
&
software manual

Copyright © 1973 by

“% REGNECENTRALEN

NOTICE
The information contained in this manual is proprietary with

A/S Regnecentralen.

Reproduction in whole or in part is prohibited as is transfer

to other documents, disclosure to a third party, or use for

manufacturing or any other purpose without the prior written

permission of A/S Regnecentralen.

Title:

- Introduction to the Mathematical and Statistical Library

Edition: November 1969
9 ee RCSL No; 55-D63

Author: Chr. Gram
RC SYSTEM LIBRARY: FALKONERALLE {! DK-2000 COPENHAGEN F

Keywords:

RC 4000, Software, Mathematical, Statistical, Administration, Report

Abstract:

The report explains the purpose and the administration of the mathematical and

the statistical program library. 5 pages

Users of this manual are cautioned that the specifications

contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-

.
cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

a

Introduction - 1 -

1. Purpose and Form of the Library

The purpose of the program library is to supply the users with reliable

and efficient procedures and programs concerning the general problems in

numerical and statistical analysis. The library will be gradually expan-

ded to cover also more special problems; also new publications may su-

persede older ones.

Only thouroughly tested algorithms are accepted, but in order to

speed up distribution an algorithm may be accepted even if the descrip-

tion is incomplete.

The algorithms are available on paper tape with an accompanying des-

cription, usually as external procedures or complete programs. The det-

ailed formats are described below. Some of the algorithms belong to the

standard user package and are available at each installation, and the

remaining ones may be acquired through RC System Library. Each algorithm

is classified by means of a set of keywords or descriptors as explained

below.

2. Formats of Tapes

An Algol program tape starts with the File Processor commands necessary

for translating and storing of the program on a backing storage area un-

der the same name. Correspondingly a procedure tape contains the neces-

sary commands for translating as an external procedure,

The normal program tape format is:

<name> = set <No. of segments>

<name> = algol

<50 Spaces>

begin

message <name>, version <date>, RCSL <No.>3

<remaining Algol program text>

<Form Feed character>

<End-of-Medium character>

Introduction = 2 -

The normal procedure tape format is:

<name> = set <No. of segments>

<name> = algol

external

<50 Spaces>

<1. line of Algol procedure declaration>

message <name>, version <date>, RCSL <No.>3

<remaining Algol procedure text>;

<50 Spaces>

comment <description of procedure parameters>3;

<Form Feed character>

<End-of-Medium character>

The only console command necessary to input such tapes is the command

defining the paper tape reader as current input medium.

The format of procedure tapes is chosen so that it is easy to cut

out the ’naked’? procedure text, with or without the last comment. When

translated as an external procedure (inputting the whole tape) the com-

piler gives a warning message because the end matching the external is

missing:

1. line ddd source exhausted 1 end missing

but the translation and storing will be completed normally.

3. Format of Procedure Description

The complete description of a procedure has the following sections:

1. Function and Parameters,

A short description of the type of problem the procedure solves; the

procedure heading with complete specifications; a concise description

of the parameters classified as Call parameters, Return parameters,

Call and Return parameters, or Other parameters (e.g., parameters

used with Jensen’s device).

2.

36

De

Introduction - 3 =

Method.

A detailed description of the mathematical or statistical method and

of algorithmic subtleties with suitable references to literature.

Accuracy, Time, and Storage Requirements.

A summary of the available information on the numerical accuracy, the

execution time, the core store and backing store requirement for the

translated program, and the number of lines of the procedure text in-

cluding the last comment.

Test and Discussion.

A comparison with other, similar procedures; a survey of the performed

test runs and a few characteristic test results; a simple Algol pro-

gram showing a typical application of the procedure; a few results

from runs with this program. Suggestions for changes in the algorithm

to meet special needs.

References.

References to the relevant literature, if any.

Algorithm.

The complete text of the procedure tape including the FP-commands, the

Algol text, and the comments. This section may be omitted in case of

very long procedures or procedures programmed in machine language.

The description may be incomplete but it will at least contain section 1,

Function and Parameters.

he Distribution and Classification

The programs and procedures are available through the normal RC System

Library and the most fundamental ones are contained in the standard user’ s

package.

They are classified by means of a set of descriptors according to

the system adopted by RCSL, Each algorithm has at least one descriptor

from each of the three columns:

Mathematical

Statistical

and one or more subject descriptors, like

Complex arithmetic

Db. prec. arithmetic

e Special functions

Bessel

Ganme.

Complete descr.

Incomplete descr.

Introduction - 4 -

Algol procedure

Algol program

In standard user’s package Slang subroutine

Matrix

Inversion

Eigenvalues

Kigenvectors

Linear equations

Slang program

Fortran subprogram

Fortran program

Integration

Multi

Diff. equations

These descriptors are preferably chosen among the keywords appearing in

Computing Reviews.

8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

5p-D48

July 1969

S.E. Christiansen

adapint

————_

RC 4000, Software, adapint, Integration, Algol Procedure, 150 Tape,

The procedure adapint calculates the integral of a function f(x)

given in an interval (a,b) by means of 7-point forma and adaptive control of

the subdivisions of (a,b) with respect to the desired accuracy. 5 pages.

—_

[fc SYSTEM LIBRARY
DK-2500 VALBY - BUERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

-~1-

real procedure adapint(a, b, f, x, delta, order)

1. Function and parameters.

Call parameters:

ay Dd real values. The endpoints of the interval over

which the integration is carried out. It is al-

lowed to have b < a.

delta real value. The permitted error relative to Ia.

Return parameter:

adapint real procedure. The approximation of the integral

of f(x) obtained by the procedure.

Other parameters:

C4 real. The function f(x) given as an expression in x.

f and x are used as ’Jensen parameters’,

x real. The independent variable used in the expres-

sion f(x). x need not be initialized. Upon exit

x = sign(e-Iaxdelta)xe, where e is an estimate of

the abs error. So x > O indicates a failure and

x <= 0 a success.

2 e Method.

The real procedure adapint calculates the integral of a function

f(x) from a to b within a prescribed accuracy given by the parameter:

delta. This is achieved by making further subdivisions of those subin-

tervals, where the error is too large - and only of those, These subdi-

visions are stopped when the desired accuracy is obtained or when the

number of subdivisions reaches its permitted upper bound. In all cases

the procedure delivers on exit an approximation to the integral and an

indication of success or failure.

The procedure is particularly useful when the function f(x) exhibits

an almost singular behaviour within the interval (a, b) like 1/sqrt(x+1-6)

over (0, 1). etc. In such cases it is almost always possible to get through

by a proper choice of the governing parameter: delta.

~2-=

The method uses a 7-point formula, and all subdivisions are nonde-

structive (i.e. all fumction evaluations are used). The successive subdi-

visions are carried out so that the squares of the estimates of the abso-

lute error in all subintervals finally obtained are uniformly distributed.

The calculation is considered successful if e <= Ia X delta, where e =

abs(the estimate of the absolute error) and Ia is the integral of abs f

over (a, b). Ia is computed by the procedure but not delivered as return

value. Upon exit x is assigned the value sign(e-Iaxdelta)xe. So a success

is indicated by x = 0 or x = -ecD, and a failure by x = e>0, Since Ia

usually is not known in advance, it is necessary to have a realistic esti-

mate of Ia before running the procedure, so that delta can be properly

fixed. This estimate may be obtained either by an honest guess or by means

of the procedure itself. It must be noticed that the estimate of the error

(se) made by the procedure usually is 10 - 100 times as large as the ac-

tual error.

Ex, The call adapint(0,5,exp(x),x,y»-4) gives adapint = 147.4131649 (true

value = 147.413159.e50) and x ™ -1.2y-3, success (actual abs error =

58y=5).

3, References.

The present algorithm is the result of many experiments made at Regnecen-

tralen during the last years and is not described in the literature. For

a similar algorithm, see:

[1] H. O’Hara, and Francis J, Smith: The evaluation of definite integrals

by interval subdivision, The Computer Journal, Vol 12.2 (May 1969), p.

179-182,

h, Algol procedure

adapint = set 4

adapint = algol index.no message,yes

external

real procedure adapint(a,b,f,x,delta); message adapint version 1.10.69;

value a,b,delta; real a,b,f,x,delta;

begin array A(1:60)3 boolean selection,ex; integer p,Sign3

real e,fe,fa,fb,h,x1,x2,x4,x6,x7,f1,f2,f4, f6,f7, base, r,s,t,

sa, 8b, hmin, sum, eps, dev, dds

Signi=sign(b-a) 3 h:=sabs(b-a) 3 hmin:=h/182003; selection: =true3

eps :=(6615/192xdelta)»x2/(if h=0 then 1 else h); sum:=dd:=0;

xiaxhsa(atb)/2;fh:=f3 xssasfar=fsx:se:=bsferafbi=f 3

xsax2s=(etxh) /2;f2: =f 3x:=x6:=(b+x) /2;f6:=f;

s:sabs(Lxeh+fatfb)x2; base:=sxhs3 p:#=33 goto TEST;

STGRE:

if abs(3xfb-8x£7+6xf6-f4)<abs(3xfa-8xf1+6xf2-£4) then

begin

A(p) :=b 3A(pt1) s=fb sA(p+2) s=£73A(p+3) :=£6 5
biser:sasfbsafe:=fasar=x4sfarafh;

x6 9x1 sf6s=f1 sx4s=x2sfhs=P23s3=2xsa

end

else

STORE2 s

begin

A(p) :=a3A(p+1) s=fazA(p+2) :=f1 3A(p+3) :=£25
asaxtsfasafh sx: ax6 sf: =£6 3x63 =x7 3 £6: =£7 38:3 =2Xsb

end$

x2ax2:a(atxl) /2;f2:=f3

TEST s

x29Kx1 2=(9+x2) /2321 =f 3x2=x7 2=(b+x6) /2;£7: =f sh: =abs(b-a) 5

sarsabs(4xPre+fatf) ssbs=abs(4xf6+fb+f4) sbase:=(sa-s+sb) xhtbases

rs=P2+f6 sstmfi+f73t:=fatfb3

dev: =(B84xr-64xs+1 5xt-7OXf4) exh; ex: sdev>basexeps 5

if (h-hmin)xy9>ebs x4Ap<56Aex then

begin

ps=pths goto if selection then STORE else STORE2

end 3

sum? =sumt(2016xr+2048xs+549xt+HOOKxe) xh 3

ddi:mdevxh+dd; if ex then eps:=(16xeps+dev/basexx2) /4;

tf p>O then

begin

selection:=false;

timA(p)3 if (t-a)x(a-e)<0 then

begin

bswes3 fbs=fe3 esaas fes=fa

end

else

begin

bsaasfb:=fa

end;

azst3 fas=A(pt1); f2:=A(pt2)3 f:=a(pt3);

xhem(atb)/23 x:=x6:—(xlt+b)/23 P6:=f3 x2:=(atrxh) /2;

s:=ebs(4xfl+fatfp)x23 p:=p-4s goto TEST

end from STORE$

adapint:=Signxsum/132303 dd:=16/6615xsqrt(dd) ;

xtsif dd>deltaxbase/12 then dd else -dd

end adapint;

end

Title:

* Bessel Functions - In(x) and Kn(x)

—_—

e — RCSL No: —53-M3_—(P1)
Edition: September 1969

Author:
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F Teve ussén

Keywords:

RC 4000, Software, Mathematical, Complete Description, Bessel, Algol Procedure

Abstract:

The procedure besselik calculates by recurrence the values of the modified Bessel

functions: 10(x), I1(x), ..-, In(x) and KO(x),K1(x), ..., Kn(x). 6 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

'

Copyright © A/S Regnecentralen, 1978 — prior notice. RC is not responsible for typographi-
= cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

pesselik - 1

1. Function and Parameters.

besselik calculates the modified Bessel functions:

I0(x),.0.,1n(x) and KO(x), ooo, kn(x) °

Procedure heading:

procedure besselik (n,x,1,K) 3
value n,x3 real x3 integer n3
array I,K3

Call parameters:

n : (real or integer) (real is rounded to nearest integer)
maximum order of the Bessel functions.

n mist be >=0,.
x : (real or integer) the argument, must be > 0.

Return parameters:

I : (real array I(O:n))
the values of the calculated functions:

I(0)=I0(x),.+0,1(n)=In(x).
K : (real array K(O:n))

the values of the calculated functions:
K(0) =KO(x), -06,K(n)=Kn(x).

2. Method.

First besselik calculates all the values of Ij(x), see [1].

The recurrence is performed from an upper bound nb. If x+14<=n+3

this integer is set equal nt otherwise x+1h.
Then i(nb,x) is assigned the value of (x/2)xmb/(1x2x...»nb),

while i(nb+1,x),...,i(n,x) is set to 0.
i(nb-1,x),e0e)1(0,x)

i(j-1,x) = 2xj/xxi(j,x) + i(j+1,x).

But since Ij(x)/i(j,x) is the same number for all j<=nb, Ij(x)
can be calculated from the formula

nb

exp(x) = I0(x) + 2x} Ik(x)
k=}

by replacing x by abs x.

ren KO(x) and Ki(x) are calculated by polynomial approximation
see L2]:

n
\

KO(x) := P1((x/2)x@) = -1n(x/2)xI0(x) ;
Kite) s= P2((x/2)xxe) /x +1n(x/2)xI1(x) 3

KO(x) := P3(2/x) /exp(x) /sart(x) ;
Kit) = Pita ey atta

where Pi(x) is a polynomial of 6. degree.

are then computed from the recurrence formula

besselik - 2 -

Further values of Kj(x) are calculated by the recurrence formula:

K[it1] = 2xi/xxckfi) + K(i-1).

Accuracy, Time and Storage Requirement.

Accuracy: relative error <p-7
Time: approx. 10 + 0.5xXn ms

QoS. x=2 , n=10: 11 ms
x=10, n=40: 29 ms

Storage requirement: 3 segments of program and 8 local real variables.

Typographical length: 87 lines incl. last comment.

Test and Discussion.

The algorithm is similar to the GIER procedure 0.No. 179. [3].

Below program gives the following output:

begin

comment here the procedure is copied unless it is already

translated as an external;

integer 1,n3 real x3
write(out,<:<12><10> n x3>,false add 32,13,<:1(n):>,

false add 32,18,<:K(n)<10>:>) ;
AGAIN:

read(in,n)3 if n=-1 then goto END;
begin array K,1I(O:n) 3
read(in, x) ;
pesselik(n,x,I,X) 3
write(out,<:<10>:>,<<dd>,n,<<dd.dd>, x,

<< -d,ddddd dddddy-dd>,I(n),K(n));
goto AGAIN
end inner block;

END:
end

datas

0, 0,01
O, 0.5
Oy, 5
1,5
10, 5
20, 5
~l,

n Xx I(n) K(n)

0 0.01 1.00002 50003 0 472124 47460, 0
0 0.50 1.06348 33708, 0 9.24419 07256 -1
0 5.00 2.72398 71829, 1 5.69109 83816, -3
1 5.00 2.43356 Le1lby 1 WO4W61 33826, -3

10 5,00 4.58004 4h196y -3 242036 28020, 0
20 5.00 5.02423 93598y-11 .82700 05078, 8

De

[1]

[2]

[3]

[4]

[5]

or

besselik

References,

Goldstein and Thaler: Recurrence Techniques for the
Calculation of Bessel Functions, MTAC 13 (1959), p. 102.

Allen, E.E.: Polynomial Approximations to some modified
Bessel Functions, MIAC Vol. 10, 1956, p. 162-164,

Zachariassen, J.: Bessel I and K, Algol procedure,
Regnecentralen, April 1964, GSL O.No. 179.

British Association Mathematical Tables, Vol. VI,
Bessel Functions, zero and unity, Cambridge University
Press, 1958.

British Association Mathematical Tables, Vol. X
Bessel Functions, order 2 to 20, Cambridge University
Press, 1952.

Algorithm.

pesselik=set 3

besselik=aligol

external

procedure besselik (n,x,I,K)3
value n,x3 real x3 integer n5
array I,K;

begin integer i,nb,m3;
real a, jO,j1,j2, sum, xhalfs
ms=n 3
nb:=x+143
if nb<=n+4 then nb:=n+t3
xhalf:=x/23
if x<=y-150 then nb:=0
else
begin

jis=13
i:=0;

for t:=si+1 while jl>y-150Ai<=nb do j1:=j1xxhalf/13
nb:=1-1

end;

eomment nb is the upper bound for recurrence;

if nb<=n then
begin

for it=nbt1 step 1 until n do I(i):=0;
mi=nb

end 3

sum$=j23=03
for i:=nb step -1 mtil 1 do

begin

if i<=m then I(1i):=313
jO:=1/xhalfxj1 + J23
sums =sumt jo 3
j2s=j13 Jissjo

end recurrence loop;

besselik

sum: =exp{ x) /(2xsum-j0) $
ae=1(0) :=jOxsum;
jes=joxsumg if n>O then I(1):=323
for it#m step -1 until 2 do I(1):=1(i)xsun;
comment all values of I0(x),..0,in(x) are calculated;
if xhalf<1 then
begin

jO:=xhalfxx2 3

j124in(x)=.6931471813
at=K(0):+(((((s00000740 xjO + .00010750)xjo

+ 00262698)xjo + .03488590)xjo
+ 423069756)xjO + .42278420) xjo
=.57721566 - jixa;

if n>O then.
j22=K(1) 24((((((=.00004686 xjo - .00110404) xjo

~301919402)xjo - .18156897) xjo
OTe TESTO} 0 + 615445144) xjo
+ 1 /x + j1xje

end

else

begin

j0:=1/xhalf3
jisssqrt(x) xexp(x)
at=K(0):=((((((.00053208 xjo - .00251540)xj0

+,00587872)xjo - .01062446)xjo
+502189568)xjoO - 07832358) xjo

| +1.625331414) /513
if n>o then
ge¢=K(1) $3((((((-.00068245 xjo + 500325614) xj0

* 2400780353)xjo + 01504268) xjo
= .03655620)xjO + .23498619) xjo
+1425331414) / 31

end calculating KO(x) and K1(x) by
polynomial approximation 3

for 1:42 step 1 until n do
begin

sum: 2K(1) :=at(i-1) /xhalfxj23
azaj23 j2s:=sum

end rectirrence loop
end besselik3

cottment

besselik calculates the modified bessel functions:

£0(x) ,00,In(x) and KO(x),..6,Kn(x).

Call parameters:
n : (real or integer)

maximim order of the Bessel functions.

n must be >=0.
x i (real or integer) the argument, must be > 0.

Rettirn parameters:
t : (real array I(O:n))

the values of the calculated functions:

I(0)=I0(x),«+e,1(n)=In(x).
K : (real array K(O:n))

the values of the calculated functions:

K(0) =KO(x),...,K(n) =Kn(x) ;

-4.

Title:

* Bessel Functions - Jn(x) and Yn(x)

September 1969

Author: Tove Asmussen

fe & REGNECENTRALEN RCSL No: 53-M2

. Edition:

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

Keywords:

RC 4000, Software, Mathematical, Bessel, Complete Description, Algol Procedure

Abstract:

The procedure besseljy calculates JO(x), JI(x), ..., Jn(x) and YO(x), Wr, suis

and Yn(x) 6 pages.

Copyright © A/S Regnecentralen, 1976

Printed by A/S Regnecentralen, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

besseljy - 1 <-

1. Function and Parameters.

besseljy calculates the Bessel functions of first
kind to oat os aaa os and the Bessel functions of second
kind Yo(x),¥1 X),000,N x) of integer order and with real

argument.

Procedure heading:
procedure besseljy (n,x,J,Y¥)3
value n,x3 integer n3 real x3 array J,Y3

Call Parameters:
n (integer or real) (real is rounded to nearest integer)

maximum order of the Bessel functions.
n must be >=0.

x (integer or real) the argument, must be <0,

Return Parameters:

J (real array J(O:n))
the calculated values of the functions

J(0)=J0(x) , +0e,d(n) =Jn(x).
Y (real array Y(O:n))

the calculated values of the functions

¥(0) =¥0(x), +«0,¥(n)=Yn(x).

2. Method.

First the functions Ji(x) are calculated.

For abs x <= »-5 the procedure uses a truncated power

expansion

J(i)(x) = (x/2)>«i/i

for 1 = O,t,eeeyn.

For abs x > y»-5 the values are found by recurrence, see [1]

j(4-1) (x) = ext/xxj(4) (x) -5(4+1) (x)

for i = nb-2,nb-3,.00,1, where j(nb)(x)=0 and j(nb-1) (x)= -150.
nb is an even integer found as a function of x and n, within
the limits given in [2].

After recurrence J(i)(x) is found as
nb/2

J(i) = 54) (x) /(5(0) (20) 42x & 32x) (29)

Tor 1 = O,lyecee,Ne

besseljy «2 -

Then YO(x) and ¥1(x) are found from the summation theorems,
see [1]:

YO(x) = 2/pi x((gammatin(sbs(x/2)))xJO(x)
nb/2

- x ((-1)xxp/(2p) xI(2xp) (x)))
p=

Y1(x) fot x(-1/xxJ0(x)+(1n(abs(x/2))+gamma-1)xJ1(x)

‘s ((-1)x((at1) /2) x4xo/(oxxe-1) xJ0(x)))

for odd values of o. The upper bound nb/2 is a substitute
for infinity, see [2].

3. Accuracy, Time and Storage Requirements.

Accuracy? relative error <p-7
Time: if abs X <=y=5: approx. 5 ms

else approx. 10 + 0./xn ms.
CeSe x=2 , n=20: 17 ms

x=10, n=40: 28 ms
Storage requirements: 2 segments of program and 8 local real variables.

(during translation 3 segments).
Typographical length: 75 lines incl. last comment.

4, Test and discussion.

The algorithm is similar to the GIER procedure 0.No. 208, [3].

Below program gives the following output:

pegin

comment here the procedure is copied unless it is already

translated as an external 5

integer i,n3 real x3

write(out,<:<12><10> n —-x:-:>, false add 32,13,<:d(n):>,
false add 32,18,<:¥(n)<10>:>) 3

AGAIN:

read(in,n)3 if n=-1 then goto END;
pegin array J,Y(0:n)3
read(in,x) 3
pesseljy(n,x,J,Y)3
write(out,<:<10>:>,<<dd>, n, <<dd.ddd>, x,

<< -d,ddddd dddddy-dd>,J(n),Y(n));
goto AGAIN 3
end inner block;

END:
end

data:

0, 9.001

O, 065

0, 5
1, 5
10, 5

20, 5

“i,

O
O
-
0
O
0
0

B
o
-

De

besseljy - 3 -

x J(n) ¥(n)

0.001 9499999 75004, =1 =4..47141 66116, 0
0.2500 9.38469 807244, -1 ~' 44518 73352 =1
5,000 -1.77596 77133» 1 -3.08517 62526y -1
5.000 =3.275T9 13760y -1 1247863 14542, -1
5.000 1246780 26472, -3 2.51291 10098, 1
5,000 2.77033 00515y-11 - 5.93396 52068, 8

References.

[1] Goldstein and Thaler: Recurrence Techniques for the
Calculation off Bessel Functions, MEAC 13 (1959), p.102.

[2]

[3]

[4]

[5]

6.

Randels and Reeves: Notes on Emperial bounds for Generating

Bessel Functions. Comm, ACM, v.1, No. 5, 3.

Tove Asmussen: Bessel J and Y, Gier System Library,

O.No. 208, Regnecentralen, April 1964.

British Association Mathematical Tables, Vol. VI,
Bessel Functions, zero and unity, Cambridge University

Press, 1958,

British Association Mathematical Tables, Vol. X
Bessel Fumctions, order 2 to 20, Cambridge University
Press, 1952.

Algorithm.

besseljy=set 3
bessel jy=algol
external

procedure besseljy (n,x,J,¥)3
value n,x3 integer n3 real x; array J,Y3

begin integer a,nb,N$
real jO,j1,sum,y0,y1,y23
boolean even$

sums=abs X$

x:=j1:=x/23
yOs=y13=03
y2:=1n(sum) -0.11593151565843
if sum=)-5 then

begin

J(0) s=sum:=j0:=13
for nbi=1 step 1 until n do J(nb) :=J(nb-1)xx/nb

end
else

pesseljy - 4 -

begin

Ns=n+1$

if n>10 then

begin

for N:=N-1 while (sum/N)>N<y-100 do J(N):=03
N:=N+1

end 3
nb:=0.525xsum+13 3
no:=ex(if nb <=N//2 then N//2+1 else nb);
J 139-1503
jO2:=sum:=0;5

even: =false 3

az=(-1)>((nb-2) //2) 3
for nb:=nb-1 step -1 until 2 do

begin
if nb<N then J(nb) s=if even then jO else jl3$

if even then

begin j1:=nb/xxjO-j13 yO:sa/nbXxjOt+yO end
else

begin

jOs=nb/xxj1-J503
yl s=axnb/(nbx@-1)xji+y13
as=-2$
sum: =sumt jo

end$

even: ==,even
ends
j0:=51/x-J03
sum: =2Xsumt jo $
J(0) :=j0/sum;
if n>O then J(1):=j1/sum;
for nb:=N-1 step -1 until 2 do J(nb):=J(nb) /sum

ends
x(0): =y0 3=0 .63661977236758x(Lxy0+y2xjo) /sum3
if n>O then Y(1):=y1:=0.63661977236758x

(-30/x/2+(y2-1) xj 1-y1x4) /sum;
for nb:=2 step 1 until n do
begin

Y¥(nb) :=y2:=(nb-1) /xxy1=y03
yOs=yi3 yli=ye

end
end besseljy3

comment .

besseljy calculates the Bessel functions of first
kind JO(x),J1(x),..e,Jn(x) and the Bessel functions of second
kind Yo(x), *vi(x),.0.,¥n x) of integer order and with real

argument.

Call Parameters:

n (integer or real)
maximum order of the Bessel functions,

n must be >=0,

x (integer or real) the argument, must be <0,

Return Parameters:

J (real array J(O:n))
the calculated values of the functions

70) s70C) “sego(n) aC) «
YX (real array Y(O:n)

t e oes y Vv f the functions
x(0) efor pesesl tang of x)

a 8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

RCSL no: -. .

Edition: September 1970

Author: Bo Jacoby

Titie: beta

(RG 4000, Software, beta, Algol Procedure, ISO Tape

Abstract: beta(x, y) approximates the beta function.

peta(x, y) = integral from 0 till 1 of(1-t)xx(x-1)xtxx(y-1)xat.

6 pages. Sa Be ee

ee

fe system LIBRARY @G¢eeecoeoetsceseecesceegeaeceoeoeesceecoeosoe oe eee eee ee Sees

DK-2500 VALBY - BUERREGAARDSVEJ 5 + TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

beta - 1 =

Beta function, beta(x, y)

1. Function and parameters.

beta(x,y) approximates the beta function.

beta(x,y)= integral from 0 ti11 1 of(1=t)xx(x-1) xtxx(y=1)xdt

procedure heading:

real procedure beta(x,y) 3

value xX,y3 real x,y3

procedure identifier:

beta : (real)

approximate function of arguments not resulting

in under - or overflow, in which case beta is

undefined,

call parameters:

X,Y : (real or integer)

arguments.

2. Method.

The value of beta(x,y) is calculated in the range 1<mx<=2, 1<my<=2

by means of the forma

beta(x, y) sganma(x+1)xgamma(y+1) /x/y/gemma(x+y) or

beta(x, y) =gamma(x+1) xgamma(y+1) /x/y/(xty-1) /gamma(xty-1)
according to whether xty<=3 or xty>3.

The value of gamma(z) is approximated in the range 2<=z<=3 by a

rational function of z-2, which is given as approximation 5231

in reference (1) *

For arguments outside the range 1<=x<=2, 1<=sy<=2, reductions are

performed according to the formula:

beta(xt1,y) =x/(x+y) xbeta(x, y)

beta=2—

3. Accuracy and time requirement.

The maximum relative error will be about

max(1, (abs(x)+abs(y))x=10

The c.p.u.-time used for a call of beta is crudely

5+0.1X(abs(x)+abs(y)) milliseconds.

4, = Test.

testprogram and output:

begin

real b,xX;,y3

for overflows:=0 while read(in,x,y)=2

do

begin

b:=beta(x, y) 3

write(out,<:<10>x=#!>,<<-ddd.@,x,<: y=>,

Y,<: beta(x, y) =:>,<<dddddddddddd000y-ddd>, b,

<< ddy-dd>, abs(b-ganma(x) xganma(y) /gamma(xty)))3
setposition(out,0,0) ;

end;

end 3

x= 0.5 y= 0.5 beta(x,y)= 3141592653760y -12 Oy 0

x= 1.0 y= 1.0 beta(x,y)= 1000000000000y-12 58-12

x= 100.0 y= 1.0 beta(x,y)=100000000004000p-16 4S ya ht

-0.5 beta(x,y)= -10783381324400,-12 Oy 0 x2 10.0 y

beta-3-

5. Algol procedure.

pbetasset 2

betazalzol

external

real procedure beta(x,y) 3

value X,y$

real xX,y3

begin

real h,w$3

for w:30,x

do

begin

if wad

then h:=1

else

begin

X25Y5

yaw

end

ed

if »2

then

begin

for x:=x-1 step -1 until 1

do h:=hxx/(xty) ;

X3=xX+1

end

else

if x<1

then

for x:=x step 1 until 1

do h:shx(xty) /x

end

3

ws=xty=1 3

if wo2

then

begin

h:sth/(wxxxy) 3

Wi =wWe2

end

else

begin

hesth/(2%y) 5
Wiswe]

end

for ws=((((((
039301346419 xw

+4142928007949) xw

+1.09850630453)xw

+34 36954359131) xw
+12,8021698112)xw

+22.9680800836)xw

+43.9410209189)

/
(((w
-7+15075063299) xw
+h, 39050474596) xw

+43.9410209191)

while y>0

do

begin

if x0

then

begin

hesh/ws

Ws x=15

x30

end

else

begin

hs shxw3

Wiay~1 3

ya

end

end

beta-4.-

beta-5-=

3

beta: #hxw

end beta;

6. Reference.

(1) J.P. Hart and oth.:

Computer Approximations,

John Wiley and Sons, 1968, p. 130-136

Title:

decompose

solve

—

® fa & REGNECENTRALEN RCSL-No: _-55-Da0
-_ Edition: November 1969

Author: Peter Fleron
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

Keywords:

RC 4000, Basic Software, Mathematical Procedure Library, Algol Procedure e

Abstract:

The procedure decompose performs a triangular decomposition of an arbitrary
non-singular matrix. One set of equations can then be solved by the
procedure solve. 8 pages.

Users of this manual are cautioned that the specifications #
contained herein are subject to change by RC at any time —

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-

. cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsibie for any damages caused by
reliance on any of the materials presented.

-1-

1. Function and Parameters.

1.1 Decompose:

Decompose calculates upper and lower triangular matrices u and 1

such that l*u=a, where a is a given n*n square matrix. With the

additional requirement u(“,i)=1, the decompositicn is unique

if a is non-singular. In orcer to ensure numerical stability,

row-exchanges are performed (explicitly) and information about

these exchanges is stored for further use in subsequent procedures

handling the decomposed matrix.

Implied procedure head:

boolean procedure decompose(a,p,mode) 3
value mode3

array 23
integer array p3

integer mode;

Call parameter:

mode : (integer or real). This parameter governs the

precision in the calculation of the inner-products

in the algorithm:

mode=O : The inner-products are calculated in normal

floating point mode.

mode=1 : The inner-products are calculated by means

of intermediate variables of 45 bits mantis-

sa and 24 bits exvonent,

Call and Return Parameter:

a : (real array or zone record with nxn elements). Con-

tains at entry the square matrix t¢ be decomposed, On.

exit, each element of a is replaced by the correspond-~

ing element of u or l. (The diagonal of u is not stored).

In case of a one-dimensional array or a record, the

elements of a must be stored row-wise.

Return Parameters:

decompose : (boolean). True if the matrix a is non-singular,

otherwise false.

p : (integer array with n elements). Contains information

about the row-exchanges. (see section 2.Method).

1.2 Solve:

Solve calculates the solution-vector x to the system of equations

axx=b, where a is a n%n square matrix, decomposed by a previous call

of decompose, and where b is a colum vector containing the given

righthand side. Thus, the solution of several systems of equations

with the same matrix of coefficients requires one call of decompose

followed by a number cf calls of solve.

Implied procedure heed:

procedure solve(a,p,mode,b)3
value mode;

array a,b}
integer array p$
integer mode}

Call Parameters:

mode

a

: (real or integer). cf. decomp se.

: (real array or zone record with n¥n elements). Con-

tains the decomposed coefficient-matrix as produced

by decompose,

: (integer array with n elements). Contains informae

tion on the rowexchanges of the matrices held in a.

Call and Return Parameter:

ie) : (real array oz zone record with n elements). Con-

tains on entry the given right-hand side. On exit,

the corresponding solwticns are stored in b.

1.3 Parameter-check,

In case of wrong parameters the run is terminated with an error

message on current output consisting of the procedure name (decomp

or solve) and a number, indicating the wrong parameter as follows:

1: The number of elements of a is different from n*x2 (n being the

number of elements cf p).

Wrong content of p (solve only). Indicates an impossible row-

exchange or an attempt to solve a singular system of equations.

mode<O or mode>1.

The number of elements cf b is different from n (solve only).

2. Method.

Decompose produces the triangular metrices 1 and u inn steps,

in the k-th of which the k-th colum of 1 and the k-th row of u

(0 <= k <= n-1) are calculated by

(2.1) 1: a(5X) :=a(J,4)-sum a(j,i)*a(i,k) 3 js=k,kt1,...,n-1

veel
(2.2) ut a(k,j):=(a(k,j)-sum a(i,j)*a(k,1))/a(k,k)3 j:=k+1,k+2,...,n-1

i=0

During the calculation of the elements of 1, the k-th pivotal index, piv,

is found using the criterion

abs a(3,k)/2**ex(j) = maximum with respect to j

where ex(j) is the initial maximum exponent of the numbers constituting

the jeth row.

This pivotal strategy is chosen on two counts: It is simple, and none is

known to be universally better (cf. [1]).

If all elements of the colum of 1 tums out to be (exactly) zero, p(1)

is set equal to 2048, and the procedure exits with the value false.

Otherwise, p(k) 1s set to the pivotal index, piv, and if piv is greater

than k, ex(piv) is set to ex(k) and the k-th and the piv-th row of a are

exchanged before the elements of u are calculated.

Solve proceeds in two steps: First, the equations

1*y=b

is solved for y, exchanging the elements of b as described by Dy, after

which the finai scelution x is found by solving

U*X=y

Here, b is successively replaced by y and x. The formilae used are analogous

to those of (2.1)-(2.2):

(2.3) 1: (i) 1=(o(x) sum b(i)*a(k,i))/a(k,k) $3 k:=0,1,++.,n-1
i=0

n-1

(2.4) ui p(k) :=b(k)-sum_ b(i)*a(k,t) 8 ksme2,n=35 0009150
i=k+1

During the first step, it is checked that n > p(k) >= k. If this check

fails, the rm is terminated as described in section 1.

~-4.

If the value of the parameter mode is 1, the inner-products of (2.1)-(2.4),

i.e. expressions of the form

-(sum r(i)*s(1)+r(k)*(-1))

are calculated by retaining hS pits cf each product and adding this to

a sum of 45 significant bits. (The exponent is kept in 24 bits).

Thus, instead of the rounding errors in each miltiplicaticn and addition,

introduced by the normal floating-point operations, an error is introduced

only in the final rounding of the sum to a floating-point number. However,

it should be noted that only to a certain extent this procedure can cope

with a severe cencellation of significant bits that may arise when a

product is added to the sum.

The following peculiarities, due to the fact that the procedures are

written in the assembler language SLANG 3, should be mentioned:

a) The error message constituents lin.eq.1 and lin.eq.2 occur in

these messages instead cf ext<line number>. The possibilities are:

lin.eqe1 : Overflow/underflow in calculations outside the inner~

product procedure.

lin.eq.2 : a) Overflow/underflow in the inner-product procedure.

(If mode=1, this can happen only in the final rounding

to a floating-point number).

b) The parameter errors as described in section 1.3

Some examples are shown in section 4,

b) The formal parameter p contains as explained the pivotal indices;

however, the k-th index is not found in p(k) (1.e. the word number

k of p), but in the k-th byte of p. A possible way of unpacking

these indices is shown in the program in section 4.

The remaining bytes of p are used for the exponents ex(k).

ce) As stated implicitly in section 1, the index bounds and the

number of indices of the actual array-parameters are irrelevant.

Only the number of elements in the declaration is taken into

consideration.

3, Accuracy, Time and Storage Requirements.

Accuracy: Depends on the problem and cn the choice of the

parameter mode.

The table below shows the median-error (in mits of 40719)

of 11 sets of equations, consisting of equally distributed

random numbers (= 49201 4920)- The error is expressed as the

residual norm relative to the norm of the right-hand side.

(The Euclidian norm is used).

order error error

mode=0 mode=1

10 2.6 109
20 39 2aD

30 Toh 4,0
Lo 9.5 5.0
50 ot 8.3

60 21 7.6

10 33 8.7

Time: Based on recorded solution-times for the systems mentioned

above, the following execution-times in msec., expressed

as functions of the order, holds within +10 pet. for orders

between 50 and 100:

mode=0 mode=1

decompose 0.02%(1+10/n) xn**3 0.08%(1+5/n) *n**3

solve O.07snx*e 0. D*n#*2

Storage Requirements: 2 segments of program

O variables.

hh, Test and Discussion.

As may be expected, the results obtained for mode=1 are significantly

better than those for mode=O0 only if n is sufficiently large. On the

other hand, if the system is ill-conditioned, the results can be widely

different even for small n. As an example, the system

10 7 8 7 32

75 65 23
as 8 610 9 bp: 33

7 5 9 10 31

-6-

the exact scluticn of which is (1,1,1,1), yields the results:

mode=0 =

decomposed matrix:

7,0000000000' O 721428571432! -1 8.5714285716' -1 721428571432! 1

8,0000000000' 0 2.8571428570! -1 1.1000000002' 1 1.1500000002" 1

70000000000! 0 0,0000000000' © 3,0000000001' 9 1.6666666667' 0

1.0000000000! 1 =1.44285714296! -1 1.0000000014! 0 -1,6666666791? -1

piv ex solutions

1 h =4,00000C0459' Oo
2 4h 9,9999992456' -1
3 4 4.0000000186' 0

3 4 9.9999998884'! -1

mode=1:

decomposed matrix:

7.0000000000' 0 7.1428571432' -i 8.5714285716! -1 To 1428571432! =1

8,0000000000' 0 2.8571428570' -1 1,1000000002' 1 1.1500000002' 1

7.0000000000' 0 =2.9103830457'-11 3,000000000E' C 16666666665 !

4.0000000000' 1 =1.4285714290! -1 1.0000000009' © -1.,6666666733' -1

piv ex solutions

1 4 = 4.00000G0082' 0

2 4 9,9999998644! -4
3 h =7,0000000034! 0

3 4 9.9999999800! -1

The Euclidian error-icrm is 9.1'-8, 1.6'-8 respectively.

The following program was used

lin.eq. test parameter error etc.
begin integer di,d2,d3,d4,mode$

underflows:==13

- reed(in,d1,d2,43,d4,mode)s
pegin array a(1:a1), »(a2:43)3

integer array p(1:d4). piv(1:2*a4)s
integer i,j,k;
read(in,a,b)3$
if -,decompose(a,p,mode) then write(out,<:<1C>sing:>)3
write(out,<:<10>decomposed matrix: :>)3
k3=13
for i:=1 step 1 until di do
begin write(out,<:<10>:>)$

for j:=1 step 1 until dl do
begin write(out,<< -d.dddddddddd'-dd>, a(k))3

ks=k+]
ends

j:=p(i)3
piv eels shift (-12) extract 123
piv(2*1):=j extract 123

end3
sotve(esPimode,) 5
write(out,<:<10><10> piv ex solutions:>)3
for 1:=1 step 1 until db do
write(out,<:<10>!>,<< ddddd&, piv(:) ,piv(i+al),

<< -d, ddddddddda' -dd>, b(1+42-1))
end block

end

This program produces the error-messages shown below when the input is

4, 1, 25 2, O; Ay Ty 1;

where a means the four elements of a 2*2 matrix:

I) at 1, 2, 1, 2

solve 2 lin. ea 2
called from line 21-22

II) as "hoo, '-hoo, "hoo, '-40o

real lin, eq. 1

ealled from line 8-8

III) az: 1, 8'615, 0.5, -8'615

real lin. eq. 1

called from line 21-22

IV) as 1, 12615, 0.5, -12'615

real lin. eq. 2
called from line 8.8

5. References

[1] Forsythe, G end Moler, C.B.: Computer Solution of Linear Alesbraic

Systems. Prentice-Hall. 1967.

6. Algorithms.

Since the procedures are written in SLANG, the algorithms wil

not be given,

Title:

eberlein

Edition: July 1969

N. Schreiner Andersen

P. Frost Larsen

(fe 8 REGNECENTRALEN RCSL No: 55-D57 (PG2)

Author:
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

(

Keywords:

RC 4000, Software, Mathematical, Higenproblems, Algol Procedure

Abstract:

The procedure, eberlein, solves the eigenproblems for a real matrix

by means of a sequence of Jacobi-like transformations. 26 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi- Copyright A/S Regnecentralen, 1978

: pe cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen ’ Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Solution of the eigenproblem for real matrices

eberlein(n, a, t, tmx, first, result).

1. Function and parameters.

It is possible to chose one of several forms of solution according

to the rules given in the parameter list.

If the iteration process does not converge within the given number

of iterations or converges to a matrix that is not of block diagonal

form, no solution is found. This situation is indicated by the boolean

parameter, first.

Input parameters:

n H the order of matrix a.

result : if result is true then in case of convergence the

eigenvalues will be placed in the two first columns

of matrix a.

Input/Output parameters:

alisn,i:n}] : at entry the matrix for with the eigenproblem is to

be solved,

At exit one of the following three situations can

oceur:

1) if convergence occurs and result is false :

t{1:n,1:n]

the real eigenvalues occupy diagonal elements

while real and imaginary parts of complex conjugate

eigenvalues occupy diagonal and off diagonal corners

of 2x2 blocks on the main diagonal.

2) if convergence occurs and result is true :

the eigenvalues will be placed in the two first

columns according to the following rules

a real eigenvalue x = a{j,j] makes

alj,1] = x

and alj,2] = 0

a complex conjugate pair of eigenvalues

x + ixy = alj,j] + ixalj,J+1]

and x - ixy makes

alj,1]

alj,2] =

afj+1,1] = x

and afj+1,2] = -y

3) 1f convergence fails no eigenvalues can be

calculated as a result of the procedure call.

The matrix, a, is equal to the transformed matrix.

During a new call of ,eberlein, it ts possible to

try whether more iterations will result in conver-

if first is false at entry and tmx > O then t

given at ‘entry is multiplied by the transformation

matrix calculated in the procedure.

“@
-3-

Eigenvectors of real eigenvalues occupy columns of

the transformation matrix. Eigenvectors corresponding

to complex conjugate eigenvalues given by

afj,j] + ixals,J+1]

and alj,3] - ixald,d+71]

are formed as

t{k,j} + ixtlk,J+1]

and t[k,j] - ixtlk,§+1]

where k = Tye yeoee °

+mx : at entry:

the maximum number of transformations performed is

abs(tmx). If tmx < 0 then t is unaltered.

at exit tmx records the number of transformations

performed.

first : at entry tells whether t is a result of a foregoing

@
transformation or not. (see under t{1:n,i:n]).

at exit first is true if convergence occurs in less

than tmx iterations otherwise first is false.

The procedure is based on a modification of a generalized Jacobi-me-

thod [1]. There exists no proof of convergence for this special modifica-

tion, but mumerical experiments have shown the worth of the method.

A transformation matrix T transforms the matrix A into a matrix of

block diagonal form A’ = T ‘AT.

r The transformation matrix T is generated from a sequence of two-di-

mensional transformations T,(k, m), where (k, m) is the pivot pair.

Each T, is of the form RS where R is a rotation and S a shear.

Let Bay) Th and Says i= 1,2, ..., mn, J #1, 2, «s , m be the

elements of A, R and 5 respectively.

Then the rotation is determined as

Yr =r = cos x
kk mm

Pm = “Tak m «Sin x

Ty" ag (kronecker-delta) i # k, mand j # k, m

where x are given by

tan 2x = (a + Bic (ee - am)

@ x being chosen so that after the transformation the norm of the k-th co-

lumn is greather than or equal to the norm of the m-th column.

The shear is determined by

Ss, #s = coshy
mm kk

Sim Smk ™ -sinhy

S45 = ij otherwise

y is chosen to reduce the Euclidean norm of

-1
Ay, = (T, qT, eae T,) A(T, tT, eee T,).

r In particular

tanhy = (ED - H/2)/(G + 2(B* + D*))

where

2 2 2 2 G = (+ac +al +a‘,)
thin * tk 7 Pim * Fmt

cos2x(2 (a - 8:,8,_)) ibkom Komi ik@im
’

wm
 "

2,22 _ 22 | 22
~sinax(| (acy + tm - St 7 Ant)?

itk,m

-5-

The process will normally result in a matrix A’ with real eigenva-

lues on the diagonal and complex conjugate eigenvalues in 2x2 blocks on

the main diagonal (eigenvalues a,, + ia). 2x2 blocks because the pro-
JJ - Sd+1

cess theoretically results in

2 all> Hatll> ...> [Hell

where latl| is the norm of the i-th column of A’,

If however more than two eigenvalues are of the same norm the above

picture does not hold. This also happens if the matrix Ay at some step is

near a more general solution of block diagonal form, because the conver-

gence criteria then may stop the process,

The procedure however results in a form with 2x2 blocks obtained by

interchanging rows and columns if necessary.

A matrix of the form aI + S where I is the identity matrix and 5 is

skew symmetric, and cases with blocks of this form cannot be handled by

the procedure, (If the form not it self is a solution), There is no

quarantee that the transformation method used will not result in conver-

gence to a form embedding blocks from which the procedure cannot calcu-

late the eigenvalues. In testexamples this did happen, but only in spe-

cial cases chosen to examine the stability of such solutions. Notice that

if the number of iterations performed is less than the maximum number of

iterations allowed and ,first, is false then the resulting matrix is of

the above mentioned form,

The eigenvectors are calculated from the rows of the transformation

matrix, as described in the data list.

Numerical examples have shown that eigenvectors corresponding to

multiple eigenvalues are normally linear dependent, (Except for numerical

errors).

The algol procedure is based on an algorithm developped by Eberlein

and Boothroyd [2]. The following changes are however made:

1. A program part ensures that the eigenvalues are placed in

1x1 and 2x2 blocks on the main diagonal. Matrices obtained

as a result of convergence for which 1x1 and 2x2 blocks can

not be constructed results in alarm message through the pa-

rameters first and tmx.

2, the parameter list is changed.

3, a new dynamical form of convergence criterion is introduced.

The convergence criterion is based on the four reals ep, eps, eps,

and epse.

At the start of the procedure ep, eps and eps1 are calculated as

ep = max x yh

eps = max x 1.00199

eps1 = max x 4-3

6 where

max = maximam(|a, ,I) 1,321, 2, ..., nm.

If for a single value of eps1

lay, - a5, < eps1 or (lay, + ay, < eps? and las, - a,,| < eps1)

no more transformation are carried out before after a change of eps1. If

eps1 < eps convergence has occured, otherwise a new value of eps1 is cal-

culated as eps1 = eps1/10. The above value of eps makes sure that the re-

sulting epsi is near to and less than eps. eps = max x 79 could cause an

extra serie of iterations with eps! = max x 4-10 because of rounding er-

rors.

6 As pivot pairs are only chosen pairs of elements for which

(la, - 854 > eps 2 and las, -'a,, > eps 2)

or ja,, + a, > eps 2
ij

If only identity transformations occurs as 4 result of this rule then a

new value of eps2 is calculated as eps2 = eps2/10. Numerical experiments

have shown that this extra mechanism is necessary to ensure convergence

of some ill conditioned numerical examples.

The starting value of eps2. for every new value of eps’ is epse =

eps 1/10.

If epse gets less than ep convergence 4s not obtained by this algo-

rithm and the process is stopped.

@ The values of ep, eps, eps1, and eps2 are results of experiments re-

ducing the computation time about 30 per cent compared with a program ma-

king transformations for all pairs of elements cyclically.

3, Accuracy and storage Requirements,

Accuracy

In case of convergence the following inequalities holds for the ele-

ments of A?

la - &
1j sil

13 * 84!

¢ eps or

la ¢ eps and lass - a5; ¢ eps

for i= 1, 2, ... , n-1 and j = i+1, i+2, ... , n where

eps = max(|elements of original matrix, al)x-9

Storage requirements

1) ALGOL 5, index check: 7 tracks of program and 52 local variables

2) ALGOL 5, no index check: 6 tracks of program and 52 local varia-

bles,

Typographical length 167 lines of program exclusive the comment after the

last end.

4, Test and discussion

The procedure has been tested on the ALGOL 5 system for matrices of

order < 12.

The testprogram makes besides call of ~- eberlein - a calculation of

testnorm = |[A x x - x xXlI/{l x x| |

where A is the matrix for which the eigenproblem is solved, x is a calcu-

lated eigenvector and the corresponding eigenvalue,

Calculation of - testnorm - is made by a real procedure testnorm(

n, A, t, k, complex, x1, x2) in the testprogram.

A list of input parameters, results, and calculated values of -

testnorm - is delivered by the testprogram.

The starting values and following calculation of eps1 and eps2 are

obtained as results of experiments resulting in 30 per cent decrease in

execution time in solving testexamples.

@ Example no 1

Time:

ALGOL 5, core storage, no index check 0.36 sec.

Input parameters:

n a 3

tmx = 50

matrix a:

1.000 0,000 0.010
0.100 1.000 0.000
0.000 1.000 1.000

@ Results:

tmx == «15
first = true

Eigenvalues after 15 iterations

1 1. 1000000000
2 0.9499999999 +0,0866025403x4
3 0.9499999999 -0,.0866025404xi

Eigenvectors:

1

~0 2745741273
=0.2745741274
~2.7457412704

eo =.
0.3262845267 +0.1836278766xi

~0.0041158575 ~0. 374 3846272xi
32216866940 +1.9075675104x1

3
0. 3262845267 ~0, 1836278 766xi

, 0.0041 158575 +0. 3743846272xi
~3.2216866940 =1.69075675104Xx1

Testnorm for corresponding eigenvalues and eigenvectors

no, of eigenvalue testnorm

1262210

Example no 4

Time:

ALGOL 5, core storage, no index check

Input parameters:

n T
tmx = 100

matrix a:

1 1 0
-1 0 1
=1 @) 0
-1 0 6)
=] 0 0
=] 0 0)
«1 (0) 0

Results:

tmx = 64
first = true

o
o
0
o
0
o
?
+
?
0
0

O
o
0
0
o
-
0
0
0

o
o
-
0
O
0
0
0

Eigenvalues after 64 iterations

“
O
N

F
u
n

-0.9999999982
0.7071067794
0.7071067794
~0.7071067788
-0.7071067788
0.0000000001
0.0000000001

Eigenvectors:

1
-0 25585067124
0.0000000001
~0.5585067124
0.0000000001

-0 5585067123
00000000000

-0.5585067125

021107710832
-0 04232186137
-0.7543150660
-0.9101086283
=0 6799337 S446
-0.4868900143

-0.1557935621

+0.7071067790X4
~0.7071067790xi
+0.7071067790Xi
-0.7071067790xi
~0.9999999956xi
+0.99999999 56x41

+0 .3310964522xi
+0,4868900143xi
+0, 3761189310xi
+0 .0636714003xi
=0.2674250515xi
=O .4232186137x1
~0.3124475306x1

- 10 «

10.1 sec.

o
-
0
O
0
0
0
0

Testnorm for corresponding eigenvalues and eigenvectors

-0.1107710832
~0 .42352186137
=0 67543150660
-0.9101086283
-0.799337 5446

-0.1557935621

004530114436
06001930025
-0.0609645978
0.72687 18886
0.2738604449
0. 1266788860
0.7878364866

0.45301 14436
0.6001930025
-0.0609645978
0.72687 18886
0.2738604449
0. 1266788860
0.7878364866

0.5486381922
0.7859088684
0.2372706765
-0.0000000002
0.5486381923
0.7859088687
0.2372706767

0.5486381922
0. 7859088684.
0.2372706765

0 .0000000002
0.54863281923
0.7859088687

0.2372706767

no. of eigenvalue

N
E
D

and 3

and 5

and T

=0.3310964521x1
~0.4868900143x1
0.3761 189310xi
#0 .0636714003x1
+0 .2674250515x1
+0.4232186137Xi
+0 6 3124475306x1

-0.6611576004xi
+0.1266788858xi
0. 3263325577X1
-0.4735141167x4
+0, 1876434837Xi
-0.6001930026xi
-0.1471815591xi

+0.6611576004x1
~0.1266788858xi
+0 6 3263325577X1
+0.04735141167xi
-0. 1876434837x1
+0.6001930026xi
+0 .1471815591XL

+0 .2372706779Xi
=0 631136751 34xi
-0.5486381898xi
+0,0000000002x1i
+0 .2372706781X1
-0.3113675132x4
-0.5486381901xi

~0.2372706779Xi
+0..3113675134xi
+0.5486381898xi
-0.0000000002xi
-0.2372706781xi
40 .31136751352x4
+0, 5486381901x1

testnorm

2.0n “9

Zelny 9

5Oy ~9

5 oy “9

-11-

~ 12 =

. @ Exemple no 11

Time:

ALGOL 5, core storage, no index check 2.43 sec.

Input parameters:

n =
tm = 100

matrix a:

1) 9) 0
1 1 0 0
¢) 1 1)
) fe) 1 1

) Results:

tmx 80S
first = true

Eigenvalues after 45 iterations

1 120014985857 +0.0014992361xi
2 1.0014985857 ~0.0014992361Xi
3 0.9985014113 +0.0014978791xi
4 0.9985014113 ~-0.0014978791xi

Elgenvectors:

1
-0.0000637318 +0 .0000264041xi
00124657185 +0.0300779129x1

5 8782571872 +14.1901547856xi
6694..9278156800 +2771.1941409600xi

«020000637318 -0.0000264031xXi
-0.0124657185 -0 .03007791 29x1
5.8782571872 = =14..1901547856xi

6694.9278156800 -2771.1941409600x1

0.0000637404. +0 .0000264010xi
-0.0124478455 -0 203007121 14xi
~5 .87822285h2 +14.1910426896x1

6696 .9885651200 -2775.7892716800x1i

0.0000637404 -0.0000264010xi
-0,0124478455 +0.0300712114x1

-5 8782228542 -14.1910426896x4
6696 .9885651200 +2775.7892716800xi

Testnorm for corresponding eigenvalues and elgenvectors

no, of eigenvalue testnorm

1 and 2 1539 -9

3 and 4 18% “9

Example no 12

Input parameters:

n = 3

tmx == 50

matrix a:

1.000 1.000 1.001
=1 2000 1.000 0.000

~1 e000 0,000 1 2000

Results:

tmx = 28
first = false

Limiting matrix after 28 iterations

1.00y +0 ~1.17y +0 7.60y ~1

1-17» +0 1.00y +0 2.22y -1

=7.60y -1 -2.22y -1 1.00, +0

-13-

- 14.

5. References.

{1] P.I. Eberlein: A Jacobi-like Method for the Automatic Computation of

Eigenvalues and Eigenvectors of an Arbitrary Matrix.

I. SIAM, vol. 10, No. 1, 1962,

[2] P.I. Eberlein and John Boothroyd: Solution to the Eigenproblem by a

Norm Reducing Jacobi Type Method

Numerische Mathematik 11, 1-12 (1968).

-15-

6. Algorithm

eberlein=set 7

eberlein=aigol
external

procedure eberlein(n,a,t, tm, first, result) ;
value n;
boolean first, result;
integer n, tmx;

array 2,3

comment 1 5

begin
real eps,ep, aii, aij,aji,h,g,hj,aik, aki, aim, ami, tep, tem, d, c,e, akm, amk, CX, Sx,

cotex, sig, cotx, cos2x, sindx, te, tee, yh, den, tanhy, chy, shy,c1,c2,51,82,

tki, tmi, tik, tim, eps1, eps23

integer i, j,k,m,it,nless1 5
boolean mark, left, right;

mark := right := false;

1f tm > O then
begin

right := true;
if first then
for i := 1 step 1 until n do

begin

comment identity matrix is formed in t;

t(i,i) := 13
for j := i+] step 1 until n do t(1,j) := t(j,1) := 03

end
ends

tmx := abs(tmx);
comment computation of the maximum absolute element of a3

ep := 03

for 1 := 1 step 1 until n do
for j := 1 step 1 until n do

if abs(a(i,j)) > ep then ep := abs(a(i,Jj));
comment 2 5
eps 32 EpXxl .001 p-93
eps! 23 epXy~-33
ep t= epXy-143
first <:= true;
nless1 := ne15

comment main loop , tmx iterations;

for it := 1 step 1 until tmx do

pegin
eps2 := eps1/103
comment compute convergence criteria;

for i := 1 step 1 until n do
begin

aii := a(i,i);
for j := i+1 step 1 until n do

begin

aij := a(i,j);
aji := a(j,i);
if (abs(saij-aji) > eps1 and abs(aii-a(j,j)) > eps1)

or abs(aij+aji) > epsi then goto cont
end

end convergence test, all i,J3
goto next_eps1;

- 16 -

7 @ comment next transformation begins;
cont: mark := true;

for k := 1 step 1 until nless1 do

form := k + 1 step 1 until n do
begin

h := g :=hj := yh := 03
ad := a(k,k) - a(m,m);
akm := a(k,m)3
amk := a(m,k) 3
e := akm + amk;3

:= akm = amk;
if (abs(e) <= eps2 or abs(d) <= eps2)

and abs(c) <= eps2 then goto skip;
for i := 1 step 1 until n do

begin

aik := a(i,k);
aim := a(i,m);
te := alk X aik;

tee := aim X aim;

r yh := yh + te - tee;
if ick and i<om then

begin
aki := a(k,i);
ami := a(m,i);
h :=h + akixemi - aikxaim;
tep := te + amixamt;
tem := tee + akixaki;
gz := g + tep + tem;

hj :* hj - tep + tem;
end

end i;

h s= h + h;

if abs(c)<=ep then
begin
comment take R as identity matrix;

cx := 13

sx := 03

end else
r begin

comment compute elements of R3;
cotex := d/e3
sig := 1f cotex<d then -1 else 13

cotx := cot2x+(sigxsqrt(1+cot2x02)) ;
sx := sig/sqrt(1+cotx«e2) ;
cx $= sx X cotx;

end 3
if yh<O then

begin

tem := cx;

eX i= Sx;
sx = -tem;

end
COS2XK t= CxXX2 - 8x};
sin2x := 2XxsxxXcx3
d t= dXcos2x + cxXsin2x3

h
den.

‘@ tanhy

hxcosex = hjxsinex;
g + 2x(exe + dxd);
(exd - h/2) /den; ee

68

8
e

u

-~17 -

@ comment compute elements of 5;

chy := 1/sqrt(1 - tanhyxtanhy) ;
shy := chyxXtanhy;
comment elements of RxS = T;
cl := chyxXcx - shyXsx;

c2 := chyXcx + shyxsx$;
$1 s= chyxsx + shyxcx3
s2 := shyXcx + chyXsx3
comment decide whether to apply this transformation;
if abs(si) > ep or abs(s2) > ep then

begin
comment at least one transformation is made so;

mark := false;

comment transformation on the left;
for i := 1 step 1 wntil n do

begin
aki := a(k,i);
ami := a(m,i);
a(k,i) := clXaki + s1xami;

@ a(m,i) := s@xaki + c2xami;
end left transformation;

| comment transformation on the right;
for i := 1 step 1 until n do

begin
aik := a(i,k);
aim := a(i,m);
a(i,k) := c2xaik - s2xaims
a(i,m) := clxaim - s1xaik;
if right then

begin
comment form right vectors;

tik :2 t(1,k)3
tim 33 t(i,m)3
t(i,k) := cOxtik - s2xtim;
t({i,m) := c1lxtim - sixtik;

end
end right transformation

end;

@ skip:
end k,m loops;

if mark then
begin
comment 3 3

if eps2 < ep then goto stop;
eps2 := eps2/103
goto cont;

end else goto new loop;
next epsi: ~

- eps] := eps1/103
comment 4 ;
if eps! < eps/2 then

begin
tmx 3= it - 13
goto done;

end;

new_loop:

end it loop;

- 18 «

r stop:

first := false;
tmx := itel;

done:
if first then

begin
comment 5 5

for 1 := 1 step 1 until n-2 do
begin

mark := false;
ali := a(i,i);
for j := i+1 step 1 until n do
if abs(aii-a(j,j)) <= eps A abs(a(i,j)-a(j,1)) > eps then

begin
if mark then goto stop;
mark := true;

if j = i+1 then goto next;
for k := 1 step 1 until n do

begin

@ aik := afte k)3
a(i+i,k):= a 55k3
a(j,k) := alk;

end;

for k := 1 step 1 until n do
begin

aki := a(k,i+1)3
a(k,i+1):= a(k, J);
a(k,j) := aki;
if right then

begin
tki 23 t(k,i+1);
t(k,i+1):= t(k,j)3
t(k,j) := tki;

end;

end;
next:

end3
end;

r comment the eigenvalues are placed in the first two columns;
left := right := false;
if result then
for i := 1 step 1 until n do

begin
if -,right and i <n then
left := abetaft, yt) cart 2}} > eps and

abs(a(i,i)-a(i+1,i+1)) <= eps;
aft 32 if right then a(i-1,1) else a(i,i);
a(i,2) := if left then a(i,it+1) else

if right then -a(i-1,2) else 03
right := lefts;
left := false;

end;
end3

end eberlein;

- 19 -

) comment

1. eberlein solves the eigenproblem for a real matrix by means of a sequence

of Jacobi-like transformations.

Input parameters:

n 3 the order of matrix a.

result 4 if result is true then in case of convergence the

eigenvalues wlll be placed in the two first colums
of matrix a.

Input/Output parameters:

ali:n,1:n] $ at entry the matrix for with the eigenproblem is to

be solved,

@ At exit one of the following three situations can

oceur:

1) if convergence occurs and result is false :

the real eigenvalues occupy diagonal elements

while real and imaginary parts of complex conjugate
eigenvalues occupy diagonal and off diagonal corners
of 2x2 blocks on the main diagonal.

2) if convergence occurs and result is true :

the eigenvalues will be placed in the two first
columns according to the following rules

a real eigenvalue x = alj,j] makes

alj,1] = x
and alj,2] = 0

@ a complex conjugate pair of eigenvalues

x + ixy = alj,j] + ixalj,j+1]

and x - ixy makes

alj,1] = x
al j,2] = y
al j+1,1] = x

and al j+1,2] = -y

3) if convergence fails no eigenvalues can be
calculated as a result of the procedure call.
The matrix, a, is equal to the transformed matrix.
During a new call of ,eberlein, it is possible to
try whether more iterations will result in cone
vergence or not. (first is set to false).

~- 20 -

tli:n,i:n] : if first is false at entry and tmx > 0 then t
given at entry [Ss multiplied by the transformation

matrix calculated in the procedure.

Eigenvectors of real eigenvalues occupy columns of
the transformation matrix. Eigenvectors corresponding

to complex conjugate eigenvalues given by

alj,j] + ixalj,j+1]
and alj,3] - txelj, +1]

are formed as

t{k,j] + ixt{k, j+1]
and t{k,§] - ixt[k, j+1]

where K = 1,2, eceest e

@ tmx > at entry:

the maximum number of transformations performed is

abs(tmx). If tmx < 0 then t is unaltered.

at exit tmx records the number of transformations

performed,

first : at entry tells whether t is a result of a foregoing
transformation or not. (see under t[1:n,1:n]).

at exit first is true if convergence occurs in less
than tmx iterations otherwise first is false.

« A dynamical form of the convergence criterion is introduced, which
are based on the four reals ep, eps, eps1, and eps2.
In case of convergence of the iteration process the resulting matrix,

a satisfies

e (abs(a(i, Jj) - a(j, 1)) < epst
(V abs(a(i, i) - a(j, 5))™< eps)
A ebs(a(i, j) + a(3, 1)) < eps

where eps! < eps/2

3. If convergence is not obtained and the resulting transformation ma-
trix is the identify matrix then if eps2 = eps2/10 < ep the process
is stopped {no solution) otherwise a new transformation is made with
eps2 = eps2/10.

4, If epst < eps/2 the convergence criterion is fulfilled and the itera-
tion process is stopped. If eps! > eps the calculation is continued

with the new value of eps.

5. A look up for the eigenvalues is made and at the same time it is con-
trollet whether the resulting matrix 1X1 and 2x2 is on block diagonal

form or not.

» 21 «=

If the matrix does not consist of 1X1 and 2x2 blocks this is (if pos-
sibly) obtained by interchange of rows and columns on the a and t ma-
trices.
Special forms of matrices that fulfil the convergence criterion are
not of block diagonal form (with at most two -valid- elements in a row
or colum) and the procedure eberlein can not solve the eigenproblem
for these special matrices;

7. Testprogram.

begin

real procedure testnorm(n,A,t,k,complex ,x1,x2);

value n,k,complex ,x1,x2¢3
array A,t3

| poolean complex;

| integer n,k;

| real x1,x23
comment The procedure performs a test of eigenvalues and corresponding

eigenvectors calculated by procedure ebverlein;

begin

integer i,j;

real sum,sum1,sumd ,norm;
sum := norm := 05

for i := 1 step 1 until n do

begin

@ sum1 := sum2 := 0;
for j := 1 step 1 until n do sum1 := sumi+A(i,j)xt(j,k)3

if complex then

for j := 1 step 1 until n do sum2 := sum2+A(i,j)xt(j,k+1)3
sum := (if complex then

(sum1-x Ixt(i jk)+xext(d ,k+1))xx2
+(sum2-x2x t(4 jk =x txt(i ,k+1))xx2
else
(sumt-x1xt(1,%))xx2) + sum;

end;

for i := 1 step 1 until n do norm := norm+t(i,k)xx2;

if complex then
for i := 1 step 1 until n do norm := norm + t(4,k+1)xx23

x1 s= if complex then sqrt(x1xx2+x2xx2) else abs x13

testnorm :=sqrt(sum/norm)/x13
end procedure testnorm;

integer i,j,n,no,m,layoutno , tmx, total ,res;

boolean b1,b2,complex,first,result;

r real im,x1,x2,layout;
read data:

Total := 03
i:sread (in,no,n,m,res)3
corment

no = example no,
n = order of matrix,
m = value of tm,
res = integer code for result;

if i <4 then goto stop;
tmx : =m;

result := res = 1;

write (out,<:<10>Example_no:> ,<<dd@ ,no,
£:<10><10>Input parameters :< 10><10>n =:> ,<<ddd@ ,n,

3< 10> tmx_ = Dj tmx 636 10> 10 matrix are);

@ 23 -
begin

array a,t,A(1:n,1:n)3
read (in, layoutno);
comment layout no serves a choice between three layouts in

output of the unaltered matrix a;
layout := case layoutno of (real<< -dd®,
realx< _-d,dd@ ,realx<__d® yreal<<=d, @);°
write Tout,<:<10D>); 7
for j := 1 step 1 until n do

begin

write (out,<:<10>s>)35
for 1 := 1 step 1 until n do

begin

comment input and output of matrix a;

read (in,a(j,i));

A(j,i) := a(3,i)s
write (ont, s tring layout ,a(j,i));

end

© end;
first := true;

new eber:

~ eberlein(n,a,t,tmx,first,result);
write (out, £2< 10>< 10>< 10> Results :< 10>< 10> tmx ___=D ,<<-dd® , tmx);
if first then

write (out ,<:<1@first = true») else
write (out, *¢3< 10> first7=" false >);
if - wresult or ~,first” then

begin

write (out,< :< 10>< 10>< 10> Limi ting matrix after:>,
"<<aa@> , total+tmx ,<: itérations1@ >);

for J := 1 step 1 "until ndo 7
begin

write (out,<:<10 >);
for i := 1 step 1 until n do
write (out,<<_-d.ddytd@ ,a(j,t));

end

end else
@ begin

write (out,< 2< 10>< 10>< 10> Eigenvalues _ afters,
{<ada@ , sotal+tmx ,<: iterations< 10> >)3

for i := 1 step 1 until.ndo 7
begin

write (out ,<:<1 => ,<<d@ ,i,
"<< -dada ddddadaaad> a(i,1))s;

tf a(i,2) <> OThen
write (out,<<__+ddad.dddddaddad ,a(1,2),<:xt2>)5

end;

if m= 0 then goto next;
write (out,<:< 10<19< 10> Eigenvectors :< 10> >);
b1 := b2 := false;

for i := 1 step 1 until n do

begin

write(out,<:< 10> > ,<<d@ ,1,6:< 1 >);
bi := + b2 and a(i, 2) or rs

for 3 := 1 step 1 until n do

Tf b1

write

write

be := b4;

b1:

and;

write (out,

-~ ah.

if b2 and mO then t(j,i-1) else

if b2 and m0 then Meee yj) else
if mC then t(j,i) else iG J)3
(out ,<< -dadd , ddadddadad> yim);
if be andmO then ~i(j,t) else

if b2 and mO then -t(4.3) else

4f b1 and mO then t(3,i+1) else
if b1 and moO then (141,35) else 0;

or b2 ther

(out,<<__+¢ddd.c Laddddddd@ ,im,<:x >)5
(out, e270 >);

<10><1@<10><10>Testnorm for corresponding: ,

eigerivalues and eigenvettors<10>< 10>< 10>,
ral

<3

<:

<:no, cf eigenvalue
4 7
4341

testnorm 10 >,

> 233
b1 := false;
for i := 1 step 1 until n do

begin

1 := a(i,1);
2 := a(i,2);

complex := x2 © 0;
b1 := -,b1 and complex;
if bi or -,complex then

im := testnorm(n, A,t,i,complex ,x1 x2)3

if b1 then
begin

write (out ,<:<10 > ,<<__ edd 41,62 andy itt,
St kd. Ara , im);

end else
if -, complex then

begin

write(out,<:<1@ > ,<<__-d@ ,i,
<3 7 >

end;

end;

end;

next:
if-, first snd tm = m then

begin
totel := total+tmx;

tmx s= m3

if total <= 3xm then

end;

write (out ,<:<12 2)5

end;

goto read data;

stop: ~

end testprofram

KEI Fa Te)

goto new eber

(

Title:

* fft

@ Se RCSLNo. 31-D3_ (PG)
; Edition: July 1971

Author: S.E. Christiansen
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2C00 COPENHAGEN F

Keywords:

RC 4000, Software, fft, Algol prseedore: ISO Tape

Abstract:

The procedure fft calculates the Fourier sum

Y(s) = Sum(X(Hexp(--2pi*i*t*s/N)), N = 2**m, t =0, 1, ... , N-l

for s = 0, 1, ... , N - 1 by means of the Cooley-Tukey algorithm (the

'Fast Fourier Transform'). 6 pages.

Users of es manual are cautioned that the specifications
Copyright S$ Reanecentralen 4978 contuined herein are subject to change by RC at any time

pyr © A/ 9 # 28 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and sha!! net be responsible for any damages caused by

Printed by A/S Regnecentraien, Copenhagen
reliance on any of the materials presented.

procedure fft(A, B, m, analysis);

1. Function and parameters:

Call parameters:

m integer value. m determines the dimension N = 2xxm of A

and B. m must be < 2h to be meaningful, but the largest

possible value is m = 13 in a computer with 128 k bytes

storage capacity (corresponding to 32 k reals).

analysis integer value. analysis = +1 gives + sign in the sun,

i.e. a Fourter-synthesis is carried out.

analysis = ~1 gives - sign in the sum, i.e. a Fourier-

analysis is carried out.

Call and Return parameters:

A, B(O:N-1) real arrays. They mst on entry contain the real and

imaginary part of X(t) in normal order. Upon exit they

contain the real and imaginary part of the Fourier sum

Y(s), also in normal order.

2. Method.

The procedure fft calculates the Fourier sum

¥(s) = Sum(X(+t) exp(+2pixixtxs/N)), N = Dom, t = 0, 1, eee , N-1
t

for s = 0, 1, «+. , N-1 by means of the Cooley-Tukey algorithm (the ’Fast

Fourier Transform’).

The first part of the procedure (p:= 03 --- shift (m-j-24) ends) de-

livers the data A, B in reverse binary order. The second part (p:= T3 eco

p:= pl end) performs the summation in place. So it is possible to carry out

the summation with the data A, B in reverse binary order simply by omit-

ting the first part.

The loss of accuracy is almost proportional to m and is for m = 8

about 1 significant decimal,

The running time is proportional to Nxm and is for m = 13 about 45

seconds,

4, References.

About the Cooley-Tukey algorithm and its implementation, see:

[1] Cooley, J.W., and Tukey, J.W.: An algorithm for the machine calcula-

tion of complex Fourier series. Math. Comp. 19, 90 (April 1965), p.

297-301.

[2] R.C. Singleton: On computing the fast Fourier Transform. Commmica-

tions of the ACM, Yol. 10, N. 10, (October 1967), p. 647-654.

4, Algol procedure.

(
fft=sset 2

fft=algol message.yes index.no

end)

external

message fft version 01.07.71., RCSL NO 31-D%, correction by dh;

procedure fft(A,B,m, analysis) ;

value m,analysis; integer m, analysis; array A,B;

begin integer i,j,k,n,p,p1,q,92, 50,431,323

real v,x0,x1,yO,y1,¢,C¢1,¢c¢,C2,5,S8,581,82}3

ns=1 shift m-13 v:=3.141592653593 p:=03

for i:=0 step 71 until n do

begin

if i<p then

begin

ez=A(1) 3A(1) :=A(p) sA(p) 53
e:=B(i) 3B(i) :=B(p) sB(p) s=c

end 3

ks=p shift (2h-m)3; j:=-+13

for j:=j+1 while k<O do k:=k shift 1;

p:=(-8388607-1+k) shift (m-j-2l)

end3

gé:=p3=1 35813=0.03

for i:=1 step 1 until m do

pegin

ssi=ss13v:i=v/2.03

$81:=sin(v) 3cc:=2.0xXss1xss1 3 Q:=p-13p1:=ptp; c1:=s8:-0.03

for j:=0 step 1 until q do

begin

if j=q2 then ci:#8:=0.03 cs=1.0-cl1$3

if j<qe then

begin

c23:=c3s2t=s

end

else

begin

C2i=-S 3S2:3=¢

ends

if analysis<O then s2:=-s23

for k:=0 step pl until n do

begin

jlssjtk3 je:=jitps

x1:8A(32)xe2-B(j2)xs23 y1:=A(52) xs2+B(j2) xe23

A(52) :5A(51) -x1 3B(J2) :=B(31) -y13

A(51) :=A(51)+x13B(51) :=B(51)+y1
end;

e1:s¢1+(cexctssxs) 3 s:=st(ssxXc-cexs)

end 3

g2:=p3p:=p1

end

end $

comment call parameters:

m (integer value). m determines the dimension N=2xn

of A and B. m mst be >=0 and <2 to be meaningful

but is in practice more limited since the core store

has to contain the two arrays A and B plus some few

other variables.

analysis (integer value). For analysis<O a Fourier analysis

is carried out: Y(s):=SUM(X(+t)exp(-2pixixtxs/N)).

For analysis>=0 a Fourier synthesis is carried out:

Y¥(s) :=SUM(X(+) exp(+2pixixtxs/N)).

call and return parameters:

A, B(0:N-1)

ends;

(real arrays). They must on entry contain the real

and imaginary part of the given data X(+)=A(+)+ixB(+)

in normal order. Upon exit they will contain the

real and imaginary part of the Fourier sum

Y¥(s)=A(s)+ixB(s), also in normal order;

Title:

fit

Edition: April 1972

Author: Per Mondrup,
Sgren Christiansen

(ec & REGNECENTRALEN RCSL No: 31-D129

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

Keywords:

RC 4000, Software, Mathematics, Approximation, Algol 5, Procedure

Abstract:

The procedure fit computes the coefficients of a weighted least-square polynomial -
approximation by means of orthogonal polynomials. 12 pages.

Users of this manual are nora that the basa
contained herein are subject to change by RC at any time ne

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for diet ah

. cal or arithmetic errors which may appear in this manua

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

fit RCSL 31-D129 Page 1/10

1. Function and Parameters

Given n data points (xi, yi) with weights pi, where i = 1, 2, ... ,

n. The procedure fit computes the coefficients of a polynomial P(k, x),

of degree k, such that the quantity

i =n

SUM(pix(yi - P(k, xi))xx2) (1)
i=1

is minimum.

Bounds on the permissible order of P(k, x) may be specified in the

procedurecall so that

lower bound <= order <= upper bound. (2)

Moreover, the procedure will within these bounds select an order which is

best in the following sense: Set the minimum value of (1), which is a

function of the order, be denoted by v(order) and let

d(order) = v(order)/(n - order - 1),

which is an estimate of the restvariance. The procedure will then select

the smallest order in the interval (2) such that d(order) <= d(order+1)

or if this does not occur then order = upper bound. This means that the

procedure increases the order of P(k, x) only if the accuracy can be im-

proved by doing it.

The procedure head is:

procedure fit(i, pi, xi, yi, C, 1, u);

value 1, u 3

integer i, 1, v3

real pi, xi, yi 3

array Cc 3

Call parameters:

1 : (integer) The lowest permissible order of P(k, x)

u : (integer) The highest permissible order of P(k, x)

fit RCSL 31-D129 Page 2/10

Return parameters:

C(O:u) : (array) Contains the coefficients of the fitted polynomial

P(i, x) = C(0)+C(1)xx+C(2)xox2+ 2.2. +C(1) Hoe

where i is the order of P as determined by the procedure. If

i <u the remaining array elements are undefined.

Call and Return parameters:

i : (integer) In the call i gives the number of data points (xi,

yi) in the input. Upon exit i is the order of the fitted po-

; lynomial P.

@ Moreover i is used as index parameter in the expressions for

pi, xi, yi.

pi : (real) An expression (using the parameter i) giving the

weight of point no. i.

xi : (real) An expression (using the parameter i) giving the x-

coordinate of point no. i.

yi : (real) An expression (using the parameter i) giving the y-

coordinate of the point no. i.

2. Method

@ The following description is based upon [1] where details and proofs

are given.

Instead of expressing the approximating polynomial P(k, x) directly

as a sum of powers of x, we write P(k, x) as a linear combination of po-

lynomials (0, x), f(1, x), £(2, x), The polynomial f(j, x) is a

polynomial in x of proper degree j, which means that it effectively con-

tains a term xxxj (and the highest degree of x is not jel):

j=k

P(k, x) = SUM(c(3)xf(j, x)), (3)

j=

fit RCSL 31-D129 Page 3/10

where k is the degree of the approximating polynomial P. The coefficients

e(j) are to be determined, The polynomials f(j, x) are orthogonal with

respect to the datapoints (xi, yi) and the weights pi , i = 1, 2, ... ,n.e:

i=n

SUM(pixf(j1, xi)xf(j2, xi)) =0, for j1 > je.

i=]

When jl = je we define

i=n

SuM(pixf(j, xi)xf(j, xi)) =w(j)3 § =0, 1, 2,
i=1

The orthogonal polynomials can be computed recursively by means of a

three-term recurrence relation

£(j+1, x) = (x - a(j))xf(5, x) - b(3)xf(j-1, x), § = 0, 1, 2, o-- (4)

The recursion begins with f(0, x) = 1, and b(0) = 0. The coefficients

a(j) and b(j) are determined by

i=n.

a(j) = SUM(pixxixf(j, xi)©e@)/w(i)3 9 =0, 1, 2, ... (5a)
i=1

b(3) = wj)/w(5-1)3 J = 1, 2, 3, .-. (5b)

The coefficients e(j) in (3) can be computed as

i=n

e(j) = SUM(pixf(j, xi)xyi)/w(3)
i=]

or - because the polynomial f(j, x) is orthogonal to P(j-1, x) - one also

have, except for j = 0:

i=n

e(j) = SUM(pixf(j, xi)x(yi - P(j-1, xi)))/w(j).
i= 1

fit RCSL 31-D129 Page 44/10

This is numerically more convenient, because

R(j+1, i) = yi - P(j, xi)

ean be computed having the previous value:

R(j+1, 1) = R(J, 1) - c(§)xt(5, x1).

This holds because the polynomials f are orthogonal such that:

P(j, x) = P(j-1, x) + c(§)xt(3, x).

During the computations the procedure performs the following steps:

first it is tried to fit the given data points by means of a polynomial

of order = lower bound, and then order = lower bound + 1 and so on. Each

time the order is increased by one a new polynomial is generated, but

this is easily done because the coefficients c(j) already found are un-

changed (This would not have been the case if an ordinary power expansion

was used.) The sum of squares v(j) (see (1)) is computed (also recursive-

ly) from v(j-1):

v(j) = v(j-1) - w(3)xe(5)»@.

From v(j) the rest variance d(j) is determined

a(j) = v(5)/(n-J-1).

When the rest variance decreases, i.e. when

d(m-1) > d(m),

the degree of the approximating polynomial is increased by one and (un-

less m = upper bound) a polynomial of degree m+ 1 is tried, and so on

until

d(j-1) <= a(3)

in which case j - 1 is chosen as the degree (provided that J - 1 <= upper

fit RCSL 31-D129 Page 5/10

pound). This corresponds with

(n-j) xw(j)xe(j)e2 <= v(j-1),

which is used as stop-criterion.

When now a degree k has been chosen the polynomial (3) has to be

transferred into a polynomial (a sum of powers):

j =k

P(k, x) = SUM(C(j)xo«)).

j = 1

This is done recursively by means of e(i, j) where e(i, 0) = c(i) and

c(i) = e(i, iti). The transformation is performed when e(i, j+1) is ex-

pressed by means of e(i, j). At a certain stage of the proces we have

ie=j-] isk

P(k, x) = SUM e(i, i+1)xood + SUM e(i, j)xf(i-5, x) xxx). (6)

i=0 i=j

When we put j =O and j =k +1 in (6) we get the above-mentioned connec-

tions with c(i) and C(i). Writing (6) for a certain j and for j + 1 we

get a relation containing f(i-j-1, x)xx. By means of the recurrence rela-

tion (4) we get

f(j, x)xx = £(j+1, x) + a€j)xt(j, x) + b(3)xf(j-1, x)

-which is introduced in the relation determined above. When we equate

terms with a common factor f(i-j, x) we get the recurrence relation

e(i, j+1) := e(4, 5) - e(it1, §+1)xa(i-j) - e(1+2, §+1)xb(i-J5+1)

Where 1 > j > 03 e(k+1, §+1) = e(k+2, j+1) = 0. From this relation the

coefficients e(i, i+1) = C(i), i =0, 1, ... , kK, are obtained, and they

are the desired coefficients in the power expansion of P(k, x).

RCSL 31-D129 Page 6/10 fit

3, Time, and Storage Requirements

Time: (2+k) xn, mS, where k = order of the polynomial obtained, n = the

number of data points.

Storage Requirements: 3 segments + 25 + 4 xk +8 Xn words, where k =

order of the polynomial, n = the number of data points.

Program text: 29 lines on 2 segments.

h, Test and Discussion

The procedure has been run with some examples.

Example.

A table of y = x©Q-xx<5 with weights p = xxe+1. The variance is sum(

px(y-P(x))@))/(n-o-1)

10 points, 1-56, u=8, order = 8 103.000 ms
coefficients:

-2.61591-3
1.63066-1
2.88315 9-1

~1.947339 0
6.81127 9-1
513975 O

“2 ° 37 534 0

-4..90519 0
® 4.361973 O

Pp x v P(x) v-P(x)

1.004905 0 -7.00000n-2 1468066y-6 -1.19751 9-2 142-2
1.73960 0 8.60000 y-1 -2.13100y-1 -2.04917 9-1 -8.2-3
4.20410 O 1479000» O 1.70282, 2 1.70282, 2 6.8y-5
1.09610 O -3.100009-1 2.83648 5-3 1.11621 9-2 -8.3y-3
12 ZBUUOn 0 6.20000 ~1 -7.G0762y-2 -9.69892y-2 1.9 -2
3.40250 0 1.550009 0 4.26933 1 4.26938 1 -5.5-4
10302509 0 -5.50000 9-1 4.57231 p-2 4. BB4OMyR-2 24-3
1 T4HLO» O 3.80000y-1 -7.75830n-3 9.78251 y-3 -1.8y-2
2.716109 0 14310009 O 7.503715 0 7250219 0 1.5y=3
1.624109 0 =7.90000p=1 1.87854 -1 1688112921 -2.6y-4 variance = 1.20y-3

10 points, 1 = 7, u =9, order =8 114.000 ms variance = 1.20n-3

10 points, 1 = 8, u =9, order = 8 112.000 ms variance = 1.20y=3

10 points, 1 = 8, u = 9, order =9 121.000 ms

fit

coefficients:

2.793909
2.79397 9-9
6.51926 =9

-5 82077 »-9
1.303858

-1.00000y 0

-1.73750-8
1.68802y-9

-0.29104)=9
1.00000, O

9) x

1.00490» O -7.00000y-2
1.73960y 0
4.20410 0 1479000y O
1.09610» O -3.10000y-1
1.38440. 0
5.40250 0 1455000y O
1030250 0 -5.50000y=1
10144H0% 0
2.71610, O 1.31000y 0
1.624105 O -7.90000y=1

15 points, 1 =6, u =8,
coefficients:

5 633629-2
2.88497 4-2
1.92269 0

-1.79384) 0
-7 203926, 0
8.64038, 0
2.95869 0
-1.04081 1
5612527 0

Pp x

1.00490, 0 -7.00000y-2
1.73960y 8 .60000y=1
4204-101 1.79000, O
1.09610 O -3.10000y-1
138440 % 6.20000 9-1
3.40250y 1.55000, 0
1.30250 0 -5.50000y=1
10 TO.
2.716104 1631000, 0
1.62410, O -7.90000y-1
1.01960, 1040000 y=1
2.14490. 1207000, 0
5.000001) 2.00000 O
1.01000 y
1.688905

= 1.00000 5-1

0
0
©
0
fe)
)
)
0 43,80000y-1
0
)
0
©
)
@)
O 8.40000y,-1

Vv

1.68066 +6
8.60000y-1 -2.13100y~1

1.70282 2
2,83648)-3

6.20000y-1 -7.80762y-2
4 26933. 1

4572312

3 .B0000 9-1 -7475830n-3
7250DT19 O
1.87854 9-1

order = 8

v

1.68066 9-6
~2.13100y-1
1.792825 2
2.83648 5~3

-7.80 7625-2
426933 1

45723142
-7.75830=3
7503719 O
187854 9-1

-5 37617 “5
4.35907 n=1
480000, 2

9.99900 y-6
-2.06964y-1

RCSL 31-D129

P(x)
1.68323)-6
2.13100 y-1
1.70282, 2
2.83648 5-3

-7.80642)-2
426933 1
457231 9-2

-7.75830y-3
72503719 0
1.87584 -1

145.000 ms

P(x)
-4..85023y-2
-2.47513y-1
1.70294, 2
8.91634 -2

-4.,.89320,-2

4.265805 1
1.71621 9-2

5 50052 -2
7+55223— O
1.91326 y-1
-2.17621 9-2
L34033 9-1
4.79998, 2

-3 89867 9-2
-2.38302y-1

v-P(x)
-2.6-9

-7 5-9
~1.59-9
-2.7 9-9
1099-9

-0 4 =9

-2.9 9-9

3. Tw-9

v~P(x)
4 .Qy-2
By A2

-8 6-2

~2.9 9-2
352
2.Qyn2

~6..3-2
4. .Qy-2
~3 599)
2.22
1.9193
185-3

3 o9p-2

3 ol ne variance

Page 7/10

variance = 9.00y 9

Page 8/10 fit RCSL 31-D129

15 points, 1 = 7, u =9, order = 163.000 ms
coefficients:

3612529 n-9
-1.95578 98
5.02680+8
-7.89296-8
-6..37956y-8

=1.00000y 0
-1.64146,-7
2.26632 y-7
2.112605 9-7
1200000 0

p x v P(x) v-P(x)
1.00490» O -7.00000y-2 1.68066y-6 1.68593 9-6 -5.39-9
1073960 0 8.600009-1 -2.131009-1 -2.131009-1 4.999
4204105 O 1279000 O 1.70282y 2 1.70282» 2 3.0y-8
1.096109 0 -3.10000y-1 2.83648y-3 2.83649 y-3 -1.3 9-8
1.384409 0 6.20000 y-1 -7.80 762-2 -7.80 762-2 6.2n-9
5 YOL50y 0 1655000,p O 4.26933 1 4.26933y 1 3.0y-8
1.302505 0 =5.50000 9-1 4.57231 y-2 465723122 -1.4y-8
11440 O 3.800001 -7.758309-3 -7.758300-3 2.9 9-9
2.71610» O 14631000) O 7.503719 O 7.50371 O 1.8y-8
12624109 O =7.90000y-1 1.687854 p-1 1.87854 y-1 125-8
1.01960 O 1640000 9-1 -5.37617 9-5-5. 37604 = 5 14-9
2.144909 0 1.070009 O 4.35907 n-1 4.35907 y-1 4.9n-9
5.00000» O 2.00000, 0 %.80000y 2 4.80000» 2 6.0y-8
1601000% O -1.00000y=1 9499900y-6 1.00051 n=5 -6. 19-9
168890 0 8.30000 p-1 -2.,06964y-1 -2.06964y-1 5.2-9 variance 0.00 0

15 points, 1 = 8, u = 10, order =9 176.000 ms variance = 0.00y 0

15 points, 1 =4, u=11, order =9 171.000 ms variance = 0.00» 0
end

The employed program:

begin integer i, 11,n,k,j,h3 real x,v,t,t0,q,s,a3 array C(0:12);

real procedure p(dum); integer dum;

begin

x= (31X1) mod 101x(3/100)-13

KXKD = XK §

1422

y:

pes

end D3

for n:= 10,15 do begin

i1l:s -13

for ks= 6 step 1 until 9 do begin

tO3= time+25600;

fit RCSL 31-D129 Page 9/10

for j:= 0, j+10 while t < tO do begin

ise nz fit(i,p(i),x,v,C,k,k+2); t:= time

end$

t= (t-t0+25600) /33

write(out,<:<10><10>:>,n,<: points, order:=>, i, << ddd.000>,

_ by<3 mst>) 5

if i > i1 then begin

write(out, <:<10>coefficients::>) 5

for j:= 0 step 1 until i do

write(out,<:<l0>2>,<<-d.dddddy-d>, C(j));3

write(out,<:

p x v P(x) veP(x) :>)3

end i > 11;

s:= 03 j:= 13

for 1:= 1 step 1 until n do begin

ai= p(i) 3 az= C(i);
for hi= j - 1 step -1 until 0 do a:= axtC(h);

if j > 11 then write(out,<:<10>i>,<<-d.dddddy-d>, a,x, V, a,

<< -d.dy-d>, v-a) 3

ss=s + (y-a)xxexq

end i;

write(out,<<-d.ddy-d>,<: variance:=,

1f n =j+1 then 99 else s/(n-j-1))3

1133 j

end k;

end n

end

5. References

[1] Forsythe, George E.: Generation and Use of Orthogonal Polynomials for

Data-Fitting with a Digital Computer. Jour. Soc. Indust. Appl. Math.

5 (1957) pp. 74-88.

’ fit RCSL 31-D129 Page 10/10

6, Algorithm

external procedure fit(i,pi,xi,yi,C,1,u); value l,u;

integer i,1,u; real pi,xi,yi; array C;

pegin integer j,k,n;

real fj,r,rf,f,fx,f1,a,b,c;

array F,F1,X,R(1:1),A,B(O:u) 5

nisis) rs=rf:=f:=fx:=b:=05

for i:=1 step 1 until n do begin

fj:=F(i)sssart(pi); Fi(i):=03

X(i) s=xi3

| R(i):syixfj; rvisrtR(i)oes rfr=rf+R(1)xfJ3

@ fi=f+Pjxfj3 fx:=fx+X(1)xfjxt3

end i$

for i:=0,k+1 while k<l | (iu A fxr<(n-i)xrfxrf) do begin

kist; at=A(k):=fx/f3 ¢c:=C(k):=rf/f3

fis=f3 ri=erf:=f:=fx:=05

for j:=1 step 1 until n do begin

R(j) :=R(j)-F(j) xcs rs=r+R(j)oes

£52=(X(j)-a)xF(j)-pxP1(5)3 F105) =F(3) 3 FC) £43

rfrarft+R(j)xfj3 fiefetjxt3s fxrafx+X(3j)xfsxfj

end j3

b:=B(k) :=f/f1

end i$;

) if Pox<(n-k-1)xrfxrf then C(k+1):=rf/f else k:sk-13

is=k+13

for 1:50 step 1 until k do begin

O(k) :=C(k) -A(k-1) xC(k+1) 3

for j:=k-1 step -1 until 1 do (3) :=C(5) -A(3-1) xC(j+1) -B(J-1) xc(j+2)

end 1

end fit; end

Title:

gamma

ie 8 REGNECENTRALEN RCSL No: —_§5-p58
c Edition: September 1969

Author: .
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F J. Winther

Keywords:

RC 4000, Software, Mathematics, Algol Procedure

Abstract:

The real procedure gamma(z) approximates the gamma function of the real or positive

integer argument z. 6 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-

. cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented.

26

gamma - 1 =

Gamma function, gamma(z)

Function and parameters.

gamma(z) approximates the gamma function in the range
-301<z<301.

Procedure heading:
real procedure gamma(z) ;
value z; real z3

Procedure identifier:
gamma. : (real)

approximated function of an argument not

resulting in under- or overflow, in which

case gamma is undefined.

Call parameter:

Zz : (real or integer)
argument, values equal to nonpositive

integers and values exceeding the range
above will give floating point under-

or overflow.

Method °

The value of gamma(2+x) is approximated in the range

0<=x<=1 by a rational function given as approximation 5231

in (1) with the numerator degree 6 and denominator degree 3.

For arguments outside the basic range 2<=z<=3, successive
multiplications or divisions are performed according to

the recurrence formula:

gamma(z+1) =zXgamma(z)

The value of the argument is not controlled in any way.

gamma - 2 -

4, Accuracy, Time- and Storage Requirement.

5.1 Accuracy.

The error estimates given below assume the argument to be

exactly represented.

Outside the range -2<z<7 the increment in gamma(z) caused
by an increment of one unit in the last binary place of z
will be greater than the computational error of the proce-

dure in any case.

The error estimates are given as functions of:
u:= abs(entier(z-2))+6

max rel error : uX2.9y-11

safe upper bound for the relative error

of gamma(z).

rel mean error: sqrt(u)X1.2y-11
relative mean error (standard error) of
gamma(z) assuming a random distribution
of rounding errors and mantissas of

floating point numbers.

The probability of a relative error greater

than 3x(rel mean error) is less than 0.01.

3.2 Time Requirement.

Approximate cpu-time: z>=2: 720 + entier(z-2)x81 usec
z< 2: 720 + entier(z-2)x72 usec

3.3 Storage Requirement:

Codelength: 1 segment.

Typographical length: 47 lines incl. last comment.

4, Test and discussion.

The procedure has been compared with a double precision
procedure and with values of the gamma function given in (2).
The results are in accordance with the theoretical estimate

of the mean error,

gamma = 3 -

Simple testprogram with data and output:

begin

comment: here the procedure is copied (without the first
3 lines) unless it is already translated as an
external;

real Z, 3
write(out,<:<12>

Zz gamma(z)<10>:>) ;
AGAIN:

overflows: =underflows :=05

read(in,z) 3
write(out,<:<10>:>,<<-d.dd ddd ddd dddy-ddd>, z);
if z>1000 then goitc FINISH;

g:=gamma(z) ;
if overflows>0 then

write(out, false add 32, 15, <:overflow:>)
else if underflows>0 then

write(out, false add 32, 15, <:underflow:>)
else write(out,

<< -d.dd ddd ddd dddy-ddd>, g);
goto AGAIN;

FINISH:

ends

data: 0.5, 1, 10, 301, 302,-0.5,-300.9,-301.9, 1001

output:

Zz gamma(z)

5.00 000 0CO 000y -1 1.77 245 3685 088, 0
1.00 000 000 000y 0 1.00 000 000 000, 0
1.00 000 000 000, 1 3.62 880 000 000y 5
3.01 000 000 000, 2 3.06 057 512 208y 614
3.02 000 000 000y 2 overflow

=-5.00 000 000 000y -1 -3.54 490 770 176y 0
-3.00 900 000 016y 2 -1.95 307 772 968y-616
-3.01 900 000 016, 2 underflow
1.00 100 000 000, 3

end

5. References,

(1) J.F.Hart and oth.:
Computer Approximations,
John Wiley and Sons, 1968, p.130-136

(2) M.Abramowitz and I.H.Stegun:
Handbook of Math. Functions,

National Bureau of Standards, 1965, p.253-275.

5 e Algorithm.

gamma = set 1

gamma = algol

extemal

real procedure gamma(z) 3
value 2; real 23

begin
real h;3

h:=1.03

if z>2.0 then
begin

for z:=z-1.0 step -1.0 until 2.0 do h:=hxz;
Z3=Z=-120

end

else if z<1.0 then
begin

for z:=z step 1.0 until 0.0 do h:=h/z;
h:=h/z/(z+1.0)

end

else begin h:=h/z3 z:=z-1.0 end;
gamma: =(((((((+.039 301 346 419)xz+.142 928 007

+1.09 850 630 453)xz+3.36 954 359
+12.8 021 698 112)xz+22.9 680 800
+43.9 410 209 189) /

((((+1.00 000 000 000)xz-7.15 075 063
+4.39 050 474 596)xz+43.9 410 209

end gamma;

comment:

ganma(z) approximates the gamma function in the
~301<2<301.

Procedure identifier:

gamma, : (real)
approximated function of an argument not

resulting in under- or overflow, in which
case gamma is undefined.

Call parameter:

Zz : (real or integer)

gamma - 4 -

94g) xz
131) xz
836) xz

299) xz
191) xh

range

argument, values equal to nonpositive

integers and values exceeding the range
above will give floating point under-

or overflow,

Title:

householder

Edition: August 1970

Author: Helge Elbr¢nd Jensen

lc & REGNECENTRALEN RCSL No: 53-M7

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

Keywords:

RC 4000 Software, Mathematics, householder, Eigenproblems, Algo! Procedure

Abstract:

The procedure, householder, calculates eigenvalues and, if wanted, the corresponding
eigenvectors for a real symmetric matrix. 18 pages.

Users of this manual are cautioned that the specification
contained herein are subject to change by RC at any time —

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-
; cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented,

1. Function and parameters .

Let a denote a real symmetric matrix of order n, and let ev(1),

ev(2), «se. , ev(n) denote the eigenvalues for this matrix arranged in

an increasing sequence, that is ev(1) < ev(j) whenever 1 <j.

Let ml and m2 be prescribed integers so that 1 < mi < m < ne

The procedure householder calculates the eigenvalues ev(m1),

ev(mi+1), ose , ev(m2) and, if wanted the corresponding eigenvectors.

Procedure head:

householder(n, m1, m2, a, ev, x, epsi);

value n, mil, m2, eps13

real eps1$

array a, eV, X3

integer mi, m2, n3

Call parameters:

n : the order of the given matrix;

mi : an integer, 1 < ml <n, denoting the number of the small-

est eigenvalue to be calculated.

m2 : an integer, m1 < me <n, denoting the number of the greatest

eigenvalue to be calculated.

a : a real array a(1:nx(n+1) /2);

a must contain the lower triangular part of the given sym-

metric matrix in the following way:

the diagonal element number i is stored in a(ix(i+1) /2)

L=1, 2, ese n3

the element in the i?th row and j’th columm where j <i is

stored in a((i-1)xi/2+j).

Call/Return parameters:

epsl : at entry eps! is positive or negative.

if eps1 is positive the eigenvectors are calculated. The

absolute value of eps! is a quantity affecting the precision

to which the eigenvectors are computed (See part 2.2)3

at exit eps1 denotes an upper bound for the error in any of

the calculated eigenvalues.

Return parameters: -

ev 2 a real array ev(mi:m2) containing the calculated eigenvalues.
x 2 a real array x(mi:m2, 1:n+2); if the eigenvectors are cal-

culated, they are stored in x in such a way that x(k,1), eos

x(k,n) denotes the eigenvector corresponding to ev(k) ;
(for each k x(k,n+1) = x(k,n+2) = 03 these quantities are
only introduced for ease of programming).

2. Method

@ The method consists of four parts, tridiagonalisation, calculation of

eigenvalues, calculation of eigenvectors, and backtransformation,

2.1. Tridiagonalisation

A matrix is said to be on tridiagonal form, if all elements that are

not in the diagonal or just over or under the diagonal, are zero.

Let A be the given symmetric matrix of order n,

A, is transformed - by n-2 orthogonal transformations - to a matrix

on triangular form.

Each transformation Pi(i = 1, 2, ... , n-2) is of the form

P, =I. Ou We

e@ where I is the identity-matrix and Wy is the row:

wy = (wy Waar ces Wy pigs Oy eee 0).

and Wy the corresponding colum,

Let Aaa = PLA, P, a = 1, 2, eee 9 ne2

For each 1 the terms Yay Wao» eee y Ya net are chosen in such a

way that

0) TL
1 e Wy We = 1

fe)
2. In Asay the elements in the rows number Ny Nel, wee y

n-it2 are the same as in A, The row number

n-i+1 is put on ’triangular’ form,

Let the elements of Ay be denoted a,.. Put
ij

t=n-i,

. a2 2 2
Stema = Oeiay1 * Stejo tee t Ska ee
h, = sigma + BLL yt sqrt(sigma).

(+ is used if a > 0 else - is used.) t+1,t =

It comes out, that “4, ? Wy, D2 eee Yi, + must be chosen as follows

= (a..4 4 4 sart(sigma))/sart(2h,).

,/sart(2h,) j WwW
1, 2, oe 9 t=1. i,j *tt+1,4

By memos

= (a et, 1? Peee,2? 88° 2 ter ter Att
+ “sartl ete), Oy eee , 0).

one will obtain

U,U t
Po =T- i

1 h
i

and by introducing the vectors Pas and the scalar k, as follows

Py = Ayu, /b,
T

Ky = 3, P,/(2h,)

4 = Py - Kyu,
a rather simple calculation will show that

T T
aay = AL Wd” - aay

since Asay is synmetric one is only calculating the lower triangular

part of the matrix,

The above equation is used for the calculation of the first t rows

(t = n-i) in Agaae The row number t+1 is on triangular form with the

diagonal element unchanged from A, and the element

(t+1,%) = Stet t sqrt(sigma). The rows number ttl, ... , n are ace
cording to 2° - unchanged from A,

-4-

At entry the lower triangular part of the given matrix is stored in

the array a. For each i the array a is used only to store the lower

triangular part of the first t rows of Asad? The other rows are on

triangular form, and the diagonal and subdiagonal elements from these

rows are stored in to arrays c and b.

The row number t+1 of the array a is used to store information enough

to determine the transformation Pie Now, Pi is determined by the vector

a, and the scalar hye By replacing in the array a the element Beet

by Beet t + sqrt(sigma) one obtain that the non-zero elements of the

ttl row in a are exactly the vector Uys Furthermore from these ele-

ments h, can be determined. Recalling that

h, = sigma + a sqrt(sigma).
= t+i,t

and denoting by sigma, the square-sum of the elements in a, one will

obtain

2 2
Foeee F Bead ted

sqrt(sigma) = 2h,.

sigma, = +a + sart(sigma))* = 1 41,1

esigma + 8s

Soh, = sigma, /2.

For further information about this part see [4], [6].

2.2, Calculation of eigenvalues

This is based on the following theorem:

let Ciy eee ys CO, denote the diagonal element and Dos cee y db, the sub-

diagonal elements of a symmetric triangulator matrix. For each real

number xO let the sequence %, (x0), tp(x0), seo y +, (x0) be defined -

if possible - as follows

t, (x0) c,- x0

t,(x0) = (c, = x0) - vf/t, (x0). 1 = 2, oy me

Let h(x0) denote the number of negative +, (x0).

Then h(x0) is equal to the number of eigenvalues less than or equal to

x0.

Assume that the eigenvalues are arranged in an increasing sequence and

that the k’th eigenvalue, ev(k), is to be calculated. Let x1 and x2 be

real numbers satisfying x1 < ev(k) < x2. Such numbers exist, e.g. if

norm is denoting the infinity norm of the matrix then x1 = -norm and

x2 = norm will do.

Let xO = (x1 + x2)/2. -

h(x0) is calculated by using the above mentioned formular for +, (x0)

LT=1, 2, soo y Ne

A new pair (x1, x2) is defined in the following way:

if h(x0) >= k then x1:= x1 and x2:= x0 else x1:= x0, x2t= x2.

For the new pair the procedure is repeated, This is done as long as

x2 = X1 > 2Xy-10X(abs(x1) + abs(x2)) + eps! where eps! is a prescribed

quantity.

At the end one puts ev(k):= (x1+x2) /2.

Since abs(x1) and abs(x2) always are bounded by norm, it follows that
r the error in any eigenvalue is bounded by 4Xxy-10xnorm + eps1. This

number is calculated and stored in eps1.

When calculating the k’th eigenvalue, h(x0) is determined for some

x0. The value of h(x0) gives information not only about the k’th

eigenvalue, but in general about the eigenvalues of the matrix. By

introducing an array p(i) satisfying for each i p(1) < ev(i) this in-

formation is stored as follows:

if p(h(x,) + 1) < x0 then p(h(x0) + 1):= x0;

when calculating the k’th eigenvalue one is at the start putting

x1:= max p(1), ee. , p(k) 3 x2:= ev(ktt);
For further information about this part see [2], [5], [6].

@ 2.3. Calculation of eigenvectors

The matrix is as m 2,2 a symmetric matrix on triangular form with

diagonal elements C1» Cos eee C, and subdiagonal elements Dos se be

Let ev denote a calculated eigenvalue.

Finding an eigenvector corresponding to ev is equivalent to solve the

system

(c, - ev) x, + DpX, = 0

box, + (c, - eV) Xp + bx, = 0

: (I)

bo *n-2 + (cy - ev)% +bx =0
nn

@ b%ye1 * (c. - ev) x, = 0

where (x, pee. x.) denote the wanted eigenvector.

-6-

A natural way to solve this system would consist in putting X, = 1

finding Xp from the first equation, Xz from the next and so on3 but,

as shown in [4], a method like this will often - for several reasons

- give hopeless, inaccurate results.

Using a method developed by J.H. Wilkensan ([4]), one is instead sol-

ving a system derived from (I) by replacing the zeros on the right

side by suitable quantities das soe y do.

These equations are solved by successive elimination of the variables

X19 Xs eee » Xue? but some kind of pivoting is necessary; for each i,

x; is illiminated from the equation, which has the numerical largest

coefficient in %, 3 more precisely, at the first step we are considering

the two first equations

(c, - ev) x, + Dox, = 4,

box» + (c, - ev) X, + b3%, =d,.

The equation which has the numerical largest coefficient is x, is de-

noted

= qq?
Bix, + 4X + TX, = A

from this equation x, is calculated and the expression inserted in the 1
other equation. The so obtained equation in Xp and X is denoted

= q? UpXot VoXs, d

At the i’th step we are considering the two equations

= qQ? u,x, + ViXsey as

- ev)x,,, + a. i+] br X440 =

again the equation which has the numerical largest coefficient in X,

is denoted

recs + (cs, 441°

= q??
PiXs * U%i4y tT TiXayo = dy

from this equation Xs is calculated and the expression inserted in the

other equation.

In this way we obtain the following system:

33 PyX + IX + PX, qs

33

PoXp + InXs + Tox, = A

= qa?
Ps o%y-0 + I-21. * Vn qn

= aq?
Poi *ne] + Snot a

Py*, = ay?»

-7-

We now assume, that dis d., coe y a. were chosen in such a way, that

ai’, ay’, eee » a? are all equal to one.

This system is solved in the natural way and the obtained vector

normed. (and again denoted Xpp eee y x). It can be proved ([4]) that
this vector will usually be a good approximation, at least it will

never be hopeless inaccurate,

A vector with sufficient accuracy is obtained by solving the above

system once again, but replacing the terms d’’, ... , a? by the coor-

dinates in the first approximation Xj, oo8 » Xe

For further information about this part see [3], [4], [6].

ry 2.4. Backtransformation

The problem is to transform the calculated eigenvectors (for the tri-

angular matrix) to eigenvectors corresponding to the original matrix,

Recalling that the original matrix was transformed to a matrix on tri-

diagonal form by n-2 orthogonal transformations Pi» Pos eer y P 2? it
easily follows, that if 24 is an elgenvector for the triangular ma-

trix then

P Poses Pn2 Zn is an eigenvector for the original matrix,

Putting P,P eco
i itt

z
n-2 n=] i

one will obtain PiZs +1 = Ze

and the wanted vector Za9 is calculated in n-2 steps. Using the nota-

= 2.

tion from 2, 1 (tridiagonalisation) one will get

u,ul u,v, 2
ivi Z. =Z ~ atut z (because P =I - i i+] hy i+] hy °

The non-zero elements of u, are stored in the t + 1 row (t=n- i) of

the array a and h, = sigma/2, where sigma denotes the square-sum of the

elements in Uy (see 2.1).

Accuracy, Time and Storage Requirements

Accuracy: The accuracy in the. eigenvalues depends on the value of the

call parameter eps1.

-8.

It easily follows from_the description of the method part

2.2, that the error in any eigenvalue is bounded by

4 & 10 X norm + eps! where norm denotes the infitity norm
of the triangular matrix.

For further information on this part see 4, Test and Dis-

cussion.

Time This depends on the wanted accuracy, that is the term eps],
and first of all on the order n of the matrix equation. Ge-

nerally the execution time will be proportional to nx,

Using eps1 = y»-10 and denoted by

I : The execution time when all eigenvalues and all eigen-

vectors are calculated

II : The execution time when all eigenvalues but no eigen-

vectors are calculated.

III: The execution time when only the greatest eigenvalue and

the corresponding eigenvector are calculated.

the greatest execution times (in sec.) obtained were as follows:

Order of

the matrix I II III
5 0.32 0.25 0.09

10 1.32 0.89 0.28
15 3.22 1.99 0.68
20 6.30 3.63 1.39
25 10.75 5.91 =. 2.46

The following example illustrates the connection between the execution
time and the value of epsi, where all eigenvalues and eigenvectors for
@ matrix of order 20 are calculated:

eps] = pot w=5 »~6 w7t n-8 w-9 710
Time = 4.88 5.15 5.4k 57k 59h =, 16 6.30

Storage requirements: 9 segments of program

Typografical length : 149 lines

4, Test and Discussion .

The procedure has been tested by several matrices, essentially the

following four types (denoting by a(ij) the element in the i’th row

and the j’th colum and by n the order of the matrix in question):

Type I : a(i,j) = a(j,i) =n -1i+ 1. This matrix has well-separa-

ted eigenvalues given by

L ra

2(1=cos (same pi)
ev(i) = i= 1, 2, «ee yn

Type IZ : a(i,j) = a(j,i) =1 for all i, j.

All eigenvalues are 0 except one which is n

Type III : a(i,j) = a(j,i) =0 for i = j else 1.

All eigenvalues are -1 except one which is nel.

Type IV : a(i,j) = 0 for j < i-1 and j > i+1.

a(i,i-1) = a(i,it1) = 1.

a(i,i) = abs (= -i) 2121, 2, ...,m
The matrix has a number of extremely close, but not coinci-

dent eigenvalues.

When all eigenvalues and all eigenvectors are calculated, a measure

for the error for the whole procedure is obtained by checking the

identity Ax, = ev(k) x, for each k.

Finding the largest deviation in any coordinate and using as testnorm

the mean of these k numbers, the following results are obtained:

-~ 10 -

Matrix Value of eps!

. pot p-6 »-8 »- 10

Type I order 10 3ely-5 90-7 1.5y-8 3.2n-9
Type I order 20 Teltned 125-6 1.6y-8 = 33..9 8
Type I order 25 2.0 —'t 261-6 5 .2y-8 261y-8

Type II order 10 142y+5 Zo30-7T = 169-9 = 3 By 10
Type II order 20 3.5 y=5 Teby-8 3.1-9 240-10:

Type II order 25) i5y-5 3.5y-7 4.6y-10 = 6 410

Type III order 10 142-5 9e3y-8 14-9 167-10

Type III order 20 1.2yn=5 6.7y-8 643-10 = 4 Bye 0

Type III order 25 5.4y-6 TeOn-8 1.59-9 6.0y=10

Type IV order 11 2e1y-3 9 .8y-6 2e1y-7 961-9

Type IV order 15 6.7 y=3 6 .8y-5 60-7 167-7

Type IV order 21 1.5y-2 1 99-3 6.3n-4 = 19-6

The jacobi algorithm solves almost the same problem as householder 3

The only difference is, that the jacobi procedure necessarily calcu-

lates all the eigenvalues (and eigenvectors), while it is possible
with the householder procedure only to calculate some of the eigenva-

lues (and eigenvectors). Calculating all eigenvalues and all elgenvec-

tors and using in householder eps! = y-10 a comparison between the two

procedures gave the following results:

- ll -

Matrix Testnorm ~ Testnorm Time | Time

for for for = for

householder jacobi householder jacobi

Type I order 5 1 o4y-9 0.8y-9 0.35 | 0.27

Type I order 10 De2y-9 40-9 1.35 2.02
Type I order 15 242-8 10-8 | 3.29 : 6.61

Type I order 20 35-8 2. 29-8 6.30 th.g9e2

Type I order 25 261-8 3 .2y-8 “11412 29,08

Type II order 5 Te0y-10 509-10 0.20 | 0.07

Type II order 10 166-10 O.1p=10 0.53 0.22
Type II order 15 40-10 10-10 161300255

Type II order 20 459-10 166-10 1.98 0.97
Type II order 25 T oly-10 162-10 3.46 1.38

Remembering that the matrices of type I have well-separated eigenva-

lues, and that the matrices of type II have all but one elgenvalue

equal to zero, one might draw the following conclusion:

The procedure householder is to be preferred in case of matrices with

separated eigenvalues, because of higher speed, or in cases, where on-

ly one or a few eigenvalues are wanted. |

The procedure jacobi is to be preferred in case of matrices with coin-

cident eigenvalues.

Example

We consider a symmetric matrix of order n. The term m1 denotes the

number of the smallest, m2 the number of the greatest eigenvalue to be-

calculated. The eigenvectors are calculated only if the tern eps1 is

positive. Input is the value of the quantities n, ml, m2, eps and the

lower triangular part of the matrix.

- 12 -

Testprogram -

begin

integer n, ml, m2, i, k;3

real eps1$

boolean vect;

read(in, n,m1,m2,eps1)3 vect:= eps > 0;

begin

array a(1:nx(n+1)/2), x(mi:m2, 1:n+2), ev(m1:m2) ;

for i:= 1 step 1 until nx(n+1)/2 do read(in, a(i));

householder(n, mi,m2,a,ev,x,eps1) ;

@ write(out, <:Eigenvalues <10><10>:>) ;

for i:= mi step 1 until m2 do

write(out, <<dd>, i, < -dddd.ddddddddd>, ev(i), <:K10>:>)3

if vect then

begin

write(out, <:<10> Eigenvectors<10>:>) 3

for k:= ml step 1 until m2 do

begin

write(out, <:<10>:>, <<dd>, k, <:<10>:>)3

for 1:= 1 step 1 until n do

write(out, << -dddd.ddddddddd>, x(k, i), <:<10>t>)3

end k3

end vect3

@ end 3

end$

For the matrix of order 5: 5 hk 3 2 1

4 6 0 4& 3

3 0 7 6 5

2 4h 6 8 7 '

1 3 5 T 9

using ml = 3, m2 = 5 and eps! = y»-8 the complete output is:

Eigenvalue

3 4848950119
@ i 7.51372)158

5 22406875316

Bigenvectors

3
-0.547172796 .
0.312569920

~0,618112076
0.115606593
0455493746

-0.550961958
-0. 709440337
02340179132
0.083410953
0265435679

0245877938
0. 302396039
00453214523
O.5TTITI152
0.556384584.

end

For the matrix of order 10: 10 9 8 7 6 5 4

9 9 8 7 6 5 4
8 8 8 7 6 5 4

7 7 7 7 6 5 4&
6 6 6 6 6 5 4&

5 5 5 5 5 5 4
h hbk hk Woy

3 3 3 3 3 3B 3
2 2 2 2 2 2 2

1° #1 1 1 1 1 1

using ml = 1, m2 = 10 and eps! = -y-10 the complete output is:

Rigenvalues

06255679563
0.273786762
02307978528
0.366208875
0.465233088
0643104132
1.000000000
12873023068
2048917339
«766068656 O

O

O
A
D

F
U

=

—
_

end

-

V
P
w
W
Y

W
Y

Ww
W

OU

WY

Ww
W

-13-

-
Pp

YM

WH

NY

NY

VY

WH

NY

PD

on
i

me
e

5. References

- 14 -

(1) J.H. Wilkinson: Householders method for symmetric matrices, Nu-
merische Mathematik 4, p. 354-361 (1962)

(2) J.H. Wilkinson: Calculation of the eigenvalues of a symmetric

diagonal matrix by the method of besection. Numeris¢he Mathematik

4, pe 362-367 (1962).

(3) J.H, Wilkinson: Calewlation of the eigenvectors of a symmetric tri-

diagonal matrix by inverse iteration. Numerische MatHematik 4, p.

368-376 (1962).

(4) J.H. Wilkinson: Calculation of the eigenvectors of co-diagonal

matrices, Computer Journal 1, p. 90-96 (1958).

(5) J.H. Wilkinson, W. Bath, R.S. Martin: Calculation of
lues of a symmetric tridiagonal matrix by the method

Numerisch Mathematik 9, p. 386-393 (1967).

(6) P. Naur: Eigenvalues and eigenvectors of real symmet

BIT 4, p. 120-130 (1964).

6. Algol text

householder = set 9

householder = algol

external

procedure householder(n,m1,m2,a,ev,x,eps1) 3
value n,m1,m2,eps1;
real eps13
array a,eV,X3
integer mi,m2,n3

begin

integer i,j,k, 10, j0,11,t,t0,t13
real h,s,k1 signa, at, bt, eps, bi, bi1,norm, x1, x2,x0,u, v3
array e(1:n},r(O:n),p,b,q(1in+1) (1 n+2) 5
boolean vect$.

the eigenva-

of bisection

ric matrices,

oo

2
G

n
g

eps:=03 j:=nx(n+1)/23
for i:=1 step 1 until j do eps!=eps + abs(a(i));
eps:=(3y-11) xeps/j3
for 1:=1 step 1 until ne2 do
begin
tbism-i3 tO:=tx(t+1)/23 t1:=t0 +t;
sigma:=0 3
for k:=t0+1 step 1 until t1 do sigma:=sigmata(k)xx23
ats=a(t1) 3
b(t+1) s=bt:= 1f at>O then-sqrt(sigma) else sqrt(sigma) ;
if abs(bt)>eps then
begin

h:=sigma-atxbt; a(t1) :=at-bt;
for j:=1 step 1 until t do
begin

comment computation of pi;

83503 jOr= (§j-1)xj/23
for k:=1 step 1 until j do s:=sta(jO+k) xa(t0+k) ;
for k:=j+1 step 1 until t do s: =sraliodiet) /2+3)xal tor) 3
a(j) :=s/hs3

end Jj;
k1:=03

comment computation of ki;
for j:=1 step 1 until t do k1:=kit+a(t0+j)xq(j)3
k1:=k1/2/h3
comment computation of qi$
for j:=1 step 1 until t do q(3j):=q(j)-k1xa(t0+J) ;
for j:= 1 step 1 until t do
begin

comment computation of the i+1 matrix;

joz=(j-1)xj/23
for k:=1 step 1 until j do

a(j0+k) :=a(j0+k) ~a(t+) xa(1s) -a(t0+k) xq(j) ;
end j3

end abs(bt)>eps;
end i3
for it=1 step 1 until n do c(i) s=a(ix(i+1)/2);
b(2):=a(2)3 b(1) :=(n+1) 3203

comment the eigenvalues ev(m1),ev(mi+1), . . ,ev(m2)
are now calculateds

vect:=(if eps1<O then false else true) ;
eps1:=abs(eps1) $
norms =0 $

for 1:=1 step 1 until n do
begin

h:=abs(b(i))+abs(c(1))+abs(b(i+1));
if norm<h then norm:=h3

a(i):=b(1)xx2; |
end i$;

for i:=m1 step 1 until m2 do p(i):= -norm;
for k :=m2 step -1 until m1 do

begin

comment computation of the k eigenvalue;

for it=m1 step 1 until k-1 do if p(1)>p(k) then p(k) := n(
x1:=p(k)3 x2:= (if k<n then ev(kt1) else norm);
for x0:=(x1+x2)/2 while x2-x1>2xy-10x(abs(x1)+abs(x2))+ep
begin

h:=0$3 s:=73
for i:=1 step 1 until n do
begin

s:=e(1)-x0-(if s<0 then q(i)/s else abs(b(1))xy10) ;
if s<O then h:=h+13

end i3
if h>=k then x2:=x0 else x1:=x03;

if p(ht1)<xO then p(ht+1) :=x03
end x03

ev(k) :=x03
end k;
eps1:=1/2xeps1+4x)»-10xnorm;

if vect then
begin
comment computation of the eigenvectors corresponding
to the calculated eigenvalues;
eps:= (3y-11)xnorm;
for k:=m2 step -1 until m1 do
begin

comment the pivotal equations are calculated;

uz=e(1)-ev(k) 3 v:=b(2) ;
if abs(v)<eps then v:=eps3
for is=1 step 1 until. n-1 do
begin
bi:=b(it1)3 if abs(bi)<eps then bi:=eps;
bil:= tase) 3 if abs(bil)<eps then bil:=eps;
if abs(u)>abs(bi) then
begin

oft): seus q(i):=v3 r(i):=03
i+1) :=bi/u;

us ne(+1) -ev(re) -m(141) v3 vi=bil; «
end

else
begin

tt 4: z=bi3 q(1):=c(it+1) -ev(k) 5
i):=bi13 m(it1):=u/bi3;

ut=v-m(it+1)x(e(it+1) -ev(k)) 3
vis-m(i+1)xbil;3

ends

end 13
aft) :=q(n) :=r(n) :=x(k,n+1) :=x(k,nt2) :=h:=03

):sif abs(u)>eps then u else eps;
for is=n step -1 until 1 do
begin
comment the first approximation;

x(k, 1) :=(1-q(1) x(k, tt) -r(i pak, 1+2))/p(1)
heshtx(, i);

end3

L)s

B51 do

- 16 -

h:=sqrt(h) s
for i:s1 step 1 wmtil n do x(k, 1): =x(k,1)/h;
h:=03
for i:=n step -1 until 1 do

begin

comment the second approximation;

x(k, 1) (x(k, 1) -a(4) xx(ic, 141) -r(4)x(Ie, 142)) /p(4) 5
hrshtx(k, 1)x23
end 3

h:=sqrt(h) $
for i:=1 step 1 until n do (I, 1) s=x(k, i) /h;

end k3

comment the calculated eigenvectors are now transformed
to eigenvectors corresponding to the original matrix;

for k:=m1 step 1 until m2 do
begin

for j:=m-2 step -1 until 1 do
begin
trm-j3 t0:=tx(t+1)/23 sigma:=03
for i:=1 step 1 until t do Siemarmsigmata(t0+i) x2;
if sigma<>o then
begin

83303
for 1:=1 step 1 until t do s:=sta(t0+i)xx(k, 1) 3
83-2xs/sigma;
for 1:=1 step 1 until t do

x(k, 1) s=x(k, 1)+sxa(tO+4)
end sigme<>0;

end j3
end k¢

end vect;

end 3
ends

-17-

6 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

RCSL Neo: 53=M5

Edition: November 1969

Author: P, Mondrup

Title: invertsym

... RE 4000, Software, Mathematical Procedure Library, Linear

Equations, Algol Procedure

Abstract: This boolean procedure inverts a symmetrical matrix, Only

the lower half of the matrix has to be stored. The procedure will give a

result even if the matrix is singular. 10 pages.

fe system LIBRARY e@eece5ueseescoeeeoeseoeoeosee see eee eet eseee ees se €6S6

DK-2500 VALBY - BUERREGAARDSVEJ 5 - TELEPHONE: (01) 4608 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

boolean procedure invertsym(n, A)3

1. Function and parameters.

boolean procedure invertsym(n, A);

value n integer n3 array A$

Function

The procedure inverts a symmetrical n X n matrix M(i:n, isn) of

which the lower part is stored as a one-dimensional array A(1inx(n+1) //2)

so that

Mr, s) = M(s, r) = A(rx(r-1)//2 +s) for 1 < $ <r<n.

On return the inverse of M is found stored in A and the procedure is gi-

ven the value true. This is only in case the call of the procedure has

been a success, If it is a failure (i.e. if M is singular) the procedure

has the value false, but even in this case the result M’ found in A is

with meaning, since M’ will have the property that M’ x B is a solution

of the matrix equation M X X = B whenever this equation hag a solution.

Moreover, the degenerate elements may be found as those diagonal ele-

ments for which the corresponding rows and columms are ideritically zero.

Parameters

call parameter:

n integer. The order of M

call and return parameter:

A(1snx(n+1) //2) array. Must on entry contain the lower half of M,

so that M(r, s) = M(s, r) = A(rx(r+1)//2+S).

At return A will contain the inverse of M

stored in the same way

return parameter:

invertsym boolean procedure. It is false if M iis singular

else true.

2. Mathematical Method.

The method is by Gauss-Jordan elimination using pivoting n times. In

each step there are 3 cases,

Case 1: There is an index r, which has not been used as pivot index in an

earlier step and for which the diagonal element M(r, r) is $ O. Let E be

the set of all such indices. A new pivot index is selected from & in the

following way: For each r in E the quantity |

m(r) = max abs Mr, s)/abs M(r, r) rin&E

(maximum over s in E, s ¢ r) |

is computed, and the pivot index r is chosen arbitrarily among those in-

dices which make m(r) attain its minimum A pivoting is carried out with

M(r, r) as pivot element, and in a boolean array B(1:n) the r’th element

is set to false to indicate that this index cannot be used in later steps.

The pivoting means that the elements M(i, k) are replaced by

Mi, k) - Mi, r)xM(r, i)/M(r, r) fori¢rAk#¢r

Mr, k)/M(r, r) fori¢rAke=r

- Mi, r)/M(r, r) forisrAké¢r

1/M(r, r) forizerAke=r

The result of this transformation is not a symmetrical matrix but

Mr, s) = -M(s, r) if r has been pivot index, and s has not

(i.e. B(r) = false, B(s) = true)

M(s, r) in all other cases,

Oniy the lower part of M is stored in A, since the upper part may be

reestablished by means of B,

Case 2: M(r, r) = 0 for all r not used as pivot indices before, but there

are elements Mr, s) #0 outside the diagonal (i.e. for r #'s) for some r

and s not used as pivot indices before. In this case two new pivot indices

rand s have to be chosen. First s is chosen arbitrarily among such pos-

sible indices. Next to choose r, let E be the set of the indices r #5

not used before as pivot indices and for which Mr, s) + 0. For each r in

E the quantity

m(r) = max abs Mr, k)/abs Mr, s)

where k runs over all indices +r and +s not used as pivot indices. Now

r is chosen such that m(r) attains its minimum (which possitily is zero).

In the boolean array B the r’th and s’th element are set to false to ine

dicate that these indices may not be used in the following steps. Now a

pivoting is carried out with M(r, s) and Ms, r) as pivot elements. This

means that the matrix elements M(i, k) are replaced by

|

-3-

Mi, k)-M(i, r)xM(s, k)/M(r, s)-M(i, s)xM(r, k)/M(r, s) for itrAitsAktr/Ak+ts

Mi, r)/M(r, s) for id\kss

-M(r, k)/M(r, s) for i=s/\ktr

Mi, s)/M(r, s) _ for k=rAi¢s

-M(s, k)/M(r, s) - for i=r/Ak+s

1/M(r, r) for isrAkss

As in case 1 the result is not a symmetrical matrix, but the upper part

may be reestablished in the same manner from the lower part,

Case 3: There are no matrix elements M(r, s) +0, where r and s have not

been pivot indices. In this case the submatrix of M obtained by taking

only the indices not used as pivot indices is identical zero. This means

that M is singular. The value of the procedure is then set to false and

the remaining rows and columns are set to zero, so that the result deliv-

ered in A may have the property mentioned in the section above.

If it is possible to do the pivoting n times without ever entering

case 5 then M is nonsingular. So the value of the procedure is set to

true, and the result of the algorithm delivered in A is the ‘inverse of

M

3. Accuracy, time and storage requirement

Accuracy

In practice the relative error measured as ||AxX - B[|/||X]] has

been found to be about y-10. This is not an exact error bound. Theoreti-

cal error bounds are discussed in detail in literature, SEC 686 Forsythe

and Moler (ref).

Time: .14x(n+1)xx3 mS

Storage requirement

Program length: 6 segments

variables: 23 + 2.5Xn words in stack.

Typographical length: 145 lines, 6 segments.

L., Test and discussion

The procedure is intended for use in such cases where ‘the total ma-

trix M is too big for the available store. A program using decompose and

solve will be faster than a program using invert Sym even af the program

must generate the matrix M from the half matrix A.

The procedure has been tested by some random matrices and by @ re-

presentative set of singular matrices. :

The following program will read n, A and write out the inverse of A:

Program to read a symmetrical matrix and output its inverse.

begin integer n, 1, j, k, 13

read(in, n)3

begin array A(1:(nx(n+1)) shift (-1))3

read(in, A);

if -, invertsym(n, A) then write(out, <:<10> A is singular: >)3

write(out, <:<10>:>) 3

for i:= 1 step 5 until n do

begin

jis if i+ 4 <n then i+ 4 else n;

for ki= i step 1 wmtil j do write(out, << ddd>, k)3

for k:= i step 1 until n do

begin

write(out, <:<10>:>, <<ddd>, k);

js if i +4 <k then i + 4 else k;

for 1:= i step 1 until j do

write(out, <<_-d.ddddddy-ad>, A((kx(k-1)) shift (- 1) +1));

end k;

write(out, <:<12><10>:>)

end i

end A

end program$

5. Reference

Georg Forsythe and Cleve B. Moler: Computer solution of Linear Algebraic

Systems, Prentice-Hall, Inc. (1967).

6. Algorithm

invertsym = set 6

invertsym = algol

external

boolean procedure invert_sym(n,A) ;

message invert sym, 13 11 69, RCSL 53-M5;

value n3 integer n3 array A3

begin integer i,j,k,r,5,t,r1,51,DP3

real m, aj,ak,ar,aj1,mp$

boolean bj,mf3

array M(1:n)3 boolean array B(1:n)3

i:=03

for p:= 1 step 1 until n do

begin

m:=0$

for k:=p-1 step -1 until 1 do

begin

if abs A(i+k)> m then m:= abs A(i+k);

if abs A(itk)>M(k) then M(k):=abs A(i+k)

end k3;

M(p) := mg B(p):= true; i:=itp

end p3

tssn3 mps=-13 mfs=trues

for j:=n step -1 until 1 do

begin

if mf then

begin

if abs A(i)>M(j)xmp then

begin

if M(j)=0 then mf:=false else mp:=abs A(i)/M(j); p:=3

end abs A(i)>M(j)>mp

end mf;

Mj):=03 issi-j

end j;

next_pivot:

st=p3 r:=(sx(s-1))shift(-1);

if mp>o | -,mf then

begin comment this is the normal case where

there has been found a pivot-element

in the diagonal 3

B(s):=false; t:=t-13 ar:=A(r+s):=1/A(r+s); mp:=-13 mf:=true3

for j:=n step -1 until 1 do if j<os then

begin

2=(5x(5-1))shift(-1)3 bj:=B(j); mz=M(j) 5
aj:=if s<j then A(its)xar else

(if bj then ar else -ar)xA(r+j);

for k:= 1 step 1 until j do if k<s then

begin

ak:=A(k+i):=A(kti)-(if k<s then A(kt+r)xaj else

(if B(k) then aj else -aj)xA((kx(k-1))shift(-1)+s));

if bj then begin if mf then begin if k<j then

begin

if abs ak>M(k) then M(k):= abs ak;

if abs ak>m then begin if B(k) then m:=abs ak end}

end end end bj

end k$s

if s<j then A(its):=aj else A(r+j):=if bj then -aj else aj;

if bj then

begin

if mf then

begin

if abs ak>mxmp then

begin

if m=0 then mf:=false else mp:=abs ak/m; p:=j

end abs ak>mx<mp

end mf;

M(j) :=0
end bj

end j3

goto next pivot

end mp>O | -,mf;

if mp=0 then

begin comment this is the exceptional case where

all diagonal-elements are zero3

B(s):=false; m:=03

for j:=s-1 step -1 until 1 do if B(j) then

begin

i:=(jx(j-1)) shift(-1)3 ak:=0;

for k:= s-1 step -1 until 1 do if B(k) then

begin

if abs A(if k<j then kti else j+(kx(k-1))shift(-1))>ak then

ak:=abs A(if k<j then kti else j+(kx(k-1))shift(-1))

end k3 |

if abs A(r+j)>mxXak then

begin

8133j3

if ak=0 then goto L3

mz=abs A(r+j) /ak

end

end j3

L: t:=t-23 ri:=(s1x(s1-1))shift(-1);

ar:sA(r+s1):=1/A(r+s1)3 B(s1):=false; mp:=-1; mf:=true3

for js=n step -1 until 1 do if jomj<csl then

begin

iz=(jx(j-1))shitt(-1) 3 bj:=B(j)3 m:=M(j)3
aj:=if s<j then A(its)xar else

(if bj then ar else -ar)xA(r+j);

ajls=if s1<j then A(it+ts1)xar else

(if bj then ar else -ar)xA(ri+j)3

for k:=1 step 1 until j do if kos A k<s1 then

begin

ak:=A(itk):=A(itk)-(if k<s then A(rtk)xaj1 else

(if B(k) then aj1 else -aj1)xA((kx(k-1))shift(-1)+s))

-(if k<s1 then A(ri+k)xaj else

(if B(k) then aj else -aj)xA((kx(k-1)) shift(-1)+s1))3

if bj then begin if mf then begin if k<j then

begin

if abs ak>m then begin if B(k) then m:=abs ak ends

if abs ak>M(k) then M(k):= abs ak

end end end bj

end k$

if s<j then A(its):=aj1 else

A(r+j):=if bj then -aj1 else aj13

if si<j then A(its1):=aj else

A(ri+j):=1f bj then -aj else aj;

if bj then

begin

if mf then

begin

if abs ak>m<mp then begin

if m=O then mf:=false else mp:=abs ak/m3 p:=3

end abs ak>mp

end mf$

M(5) s=0
end bj

end j3

goto next _pivot

end m=03

invert_sym:= t=0 5

if t<o then

begin

i:=03

for j:=1 step 1 until n do

begin

for ki=1 step 1 until j do if B(j) | B(k) then A(itk) s=03

L:=it3

end j

end t<>o

end invert_sym3

comment

Parameters

call parameter:

n integer. The order of M

call and return parameter:

A(1:nx(n+1) //2) array. Must on entry contain the lower half of M,

so that Mr, s) = Ms, r) = A(rx(r+1)//2+8).

At return A will contain the inverse of M

stored in the same way

return parameter:

invertsym boolean procedure. It is false if Mis singular

else true;

Title:

= jacobi

fe 8 REGNECENTRALEN RESLNeo: seca
Edition: September 1969
Author: RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F Peter Fleron

Keywords:

RC 4000, Basic Software, Matematical, Eigenproblems, Algol Procedure

Abstract:

jacobi calculates all the eigenvalues and, if wanted, the corresponding
eigenvectors of a symmetric matrix by the method of Jacobi. 10 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

1. Function and Parameters,

Jacobi calculates all the eigenvalues and, if desired, the correspond-

@ ing eigenvectors of a symmetric matrix by the method of Jacobi,

Procedure head:

real procedure jacobi(a, lambda, x, vect,maxscan) ;
value vect,maxscan;
array a, lambda, x;
boolean vect;

integer maxscan}

Call parameters:

a :

vect 3

maxscan :

@ real array containing the given matrix.

(boolean) . If vect is true, the eigenvectors will be

calculated.

(integer or real). If the value of maxscan is > 0,

at most this number of scans are performed in the

procedure. If the value is 0, no limitation is imposed

on the number of scans. (see section 2. Method).

Return parameters:

jacobi :

lambda — :

x Hy

@ Parameter check:

(real). Contains the number of rotations ‘in the

last two bytes and the number of scans in the

first two bytes. If the procedure exits because

the maximum number of scans is reached, the negative

number of scans is stored. Hence the sign of the

procedure value reveals its success.

(real array). Contains on exit the calculated

eigenvalues.

(real array). If the eigenvectors are wanted, they

are stored as column-vectors in x. The eigenvector

associated with the eigenvalue lambda(i) is stored

in x(.,1).

The orders of the matrix a and the vectors x and lambda are not given

as parameters, but are checked by the procedure in this way:

~ 2 eo

First, the upper subscript bound of the array lambda is assigned

to the order. Then it is checked that the arrays are declared

a(1:order, 1:order) (1)
lambda(1:order) (2)
x(1:order, 1 :order) (4)

(this last check is performed only if the eigenvectors are

wanted; in fact, if vect=false, x can be any real array and is

never touched).

In case of error, the execution is terminated by the error-message

on current output

jacobi <error-number>

where <error-number> is the sum of the numbers attached to each wrong

array as Stated above. Thus the declaration

a(1:order,O:order)
lambda(1:order)
x(1:order)

yields the error-number 5 if vect=true, otherwise 1,

This initial check of the parameters implies that there is no need

for index-check in the procedure.

2. Method.

The method consists of a number of scans of all the super-diagonal

elements of the matrix. If the element in question is greater in

absolute value then a certain threshold (approximately the current

root-mean-square of all super-diagonal elements), a rotation is per-

formed, so designed that this element becomes zero.

The exit condition is that the current threshold is less than

5y-13xinitial threshold (or that the maximum number of scans is reached).

Since the procedure converges at least quadratically, little time is saved

by reducing the accuracy.

Just before exit, the super- and main-diagonal elements are reestablished

so that the matrix is unchanged on exit.

For further details, see [1].

3. Accuracy, Time and Storage Requirement.

Accuracy: The relative error of the eigenvalues and, if the eigen-

vectors are calculated, the greatest element of (xtxx-I)

is unlikely to exceed nx(the relative machine accuracy,

appr. By-11).6 This applies also to the greatest element

of (axx-xxL)/max(lambda). However, if the magnitudes of

the eigenvalues are highly different it may happen that the

eigenvalues of low magnitude are determined less accurate,

It can be shown (see [1]) that the absolute error of the

eigenvalues is bounded by

ax| [L| |/sart(1-nI)x(nI/(1-sqrt(1-nI))+nA),

where

L

ni

nA

Time

u diag(lambda)

section 4, Test and Discussion) ,

Storage requirement:

k, Test and Discussion.

Several matrices have been tried by the test program (or slightly

modified versions) at the end of this section.

5 segments of program

| [exxerxL| 1/1] /L1].

| |xtxx-I|] 3; xt is x transposed,

Generally proportional to nxx3 when n is large (see

18 local real variables.

The table below shows the type and order of the matrix in question, the

number of scans, the number of rotations, the time consumed by

the procedure (in sec.), and the norms nI and nA as defined in

section 3, (the infinity-norm is used.)

type n scan

a 10 14
a 20 17
b 15 "
c
a. 8 11

rotation

180

796
2T

é5

time

1.9
14.6
4,8

"28

ni

1.7
Tol
1.2

7:6

n-9
w-9

00
3-10

8. 3=10
2e1y9
Detne10

B72 10

The types represent the following matrices:

° a) HBH-matrices. The general element of a n-th order matrix is

@ given by a(i,j)=a(j,i)=n-i+1. The eigenvalues are

1(1)=0.25/sin((2xi-1) xpi/(4omnt2)) xxe

b) The matrix

a(i,j)=a(j,i)=if i<>j then 1 else 10x(i-1)

c) The matrix

a(i,j)=a(j,i)=if i=) then 0 else 1

All eigenvalues are ~-] except for one which is n-1.

ad) The matrix and the complete output of the testprogram for this case are:

S matrix:

611
196 899

-192 113 899
ho7 -192 196 611
-8 -71 61 8 411

52 9-43 4g 4b -599 411
-ig 8 8 59 208 208 99
29 -44 52 -23 208 208 -911 99

scans= 1 rotations= 69 time= 0.68 sec.
nI = 7.6y-10 nA = 6,1y-10

eigenvalues:

102004901895
1 .0000000002,
1 .0000000003y
9 8048646596 y

@ 2..5609435927
10200000004
1.0199019515y

-1.0200490187

Ly
W
E
N
O

PD

(O
h

ty

tn

end

Test program:

test1 jacobi

begin integer n;
for underflows:=-1 while read(in,n)>0 do
begin real x,eli,ela,maxi,normi, norma, la, layout, tO, ti, si,sa3

array a,t(i:n,i:n),1(1:n) 3
integer i, j,k,laynos;

read(in, layno) ;
@ for i:=1 step 1 until n do

for j:=1 step 1 until i do
begin read(in,x) ;

a(i,j) z=a(j,i) :=x
end;

tO:ssystime(1,0,1a) ;
for 1:20,i+1 while t1<t0+2.56 do
begin x:=jacobi(a,1,t,true,0) ;
t1:=systime(1,0, 1a)

end 3

t0:=(t1-t0) /1;

maxl:=normi:=norma:=0 3

for i:=1 step 1 until n do
begin si:=sa:=03

for j:=1 step 1 until n do
begin eli:=ela:=0;

la:=1(5) ;
for k:=1 step 1 until n do

begin eli:seli+t(k,i)xt(k, j);
ela:=elat+a(i,k)xt(k, Jj)

end k;

if i=j then eli:=eli-1;

ela:=ela-t(i, j)xla;
si:=sitabs eli;
sa:3satabs ela

end j3

if si>normi then normi:=si;
if sa>norma then norma:=sa;
if abs 1(1)>maxl then maxl:=abs 1(1)

end i;

layout: =real(case layno of (<<d>, <<dd>, <<-dd>, <<-ddd>, <<-ddda>,
<<d>, <<d>,<< -d,dddd>,<< -d.ddddd>)) ;

write(out,<:<12>matrix::>) ;
for i:=1 step 1 until n do
begin k:=03
write(out,<:<10>:>) ;
for j:=1 step 1 until i do
begin write(out,string layout,a(i,j));

k:=k+layno;
if k>70 and j<i then
begin write(out,<:<10>:>, false add 32,layno) ;

k:=layno
end

end }
end write matrix;

write(out,<:<10><10>scans=:>,<< -ddad>, x shift(-24) extract 2h,
<: rotations=:>,x extract 2k,
<3 time=:>,<< ddd.00>,t0,<: sec.:>,
<:<10>nI =:>,<< d.dy-dd>, normi,
<: nA =:>,norma/maxl,
<:<10><10>eigenvalues:<10>:>) ;

for i:=1 step 1 until n do
write(out,<<-d.ddddddddddy-dd>, 1(4) ,<:<10>:>)

end read n
end

5. References

[1] Kahan, W. and Green, D, : Eigenvalues and Eigenvectors of a Real

Symmetric Matrix. (Unpublished but copies of the paper are achievable

on demand)

6. Algorithm

jacobi=set 5
jacobi=algol index.no

external

real procedure jacobi(a, lambda, x, vect,maxscan) ;
message jacobi, version 20.11.69, RCSL NO: 55-D61;
value vect,maxscan}
integer maxscan;

boolean vect};

array a, lambda, x;
begin real eps,t,ave,s,u, thresh, dlow,d,c,aij,ajj3

integer i,j,11,3Jj,jl,n,nrscan,nrrot;
boolean again;

i:=if system(3,n,lambda)<>1 then 2 else 0;
jrmsystem(4,i1,a);
if j<ont1 or Liconx(n+1) then i:=1+1;
j:=system(3,1i,x) 5
if (j<on+1 or ticonx(nt+1)) and vect then i:=i+h;
if i>0 then system(9,i,<:<10>jacobi :>);

if vect then
for i:=1 step 1 until n do
begin x(i,i):=1;

for j:=i+1 step 1 until n do x(1,j):=x(j,i):=0
end x:=identity;

d:=0;
for i:=1 step 1 until n do

begin lambda(i):=a(i,i);
for j:=i+1 step 1 until n do d:=dta(i,j)xxe

end i;

nrscan:=nrrot:=0;

if d>0O then

begin dlow:=y-7xd}3
ave:=(n-1)xnx0.55;
thresh: =sqrt(d/ave) ;
eps :=5y-15xXthresh3

Scaniagain:=false;
nrscan:=nrscant1;

for i:=n-1 step -1 until 1 do

for j:=i+1 step 1 until n do
begin comment scan;

aij:sa(i,j);
if abs aij >= thresh then

begin ajj:=a(j,J)3
si=ajj-a(i,i)
t:=abs alj;
if stt<os then

begin comment rot<>o;

again:=true;
nrrot:=nrrot+1 5

if abs s<=)-6Xt then s:=c:=0.70710678118 else
begin t:=aij/s3

$230.25/sqrt(txx2+0.25);
e:=sqrt(s+0.5)3
$3=2xtxs/c

end rot<pi/4;

a
BJ

for ii:=1 step 1 until i do
begin t:=a(ii,i); u:sa(ii, Jj);

a(ii,i) :=cxt-sxu;
a(ii, j) s=sxtt+exu

end;

jls=j-1;
for fi:=i+1 step 1 until jl do
begin t:=a(i,ii); u:=sa(1i,j);

a(i, ii) :=cxt-sxu;
a(li, j) :=sxt+exu

end;

a(j, J) :#sxaij+oxajJ;
a(i,i):=cxa(i,i)-sx(exaij-sxajj) 5
for ii:=j step 1 until n do
begin t:=a(i,ii); u:=a(j,ii);

a(i, ii) :=cxt-sxu;
a(j,ii) s=sxtt+cxu

end;

if vect then
for ii:= 1 step 1 until n do
begin t:=x(ii,i); u:=x(ii,j)3
x(ii, 1) s=cxt-sxu;
x(4i, j) :=sxt+exu

end;

3 =deat jxxe 5
if d<dlow then
begin d:=0;3

for iis=n-1 step -1 until 1 do
for jj:2ii+1 step 1 until n do
d:=dta(ii, jj) x2;

dlow: =y-7xd

end;

thresh: =sqrt(d/ave) ;
if thresh<eps then goto quit

end rotation
end aij

end scan3

if again and (maxscan>0=>maxscan>nrscan) then goto scan;

if again then nrscan:=-nrscan}3

quit:for i:=1 step 1 until n do
begin t:=a(i,i);

a(i,i):=lembda(1i);
lambda(i):=t;
for j:si+1 step 1 until n do a(i,j):=a(j,1i)

end i

end d>0;3

jacobi:=0.5 add nrscan shift 24 add nrrot
end jacobi;

comment

Call parameters:

a : a real array containing the given matrix.
vect : (boolean) . If vect is true, the eigenvectors

will be calculated,
maxscan : (integer or real). If the value of maxscan is > 0,

at most this number of scans are performed in the
procedure. If the value is 0, no limitation is imposed

on the number of scans.

-8.

Return parameters:

jacobi

lambda

(real). Contains the number of rotations in the
last two bytes and the number of scans in the
first two bytes. If the procedure exits because the
maximum number of scans is reached, the negative num-
ber of scans is stored. Hence the sign of the procedure
value reveals its ‘success,

: (real array). Contains on exit the calculated
eigenvalues,
(real array). If the eigenvectors are wanted, they

are stored as column-vectors in x, The eigenvector
associated with the eigenvalue lambda(i) is stored

in x(.,1)3

Title:

e minimum

fe A REGNECENTRALEN RCSL No: 53-MI18
Edition: December 1970

Author: Helge Elbro@nd Jensen
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

(

Keywords:

RC 4000, Software, Minimum, Calculation of Extrema, Algol Procedure, ISO Tape

Abstract:

The procedure, minimum, calculates extrema of a differentiable function in n

variables. 18 pages.

Users of this manual are cautioned that the specifications .
contained herein are subject to change by RC at any time a

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by
reliance on any of the materials presented.

Printed by A/S Regnecentralen, Copenhagen

1. Function and parameters

Let F denote a real, twice differentiabel function in n variables,

and suppose that the first order derivatives of F are given analyti-

cally (that is, as expressions depending upon the n variables).

Suppose that in a given area the function is bounded below and has a

minimum. From a reasonable good starting point the procedure finds

this minimum by finding a point at which all the first order deriva-

tives are zero (that is, smaller than a prescribed quantity).

Procedure head:

minimum(n, i, x, F, delta, eps, point) ;

value n3

integer i, n3

real eps, F, delta;

array x, points

Call parameters:

ni the number of variables for the given function.

Call/Return parameters:

point: a real array point(i:n);

at entry point containes the starting poirt for the

procedure $3

at exit point containes the coordinates of the point

at which the minimum is obtained;

eps: a real quantity affecting the precision tc which the

minimum is calculated. Consider the norm cf the vector

consisting of the first order derivatives. If this

norm is smaller than eps, then the procedure will stop;

at exit eps containes the norm of the vector described

above.

Return parameters:

minimum: the value of the obtained minimum;

Other parameters:

Fs a real procedure denoting the given function. In a pro-

gram in which the procedure minimum is called, F mst

be declared in the following way:

real procedure F(x);

array X3

F3= the given expression};

delta: a real procedure delta(i, x) denoting for each i the

partiel derivative of F with respect to the variable

x(1)
In a program in which the procedure minimum is called,

delta must be declared in the following way:

real procedure delta(i, x);

integer i;

array x$

deltas= case i of (06, ees ; weed

In the parenthesis there must be n expressions, where

the i-th expression denotes the partiel derivative of F

with respect to the variable x(1i)3

2. The method

Let F denote a function in n variables, and let x denote the n-dimen-

sional point with coordinates (x(1), x(2), ... , x(n)). F is said to

have a minimum at a point x0, if there exist a small area including

x0, in which the value of F at each point is greater than F(x0).

Most of the various methods for finding a minimum for a function in

variables has one idea in commen: They are all iterative processes

based upon a roul, which for each point specifies a certain direction

in which the next point of the process is to be found, and for each

such direction specifies how to find the next point. Now, suppose that

1.

-3-

the function is differentiabel. By the gradient of F at the point x -

denoted gradient (x) - we understand the n-dimensional vector, which

as the i-th coordinate has the partiel derivative of F with respect

to x(i) at the point x.

The method used in the following program is essentially based upon to

papers of A.A. Goldstein ((2), (3)). We suppose, that the function is

twice differentiabel and that the gradient is given analytically. It

is well known, that the gradient will vanish at a minimumpoint.

Let the points of the iterative process be denoted x1, x2, X34, «+. xk,

eee, Where x1 is given by the input array point.

For each k fi(xk) denotes the n-dimensional vector which terminates

the new direction.

We choose fi(x1) = gradient (x1).

For each k the number h{k) is defined as:

bh(k) = r X norm(n, fi(xk)).

r is calculated at the beginning of the program in such a way that

h(1) < 1/5.

norm is denoting the ordinary n-dimensional Euklidian norm.

Then the algorithm, at each point xk, consists of the following two

DIRECTION:

We compute an n Xn matrix, which is an approximation to the matrix

consisting of the second order derivatives of F.

For each j let F(j) denote the vector, which has the j-th coordinate

equal to 1 and the others equal to zero.

We then compute the matrix Q(xk) which has the j-th column equal to

(gradient(xk + h(k) x F(j)) - gradient(xk)/h(k).

If the matrix Q(xk) is singular (it is has no inverse) then

we define the new direction fi(xk) by

fi(xk) = gradient(xk).

Suppose now, that Q(xk) has an inverse, which we denote P(xk).

If (gradient(xk), P(xk) x gradient(xk)) > 0

(where (,) denotes the ordinary innerproduct) then we define

fi(xk) by

fi(xk) = P(xk) x gradient(xk).

20

If (gradient(xk), P(xk) x gradient (xk)) <0

then we define fi(xk) by

fi(xk) = gradient(xk).

KONSTANT :

The next point in the process is now obtained on the form

xk - ek X fi(xk)

where gk is a constant calculated as follows:

Let product = (gradient(xk), fi(xk)).

Let f1 = F(xk).

Let £2 = F(xk - gk x fi(xk)).

Then gk is calculated such that

f2<f1 and (f1 - £2) < gk X product.

It can be proved, by using the Taylor formula, that such a gk always

exists, and that xk calculated in this way will converge to a minimum-

point for F.((2), (3)). From a numerical point of view however, gk

might fail to exist, and in this case the procedure will stop.

3, Accuracy, Time and Storage Requirements

Accuracy: As measure of accuracy we use the norm of the gradient. If

the procedure succeeds, then at the end this norm is smaller

than the call parameter eps.

Time: This depends on the wanted accuracy and first of all on the

problem in question, so it is not possible to give general

rules for this. (See 4. Test and Discussion).

Storage requirements: 10 segments of program

Typographical length: 248 lines.

h, Test and Discussion

The procedure have been tested on several functiones among which we

deseribe the two most difficult problems:

1. Minimising the function in two variables

F = 100 x (x(2) - x(1)2) xx 2+ (1 - x(1)) « 2

First we consider the problem 1:

The function F has minimum at the point (1, 1) with fuactionvalue 0.

Value of eps

pn 4 nO

Minimum 0.999999 592 0.999999 592
02999999183 0.999999 183

Fe.-value 0.000000000 0000000000

Gr.-norm 7 D0-5 42-7

: Ex,-time 0.76 0.73

@ (the execution time is in seconds).

»-8

1 000000000
1 000000000

0 .000000000

5.1-8

0.15

2, Finding a solution to the following three non-linear equations:

sin(x(1)xx2) + exp(x(2)) x x(3) - 4 =0

x(1) + x(2) + x(3) - 3 =0

x(1) + x(2)x@ + x(3)0G - 14 =0

This is done by minimising the square-sum of the three equations.

Starting at the point x(1) = -1.2 and x(2) = 1 and using different

values of the term eps, the following results were obtained:

710

J 000000000
1 000000000

0 «000000000

1-79-10

0.75

It follows, that the procedure succeeds in all situations, and that

smaller values of eps does not affect the execution time. This last ob-

servation however can not be stated in general, (see below under problem

2).

Using eps pO and using different starting points the following results

were obtained:

- 6 -

Starting- -1.200000000 0.000000000 -0.500000000 2000000000
point 1000000000 1 «000000000 -0. 500000000 0250000000

Execution-

time 0.75 0.49 0.71 0.80

In all 4 situations the minimum was obtained at the point:

1 000000000
1 eOO0000000

with the functionvalue 0.000000000 and gradient norm 5.1»-€.

Again the procedure succeeds in all 4 situations.

Next, consider the problem 2 in three variables. Starting at the point

x(1) = 0, x(2) = 0, x(3) = 2.5 and using different values cf the term

eps, the following results were obtained:

Value of eps

4 -6 78 710

Minimum 0.097831561 0097830233 0.097830224 0.097830224
02512917627 02512919004 0.512919014 02512919014
2.389250732 2.389250762 2.389250762 2,389250762

Fe.~value 0.000000000 0.000000000 0000000000 0 .000000000

Gr.-norm 5 B89-5 39-7 3 .2y-8 3 .2y-8

Ex, -time 1.96 2655 3.81 3.97

It follows, that the procedure succeeds in the first three situations,

but that it is not possible to make the gradient norm smaller than

3.2y-8, so in this sense the procedure does not succeed in the last si-

tuation. In this case smaller values of eps gives greater execution

time, even if the obtained minimumpoints are practically the same in the

last three cases.

Using eps = y-S and using different starting points the following results

were obtained:

Starting-
point

Execution=

time

0 .000000000
0 .000000000
2500000000

3.81

0 .000000000
0 ,000000000
1 «000000000

1.97

0. 500000000
1 000000000
22000000000

5.09

7 00000000
1 2000000000
1 000000000

245

In all 4 situations the minimum was obtained at the point:

0 .097830223

0.512919014
2.389250762

with the functionvalue 0.000000000 and gradient norm 3.2y-8

It follows, that the procedure succeeds in all 4 situations.

Example

Consider the function

F = 100 x (x(2) - x(1)xx2) xk 2+ (1 - x(1)) x 2

Starting at the point x(1) = -1.2 and x(2) = 1 the following program

might be used to find the minimum of F:

Testprogram

begin

integer i, Jj;

real a, eps;

array xX, point(1:2)3

real procedure F(x) 3

array X3

F:= 100 x (x(2) - x(1)~2) xx 2 + (1 - x(1)) > 23

real procedure delta(i, x);

integer i5

array X3

delta:= case 1 of (-400xx(1) x (x(2) - x(1)~e@) - 2x (1 - x(1)),

200 x (x(2) - x(1)xx2));

point(1):= -1.23; point(2):= 13 eps := »-8;

at= minimum(2, i, x, F(x), delta(i, x), eps, point);

write(out, <:Minimum obtained at the point <10>:>)3

for j:= 1 step 1 until 2 do

write(out, <:<l0>:>, <<-dddd,ddadddddd>, point(j))>5

write(out, <:<10><10> Minimumvalue =:>,<<-dddd.dddddaddé>, a) 5

write(out, <:<10><10> Gradient norm=:>, <<-d.dy-dd>, eps) 3

end $

This will give the following output:

Minimum obtained at the point

1 000000000

1 000000000

Minimumvalue = 0.000000000

Gradient norm = 1.0’ -8

end

De

In the program we use a boolean procedure inverse to find the inverse

(if it exist) of an n X n matrix.

The procedure is based upon Simpel Gaussian illimination and is only

introduced in order to make the program complete. Qne could use any

other procedure of this sort, for ex. decompose-solve from RC mathe-

matical procedure library.

Since a minimum of the function F is a maximum of the function -F,

the procedure will of course be able to find maximum as well as mini-

mum.

References

(1) D. Fletcher and M.J.D. Powell:

A rapidly convergent descent method for minimisation,

Comput. Journal 6 p. 163-168 (1963)

(2) A.A. Goldstein: On steepest descent.

Journal Siam Control Vol. 3 No 1 p 147-151 (1965)

(3) A.A. Goldstein and J.F. Puce:

An effective algorithm for minimisation

Numerische Mathematik 10 p. 184-189 (1967)

(4) E. Isaacson and H.B. Keller:

Analyses of numerical Methods

John Wiley and Sons, Inc. (1966)

6. Algol _ text

minimum = set 10

minimm = algol

external

real procedure minimum(n,i,x,F,delta,eps, point) ;

value n$

integer i,n;

real eps,F,delta;

array X, point;

begin

integer j$

real h,g,g¢1,gamma,r,f1,f2,f3,product,k,s;

array psi,y,z,b(1:n),p,a(1:n, 1:n) ;

real procedure norm(n,a) ;

value n$

integer n3

array a3

begin

comment this is the ordinary norm in the n-dimensional Huklidian

space $

real h3

h:=Osfor i:=1 step 1 until n do h:=hta(i)~©@;

norm: =sqrt(h) ;

end 3

real procedure innerproduct(n, a,b) ;

value n3

integer n3

array a,b$3

begin

comment this is the ordinary innerproduct in the n-dimensional

-10-

Euklidian space;

real h;

h3=03 for i:=1 step 1 until n do h:=h+a(i)xb(4) 3

innerproduct :=h3

end3

procedure equal(n,a,b) 3

value n;

integer n35

array a,03

begin

comment the procedure identifies two arrays;

for it=1 step 1 until n do b(i):=a(i);

end$

boolean procedure inverse(n,a,b) ;

value n3

integer n$

array a,b$

comment the procedure finds the inverse (if it exists) of the

matrix a by Gaussian illimination.If the inverse exist,it is

stored in b.If the inverse does not exist,inverse is false;

begin

integer i,j,k,m, pivotnrs

real pivot,s$

array c(1:n,1:n),x(1:n),a(1:n)s

inverse: =true $

for m:=1 step 1 until n do

begin

comment for each m one is solving the linear system,which on the

wright side has the m-th colum in the wnit-matrix,and cn the left

side the given matix as coefficientmatrix and the m-th colum in

the wanted inverse as unknown$3

_—

@

- 11 -

for j:=1 step 1 until n do

for i:=1 step 1 until n do c(i,j):=a(i,d)3

for i:s1 step 1 until n do d(i):=(if i=m then 1 else 0)3

for k:=1 step 1 until n-1 do

begin

comment among the last n-k+1 equations one is finding the equation,

which has the numerical largest coefficient in x(k);

pivot:=03 pivotnr:=0 5

for i:sk step 1 until n do if abs(e(i,k))>pivot then

begin pivot:=c(i,k)3; pivotnr:=i; end;

if pivot=0 then begin inverse:=false; goto ENDsend;

comment if pivot=0 then the given matrix has determinant; 0 and

consequently no inverse$

if pivotnr<k then

begin

comment equation number k is replaced by equation number pivotnr

and vica versa$

st=d(k)3 d(k):=a(pivotnr) 3 d(pivotnr) :=s;

for j:=k step 1 until n do

begin

x(j):=c(k,j)3 ¢e(k,3):=¢e(pivotnr, j)3 ¢(pivotnr, j) :=x(j) 3

end

end if pivotnr<k3

for i:=k+1 step 1 until n do

begin

comment x(k) is calculated from the k-th equation, and the

expression inserted in the following n-k equations $

a(i) s=a(41)-d(k) xe(i,k) /e(k,) 3

for j:=k+1 step 1 until n do

e(i,j)s= e(4,5)-c(i,k)xe(k, j)/clk,k) 3
end 3

end k3

if e(n,n)=0 then begin inverse:=false; goto ENDsend else

x(n) :=d(n)/e(n,n) 5

for i:=n-1 step -1 wntil i do

begin

comment for each i x(i) is calculated from the equation

e(1,i)xx(1) + c(4,i+1)xx(1+1) +... te(4,n)xx(j) = a(i),

- 12 -

where x(i+1),. . . x(n) are known;

st=03 for jin step -1 until i+1 do s:=s+c(i,j)xx(j)3

x(i)s=(a(i)-s)/e(i,1) 3

end;

for it=1 step 1 until n do b(i,m) :=x(i);

end m3

END: end;

procedure search(n,g,y,psi, £2) s

value n,g3

integer n35

real g,f23

array y,psi;

begin

comment the procedure finds the value of the function to be

minimised, that is kxF,at the point obtained from y by going the

distance g in the direction -psi;

for i:=1 step 1 until n do x(1):=y(i)-expsi(i);

£22 Skx¥ 5

end3$

equal(n, point, x) sequal(n,x,y)3 k:=15

for i:=1 step 1 util n do psi(i):=delta;

comment psi is the gradient of F at the starting points;

equal(n,psi,b) 3; h:=product:=norm(n, psi) 5

if h<1 then r:=1/5 else r3=1/(5xh) 5

KONSTANT :

* comment at each step of the iterativ process the procedure will
3

goto KONSTANT and run through the following.A point y and a

direction psi is given,and the problem is to find a konstant ¢g

such that the point y-gXpsi can be used as the next points

hi=norm(n, psi); equal(n,y,x) 3

if h/product<1/10 then

-13-

begin

comment psi is too small relativ to the gradient which implies,

that the greatest possible progress is too smali.We therefore

consider the function kxFf,where k is defined below;

k:=(h/product)xx(1/n) 5

for i:=1 step 1 until n do psi(i) :=(1/k)»xnxpsi(4) ;

for i:=1 step 1 until n do b(1):=kxdelta;

hs=norm(n, psi) 3

if h<1 then r:=1/5 else r:=1/(5xh);

ends

he=rxh3 £1:=O?3

comment h is used below as the small quantity in the approximation

of the second order derivatives of F,r is introduced in order to

insure, that this quantity is not too big «t the beginnings

product :=innerproduct(n,b, pst) $

gs=13 g13=03

search(n, 1,y, psi, f2) $

if £1-f2>=1/4xproduct then

begin

f1i:=f23 equal(n,x,y)$ goto DIRECTION;

ends

comment in this case we use g=1/4 and the next point is

therefore obtained as y-1/4xpsi;

st=a(if s<1 then »-10 else 1/SX»-10)3

6 for g:=2¢/2 while f1<=f2 do

begin

search(n,g,y, psi, £2) $

if e<s then begin equal(n,y,x); goto END; end;

end 3

comment if g is smaller than s (see the definition of this term)

then the next point of the process will be practically equal to

the present,and we must therefore conclude, that the procedure is

unable to make further progress;

gi=2xe3 equal(n,x,z)3

if (£1-f£2)<exproduct then goto SECOND else

begin

comment in this case the functionvalue at y-gxpsi is smaller

rd) than f1,but the condition f£1-f2<exproduct is not satisfied and

° - 14 -

® therefore g is too small;

- glisgs gt=exXe5

FIRST:

g2=(e1+g) /23
search(n,2,y, psi, f2) 3

if f1<f2 then goto FIRST else

begin

if (f1-£2)<gxproduct then

begin equal(n,x,y)3 f1:=f23 goto DIRECTION; end else

begin g:=2Xe-213 21:=(e+e1)/23 goto FIRST; end;

| end3

end3

SECOND:

$ comment in this case the functionvalue at y-gxpsi is smaller than

f1 and the condition f1-fe<exproduct is satisfied.We therefore

look for a smaller g for which this condition is satisfied and

with a smaller functionvalue than before;

g:=(gi+e)/23 search(n,2,y,psi, £5) 5
if fe<=f5 then

begin equal(n,z,x) sequal(n,x,y)3 f1:=f23 goto DIRECTION’

end else

begin

if (£1-f3)<exproduct then

pegin f2:=f3; equal(n, x,z) 3 goto SECOND;end

© else goto THIRD;

end 3

THIRD:

3 comment in this case the functionvalue is smaller thar. before,

but the condition mentioned before is not satisfied,so g is

too smalls;

gr=exg-g13 g1:=(gte1)/23 e:=(ete1) /23
search(n,g,y, psi, £3) 3

if (f1-f£3)>=exproduct then goto THIRD else

begin

if f£3>=f1 then goto THIRD else

) begin equal(n,x,y)3 f1:=f33 goto DIRECTION; end;

ends.

-15-

DIRECTION :

3 comment at each step of the iterativ process the procedure will

goto DIRECTION and run through the following.A point x is given

and the problem is to determine the direction in which the next

point is to be founds

for i:=1 step 1 until n do b(i):=kxdelta;

product :=norm(n,b) 3

if product<kxeps or product<y-10 then goto END;

comment if product<kxeps then the wanted accuracy is obtained.

if product<,-10 then in most situations it will be meeningless

to look for further progress;

for j:=1 step 1 util n do

begin

comment an approximation to the matrix consisting of the second

order derivatives of kxF is calculated and the result stored in q3

for i:=1 step 1 until n do x(i):=(if i=j then y(i)+h else y(i))s

for i:=1 step 1 until n do p(i,1):=kxdelta;

for i:=1 step 1 until n do a(i,§):=(p(i,1)-b(1)) /hs

end js

if -,inverse(n,q,p) then goto STEEPEST else

begin

comment if the inverse of q exist,then the vector psi is

obtained by multiplying the inverse matrix with the gradient;

for i:=1 step 1 mtil n do

begin

psi(i):=03; for j:=1 step 1 until n do

psi(i):=psi(i)+p(4, 3) xb(3) 5
end $

ends

if innerproduct(n, psi, b)<=0 then goto STEEPEST else

goto KONSTANT;

comment if innerproduct(n, psi, b)<=0 then we can not be sure to

find a point with smaller functionvalue in the direction psi,

and therefore psi can not be used.If the innerproduct is >0

then psi is the new direction;

STEBPEST

equal(n,b,psi); goto KONSTANT;

- 16 -

comment the gradient is used as the new direction;

END:

s comment the present value of the relevant quantities are stored

in the return parameters 5

for it=1 step 1 until n do b(i) :=delta;

minimm:=F3 eps:=norm(n,») 3

for i:=1 step 1 until n do point(i):=x(1);

ends

end$

Title:

s pzero

fe § REGNECENTRALEN RCSL No: 53-M4 (PG1)
Edition: May 1970

Author: J. Runge-Erichsen
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

-

Keywords:

RC 4000, Software, pzero, Polynomials, Algol Procedure, ISO Tape

Abstract:

The boolean procedure pzero(order, coef, root) evaluates all roots
(complex or real) of the polynomial p(z) = SUM(coef(i)*z**i) i =0,
1, «es, order, order = 2, 3, 4.. 15 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright A/S Regnecentralen , 1978 without prior notice. RC is not responsible for typographi-
ca! or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

pzero(order, coef, root)

1. Function and parameters

pzero caleulates all roots (complex or real) of 2nd, 3rd and Mth order

polynomials with real coefficients.

Call: pzero(order, coef, root)

pzero is a boolean procedure which is false if order > 4 or order < 2

or coef(order) = 0. In this case no computations are made,

otherwise pzero is true.

order (call value, integer)

specifies the order of the polynomial.

coef (call value, array) minimum bounds(o:order)

specifies the coefficients of the polynomial

p(z):= SUM(coef(i)xzxxi), i:= 0, 1, ... , order.

root (return value, array) minimum bounds(1:order, 1:2)

If pzero is true then root specifies the calculated roots

Zi, 1:3 1, 2, eee , Order so that

Re zi = root(i, 1) and

Im zi = root(i, 2).

2. Method

2.1. General

Extremely large or small roots are detected at the first stage of com-

putation, and further computations are executed on the quotient poly-

mial, where quotient polynomial everywhere in this description

means p(z) / PRODUCT(z - zi)

where zi are the roots allready found by pzero.

The (quotient) polynomial is now normalized so that coef(order)

equals le

2,2. Second order polynomials: p(z) = zxx2 + bxz +c

The quantity d:i= bXx<@ - hxe determines whether the roots are complex

(ad <0) or real (4 > 0).

If the roots are real then the numerically largest root is calculated

from

z1:= (-b - sqn(b)xsqrt(d))/2

and the remaining root from

z2i:= if z1 = 0 then 0 else ¢/z1

otherwise the roots are calculated from

zi:= (-b + ixsqrt(-d))/2

and

gei= (-b - ixsqrt(-d))/2

where i is the imaginary unit.

2.3. Third order polynomials: p(z) = zxx3taxzxx2+bxz+e

If there are miltiple roots then all of the roots are calculated di-

rectly from the coefficients a,b and c, otherwise one real root is

determined by a Newton Iteration whereafter the remaining two roots

are calculated from the quotient second order polynomial (see 2.2).

Analysis and iteration starting point:

The transformation w =z + a/3 yields

p(z) = 0 <=} a(w) = wx + Owte =0.

Define

r= 27Xexx2 + UXxan3.

a) 1 real and 2 complex conjugate roots:

are called 2xk, -k + im and -k - ixm

where i is the imaginary unit.

a(w) = wxd + (moe ~ 3X02) XW - Oxkx(kxx2 + m2)

implies

r = [2amx(moe + 9xXIO0@) doe > 0

and defining

f(m) = 4 x Je| = 8x|kx(koe + moxe)| > 8x/k] oS

yields -

(4x}e|)>x«<(1/3) > 2x]k|

b) 3 real roots:

are called k, m and -k - m where k is the numerically largest root.

a(w) = wos - (KOO + mX 2 + km) XW + kOomX(k + m)
implies

r= -[(k - m)x(2xk + m)x(k + 2xm)]~2 < 0 (x)

and defining

f(m) = 4xfda]/3 = 4xjpoxe + mee + komm /3

yields

min f(m) = f(-d/2) = kee

SO

® 2x sart(|a|/3) > |X|

From (x) and (xx) we see that

r<0O => real roots

r=0O => multiple roots

r>0 = complex roots

and iteration starting point s is chosen to be

s 3= Oxsqrt(|d|/3) if r <0

(uxle[)xx(1/3) if r> 0.

The quotient second order polynomial:

is calculated from

@ (zxx2 + pxz + q)x(z - 21) = 2XxX3 + axZxXxX2 + DXz +

where 21 is the real root obtained by iteration.

If ja +21] > |al/8 then p is calculated from

pesart zl

and

qi=b+ pxzi if |b + pxzi| > |b|/8

-~c/z1 if |b + pxz1| < [b|/8

otherwise

q:= -c/z1

and

) p= (q - b)/z1.

2.4.

-.

Fourth order polynomials: p(z) = zx + axxzxx3 + bxzxxe + cxz + a

IT:

LIT:

IV a)

b)

A linear transformation w =z + a/4 yields

p(z) = 0 <=> q(w) = wok + Ixwexe + mw + n = 0,

now the sum of the transformed roots equals zero,

The transformed roots are calculated using the method of Descartes.

This method involves the solution of a third order equation, and

this is performed as described in 2.3.

The roots are now accepted if |Re zi| > |a|/32 so at least one root

mist be accepted unless they all equal zero.

if one root is accepted by III

then the reciprocal roots are calculated from

axzxxl. + eXzxx3 + DXZxX2 + axz + 1 = 0

as described in 2.4-I, II and III.

If one of the reciprocal roots is accepted then we have two accep-

ted roots, so the remaining two roots are calculated as described

in IV b, otherwise the former accepted root is not used. The number

of accepted reciprocal roots then determines whether further calcu-

lations are performed as described in IV, b, c ord.

if two roots are accepted by III (or Iv)

then the quotient second order polynomial is calculated and solved

as described in 2.2. |

if three roots are accepted by III (or Iv)

then the remaining real root is calculated using the fact that the

product of the roots equals d.

if four roots are accepted by III (or IV)

then no further calculations are performed by pzero.

5. Accuracy, time- and storage requirements

Sel. Accuracy

If an actual equation is ill-conditioned and you want the roots to a

specified degree of accuracy a much greater accuracy may be necessary

in the intermediate calculations. On the other hand a user is not sup-

posed to know anything about the conditioning of the actual equation,

so standard input to RCLOOO of 48-bits reals is used.

5.2. Time- and storage requirements

Approximate cpu-time used by pzero: (order - 1)x0.02 sec.

Codelength: 12 segments

Typographical length: 22% lines incl. last comment.

h, Test and discussion:

pzero has been tested on the RC4OOO computer with a testprogram which

performs

1) generation of order and coefficients

2) call of pzero

@ 5) ealculation of root generated coefficients of the polynomial

p(z) := PRODUCT(z - zi), 1:= 1, 2, ... , order

kh) calculation of relative differences between the original and the

root generated coefficients.

Now the smallness of the differences is chosen as a measure of the

goodness of pzero.

pzero has been tested with a large number of both prepared il1l-condi-

tioned coefficients and random coefficients input and in both cases

with satisfying results.

Some test examples (the eheck column describes the relative differen-

@ ces):

co

example number 1

given equation

coef(4)= 1.0000000000y

coef(3)= 1.0000000000%

coef(2)= 1.0000000000%

coef(1)= 10000000000,

coef(0)= 1.0000000000.

calculated roots

check

=5 82-11

5 82-11

=5090) ~H

0.00, 0

De51BOTINUBY = 1+7 62034175772 = =1

3e518079NN SH = 1-7 e20341 75772 2-1

=8.5180794N32, -149.1129213536y 9-1

85180794432, -1-961129213536y 89-1

example number 2

given equation

coef(4)= 1.0000000000.)

coef(3) =-6 .86192746721

coef(2) =-8 ,8228487860 5

coef(1)= 6.8619274672,

coef(0) =+1.17715121415

calculated roots

34309637339 =1

10000000000 fo)

304309637335y = =1

-1.0000000000 1 0)

example number 43

given equation

coef(4)= 1.0000000000,

coef(4) =-1 4215286873

coef(2)= 7.1429889252,,

coef(1) =-1 243694899111

eoef(0)= 8.5480296736y
calculated roots

44050104852,

44051469640, 0

hhos1eghehe, oO

929999999956, -1

6)

=

o
O

—

—

O
o

check

0.00, 0

~6 609-11

0.00% 0

0.00) 0

check

0.004 0

1.04 -10

3063 -10

6.97» -10

xi

xi

x1

XL

example number 4

given equation check

coef(4)= 1.0000000000, 0

coef(3) =-2.4628394422, O 4,32 -11

coef(2)= 2.7192690981,») O 0.00, 0

coef(1)=-1.22042538468, O 4.77» -11

coef(0)= 2.05400678555 -1 1442 -10

calculated roots

647204851918 = 1411559340115» «= -2 Xt
647204851918) = -1-1.1559340115y -3 xt

6474371201885 =14+1.1667236046, -3 Xi

® 667437120188, -1-1.1667236046, -3 xt

example number 5

given equation check

coef(4+)= 1.0000000000, 0

coef (3) ==5.9418329952, 0 0.00» 0

coef(2)= 1.3239517255" 1 0.00, 0

coef(1)=-1.3111166744 = =891 = 7010 -11

coef(0)= 48690226978, 0 2.439% -10

calculated roots

1485458289) 0

14844816864, 0

@ 1.4859465301n 0484572795336,
14859465301, — O-8.2145'72793336y

' im

xi

1 iE

XL

6. Complete algol text:

pzero=set 12

pzero=algol

external

message pzero,version 22/5-70,RCSL 53-Mi;

poolean procedure pzero(order, coef, root) ;

value order $3

integer order 3

© array coef, root;

begin

array arr(0:4);

integer accept,i3

real x,push,a,b,c,d3$

boolean ok$

procedure order;

begin

real a,b,c,d,x, push;

integer 13

push:=arr(3) /;

e:=((-3xpushx<2+arr(2)) xpush-arr(1))xpush+arr(0) 3

b:=(pushxarr(3) -arr(2))x2xpushtarr(1) 3

ats 3xarr(4)xx2/8t+arr(2) 3

if b<O then

begin

order3(2xa, axe-lxc, -bx<2) $

for 1:50,1+1 while root(i,2)<0 or root(i,1)<0 do;

xs=root(i,1)3

d:=b3

bs satx3

as=sqrt(x) $

xisd/a3

if abs(b-x)>abs(btx) then b:=b-x else

begin

b3=b+x3

asa,

end 3

b3=b/2

end elise

if axxe<ixe then

begin

bessqrt(c) 3

az=sqrt(2xb-a)

end. else

begin

bisatsen(a)xsqrt(acce-lxe) /23

a3=0

end 3

order2(a,b,1)3

order?(-a,if b=0 then O else c/b,3);

xtsabs push/8;

for 1:=1,2,3,4 do

if abs({root(i,1)-push)>x then

begin

accept: =I+accept 3

root(accept, 1) :=rvot(i,1)-push;

root(accept, 2) : =root(i, 2)

end 3

axites

@ end order

procedure crder3(a,b,c) 3

value a,b,c53

real Ayb, C$

begin

real puch,p,q,Fr;

push: =-a/33

ps =exxX2~3xXb $

q:=(-2xpushx<2+b) xpush+e 3

r3=(27Xc-ax(18Xb-4xarxx2))xe+bxx2x(4xb-axr2) 3

e if abs r<=((27xabs ctabs ax(18xabs bt+4ixaxx2))xabs ¢

+bxxex(4xabs btaxx2))x3-11

then

begin

d:=(axx2+3xahs b)x3y-113

Lf ptd<O then goto newton3

qz=if p-d<O then 0 else sgn(q)xsqrt(p)/3;

root(1,1):=roct(2,1) :=pushtq;

root(3,1):=push-2xq3

root(1,2) ssroct(2, 2) :=root{3, 2) :=03

goto exit

ends;

~ 10 =

newton:

ri=spush-sgn(q)x(if r<O snd p>=0 then 2xsqrt(p)/3 else(4xabs a) xx(1/3)) 3

for p:=((2xr+a)xmo2-c) /((3xr+2xa) xr+b),

((2xrta) xmoxr-c) /((3xr+2xa) xr+b)

while abs(p-push)<abs(r-push) do r:=p;

reot(1,1):=r3

root(1,2)s=03

pisarr;

Qi =bD+DXr 3

q:=if abs p<abs a/8 or abs q<abs b/8 then -c/r else q3

p:=if abs p<abs a/8 then (q-b)/r else p;

@ order2(p,q,2) 3

exit:

end order;

procedure crder?2(b,c, first) ;

value b,c, firsts;

real b,c3

integer first;

begin

real d3

ds =bxx2-4.xe 3

d:=sen(d)xsqrt(abe d);

@ if d<O then

begin

root(first,1) :=root(1+first,1):=-b/2;

root(first,2) :=4/23

root(1+first, 2) :=-d/2

end else

begin

d:=root(first, 1) :=(~b-sgn(b) xa) /2;

root(1+first,1):=1f d=0 then 0 else ¢/d;

root(firet, 2) :=root(1+first,2) :=0

end

end order23

@ accept:=0$3

ok:=pzero:=order>1 and order<5 and coef(order)<>0;

if -,ok then goto finis;

for i:=order step -1 until O do arr(+):=coef(1);

Lows

x:eif arr(1)=0 then arr(0) else -arr(0)/arr(1);

for i:50,1+1 while arr(i)-arr(1+i)xx=arr(i) do

if i=order-1j then

begin

for i:=0 step 1 until order-1 do arr(i):=arr(1+1);

goto eomb

end 3

x:=-arr(order-1) /arr(order) ;

r for i:30,1+1 while arr(i)xx-arr(i-1) =arr(i)xx do

iP it=order-1 then goto comb 3

goto normal;

comb :

reot(order,1):=x;

root(order, 2) :=03;

order: =order~1 3

if order>1 then goto low;

root(1,1):=-arr(0) /arr(1) 3

root(1,2) :=03

goto finis;

normal:

x:=arr(order) ;

@ for i:sorder step -1 until O do arr(1):=arr(i)/x;

case order-1 of

begin

ordera(arr(1),arr(0),1)3

order3(arr(2),arr(1),arr(0));

begin

order} ;

select: case accept of

begin

begin

arr(4) :=root(1,1)3

x:=coef(0) ;

@ for 1:30,1,2,3 do arr(i):=coef(4-1) /x;

accept: =03

-i1-

order:

if accept>] then

begin

for 1:=51,1+1 while i<=accept and 1<5 do

1f rcot(i,2)=0 then root(41,1):=1/root(i,1)

else

begin

x:=root(i, 1)xx2+root(1, 2) x2;

root(i,1) s=rcot(1+1, 1) :=root(i,1)/x3

root(i,2) :=root(i, 2) /x3

root(141, 2) :=-root(i,2);

1:=]43

end 3

end else

begin

root(2,1):=1/root(1,1) 3

root(1,1) s=arr(4) ;

accept :=2

end3

x:=coef(4) ;

for 1:30,1,2,3 do arr(i):=coef(1)/x;

gota select

ends

begin

d:=-root(1,1)-root(2, 1);

e:=root(1,1)xroot(2,1)-root(1,2) xroot(2, 2) ;

b:sarr(0)/c3

a:sif abs (arr(1)}/b-d)<abs (arr(3)-d)

then arr(3)-da

else (arr(1)-bxd) /c;

order2(a,b, 3)

end $3

~12-

-13-

begin

arszif root(1,2)=0

then root(1,1)x(root(2, 1) xroot(3,1)-root(2, 2) xroot(3, 2))

else root(3,1)x(root(1,1)xx2+root(1,2)xx2) 5

root(4,1):=arr(0)/a;

root(4,2) :=0

end; 33

end

end

end 3

finis:

) end pzero;

comment :

pzero(order, coef, root) calculates real and complex roots

of end, 4rd and ith order polynomials with real coefficients:

p(z)= coef(order) xzxxorder+.. .+coef(1)xz+coef(0).

pzero is false if order>4 or order<2 or coef(order)=0,

otherwise pzero is true.

order (call value,integer) specifies the order of the

polynomial.

coef (call value,array) specifies the coefficients of

@ the polynomial,

root (return value,array).

If pzere is true then root specifies the roots of

the polynomial: zi, i=1,2,...,order so that

Re zi = root(i,1)

Im zi = root(i,2) 3

end;

Title:

runge kutta

Ic & REGNECENTRALEN

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

RCSL No:

Edition:

Author:

31-D224

December 1972

Chr. Gram

Keywords:

RC 4000, Software, Mathematics, Diff. Equations

Abstract:

runge kutta solves a system of first ordinary differential equations with given initial
values by a fifth order Runge Kutta method with variable step size, error-control,

and flexible exit conditions. 21 pages.

Users of ~~ manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 wee prior notice. RC is os responsible for typographi-

. cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

34 -D22h

December 1972

Chr. Gram

runge kutta

RC 4000, Software, Mathematics, Diff. equations

runge kutta solves a system of first ordinary diffe-

rential equations with given initial values by a fifth

order Runge-Kutta method with variable step size, er-

ror-control, and flexible exit conditions. 20 pages.

1. FUNCTION and PARAMETERS.

Ruige kutta solves a system of first order ordinary differential

equations on the form

ax(j)/dt = f(t, x(1), x(2), ... , x(n))3 gj = 1, 2, ..., 7

with given initial values using the parameter t as integration variable.

The procedure heading is:

boolean procedure runge kutta(?, x, t, eps, dts, max, fstop);

value

integer

real

procedure

array

Call parameter:

eps:

eps ;

maxs

t, eps, dts, fstop;

A real variable.

The tolerance for the relative error, The procedure

tries to control the steplength such that the accumu-

lated relative error does not exceed eps*(b-a) where

bea is the length of the integration interval. eps must

be positive and should be chosen between 107! and 10711

depending on the accuracy wanted. It is recommended to

choose eps > ,,+8 because with smaller eps the proce-
= 10

dure may often use an excessive amount of work for on-

ly a slight improvements of the results.

Call/Return parameters:

Xs a real array, declared as: array x(1:n). The index

bounds must be 1 and n = the number of equations, re-

spectively.

On entry, x contains the initial values of the depen-

dent variables.

On exit, x contains the result, i.e. the values of

these variables at the point where the stop condition

is fulfilled.

If the lower index bound of x is not 1, the run is

terminated with the alarm message <:rungekut:>.

dts:

Return parameter:

runge_kutta:

Other parameters:

f:

a real variable.

On entry, t contains the initial value of the indepen-

dent variable.

On exit, t contains the final value at the point where

the stop condition is fulfilled.

an integer variable.

On entry, max denotes the maximum number of integration

steps to be performed by the procedure.

On exit, max contains the number of steps actually per-

formed counting accepted as well as rejected steps.

a real variable.

On entry, dts contains the initial step size. The pro-

cedure integrates in the t-direction given by the sign

of dts. If dts = 0, the entire length of the interval,

fstop-t, is used as first guess on the step size. On

exit, dts contains the estimated size of the next step.

This is useful if integration is continued by repeated

calls of the procedure.

On exit, the boolean procedure is true when the integra-

tion was succesful, i.e., the max number of steps was

sufficient. If the max number of steps was used before

reaching the stop criterion the procedure returns with

the value false, the parameters t and x containing the

current values.

A procedure with 3 parameters, declared with the hea-

ding:

procedure f(x, t, dxdt);

real t3

array X, dxdt;

The call

f(x, t, k)

where the array x contains the values of the dependent

variables and t the value of the integration variable,

must assign to k the function values, i.e.

k(j) = ft, X(1), eo 5 X(n))3 J = Tyeeeyne

Neither x nor t may be changed by the procedure.

fstop: A real expression used as stop criterion:

If fstop is constant, integration continues until

t = fstop, i.e., fstop is simply the final t-value.

If the value of fstop changes during the integration,

the procedure terminates when fstop = 0.

The parameter fstop is called once initially and once

per accepted step; the initial value may be zero with-

out terminating the integration.

2. METHOD,

2e1. Mathematical formulae

Tne fifth order Runge Kutta formulae used are derived by Zonneveld

[1]. They use 6 intermediate points in each interval and one additional

point for the error and step control, thus requiring 7 calls per step of

the procedure f.

The formulae are exact up to and including the fifth order term of

the Taylor expansion and gives an estimate of this last term, which is

used to determine whether the step should be accepted or not; at the

same time it is used to estimate the size of the next step as explained

below,

2.2. Termination.

The procedure may be terminated in four ways:

a) When + = fstop. This is used when integrating over a fixed interval,

say a to b3 the procedure should be called with b as the last parame-

ter, and with max sufficiently large.

b) When fstop = 0, If the value of fstop is not constant, integration

continues until fstop changes sign; then a zero-finding algorithm is

entered to find the point where fstop = 0. The algorithm is an adap-

tively adjusted weighting between regula falsi and bisection; it ite-

rates until the length of the root enclosing interval is smaller than

-4.

107 oO" wnere mu is the smaller of the 2 last accepted regular steps.

For details see comment 8 and 9 to the algorithm.

c) If the number of steps permitted (max) is exceeded, The return para-

meters of the procedure allow continued integration and this feature

may be used to monitor the integration of tricky functions: If you

call the procedure repeatedly with a small value of max, the calling

program gets a chance to react on intermediary values, if necessary.

This exit is also used to prevent the procedure from cycling:

There is no lower limit on the adaptive step length, hence you may

- unintentionally - call the procedure with parameters causing a very

lengthy integration with extremely small steps. The value of the pro-

cedure being false shows this to be the exit cause, and the parameters

t and x always contain the actually achieved values.

d) If the procedure is called with a second parameter X which is not an

array with lower index bound 1, the procedure immediately terminates

the run with the alarm message 'rungekut',.

2.3. Error Control.

Accumulated error estimate,

Tne error control algorithm tries to distribute the total error in

proportion to the total variation of the sought function x. It may be

shown that a suitable way is to adapt the step length dt such that

(2.1) [local error| as epsxdt*(variation(x) + eps*|x|);

Under certain hypotheses on the function x(t) this leads to an accumula-

ted error over the interval (a, b) which approximately satisfies

(2.2) [SSosecrror | as eps « |b - al

If the length of the integration interval |b-a] always were known at

call time, this factor might be included in the step length algorithm.

- 5-

But |b~a.| is not known when integrating with a variable fstop parameter,

and aS a consequence the procedure always works in accordance with (2.1)

and (2.2).

When integrating a system of equations, say n equations, expressions

(2.1) and (2.2) are substituted by

local error |

(2.3) max |saceseton(a}FepseTa]| 7 eps * at

The formula in [1] doesn't give the local error, but estimates the 5th

© order term in the Taylor series by

Sth order term = (kO*21 ~ k2*162 + k3¥22k — khe125 + k5*42)/1b

but since the formula for y is exact up to and including this 5th term

it is reasonable to use the estimate

local error = 5th order term * dt

and hence (2.3) becomes

(2.5) max |ponng oth order term | . n '(Cvariation(x)+eps*]x])¥eps”

Aceept criterion

For each equation the procedure calculates, in every step,

(variation(x) + eps*abs(x)) * eps s =

f = abs(5th order _term)/s

and

sft = max(f), max over all equations.

In accordance with (2.5) the step is accepted if sft <= 1, and rejected

otherwise. In the extrapolation algorithm for the length of the next

step the procedure tries continuously to keep sft slightly smaller than

1, thus safely fulfilling (2.5).

Step estimation after reject (sft > 1).

In sft the denominator s may be considered locally constant and

hence we have appr.

sft = some constant * h*x*5 ,

Therefore the new, optimal step length should be

(2.6) bnew =h * %/ 1/sft
put because of slightly easier calculation and in order to introduce a

safety margin the following formula is used instead:

hnew = 0.95 * h « Mi /ste .

Remark: Because the procedure is especially suited to integrate tricky

equations the formula is deliberately chosen so that the step length may

become arbitrarily small.

Step extrapolation after accept (sft <= 1).

The optimal new step length is again given by (2.6), but since sft

may become arbitrarily small - or even equal to zero - this extrapolation

is replaced by a formula giving a reasonable limited maximum growth of

h and behaving like (2.6) in the neighbourhood of sft = 1. Following

Zonneveld [1] we approximate > Si/ste by

(2.7) m =1/(1 + sft) + 0.45

with the range 0.95 to 1.45 instead of i to infinity, and modify this by

using a one step memory in the algorithm: the last accepted values of m

and h are kept and used in the final extrapolation

(2.8) hnew = h * (h/h_old*m +m - m_old) .

The effect of equation (2.8) is to introduce an 'overrelaxation' based

on the development of h and mu over the last two steps: If h_ old <h and

ma old < mu, then hnew will become larger than estimated by (2.6) or

(2.7): if e.g. sft = 0 over several steps, then h will grow approximate-

ly as 1, 2, 5, 18, 97, .«.. If, on the other hand, sft = 1 over several

steps, equation (2.8) cautiously makes h smaller slowly: mi is 0.95 stea-

dily and h will diminish approximately as 1, 0.8, 0.6, O.45, we.

2.4. Round-off errors.

It may be shown that even when all. arithmetic operations are per-

formed with correct rounding, as in RC4OOO, the accumulated round-off

errors in the summation of x-values are reduced considerably by using

quasi-double precision; see Mdller [2]. Therefore the summation of t and

x is done using quasi-double precision.

Since this works equally well in 36-bits and in 33-bits arithmetic,

the procedure gives almost.identical results when working in the low and

in the high precision mode of RC4O00: When working with large values of

eps, eps >= 107! the results from the tests are identical in low and in

high precision; with eps < 107!" the procedure often uses more steps in

the low precision mode, but the resulting errors are in many cases the

same as in the high precision mode.

3, TIME and STORAGE REQUIREMENT

The procedure uses 60 + 12 * N local variables (reals) and 1 local

procedure with no parameters. The translated procedure has a length of 6

segments,

The execution time for the procedure itself is approximately + 7N

msec per step where N is the number of equations. The figure includes

call of the f-procedure but the time for executing the body of this pro-

cedure must be added (it is called 7 times per Runge-Kutta step).

4, EXAMPLES of USE.

Problem 1: Solve two differential equations, say,

y' = t + sin(y-z)

z' = t/y

over the interval 0.5 < t < 3.5 with initial values y(o.5) =1,

z(0.5) = 2, and with a relative error smaller than 1 promille. The solu-

tion is wanted for t = 4.5 only.

Solution 1: The program structure of the solution is as follows:

1) In the program block head is declared:

integer Max;
real t, dt;
array YZ(1:2)3
procedure Fi(x, t, dx);
array x, ax3 real t;

begin

dx(1) := t + sin(x(1) - x(2));
dx(2) := t/x(1);

end;

2) The procedure is then called:

@ t= 0.53 dts= _.-23 Max:= 600;
YZ2(1):= 13 vZ2(2P:= 25
if -,rungekutta(F1, YZ, t, 10

then begin

comment: error action;

end3

-3, dt, Max, 3.5)

After this call YZ(1:2) contain the solutions y(3.5) and z(3.5), Max

contains the number of steps used, and dt the last estimated step size.

Problem 2: The solution to problem 1 is wanted printed out for t = 1,

125, 2,5 e@eo 9 3.56

Solution 2: With the same declarations as above the procedure is now

called inside a loop:

@ t= 0.53 dtr= 223
YZ(1):= 13 Yz(39:= 2;
for tsluts= 1, 1.5, 2, 2.5, 3, 3.5 do
begin

Max:= 1003

if -, rungekutta(F1, YZ, t, 10
then begin

comment: error action

ends

write(..., YZ(1), YZ(2), ...)3
end;

-3, dt, Max, tslut)

Problem 3: The solution to problem 1 is wanted at the point where y has

a minimm, i.e., where y' =0,

Solution 3: With the same declarations and initialization as in solution

1, the procedure is called with the same parameters except for the last

@ ones

if -, rungekutta(F1, ..., ¢ + sin(¥Z(1) - ¥Z(2))) then --- 3

Problem 4: In order to analyze the behaviour of the procedure on the

differential equations of problem 1, a printout is wanted for every 10

steps of integration.

Solution 4: With the same declarations as above the procedure is called as

follows:

t3= 0.53 dts= 23
yZ(1):= 13 YZ(29:= 23
for t:= t while t < 3.5 do

begin

Max:= 103

rungekutta(F1, YZ, t, .,-3, dt, Max, 3.5)3
weite(out, ses, t, YZ1), YZ(2), ..)3

end 3

.

- 10 -

5. TEST

The procedure was tested on Several examples among which were:

Test 1: The three equations

yl' =y2, y2' = y3,

yo! = 2 * (y1*y3 + y2*x2)
over the interval 0 < t < 1.5 with the initial values

yl=0O,y2=1,y520.

The solution is y1(t) = tg(t), which tends to infinity. At t = 1.5

the values are appr. yl = 14, y2 = 184, y3 = 5000.

6: The two equations Test

yi! = y2 * y1¥*2 ,

y2! = - 1/y1

over the interval O<t< 4 with initial values y1 = y2 = 1. The

solution is

y2(t) = cosh(t) - sinh(t) = exp(-t)

y1(t) = 1/y2(t) = exp(t)
As cosh(t) and sinh(t) approach each other, y2 grows rapidly and y1

disappears, At t = 4 their values are yl = 55 and y2 = 0.02,

3: One equation Test

Test

y! = texp * (1-t)4¥q
over the interval 0 < t< 1, where p and q are given integers, and

with the initial value y = 0. The solution is the betafunction with

y(1) = B(pti, qt1). The test was run with p = q = 4 and with p = 2h,

q = 49. The solution y(t) has extremely small variation, in the

-21, but the first case appr. -3 and in the second case appr.
10 10

higher derivatives vary much more,

5: The Volterra equations

yi! = axyl - b¥*y1*y2

ye! = cxyl*y2 - d*y2

over some interval 0 <t<T, where a, b, c, and d are given con-

stants, and with given initial values. The solution is periodically

oscillating in both variables representing the growth of two con-

flicting populations.

-11-

The tests were mainly concentrated on the following points of in-

terest:

Step-correction algorithm: Several algorithms were tried, including the

one proposed by Zonneveld [ref. 1] and the one used in the Gier Algol

procedure [ref. 3]. Finally the present one was selected as the best in

the sense of minimizing the number of steps required to obtain a certain

accuracy.

Eps and the resulting error: As developped in chapter 2 above it is ex-

pected that the parameter eps and the resulting error are related appr.

as follows

Error = C * eps * vartation(y) * (b-a)3

In all the tests except Test 3 this linear relationship was confirmed,

and with a constant C between 0.1 and 0.02. Test 6 was the only case with

C>1, namely C 100. Test 3 with p = 24 and q = 49 showed a more irre-

gular relationship between Error and eps but still the accumulated error

fell below the expected value with C = 1.

Precision of the arithmetic: Several tests were carried out both with the

normal 36-bits precision floating-point arithmetic and with 33 bits pre-

cision, The results were almost identical but for small values of eps,

107° and 1072? the procedure used more steps in the 33 bits mode. This

may be explained as follows: The results are almost the same because the

quasi-double precision works equally well in 36 bits and in 33 bits mode

and, in fact, makes both of them look like a (40-50)-bits mode. But in

the error control the calculation of the local error estimate is distur-

bed considerably by the rounding to 53 bits mantissa.

Comparison with other methods: The criterion used for comparison is the

number of function evaluations (= calls of the f-procedure) plotted

against the accumulated error (relative or absolute).

For nice, smooth solutions it uses almost twice as many function

evaluations as a good version of the Hamming predictor-~corrector proce-

dure. In more 'difficult' cases (e.g., large higher derivatives) they

perform equally well, by and large, but the predictor-corrector is more

dependant on a judicious choice of initial step length; the Runge-Kutta

procedure gives almost identical results for a wide range of initial step

lengths.

- 12 -

In [4] a number of methods were compared and one of the test pro-

plems were Test 6. For large values of the error (> 5407) the present

procedure performs very much like the extrapolated Runge-Kutta Arromx of

[4]. For smaller errors it works considerably mich better than any of the

cited procedures but this may be due to a better floating-point arithme-

tic: 36-bits and quasi-double mode compared with the 28-bits precision of

[4].

6, References.

[1] J.A. Zonneveld: Automatic Numerical Integration.

Mathematical Centre Tracts 8, Amsterdam 1964.

[2] 0. M¢ller: Quasi Double Precision in Floating Addition.

BIT 5 (1965), 37-50.

[3] A. Jessen: Similtaneous First Order Differential Equations:

runge kutta general procedure.

Gier System Library No. 522, A/S Regnecentralen 1969.

[4] Phyllis Fox: A Comparative Study of Computer Programs for integra-

ting Differential Equations.

Comm. ACM 15 (Nov. 1972), 941-948.

7. THE ALGORITHM

runge kutta=set 6
runge kutta=algol index.no
external

boolean procedure runge kutta(fx,x,t,eps,dts,max, fstop) ;
value eps; ~
integer max;

real t,dts,fstop,eps;
procedure f£x3
array X$3

begin integer n3;
if system(3,n,x)<>i then system(9,0,<:<10>rungekut:>) ;

begin integer i,nt;

poolean tstop,first;
real cO0,c1,e0,e2,e3,e4,e5,dt0,dt,ho,

h,m0,mu,b,sft,t1,qt,d,f,q,w,s3
array a(0:27),dv(0:6) ,qx,x1,dx,11,ul(1:n),k(0:6,1:n);

procedure evaluate;
begin integer ic,it,1,to;

real v3

boolean last;

it:=03;

vsti;
for to:=0 step 1 until 6 do
begin fx(x,v,dx) ;

last: =to>5 3

Lts=sit+to3
for t:=n step -1 until 1 do
begin k(to,1):=dx(1)*dt;

vi=03

for ic:=to step -1 until 0 do

viek(ic,i)*a(ittic)+v;
if last then dx(i):=v:=v+qx(i);
x(1) s=x1(1)4+v

end3$

vi=dv(to) xdt+qt+t1
end 3

ti=Vv

end evaluate;

- 13 -

comment 1: initialize;

for i:=0 step 1 until 27 do
a(i):=case i+1 of (2/9,

1/12 1/4 ,
1/8 ,0 » 3/8 ,
53/125 4-27/25 126/125 ,56/125 ,
19/2h,-9/ 523/1h = 2/3 ,25/168 ,

-9/4 27/4 »-9/7 97 925/14 9 ’
35/336 0 »81/168 0 125/336 ,0 11/24)

for i:=0 step 1 until 6 do
dv(i):=case i+1 of (2/9,1/3,1/2,4/5415151)3

e0:=3/23 e2:=-81/73 e3:=163 e4:=-125/143 e523;
for is=n step -1 until 1 do
begin ax(i):=03

11(4) :=u1(4) s=x1(1) s=x(1)
end 3

nt:=max;

cl:=cO:=fstop3
t13=t35

atO:sdt:=if dts=0 then (c0-t1) else dts;
tstop:=true;
runge kutta:=true3
mu:=1.05$3
qt3=05

for nt:=nt-1 while nt>0 do
begin comment 2: main loop;

evaluate 3

comment 3: error estimate;

sfti=, 4-103
for i:=n step -1 until 1 do
begin ss=x(i)3

if out then wate} iss else
if s<il(i) then 11(1):=s3
s:=(ul(i)-11(1i)+epsxabs s+,_-500) eps;
f:= (abs(k(0,1) *e0+k(2, 1) *d24k(3, 1) xe3+k(4, 1) xel+k(5, 1) xe5)) /s
if f>osft then sft:=f3

end $3

if sft<x=1 then

begin comment 4: accept;

e1:=fstop$

if tstop then
begin tstop:=c0=cl;

if tstop and (ci=t or dt*dt0<=0) then goto slut
end

else if cO*c1<O0 then goto slut;

cO:= cl$

-14-

3

comment 5: new dts;

m0: =u $

mi:=1/(1+sft)+0.453
bssdt/dt0o;
83=dt0O;
ato: =dt;
at: =(bxmatm-mu0) «dt;

comment 63

qt:=dt0+qt-(t-t1) ;
tis=st;

if tstop and (cl-t-qt) /dt<1 then dt:=c1-t-qt;
for i:=n step -1 until 1 do

begin

ax(i) :=dx(i)-(x(4)-x1(4));
x1(4) s=x(1)

@ end

end accept

else

begin comment 7: reject;

for is=n step-1 until 1 do x(i):=«x1(1);
ar=sqrt(sart(sft)) ;
first: =dt0=dt;
at: =dt*0.95/q3
mu: =m*2xq/(q+1) 3
if first then dt0:=dt;

end reject

end main loop;
runge_kutta:=false;

sluts

max: =max-nt 5

dts:=dt0;
@ if cO0*c1<O then

begin comment 8: terminating step;

t=q:=wi=b:=0.993
f:=h0:=0;
h:=dt:=dt0;

mu:sabs(if s/h<1 then s else h);
for s:=h-hO while abs s>(abs att) +, 978 do

begin comment 9: zero determination;

f:=b;

bi sc0+e1 5

for is=m step-1 until 1 do x(i):=xi(1);
if f*b<O then begin w:=q3 q:=d end;

- 15 -

dssb/(cO-c1) §
:=(dxw-1)*s/2th;

cyanate;
f:=fstop;
if f=0 then h:=dt;
if cO*f<0 then
begin cl:=f3 h:=dt end else
begin cO:=f3 hO:=dt ends;
d:=w:=((if b*xf>O then 1-w else -0.8)*0. Qxabs a+1)*w

end zero determination;
if cOxf>0 then
begin dt:=h;

for is=n step-1 until 1 do x(i):=xi(1i);
evaluate 5

end

end terminating step

end inner block
end rungekutta;

- 16 -

8, COMMENTS

-17-

The main variables of the procedure are:

A(0:27), DV(0:6), e0, e2, e3, e4, e5: Coefficients from the Runge-Kutta

x1(12n):

dx(1:n):

gx(1sn):

11, ul(1:n):

dt:

dato:

tis

qts

sft:

mu, muds

el, cO:

tstop:

formulae 5

Old values of x3

Actual increments of x, such that x(1) = x1(i) + dx(i);

Accumulated rounding errors of x3

Lower and upper limits of x since entry, hence

ul(i) - 11(1) is the variation of x(1i);

New step length estimate;

Last accepted step size;

Last value of t, the integration variable; i.e., ti is

the endpoint of the last accepted step and t is the end-

point of the step being tested;

Accumilated rounding error of t3

Step accept criterion;

New and old value of step size relaxation factor;

New and old value of the stop criterion fstop;

true if fstop = constant, false otherwise.

comment 1: The array A is initialized with the coefficients of the Runge-

Kutta formulae for k(1), k(2), ... of [1]. (Note that coefficients

for k(6) precede those for k(5).) DV is initialized with the fac-

tors on h corresponding to the k-s. e0 to e5 contain the coeffi-

cients of the error estimate formula. The accumulators qx(i) and

qt for the quasi double precision errors are reset. The lower and

upper limits of variation 11(1) and ul(i) and the 'old' value of x

x1(i) are all reset to the initial values x(i). The present and the

old step length estimate, dt and dt0O, are set equal the entry value

of the parameter dts; if this is zero the total length of the inte-

gration interval is used as first guess.

\

comment 2, Main loop: Here starts the main loop with one eyele per step.

The loop consists of

- function evaluation,

- local error estimate,

- actions when a step is accepted or actions when a step is rejected.

- 16 -

comment 3, Error estimate: For each component x(i) the lower and upper

limit is updated, the Runge-Kutta error estimate f is calculated in

accordance with (2.5). The maximum over all components x(i) is de-

noted sft.

comment 4, Accept: The new step dt is accepted, x(i) contain the corre-

sponding new x-values. The first action is to check the stop crite-

rion: If fstop = constant, tstop is true and integration continues

until t = fstop; the double if-statement ensures the correct setting

of tstop in the first steps; the condition dt*dto < 0 ensures exit if

the procedure is called with a dts much larger than the integration

interval or if the step length extrapolation yields a crazy result.

If fstop is not constant, exit is made when its sign changes

(cO*e1 <0).

comment 5, New dt: The size of the step just accepted is stored as dto,

and a guess for the next step is calculated according to (2.8).

While the very last step dt may be very small in order to ‘hit!

exactly t = fstop, dtO always contains the last, normally calculated

and accepted step length. Therefore dtO is used to set the return

value of dts after the last step.

comment 6: The following statements perform the quasi double precision

arithmetic on t, using qt as error accumilator, and on x(i) using

qx(i) as error accumlators. If the estimated new step length dt

overshoots the goal t = cil, dt is regulated accordingly. Finally t1

and x1(i) are updated.

comment 7: The step is rejected, x(i) are reset to the old values x1(i)

and a smaller step length dt is calculated according to section

2.5. Furthermore mi, which in the next accepted step will be used

as 'old value' mu0, is increased a little; this will make the dt-

extrapolation after the first accepted step a little more cautious.

In case the very first step is mich too large and hence rejected,

dtO has to be re-initializeds this is done in the last statement of

the loop, where dtO = dt is used to indicate the first step.

-~ 19 -

comment 8, Terminating step: This section is entered only for variable

fstop, in order to interpolate over the last accepted step to find

the t-value and corresponding x(i)-s for which fstop = 0. The va-

riables have the following contents (snapshot values) just before

entering the interpolation itself (the statement: for s:= ...)

t1, x1(1i): Old accepted values where fstop still had the origi-

nal sign, say fstop = c0 > 0.

t, x(i): Newest calculated point, where fstop = cl <0.

h= dtO = distance from t1 to t.

d, d, Wy, bs Contain initial values for different weights and

coefficients used in the interpolation.

] comment 9, Zero determination: t1 is used as the fixed base point. The

end points of the 'newest' root-containing interval are ti + hO and

+1 + h where fstop has the values cO and cl; s =h - hO is the

length of this interval. The next point tested for fstop = 0 is

t1 + dt, where dt is a weighted mixture of a bisection dt =h - 8/2

and a slightly modified regula falsi dt =h + (cO + c1)/(cO - 81)

* 8/2.

Title:

solineq

Js 8 REGNECENTRALEN RCSL No: 53-M17

c Edition: November 1970

A : :
RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F uthor: Tove Ann Aris

Keywords:

RC 4000, Software, Mathematics, Linear Equations, Algol Program

Abstract:

The Program solves a system of linear equations after test of input. 9 pages

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 oo i notice. RC is not responsible for Ks eeu

° cal or arithmetic errors which may appear in this manva

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented.

solineq - 1 -

input:

The procedures decompose and solve, RCSL No. 53-MT13

must be present in RC4O00 before the solineq tape is input
by the command i tre.

Program call:

The program is called by the command solineq datasource ,

e.g. solineg tre. Output will appear on current out. Data is

tested by the program.

Data:

n : number of equations

m number of right-hand sides

coefficients of the equations a(1sn, 1:n)
right-hand sides b(1 sn, 12m)

output trim : - (minus) = standard trim is used,
which means output of input data

and solutions with max 0 lines

per page, max 80 characters per
line and 7 digits per number

or
4h numbers: inputout

lines per page

characters per line

digits printed in output.

inputout=0: input data is not printed

inputout=1: input data is printed

20<=lines per page<=100
ho<=characters per line<=130
3<=digits in output<=11.

Standard trim is 1,70,80,7

Examples:

data set:

2 1

Tel &
1.8 2.3

8.1 17

program call:

o tpf

soling trf

punch output:

Data:

exe matrix

@& 1,1% 72100000, 0 a 1,22 4.000000, 0

a 2,1= 1.800000y 0 a 2,2= 2.300000» 0

right-hand sides:

b1i= 8.100000n 0 p2= 1.700000 1

SOLUTIONS

x1==5.407448,, 0 X2= 1.1625225 1

data set:

n=

{ WN

oO
O
N
=
A
S
C
O
U
F
O
I
-
o

=
O
U
D
”

U
E

E
e
e

I
E
W

A
=

A
k
u
 OO

A
n
r
F

F
A
M

W
U
A
W

o
A

W
o
u
e
D

F
A
N

O
n
o
n
m
u
n

ON

(oe
)

program call:

soldata=set 5

soldata=edit trf
f
o ip

solineq scldata

printer output:

SOLUTIONS

set no 1

x1= 2.95n-1 x2= 261 lx» 0 xX3=-1 Sy 0

X5= 1.46y=2 XO2-6,. 399-2

set no 2

X1= 2.17 n-1 X25 2.51 0 = x3B=@7 94-1
X5==3 089-1 x6=-1 87-1

set no 3

X1= 1239-1 x2= 2,24, 0 x3=-4.,80y-2

x55=6 509-1 x6>=3.10y-1

solineq - 2 -

xyes. 1 . pee |

x4=-1 05-2

xh= 1 «13-1

solineq - 3 -

Program listing:

(clear solineq
solineq=set 36
solineq=algol
end)

begin

comment program for solving a system of linear equations by

means of two standard procedures : decompose + solve.3

integer n,i,j,m,M,k,k1,ke,k3,digits,spi,
linesperpage, charperline, linespergroup, nosperline, linesleft, blines 5
real r,rn,rm,rr, lay, lay1, lay2;
boolean first, consolinput, inputout, error,b1,biga,bighb, sp;
array arr(1:2)3

procedure changepage(left, wanted); integer left, wanted;
begin

if left<wanted then

begin

linesleft:=Linesperpage 3

write(out,<:<12:>) ;
end

end changepage $

procedure alarm(r,s); real r3 string s;
begin integer i3

is=r3

write(out,<:10>:>) 3
if i=r then write(out,i) else write(out,r);
write(out,s,<:<10>:>) 3
error: =true

end alarm;

procedure notused3;

begin boolean first;
integer i, j3

first: =true3

repeatchar(in) ;
rep:

i:sreadchar(in, j);
if -,consolinput and j<>25 or consolinput and j<>10 then
begin

if first then

begin

if j=1C or j=32 then goto rep

else write(out,<:<10>Following was not input: :>)
ends

first:=false$3
write(out, false add. jy 1) sgoto re

end
end notused ;

solineg - 4 -

procedure testnandms;

begin

n:=rn;
if rm<on or n<1 or n>200 then

alarm(m,<: is not an acceptable value of n:>);
Ms=rm35

if M<1 or M>100 or Mcrm then

alarm(rm,<: is not an acceptable value of m:>);
if error then goto STOP;
system(2,i,arr);
j2=0xn+tlpnxMebxnxnt200 §
if joi then
begin

write(out,<:<10>A dataset of n= :>,<<d>,n) 5;
ward seh out < and m= :>,<<d>,M)3
write(out,<:

is too big for this process and will result in a stack message.

In this case you should increase your process by approx.<l0> >,

<<d>, 100xround((j-i)/100),
<: bytes or preferable more<10>:>) 3

end 3
end testnandms;

procedure testmatrix(c,n,m,k, name, big) 5
array c3 integer n,m,k3 string name; boolean big;

begin integer i,j; boolean first;

first: =true;
big:=false;
for i1:=1 step 1 until n do

for j:=1 step 1 until m do
if c(i, §j)>)616 and ixj<=k then
begin

if first then write(out,<:<l0>Dataerror in matrix:>,
name,<:<10>Illegal number in element::>) 5

write(out,<<dd>,<:<10>:>,1,<:, >, J);
error :=true ;

first:=Palse;

end

else if c(i, j)>9.99x9 then big:=true;
if -,first then
begin

write(out,<:<10><10>:>) 3 setposition(out,0,0) ;
ends

end testmatrix;

begin integer array ia(1:20)3
getzone(in, ia);
ri=r shift 24 add ia(2) shift Ob add ia(3);
consolinput:=r=real<:conso:> add 108 or

rsreal<:termi:> add 1103

end

error:=false;

i:=read(in,rn,rm);
if i<e2 then
begin

write(out,<:<10>empty reader<10>:>) ;

solineg - 5 -

if i=1 then
begin

© ni=rn3
write(out,<:n=:>) 3
if n=1m then write(out,n) else write(out, rn);
write(out,<:<10>no input to m:>) ;

end 3

goto STOP

ends

testnandms

begin array b(1:n),a(1:n,1:n),bm(1:n,1:M);
integer array p(1:n)3

inputout:=true $

linesperpage:=/03

charperline:=803
digits :=7 5

sp:=false add 323

@ k:=read(in,a);
k1:=read(in, bm) ;
rs 1005

k2:=read(in,r) 3
if k2=1 and r<p616 then k3:=read(in,m,rm,rr) else k3:=03
notused;

if k<onxn then

begin

write(out,<:<10>:>,<dd>,k,<: elements input to matrix,
should be nXn=:>,nxn) 3

error: =true 3

ends;

testmatrix(a,n,n,k,<: a:>,biga) ;

if kl<ommM then
begin

write(out,<:<10>:>,<<dd>,k1,
@ <: elements input to right-hand sides,

should be nxXm=:>,nXM) ;
error: =true $

end

testmatrix(bm,n,M,k1,<: b:>,bigb) 3

if k3=1 or k3=2 then write(out,<:
output trim should be O or 4 and not:>,<<-d>,k3+1,<: numbers:>) 3

if k2=1 and r<y616 then
begin

if roo and r<?1 then

begin

i:=r3
write(out,<:<10>inputout must be either O or 1 and not:>)3
if i=r then write(out,i) else write(out,r);

end
else inputout:=r=1;

@ end3

solineq - 6 -

if k3>0 then
begin

is=rn;
if i<om or i<20 or 1>100 then
begin

write(out, <:<10>:>) 3

if i=rn then write(out,i) else write(out,rn);
write(out,<: is not acceptable as lines per page:>) 3

end

else linesperpage: =1 §

ends

if k3>1 then
begin

Ls=rms

if i<orm or i<40 or 1>130 then
begin

write(out,<:<10>:>) 3
if i=rm then write(out,i) else write(out, rm) ;
write(out, <: is not acceptable as characters per line: >)3

end
else charperline:=13

ends

if k3=35 then
begin

i:=rr3;

if i<orr or 1<3 or i>ll then
begin

write(out,<:<10>:>) 3
if i=rr then write(out,i) else write(out,rr);
write(out,<: is not acceptable as digits in output:>);

end

else digits:=1;

end3

if error then goto STOP;

ki:=if n>9O then 1 else 03
i:sdigitstki+(if biga then 12 else 11)3
charperline:s=charperline-i $
nosperline: =charperline//(i+1)+1;
if nosperline>n then nosperline:=n 3

sp1:=(charperline+i-nosperlinexi) //(nosperline-1)-13
if spi<O then sp1:=0 else

if spi> then sp1:=;
linespergroup: =(n//nosperline)+

(if n mod nosperline =0 then 1 else 2)3
plines:=3+Mx(linespergroupt(if Moi then 4 else 0));
linesleft:=Linesperpage $3

layi:=sreal(case digits-2 of(
<Knd,ddy-d>,<<-d. dddy-d>, <<-d.ddddy-d>,
<K<-d. dddddy-d>,<<-d.,ddddddy-d>,<<-d. dddddddy-d>,
<K-d, ddddddddy-d>, <<-d, dddddddddy-d>, <<-d. ddddddddddy-d>)) ;

lay2:=real(case digits-2 of(
<K-d.ddy-dd>,<<-d.dddy-dd>,<<-d.ddddy-dd>,
<ked., dddddy-dd>, <<-d. ddddddy-dd>, <<-d, dddddddy-dd>,
<<-d, dddddddd,)-dd>, <<-d. dddddddddy-dd>,
<<-d. ddddddddddy-dd>));

solinegq - 7{ ~

if inputout then
begin

begin

write(out,<:<12><10>
Data:<10><10>3>,<<d>,n,<:X:>,n,<: matrix:>) 3

linesleft:=linesleft-43
lay:=if biga then laye else lay’;

for i:=1 step 1 until n do

begin

write(out,<:<10>:>) 3
for j:=1 step 1 until n do
write(out,if j mod nosperline=! then <:<10>:> else <::>,

sp,if j mod nosperline=1 then 0 else spiti,<ias>,

<<dd>,i,<:,:>,<<d>,j,if n-9 and j<i0 then <: =:> else <:=i>,

string lay,a(i,§))3
linesleft:=Linesleft-linespergroup3

changepage(linesleft, linespergroup) ;
end}

if blines<=Linesperpage then changepage(linesleft, blines) 3

changepage(linesleft, linespergroup) 3
if M>1 then linespergroup: =Linespergroupt4 3

write(out,<:<10><10><10>right-hand sides: :>) 3
linesleft: =linesleft—43
lay:=if bigb then lay2 else layi;

for j:=1 step 1 until M do
pegin

if M>1 then write(out,<:<10><10><10>set not>,Jj,<:<10>:>) 3
write(out,<:<10>:>) 3
for i:=1 step 1 until n do

write(out,if i mod nosperline=1 then <:<10>:> else <::>,
sp,if 1 mod nosperline=1 then 3 else spl-i1+(if
then 3 else if biga and -,bigb then 4 else 5),

-,biga and bigb

<:bs>,<<d>,i,if n>9 and i<iO then <: =:> else <:=i>,

string lay,bm(i,j));
linesleft:=lLinesleft-linespergroup
changepage(linesleft, linespergrour) 3

ends

write(out,<:<10>:>) 3
linesleft:=Linesleft-1 3
if M>1 then linespergroup:=linespergroup-443

ends

ends

b1s=true;

if -,decompose(a,p,1) then
pegin

write(out,<:<10>The given matrix is singular<10>:>) 3
goto STOP

ends
if M>1 then linespergroup:=linespergroupt43
for m:=1 step 1 until M do

begin

for i:=1 step 1 until n do b(i):=bm(i,m);
solve(a,p,1,b) 3
bigb:=falses; for i:=1 step 1 until n do if b(i)>9.9;9
lay:=if bigb then lay2 else lay;

then bigb:=true;

— solineg - 8 -

if b1 then

begin

if -,inputout then write(out,<:<12>:>) ;
if blines<=linesperpage then changepage(linesleft, blines) 5

changepage(linesleft, linespergroup) ;
write(out,<:<10><10><10>:>,false add 32,

nosperlinex(12+spi+digits)//2-8,<:S OLUTION Ss);
linesleft:=Linesleft-3 3

ends

if Mc1 then write(out,<:<10><10><10>set no:>,m,
<:<10>:>) else write(out,<:<10>:>) 5

for i:=1 step 1 until n do

write(out,if i mod nosperline=1 then <:<10>:> else <tt>,
sp,if i mod nosperline=1 then 3 else spi-1+(if -,biga
and bigb then 3 else if biga and -,bigb then 4 else 5);

<:xi>,<<@, i,
if n>9 and i<iO then <: =:> else <:=:>,

string lay,b(i))3
linesleft:=Linesleft-Linespergroup 3

changepage(linesleft, linespergroup) 5
bi:=falses$

end m3

write(out,<:<10><10><12>:>) 3
end of blocks

STOP:

end

Title:

6 solvesym

eS (a a REGNECENTRALEN RCSL No: 53-Mé (PG1)
e : Edition: November 1969

Author: P. Mondrup
RC SYSTEM LIBRARY: FALKONERALLE | DK~-2000 COPENHAGEN F

Keywords:

RC 4000, Software, Mathematics, Algol Procedure

Abstract:

The boolean procedure solvesym solves a set of n linear algebraic equations with

symmetrical coefficient matrix. Only the iower half of the matrix has to be

supplied. The procedure value will indicate whether the matrix is singular or not.

8 pages. :

Users of this manual are cautioned that the specifications *
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-

. cal or arithmetic errors which may appear in this manual
Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by

reliance cn any of the materials presented.

boolean procedure solvesym(n, m, A, X)3

1. Function and parameters.

The procedure solves the generalized linear algebraic equation

MXX=B

where M is a symmetrical n Xn matrix of coefficients, Bis a givenn Xm

matrix and X is the unknown n X m matrix.

In this procedure X and B are stored in the same array X, B on entry

and X at return.

The lower half of M(1:n, 1:n) is stored in an array A such that

Ms, r) = Mr, s) = A(rx(r-1)//2 + 8). s <= 7.

If Mis singular then the procedure will come out with the value

false, For each degree of degeneration one of the diagonal elements in

M, say A(sx(s+1)//2), is zero, and the corresponding elements of X,

X(s, k), k= 1, 2, oe, m, must be zero or very small if the given equa-

tion MX X = B has a solution,

Procedure heading:

boolean procedure solvesym(n, m, A, X)3

value n, m$

integer n, m3

array A, X;

Call parameters:

integer n The number of equations.

integer m the number of right sides,

real array A(1:mx(nt+1)//2) the lower half of the coefficient matrix

Mr, s) = M(s, r) = A(rx(r-1)//2 + s), 5 <=r.

Call and Return parameter:

real array X(1:n, 1:m) is the right sides at call and the solutions at

return.

Return parameter:

boolean solvesym. false if A is singular, true if A is nonsingular,

2. Mathematical method.

The method is the usual Gauss reduction with diagonal pivoting. The

pivoting criterion is the following:

In each step a new pivot index r is selected among the not used in-

dices so that

abs M(r, r) / max abs M(r, s)

attains its maximum; and the reduction is carried out in the usual way

by making the r’th colum = 0 under the diagonal. However, if all pos-

sible diagonal elements are zero this can not be done. In that case an

index r is found so that

max abs Mr, s)

str

attains its minimum.

If this minimum is zero then the whole row is zero and the matrix is

singular. In this case the procedure value is set to false and the corre-

sponding r is set to ’has been pivot element’, and the search for another

vr is continued. However, if the minimum is > 0 then row k is replaced by

(row k) + (row r) x M(k, r) for all k which have not been pivot index.

This will make at least one diagonal element +0 and the pivot index may

be selected as above. The process can now go on until there are zeros un-

der the whole diagonal of M and the solution obtained by simple backward

elimination.

If M is singular some of the diagonal elements Mr, r) are zero. Du-

ring the backward reduction the division by such a diagonal element is

skipped. Moreover, the corresponding elements in the r’th row of X(r, k)

= B(r, k) will have to be zero (or very small compared to the original

values) in case the given equation has a solution.

3. Accuracy, time and storage Requirement.

ACCUrACY

In practice the relative error measured as ||AxX ~ B||/||X|| has

been found to be about »-10. This is not an errorbound, the errorbound

has been discussed in detail in literature see e.g. Forsythe og Moler.

(ref).

For m= 1 the time is .2x(nt1)xx3 ms

Storage requirement,

The procedure is 4 seements long on backing-store, It uses 70 + 3.5 X

| n words in stack.

Typographical length: 103 lines, 4 segments.

L., Test and discussion

The procedure is intended for use in such cases where the total ma-

trix M is too big for the available store. A program using decompose and

solve will be faster than a program using solve_syn, even if the program

must generate the matrix M from the half matrix A.

@ The procedure has been tested by some equations with coefficients

chosen at random and by a representative set of singular equations.

The following program will read n, m, A, B, solve the linear alge-

braic equation A X X = B and write out the X:

Input, solution and output of a symmetrical set of linear algebraic equa-

tions

begin integer n, m, i, j, k, 13 boolean s3;

read(in, n, m);

begin array A(1:(nx(nt+1)) shift (-1)), B(isn, 1:m);

read (in, A, B);

S:= -, solvesym(n, m, A, B)3

@ if s then write(out, <:<10> A is singular:>);

write(out, <:<10>:>) 3

for i:= 1 step 5 until m do

begin

jr= if ith <m then i+ 4 else m; |

for k:= i step 1 until j do write(out, < dadd>, k)3

for k:= 1 step 1 until n do

begin

write(out, <:<10>:>, <<ddd>, k, if s then (if A((kx(k+1)) shift (-1))=0

then <:X_:> else <:__2>) else <:__:>)5

for 1 := i step 1 until j do

write(out, <<_-d.ddddddy-dd>, B(k, 1))

end k3

@ write(out, <:<12><10>:>)

end i

end A

end program:

5. Reference

George Forsythe and Cleve B. Moler: Computer Solution of Linear

Algebraic Systems. Prentice-Hall, Inc. (1967).

6. Procedure text.

solvesym = set 4

solvesym = algol

external

boolean procedure solve _sym(n,m, A, X) ;

message solve sym, version 18 11 69, RCSL 53-M63

value n,m; integer n,m; array A,X;

begin integer i,j,k,r,s,t5

real ai,ak,ar,mi;

array M(1:n)3 integer array R(1:n); boolean array B(1:n)3

j:=03 solve _sym:=true;

for 1:= 1 step 1 until n do

begin

mis=03

for k:=i-1 step -1 until 1 do

begin

if abs A(kt+j)> mi then mi:=abs A(k+ J);

if abs A(k+j)>M(k) then M(k):=abs A(k+3)

end k;

M(i):=smizs B(i)s=true; j:=jt+i;

end i;

S3=13

for t:= 1 step 1 until n do

begin

miz:=ak:=-13

for is= 1 step 1 until n do if B(i) then

begin

aitsabs A((ix(i+1))shift(-1));

r if M(i)>0 then

begin

if mixM(i)<ai then

begin

if ai<o then

begin

miz=ai/M(i); s:=t

end else if M(i)xak<1 then

begin

ak:=1/M(i); s:=t

end

end

end (i) > 0 else

@ begin

R(t):=13 B(i):=false3 t:=t+13

if ai=0 then solve sym := false

end M(i)<o

end i;

if B(s) then

begin

r:=(sx(s-1))shift(-1)3 ar:= A(rts) ;

if ar=O0 then begin ar:=-13 t:=t-1 end else R(t) :=83

B(s):= false;

for i:= 1 step 1 until n do if B(i) then

begin

@ j:=(ix(i-1)) shirt(-1) 3

ai:sA(if i<s then r+i else jts)/arj; mi:=-1;

for k:= i step -1 until 1 do if B(k)- then

begin

ak:= A(j+k) :=A(j+k)

-aixA(if k<s then rt+k else (kx(k-1))shift(-1)+s) ;

if abs ak>mi then

begin

if i=k then goto L13

mis=abs ak

ends

if abs ak>M(k) then M(k):=abs ak;

Li: end k3

@ M(i):=mt;
for k:=1 step 1 until m do X(i,k):=X(1,k)-aixX(s,k)

end 1;

if A(r+s)=0 then

begin

mi:=03

for k:=1 step 1 until n do if B(k) then

begin

ssabs A(if k<s then rtk else (kx(k-1))shift(-1)+s) ;

if ak>mi then mi:=ak3

if ak>M(k) then M(k) :=ak;

end k3

B(s):= true

end A(r+s)=0

end B(s)3

end t3

for t:=n step -1 until 1 do

begin

s:=R(t); r:=(sx(s-1))shift(-1) 3;

for i := t+1 step 1 until n do

begin

jr=R(1)3 at:=A(if j<s then r+j else (jx(j-1))shift(-1)+s);

for k:=1 step 1 until m do X(s,k):= X(s,k)-aixX(j,k)

end 13

aiz= A(rts) 3

if ai 0 then for k:= 1 step 1 until m do X(s,k):=X(s,k)/ai

end t

end solve sym$

comment

Call parameters:

integer n the number of equations.

integer m the number of right sides.

real array A(1:mx(n+1)//2) the lower half of the coefficient matrix.

M(r, s) = M(s, r) = A(rx(r-1)//2 + 8)

Call and Return parameter:

real array X(1:n, 1:m) is the right sides at call and the solutions at

return.

Return parameter:

boolean solvesym. false is A is singular, true if A is nonsingular;

Title:

zero1(x, F, a, b, eps)

fe & REGNECENTRALEN

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F

Rattner ener nm mea

RCSL No:

Edition:

Author:

53-1 (PG1)

January 197o

N. Schreiner Andersen

Keywords:

RC 4000, Software, Mathematical Procedure Library, Linear Equations,
figol Procedure

Abstract:

The boolean procedure zero1 svaluates a zero of an arbitrary real
function. The method is an adaptive method based on regula false and
bisection, 8 pages.

Users of this manual are cauticned that the specifications
5 contained herein are subject to change by RC at any time

Copyright B/S Regnecentralen , 1978 without prior notice. RC is not responsible for typographi-
= cal or arithmetic errors which may appear in this manual Printed by A/S Regnecentralen ’ Copenhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented,

© 1. Function and Parameters,

1: Function:

The boolean procedure evaluates one zero of the function F(x) within

the interval a <= x <= b. The method is based on regula felsi and
bisection combined with an adaptive parameter giving the weights of
regula falsi and bisection,

Call parameters:

; a, bi

eps:

Return parameters:

real value parameters specifying the end points

of the interval within which the zero is caleu-

lated, This interval is a<=x<=bifac< db,

otherwise a <= x <= b,

A real name parameter giving the accuracy with

which the zero is determined,

Relative accuracy may be specified by substitu-

ting an expression like delta x x for eps.

If eps specifies an accuracy that is not obtain-

able calculations are stopped with the obtainable

accuracy.

a real name parameter being the independent va-

riable in the expression giving F,.

On exit the zero determined by zerol.

Need not be initialized,

- 2 «

@ zeroil: The boolean procedure name is set to false if

. F(a) > 0 and F(b) > 0 or F(a) <0 ana
F(b) <0, otherwise zerol is true.

Other parameters:

F; @ real name parameter specifying the function for

which the zero is to be evaluated,

F mus +t be supplied as an expression depending

on Xe

% 2. Method

The procedure calculates for each iteration a new value as a weighted
mean between a regula falsi and a bisection value:

a<x<b being the intervel in which the zero is to be evaluated, with
fa = F(a) > 0 and fb = F(b) <0, the following algorithm is used:

xr #a- fax (b- a) / (fb - fa)
(i.e. x value obtained by regula falsi)

xb=(b+a) /2

((1.e. x value obtained by bisection).

The new value of x is now calculated as

x = xr + (xb - xr) X vb

where the weight factor, vb satisfies 0 < vb < 1.

And the value of vb is calculated as

vo := if a < xr and xr < b then vb x vb / 2 else 1;

-3.-

i.e. if xr, the x value calculated by regula falsi method, is inside the

new interval then regula falsi might be better than the x just calculated

and more weight are given to regula falsi in the next iteration (i.e.
smaller vb), otherwise the next iteration is pure bisection (vb = 1).

f = sg x F(x) is evaluated for the new x value and a new interval (alb)
is determined as:

if f>0 then begin b := x3 fb := f end

else begin b := x3 fa := f end;

The factor sg is f = sg x F(x) is introduced in order to give a simple

algorithm inside the iteration loop.

Before starting iteration sg is initialized as

8g := id fa >0O then 1 else -1;

and all values of F are multiplied by sg, (i.e. fa >O and fb < 0).

If the parameters specifying a and b gives > < a then a interchange of

these two parameters are made in the start of the program.

However if F(b) and F(a) are both either greater than or less than 0 then
the method does not work and the boolean name zerol is set to false indi.

cating that no zero is evaluated, otherwise zeroi is true.

Dd» Accuracy and storage requirement.

Jel. The accuracy is determined by the input parameter eps giving the

absolute precision of the zero. If however an expression giving eps

includes the factor x (the independent variable) then relative pre-
cision is automatically used,

C@

-4.

If an accuracy higher, than the one obtainable in RC 4000, is spe-

ecified then a result with the highest obtainable precision is deliv-

ered.

3.2. Storage requirements:

1 segment + 9 real variables

4, Test and discussion.

zero! is tested by use of the 6 functions used in ref. 1 for test of Gier

procedures.

Results of this test using testprogram as given in section 7 are:

Textexamples for : external boolean procedure zero1(x,F,a,b, eps)

F(x) a b eps x iter

5 33+2.6xx “9.9 2.1 ».6 -2.05? +0 8

1n(x/0.7) 0.1 2 7.8 7.00? -1 12

exp(x)-0.4 -5 1 xX? =T -9.167 -1 12

sin(x)-sin(1.55) -3 1.59 7=5 1.597 +0 «11

0x3 + X “0.5 2 ?.8+abs(x) x’ -6 1.937 =15 9

2X5 -1 2 76 6.96? -7 2h

x = the zero calculated by zero!

iter = the number of references to F

These result may be compared with results from ref. 1 showing that al-

though using a very simple strategy zerol is very fast.

5. References.

Bo Munch-Andersen: Zero, Algol procedure, Regnecentralen October 1965,

Gier System Library, Order No. 409.

6. Algol program

zerol=zset 1

zero]1=algol
external

boolean procedure zeroi(x,F,a,b,eps) ;
value a,b; real x,F,a,b,eps;
begin

real fa,fb,f,vb,sg,v,xr3
comment 13

zerol:= true;

if a>b then begin f := a3 at=b3 b ssf end};
X 3 a3
f := Fs;

sg := if f>0 then 1 else -1;
fa := sexf;

if fa = 0 then goto out;
xX 33 db;

fb 3™ sexF3

if fb = 0 then goto out;
if fb > 0 then begin zerol := false; goto out end;
vo 32 13

next:

Vv t= bea3
x = (bta)/2;
if v < 2xabs(eps) or v< 1.29-10xXabs(x) then goto out;
comment 23

xr 3= a-faxv/(fb-fa) ;
x sm xr+(x-xr)xvb3
fs sexF;
if f = 0 then goto out else
if f >0 then begin a := x3 fa := f end

else begin b := x3 s= ff end;
comment 33
vb := ifa<xr and xr <b then voxv/2 else 13
goto next;

out:

end}

comment

1:
Reference:

RC4OOO System Library
Order No. 55-Diy
A/S Regnecentralen, July 1969
N. Schreiner Andersen

sd Function:

The boolean procedure evaluates one zero of the function
F(x) within the interval a <= x <=b, The method is
based on regula falsi and bisection combined with an adap-
tive parameter giving the weights of regula falsi and
bisection, ,

Call parameters:

a,b 2 real value parameters specifying the end points
of the interval within which the zero is calcu-
lated. This interval is a<=x<=bifa<b
otherwise b <= x <= a,

eps: A real name parameter giving the accuracy for
which the zero is determined,

® Relative accuracy is specified through an expres-
sion with factor x, i.e. xX,-7 gives a relative
accuracy of y-7.

If eps specifies an accuracy that is not obtain-
able within RC4OOO calculations are stopped with
the obtainable accuracy.

Return parameters:

x 3 a real name parameter being the independent
variable in the expression giving F.

On exit the zero determined by zero].

zerol 3 The boolean procedure name is set to false if
F(a) > 0 and F(b) > 0 or F(a) <0 and
F(b) <0, otherwise zeroi is true.

o
N

c Other parameters:

Fo: a real name parameter specifying the function for
which the zero is to be evaluated.
Fmust be supplied with an expression depending on x,

2: In order to avoid that calculations can not Stop because of too small
eps (below the precision obtainable on RCLOOO) a security is put in here
causing stop on v < 1.2y-10xabs(x).

3: A new weight, vb is calculated before next iteration;

end zerol;

‘e

7. Testprogram

A/S Regnecentralen
Testprogram for procedure zerol

NSA, 1 209.659,

begin

real procedure F(n);
integer n3
begin

1 isa i+;

F := case n of (5,33+2.6xx, 1n(x/0.7),exp(x)-0.4, sin(x)-sin(1.55),
WX + X, XX5)3

end F3;

real x3 integer i3

iter

~d.ddy+dd>, x,<<

-d,.ddy+dd>, x,<<

-d e ddytdd>, X, <<

~d,ddytdd>, x,<<

=a, ddy+dd>, Xy <

write(out,<:
Testexamples for : external boolean procedure zerol(x,F,a,b, eps)

2>) 3
write(out,<:

F(x) a b eps

32>) 3

i ss 03 zeroi(x,F(1),-9.9,2.1, »-6) 3
write(out,<:
5 oD5+2.6xx 9.9 2.1 20 1>,<<

1 := O03 zero1(x,F(2),0.1,2, »-8) 3
write(out,<:
1n(x/0.7) 0.1 2 »-8 1>,<<

i := 03 zero1(x,F(3) ,-5,1,x%y=7) 5
write(out,<:
exp(x) -0.4 =5 1 XXp=7 ><

1 2 03 zeroi(x,F(4),3,1.59, 0-5) 3
write(out,<:
sin(x)-sin(1.55) --3) 1.59 pe 4>,<K

23 O03 zero1(x,F(5),-0.5,2, »-8+abs(x) xp-6) 5
write(out,<:
x5 + X “0.5 2 p-S+abs(x) Xy-6 >, <<

1 := 03 zero1(x,F(6),-1,2, »-6) 3
write(out,<:
5 -1 2 y~6 2>,<<

write(out,<:<10><10><10>
x = the zero calculated by zero}
iter = the number of references to F

2>) 5
end testprogram3

-d.ddytdd>, x,<<

-dd>,i);

-dd>,i);

-dd>,i);

-dd>, 1) ;

-dd>, i) 3

~dd>, 1) 3

Title:

) data survey, Appendix

fe & REGNECENTRALEN RCSL Not $3551
& Edition: April 1970

: x : c

RC SYSTEM LIBRARY: FALKONERALLE 1 DK-2000 COPENHAGEN F uthor 2oren Henckel

Keywords:

RC 4000, Software, Statistical, Simple Data Description, Data Screening, Histogram,
Fractile Diagram i)

Abstract:

The program data survey performs a simple statistical description of a number of
observations of an arbitrary number of variables. The description of one variable
consists of a histogram, and fractile diagrams in the normal - and exponential
distribution may be drawn. The program has facilities for specifying grouplimits,
transgenerations, and subsets of a variable. 11 pages.

Users cf this manual are cautioned that the specifications @
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1976 without prior notice. RC is not responsible for typographi-
. cal or arithmetic errors which may appear in this manual

Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by
reliance on any of the materials presented,

- 16 -

APPENDIX

7+ PROGRAM MANUSCRIPT IN ALGOL 5,

begin comment
sgren henckel, 20 04 70. data-survey (re 4000-edition)
an algol 5 translation of data-survey (gier-edition) of 3010693

message data-survey, version 1, 200470, RCSL 53-S1;

integer accno,cases, char, control, elem, em,first,last,
Limitnumber, groupnunber, inftyp,margin,maxnumber,
page, polex, ps, varnu$

integer array intens(1:49), sub(1:2), table(0:127)3

real date, lay1,lay2, lay3,lay4,max,min,m1,m2,m3,m4,stdev3

real array group(1:49), ident(1:19), name(1:8),
obs(1:5000), owtput(1:2), tre(1:2h);

boolean cross, groups, head,means,no, ok, space, variab 3

- comment declaration of the procedures

error, expeum, expfrac, fracdiag, grouping, head new page,
histogram, information, moments, nffrac, outtest, phi,
pstep, skip, syntax_error, terminators, textline, and trngen3;

procedure error;
begin

information(<:error detected in (or after) variable numbers>) ;
write(out,string lay1,varnu) ;
if inftyp=0 then inftyp:= 13

textline(2,margin,case inftyp of (
<:error in art of information:>,
<:serror in subsets:>,
<:error in number of constants in transgeneration information:>,
<serror in art of transgeneration:>,
<:which has too many observations :>,
<serror in number of grouplimits:>,

<:identification not terminated by <60>:>));

if inftypo and inftyp<7 then
fexet ine) merginy<tor some syntactical error:>);
textline(2,margin,
<:run on this data set is terminated. copy of input:<10><10>:>) 3
table(60):= emt353 char:= ps:= 03; repeatchar(in);
for ps:= pstep while ps<250 and char<>25 do
begin

readchar(in,char)3 write(out,no add char,1)
end copy max 250 characters or to end of medium;
goto exit program ~ 7

end error; ~

-17-

real procedure expcum(obs); value obs; real obs;
expeum:= if cbs>0.0 then 1.0-exp(-obs) else 0.03

integer procedure expfrac(obs) $ value obs; real obs3

expfrac:= -1n(1.0-obs)X10.03

procedure fracdiag({fractile, cum,maxfrac, start, position, scale, text1, text2) ;
value maxfrac, start, position, scale3
integer procedure fractiles

real procedure cum;

real maxfrac, start, position, scale;
string text1, texte;
begin

integer df,i,j, cumulative, relative;
real expect, Prac, limit,maxcum, mincum, test;

procedure print axe3

begin ~
write(out,<:<10>:>, space, 23) ;
for i:= 1C step -1 until 0 do write(out,<: ot>)3
write(out,<:<10>:>)

end print _axe;

head new page;

textTine{3,margin,<:fractile diagram in the :>);
write(out,text1,<: distribution:>) ;
Pexth inet Jomangint30,<:estinates of:>) 3
textline(1,mergin,
<:fraction upper class- position parameter =:>)3

write(out, string lay3, position) ;
textline(1,margin,<:in pet. limit:>) ;
write(out, space, 16,<:scale parameter =:>,string lay3,scale,
<:<10><10>:>,space,if start=0.0 then 19 else 2h,<< -d.d>,
start, start+1.0,start+2.0,start+3.0,start+.0) ;
print axe;
cumulative:= relative:= 03 mincum:= 0.03
test:= -accno; df:= -33

for i:= 1 step 1 until limitnumber do
begin

j:= intens(1); cumlative:= cumlativetj;
limit:= group(i); frac:= cumlative/accno;
write(out,<:<10>:>,<< ddd.dd>,
fracx100.0,string lay3,limit) ;
if frac<maxfrac then
write(out,space,if frac>0.0 then fractile(frac)+1 else 1,<:<88>:>) ;
relative:= relativetj3$
limit:= (limit-position) /scale;
maxcum:= cum(limit) $
expect:= (maxcum-mincum) xaceno 3
if expect>5.0 then

begin

test:= relativeo@/expect+test; df:= df+1;
relative:= 03; mincum:= maxcum

end expect>5.0$3

if groupnumber<21 then write(out,<:<10>:>)
end i-lLoop;

- 18 -

print axe3
expect:= (1.0-mineum) xaceno3
if expect=0.0 then expect:= -63
relative:= intens(groupnumber)+relative;
if df>-1 then
outtest(text2, relativexx2/expect+test, dft1)
else
textline(2,margin,<:chi sqare test omitted because df=0.<10>:>)

end fracdiag3

procedure grouping;

begin

integer i, j,poi1,poi2;
real exobs, group1, groupe, length ;
if -, groups then

begin

length:= stdev/(if aceno<100 then 2.0 else 3.0);
length:= 1n(length)x.434294480 ;
poil:= entier length; length:= length-poil;
length:= if length<.0969100 then 1.0 else

if length<.3979400 then 2.0 else
if length<.7781513 then 5.0 else 10.03

length:= 10.0xxpoiixlength;

groupl:= group(1):= pentier(min/Length) +) .0) deneth;
limitnumber:= entier((max-group1) /length)+1.03
limitnumber:= if limitnumber>48 then 48 else

if limitnumber<2 then 2 else limitnumber;
for i:= 2 step 1 until limitnumber do
group(i):= group1:= groupi+length;
groups := ok

end 1f -, groups, determining grouplimits;

groupnumber:= limitnumber+1 3
poil:= groupnumber//3;
poi2:= (if groupnumber mod 3 = 1 then 1 else 0) + poil + poil3
groupl:= group(poil); group2:= group(poi2);
group(groupnumber) := max+10.03
for is= groupnumber step -1 until 1 do intens(i):= 03
for i:= first step 1 until last do
begin

exobs:= obs(1)3
j= if exobs>group2 then poi2 else

if exobs>group1 then poil else 03
for j:= j+1 while group(j)<exobs do;

intens(j):= intens(j)+1
end central grouping loop (i-loop)

end grouping;

procedure head new page3

begin

pages= paget1; pss= 03
write(out,<:<12>:5,<< -dd dd dd>, date, space, 18,
<:examination number:>, string lay2, poiex, space, 10,
<:Ppage i>, page,<:<10>3:>, space, margin,
<:sgh, data-survey<10><10>:>, string ident(pstep)) ;

- 19 -

textline(2,margin,<:variable number:>); ps:= 03
write(out, string lay1,varnu, string name(pstep) ,<:<10>:>) 3
head:= no

end head_new_ page 3

procedure histogram}
begin

integer i,half,maxint, relative 3
if limitnumber+control>26 then head new page; maxint:= 03
for i:= groupnumber step -1 until 1°-do ~
if intens(i)>maxint then maxint:= intens(1);
textline(2,margin,<shistogram: every X represents:>) $
maxint:= (maxint-1)//45+13 half:= maxint//2;
write(out,string layl,maxint,<: observation :>,
if maxint>1 then <:s:> else <::>) 3
pext tine | Somargin, <rumber of upper class-~:>) 3
textline(1, 10,<:cases Limit<10><10>:>) 3
for i:= 1 step 1 until limitnumber do

begin

relative:= intenst i) 3 write(out, string layl,relative,
string lay3,group(i),<: :>,
cross, relative//maxint,
if relative mod maxint>half then <:x<10>:> else <:<10>:>)

end i-loop;
relative:= intens(groupnumber) ;
write(out, string lay, relative, space, 15, cross, relative//maxint,
if relative mod maxint>half then <:x<l0>:> else <:<10>:>,
space, 11,<:total<10>:>, aceno)

end histogram;

procedure information(text); string text;
begin

control:= control] $
if head then head new page; textline(1,margin, text)

end information; ~ 7

procedure moments;
begin

integer i3
real deltal, delta2, exobs $
mi:= m23= m3:= mi:= mins= max:= 0.03
exobs:= oba(first) $
for i:= first+1] step 1 until last do

begin
deltal:= obs(i)-exobss delta2:= deltalxx2;
m1:= deltal+mi $ m2:= delta2+m? 3
m3:= delta2xdeltal+m3; m:= delta2<x2+mls
if deltai<min then min:= deltal else
if deltal>max then max:= deltal

end central summation-(i)-Loop;
aceno:= last-first+1 $3

min:= mintexobs; max:= max+texobs$
mi:= mi/aceno3; m2:= m2/accno;
m3:= m3/acceno; m4:= m4/accno;
ms= —.Oxm1xm3+m1Xx2x6 .OXm2-m1Xx4x3 .O+ml 3
m>3= =m]m2x5.0+m1 XxX3x2,0+m3 $3

- 20 -

s= aomix<e+me 3 mi3= ml+exobs$

if m2<=0.0 then

begin

textline(€,margin,
<texamination terminated because variance=0.:>) 3
goto new

end variance=<0,.03

m3:= m3/sqrt(m2) /m23 mi:= mt/m2/m2;
m2:= m2xXacceno/(accno-1)3 stdev:= sqrt(m2); means:= ok

end procedure moments $

integer procedure nffrac(obs) $ value obs; real obs3

begin

real p3
p= if obs<.5 then obs else 1.0-obs$

p:= sqrt(In(p)x(-2.0)) 5
pis ~(,27061%p+2.50753) /((.O4UB1xp+.99229) xp 20) +p3
nffrac:= (2.5+(if obs<.5 then -p else p))x10.0

end nffrac $3

procedure outtest(text,test,df); value test, df;
string text; real test; integer df;
begin

textline(2,margin, text) ;
write(out,<<-dddd, dd00>, test,<:<10> which has:>,
string layl,df,<: degree:>,
if df>1 then <:s:> else <::>,<: of freedom.<10>:>)

end outtest$

real procedure phi(obs)3; value obs; real obs;
begin

real p3
p:= 1.0/(abs obsx,33267+1.0) 3
p= exp(-obsxx2/2.0)x((..9372980xp-. 1201676) xpt.4.361836) xpx, 398943
phis= if obs<O.0 then p else 1.0-p

end phi;

integer procedure psteps$

pstep:= ps:= pst+1;3

procedure skip;
begin

integer class;

repeatchar(in); for class:= readchar(in,char) while class<>8 do
end skips;

boolean procedure syntax error(arr); real array arr3

begin ~
integer i3
boolean faults;
fault:= no3
for i:= elem step -1 until 1 do fault:= arr(i)>)100 or fault;
syntax. error:= fault

end proc Syntax_error;

- 21 -

procedure terminators(new class); value new class; integer new class;
begin

integer i3
for i:= 10,32,44 do table(i):= new class shift 12 +i

end terminators; ~

procedure textline(lines, place, text) ; value lines, place;
integer lines,place; string text;

write(out,false add 10,lines, space, place, text) ;

procedure trngen;

begin
integer i, j,kind;
real consti, conste 3
inftyp:= 4;
for j:= 1 step 3 util elem do
begin

kind:= tre(j)3; consti:= tre(j+1); const2:= tre(j+2) ;
if kind<1 or kind>3 then error;
textline(1,margin,<:y = :>)3 control:= control+1 3
ease kind of

begin

begin

for i:= maxnumber step -1 until 1 do
obs(i):= In(obs(1)+const1) xconst23
write(out,<:1n:>)

end case 13
for i:= maxnumber step -1 until 1 do
obs(i):= (obs(i)+const1)xxconst2;
for 1:= maxnumber step -1 until 1 do
obs(i):= (obs(i1)+const1)xconst2

end case}
write(out,<:(y+(:>, string lay3, constl,
case kind of (<:))x(:>,<:))xx(:>,<:))x(s>),
const2,<:).:>)

end j-loop
end procedure trngens

comment date is found by calling systime,
initializing part for variables;

systime(1,0,m1)3 date:= systime(2,m1,m2);
lay1:= real<< -d>; lay2:= real<<-dddd>;
lay3:= real<<-ddddddd.d000>3
layi:= real<< -dddd>;
head:= ok:= variab:= trues; groups:= means:= no:= false;
eross:= no add 88; em:= 8 shift 12+ 253 space:= no add 323
namet}2 real<: 2> add 323 name(2):= real<:no na:> add 1093
name(3):= real<:e yet:>3
elem:= first:= last:= maxnumber:= poiex:= 13
control:= page:= varnu:= 03 margin:= 8;
output(1):= 1.03 output(2):= 0.03; inftyp:= 7;

- 22 -

comment choosing alphabets;
for char:= 127 step -1 until 1 do

table(char) := ease char of (

Oy O; QO; Oy O; 0; O; Oy 0, 6, O; QO; O; QO, 0; O; QO; QO, 0; QO,

Os 0; O; O; 8, Ts O; O; 0, Oy; O; 6, 6, QO; QO; O; QO, 6, Dy 6,

6, 6, 35 6, 35 4, 6, 2; 25 2, 2; 2, ey 2, 2, 2, 2, 6, 6, 8,

6, 6, O; Oy 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, QO; O; QO, 6, 6, 6, 6,

6,
6, 6, 6, 6, 6, 0, O) shift 12+ chars table(char):= char;

e
e

tableindex:= 03; intable(table);

write(out,<:<15>:>) 3

comment start of input of datas readchar(in, char) ;
skips avadetrinet in,ident,elem); skip;
taentl 19) 8 ident 19) shift (-margin) shift margin;
table(60) := em;

datas

repeatchar(in); readchar(in,char); if char<25 then error;
table(60):= em +35; ‘terminators(0); inftyp:= readchar(in, char) ;
terminators(7); table(60):= em;
inftyp:= if inftyp<6 then 5 else if char=60 then 1 else

if char=103 then 6 else if char=116 then 3 else
if char=115 then 2 else if char=99 then 7 else

if char=101 or char=25 then 4 else 03
if inftyp=0 then errors

input:

case inftyp of
begin

begin
variab:= ok3 information(<:execute mark:>)3 goto execute

end case 1 (execute mark);
__ begin

© elem:= read(in, sub) 3
if elem or sub(1)<1 or sub(1)>=sub(2) or sub(2)>maxumber then error;
means := sub tH atizet and sub(2)=Last and means;
first:= sub(1)3; last:= sub(2);
information(<:subset specification: from case:>) 3
write(out,string layl,first,<: to case:>, last)

end case 2 (subsets) $
begin

elem:= read(in,trg) ;
if syntax error(tra) or elem mod 3 < 0 or elem<3 then error;
information(<:transgenerations (successive) ::>);
trngens groups:= mesans:= variab:= no

end case 3 (transgenerations) ;
if variab then goto exit program
else ~
begin

information(<:a missing execute mark at end of data is generated:>) ;
goto execute

a end missing execute3

- 23.

begin

if -, variab then
begin

information(<:extra examination (not specified by execute mark) :>) 3
goto execute

end variables too early;
repeatchar(in); read(in,varnu,varnu,cases); skip3
terminators(0)3 readchar(in,char); repeatchar(in) 3
terminators(6)3; read string(in,name,2); skip;
name(8):= name(8) shift (-8) shirt 8;
terminators(7)$; head new page;
groups:= means:= variab:=no3 ml:= 0.03; ps:=0 w

e

more:
pabie(t 19): ems elem:= read(in, group) ;
table(115):= em+903 repeatchar(in); readchar(in, char) ;
if char=115 then elem:= elem-13
for first:= elem step -1 until 1 do m1:= group(first)+m13
if pstelem>3000 then error else
for first:= 1 step 1 until elem do obs(pstep):= group(first) ;
if char=115 then
begin

if abs(group(first)-m1)>)-2 then
write(out,<:<10> checksum error: computed sum =:>,
string lay3,m1,<: check =:>,group(first)) 3;
means:= ok; mi:= 0.03 control:= control+1

end checksum;
if char<>e25 then goto more
else

table(115):= 6 shift 12 + 1153
elem:= last:= maxnumber:= ps; first:= 13

if last<ocases then

write(out,<:<10> cases on tape =:>,
string lay1,last,<: cases =:>,cases) ;
if syntax error(obs) or elem<2 then error $
information(<:input of observations: total:>);
write(out,string lay1,last,<: cases:>,
if means then <: with:> else <: withouts>,
<: checksum control:>)3; means:= nos control:= control+1

end case 5 (variables) ;
begin

elem:= read(in, group) $
if syntax error(group) or elem>48 or elem<2 then error;
limitnumber:= elem3 groups:= ok;
for elem:= elem-1 step -1 until 1 do

groups:= group(elemt+1)>group(elem) and groups;
varlab:= -, groups and variab;
information(<:group specification: limits=:>);
for elem:= 1 step 1 until limitnumber do

write(out,if (elem - 1) mod 5 = 0 then <:<10> 2> else <::>,
string lay3,group(elem))3 control:= (1imitnumbert}) //5+control;
if -, groups then

textlinet | margin, <tbut these limits are rejected:>)
end case 6 (given grouplimits) ;

~ oh.

begin
read(in,output); skips
information(<:output speification: histogram:>) ;
write(out,if outntt 120-0 then <:, fractile normal:> else <::>,

if output(2)>0.0 then <:, fractile exponential:> else <::>)
end case 7 (ovtput specification)

end case$
goto datas

execute:
if first>1 or last<maxnumber then
begin

textline(2,margin,<:first case =:>);
write(out,string layl,first,<: and last case =:>, last)

end printing of subset;

if -, means then moments$

textline(3, 15,<:number of cases minimum maximm<10>:>) 3
write(out, space, 19,string lay2,accno, space,9,string lay3,min,max)
textline(3, 13,
<:mean variance stand.dev. skewness kurtosis<10>:>) 3
write(out,space,6,string lay3,m1,<< -dddd.dddy-d>,m2,
<<-dddddd.d00000>, stdev,m3,m,<:<10>:>) 3
outtest(<:t-test for mean=0 is t 3:>,m1/stdevxsqrt(aceno),aceno-1) ;

:= stdev/sqrt(accno)x1.963
comment m2 is here used as a temporary result;
textline(2,margin,<:95 pet. confidence interval is :>)3
write(out, string lay3,mi-m2,<: < mean <60>:>,m1+m2,<:<]0>:>) 3 -
mé2:= stdevx23; comment now m2 again denotes the variance;

grouping 3 histogram3

if output(1)>0.0 then
fracdiag(nffrac, phi, .9969,-2.0,m1,stdev,<:normal:>,
<:chi square test for the normal distribution is chisq =:>)$

if output(2)>0.0 then
fracdiag(expfrac, expcun, .9947,0.0,0.0,m1,<:exponential:>,
<:chi square test for the exponential distribution is chisq =:>) 3

new:

poiex:= potext+13; control:= 03 heads:= ok;
if variab then goto datas
variab:= ok3
goto inputs

exit programs
wFite(out,<:<1 2>:>)

end program

8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

RCSL No:

Edition: ODetober 1970

Author: Sgren Henckel

Fitie: recordinput

Appendix

Keywords:

Abstract: RCSL Statistical Package, Input of data in Records,

Input of control Information, Syntax Check“of Input.

The boolean procedure recordinput reads one input paper

tape containing a number of records, The records are syntactically checked

and will be delivered on a backing storage for later inspection. Only syn-

tactical errors are detected, whereas.semantics has to be checked in a la-

ter scan of the output file. 14 pages.

e

fe system LIBRARY eeeceeea2 Beeecseeeoeoaoaoseecooo4uaqa Ce eau spe1eeoeae ese eee see e©eee@

DK-2500 VALBY - BUERREGAARDSVEJ 5 - TELEPHONE: (01) 4608 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

-17-

APPENDIX,

7e1. POSSIBLE ALTERINGS,

It might he wanted to introduce different achioyn on cnd of data ree

‘cord (code = 5) and <EM record> in order t: read several input tapes in

one call of recordinput (else the output re-cords from the different in-

put paper tapes (separated by an end of medium character) will be placed

on different backing storage files). It might also be wanted to intro-

duce new kinds of number codes (new kinds of tail conversion). This can

be done by adding new subcases in case 6 (tail conversion case) and by

altering a little in procedure error for possible new types of errors.

Tec. PROGRAM MANUSCRIPT IN ALGOL 5.

(; procedure record input has to be loaded by < i tre >

clear recordinput ~
recordinput=set 19
recordinput=algol index.no message.yes
end $

)
external
boolean procedure

record _input(maxchar,maxparam, realtext, realname, descriptor, tailcontent) ;
value maxchar, maxparam, realtext, realname ;
integer maxchar,maxparam, realtext, realname 5
real array descriptor 3

integer array tailcontent;

begin

comment

procedure record input made october 1970
on a/s regnecentralen kgbenhavn by s¢gren henckel.

call parameters:

maxchar = maximal number of characters in an input record>=0

maxparam = maximal number of parameters in an output record>=1

realtext = maximal number of reals used for one text>=0

realname = maximal number of reals used for one name>=0
descriptor =a real array declared descriptor(a:b) with

a<=]<=2<=b and number of descriptors<=b. each element

mist contain one descriptor as a short string
(for long descriptors exactely the 5 first characters).

tailcontent = an integer array declared tailcontent(e:d) with

e<=.1<=|<=d and number of descriptors<=d. each
element must contain one of the numbers 1,2,3,4, and 5
showing what records of the corresponding kind is

supposed to contain as parameters

(see in head of case 6 for further details).
tailcontent(-1):=number of segments for record output>=1
taiteonvent{-t): number of different descriptors.

~ 18 -

returmm parameters:

if return value of the procedure is false, none of the
parameters are altered, otherwise they contain
the following quantities:

descriptor(1:2):= document name 1, the backing storage used
for record output (name senerated by the monitor)

tailcontent(-1):= number of seements for record output (:=call value)
tailcontent(0):= number of accepted records
tailcontent(1): number of records on input tape

3 new kinds of descriptors are added to the kinds
introduced by the call:

kind of descriptor=number of descriptorst1
is used for indicating errors in records with

@ unknown kind of descriptor, and these records
have parameternumber:= 0,

kind of descriptor=number of descriptors+2
is used for indicating errors in the tail of a
record with known kind of descriptor, these

records have parameternumber:= 1, and
parameter(1):= found kind_of_descriptor,

kind of descriptor=number of descriptors+3
is indicating an end of medium record or an
end of data record, and has parameternumber:= 0,

3

message record_input, version 1, 28.10.70. RCSL 53-S73

integer array table(0:127)s3
real array paraneter{ | imax param) ;
boolean array character(1:max char+1) 3;

r integer i,j,char,class,date,descriptor length,
descriptor start,kind of descriptor,lines written,
number of descriptors,ok” record, page, parameter number,
position, record, state, tall_start; 7

real blank, text 3
boolean error in_name, illegal char 3

zone output_zone((max_parai+129) //128x256,2,error_in doc)

comment

declaration of the procedures

class of input, error in doc, error,
error head new page, and unpack character;

integer procedure class of input;

begin 7~
class of input:= read char(in, char) ;
if char<S25 then 7~
begin

r position:= position+i $
character(position):= false add char;

if char=63 then illegal char:= true;
if position>max char then error(17)

end not end of medTum
else ~~

error(22)
end procedure class of input 3

procedure error in doc (connected zone, status, bytes) 3
zone 7~ connected” zone}
integer ~ status, bytes}
begin

boolean not first;

not first:= false;
if Tines written>54 then error head new page3
write(oub,<:<10><10><10>!>, 7 7
<:problems with the backing storage on :>,

<<d>, tail content(-1) .<2 segments<10>:>,
<:which iS used for record output.<10>status = :>)3
for i:= 235 step -1 until 1 do

if false add (status shift (-i)) then
begin

write(out,if not first then <: + 1 shift :> else
<:1 shift :>,<<d5,i)3
not first:= true

end printing bit 0 to 223
if false add status then write(out,<: + 1:>);
write(out,<:<l0>bytes transfered = :>,<<d>,byes)3 error(2)

end procedure error in doc3

procedure error (error type) 3
value error type$
integer error type3
begin

if (position-15)//71+lines written>54 then error head new page}
comment error message cannot be printed on this Pages” 7
lines written:= lines writtent5;3

write[out,<:<10><10><TO><10>record number:>,<<-d>, record,
case error type of (
<: contains illegal characters in the tail (shown as <64>):>,
<: has no text start (:) before the first text:>,
<3 cannot be output because of too many parameters:>,

<: contains a name parameter not starting with a small letter:>,
<: contains an illegal character in a name parameter :>,

<: has overflow in leading part of a number parameter:>,

<: has overflow in decimal part of a number parameter:>,

<; has empty digit part in the decimal part of a number:>,

<: has overflow in exponential part of a number:>,
<: has an illegal sign in exponential part of a number:s>,

<: has empty digit part in the exponential part of a number:>,
<: has illegal termination after an exponential part:>,

<: has some syntax error in a number parameter:>,
<: has not empty parameter part (it must be empty) :>,
<: contains an illegal character in the descriptor:>,
<: has an illegal kind of descriptor:>,
<: cannot be read because of typographical length:>,
<: has been deleted in input (by >):>,

- 19 -

- 20 -

<: contains a long text which is cut to max characters:>,
<: contains a long name which is cut to max characterss>,
<: is an end of input record, input finished. :>,
<: is an end of medium record. input finished.:>,
<: has shown errors in call parameters (dimension or content) :>,

<: caused the problems shown above.<10>mm terminnted.:>,

<2 gave monitor trouble<l0>catalog func. forbidden in enll process:>
<: gave monitor trouble<10>catalog input/output errori>,

<i gave monitor trouble<l0>entry with same name already exsists:>,
<: gave monitor trouble<10>the catalog is full:>,

<3 gave monitor trouble<10>requested area size is not available:>,

<: gave monitor trouble<10>name format is illegal:>)
if position>O then <:<i0>copy of record::> else Ber
j:= 153 comment 15 characters written on the last line;

for is= 1 step 1 until position do
begin

write(out, character(i),1);
js= itis
if j=71 then
begin

write(out,<:<10>:>)3 j:= 03
lines written:= lines written+1

end new Tine in list ~
end list on character level on current output;

if error type<17 then ok record:= ok record-13
comment “an error record is made, but this is not an ok records
if error type<15 then ~
begin 7

parameter number:= 13
parameter(1):= kind of descriptor3
kind of descriptor:= number of descriptors+2

end error In tail of a record with known kind of descriptor
else
if error type<18 then

kind of descriptor:= number of descriptors+13
state:= if error type<17 then 7 eTse

if error type<23 then
(case error type-16 of (8,1,7,7,5,5)) else 93

goto action ~
end procedure error};

procedure error head new page3

begin ~ 7~
lines written:= 13 page:= pagetl3
writeTout,<:<12>:>,<<dd dd dd>, date,
< record input syntax errors in data pages>,

<<-d>, page, <:<10>:>)
end procedure error head new _page3

integer procedure unpack character 3

begin 7
tail start:= tail start+13
chart= character(Tail start) extract 8;
unpack character:= table(char) shift (-12) extract 12

end procédure unpack _character;

3

= 21 -

write(out,<:<15>:>)3 state:= 13; lines written:= 200;
ok record:= page:= position:= record:= 037

number _of descriptors:= tail_content(0) ;
blank:= blank shift 483 record_input:= false;

comment date is found by calling systime, if the date
in the monitor is wrong, date is set to 2° 10 70;
systime(1,0, text) ; date:= systime(2, text, text) ;
j:= date mod 1003 comment j:= year;

if j<70 then date:= 2810703

if Systemtost ,deseriptor)>1 or i<number of _descriptors or i<e

or system(3,i,tailcontent)>-1 or i<number of” _descriptors
or tail content(-1)<1 or real_text<O or réalTname<0
then error(23) ;
comment check of dimension and content of call parameters;

@ comment creating area for record output by calling procedure monitor;
bablefo) t= tail content(-1)3
open (outputzone, 4,<::>,0) 3
i:= monitor(40, outputzone,0, table) ;
if 1 0 then " error(2ei) 5” comment troubles with create entry3

comment initializing of table(0:127)3
for i:= 31 step -1 until 1 do table(i):=9 shift 12 + 633
for i:= 15 step -1 wntil 1 do table(i+32):=
ease i of (8,8,0,0,8,8,5,8,8,8,3,11,3,4,8) shift 12 + i + 323
for i:= 57 step “1 until 4B do table(i Ses 2 shift 12 + i3
for i:= 125 step -1 util 97 do

table(i):= table(i-32):= 6 shift 12 + i;
table(35):= table(36) := pete (63) S table(64) :=
table(94):= table(96):= table(126):= 9 shift 12 + 633
table(9) := table(10):= table(11):=
table(12):= table(32):= 11 shift 12 + 323
table(25):= 10 shift 12 + 253
table(58):= 12 shift 12 + 583 table(59):= 11 shift 12 + 593

® eee Y O):= 10 shift 12+ 603 table(61):=8 shift 12 + 613
table(62):= 10 shift 12+ 623 table(95):=8 shift 12 + 953
table(0):= table(127):= table_index:= 03
intable(table) ;

comment of typographical reasons

the program text is moved 3 positions to the lefts:

action:

case state of

begin

begin

comment case 1 initializing before new record.
reading and first check of the descriptor;

record:= record+] 3
kind of _descriptor:= parameter | number:= position:= 03

r illegal” char:= false;3
for class:= class of input while class>9 do;

- 22 -

comment skip of leading separators and terminators before descriptor};
descriptor start:= positions

error in name:= class<63
for cTass:= class of input while class<10 do
if class<>2 and cTass<>6 then error in name:= true;
descriptor length:= position-descriptor start;
tail start?= position; ~
state:= if class>10 then 2 else if char=60 then 3 else 4

end case 1 (reading and checking descriptor) ;

begin

comment case 2 reading the tail (which is not empty);

for class:= class of input while class<>10 do;
comment reading characters in the tail;
state:= if char=60 then 3 else 4

end case 2 (reading tail);

begin

comment case 3 accept record e.g. record terminated by <.
check for hard errors and errors in kind of descriptors;

if descriptor length>5 then descriptor length:= 53
j:= descriptor start+descriptor length=1;3
comment the characters in deserIptor are numbered
descriptorstart, descriptorstart+1,descriptorstart+2, and so on,
so j denotes the number of the last character in the checked
part of the descriptor. for long descriptors only the 5 first
characters are checkeds
for i:= descriptor start step 1 until j do
text:= text shift 5 add (character(i) extract 8);
text:= text shift ((6-descriptor length)x8) ;
comment now text contains the part of the descriptor
which is used for determining kind of descriptor;
if -,error in name then ~ 7
for i:= number of descriptors step -1 until 1 do

@ if descriptor(T)=Text then
begin

kind of descriptor:= i3

iss T 7
end determining kind of descriptor;
if kind of descriptor=O”or error in name or illegal char
then error(if error in name ~ Ehen 15 else ~

if kind of descriptor=0 then 16 else 1)3
comment hard errors In record;
state:= 6

end case 3 (accept record);

error(18)3; comment case 4 (delete record);

begin

comment case 5 end_of medium record or end of input records

i:= outrec(outputzone, 0);
@ if 1<2 then

~ 23-

begin

outrec(outputzone, i) ;
outputzone(1):= 0.0

end active segment change;

outrec(outputzone, 2) ;
outputzones 1) i= 2.03
outputzone 2):= number of descriptors+3;

ok record:= ok record+7; ~
elose(outputzone, false) ;
getzone(outputzone, table) 3

descriptor(1):= blank add table(1) shift 24 add beenpt tn F
descriptor(2):= blank add table(3) shift 24 add table(4);
comment storing the generated name in deseriptor(1:2) 3

tail content(0):= ok records
tail” content(1):= records
record input:= true3
comment assigning all return parameters;

if lines written>54 then error head new page:
write(out,<:<10><10><10>survey from record<95>input:<10><10>:>,
<:total number of records in input was :>,<<d>,record,
<:<10>and of these were :>,ok record,<: accepted. :>) 3
comment printing survey on current output;

goto finish input

end case 5 (end_of_medium record or end_of input record) ;

begin

comment case 6 conversion of the tail in all cases.
the following case statement corresponds to the kind of tail
e.g. what the tail is intented to contain
(this is by call stored in tail content(1:number of _deseriptors)
kind of tail=1 a number of texts (at least one)~
kind of tail=2 exactly one (non empty) name
kind of tail=3 a number of numbers (mixed integers and reals)

kind of tail=4+ must be empty (e.g. only separators are allowed)

@ kind of tail=5 end of input record, a possible tail is ignored;

tail start:= tail start-13
comment for conversion of the tail it is comfortable to let

tail start denote the character just before the first character

in the tail (because of for-while statements) ;

case tail_content(kind_of descriptor) of
begin

begin

comment kind of tail=1 e.g. tail is a number of textss$

integer text start, words _ in _ text;

boolean long “texts;

long texts:= false;
for class:= unpack character while class=11 do3
comment skipping separators (not :) before first text 5

if class12 then error(2);
@ comment missing textstart before the first text;

- oh .

for text start:= parameter number+1 while class<>10 do

begin ~— ~
if text start<max __ param then

parameter number:= text_start else error(3) 5
for classt= unpack character while class=11 dos

comment skipping separators (not :) before texts
words in text:= 13

if class<Q then
begin

comment text is not empty;

text:= blank add char; i:= 1;

for class:= unpack character while class<9 or class=11 do

begin 7
text:= text shift 8 add char;
is:= itl$

if i=6 then
begin

parameter number:= parameter _number+1 5

if parameter number=max param
then error(3);
parameter(parameter number) := texts
text:= blank; i:= 0;
words in text:= words in text+1

end one real filled ~ >
end packing legal char in text;
if words _in _ text>real_ text then
begin

long textss:= true;

words in text:= real _text;
parameter number:= text start+real _text;
parancterf parame te? _ number) :=
parameter(parameter number) shift (-8) shift 8

end cutting long text ~
else

begin

parameter number:= parameter number+1;

parameter(parameter number) :=
text shift ((6-1)x6J

end text not too long
end packing not empty text
else

begin

parameter number:= parameter number+13

parameter(parameter number):= blank
end packing empty text;

parameter(text start):= words in text;
comment words In text is placed ads a real the
preceding parameter};

end converting texts3

if long texts then error(19)3
state:= 73

end kind of tail=1 (e.g. tail is a number of texts)3

= 25 .

begin

comment kind of tail=2 e.g. tail is a name;

for class:= unpack character while class>10 dos
comment skipping léading separators before name$ -
if class=6 then texti= blank add char else crror(4);
comment first character in name mist be 3 (small) letter
and name must not be empty;
is= 13
for class:= unpack character while class<>10 do
if class=2 or clasS=6 then
begin

text:= text shift 8 add char;
is= i+13
if i=6 then
begin

parameter number:= parameter number+13
if parameTer number=max param
then error(3)3 ~
parameter(parameter number) := text;
text:= blanks i:= 0

end one real filled
end character legal in name
else

error(5) s

parameter number:= parameter number+13
if parameter number>real name then
begin _ ~ ~

parameter number:= real name3
Pavone ter} paraneter number) :=
parameter(parameter number) shift (-8) shift 83
error(20) ~

end cutting name parameter to real name words (reals)
with error message; ~

state:= 73

parameter(parameter_number):= text shift ((6-i)x8);
comment preparation of the last parameter as text parameter;

end kind of tail=2 (e.g. tail is a name);

begin

comment kind of tail=3
€.g. tail is a number of numbers (integers or reals) 3

integer decimals, digit number, exponent, leading part;
real decimal part,exponential part,exponent sign,sign;
state:= 13 Comment state within one number parameter;

convert numbers:

case state of
begin

begin

comment case 1 initializing and leading separators 3

leading part:= 03; decimal part:= 0.03
exponential _part:= sign:= T.0;

- 26 -

for class:= unpack character while class>10 do3
comment skipping leading separators before leading part;
state:= case class of (0,5,2,4,5,8,8,8,8,7,0,0)

end case 1 (leading separators) }

begin

comment case 2 sign before leading part;

if char=45 then sig¢m:= -1.03
comment sign was initialized with sign:= 1.03

class$:= unpack character;

state:= case class of (0,3,8,4,5,8,8,8,8,8,8,8)
end case 2 (sign);

begin

comment case 5 leading part;

leading part:= char-483
for class:= unpack character while class=2 do
if leading part<833860 then
leading part:= leading partx10+char-48
else — ~
error(6) 3
state:= case class of (0,0,8,4,5,8,8,8,8,6,6,6)

end case 3 (leading part);

begin

comment case 4 decimal part;

decimals:= digit number:= 0;

for class:= unpack character while class=2 do
if decimals<838860 then
begin

digit number:= digit number+1;

decimals:= decimalsx10+char-48
end not overflow

else

error(7) $
if digit number=0 then error(8);
decimal Dart:= 10,.0x<x(-digit number) xdecimals3
comment” scaling decimals to Correct size;
state:= case class of (0,0,8,8,5,8,8,8,8,6,6,6)

end case 4 (decimal part);

begin

comment case 5 exponential part;

exponent:= digit number:= 03

‘exponent sign:= 0.03
for clasS:= unpack character while class< do
if class=2 then
begin

if exponent sign=0.0 then exponent sign:= 1.03
if exponent<60 then ~
begin

digit _number:= digit _number+1 3

-227-

exponent:= exponentx10+char-48
end not exponent overflow

else

error(9)
end class=2

else

if exponent sim=™.0 then

exponent sign:= if char=5 then -1.0 else 1.0
else ~

error(10) 3
comment end class<4;
if digit number=0 then error(11);
if class<O then error(12)3
exponential part:= 10.0xx(exponentXxexponent sign) $
comment transforming exponential part to a Factorial part;
if leading part+decimal part=0.0 then leading part:= 13

comment numbers on the Porm +y-7 are accepted
whereas 0.0n=7, Oy-7, and .Op-7 all gives
wrong conversion to 0.0000001_ ;
state:= 6

end case 5 (exponential part):

begin

comment case 6 final conversion of one number $

parameter number:= parameter _numbert1 5

if parameter number>max _param
then error(3)3
parameter(parameter number) :=
(leading | part+decimal part) Xexponential _partxsigns
state:= If class>10 then 1 else 7

end case 6 (final conversion);

comment case 7 end of record and conversion,

case 7 in the big case (case action) is outrec
of correct converted record};

goto actions;

comment case 8 syntax errors in numbers $

error(13)
end case state by converting numbers;

goto convert numbers

end kind of taiI=3 (e.g. tail is a number of numbers);

begin

comment kind of tail=4
e.g. tail is empty (only separators are allowed);

for class:= unpack character while class<>10 do

if class<9 then error(14);
state:= 7

end kind of tail=+ (e.g. empty tail);

- 28 -

begin

comment kind of tail=5 e.g. end of input record

works as an end of medium record, but without listnings

position:= 0$

error(21)
end case kind of tail=5 (*.7. end of input rceord)

end case kind of tail statement at tall Conversion
end case 6 (conversion of tail in 231 «-:es)3

begin

comment case 7 record reading, control, and conversion finished.
outrec of the final parameters stored in parameter(1:parameter number) 3

i:= outrec(outputzone,0) 3
comment i:= elements left in used share;

© parameter number:= parameter number+23

comment Parameter number:= Glements in total output record;
if i<parameter number then
begin ~

outrec(outputzone, i) ;
outputzone(1):= 0.0

end active segment changes
outrec(outputzone, parameter number) ;
outputzone(1):= parameter numbers;
outputzone(2):= kind of descriptor;
for i:= parameter number step -1 until 3 do
outputzone(i):= parameter(i-2) ;
ok record:= ok record+13
state:= 1 7

end case 7 (outrec of correct record) ;

begin

comment case 8 record contains more than max char

characters, these have been listed by calling error(17)

r j denotes (from procedure error) number of characters
written on the last line;

for j:= j+1 while read char(in,char) <10 do
begin ~

write(out,false add char,1)3
if j=71 then
begin

write{out,<:<10>:>)3 j:= 03
lines written:= lines written+]

end new Tine ~
end Listing rest of records

write(out,if char=60 then <:<60>:> else if char=62 then
<:<62>:> else <: <<69><77T>>:>) ;
if char=62 then
begin

position:= 03 state:= 4
end deletion of large record (+error message , -list)
else

@ if char=60 then
begin

state:= 7; ok record:= ok_record-1

end making error record (is not an ok_record)
else

state:= 53 comment large end of input record;
end case 8 (record too large as text);

comment case 9 problems with source for resulting records,

this case is activated from the block preecdure error in doe which
calls error(24) ; 7~
goto finish input

end case state”at reading records;

goto action$

finish input: intable(0)
end external procedure record input;
end ~

$00 014

CONTENTS

REVISION 2

79 07 24

" MATHEMATICAL=STATISTICAL PACKAGE

C, ee ae oO tO ey me Se yO YTD oY yO OOS A cap ap wa Hey OF we Ot

oo

INTRODUCTION TO

ADAPINT

RESSELTK

RESSELJY

RETA

DECOMPOQSE* SOLVE

EBERLETN

FFT

HOUSEHOLDER

INVERTSY#

JACOBT

MINTMUM

PZERO

RIINGE KLITTA

SOLINEQ

SOLVESY™

ZERO 1

MATH S=STAT« RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

RCSL

55-0

55=D

53-™

55=0

31=)

55-0

53=M

53=<

55=)

53=

53=™

31=0

53=

53-¥

53<m

63

48

oo

69

57

129

58

61

18

224

17

$D9 018 REVISION 2 MATREMATICAL=STATISTICAL PACKAGE

TY) contents (conte)

DATA SURVEY+APPENDTYX RCSL 53S

RECORDINPUT+APPEHDIX RCSL 53S 7

