is determined.

6 Relative accuracy is specified through an expres-
sion with factor x, i.e. x%Xy-7 gives a relative
accuracy of p-7.

If eps specifies an accuracy that is not obtain-
able within RCLOOO calculations are stopped with
the obtainable accuracy.

Return parameters:

X 3 a real name parameter belng the independent
variable in the expression giving F.

On exit the z e r o determined by zerol,
zerol : The boolean procedure name is set to false if

F(a) > 0 and F(b) >0 or F(a) <0 and
F(b) < 0, otherwise zerol is true.

~~

. Other paresmeters:
Fos a real name parasmeter specifying the function for

which the zero is to be evaluated.
Fmust be supplied with an expression depending on x.

2: In order to avoid that calculations can not stop because of too small
eps (below the precision obtainable on RC4LOO0) a security is put in here
causing stop on v < 1.2y-10xabs(x).

5: A new weight, vb is calculated before next iteration;

end zerol;

‘®




T. Testprogram

A/S Regnecentralen
Testprogram for procedure zerol
NSA, 1 009069.

begin
real procedure F(n);
integer nj
begin
1:=1+1;

F := case n of (5.33+2.6xx,1n(x/0.7),exp(x)-0.4,sin(x)-sin(1.55),

X3+ X, XKK5);
end F;

real xj; integer 1;

iter

-d.ddy+dd>, x, <<

-d.ddy+dd>, X, <<

".d L] ddm+dd>’ x’ <<

-d.ddy+dd>, x, <<

-d, ddn+dd>, X, <<

write(out,<:
Testexamples for : external boolean procedure zerol(x,F,a,b,eps)
>);
write(out,<:
F(x) a b eps
)3
1 := 0; zero1(x,F(1),-9.9,2.1,5-6);
write(out,<:
5¢33+2.6xx -9.9 2.1 w=b >,<<
1 1= 03 zeroi1(x,F(2),0.1,2,,-8);
write(out,<:
1n(x/0,7) 0.1 2 0=0 $>,<<
i := 0; zerol(x,F(3),~5,1,xXy=T);
write(out,<:
exp(x)-O.L -5 1 XXp=T D>, <<
1 3= 0; zerol(x,F(L),3,1.59,-5);
write(out,<:
sin(x)-sin(1.55) -3  1.59 -5 1>,<<
1= 0; zerol(x,F(5),-0.5,2, y-8+abs(x)xy-6) ;
write(out,<:
3 + X -0.5 2 p=-8+abs(x) Xy-6:>,<<
1 :=0; zerol(x,F(6),-1,2,y-6);
write(out,<:
X5 -1 2 »=6 >,<<

write(out,<:<10><10><10>
X = the zero calculated by zerol
iter = the number of references to F
) ;
end testprogram;

-d.ddy+dd>, x,<<

-dd>,1);

-da>, 1);

-dd>, 1);

~dd>,1) ;

"dd~>) i) H

"dd>, i) H
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APPENDIX

7. PROGRAM MANUSCRIPT IN AIGOL 5,

begin  comment
sgren henckel, 20 O4 70, data-survey (rc L0OOO-edition)
an algol 5 +translation of data-survey (gier-edition) of 301069;
message data-survey, version 1, 200470, RCSL 53-51;

integer accno,cases,char,control,elem,em,first,last,
limitnumber, groupnumber, inftyp, margin, maxnumber,
page, polex, ps,varnuj

integer array intens(1:49), sub(1:2), +table(0:127);
real date,layl,lay2,lay3,layh,max,min,m1,m2,m3,mh,stdev;

reel array group(1:49), ident(1:19), name(1:8),
obs(1:3000), output(1:2), trg(1:24);

boolean cross,groups,head,means,no,ok,space,variab;

- comment declaration of the procedures
error, expecum, expfrac, fracdiag, grouping, head new page,
histogram, information, moments, nffrac, outtest, phI,
pstep, skip, syntax_error, terminators, textline, and trngen;

procedure error;

beglin
information(<:error detected in (or after) varisble number:>);
write(out, string lay1,varnu) ;
1f inftyp=0 then inftyp:= 13

textline(2,margin,case inftyp of (

<:ierror in art of information:>,

<terror in subsets:>,

<:error in number of constants in transgeneration information:>,
<terror in art of transgeneration:>,

<:which has too many observations:>,

<terror in number of grouplimits:>,

<:identification not terminated by <60>:>));

1f inftyp<h and inftyp<7 then

textline21,margin,<:or some syntactical error:>);

textline(2,margin,

<:run on this data set is terminated. copy of input:<10><10>:>)3;

table(60) := em+35; char:= ps:= 0; repeatchar(in);

for ps:= pstep while ps<250 and char<>25 do

begin

readehar(in,char)s write(out,no add char,1)

end copy max 250 characters or to end of medium;

goto exlt program -
end error;
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real procedure expcum(obs); value obsj real obs;
expcum:= if cbs>0.0 then 1.0-exp(-obs) else 0,0;

integer procedure expfrac(obs); value obs; regl obs}
expfrac:= -1n(1.0-0bs)x10.0;

procedure fracdiag(fractile,cum,maxfrac,start,position,scale,textl,texte);

value maxfrac,start,position,scale;
integer procedure fractile;
real procedure cum;
real maxfrac, start,position, scale;
string textl, text2;
begin
integer df,1i,j,cumlative,relative;
real expect, frac, limit,maxcum,mincum, test;

procedure print axe}

begin -
write(out,<:<10>:>,space, 23) ;
for 1:= 1C step -1 until O do write(out,<: e >)3
write(out,<:<10>:>)

end print_gxe;

head new page;
textTine(3, margin,<:fractile diagram in the :>);
write(out,text1,<: distribution:>);
textlineéE,margin+30,<:estimates of:>);
textline(1,mergin,
<:fraction upper class- position parameter =:>)3;
write(out, string lay3,position);
textline(1,margin,<:in pct. limit:>);
write(out,space, 16,<:scale parameter =:>,string lay3,scale,
<i<10><10>:>, space, if start=0.0 then 19 else 2h,<< -d,3>,
start, start+1.0, start+2,0, start+3.,0, start+4.0) ;
print axe;
cumulative:= relative:= 0; mincum:= 0.0;
test:= -accno; dfi= -3;
for i:t= 1 step 1 until limitnumber do
begin

j:= intens(i); cumlative:= cumulative+j;

limits= group(i); frac:= cumulative/accno;

write(out,<:<10>:>,<< ddd.da>,

fracx100.0, string lay3,limit);

if frac<maxfrac then

write(out,space,if frac>0.0 then fractile(frac)+1 else 1,<:<B8>:>);

relative:= relativet+j;

limit:= (1limit-position)/scale;

maxcum:= cum(limit);

expect:= (maxcum-mincum)Xaceno;

if expect>5.0 then

begin

testi= relatived@/expect+test; df:= df+1;
relative:= 03 mincum:= maxcum

end expect>5,0;

if groupnumber<?l then writelout,<:<10>:>)
end i-loop;
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print axej

expec®:= (1.0-mincum)xaccno;

if expect=0,0 then expect:= ,-6;

relative:= intens(groupnumber)+relative;

if df>-1 then

outtest(text2, relativexx2/expect+test,df+1)

else

textline(2,margin,<:chi sgare test omitted because df=0,<10>:>)
end fracdiag;

procedure grouping;

begin
integer i,Jj,poll1,poi2;
real exobs, groupl, group2, length;
it -, groups then

begin
. lengthi= stdev/(if accno<100 then 2.0 else 3.0);

length:= 1n(length)x,4342oLi82;
poil:= entier length; length:= length-poil;
length:= if length<,0969100 then 1,0 else

if length<,3979400 then 2.0 else

if length<.7781513 then 5.0 else 10,0;
lengthi= 10,0XXpoi1xlength;
groupl := group(1) := §entier(min/length)+1.0)xlength;
limitnumber:= entier((max-groupt)/length)+1.0;
limitnunber:= if limitnumber>i8 then 48 else

if limitnumber<?2 then 2 else limitnumber;
for ii= 2 step 1 until limitnumber do
group(1) := groupl:= groupl+length;
groups:= Ok
end 1f -, groups, determining grouplimits;

groupnumber:= limitnumber+1;
poils= groupnumber//3;
poi2:= (if groupnumber mod 3 = 1 then 1 else 0) + poil + poil}
groupl:= group(poil); group2:= group(poi2);
‘ group(groupnumber) := max+10,0;
for i:= groupnumber step -1 until 1 do intens(i):= 0;
for 1:= first step 1 until last do
begin
exobs:= obs(1);
Ji= 1f exobs>group2 then poi2 else
if exobs>groupl then poil else O3
for j:= j+1 while group(j)<bxobs do;
intens(j) := intens(j)+1
end central grouping loop (i-loop)
end grouping;

procedure head new page;
begin - T
page:= page+l; psi= C;
write(out,<:<12>:>,<< -dd dd dd>,date,space, 18,
<iexamination number:>,string lay2,poiex, space, 10,
<ipage:>,page,<i<10>:>, space,margin,
‘ <:sgh. data~-survey<10><10>:>,string ident(pstep));
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textline(2,margin,<:varisble number:>); ps:= 03
write(out,string layl,varnu,string neme(pstep),<:<10>:>);
head:= no

end head_new_page H

procedure histogram;

begin
integer i,half,maxint,relative;
if limitnumber+control>26 then head new page; maxint:= 0}
for i:= groupnumber step -1 until 1 do ~
if intens(i)>maxint then mexint:= intens(1);
'tex‘t;line(2,margin,<:histogram: every X represents:i>):
maxint:= (maxint-1)//45+13 half:= maxint//2;
write(out,string layl,maxint,<: observation:>,
if maxint>1 then <:s:> else <::>);
textlineéB,margin,«number of upper class-:>);

textline(1,10,<:cases 1imit<10><10>:>) 3
for i:= 1 step 1 until limitnumber do
begin

relative:= intenséi) ;5 write(out,string layh,relative,
string lay3,group(i),<: >,
cross,relative//maxint,
if relative mod maxint>half then <ixX<10>:> else <:<‘lO>:>)
end i-loop;
relatives= intens(groupnumber) ;
write(out,string layl,relative, space,15,cross,relative//maxint,
if relative mod maxint>half then <iX<10>:> else <:<10>:>,
space, 11,<:total<10>:>,accno)
end histogram;

procedure information(text); string text;
begin

controli= control+ti;

if head then head new page; textline(1,margin,text)
end information; - T

procedure moments;
begin
integer 1ij
real deltal,delta2,exobs;
ml = m23= m3:= ml:= min:= max:= 0.0}
exobss= obs(first);
for i:= first+] step 1 until last do

begin
deltal:= obs(1)-exobs; delta2:= deltalxx2;
m] := deltal+ml} m2:= deltal+m?2;

m3:= delta2xdeltal+m3; mh:= delta2xx2+mh;
if deltal<min then min:= deltal else
if deltai>max then max:= deltal

end central summstion-(i)-loop;

acecno:= lagst-first+1;

min:= mintexobs; max:= maxtexobs;

ml:= ml/accno;  m2:= m2/accno;

m3:= m>3/aceno; ml:= ml/accno;

mhi= -l ,0xm1Xm3+m1X<2X6 , OXm2~m1 Xx4x3 ,O-+mlt 3
m3s= =miXm2X3,0+m1XxX3X2,04+m3 3
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1= -m1X2+m2 3 ml := ml+exobs;
if m2<=0.,0 then

begin
textline(Z,margin,
<:examination terminated because variance=0.:>);
goto new

end variance=<0,0}

m3:= m3/sqri(m2) /m2; mh:= mh/m2/m2;

m2:= m2Xaccno/(accno-1)3 stdevi= sqrt(m2); means:= ok
end procedure moments;

integer procedure nffrac(obs); value obs} real obs;
begin
real D}
ps= 1f obs<,5 then obs else 1.,0-0bs}
p:= sqrt(1n(p)x(-2.0));
pi= —%.27061Xp+2.50755)/((.Oh'-l»81><p+.99229)><p+1 .0)+D3
nffrac:= (2.5+(1if obs<.5 then -p else p))X10.0
end nffrac;

procedure outtest(text,test,df); value test,daf;
string text; real test; integer df;
begin
textline(2,margin, text) ;
write(out,<<-dddd.ddoo>, test,<:<10> which has:>,
string layl,df,<: degree:>,
if af>1 then <:s:> else <::>,<: of freedom.<10>:>)
end outtest;

real procedure phi(obs); wvalue obs; real obs;
begin
real pj3
p:= 1.0/(abs obsX,33267+1.0) ; :
pi= exp(-0bsx2/2.,0)X((+2372980%p=.1201676) Xp+.1361836) XpX. 39894 5
phi:= if obs<0,0 then p else 1.0-p
end phis

integer procedure pstep;
pstepi= psi= ps+1;

procedure skip;
begin
integer class;
repeatchar(in); for class:= readchar(in,char) while class<>8 do

end skip;

boolean procedure syntax error(arr); real array arr;
begin -
integer ij;
boolean fault;
fault:= noj
for i:= elem step -1 until 1 do fault:= arr(i)>,100 or fault;
syntax error:= fault
end proc Syntax error;
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procedure terminators(new class); wvalue new class; iInteger new class;

begin

integer i

for 1:= 10,32,44 do table(i):= new class shift 12 + 1
end terminators; -

procedure textline(lines,place,text); value lines,place;
Integer lines,place; string text;
write(out,false add 10,1lines,space,place,text) ;

procedure trngen;
begin
integer 1i,j,kind;
real constl,constl;
inftyp:= b;
for j:= 1 step 3 until elem do
begin
kind:= trg(Jj); constis= trg(j+1); const2:= trg(j+2) 3
if kind<1 or kind>3 then error;
textline(1,margin,<:y = :>); control:= control+1;
case kind of
begin
begin
for i:= maxnumber step -1 until 1 do
obs(i):= In(obs(1)+consti)xconst2;
write(out,<:1n:>)
end case 13
for 1:= maxnumber step -1 wntil 1 do
obs(1) := (obs(i)+consti)xxconst2;
for 1:= maxnumber step -1 until 1 do
obs(1):= (obs(i)+const1)xconst2
end case;
write(out,<:(y+(:>,string lay3, consti,
case kind of (<2))x(:>,<:))xx(:>,<:))x(:>),
const2,<:).:>)
end j=-loop
end procedure trngenjg

comment date is found by calling systime,
Initializing part for varisbles;
systime(1,0,m1); date:= systime(2,m1,m2);
lay1:= real<< -d>; lay2:= real<<-dddd>;
lay3:= real<<-ddddddd.do00>;
layh:= real<< -ddda>;
head:= ok:= variab:= true; groups:= means:= no:= false;
cross:=no add 88; em:= 8 shift 12 + 25; space:= no add 323
name§1):= real<: 2> add 32; name(2):= real<:no na:> add 109;
name(3) := real<se yet:>;
elem:= first:= last:= maxnumber:= poiex:= 13
control:= page:= varnu:= 03 margin:= 8;
output(1):= 1,05 output(2):= 0.0; inftyp:= T3
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coment choosing alphabet;
for char:= 127 step -1 until 1 do

table(char):= case char of (

O’ O’ o’ O, O, O) O, O’ O, 6’ O’ O, O) O’ O) O’ O’ O’ O’ O’
O’ O, O’ O’ 8, 71 O) O’ O’ OJ OJ 6’ 6’ o’ O) O’ OJ 6’ 5, 6’
6’ 6’ 3, 6’ 5’ L"’ 6’ 2, 2) 2’ 2’ 2, 2, 2’ 2’ 2’ 2’ 6’ 6’ 8.’
6, 6’ O, O, 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6’ 6, 6’ 6, 6, 6, 6’ 6,
6’ 6’ 6, 6’ 6, 6, 6’ 6’ 6’ 6’ 6, 6, 6’ O’ O’ O) 6’ 6’ 6, 6’
6, 6, 6, 6, 6, 6, 6,6, 6,6, 6,6,6,6,6, 6,6,6,6,6,
6, 6, 6, 6, 6, 0, 0 ) shift 12 + char; teble(char):= char;

se \»

tableindex:= 0; intable(tsble);

write(out,<:<15>:>) ;

comment start of input of data; readchar(in,char);
skip; readstringE in,ident,elem); skip;
iden'bé19):= ident 195 shift (-margin) shift margin;
table(60) := em;

datas
repeatchar(in); readchar(in,char); if char<>25 then error;
table(60) := em +35; terminators(0); inftyp:= readchar(in,char);
terminators(7); table(60):= em;
inftyp:= if Inftyp<t then 5 else if char=60 +then 1 else
if char=103 then 6 else if char=116 then 3 else
if char=115 then 2 else if char=99 +then 7 else
if char=101 or char=25 then U4 else 0;
if inftyp=0 then error;

input:
case inftyp of
begin
begin
variab:= ok} information(<:execute mark:>); goto execute
end case 1 (execute mark);
_ begin
‘ elem:= read(in,sub);
1f elem<? or sub(1)<1 or sub(1)>=sub(2) or sub(2)>mexmumber then error;
means:= sub£1)=first and sub(2)=last and means;
firsti= sub(1); last:= sub(2);
information(<:subset specification: from case:>);
write(out, string layl,first,<: to case:>,last)
end case 2 (subsets);
begin
elem:= read(in,trg);
if syntax error(trg5 or elem mod 3 < 0 or elem<5 then error;
information(<:transgenerations (successive)::>);
trngen; groups:= mesns:= varisb:= no
end case 3 (transgenerations);
1f wvariab then goto exit program
else =
begin
information(<:a missing execute mark at end of data is generated:>);
goto execute
= end missing executey
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begin

if -, variab then

begin
information(<:extra examination (not specified by execute mark):>);
goto execute

end variables too earlys

repeatchar(in); read(in,varnu,varnu,cases); skip;

terminators(0); readchar(in,char); repeatchar(in);

terminators(6); read string(in,name,2); skip;

name(8) := name(8) shiTt (-8) shift 8;

terminators(7); head new page;

groups := means:= variab:= no; ml:= 0.03 ps:=20

e

more:
table5115):= em; elem:= read(in,group);
table(115) := emt90; repeatchar(in); readchar(in,char);
if char=115 then elem:= elem-1;
for first:= elem step -1 until 1 do ml:= group(first)+mi;
if ps+elem>300C then error else
for first:= 1 step 1 until elem do obs(pstep):= group(first);
if char=115 then

begin
if abs(group(first)-m1)>y-2 then
write(out,<:<10> checksum error: computed sum =:>,
string lay3,ml1,<: check =:>,group(first));

means:= ok mii= 0,03 control:= control+l
end checksum;
if char<>25 then goto more

else

table(115):= 6 shift 12 + 1153

elem:= last:= maxnumber:= ps; first:= 13
if last<>cases then

write(out,<:<10> cases on tape =:>,
string layl,last,<: cases =:>,cases);

if syntax error(obs) or elem<? then error;
information(<:input of observations: total:>);
write(out,string layl,last,<: cases:>,
if means then <: with:> else <: without:>,
<: checksum control:>); means:= no; control:= control+]
end case 5 (variables);
begin
elem:= read(in,group);
if syntax error(group) or elem>U8 or elem<? then error;
limitnumber:= elem; groups:= ok;
for elem:= elem-~1 step =1 until 1 do
groups := group(elem+1)>group(elem) and groups;
variab:= -, groups and variab;
information(<:group specification: limits=:>);
for elem:= 1 step 1 until limitnunmber do
write(out,if (elem - 1) mod 5 = O then <:<10> > else <::>,
string lay3,group(elem)}; control:= (limitnumber+t)//5+control;
if -, groups then
textline$1,margin,<:but these limits are rejected:>)
end case 6 (glven grouplimits);
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begin
read(in,output); skip;
information(<soutput speification: histogram:>);
write(out,if oru'bput§1)>0.0 then <:, fractile normal:> else <::>,
if output(2)>0.0 then <:, fractile exponential:> else <:i:>)
end case 7 (output specification)
end casej
goto datag

execute?
if first>1 or last<wmaxnumber then
begin
textline(2,margin,<:first case =:>);
write(out,string layl,first,<: and last case =:>,last)
end printing of subset}; ’

if -, means then momentsj

textline(3, 15,<:number of cases minimm maximm<io>:>) ;
write(out, space, 19, string lay2,accno, space,9,string lay3,min,max) ;
textline(3,13, ,

<:mean variance stand.dev, skewness kurtosis<i0>:>) 3

write(out, space,6,string lay3,ml,<< -dddd.ddd,-d>,m2,

<<-dddddd.d00000>, stdev,m3,mht,<:<10>:>) 3

outtest(<it-test for mean=0 is t =:>,mi/stdevxsqrt(accno),accno-1);
1= stdev/sqrt(accno)x1.96;

comment m2 is here used as a temporary result;

textline(2,margin,<:95 pct. confidence interval is :>);

write(out,string lay3,ml-m2,<: < mean <60>:>,m1+m2,<:<10>:>);

m2:= stdev¥X2; comment now m2 again denotes the variance;

grouping; histogram;

1f output(1)>0.0 then
fracdiag(nffrac,phi, .9969,-2.0,m1, stdev,<:normal:>,
<:chl square test for the normal distribution is chisq =:>);

if output(2)>0.0 then
fracdiag(expfrac, expcum, ,9947,0.0,0.0,m1,<:exponential :>,
<:chi square test for the exponential distribution is chisq =:>) H

new:
poiex:= polex+1; control:= 03 head:= ok;
1f variab then goto dataj
variabi= ok}
goto inputs

exit program:
w?ite%out,<:<1 2>:>)

end program
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APPENDIX,

Tel. POSSIBLE ALTERINGS,

It might be wanted to introduce differont acti v - ~nd of Jdatn re-
cord (code = 5) and <EM record> in order +- ~ad several input tapes in
one call of recordinput (else the output re-crds from the different in-
put paper tapes (separated by an end of medium character) will be placed
on different backing storage files). It might also be wanted to intro-
duce new kinds of number codes (new kinds of tail conversion). This can
be done by adding new subcases in case 6 (tail conversion case) and by

altering a 1little in procedure error for possible new types of errors.

Te2. PROGRAM MANUSCRIPT IN ALGOL 5.

(s procedure record input has to be loaded by < i tre >

clear recordinput -

recordinput=set 19

recordinput=algol index.no message.yes

end 3

)

external

boolean procedure
recorq_input(maxchar,maxparangrealtext,realname,descriptor,tailcontent);

value maxchar,maxparamnm, realtext, realname;
integer maxchar,maxparam, realtext, realname;
real array descriptor;
integer array tailcontent;
begin
comment

procedure record input made october 1970
on a/s regnecentTalen kgbenhavn by sgren henckel.

call parameters:

maxchar = maximal number of characters in an input record>=0
maxparam = maximal number of parameters in an output record>=t
realtext = maximal number of reals used for one text>=0
realname = maximal number of reals used for one name>=0
descriptor = a real array declared descriptor(a:b) with

a<=1<=2<=b and number of descriptors<=b., each element

must contain one descriptor as a short string

(for long descriptors exactely the 5 first characters) .
tailcontent = an integer array declared tailcontent(c:d) with

e<=-1<=1<=d and nurber of desecriptors<=d. each
element must contain one of the numbers 1,2,3,4, and 5
showing what records of the corresponding kind is
supposed. to contain as parameters

(see in head of case 6 for further details).
tailcontent(=~1) s=number of segments for record output>=1
tailcontent?é):= nunber of different descriptors.
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return parameters:

if return value of the procedure is false, none of the
parameters are altered, otherwise they contain
the following quantities:

descriptor(1:2):= document namc 1) the backing storagze used

for record output (name renerated by the monitor)
tailcontent(-1):= number of segments for record output (:=call value)
tailcontent(0) := number of accepted records

tailcontent(1): number of records on input tape
3 new kinds of descriptors are added to the kinds
introduced by the call:

kind of descriptor=number of descriptors+?
is used for indicating errors in records with
‘ unknown kind of descriptor, and these records
have parameternumber:= O,

kind of deseriptor=number of descriptors+2
is used for indicating errors in the tail of a
record with known kind of descriptor. these
records have parameternumber:= 1, and
parameter(1) := found kinq_of_descriptor,

kind of descriptor=number of descriptors+3
is indicating an end of medium record or an
end of data record, and has parameternumber:= O,

J
message record input, version 1, 28.10.70. RCSL 53-S7;

integer array table(0:127);
real array parameter£1:max param) ;
boolean array character(l:max char+1);
. integer 1i,J,char,class,date,descriptor length,
descriptor start,kind of descrIptor,lines written,
number of descriptors;ok record,page,parameter mumber,
position,Tecord, state, tall start; -

real blank, text;

boolean  error in_pame,illegal char;

zone outpuf;gone((mapraraﬁ}129)//128X256,2,error_;n_doc);
corment

declaration of the procedures
class of input, error in doc, error,
error head new page, and unpack character;

integer procedure class of input;
begin - T
class of input:= read char(in,char);
if char<>25 then -

begin
. position:= positionti;
character(position):= false add char;




if char=63 then illegal char:= true;
if position>max char then error(17)
end not end of medium
else - T
error(22)
end procedure class_of_input 3

procedure error in doc (comnected zone, status,bytes) 3
zone - = connected zone}
integer - status,bytes;
begin
boolean not first;
not first:= false;
if Tines written>5L4 then error head new page;
write(ou®,<:<10><10><10>:>, ~ T 7
<:problems with the backing storage on :>,
<<d>,tail content(-1) <t segments<10>:>,
<swhich iS used for record output.<iO>status = :>);
for 1:= 25 step -1 until 1 do
if false add (status shift (-1i)) then
begin
write(out,if not first then <: + 1 shift :> else
<:1 shift :>,<<d>,1);
not first:= true
end printing bit 0 to 22
if false add status then write(out,<: + 1:>);
write(out,<:<10>bytes transfered = :>,<<d>,byes); error(2l)
end procedure error in doc}

procedure error (error type);

value error_type;
integer error type;
begin

if (position-15)//71+lines written>S4 then error head new page;
comment error message cammot be printed on this Page;™ T
lines written:= lines written+5;
write{out,<:<10><10><T0><10>record number:>,<<~d>,record,

case error type of (

<: contains illegal characters in the tail (shown as <63>):>,
<: has no text start (:) before the first text:>,

<: camnot be output because of too many parameters:>,

<: contalns a name parameter not starting with a small letter:>,
<: contains an illegal character in a name parameter:i>,

<: has overflow in leading part of a number parameter:>,

<: has overflow in decimal part of a number parameter:>,

<: has empty digit part in the decimal part of a number:>,

<: has overflow in exponential part of a number:>,

<: has an illegal sign in exponential part of a number:>,

<: has empty digit part in the exponential part of a number:>,
<: has 1llegal termination after an exponential part:>,

<: has some syntax error in a number parameter:>,

<: has not empty parameter part (it must be empty):>,

<: contains an illegal character in the descriptor:>,

<: has an illegal kind of descriptor:>,

<! cannot be read because of {ypogragphical length:>,
<: has been deleted in input (by >):>,
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<: contains a long text which is cut to max characters:>,
<: contains a long name which is cut to max characters:>,
<: is an end of input record. input finished.:>,
<: is an end of medium record. input finished.:>,
<: has shown errors in call parameters (dimension or content):>,
<: caused the problems shown above.<10>run terminnted. >,
<: gave monitor trouble<10>catalog func. forbidden in enll processi>
<: gave monitor trouble<liO>catalog input/output eTTOTI>,
<! gave monitor trouble<iO>entry with same name already exsists:>,
<: gave monitor trouble<10>the catalog is full:>,
<: gave monitor trouble<1O>requested area size is not available:>,
<: gave monitor trouble<10>name format is illegal:>)
if position>0 then <:i<10>copy of record::> else <::>5;
Ji= 153 comment 15 characters written on the last line;
for it= 1 step 1 until position do
begin
write(out, character(i),1);
Ji= J+is
if j=71 then
begin
write(out,<:<10>:>); Jj:= 03
lines written:= lines writtent1
end new line in list =
end list on character level on current output;
if error type<iT then ok record:= ok record-i;
comment ~an error record is made, buT this is not an ok record;
if error type<i5 then -
begin
parameter number:= 13
parameter(1):= kind of descriptor;
kind of descriptor:= ntmber of descriptors+2
end error In tail of a record With known kind of descriptor
else
if error type<i8 then
kind of descriptor:= number of descriptors+i;
state:= 1f error type<i7 then T eTlse
if error type<23 then
(case error type-16 of (8,1,7,7,5,5)) else 9;
goto action -
end procedure error;

procedure error head new page}
begin - -7
lines writteni= 13 ©page:= page+l;
write{out,<:<12>:>,<<dd dd dd>,date,
<: record input syntax errors in data page:>,
<<=3>, page,<:<10>:>)
end procedure erro;_head;pew;page;

integer procedure unpack character;
begin -

tail start:= tail start+1;

chart= character(Tail start) extract 8;

unpack character:= table(char) shift (-12) extract 12
end procedure unpack_character;

b4




- 21 -

write(out,<:<15>:>); state:=1; 1lines written:= 200;
ok record:= page:= position:= record:= 0;

number of descriptors:= tail content(0);

blank:= blank shift 48; record_input:= false;

comment date is found by calling systime, 1if the date
in the monitor is wrong, dste is set to 2% 10 70;
systime(1,0,text) ; date:= systime(2,text,text);

ji= date mod 100; comment J:= year;

if j<70 then date:= 2810703

if system$5,1 descr1p‘tor)>‘l or i<number of descrlptors or i<2
or system(3,1i,tailcontent)>=1 or i<number of _descriptors

or tail content(-1)<1 or real text<O or real name<O

then error(23);

comment check of dimension and content of call parameters;

‘ comment creating area for record output by calling procedure monitor;
tablego)-— tail content(-1);
open (outputzone,l,<::>,0);

i:= monitor(L0,outputzone,0,table) ;

if 1 < 0 then error(2’++15 comnent troubles with create entry;

comment initializing of table(0:127);
for i:= 31 step -1 until 1 do +table(i):= 9 shift 12 + 633
for i:= 15 step -1 until 1 do table(i+32):=
cese i of (8,8,0,0,8,8,5,8,8,8,3,11,3,4,8) shift 12 + i + 32;
for i:= 57 step 27 mtil 18 do table( 5-- 2 shift 12 + i3
for i:= 125 step -1 wntil 97 do

table(i) := table(i-32):= 6 shift 12 + i;

table(35) := table(36):= table§65):= table(6L) : =

table(9h) := table(96) := table(126) := 9 shift 12 + 63;

table(9) := table(10):= table(11):=

table(12) := table(32):= 11 shift 12 + 32;

table(25) := 10 shift 12 + 253

table(58) := 12 shift 12 + 58;  table(59):= 11 shift 12 + 593
. 'table§ 0):= 10 shift 12 + 603 table(61):=8 shift 12 + 613

table(62):= 10 shift 12 + 625 table(95):= 8 shift 12 + 953

table(0) := table(127):= table index:= 0;
intable(table) ;

comment of typographical reasons
the program text is moved 3 positions to the left}

action:

case state of
begin
begin
comment case 1 iInitializing before new record.
reading and first check of the descriptor;

record:= record+];

kind of descriptor'- parameter number:= position:= 0}
‘ 1llega.'l. char:= false}

for class:= class_of_lnput while class>9 do;
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comment skip of leading separators and terminators before descriptor;
descriptor start:= position}
error in name:= class<H}
for class:= class of input while class<10 do
if class<>2 and cTass<>6 then error in name:= true;
descriptor length:= position-descriptor start;
tail starti= position; -
state:= if class>10 then 2 else if char=60 then 3 else b
end case 1 (reading and checking descriptor);

begin
corment case 2 reading the tail (which is not empty);

for class:= class of input while class<>10 do;
comment reading characters in the tailj;
state:= 1f char=60 then 3 else U

end case 2 (reading tail);

begin
comment case 3 accept record e.g. record terminated by < ,
check for hard errors and errors in kind of descriptor;

if descriptor length>5 then descriptor length:= 5;
j:= descriptor start+descriptor length-1;
comment the characters in descriptor are numbered
descriptorstart,descriptorstart+1,descriptorstart+2, and so on,
80 j denotes the number of the last character in the checked
part of the descriptor. for long descriptors only the 5 first
characters are checked;
for i:= descriptor start step 1 until j do
text:= text shift 8 add (character(i) extract 8);
text:= text shift ((6-descriptor length)x8);
comment now text contains the part of the descriptor
which is used for determining kind of descriptor;
if -,error in name ‘then -
for i:= number of descriptors step -1 until 1 do
‘ if descriptor(T)=Text then
begin
kind of descriptor:= i
1:=T 7
end determining kind of descriptor;
if kind of descriptor=0 or error in name or illegal char
then error(if error in name = Then 15 else -
if kind of descriptor=0 then 16 else 1);
comment hard errors In record;
state:= 6
end case 3 (accept record);

error(18); comment case 4 (delete record);

begin
comment case 5 end;pf;pedium record or end of Input record;

1:= outrec(outputzone,0);
. if 1<2 then
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begin
outrec(outputzone,i) 3
outputzone(1) := 0.0
end active segment changes;
outrec(outputzone,2) ;
outputzone§1):= 2.03
outputzone 2) := number of descriptors+’;
ok record:= ok record+l;
close(outputzone, false) ;
getzone(outputzone table),
descriptor(1):= blank add table(1) shift 24 add ‘bableéE) 3
deseriptor(2) := blank add table(3) shift 24 add table(l);
comment storing the generagted name in descriptor(1:2);
tail content(0):= ok records
tail"content(1) := record;
record input:= true;
comment assigning all return parameters;

if lines written>54 then error head new page;
write(ouT,<:<10><10><10>survey from record<95>input:<io><10>:>,
<:total number of records in input was :>,<<&>,record,
<:<10>and of these were :>,0k record,<: accepted.:>);
comment printing survey on current output;
goto finish input

end case 5 (end of medium record or end of Input record);

begin
comment case 6 conversion of the tail in all cases,
the followling case statement corresponds to the kind of tail
e.ge What the tail is intented to contain

(this is by call stored in tail content(1:number of descriptors)

kind of tall=1 a number of texts (at least one)™

kind of tail=2 exactly one (non empty) name

kind of tall=3 a number of numbers (mixed integers and reals)

kind of tail=lt must be empty (e.g. only separators are allowed)
. kind of tail=5 end of input record, a possible tail is ignored;

tail start:= tail start-1;

comment for conveTrsion of the tail it is comfortable to let
tail start denote the character just before the first character
in the tail (because of for-while statements);

case tail content(kind of descriptor) of
begin
begin
comment kind of tail=1 e.,g. tail is a number of texts;

integer text start, words in text,
boolean long texts,
long texts:= false;
for classi= unpack character while class=11 do}
comment skipping separators (not :) before first text;
if class<>12 then error(2);

’ comment missing textstart before the first text;
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for text start:= parameter number+i1 while class<>10 do
begin -
if text start<max _paranm then
parameter number:= text start else error(3);
for classt= unpack character while class=11 doj
comment skipping separators (not : ) before text;
words in text:= 1;
if cl28s then
begin
comment text is not empty:
texti= blank add char; i:= 1;
for class:= unpack character while class<g or class=11 do
begin -
text:= text shift 8 add char;
i:= 1413
if i=0 then
begin
parameter number:= parameter number+1,
if parameler number=max param
then error(37;
parameter(parameter number):= text;
text:= blank; i:= 0;
words in text:= words in text+1
end one real filled I
end packing legal char in text,
1f words 1n text>real text then
begin
long textss= true;
words in text:= real _text;
parameter number:= text start+real _texts
parameter{parameter number) :=
parameter(parameter number) shift (-8) shift 8
end cutting long text —
else
begin
parameter number:= parameter number+1;
parameter(parameter number):=
text shift ((6-1)x8T
end text not too long
end packing not empty text
else
begin
parameter number:= parameter number+i;
parameter{parameter number):= blank
end packing empty textT;

parameter(text start):= words in text;
comment words In text is placed 3s a real the
preceding parameTer;

end converting texts;

if long texts then error(19);

state:= T3
end kind of tail=1 (e.g. tail is a number of texts);
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begin
comment kind of tall=2 e.g. taill is a name;

for class:= unpack character while class>10 dos
comment skipping leading separators before name; -
if class=b then texti= blank add char else crror(l);
comment first character in name mist be 3 (hmall) letter
and name must not be empty;
1= 1;
for class:= unpack character vhile class<>10 do
if class=2 or class=6 then
begin
text:= text shift 8 add char;
I:= i+1;
if i=6 then
begin
parameter number:= parameter number+];
if paramefer number=max param
then error(3); -
parameter(parameter number):= text;
text:= blank; i:=0
end one real filled
end character legal in name
else
error(5);

Darameter mumber:= parameter number+i;
if parameler number>real nam= then
begin - -
Parameter number:= real name;
parameterfbarameter number) :=
parameter(parameter number) shift (-8) shift 8;
error(20) -
end cutting name parameter to real name words (reals)
with error message; -
state:= T;
parameter(parameter number):= text shift ((6-1)x8);
comment preparation of the last parameter as text parameter;
end kind of tail=2 (e.g. tail is a name);

begin
comment kind of tail=3
e.ge tail is a number of numbers (integers or reals);

integer decimals,digit number, exponent, leading part;
real decimal part,exponential part,exponent sign,signj
state:= 1; Comment state witHin one number parameter;

convert numbers:
- case state of
begin
begin
comment case 1 initializing and leading separators;

leading part:= O3 decimal part:= 0.0;
‘ exponential part:= sign:= T.0;
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for class:= unpack character while class>10 doj
comment skipping leading separators before leading part;
state:= case class of (0,3,2,4,s5,8,8,8,8,7,0,0)
end case 1 (leading separatorss;
begin
corment case 2 sign before leading part;

if char=45 then sien:= -1.0;

comment sign was initialized with sign:= 1.03

classi= unpack character;

state:= case class of (0,3,8,4,5,8,8,8,8,8,8,8)
end case 2 (sign);

begin
comment case 3 leading part;

leading part:= char-48;

for class:= unpack character while class=2 do

if leading part<8388B60 then

leading part:= leading partx10+char-48

else -

error(6) 3

state:= case class of (0,0,8,4,5,8,8,8,8,6,6,6)
end case 3 (leading part);

begin
comment case 4 decimal part;

decimals:= digit number:= 0;
for class:= unpack character while class=2 do
if decimals<B38860 then
begin
digit mumber:= digit number+1;
decimals:= decimalsxXTO+char-48
end not overflow
else
error(7) ;
if digit number=0 then error(8);
decimal Dart:= 10,0xx(-digit number)xdecimals;
comment”scaling decimals to correct size;
state:= case class of (0,0,8,8,5,8,8,8,8,6,6,6)
end case 4 (decimal part);

begin
comment case 5 exponential part;

exponenti= digit number:= 0;
- exponent sign:= 0,0;
for clasS:= unpack character while class<l do
if class=2 then
begin
if exponent sign=0.0 then exponent sign:= 1.0;
if exponent<60 then -
begin
digit_pumber:= digit_number+1;
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exponent:= exponentX10+char-48
end not exponent overflow
else
error(9)

end class=2
else
if exponent simn=1.0 then
exponent signi= if char=L5 then -1.0 else 1.0
else -

error(10);
comment end class<lt;
if digit nunber=0 then error(11);
if classI then error(12);
exponential part:= 10,0XX(exponentXexponent sign);
comment transforming exponential part to a Tactorial part;
if leading part+decimal part=0.0 then leading part:= 1;
corment numbers on the Torm +,-7 are accepted
whereas 0,0yp=T, Oy=T7, and .0yx-7 all gives
wrong conversion to 0,0000001 ;
state:= 6

end case 5 (exponential part);

begin
comment case 6 final conversilon of one number

parameter number:= parameter number+1;
if paramefer number>max param
then error(%);
parameter(parameter number) :=
(leadlng part+decimal part)Xexponentlal _partXsign;
state:= If class>10 then 1 else T
end case 6 (final conversion);

comment case 7 end of record and conversion.
case 7 in the big case (case action) is outrec
of correct converted record;

goto action}

corment case 8 syntax errors in numbers ;
error(13)
end case state by converting numbers;

goto convert numbers
end kind of tail=3 (e.z. tail is a number of numbers);

begin
coment kind of tail=h
e.g. tall is empty (only separators are allowed);

for class:= mmpack character while class<>10 do
if class<9 then error(il);
statet= 7

end kind of tail=l (ec.g. empty tail);
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begin
comment kind of tail=5 e.g. end of input record
works as an end of medium record, but without listning}

position:= 03
error(21)
end case kind of *+ai1=5 (~.~. end of input rccord)
end case kind of tail statement at tall Conversion
end cace 6 (conversion of tail in =11 ~-:es);

begin
comment case 7 record reading, control, and conversion finished.
outrec of the final parameters stored in parameter(1:parameter number);

is= outrec(outputzone,0)
comment 1:= elements left in used share;
. parameter number:= parameter number+2;

comment parameter number:= elements in total output record;
if i<parameter number then
begin -

outrec(outputzone,i);

outputzone(1) := 0,0
end active segment change;
outrec(outputzone, parameter number) ;
outputzone(1) := parameter number;
outputzone(2) := kind of descriptor;
for i:= parameter number step -1 until 3 do
outputzone(i) := parameter(i-2);
ok record:= ok record+1;
state:= 1 -

end case 7 (outrec of correct record);

begin
comment case 8 record contains more than max char
characters, these have been listed by calling error(17)
. j denotes (from procedure error) number of characters
written on the last lineg

for j:= j+1 while read char(in,char) <>10 do
begin -
write(out,false add char,1);
if j=71 then
begin
write{out,<:<10>:>)3  ji= 03
lines written:= lines writtenti
end new line -
end listing rest of record;
write(out,if char=60 then <:<60>:> else if char=62 then
<:<h2>1> else <: <<BITTS>>) 3
if char=62 then
begin
position:= 03 state:=1L
end deletion of large record (+error message , -list)

else
‘ if char=60 then

begin
state:= 7; ok record:= ok record-1




end making error record (is not an ok_record)

else
statet= 5; comment large end of input record;

end case 8 (record too large as text);

comment case 9 problems with source for resulting records,
this case is activated from the block procedure error in doe which
calls error(2k); -7
goto finish input
end case state at reading records;

goto action}
finish input: intable(0)

end external procedure record input;
end -
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53=M

55=D

53=~M

53=M

31=0

53=M

53-¥

53=m

63

48

o0

60

57

129

58

61

18

224

17



SDO 18 REVISION 2 MATHENATICAL=-STATISTICAL PACKAGE

) conTENTS  (COMTL)

DATA SURVEY+RPPENDIX RCSL 53~§ 1

RECCRDINPUT+APPEHD T X RCSL 53=§ 7



