
RC International

Reference Manual

for RC3502

Real-Time Pascal

PN: 99001174

Keywords:
Systems programming language, real-time, parallel processes, data
communications network, RC3502, RC8000.

Abstract:

The contents of this manual describe the Real-Time Pascal implemen-
tation for the RC3502 computer. The Real-Time Pascal programming
language is a high level Pascal-like language, designed to express al-
gorithms and their implementation as parallel cooperating processes,
executing on a network of processing components. The Real-Time
Pascal language is defined in: Reference Manual for the Programming
Language Real-Time Pascal (PN: 99110141).
Information on how to use the Real-Time Pascal cross compiler and
the associated utility programs are included in appendices.

Date:
January 1990.

Authors:

Bo Bagger
Jan Bardino

Copyright

Copyright (C) 1990 RC International (Regnecentralen a/s) A/S Reg.no. 62420

All rights reserved. No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language or
computer language in any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual, or otherwise without the prior written permission of
RC International, Lautrupbjerg 1, DK-2750 Ballerup, Denmark.

Disclaimer

RC International makes no representations or warranties with respect to the con-
tents of this publication and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Furthermore, RC Interna-
tional reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of RC International to
notify any person of such revision or changes.

FOREWORD.

This edition of the RC3502 Real-Time Pascal Reference Manual is up-
dated according to release 5 of the RC3502 operating system package
and release 4 of the RTP3502 package. The package numbers are
SW2001 and SW2111, respectively. RTP3502 is the RC8000 cross com-
piler implementation for RC3502 of the Real-Time Pascal language as
defined in Reference Manual for the Programming Language Real-Time
Pascal (PN: 99110141).

TABLE OF CONTENTS Page

1. INTRODUCTION 2... . ce ee cc cece ccc ccc ccc eccecccvccececcce 1
1.1 Organisation of this Manual =n. ee ec eee ccc cece ccccee 1

2. IMPLEMENTATION DESCRIPTIONccccceecccccccccccecuce 3
2.1 NAMES oo cee cece ccc eee cc cece cece cc eecccesceseecceccuce 3
2.2 KeywordS — a. cece cece cc cccccceccccrccceccececcececees 3
2.3 Specification of Types «kee cece cece ecceccceces . . 3
2.4 The Type Integer 6. eee c ccc cece ccc ncccccccceccee 5
2.5 Set Types Cee e meee rece cece wees eeeneeeesseees 5
2.6 POOIS ..cececccccccccccecs Cece e creer eee c ee enenecccsees 5)
2.7 Message Buffer Attributes eee eee e cece cece cece e eee ees 6
2.8 Structured Values _........... eer c ccc c cece cess sees ccceee 7
2.9 String Type seem rc cece eee eeeeeseececs sore eee eens 7
2.10 Representation and Layout of Variables §—«............ 7

2.10.1 Representation of Values = ke cee eee ec ec ccc eccee 7
2.10.1.1 Enumeration Types See e ccc w cece eeeeeens 7
2.10.1.2 Shielded and Pointer Types. cece sees 8
2.10.1.3 Set Types ccc cee ccc ccc cece ec ceces 8
2.10.1.4 Structured Types cece cece eee cece 8
2.10.1.5 Bit Size of Type sw. ke eee ee eee eee 8

2.10.2 Memory Layout =... eee cece cece cc cecccceeees 9
2.10.2.1 Alignment seme e cece eee eeeens 9
2.10.2.2 Stack Frame ik ccc cece cece cece 9
2.10.2.3 Structured Types sw. eee cece cece cee 12
2.10.2.4 Arrays and Records, Not Packed ee. 13
2.10.2.5 Packed Arrays and Records 13
2.10.2.6 Set TypeS se. ee cece cece cece ccccecs 14

2.11 Evaluation of Expressions =«-—— cece cece cece cccccceccce 15
2.12 Constant Expressions =e... ce eee cece cece cece cccecce 15
2.13 Statement — cece cece cece cece ccc ceccccccceccecees 16

2.13.1 Exchange Statement Pee emer cece ne eascesesvccs 17
2.13.2 Labels kee eee cece cece cece ccc ceccececcees 17
2.13.3 Lock Statement =... cee cece cc ccc cece ccc eece 18
2.13.4 Channel Statement —se_... sce eee ccc ec cece cece eee. 18

2.14 External Routine Declaration cece cece eee eee 18
2.15 Parameters sn. ce ccc cece cee cece Cece e reece cseees 20
2.16 Compilation Unit sd. cece cece ec cece ccc cc cnccecee 20
2.17 IMC Functions —=—s nce cece ccc ecccccccccccceece . 20
2.18 Compiler Directives =. ccc cece cece cccccceccce 20

2.18.1 Predefined Switches =«-— wie cece e ccc ec cc eeccee 24

3. AVAILABLE ROUTINES _00.. cee eee sce eee eeee 25
3.1 Routines for Program Control —s nce eecceccecceccccecs 25

3.1.1 Break nce cece ce ccc ccc cece cece eccccececes 25
3.1.2 Create cece c ccc c cece ccc c ccc cceccececcececes 26
3.1.3 Exception —s nc. eee e eee occ rene rene rceevene 27
3.1.4 Link cece eee aeeeees ccc cece eee ee eees 27
3.1.5 OWNNAME oo. cece eee cee cee cee cece ceccecceceeces 28
3.1.6 Ownprogramname —..... eee cece cece c cece eeccaes 28

Table of Contents

3.2

3. 0 Os 2 3) 29
3. Pid link —=—_k ccc cc ccc cece cece cece ccc cceceees 29
3. REMOVE nee c cece cece eccccceeenccceceeevenes 29
3. 10 RESUME nc eee cece eee cece reece cece secre ceecs 30
3.1.11 Setownname ... eee cc cece cece cece cc ccceces 30
3. 12 Setpriority «§«-_—-_— cae cece cece cece cece ccecccvcvees 30
3.1.13 Start cece eee cc ccc cece cece eevee eceees 30
3.1.14 Stop eee ec cece cece cect cece ccc cecccccecs 31
3.1.15 Trace ccc ccc cece ccc cc cece cece cc ccccccccccece 31
3.1.16 Unlink cc cee ccc cc ccc cc cc cece ccc cccccece 32
Communications Routines =—s ce cece c cece cece cece cc cece 32
3.2.1 Callremote ke ee ccc cece cece cece cc ceceece 33
3.2.2 ClOSEPOrt «eee cece cece cece cc ccccccccece 33
3.2.3 COMNECE Lecce cece cece ccc ce ccc ceccccccecvveceve 33
3.2.4 Definetimer —s nc ee eee ccc cc cece cc cece eevee 34
3.2.5 Delay ccc cece cc cece cece cece ceccecccecevcees 34
3.2.6 Deletemailbox «-— sd ee ec cece cece ccc cccvcccecs 34
3.2.7 Disconnect —s_ nc ec eee ccc cece cece ccc cccceccece 35
3.2.8 Getconnection =—«—s nc ec ccc cece ccc ccc cccccccccece 35
3.2.9 Getcredit =«-_—_ ce cece ccc cece cece ccc cccccccece 35
3.2.10 Getreset = —s.. cc ccccccccces pec c crear e cc eecees 36
3.2.11 GetmameS — nc ccc ccc cece cece ccc c ec ccccees 36
3.2.12 Hometest ccc e cence cence cece cece cere scenes 36
3.2.13 Imcexists sees eesceees cece eee tcc eee c cence 37
3.2.14 Initport Cem rer cece n cece see eeencecece eeeee 37
3.2.15 Locked =... cee ce ee eee cece eee e eee e cece ec cece 37
3.2.16 Locktest see ceeee cette cece cece nce e cece 37
3.2.17 Masknames _....... ecco eee cere eee eee cease 38
3.2.18 Namemailbox —«— dc cece e cece cece cccceces 38
3.2.19 Nil a ccc ccc cece cece cece cece ecccccceves 38
3.2.20 Open __......... sce e eee ccccce ccc eee e cere ee cces 38
3.2.21 Openport —=— an ccc ccc cece cece cccnscccccces 39
3.2.22 PaSSiVe = ccc cece cece cece cc cccccccccccs 39
3.2.23 Receive «ccc cece cece cece cc ccccccccccees 39
3.2.24 Receiveall —e nk eee c ccc cece ccc cc cccccece 39
3.2.25 Reset —so.. cece cece cc cccccces sce e eee es eene 40
3.2.26 Resetevent =. eee ccc ccc cece ccc ccccccccvcce 40
3.2.27 REtuUIMN — nc cee eee cc cc cece cece cece ecccccceees 40
3.2.28 Searchmailbox =02.. ccc eee e cece teens 41
3.2.29 Send — ce cece cece cece cc cccccccccecs cece cece 4l
3.2.30 Sendlinker = gk ce ec cece ccc c cece cece eee e sees 41

3.2.30.1 Lookup name gk eee ee eee cece cece 42
3.2.30.2 Check cece cece cece eeees cece cece ees 42
Sendtimer —«— cc eee ccc cece cece cece cc cccccees 44
3.2.31.1 Short Delay Message cece cee cence 44
3.2.31.2 Long Absolute Delay Message _—.......... 44
3.2.31.3 Set Clock Absolute Message 45
3.2.31.4 Get Clock Message = eee eee eee 45
3.2.31.5 Long Relative Delay Message _......... 46
3.2.31.6 Set Clock Relative Message = —....... ss 46
3.2.31.7 Set Clock Interval Message _.......... 46
3.2.31.8 Regret Message =«=_— ce eee cece eee cecece 47
3.2.31.9 Regret Stream Message _ se ee eee 47

3.2.32 Signal —_- cece cece cece cece cece ccc ccscecevcece 48

Table of Contents

3.2.33 Wait eee e cece cece ccc ceseeeeees 48
3.2.34 Waitdelay ke eee ccc ccc cece ccc cccccccece 48

3.3 Routines for Message Manipulation —... ee ee eee ee cee eee 49
3.3.1 AOC Lecce eee cece cece ccc eececcccceccceccuce 49
3.3.2 Allocdelay cee cece ccc ccc cece ccc ec ccc ecece 49
3.3.3 Allocpool ke cece cece cece ccc ccccccccece 50
3.3.4 Bufcount —=— nce c cece cece ccc cccccccvccce 50
3.3.5 Bufsize Seem c rece cern eee e cece eens ecscces 50
3.3.6 Bytecount —«— nee cece cece cece ccc cceececcee 51
3.3.7 Chaindequeue =n eee ccc cece ccc ccc ccccecce 51
3.3.8 Chaindown — nc cece ccc ence ccc cc ccc cececcece 51
3.3.9 Chainenqueue —S_........ 02 cece cece eee e eee nes 52
3.3.10 Chainlength = =—=—ss nc cece eee eee ccc e cece eee . 52
3.3.11 Chainreset =... ccc cece eee e eee cece cece ees 52
3.3.12 Chainstart see ecees Cece c cern eee cescceecsccescce 52
3.3.13 Chainup cee eee ccc cee ccc cc cece cee cccces 53
3.3.14 Crel6buf ck eee cece cece cece cece ccccces 53
3.3.15 Creditcount = 2. ee cece eee cece eens 53
3.3.16 Eventkind =k. ccc ccc cece cece ccc ccccccccece 54
3.3.17 Index —s an eee c cece cece cece cece cece cc ees 54
3.3.18 Offset soccer renee ees ecececesecescee 54
3.3.19 Openpool —_............... sere eee cece ssececses 55
3.3.20 Pop na eee eee eee cece nee wone coe eee c cece cc cees 55
3.3.21 Push — ke ccc ccc cece cece cence cece cece ee eee 55
3.3.22 Reason... Soccer cece ences eee ccccenssetes 56
3.3.23 Release «ccc c cece ccc cece cc cece cece ees 57
3.3.24 Releasepool Cac cere emcee scevesecccces oeee 57
3.3.25 Setbytecount —=— dec c eee c cece ccc cceccce 57
3.3.26 Setoffset see cece esc cecs cece eee e ees 57
3.3.27 Settop sw. cece cece wee eee cece cree cece ceeens 58
3.3.28 Setul cece ccc cece cece cc ec ccc cece cccnece 58
3.3.29 Setu2 Cece emcee rence ner eccesccenscees 58
3.3.30 Setu3 ccc ec ccc cc ec eeee Cece cern cece cecesce 59
3.3.31 Setud cee ec ccc ccc cece ccc c cece cccceece 59
3.3.32 Stackdepth ccc cree eee eens cece cece cece eee eens 59
3.3.33 Tofrom =... cece ee eee Coc cece near eeeececcccce 59
3.3.34 Top Seer reece ener cree eeee eee eeeeecscece 60
3.3.35 Ul ace eee c cece ecces eee . cee . . 60
3.3.36 U2 cote cece cece ee cece cece ewer eens cece ee ees 60
3.3.37 U3 sec e cc eene cece cece cece ee eee cece ccc e eee eee 60
3.3.38 U4 Cee merece em reece asec ee eeeecencenecesesecees 61

3.4 Conversion and Arithmetic Routines «ss. cece ccc cecce 61
3.4.1 Miscellaneous Routines ——........... seer ees eesoes 61

3.4.1.1 Chr = sete recens cece c cece cc ees 61
3.4.1.2 Ord = c.ccceceeee coe e cece cece cece eens 61
3.4.1.3 Pred = cece cree eee c cece ces seeee G1
3.4.1.4 SUCC Lecce ccc cc ccc cece ccc ccccecs 62

3.4.2 Double Arithmetics Routines wee ceescecee cee eeee 62
3.4.2.1 Double add wc eee ccc cece cece ec eee 62
3.4.2.2 Double « IS 6 62
3.4.2.3 Double « 6 0 eae ceeseece 62
3.4.2.4 Double _ INC dee ec ecce cece ccccccsccecs 63
3.4.2.5 Double _ 1 0 ra 63
3.4.2.6 Double _ It Cem eee were eee eee eccceces 63

Table of Contents

3.4.2.7 Double madd cee ee eee cece cece eee 63
3.4.2.8 Double Mod ow. kee eee eee e cece eee ees 63
3.4.2.9 Double msub kee eee eee cece cee eees 64
3.4.2.10 Double mul cw. eee eee cee ee eee 64
3.4.2.11 Double sub cc eee eee cece cee e cece 64
3.4.2.12 Double uint = cc eee eee ee cece eee 64
3.4.2.13 Int_double ke cece eee cece eee v cece 64
3.4.2.14 Uint_ double wc eee cece cece cess 65

3.4.3 Miscellaneous Arithmetic Routines cece eee eees 65
3.4.3.1 ADS cece cece cece cece cccccccecces 65
3.4.3.2 Crcl6 «cece cece ccc cc ccccscccscecvcecs 65
3.4.3.3 DeC cece ccc ccc cece ccccceccvceves 66
3.4.3.4 INC cece cece cece ccc cescccevccees 66
3.4.3.5 Intel —«-—_ cc cece ccc cece cece tec ccccces 67
3.4.3.6 Lambda ge eee ccc cece cece ccc ce ees 67
3.4.3.7 Madd — cee ec ccc cece cece cece ccc cecee 68
3.4.3.8 Mmul — cee cece cece cece cece cccees 68
3.4.3.9 Msub — nc ccc ccc ccc cece cece ccecee 68
3.4.3.10 Rotate sn. .scceeeeee cece cere e cece. 68
3.4.3.11 Swap cece e ccc ccc cc cece cece ccc ccces 68
3.4.3.12 Uadd sn ccc ccc cece eee cece ewes ee 69
3.4.3.13 Udiv —_........ cece ec ceecee cece cee ences 69
3.4.3.14 Ult cece cece cece eee ee cece wees 69
3.4.3.15 Umod se. ee eee ccc cece cece cece cceces 69
3.4.3.16 Umul _............ oem c cece rere reece ccceses 70
3.4.3.17 Usud kc eee cee c ccc cece cece ccc eees 70

3.5 Clock Routines =k cece ccc cece ccc ccc ccccccccece 70
3.5.1 Clock difference «=k. ec cc ccc ccaeeee 70
3.5.2 Clock increment soccer eee s co sersscces +. 70
3.5.3 Clock | less than cece cece ccc cc cece cece cece 71
3.5.4 Getclock — kee cece ccc ccccccccccccccccecce 71

3.6 Miscellaneous Routines =—s ccc ec cee ccc ccc ccccceccuce 71
3.6.1 Getid eee cece cc ccc ccc cc ccc ceccccccvceee 71
3.6.2 Getlfgf Cee c cece ee eee eee ececceees 71
3.6.3 Getswitches «ss... ee cece ccc cece cece ccccccceecee 72
3.6.4 Maxconnections —s 6. ccc ccc cece cc cccccccceces 72
3.6.5 Memerrorlog oo. ec c ee ccc cece ccc ee cceccceecs 72
3.6.6 New cece ere steer ccc nes scene eee ecceece . 73
3.6.7 Readram we eee cc ccc ce ccc ccc cece cecccccecce 73
3.6.8 Restart e0. . cece eeeee cme e eee e ce eens 73
3.6.9 Setswitches se .. cc eee ee ee eee seem eee c ce eecccees 74
3.6.10 Setwatchdog —=— wee cece cece cece ccecceecs 74
3.6.11 Wild_compare cece ecco meee ee eeeneee oe . 74

3.7 Routines for Operator Communication Cone e cece eenece 74
3.7.1 Initialization «-—-— se eee cc cece cece ec cccccecs . 75

3.7.1.1 Openopzone cece eee cece ecces coe eeees 76
3.7.1.2 Openzone =n cece ccc eee c cece ccecccs 77

3.7.2 Output —_— eee e cece cece ccc ccccccccccccecceceves 78
3.7.2.1 Outaddr —....... ccc ce eee cease ecscece 78
3.7.2.2 Outalfa eee eee e creer e cece nsec scncs 78
3.7.2.3 Outchar = cveeeeee cee merece cescecces 79
3.7.2.4 Outdate coe e cece cece cece cece . 79
3.7.2.5 Outdouble cece cere creer cers ecceccces 79
3.7.2.6 Outend oe . soc e ee ceeceece 79

Table of Contents

3.7.2.7 Outfill «§-—-_ Lecce cc ccc cc cece cee ees 80
3.7.2.8 Outhex cece rece cece cece eee ees cece eens 80
3.7.2.9 Outinteger kee cece cece ce eee 80
3.7.2.10 Outnl nee cee ccc ecw cece ce eee ee cees 80
3.7.2.11 Outtext =... ccccccscceee cece e cece 81
3.7.2.12 Outtime —-— cece cece ce eee cece 81
3.7.2.13 Print cc eee cece cc ccc cc ccc cee cecees 81
3.7.2.14 Print descriptor =«-— ss. cece cece eee ceces 81
3.7.2.15 Printmessage = wk ee eee cece eee eces 82

3.7.3 IMPpUt — ca eee e cece cece cece cece ccc cccccceccecce 82
3.7.3.1 Inchar nc ccc ccc cece cece cece cece 82
3.7.3.2 Indouble = cece cc cece cece ecees 83
3.7.3.3 IMNheX — cece cece cece cece ccccccccceces 83
3.7.3.4 Ininteger «ke eee ccc ec ec cece cee eeece 83
3.7.3.5 INNMAME =. eee ee cc cece cece cece cccecs 84
3.7.3.6 Inwildname —s a... ccc cece cece cece 84
3.7.3.7 Opanswer =. ec ec cc cc ccc cece cccccecs 85
3.7.3.8 OPIN «cece cc cee cece ccc cc ccc ccececs 85
3.7.3.9 Optest =... cece Cece e cere ere ecces 85
3.7.3.10 Opwait =—=—_—s cv cccccccecces chee e cece eee 85

3.7.4 Advanced Use =n cc cece cece cece ces ceccccces 86
3.7.4.1 Input - Output Mode cece cece eee vees 86
3.7.4.2 Events cece cere seeeee cece cece eee eeees 87
3.7.4.3 Regret «nc cc cccccccccccccccvcccvcvceecs 88
3.7.4.4 Match —s nc cece ccc cc ccc cece cc ecccees 88

3.8 Driver Input/Output Routines —ss aw. ce ec e eee e cece ccces 89
3.8.1 Clearinterrupt =«—-— nc ec cc cc ccc cece cece ceeces 89
3.8.2 Control ec. cee ccc ccc ccc cece cece ceece sec eees 89
3.8.3 Controlclr —s nn ccc eee eee seme cece eee e eee erees 90
3.8.4 Ctrwaitid «-—-_ eee ccc cece cc cece cece cece cc cecces 90
3.8.5 Ctrwaitim cece ccc cece ccc cece ccc ccccees 90
3.8.6 Ctrwaitimd ccc eee e eer cece eee 91
3.8.7 EOL coc ccc cece cece cece cece ccc ences cececevccees 91
3.8.8 Getbufparam eo... cece eee eee eee cece cece eens 92
3.8.9 Inbyteblock — wc eee cece cc cece cece cece caes 92
3.8.10 Inword kee eee ccc ccc cece cet eccecevcvceece 93
3.8.11 Inwordblock —s_...... eee eee sec c cree cee sce cces 93
3.8.12 Inwordclr — kee ccc ccc ccc cece ccc ccccece 94
3.8.13 Iowbwe ... ee eee ee eee e cece rece seve ees cceecs 94
3.8.14 Messagekind =—=—ss wee cece ccc ec cece cece ewes 95
3.8.15 Outbyteblock — wc ccc ccc ccc cece cece ecee 95
3.8.16 Outword san. cece eee eees se eeee cece cece cece 95
3.8.17 Outwordblock —s_ ccc cc eee ec eee ee Cece c cece eens 96
3.8.18 Outwordelr sn. cee ee eee cece eee e cece eee eees 96
3.8.19 Reservech —s nc eee cece cece cece cececes cece 97
3.8.20 Reserveextmem —s... ccc cece ccc cc cece cccccees 97
3.8.21 Sense sc cee ccc cece cece cee cees Cece eee eee ees 98
3.8.22 Senseclr =... arsaaee cece eee esons sec ccescsceee 98
3.8.23 Setinterrupt =«-—-— dc ccc cc cece cece ccc cccecees 99
3.8.24 Timedout —_.......... sec eees ccc eee e cece enees 99
3.8.25 Waiti wee eee eee e cece eens cece cece ccc ceceees 99
3.8.26 Waitid cee eee ccc cc cece eee cececcccccece 100
3.8.27 Waitim cc cee ccc ce ccc ce ccc ccc ec cee ececeece 100
3.8.28 Waitimd —«—-— cee ccc ccc ccc cece cece ec ecccees 100

Table of Contents

3.9.1 First ccc cece cece cece cece cece cece escesscees 101
3.9.2 Last —«-_—_dacccccccccccecccvcccsscescecccesseees 101
3.9.3 NEXt —«—_necccccccccccccccccccccccseccveceseees 101
3.9.4 Refi coe c ccc cece eee c cece cece cece eee eeeeeees 102
3.9.5 Setfirst «§«-_—-_ Lecce ccc cece cece ccc ceecceeececs 102
3.9.6 Setlast cece ccccccccccccccccccsccceccecseses 102
3.9.7 SEtNeXt cece ccc esc c cece reece sce cccceccees 103

3.10 RTP Language Supporting Routines ccc cee ceeees 103

4. THE RC3502 MACHINE ... cece ccc ccc cece cece cece cceces 105
4.1 Run Time Environment =... eee cece cece ect e scenes 105
4.2 Monitor Process _....... cece eeee cece eee e eee eeeeeees 106
4.3 Driver ProceSS€S —s ce cece cece cece cece ccc ceccecceeees 107

4.3.1 Time Out — nee ec cc cece ccc rece cece eeceee 108
4.4 Timer Process’ See c cere eee re rene nescence 108 .
4.5 Allocator ProceSS —s cs eee cece cece cece cece ccc ccccees 109
4.6 Linker ProceSS =«=—_—_n eee e cece cece cc ccc ccc ccccsccvcces 109
4.7 Adam ProCeSS — ce ese eee cc ccc cc ccc ccccccccccececcceces 110
4.8 Operator Process cme e cece eer w eee eee eseeeeeeenes 114

Appendices

A. REFERENCES occ cece ccc cece cece cece cece ccc eescecceees 115

B. USE OF THE REAL-TIME PASCAL COMPILER.......ceeceeees 117
B.1 Call of the Compiler — wc ccc ccc cece cece ccs 117

C. PERFORMANCE MEASUREMENT........cceceeee ce eeee seeeeee 123

D. REAL-TIME PASCAL MESSAGES.......eeceece cece cece eeeceee 125
D.1 Messages from Pass 1__......... coc ccc cece cece cc cees 125
D.2 Messages from PasS 3... ee eee cece cece cece cc ecccces 127
D.3 Messages from PasS 4 en. ec eee cece ccc cece e cc ccecees 131
D.4 Messages from PasS 5 wee eee e cece cece cece cece ccecees 132
D.5 Messages from PaSS 6 nce ee cece cccccccsccccs coe eees 134

E. REAL-TIME PASCAL SOURCE PROGRAM UTILITIES........... 135
E.1 Indent, Text Formatting Utility =... cece eee ce cee ee 135
E.2 Cross Reference Program —... ce cece cee cece ccc cececs 136

E.2.1 Crossinst =«-— cc eee ccc ccc cece cece cece ecceceees 137
E.3 RTP-CompresS —s... cece ee eee cece ccc cees cece eee cesces 138

F, REAL-TIME PASCAL OBJECT PROGRAM UTILITIES........... 139
F.1 PLIBINSERT —s nn cee ccc cece cece ccc ccc ccc ceeceecees 139
F.2 PLIBLOOKUP en. cee ccc ce ccc ccc ccc cece ee ceecescees 139
F.3 PLIBALL —s nc ccc ccc ccc ec cece cece cence ee seeecerece 139
F.4 PLIBDELETE ong cece ccc ccc cece eee c cece cece cuees .. 140
F.5 PLIBEXTRACT — cc. ee cece cece cece cece cece ec ececececes 140
F.6 PLIBCONVERT cece vce e eens cece cece eee eeee cece cece 141

G. LOAD OR AUTOLOAD FILE GENERATION ON RC8000......... 143
G.1 How to Generate a Load File —s a... ce cece cece eee 143

G.1.1 Generating an FTS Load File see cece sees 143
G.1.2 Generating an FPA Load File00000. 143

G.2 How to Generate an Autoload File —.... ccc cece cee eee 143

3.9 Routines for Backwards Compatibility = = 100

Table of Contents

G.2.1 CROSSLINK ccc ccc ccc cece eect eee eeeees 143
G.2.1.1 Error messages from CROSSLINK 147

G.2.2 Generating an FTS Autoload File 147
G.2.3 Generating an FPA Autoload File05. 147

H. COMPLETE LIST OF LANGUAGE SYMBOLS..........e..ceee. 149

I, PREDEFINED CONSTANTS, AND TYPES.........ccccccccccce. 151
I.1 Implementation Dependent Definitions — 154

J. PREDEFINED ROUTINEScccccccccccccccccceccccece 157
J.1 Language Intrinsic Routines «=k. eee cece cece cece cee 157
J.2 Implementation Dependent Standard Routines -. 159

K. RC3502 SYSTEM SUPPORTED ENTITIES........cccccccccecce 161
K.1 Doubleenv oo. cece cece cece cece cece cece cccecce 161
K.2 ImMC3502ZenV ke eee cece cece cece cc ceccccccceeece 161
K.3 Ioenv wg ee ee ee eee Pee eee weer cc we ere renee sccvces 163
K.4 Measureenv sn. ce eee cece cece . occ cern ee eeee 164

L. OPERATOR INPUT/OUTPUT EXAMPLE.........ccccccceccccce 165

M. EXCEPTION CODESccsccccccsccccccccccccccccecce 167

N. INDICES Deen eee e eee eee c eee eeeecs Coen ec cee eseeee 169
N.1 Survey of Figures oo... ccc cece ccc cece cece cccccece 169
N.2 Catchword Index sx. cece cc cece cece cece ccecece 169

Table of Contents

RC3502 Real-Time Pascal 1

L, INTRODUCTION
This manual describes the RC8000 cross compiler implementation of
the programming language Real-Time Pascal for the RC3502 machine.

1.1 Organisation of this Manual

Chapter 2 contains a description of how the implementation dependent
details of the language are realized. Information on deviations betwe-
en the language definition and the actual implementation is supplied.

Chapter 3 describes all the available routines of the system libraries.

Chapter 4 describes the standard processes comprising the run time
environment for RC3502 Real-Time Pascal programs.

Appendix A contains references.

Appendices B, C, and D describe the use of the RC3502 Real-Time
Pascal compiler and the error messages.

Utilities for manipulation of source and object programs are described
in appendices E and F.

Appendix G describes how a load file or autoload file is generated on
an RC8000.

Appendix H contains a complete list of language symbols.

Appendices I and J contain a list of all predefined constants, types,
and routines.

Appendix K contains a list of operator input/output type definitions
and routine declarations.

Appendix L is a more comprehensive example using the OPERATOR in-
put/output routines.

Appendix M contains a complete list of exception codes.

Appendix N contains the figure index and the catchword index. A:
appended to a catchword indicates that the reference is for a syntax
diagram. An = appended indicates that the reference is for a
definition of a constant or type.

Introduction 1.1 Organisation of this Manual

2 RC3502 Real-Time Pascal

1.1 Organisation of this Manual Introduction

RC3502 Real-Time Pascal 3

2, IMPLEMENTATION DESCRIPTION
This chapter contains descriptions of how implementation dependent
details of the language are realized in the RTP3502 cross compiler.
As far as possible, the ordering follows that of the language
reference manual.
A reference to the appropriate section of the language reference
manual /RTP/ is given where possible. The format is (cf. RTP-x.y)
for a reference to section x.y.

2.1 Names

(cf RTP-2)
The danish letters #2, 9, Aa, AZ, @, and A are accepted as members of.
the category ‘letter’.

2.2 Keywords

(cf. RTP-2.5.1)
In RTP3502 the list of keywords is extended with the following
words. The total set of reserved words (and symbols) are given in
appendix H.

Keyword use
BEGINBODY internal
CHANNEL interrupt handling, cf. Driver Processes, section

4.3
EXPORT internal
LABEL label declarations, cf. 2.13.2
PREFIX heading of separately compiled routine, cf. 2.16

2.3 Specification of Types

The augmented form of type specification for formal parameter lists
is not supported. The so-called open families are not implemented.
The syntax diagrams for the current implementation are:

common type specification:

— type definition

[> parameterized type binding —

——————> defined type

Implementation Description 2.3 Specification of Types

4 RC3502 Real-Time Pascal

formal type specification:

—yT-~ type definition —,r—

——>defined type

type definition:

—yj ordinal-type definition

[> frozen-type definition

[——> pointer-type definition

[—— set-type definition

——>structured-type definition —

defined type:

—T predefined ordinal type -—,—

[> shielded type

_———> bound-type_name

frozen-type definition:

——?!—>common type specification —>

The frozen type concept of earlier implementations of RTP3502 is
still supported. An object of a frozen type cannot be changed and
actual parameters for formal parameters of frozen type may be
constants, even if the formal parameter is of kind VAR, i.e. frozen
VAR parameters are equivalent to parameters of kind INSPECT.

2.3 Specification of Types Implementation Description

RC3502 Real-Time Pascal 5

2.4 The Type Integer

(cf. RTP-3.4.3)
The type double is not supported as a built in type with infix
operators. But the type exists and operations on objects of type
double are performed by means of routine calls. The necessary
routines are defined in the context named doubleenv, which is part of
the operating system package.

2.5 Set Types

(cf. RTP-3.5)

set-type definition:

—— SET — OF —>common type specification —

The common type specification specifies the element type which must
be an ordinal type, and furthermore restricted to cover positive
valued elements only. And set constants are further restricted only to
contain elements inside the range 0..1023.

2.6 Pools

(cf. RTP-3.7)

shielded type:

TO mailbox ——————>

[> reference

-—_#_— pool type

> process

>port

chain

“—external program type —~

Implementation Description 2.6 Pools

6 RC3502 Real-Time Pascal

pool type:

—— pool

L cooceects

“> OF —>common type ssecittentien |

The value of expression of the pool type is the initial number of mes-
sages allocated to the pool object, i.e. the cardinality of the pool.
The type size of common type specification is the buffersize of the
messages allocated to the pool object. If it is absent the messages
are allocated with no message buffer. The non standard variants of
pool type definition are equivalent to the simple definition followed
by a call of allocpool, with the value of expression as "no_of_messa-
ges' parameter and the value of typesize (‘common type specifica-
tion') as 'bufsize' parameter. The value 0 is used if no type is speci-
fied. The size of the allocated buffer(s) is an integral number of
words, i.e. an even number of bytes.
On the RC3502 there is only one kind of memory available for alloca-
tion of objects, therefore the function allocmempool and the type
mem _type are not supported.

2.7 Message Buffer Attributes

(cf. RTP-3.7)
The attributes ‘offset’, 'top', and 'bytecount' are implemented by
means of the first three words in the message buffer, representing
the attributes named 'first', 'last', and 'next' in earlier versions of
Real-Time Pascal systems for the RC3502.

The relations between the new and the old versions of these attri-
butes during retrieval or update are:

offset(r) : first
top(r) : last+1; -- modulo arithmetic
bytecount(r) : next-first; -- unsigned arithmetic

setoffset(r, val) : savebytecount:= next-first; -- modulo
: first:= val;
: next:= val+savebytecount; -- modulo

settop(r, val) : last:= val-1; -- modulo
setbytecount(r, val) : next:= first+val; -- unsigned

Note: The 'next' attribute is updated as a sideeffect of 'setoffset',
in order to obtain, that the 'bytecount' attribute is independent of
the 'offset' attribute.

2.7 Message Buffer Attributes Implementation Description

RC3502 Real-Time Pascal 7

2.8 Structured Values

(cf. RTP-3.8.3)
Structured values are only supported as structured constants, i.e. all
components must be constants and the types cannot be dynamic. Note
that a bound parameterized type is dynamic, even if the parameters
of the binding are constants. Furthermore, the result of calling the
predefined functions abs, chr, ord, pred, and succ is treated as a
variable, even if applied on a constant.

2.9 String Type

(cf. RTP-3.8.4)
The type string is not predefined and therefore not supported with
built-in truncation and/or extension. But literal text strings are trun-
cated/extended if assigned to a variable of a static character array
type.

2.10 Representation and Layout of Variables

(cf. RTP-3.10)
In this chapter it is explained how values of the various types of Re-
al-Time Pascal are represented in the RC3502 implementation and how
memory is allocated and laid out to hold the values of the variables
of a process.

Note: The object layout for the RC3502 differs from the prescribed
layout of descriptive types.

2.10.1 Representation of Values

2.10.1.1 Enumeration Types

An enumeration type is defined as consisting of a finite, totally or-
dered set of values, corresponding to a set of ordinal values which is
a subset of the integral numbers. The representation of a value of an
enumeration type is the two's complement representation of the cor-
responding ordinal value. If a type includes negative ordinal values,
the representation of values of the type is always in 16 bits (a
word). If the type includes only non-negative ordinal values, and n is
the largest of these, then the representation is in log, (n+1) bits (at
most 16). Examples:

- integer values (-32768..32767) are represented in 16 bits,
- boolean values (false, true) are represented in 1 bit,
- char values are represented in 8 bits,
- values of the subrange type -3..7 are represented in 16 bits,
- values of the scalar type (red, green, blue, orange, pink) are

represented in 3 bits.

Implementation Description — 2.10.1 Representation of Values

8 RC3502 Real-Time Pascal

2.10.1.2 Shielded and Pointer Types

The representation of values of shielded and pointer types is not
revealed.

2.10.1.3 Set Types

The representation of values of a set type uses a bit vector whose
length depends on the base type. The base type must be an enumera-
tion type which does not include negative ordinal values.

If the ordinal value set of the enumeration type T is the range m..n
(m>0) then values of the type set of T are represented in a bit
vector with indices from 0 to n. The first m (possibly zero) of these
bits are significant only in comparisons. If the element of T whose .
ordinal value is i (m<i<n) is a member of a particular value of type
set of T, then tit i in the representation of that value is 1,
otherwise it is 0. Example:

TYPE

Ss type= SET OF 3..5;

VAR

S var: s_type:= (.3, 5.);

The value of s_ var is represented as shown:

bit 012 3 4 5

The shaded bits are significant only in comparisons.

2.10.1.4 Structured Types

Values of array or record types are vectors of values of enumeration,
shielded, pointer and set types. The component values are represented
as described for the component types.

2.10.1.5 Bit Size of Type

The bit size of a type T, denoted S(T), is the number of bits used to
represent values of type T. The concept of size is only relevant for
types which are affected by packing when used for components of
structured types, and is therefore not defined for all types. For enu-
meration types S(T) is computed as described above.

Example: S(char)=8, S(integer)=16.

2.10.1 Representation of Values Implementation Description

RC3502 Real-Time Pascal 9

2.10.2 Memory Layout

The memory requirement of a type T, denoted M(T), is defined as the
number of bytes which are allocated for a variable of type T. The
value M(T) is the result of a call of typesize(T).

For an enumeration type T, M(T) depends on S(T), as follows:

1 <= S(T) <= 8: M(T)=1
9 <= S(T) <= 16 : M(T)=2

For shielded and pointer types, M(T) is the following:

M(reference)=
M(mailbox)=
M(process)=
M(pointer)=
M(pool)=
M(chain)=
M(program_descriptor)=
M(port)= O

N
O
N
W
O
N
N

o
o

Memory requirement for structured types is described in connection
with memory layout for these types in the following subsections.

2.10.2.1 Alignment

The memory of the RC3502 machine consists of a sequence of eight
bit bytes. Each byte has an address. Two consecutive bytes constitute
a word. The most significant halfword is the byte with the lowest
address.

Memory allocation for a variable of a shielded type, or of a stuctured
type containing components of shielded type(s) is physically word-alig-
ned, i.e. the allocated memory starts on a word boundary, where the
first byte has an even address. All other variables are byte-aligned.

2.10.2.2 Stack Frame

Memory for variables declared in program or routine blocks is alloca-
ted in stack frames in the data structure of the process to which the
variables belong. The general layout of a process stack is shown in
fig. 2.1.

In the portion of a stack frame used for declared variables memory is
allocated from low to high addresses in the order of declaration of
the variables in the program text.

An integral number of bytes is allocated for each variable. The num-
ber of bytes is determined by the memory requirement of the type of
the variables. Because of physical word-alignment, unused bytes of

Implementation Description 2.10.2 Memory Layout

10 RC3502 Real-Time Pascal

memory may be left between variables (in fact also inside structured
variables).

When more memory is allocated for a variable of an enumeration type
than indicated by the bit size of the type, the variable is placed in
the least significant bits of the allocated byte or word.

Example: Corresponding to the declarations:

VAR

a: char;
b, c: 0..73
d: integer;
e: reference;

Memory is allocated within a stack frame as illustrated in fig. 2.2.

2.10.2 Memory Layout Implementation Description

RC3502 Real-Time Pascal ll

global frame ->

local frame ->

stack top ->

high address

Fig. 2.1.

process descriptor

variables declared at the
program block level

actual parameters

anonymous parameters

variables declared at the

routine block level

operands of expression
being evaluated

global frame

stack frames for

intermediate

routine calls

local frame

(for the latest

routine call)

Process Stack Layout (snapshot)

Implementation Description 2.10.2 Memory Layout

12 RC3502 Real-Time Pascal

s being even s being odd

MSB LSB MSB LSB
address 01234567 address 01234567

s+0 a s+0 a

s+] stl -_. b

s+2 s+2 oe : - : ec

s+3 s+3 | |
d d

s+4 s+4

St+5 St+5 ns . — as

S+7 S+7

s+8 s+8 e

s+9 e s+9

s+10 s+10

stl] st+11

s+12

The shaded areas are unused.

Fig. 2.2. Memory Layout for Simple Variables in Stack Frame

The layout of actual parameters is similar to that of declared vari-
ables, with a minor modification: Since the smallest unit of memory
pushed on the evaluation stack is a word, each actual parameter of a
program or routine stack frame occupies an integral number of words.
Similar to the case of declared variables, an actual parameter of an
enumeration type of size less than 16 (bits) is placed in the least
significant bits of the allocated word.

2.10.2.3 Structured Types

The memory requirement of a structured type is determined by the
Memory requirements of the component type(s) and by the necessary
alignment.

The memory allocated for a variable of a structured type is sub-allo-
cated for the components of the variable in a fashion which depends

2.10.2 Memory Layout Implementation Description

RC3502 Real-Time Pascal 13

on whether the type is declared as packed or not.

For an array, memory is allocated from low to high addresses for the
elements in index order, and for a record, memory is allocated from
low to high addresses for the fields in the order they are declared in
the record type definition.

2.10.2.4 Arrays and Records, Not Packed

For an array or record type which is not packed, memory allocation
for the components takes place in precisely the same fashion as allo-
cation of memory for declared variables in a stack frame, i.e.:

- from low to high addresses,
- an integral number of bytes per component,
- alignment (relative to the beginning of the array or record and

by implication also in absolute memory) as described in subsec-
tion 2.10.2.1.

- right justification of each enumeration type component within
the allocated byte or word.

Example: With the record type definition:

TYPE
r=RECORD

a: char;
b, c: 0..7;
d: integer;
e: reference

END;

Fig. 2.2 -s being even- shows the layout of a variable of type r. The
record is word aligned because of the shielded component.

By summation (or multiplication) the memory requirement of an array
or record type may be determined from the above rules for sub-allo-
cation of memory for components. For the record type in the example
M(r)=13, because the start address is even.

2.10.2.5 Packed Arrays and Records

In the memory allocated for a variable of a packed array or record
type several consecutive components may be packed into a single byte
or word. Only components of types with size less than 16 (bits) (for
arrays: 6 bits) are candidates for packing. Packing of components al-
ways starts from bit 0 (MSB) of a byte, and each component is allo-
cated as many bits as indicated by its size. When it is not possible to
fit any more components without crossing two byte boundaries,
packing stops and allocation is resumed from the next byte boundary,

Implementation Description 2.10.2 Memory Layout

14 RC3502 Real-Time Pascal

i.e. byte-alignment takes place. By this rule unused space may be left
in the least significant bits of the byte, where byte-alignment took
place.

Note: only components of ordinal types are candidates for packing.

The memory requirement of a packed record or array type is always
at least 1 byte.

Example: The layout of variables of the following packed record type
is shown in fig. 2.3.

TYPE

q=PACKED RECORD
a: char;
b,c: 0..73
d: integer;
e: reference

END;

address 012 3 4 5 6 7 8 91011 12 13 14 15

s+0 a b c

S+2 d

st+4

s+6

s+8

s+10

Fig. 2.3. Memory layout for packed record. M(q)=11

2.10.2.6 Set Types

The memory requirement of a set type is always an even number (of
bytes), i.e. an integral number of words are allocated for each vari-
able of a set type. The number of words used is the smallest number
which will accomodate the bit vector used to represent values of the
set type, cf. subsection 2.10.1.3. The bit vector is laid out with index
0 in the most significant bit of the first word. The last word may
contain an unused portion in its least significant bit positions. Exam-
ple:

2.10.2 Memory Layout Implementation Description

RC3502 Real-Time Pascal 15

VAR set_var: SET OF 0..50

layout:

address 0 12 3 4 5 6 7 8 91011 12 13 14 15

s+0

St+2

st+4

s+6

13 bits are unused (the shaded area). The memory requirement of the
type is 8.

2.11 Evaluation of Expressions

(cf. RTP-4.1)
The short circuit evaluation of logical expressions with the operators
OR and AND is not supported. All expressions are completely evalua-
ted.

2.12 Constant Expressions

(cf. RTP-4.3)
Constant expressions are further restricted:
The predefined functions abs, chr, ord, pred, and succ are not allowed
in a constant expression, not even if applied on a constant argument.
Neither are typesize or varsize calls allowed.

Implementation Description 2.12 Constant Expressions

16 RC3502 Real-Time Pascal

2.13 Statement

(cf. RTP-5)

statement:

[> compound statement

[—— assignment statement

| exchange statement

[shh IEF statement

case statement

for statement

loop statement

while statement

-—> repeat statement —procedure call 4

-—_— exitloop statement

[> continueloop statement

[sss exit statement

goto statement

[labelled statement

ss with statement

co lock statement

>channel statement

>region statement

2.13 Statement Implementation Description

RC3502 Real-Time Pascal 17

2.13.1 Exchange Statement

(cf. RTP-5.2.2)
In the RC3502 implementation exchange statement is restricted only
to accept objects of type reference or of type process. The general
exchange is not supported.

2.13.2 Labels

(cf. RTP-5.7.4)

label declaration:

—— > LABEL label 7

label:

LC ty number

goto statement:

—~ GOTO —> label —>

labelled statement:

— label —: —statement —

As in Standard Pascal label declaration parts are allowed among the
other declarations. Labels are names or unsigned numbers, not prefixed
by a radix specification. It is checked that declared labels are intro-
duced in labelled statements.

Implementation Description 2.13.2 Labels

18 RC3502 Real-Time Pascal

2.13.3 Lock Statement

(cf. RTP-5.9)
The implicit types of lock statements are anonymous types. This me-
ans that the types are not compatible with other types defined in the
program. Access to the data area must be preceded by an explicit ty-
ping in the lock statement or/and by means of a with statement with
retyping.

If the lockword is LOCKDATA the accessible data area is the part of
the message buffer bound by offset and top-1, inclusive. Offset and
top are the values of the message attributes.

If the lockword is LOCKBUF the whole message buffer is accessible.

2.13.4 Channel Statement

The channel statement is the language construct which provides ac-
cess to a device. The statement following do of the channel state-
ment is executed in a special priority class and with a priority de-
pending on the channel object. For further details cf. Driver Pro-
cesses in section 4.3.

channel statement:

—— CHANNEL — object denotation —DO —statement —>

2.14 External Routine Declaration

(cf. RTP-6 and RTP-6.2.2)
If the routine block is specified by the word EXTERNAL it is possible
to specify the external name different from the internal name. The
external name is used by the linkage editor and the internal name is
the one which is used when the routine is called. It is possible to
have more bindings, even with different parameter lists, to one ex-
ternal routine. This is caused by a reduced amount of parameter
checking between the 'formal parameters’ of a separately compiled
routine and the corresponding formal parameter specification of the
separately compiled block. The implemented parameter checking is
mainly based on parameter kind, i.e. VAR, SHARED, INSPECT, or va-
lue, and the size of the parameter object, though shielded components
must match exactly.

2.14 External Routine Declaration Implementation Description

RC3502 Real-Time Pascal 19

routine declaration:

Lo —function heading fe block ——~

PROCEDURE — procedure heading >;

function heading:

— > function_name | function formals —

a — external_name

function formals:

7 | >: —>common type specification —

L comes parameters

procedure heading:

—— procedure name ; | >

|. —external_name L comes parameters

Example:

PROCEDURE trace=exception(code: integer); EXTERNAL

trace is the internal name and exception is the name of the external
procedure which will be linked to.

Implementation Description 2.14 External Routine Declaration

20 RC3502 Real-Time Pascal

2.15 Parameters

(cf. RTP-6.1)

The symbol ? is not allowed as actual parameter specification in the
RTP3502 implementation.

actual parameters:

— (—-— expression ——) —

As a further restriction to process parameters, i.e. to the formal pa-
rameters which occur in a program heading, parameters of type pool
are not supported.

2.16 Compilation Unit

(cf. RTP-8.2)
For backward compatibility reasons, separately compiled routines may
be preceded by the reserved word PREFIX and a name, which must be
the same as the routine name.

2.17 IMC Functions

(cf. RTP-11)
Notice that the IMC constants, types, and routines are not prede-
fined. They are defined in a context file named imc3502env, which
must be specified in the call of the compiler, if one or more IMC re-
lated functionalities are used in a program.

2.18 Compiler Directives

(cf. RTP-12)
This section contains a complete description of the supported compiler
directives.
Directives to the Real-Time Pascal compiler may be regarded as lexi-
cal separators. They have the general form:

$ directive-name parameters end-of-line
given on a separate line. Alternatively directives may be supplied as
parameters in the call of the compiler. Some of the directives must
be specified before the first line of actual source text is met, viz.
either in the compiler call or as $-directive lines in front of the ou-
termost program/routine heading.

The following table lists the available directives. Non standard direc-
tives are marked as such beneath the directive name.

2.18 Compiler Directives Implementation Description

RC3502 Real-Time Pascal 21

name parameters description
PAGELENGTH number

(default 45)

PAGEWIDTH number

(default 120)

EJECT none

TITLE "char. string"

SUBTITLE "char. string"

CODE none

NOCODE none

(default)

CREATESIZE number

INDEXCHECK none

(blind)

NOINDEXCHECK none

(blind)

LIST none

NOLIST none

(default)

maximum number of lines per
page of listing,

maximum number of characters

per line of listing,

force the start of a new page
of the listing

the character string is placed in
the title field of the header
line of each page of the listing,

the character string is placed in
the subtitle line of each page
of the listing,

causes code generated for the
following lines of source text to
be listed,

suppresses listing of generated
code,

determines stack size of incar-
nations of the following pro-
gram(s) if the value of the si-
ze_expression of the create call
is 0, cf. section 3.1.2, (imple-
mentation dependent)

causes checking of subrange
constraints before indexing to
be included in code generated
for the following lines of source
text. Note: it cannot be turned
off because the check opera-
tions are part of the machine
instructions.

switches off index checking,
Note: it cannot be turned off
because the check operations
are part of the machine instruc-
tions.

causes the following lines of
source text to be listed,

suppresses listing of source
text,

Implementation Description 2.18 Compiler Directives

22 RC3502 Real-Time Pascal

description name parameters
LINENUMBER number
(non standard)

ROUNDUPLINE none

(non standard)

INCLUDE name

(non standard)

VERSION number

(non standard)

RANGECHECK none

(blind)

NORANGECHECK none
(blind)

ACCESSCHECK none
(blind)

NOACCESSCHECK none
(blind)

SET switch assign-
ment list

DEFAULT switch assign-
(non standard) ment list

force line number of current

line to be the value of the
parameter expression,

line number of current line is
rounded up to the next
multiplum of 1000,

continue reading of program
text in the specified file. Inclu-
de may be specified in an inclu-
ded file.

assign the value of the version
expression to the version attri-
bute of the program

causes checking of subrange
constraints before assignment to
be included in code generated
for the following lines of source
text. Note: it cannot be turned
off because the check opera-
tions are part of the machine
instructions.

switches off range checking,
Note: it cannot be turned off
because the check operations
are part of the machine instruc-
tions.

causes code to be generated for
every access to a formal para-

meter object which is not of
kind value, to check the ex-
istence of the actual parameter
(not specified as ?). The symbol
2? is not accepted as parameter
in RTP3502.

switches off access checking.

see below,

see below,

2.18 Compiler Directives Implementation Description

RC3502 Real-Time Pascal 23

name parameters description
IF expression see below,

ENDIF none see below,

ELSE none see below,

ELSEIF expression see below,

Switches are compile-time variables which can - except from parame-
ters of the transfer function getswitch (cf. RTP-3.12) - only be used
in the expressions occurring in IF and ELSEIF directives. Only the
first 12 characters of a switch name are significant. A switch assign-
ment list consists of one or more switch assignments separated by
commas. A switch assignment has the form (number must be integer, |
no radix allowed):

name = number

A switch assignment either introduces and sets the value of a switch,
or, if the switch has been introduced in a previous switch assignment
(SET or DEFAULT directive or from the call of the compiler), merely
changes the value. The directive word DEFAULT is used for introduc-
tion and setting the value of a switch. If the switch already existed,
as a result of an earlier SET directive, the DEFAULT directive is
blind.

The directives IF, ELSE, ELSEIF, and ENDIF provide the capability
for conditional compilation. The expressions occurring in IF and ELSE-
IF directive must be boolean expressions obeying the standard rules of
the language. The operands must be switches and integer numbers.
The following operators may be used: <, <=) >=, >, =, <>, AND, OR,
XOR, NOT.

The directives for conditional compilation may be used to selectively
exclude blocks of lines of source text from compilation, i.e. to cause
such lines to be treated as comments. When listed, each excluded line
will be marked with -- appearing at the beginning of the line.

The directive IF and ENDIF must always be used in matching pairs.
ELSE and ELSEIF may optionally be used in conjunction with IF and
ENDIF. A use of conditional compilation takes the following form:

$IF expr,

st,

$ELSEIF expr,

Sto

$ELSEIF expr,

St,

Implementation Description 2.18 Compiler Directives

24 RC3502 Real-Time Pascal

$ELSEIF expr,

st,

$ELSE

Stoel

$ENDIF

The only mandatory parts are the IF and ENDIF directive lines and
the source line(s) st,. The effect is as follows: If the values of all
the expressions are false then the source lines st,, st,, ..., st. are
excluded from compilation. Otherwise let k be the srfallest number
such that the value of expr, is true. Then st, » st P Sthap sees
st and st nel (if present) ars excluded from compilation”

Conditional compilation may be used at several nested levels. In the
above terminology any of the st; may thus include repeated use of
conditional compilation.

Notes:
Switches and variables in the program text belong to separate name
spaces and cannot be confused. The same names may be used.

Directives occurring in comments are ignored, in particular those oc-
curring in source lines excluded from compilation.

2.18.1 Predefined Switches

There are two predefined switches, target and compiler. In the
RC8000 compiler named rtp3502 the value of target is rc3502, and the
value of compiler is rtp3502. These switches may be utilized for con-
ditional compilation of machine dependent parts of programs.

2.18.1 Predefined Switches Implementation Description

RC3502 Real-Time Pascal 25

3, AVAILABLE ROUTINES
In the following sections all available routines are described. The
routines are grouped together according to common functional charac-
teristics:

Routines for Program Control,
Communication Routines,
Routines for Message Manipulation,
Conversion and Arithmetic Routines,
Miscellaneous Routines,
Routines for Operator Communication,
Driver Input/Output Routines.
Routines for backward compatibility.

In the descriptions one out of three attributes is listed:

Predefined: The routine is predefined and may be understood as part
of the language.

Not predefined: The routine must be declared in the declaration part
of a program or in a user defined environment.

Defined in env_name: The routine is declared in the context file na-
med env_name, which may be used in the compilation for access of
the routine. If env_name is rc3502env the declaration is automatically
included. The routine is not part of the language definition, but part
of the rc3502 specific extension of the language.

3.1 Routines for Program Control

This section describes the routines for control of programs and pro-
cesses as incarnations of programs. Exception handling is described,
and a primitive debug tool (trace).

3.1.1 Break

PROCEDURE break(VAR pr: process; excode: integer);

Defined in rc3502env.

- stops the process and starts it in the exception procedure (see
EXCEPTION). If O<=excode and excode<=break by father, the
process will go into the exit state; otherwise the process will
continue.

Available Routines 3.1.1 Break

26 RC3502 Real-Time Pascal

3.1.2 Create

FUNCTION create(INSPECT processname: alfa;
program name(actual parameters); VAR proc: process;
bytes: integer; priority: priotype): create_result;

Predefined.

- A new incarnation of the program linked to ‘program name’ is
created. The 'bytes' parameter specifies the amount of storage
for holding the runtime stack. The stack is initialized with the
actual parameters and various administrative information. The
procname field in the stack is initialized to 'processname' and
the state to not stopped.

The function returns the following results:

Results Meaning
create_ok, Process created
create_process_not_nil The process variable was not nil
create_program_not_linked The program was not linked
create_no_ memory No storage or demanded size too

small

The 'bytes' parameter is treated as an unsigned integer, allowing a
process stack to take up to 32 K-1 words.

If 'bytes' equals zero, a compiler calculated default create size will
be used.

Consult appendix B.1 option stack.<appetite> for calculation of the
default create size.

Example 1. CREATE

PROGRAM example1(VAR mymbx: mailbox):

CONST

size= 238;

ok= 0;

VAR

childmbx: mailbox;

pr: process;

PROGRAM example11(VAR ml, m2 : mailbox):
BEGIN

(* body of internal program *)
END;

BEGIN

IF create('child', examplell(mymbx, childmbx) , pr, size,

END. (* examplel *)

stdpriority)=create_ ok THEN

3.1.2 Create Available Routines

RC3502 Real-Time Pascal , 27

3.1.3 Exception

PROCEDURE exception(excode: integer);

Predefined.

- A declaration of such a procedure causes the runtime system to
call this procedure, if an exception occurs.

If the user has not declared an exception procedure, the standard ex-
ception procedure will be called. The standard procedure may also be
called as the procedure TRACE.

The standard exception procedure activates the exception program
which produces output with the format:

system clock
process name >> exception, excode=code: error text
gf=, top=, code= ...
called from: » ic=, line ...-... , date

°

- "system clock' is the current value of global date and time

- 'code' and ‘error text' are the actual exception code and the
meaning of the code; some of the texts include information
about the operands which caused the exception.(The possible
texts may be seen in appendix M).

- 'gf' and 'top' are stack references, and the number after 'code'
is the instruction which caused the exception.

- The list of 'called from..." is the dynamic chain of routine ac-
tivations.

- '"ic' and 'line ...-...' are an identification of the calls.

- 'date' is the compilation date of the modules in question.

Furthermore, if the program is external linked, printout of date, time,
and version of the source is appended.

3.1.4 Link

FUNCTION link(external_name: alfa; program name): link result;

Predefined.

- The program identified by ‘external name' is searched for in the
LINKER catalogue. If found the program identified by ‘ex

ternal name' is linked to 'program name'.

Available Routines 3.1.4 Link

28 RC3502 Real-Time Pascal

The function returns the following results:

Results Meaning
link ok Program linked
link not_found Program name with ‘external name' was not

found in the LINKER catalogue.
link _no_parameter_match Program with name ‘external name' is in

the LINKER catalogue, but the number of
parameters or the type of parameters do no
match.

link already linked A program is already linked to program na-
me.

Example 2. LINK

PROGRAM example2;

CONST

def_size= 0;

ok= 0;
VAR

mbx: mailbox:

pr: process;

PROGRAM example21(VAR m: mailbox); EXTERNAL:

BEGIN

IF link('program21', example21)=link_ok THEN
IF create('child', example21(mbx), pr, def_size, stdpriority)=create ok THEN

END; (* example2 *)

3.1.5 Ownname

FUNCTION ownname(VAR name: alfa): byte;

Defined in rc3502env.

~ Returns in 'name' the value of the procname field of the pro-
cess descriptor. The field is initialized by create or an explicit
call of setownname.

The function returns the number of characters in the name, apart
from trailing blanks.

3.1.6 Ownprogramname

FUNCTION ownprogramname(VAR name: alfa): byte;

Defined in rc3502env.

- returns in 'name' the external name of the least surrounding
external program.

3.1.6 Ownprogramname Available Routines

RC3502 Real-Time Pascal 29

The function returns the number of characters in the name, apart
from trailing blanks.

3.1.7 Pi3 get

FUNCTION pi3_get(program name; pageno : integer;
VAR r: reference) : integer;

Not predefined.

_- Page number 'pageno' is returned in the message in locations
specified by the 'offset' and 'top' attributes. "bytecount' is in-
itialized to the actual number of bytes transferred.

Results Meaning
0 OK
1 The program is not linked.
2 Illegal kind. The program is not linked by a call of PI3-

LINK.
3 Last page. The message contains the last page of the pro-

gram.
4 Illegal page. 'Pageno' is outside the range 1..lastpage.

3.1.8 Pi3 link

FUNCTION pi3_link(external name : alfa; program name): integer;

Not predefined.

- The program of kind DATA identified by 'externalname' is se-
arched for in the LINKER catalogue. If found, the program
identified by 'externalname' is linked to ‘program name’.

The function returns identical results as the predefined function LINK.

3.1.9 Remove

PROCEDURE remove(VAR pr: process);

Predefined.

- 'Remove' terminates execution of the process, which cannot be
resumed. 'Remove' removes the whole sub-tree controlled by the
process. All the resources of the process are deallocated.

The home and return mailboxes of messages in all declared pool vari-
ables are initialized to a deallocation mailbox controlled by the AL-
LOCATOR. All messages in reference, mailbox and pool variables are
returned with u2=1 (not processed).

Available Routines 3.1.9 Remove

30 RC3502 Real-Time Pascal

The process variable must refer to a program incarnation (process)
otherwise an exception occurs.

bd

After the call the process variable is nil.

3.1.10 Resume

PROCEDURE resume(VAR pr: process);

Predefined.

- if the child process is stopped a call of resume makes it not
stopped; otherwise the call has no effect.

An exception occurs, if the process variable is nil.

3.1.11 Setownname @

PROCEDURE setownname(INSPECT name: alfa);

Defined in rc3502env.

- Changes the value of the procname field of the process descrip-
tor to the value of 'name’.

3.1.12 Setpriority

PROCEDURE setpriority(priority : integer);

Defined in rc3502env.

- changes the priority of the calling process inside the priority
classes II and III running on interruption level 0. If the value
of priority is outside the range minpriority..maxpriority the prio-
rity is rounded to the nearest priority inside the range. r

An exception occurs if:

- called in a channel statement

3.1.13 Start

PROCEDURE start(VAR pr: process; priority: integer);

Predefined.

- The priority of the child process is changed to the value of
priority, and if the child process is stopped a call of start ma-
kes it not stopped.

3.1.13 Start Available Routines

RC3502 Real-Time Pascal 31

r If 'priority'=0, the process enters the coroutine class (class II). If
"priority'<0, the child enters the time slice class (class III).

If the activation is actually a reactivation of the process, the process
could have been waiting at a mailbox. In that case the WAIT state-
ment will be repeated.

If the process was stopped at an interruption level greater than zero,
the process is scheduled directly to the old interruption level and ac-
tivated as if a timeout has occurred.

An exception occurs, if the process variable is nil.

3.1.14 Stop

PROCEDURE stop(VAR pr: process);

) Predefined.

- stops a process. The associated subtree - if any - is not stop-
ped.

If the process is already stopped, the procedure is dummy.

The child process is deactivated and possibly removed from the mail-
box where the process is waiting.

If the child process is waiting for interrupt on an interruption level
greater than zero, the process is removed from the interruption level.

If the process variable is nil, an exception occurs.

3.1.15 Trace

PROCEDURE trace(excode : integer);

r Predefined.

- calls the standard exception routine and generates identical out-
put on the console as the equivalent exception. The program al-
ways continues execution after the call, so 'trace' may be used
for testoutput generation.

Available Routines 3.1.15 Trace

32 RC3502 Real-Time Pascal

3.1.16 Unlink

FUNCTION unlink(program name): integer;

Predefined.

- The link to the program linked to program name is deleted, if
there exists a link and no incarnations of the program exist.

The function returns the following results:

Results Meaning
unlink ok Program unlinked successfully.
unlink _no_ program linked No program was linked to program

name.
unlink program busy Incarnations of the program are ex-

isting.

Example 3. UNLINK

PROGRAM example3;

CONST
def_size= 0;
ok= 0;

VAR

mbx: mailbox;

pr: process;

PROGRAM example31(VAR m: mailbox); EXTERNAL:

BEGIN

IF link('program31', example31)=link_ok THEN
BEGIN

IF create('child', example31(mbx), pr, def_size, stdpriority)=create_ok THEN
BEGIN

remove (pr) ;

IF unlink (example31) =unlink_ok THEN;
END;

END;

END; (* example3 *)

3.2 Communications Routines

These routines are used for communication between processes, either
as signal-wait communication or by means of IMC services. IMC
stands for Inter Module Communication and is described in /DSA-IMC/
and /RTP/. The state of mailbox, pool and reference variables may be
tested, etc. Attention should be paid to the fact, that the routines
alloc and release in section 3.3 also may infer communications equiva-
lent to wait, signal, or return.

3.2 Communications Routines Available Routines

RC3502 Real-Time Pascal 33

td] 3.2.1 Callremote

FUNCTION callremote(VAR r: reference; INSPECT m_name: alfa):
integer;

Defined in re3502env.

- signals the message designated by r to a catalogued mailbox
with the specified name. Before return from the routine a call
of wait is performed.

Results Meaning
0 OK, the mailbox was found and the remote call

terminated successfully.
1 The mailbox with the specified name was not found.
2 No resources, the call was incomplete because of.

lack of memory resources to perform the remote
call.

3.2.2 Closeport

PROCEDURE closeport(VAR p: port);

Defined in imc3502env.

- Withdraws a port from the IMC network. If the port is already
closed the call has no effect. Otherwise all connections on the
port are removed with graceful completion of any feasible data
transfers. Then all general receive messages are returned as
dummy events, and finally the port_closed event occurs with re-
ason_ok. The port is made unknown to the IMC network, and its
state changes to closed.

3.2.3 Connect

@ PROCEDURE connect(VAR p: port; index: 1..maxint;
VAR compl, disc: reference;
INSPECT remote name: alfa; service: conn_service);

Defined in imc3502env.

- Establishes a connection between a local connection end-point
and a remote end-point, which has been made available by a call
of getconnection. If the port is closed or closing the message
designated by compl is returned as a dummy event and the mes-
sage designated by disc as a disconnected event with reason_clo-
sed. Otherwise the call is only accepted if the state of the in-
dicated end-point is free. The value of remote_name is the name
of the remote port to which a connection is requested. The
value of the parameter compl may be NIL, if it is present it
will be used to generate a local connect event when the actual
connection has been successfully established. The message de-

Available Routines 3.2.3 Connect

34 RC3502 Real-Time Pascal

signated by disc is the disconnected event message. It will be
outstanding until the state of the connection end-point eventual-
ly reverts to free or the port is closed. If the connection can-
not be established the reason will be either reason name, if a
port with the specified name could not be found, or reason_re-
source, if the necessary resources were not available in the IMC
network or at the remote port.

3.2.4 Definetimer

PROCEDURE definetimer(onoff: boolean);

Defined in rc3502env.

- 'definetimer(true)' includes the process in a chain, where count
down of the timer field in the process descriptor is done once
per second. The call 'definetimer(false)' removes the process
from the chain, and count down is stopped.

Timeout can only take place after the call 'definetimer(true)'. At
most one call of definetimer can be processed each 50 msec.

3.2.5 Delay

PROCEDURE delay(msecs: integer);

Predefined.

- waits for the expiration of a delay period.

The timer field of the process descriptor is initialized to the value of
"msecs' DIV 1000, and the wait is performed.

Note: Count down of the timer only takes place if the routine 'defi-
netimer' has been called.

3.2.6 Deletemailbox

FUNCTION deletemailbox(INSPECT m_name: alfa): integer;

Defined in rc3502env.

- Searches the mailbox catalogue of the calling process, and de-
letes the entry, if found.

- Results Meaning
0 OK
1 Not found. No mailbox is catalogued under the specified

name.

3.2.6 Deletemailbox Available Routines

RC3502 Real-Time Pascal 35

3.2.7 Disconnect

PROCEDURE disconnect(VAR p: port; index: 1..maxint);

Defined in imc3502env.

- The connection end-point (p, index) is freed. If the indicated
connection is absent or if the state of the connection end-point
is disconnecting the call has no effect. Otherwise if the connec-
tion end-point is engaged in a connection, i.e. if its state is
connected or resetting, the connection will be gracefully remo-
ved. All data transfers for which credit is available are comple-
ted before the remaining outstanding messages are returned. At
both ends of the connection all outstanding messages except the
disconnected event messages are then returned as dummy events.
While this takes place the state of the end-point is disconnec-
ting. Finally the disconnected events occur with reason ok, and
the state becomes free.

3.2.8 Getconnection

PROCEDURE getconnection(VAR p: port; index: 1..maxint;
VAR compl, disc: reference);

Defined in imc3502env.

- The connection end-point is made available for remotely initiated
connection establishment. If the port is closed or closing the
message designated by compl is returned as a dummy event and
the message designated by disc as a disconnected event with re-
ason_closed, and the call has no further effect. Otherwise a call
is only permitted if the state of the end-point is free. After the
call it is remote_accept. The message designated by compl will
be returned as a remote_connect event when a connection has
been established. The message designated by disc will be the
disconnected event message of the connection end-point. It will
be outstanding until the end-point becomes free again.

3.2.9 Getcredit

PROCEDURE getcredit(VAR p: port; index: 1..maxint;
VAR credmes: reference);

Defined in imc3502env.

- If the general flow control feature is enabled for the port (cf.
openport) the designated message becomes an outstanding credit
message. It is returned as a credit event when there is one or
more outstanding receive messages at the remote end of the
connection for which credit has not been given previously. The
number of such receive messages is passed as the message attri-
bute credit count. However, a credit event can only occur pro-

Available Routines 3.2.9 Getcredit

36 RC3502 Real-Time Pascal

vided there is at least one outstanding reset indication message
at the connection end-point, cf. getreset.

3.2.10 Getreset

PROCEDURE getreset(VAR p: portindex: 1..maxint;
VAR indic: reference);

Defined in imc3502env.

- The message designated by indic becomes an outstanding re-
set_indication event message. That is, when a reset occurs at
the remote end of the connection causing loss of credit this
message is returned as a reset_indication with credit count equal
to the number of credits that have been taken back. At least
one reset_indication message must be outstanding before a credit
event can occur, cf. getcredit. Therefore a call of getreset may
trigger a credit event. r

3.2.11 Getnames

FUNCTION getnames(VAR r: reference; imc_id: 0..maxint): integer;

Not predefined.

- Entries from the IMC Endpoint Port table identified by imc id
are returned as components in the data area of the designated
message. The actual number of components are returned as the
function result. The type of the component is:

RECORD
name: alfa;
scope: byte;
state: byte;
alias: integer;
chainx: integer; r
next: integer;
path: integer;
sub: byte;

END

3.2.12 Hometest

FUNCTION hometest(VAR r: reference; VAR p: pool): boolean;

Predefined.

- returns the value true, if the message referenced by 'r' ori-
ginates from the pool 'p', otherwise false.

An exception occurs if the reference variable is nil.

3.2.12 Hometest Available Routines

RC3502 Real-Time Pascal 37

3.2.13 Imcexists

FUNCTION imcexists(imc_id: 0..maxint): boolean;

Defined in imc3502env.

- Returns the value true if the IMC net identified by imc_id is
available, otherwise false. By convention IMC net 0 is the dege-
nerated IMC net with no physical network. IMC net 1 is the
network accessible via LAN controller number one, IMC net 2 is
the network accessible via LAN controller number two, etc.

3.2.14 Initport

PROCEDURE initport(VAR p: port; imc_id: 0..maxint);

Defined in imc3502env.

- Initializes the port for communications via the IMC net identi-
fied by imc_id. The procedure is dummy if imc id is greater
than the constant max_imc id.

The port must be closed, otherwise an exception occurs.

3.2.15 Locked

FUNCTION locked(VAR mbx: mailbox): boolean;

Predefined.

- returns the value true, if the mailbox is locked (cf. RTP-9.2.1),
otherwise false.

3.2.16 Locktest

FUNCTION locktest(VAR r: reference): boolean;

Not predefined.

- returns the value true if the reference variable is locked,
otherwise false.

Available Routines 3.2.16 Locktest

38 RC3502 Real-Time Pascal

3.2.17 Masknames

PROCEDURE masknames(VAR r: reference; VAR mask: !alfa3;
imc_id: 0..maxint);

Defined in imc3502env.

- Ports with name attribute equal to mask as the last three cha-
racters are returned as components of type masknames t in the
data area of the designated message. The actual number of com-
ponents may be calculated from bytecount. The components are
ordered in alphabetic order. Only ports on the IMC net identi-
fied by imc_id are returned.

3.2.18 Namemailbox

FUNCTION namemailbox(VAR m: mailbox; INSPECT m_name: alfa):
integer;

Defined in rc3502env.

- Catalogues the mailbox under the specified name.

Results Meaning
0 OK, the mailbox is catalogued under the specified name.
1 Overlap, a mailbox is already catalogued under the specified

name.
2 No resources, the mailbox cannot be catalogued because of

lack of memory resources.

3.2.19 Nil

FUNCTION nil(VAR p: niltype): boolean;

Predefined.

- returns the value true, if the parameter p is nil, otherwise
false. 'Niltype' may be the types reference, process, or any po-
inter type.

3.2.20 Open

FUNCTION open(VAR mbx: mailbox): boolean;

Predefined.

- returns the value true, if the mailbox is open (cf. RTP-9.2.1),
otherwise false.

3.2.20 Open Available Routines

RC3502 Real-Time Pascal 39

3.2.21 Openport

PROCEDURE openport(VAR p: port; VAR mes: reference;
INSPECT name: alfa; scope: scope_type;
no_of_conns: 0..maxint; cntrl: control_type);

Defined in imc3502env.

- The port is opened with the attributes set according to the pa-
rameter values. The parameter mes designates the port closed
event message which will be outstanding while the port is open.
An exception occurs if the number of requested connection end-
points is greater than the maximum allowed (cf. maxconnec-
tions), or if the port is not closed before the call. The general
receive feature and the general flow control feature is enabled
or disabled according to the value of the cntrl parameter (cf.
RTP-11).

3.2.22 Passive

FUNCTION passive(VAR mbx: mailbox): boolean;

Predefined.

- returns the value true, if the mailbox is passive (cf. RTP-9.2.1),
otherwise false.

3.2.23 Receive

PROCEDURE receive(VAR p: port; index: 1..maxint;
VAR mes: reference);

Defined in imc3502env.

- The designated message is made an outstanding receive message
for the specified connection (p, index). When a unit of data has
been transferred from a remote send message to the receive
message the latter is returned as a data arrived or data_overrun
event, depending on whether the received data unit had to be
truncated to fit into the receive data area.

3.2.24 Receiveall

PROCEDURE receiveall(VAR p: port; VAR mes: reference);

Defined in imc3502env.

- If the general receive feature is enabled for the designated port
(cf. the cntrl parameter of openport) the message designated by
mes is delivered to the IMC as a general receive message for
the whole port, not dedicated to a particular connection. If the

Available Routines 3.2.24 Receiveall

40 RC3502 Real-Time Pascal

port is closed or closing the message is returned as a dummy
event. If the general receive feature is not enabled an excep-
tion occurs. The message will eventually be returned as data ar-
rived or data_overrun, depending on whether the received data
unit had to be truncated to fit into the receive data area. The
index of the connection end-point to which the data belong will
be an attribute of the message.

3.2.25 Reset

PROCEDURE reset(VAR p: port; index: 1..maxint; VAR mes: reference);

Defined in imc3502env.

- All data and credit messages which are outstanding at an end-
point of the specified connection (p, index) are taken back. All
data transfers for which credit is available are carried out first.
Then the remaining data and credit messages are returned as
dummy events. Following a call of reset the state of the con-
nection end-point will be resetting. The message designated by
mes is the reset_completion event message. This event occurs
after all outstanding data and credit messages have been retur-
ned. When it occurs the state of the end-point reverts to con-
nected.

3.2.26 Resetevent

PROCEDURE resetevent(VAR r: reference);

Defined in imc3502env.

- If the value of r is NIL an exception occurs, otherwise the
value of r's event kind attribute becomes not_event.

3.2.27 Return

PROCEDURE return(VAR r: reference);

Predefined.

- signals the message referenced by 'r' to the anonymous answer
mailbox.

An exception occurs if:

- the reference variable is nil.

- the reference variable is locked.

3.2.27 Return Available Routines

RC3502 Real-Time Pascal Al

3.2.28 Searchmailbox

FUNCTION searchmailbox(INSPECT m_name: alfa): { mailbox;

Defined in rce3502env.

- Retrieves a pointer value of a catalogued mailbox. The retrieval
is directed from the leaves to the root of the process tree,
starting at the calling process. A nil value is returned, if no ca-
talogued mailbox with the specified name is found.

3.2.29 Send

PROCEDURE send(VAR p: port; index: 1..maxint; VAR mes: reference);

Defined in imc3502env.

- The data unit designated by mes will be sent on the specified
connection (p, index), if present, by the IMC network. The mes-
sage becomes an outstanding send message. If a receive message
is available at the remote end, or when one becomes available
(call of receive or receiveall), the indicated data unit is trans-
ferred to the receive data area. Then the send message is re-
turned as data_sent, and the receive message at the remote end
as data_arrived (or data_overrun).

3.2.30 Sendlinker

PROCEDURE sendlinker(VAR r : reference);

Defined in rc3502env.

- signals the message referenced by 'r' to the LINKER process.
No wait is performed in the procedure.

An exception occurs if:

- the reference variable is nil.
- the reference variable is locked.

User Fields Message Answer
ul function unchanged
u2 unused result
u3 param unchanged
u4 unused unchanged

An unknown function is returned with result = 6.

Result = 6 is also returned, if the message cannot contain a proper
result record.

Available Routines 3.2.30 Sendlinker

42 RC3502 Real-Time Pascal

3.2.30.1 Lookup name

User Fields Message Answer
ul 3 3
u2 unused result
u3 unused unchanged
u4 unused unchanged

Message buffer
A record of the predefined type ‘lookup —descriptor _segment' defined
in rc3502env (section I.1).

The LINKER catalogue is searched for a program with name 'name'.
Some values of 'name' have special effects, by sending output direct-
ly to the OPERATOR mailbox, before returning the request. If the
name contains a wild character "*", the whole LINKER catalogue is
scanned. Programs are listed if the name satisfies a ‘wild character
compare', cf. the routine wild_compare. If the name is 'PROGRAM!'
all programs of kind program are listed. If the name is 'PROCEDURE'
or 'FUNCTION', all programs of kind procedure or function are li-
sted.

Results Meaning
0 OK. A program with name 'name' is found in the LINKER

catalogue. In the answer, the remaining fields of the type
"lookup_descriptor _Segment’ are initialized.

1 No program with name 'name' is found in the LINKER
catalogue.

3.2.30.2 Check

User Fields Message Answer
ul 7 7
u2 unused result
u3 module module
u4 unused unchanged

Message buffer

A buffer of size 128 bytes (minimum).

A crcl6 check is performed on the module.

Note: The size of the message must be at least 128 bytes.

The polynomium used is:

x16, 12 5,1

with remainder = -1 as initial value.

The module must have the format:

3.2.30 Sendlinker Available Routines

RC3502 Real-Time Pascal 43

AAAA

DESC Descriptor segment

CODE Code segment

DESC Descriptor segment

CODE Code segment

DESC Descriptor segment

CODE Code segment

FFFF

SUMO 0- 4K even adresses
SUMI1 0- 4K odd adresses
SUM2 4- 8K even adresses
SUM2 4- 8K odd adresses

SUM30 60-64K even adresses
60-64K odd adresses

The sums include the 'AAAA' and 'FFFF' words. The sum words them-
selves are not included.

The sum check in the module and the computed sum are delivered in
the message as:

ARRAY (1..32) OF
RECORD

promsum,
expected: integer;

END;

Results Meaning
0 The check sum values are returned in the data buffer.
1 The module is empty.

Available Routines 3.2.30 Sendlinker

44 RC3502 Real-Time Pascal

3.2.31 Sendtimer

PROCEDURE sendtimer(VAR r : reference);

Defined in rc3502env.

- signals the message referenced by 'r' to the TIMER process. No
wait is performed in the procedure.

An exception occurs if:

- the reference variable is nil

- the reference variable is locked

If the buffer cannot contain a record of the predefined type "delay-
type’ (section I.1) when demanded, the message is refused immediate-
ly with u2=4 (unintelligible). Undefined functions are processed as a
get clock message.

The subrecord consisting of the fields ‘prev_date', 'prev_time', and
"prev_secs' is called 'buffer time’.

3.2.31.1 Short Delay Message

User Fields Message Answer
ul 5 (1+4*1) 5
u2 delayl (<>0)_ result
u3 delay2 0
u4 unused unchanged

Message buffer
Not used.

Function
Returns the message after delay1*2{delay2 msec. The values of
'delayl' and 'delay2' must fulfil the relation delay1*2{delay2<=65535.

Results Meaning
0 OK.
1 Not processed.

The message is regretted.

3.2.31.2 Long Absolute Delay Message

User Fields Message Answer
ul 13 (1+4*3) 13
u2 unused result
u3 unused 0
u4 unused unchanged

Message buffer

3.2.31 Sendtimer Available Routines

RC3502 Real-Time Pascal 45

The buffer is supposed to hold a record of type 'delaytype' (section
I.1).

Function
The buffer time is set to 'buffer time + inc’. If the new buffer time
is before global time, the buffer time is set equal to global time and
the message is returned immediately, otherwise the message is retur-
ned when global time passes the new buffer time.

Results Meaning
0 OK.
1 Not processed. The message is regretted.

3.2.31.3 Set Clock Absolute Message

User Fields Message Answer
ul 2 (2+4*0) 2
u2 unused 0
u3 unused 0
u4 unused unchanged

Message buffer
The buffer is supposed to hold a record of type 'delaytype'.

Function

Global time is assigned from the buffer time. (‘inc’ is not used). The
queue of long delay messages is scanned for eventual returns.

The message is returned immediately.

3.2.31.4 Get Clock Message

User Fields Message Answer
ul 1 (1+4*0) 1
u2 unused 0
u3 unused 0
u4 unused unchanged

Message buffer
A record of type 'delaytype’.

Function
Global time is assigned to the buffer time. ('inc' is not used).

The message is returned immediately.

Available Routines 3.2.31 Sendtimer

46 RC3502 Real-Time Pascal

3.2.31.5 Long Relative Delay Message

User Fields Message Answer
ul 9 (1+4*2) 9
u2 unused result
u3 unused 0
u4 unused unchanged

Message buffer
A record of type 'delaytype'.

Function
The buffer time is set to ‘global time+inc'. The message is returned,
when global time passes the new value of the buffer time.

Results Meaning
0 OK.
1 Not processed. The message is regretted.

3.2.31.6 Set Clock Relative Message

User Fields Messag Answer
ul 6 (2+4*1) 6
u2 unused 0
u3 unused 0
u4 unused unchanged

Message buffer
A record of type 'delaytype’'.

Function

Global time is set to 'global time+inc', and the buffer time is set to
this new value of global time. The message is returned immediately.
The queue of long delay messages is scanned for possible returns.

3.2.31.7 Set Clock Interval Message

User Fields Message Answer
ul 4 (0+4*1) 4
u2 unused 0
u3 new interval old interval
u4 unused unchanged

Message buffer
Not used.

Function
Controls the speed of global time. For every Real Time Clock inter-
rupt, global time is incremented by ‘global interval' msec. Default =
50 msec. Only long delays are influenced by redefinitions of ‘global

3.2.31 Sendtimer Available Routines

RC3502 Real-Time Pascal 47

interval'. Short delays and the RTC interrupt frequency are not di-
sturbed.

New interval

"Global interval' is set to 'new interval' (msec.).

Old interval

"Global interval' is returned, before set to 'new interval' for re-
establishment purposes.

3.2.31.8 Regret Message

User Fields Message Answer
ul 12 (0+4*3) 12
u2 unused 0
u3 unused unchanged
u4 unused unchanged

Message buffer
Not used.

Function
The delay queues are scanned. If a message is found with matching
‘home mailbox', it is returned with result=1 (not processed). The
regret message is returned immediately. At most one message is
regretted per ‘regret message’.

3.2.31.9 Regret Stream Message

User Fields Message Answer
ul 8 (0+4*2) 8
u2 unused 0
u3 unused unchanged
u4 stream no unchanged

Message buffer
Not used.

Function
The delay queues are scanned. If a message is found with matching
"home mailbox' and stream number (u4 value), it is returned with re-
sult=1 (not processed). The regret message is returned immediately. At
most one message is regretted per 'regret message’.

Available Routines 3.2.31 Sendtimer

TR

48 RC3502 Real-Time Pascal

3.2.32 Signal e

PROCEDURE signal(VAR r: reference; VAR mbx: mailbox);

Predefined.

- If the mailbox is passive or open, the message referred to by
'r' becomes the last element of the mailbox's sequence of mes-
sages. If the mailbox is locked, the message is handed over to
the first process waiting on the mailbox, and this process is ac-
tivated.

An exception occurs if:

- the reference variable is nil.

- the reference variable is locked.

3.2.33 Wait @

PROCEDURE wait(VAR r: reference; VAR m: mailbox);

Predefined.

- If the mailbox is open, the first message is removed from the
mailbox's sequence of messages. If the mailbox is passive or
locked, the process waits and becomes the last element of the
sequence of processes waiting on the mailbox. It is resumed by
another process calling signal or return.

The reference parameter must be nil, otherwise an exception occurs.
After a call of 'wait' it refers to a message.

3.2.34 Waitdelay

FUNCTION waitdelay(VAR r: reference; VAR m: mailbox;
msecs: integer): activation; @

Predefined.

- waits for two kinds of event:

1. The arrival of a message to the mailbox 'm' (a_mailbox)
2. Expiration of a delay period (a_delay)

The timer field of the process descriptor is initialized to the value of
‘msecs' DIV 1000 before the wait is performed.

An exception occurs if the reference 'r' is not nil.

Note: Count down of the timer only takes place, if 'definetimer' has
been been called.

3.2.34 Waitdelay Available Routines

RC3502 Real-Time Pascal 49

3.3 Routines for Message Manipulation

The routines in this section are used for allocation and deallocation
of messages, besides general manipulation of message stacks and mes-
sage attributes, such as the size of the message buffer, the u-attribu-
tes, and the message buffer attributes, offset, top, and bytecount.
Routines for manipulation of the attributes first, last, and next are
described, but observe that they are not part of the language (i.e.
not predefined). Furthermore, direct attribute operations on the first
three words in the buffer in lock statements should be avoided.

3.3.1 Alloc

PROCEDURE alloc(VAR r: reference; VAR p: pool; VAR m: mailbox);

Predefined.

- If the pool of messages is not empty, one of the messages is
removed. If the pool is empty, the incarnation waits until a
message is released to the pool by another process incarnation
calling release. The answer mailbox of the allocated message be-
comes 'm',

The reference variable must be nil, otherwise an exception occurs.
After the call it refers to a message.

3.3.2 Allocdelay

FUNCTION allocdelay(VAR r; reference; VAR p: pool;
VAR m: mailbox; no_of_msecs: 0..maxint): activation;

Predefined.

- If the pool of messages is not empty, one of the messages is
removed. If the pool is empty, the incarnation waits until a
message is released to the pool by another process incarnation
calling release or the expiration of the delay period, whichever
happens first. If the function result is a mailbox, the answer
mailbox of the allocated message becomes 'm'. If the delay
period expires before the process obtains a message, the call
will return the result a_delay, and otherwise have no effect..

The reference variable must be nil, otherwise an exception occurs.

Available Routines 3.3.2 Allocdelay

50 RC3502 Real-Time Pascal

3.3.3 Allocpool

FUNCTION allocpool(VAR p: pool; number, bytes: integer): integer;

Predefined.

- supplies the pool variable 'p' with 'number' messages of size
"bytes'. If the value of 'bytes' is odd the size will be the value
of 'bytes'+1. The result indicates the actual number of messages
obtained from the ALLOCATOR. The ‘home' mailbox in the
messages is initialized to the anonymous pool mailbox. That
means that the messages are returned to the pool variable by a
‘release’ call.

Example 4. ALLOCPOOL

PROGRAM example4;
CONST

size =37;
VAR

driver,

m : mailbox;

r : reference;

p : pool;

BEGIN

IF allocpool(p, 1. size)=0 THEN

(* no available memory now*)

ELSE (* one message with bufsize=38 !! allocated *)
BEGIN

alloc(r, p. m):

(* now the answer mailbox of r is m *)
signal(r, driver);

wait(r,m);
END;

END; (* example4 *)

3.3.4 Bufcount

FUNCTION bufcount(VAR stack: reference): integer;

Predefined.

- The value returned by bufcount is the number of non-empty mes-
sages in the designated stack. The function returns the value 0
if the parameter has value NIL.

3.3.5 Bufsize

FUNCTION bufsize(VAR r: reference): integer;
FUNCTION bufsize(VAR c: chain): integer;

Predefined.

- If the 'bufsize' function is called with a parameter with value
NIL, an exception occurs. Otherwise the buffer size in bytes of
the designated message is returned as result.

3.3.5 Bufsize Available Routines

RC3502 Real-Time Pascal 51

3.3.6 Bytecount

FUNCTION bytecount(VAR r: reference): integer;
FUNCTION bytecount(VAR c: chain): integer;

Predefined.

- If the 'bytecount' function is called with a parameter with
value NIL or the message is a header message only, an excep-
tion occurs. Otherwise the result is the value of the "bytecount'
attribute of the designated message.

NOTE: The 'bytecount' attribute is computed from the values of the
'first' and the 'next' attributes in the buffer. A message with bufsize
greater than 0 always holds the 'bytecount' attribute. So the buffer
is accessed without locking the reference variable.

3.3.7 Chaindequeue

PROCEDURE chaindequeue(VAR ref: reference; VAR ch: chain);

Predefined.

- The current element of the chain is removed, and ref designates
the removed element. The successor of the removed element be-
comes the new current message. If the start point is removed
from a list with more than one element the successor of the
removed element becomes the new start point.

An exception occurs if:

- The value of 'ref' is not NIL before the call
The length of the chain is 0 before the call
'ref' is locked before the call
"ch' is locked before the call

3.3.8 Chaindown

PROCEDURE chaindown(VAR ch: chain);

Predefined.

- The predecessor of the current element becomes the new current
message of the list.

An exception occurs if:

- 'ch' is locked before the call

Available Routines 3.3.8 Chaindown

52 RC3502 Real-Time Pascal

3.3.9 Chainenqueue eo

PROCEDURE chainenqueue(VAR ref: reference; VAR ch: chain);

Predefined.

- The stack designated by ref becomes the new predecessor of |
current message of the list, and the value of ref becomes NIL. |

An exception occurs if:

- The value of ref is NIL before the call
- ref is locked before the call

3.3.10 Chainlength

FUNCTION chainlength(VAR ch: chain): integer;

Predefined.
sd

- The length of the chain is returned as result

3.3.11 Chainreset

PROCEDURE chainreset(VAR ch: chain);

Predefined.

- The current message of the list is made the new start point of
the list.

An exception occurs if:

- 'ch' is locked before the call

3.3.12 Chainstart @

PROCEDURE chainstart(VAR ch: chain);

Predefined.

- The start point of the list becomes the new current message of
the list.

An exception occurs if:

- 'ch' is locked before the call

3.3.12 Chainstart Available Routines

RC3502 Real-Time Pascal 53

3.3.13 Chainup

PROCEDURE chainup(VAR ch: chain);

Predefined.

- The successor of the current element becomes the new current
message of the list.

An exception occurs if:

- 'ch' is locked before the call

3.3.14 Crel6buf

FUNCTION ercl6buf(VAR r: reference; frombyte, tobyte: integer;
quotient, startvalue: integer): integer;

Defined in rce3502env.

- Calculates crcl6 checksum of the message referenced by r from
the byte indexed by frombyte up to and including the byte refe-
renced by tobyte. Quotient represents the quotient polynomium.
Startvalue is used as the initial value of the calculated chekc-
sum.

An exception occurs if:

- the reference variable r is nil.
the bufferattributeof r is empty.
the bufsize of r is too small.
ult (tobyte, frombyte).

3.3.15 Creditcount

@ FUNCTION creditcount(VAR r: reference): 0..maxint;

Defined in imc3502env.

- If the event kind of the designated message is credit, the result
is the number of receive messages available at the remote end-
point of the connection. If the event kind is reset_indication the
result is the number of credits which have been taken back by a
call of reset at the remote end-point.

Available Routines 3.3.15 Creditcount

54 RC3502 Real-Time Pascal

3.3.16 Eventkind

FUNCTION eventkind(VAR r: reference): event type;

Defined in imc3502env.

- An exception occurs if the reference is NIL. Otherwise the re-
sult is the value of the event kind attribute of the designated

message. The result not_event indicates the message has been
obtained from a pool or its event kind has been reset (cf. re-
setevent). The result message event indicates the message has been
signalled from a process. The result answer event indicates the
message has been returned by a process. The result process removed
indicates the message has been returned from a process which was
removed. The remaining result values indicate IMC events.

3.3.17 Index

FUNCTION index(VAR r: reference): 0..maxint;

Defined in imc3502env.

- The result is the index in the relevant port of the connection
end-point from which the designated message was returned as an
event. It is defined for messages with event kind local_connect,
remote_connect, disconnected, reset_completion, reset_indication,
data_sent, data_arrived, data_overrun, credit, and for dummy
events. If the event is dummy and there is no applicable index
the result will be 0.

An exception occurs if the reference variable is nil.

3.3.18 Offset

FUNCTION offset(VAR r: reference): integer;
FUNCTION offset(VAR c: chain): integer;

Predefined.

- If the 'offset' function is called with a parameter with value
NIL or the message is a header message only, an exception oc-
curs. Otherwise the result is the value of the 'offset' attribute
of the designated message.

NOTE: The 'offset' attribute is the first word in the buffer, accor-
ding to the driver conventions /Driver Conv./. A message with bufsize
greater than 0 always holds the ‘offset’ attribute. So the buffer is
accessed without locking the reference variable.

3.3.18 Offset Available Routines

RC3502 Real-Time Pascal

on

o1

3.3.19 Openpool

FUNCTION openpool(VAR p: pool): boolean;

Predefined.

- returns the value true if the pool contains a message, otherwise
false.

3.3.20 Pop

PROCEDURE pop(VAR rl, r2: reference);

Predefined.

- The top message header from 'r2' is removed. If the new top
message and the old top message refer to the same message buf-
fer, only the message header is removed. If not, the top messa-
ge buffer is removed also. 'rl' refers to the removed message.

An exceptions occurs if:

- rl is not nil before call

- r2 is nil before call
- r2 is locked before call

If 'r2' denotes a stack with only one element before the call, the
value of 'r2' becomes nil after the call.

3.3.21 Push

PROCEDURE push(VAR rl, r2: reference);

Predefined.

- The header designated by 'rl' becomes the new top header of
the stack. After the call, 'r2' designates the new stack. After
the call the value of 'r1' is nil.

If the new top message is a header message, the top message buffer
of 'r2" remains the same.

The message accessible through 'r2' (possibly nil) is called the stack.

An exceptions occurs if:

- 'rl' is nil before call
- 'rl' is locked before call
- 'r2' is locked before call
- 'rl' designates a stack with more than one element
- 'rl'='r2' before call

Available Routines 3.3.21 Push

56 RC3502 Real-Time Pascal

Before call After call

1)

feees}

2°

2)

|

fre} ‘eal nal 4

Fig. 3.1. Example on the Behaviour of Push

3.3.22 Reason

FUNCTION reason(VAR r: reference): reason_type;

Defined in imc3502env.

- An exception occurs if the value of the reference is NIL.
Otherwise the result is the reason for an event. (Cf. RTP-11).

3.3.22 Reason Available Routines

RC3502 Real-Time Pascal 57

3.3.23 Release

PROCEDURE release(VAR r: reference);

Predefined.

- signals the message referenced by 'r' to the anonymous home
mailbox.

An exception occurs if:
- the reference variable is nil.
- the reference variable is locked.

3.3.24 Releasepool

FUNCTION releasepool(VAR p: pool; number: integer): integer;

Predefined.

~ returns a maximum of 'number' messages from the pool 'p' to
the ALLOCATOR. The actual number of messages released is re-
turned as the result.

3.3.25 Setbytecount

PROCEDURE setbytecount(VAR r: reference; val: integer);
PROCEDURE setbytecount(VAR c: chain; val: integer);

Predefined.

- If the 'setbytecount' procedure is called with a reference para-
meter with value NIL, or the message is a header message only,
an exception occurs. Otherwise the value of the 'val' parameter
is assigned to the 'bytecount' attribute of the designated messa-
ge.

NOTE: The 'bytecount' attribute is computed from the value of
‘next’ and 'first', which are in the first part of the buffer, according
to the driver conventions /Driver Conv./. A message with bufsize gre-
ater than 0 always holds the 'bytecount' attribute. So the buffer is
updated without locking the reference variable.

3.3.26 Setoffset

PROCEDURE setoffset(VAR r: reference; val: integer);
PROCEDURE setoffset(VAR c: chain; val: integer);

Predefined.

- If the 'setoffset' procedure is called with a reference parameter
with value NIL, or the message is a header message only, an

Available Routines 3.3.26 Setoffset

58 RC3502 Real-Time Pascal

exception occurs. Otherwise the value of the 'val' parameter is
assigned to the 'offset' attribute of the designated message.

NOTE: The ‘offset’ attribute is the first word in the buffer, accor-
ding to the driver conventions /Driver Conv./. A message with bufsize
greater than 0 always holds the 'offset' attribute. So the buffer is
updated without locking the reference variable.

3.3.27 Settop

PROCEDURE settop(VAR r: reference; val: integer);
PROCEDURE settop(VAR c: chain; val: integer);

Predefined.

- If the 'settop' procedure is called with a reference parameter
with value NIL, or the message is a header message only, an
exception occurs. Otherwise the value of the 'val' parameter is
assigned to the 'first' attribute of the designated message.

NOTE: The 'top' attribute is computed from the value of the second
word in the buffer, according to the driver conventions /Driver
Conv./. A message with bufsize greater than 0 always holds the 'top'
attribute. So the buffer is updated without locking the reference va-
riable.'

3.3.28 Setul

PROCEDURE setul(VAR r: reference; val: byte);
PROCEDURE setul(VAR c: chain; val: byte);

Predefined.

- If the 'setul' procedure is called with a reference parameter
with value NIL an exception occurs. Otherwise the value of the
parameter 'val' is assigned to the ul-attribute of the designated
message.

3.3.29 Setu2

PROCEDURE setu2(VAR r: reference; val: byte);
PROCEDURE setu2(VAR c: chain; val: byte);

Predefined.

- If the 'setu2' procedure is called with a reference parameter
with value NIL an exception occurs. Otherwise the value of the
parameter 'val' is assigned to the u2-attribute of the designated
message.

3.3.29 Setu2 Available Routines

RC3502 Real-Time Pascal 59

3.3.30 Setu3

PROCEDURE setu3(VAR r: reference; val: byte);
PROCEDURE setu3(VAR c: chain; val: byte);

Predefined.

- If the 'setu3' procedure is called with a reference parameter
with value NIL an exception occurs. Otherwise the value of the
parameter 'val' is assigned to the u3-attribute of the designated
message.

3.3.31 Setu4

PROCEDURE setu4(VAR r: reference; val: byte);
PROCEDURE setu4(VAR c: chain; val: byte);

Predefined.

- If the 'setu4' procedure is called with a reference parameter
with value NIL an exception occurs. Otherwise the value of the
parameter 'val' is assigned to the u4-attribute of the designated
message.

3.3.32 Stackdepth

FUNCTION stackdepth(VAR stack: reference): integer;

Predefined.

The value returned by stackdepth is the number of messages in the
designated stack, including empty ones. The function returns
the value 0 if the parameter has value NIL.

3.3.33 Tofrom

PROCEDURE tofrom(VAR toref: reference; toindex: integer;
VAR fromref: reference; fromindex: integer;
bytes: integer);

Defined in rc3502env.

- Moves 'bytes' bytes from the message designated by 'fromref'
starting at the location index 'fromindex' to the message desig-
nated by 'toref' starting at the location index 'toindex'. Index-
ing in the message buffers is according to the driver conventions
/Driver Conv./. The 'bytes' and index parameters are considered
integers in the range 0..65535. The move is performed as a for-
ward move one byte a time without special action in case of
overlapping source and destination areas.

Available Routines 3.3.33 Tofrom

60 RC3502 Real-Time Pascal

3.3.34 Top

FUNCTION top(VAR r: reference): integer;
FUNCTION top(VAR c: chain): integer;

Predefined.

- If the 'top' function is called with a parameter with value NIL
or the message is a header message only, an exception occurs.
Otherwise the result is the value of the 'top' attribute of the
designated message.

NOTE: The 'top' attribute is computed from the value of the second
word in the buffer, according to the driver conventions /Driver
Conv./. A message with bufsize greater than 0 always holds the 'top'
attribute. So the buffer is accessed without locking the reference va-
riable.

3.3.35 Ul

FUNCTION ul(VAR r: reference): byte;
FUNCTION ul(VAR ec: chain): byte;

Predefined.

- If the 'ul' function is called with a parameter with value NIL,
an exception occurs. Otherwise the result is the ul-attribute of
the designated message.

3.3.36 U2

FUNCTION u2(VAR r: reference): byte;
FUNCTION u2(VAR ec: chain): byte;

Predefined.

- If the 'u2' function is called with a parameter with value NIL,
an exception occurs. Otherwise the result is the u2-attribute of
the designated message.

3.3.37 U3

FUNCTION u3(VAR r: reference): byte;
FUNCTION u3(VAR ec: chain): byte;

Predefined.

- If the 'u3' function is called with a parameter with value NIL,
an exception occurs. Otherwise the result is the u3-attribute of
the designated message.

3.3.37 U3 Available Routines

RC3502 Real-Time Pascal 61

3.3.38 U4

FUNCTION u4(VAR r: reference): byte;
FUNCTION u4(VAR c: chain): byte;

Predefined.

- If the 'u4' function is called with a parameter with value NIL,
an exception occurs. Otherwise the result is the u4-attribute of
the designated message.

3.4 Conversion and Arithmetic Routines

3.4.1 Miscellaneous Routines

3.4.1.1 Chr

FUNCTION chr(int: 0..255): char;

Predefined.

- returns the character with the ordinal value ‘int’.

3.4.1.2 Ord

FUNCTION ord(x: otype): integer;

Predefined.

- returns the ordinal value of the variable 'x' of type ‘'otype’,
where 'otype' is any ordinal type.

3.4.1.3 Pred

FUNCTION pred(x: otype): otype;

Predefined.

- gives the predecessor of the variable 'x' of type 'otype', where
‘otype' is any ordinal type.

Available Routines 3.4.1 Miscellaneous Routines

62 RC3502 Real-Time Pascal

3.4.1.4 Succ

FUNCTION sucec(x: otype): otype;

Predefined.

- gives the successor of the variable 'x' of type 'otype', where
‘otype' is any ordinal type.

3.4.2 Double Arithmetics Routines

Doubleenv (cf. appendix K.1) contains five constant declarations,
besides declarations of the following double arithmetics routines:

double min double(:minint, 0:);
double_zero = double(:0, 0:);
double_one = double(:0, 1:);
double_two = double(:0, 2:);
double_max = double(:maxint, -1:);

3.4.2.1 Double add

FUNCTION double _add(dl, d2: double): double;

Defined in doubleenv.

- Addition in the range -2147483648..2147483647.

An exception occurs, if the result is outside this range.

3.4.2.2 Double dec

PROCEDURE double _dec(VAR d: double);

Defined in doubleenv.

- Decrements the parameter 'd' by one in _ the
-2147483648..2147483647, but with no overflow exception.

3.4.2.3 Double div

FUNCTION double _div(d1, d2: double): double;

Defined in doubleenv.

- Division in the range -2147483648..2147483647.

An exception occurs, if 'd2'='double_zero'.

range

3.4.2 Double Arithmetics Routines Available Routines

RC3502 Real-Time Pascal 63

| @ 3.4.2.4 Double inc

PROCEDURE double inc(VAR d: double);

Defined in doubleenv.

- Increments the parameter 'd' by one in the range
-2147483648..2147483647, but with no overflow exception.

3.4.2.5 Double int

FUNCTION double_int(i: integer): double;

Defined in doubleenv.

- Converts a variable of type integer to a variable of type
‘double’.

3.4.2.6 Double It

FUNCTION double_It(d1, d2: double): boolean;

Defined in doubleenv.

- "less than' ('d1l'<'d2") in the range -2147483648..2147483647.

3.4.2.7 Double madd

FUNCTION double _madd(dl, d2: double): double;

Defined in doubleenv.

- Addition in the range -2147483648..2147483647, but with no
overflow exception.

3.4.2.8 Double mod

FUNCTION double _mod(d1, d2: double): double;

Defined in doubleenv.

- Modulo operation in the range -2147483648..2147483647.

An exception occurs, if 'd2' = ‘double_zero'.

Available Routines 3.4.2 Double Arithmetics Routines

64 RC3502 Real-Time Pascal

3.4.2.9 Double msub

FUNCTION double _msub(d1, d2: double): double;

Defined in doubleenv.

- Subtraction in the range ~2147483648..2147483647, but with no
overflow exception.

3.4.2.10 Double mul

FUNCTION double _mul(dl1, d2: double): double;

Defined in doubleenv.

- Multiplication in the range -2147483648..2147483647.

An exception occurs, if the result is outside this range.

3.4.2.11 Double sub

FUNCTION double _sub(d1l, d2: double): double;

Defined in doubleenv.

- Subtraction in the range -2147483648..2147483647.

An exception occurs, if the result is outside this range.

3.4.2.12 Double uint

FUNCTION double_uint(i: integer): double;

Defined in doubleenv.

- Converts a variable of type integer, treated as an unsigned
number, to a variable of type ‘double’.

3.4.2.13 Int double

FUNCTION int_double(d: double): integer;

Defined in doubleenv.

- Converts a variable of type double to a variable of type integer.

An exception occurs, if the value is outside the range of the type in-
teger.

3.4.2 Double Arithmetics Routines Available Routines

RC3502 Real-Time Pascal 65

3.4.2.14 Uint double

FUNCTION uint_double(d: double): integer;

Defined in doubleenv.

- Converts a variable of type double to a variable of type
unsigned integer.

An exception occurs, if the value is outside the interval 0..65535.

3.4.3 Miscellaneous Arithmetic Routines

3.4.3.1 Abs

FUNCTION abs(x:integer): integer;

Predefined.

- The absolute value of the variable 'x' is delivered as result.

3.4.3.2 Crcel6

FUNCTION crcl6(opl, op2 : integer) : integer;

Defined in rc3502env.

- 'opl' represents the polynomium:

15,14 *
tai, ».¢ Feet Xta

where a joPl bit.

- * f(x)=a) 5 x 0

Note: Bit 0 is the most significant bit.

- 'op2' represents the polynomium:

5 g(x)=x' rb, -#x! 0 by 2x esetb Axeb

where b-op2.bit ;

Note that xl6 by convention is implicitly given.

The routine delivers the remainder by the division:

£(x)*x°/g(x)

Available Routines 3.4.3 Miscellaneous Arithmetic Routines

66 RC3502 Real-Time Pascal

Example 5. CRC16
PROCEDURE example5;

(* generate the crcl6 remainder *)

(* to be placed in the last*)

(* positions of a buffer *)

CONST

quotient= -32768+8192+1; (* xf16 + xf15 +xf2 + 1 *)
n= 768;

VAR

remainder: integer;

buffer: ARRAY (1..n+2) OF byte;

BEGIN

remainder:= 0; (* initial value *)

FOR step:= 1 TO n DO

remainder:= crcl6(remainder XOR buffer(step), quotient):

(* now remainder contains the crcl6 remainder *)

(* the least significant byte of remainder *)

(* is supposed to be sent first *)

buffer(n+1):= remainder AND 255:

buffer(n+2):= swap(remainder) AND 255;

END; (* example5 *)

3.4.3.3 Dec

PROCEDURE dec(VAR i: integer);
PROCEDURE dec(VAR b: byte);

Predefined.

- decrements the parameter by one with no underflow exception.
The procedure is intended for statistical purposes, like i:= i-1,
where the access path to the parameter 'i' is hard. The address
of the parameter is only calculated once.

3.4.3.4 Inc

PROCEDURE inc(VAR i: integer);
PROCEDURE inc(VAR b: byte);

Predefined.

- increments the parameter by one with no overflow exception.
The procedure is intended for statistical purposes, like i:= i+1,
where the access path to the parameter 'i' is hard. The address
of the parameter is only calculated once.

3.4.3 Miscellaneous Arithmetic Routines Available Routines

RC3502 Real-Time Pascal 67

3.4.3.5 Intel

FUNCTION intel(i: integer): intel integer;

Not predefined.

~ converts an RC3502 integer to an INTEL integer by exchanging
the least and most significant byte.

An 'intel_integer' is defined as:

intel integer = RECORD
low: byte; (* least significant *)
high: byte; (* most significant *)

END;

Example: See example under LAMBDA.

3.4.3.6 Lambda

FUNCTION lambda(ii: intel_integer): integer;

Not predefined.

- converts an INTEL integer to an RC3502 integer by exchanging
the least and most significant byte.

An INTEL integer is defined as:

intel_ integer = RECORD
low: byte; (* least significant *)
high: byte; (* most significant *)

END;

Example 6. INTEL and LAMBDA
PROCEDURE exampleé;

TYPE

intel_integer = RECORD

low, high: byte;
END;

FUNCTION intel(i: integer): intel_integer; EXTERNAL:
FUNCTION lambda(ii: intel_integer): integer: EXTERNAL:
VAR

ii: intel_integer;:
i: integer;

BEGIN

ii.low:= 15;

ii-.high:= 2;
i:= lambda(ii); (* i:= 2*256+15 *)
i:= 259;
ii:= intel(i); (* ii.low:= 3, ii.high:= 1 *)
D; EN (* example6 *)

Available Routines 3.4.3 Miscellaneous Arithmetic Routines

68 RC3502 Real-Time Pascal

3.4.3.7 Madd

FUNCTION madd(a, b: integer): integer;

Not predefined.

- addition, but with no overflow exception.

3.4.3.8 Mmul

FUNCTION mmul(a,b: integer): integer;

Not predefined.

- multiplication, but with no overflow exception.

3.4.3.9 Msub

FUNCTION msub(a,b: integer): integer;

Not predefined.

- Subtraction, but with no overflow exception.

3.4.3.10 Rotate

FUNCTION rotate(a, shifts: integer): integer;

Not predefined.

- makes a cyclic shift of the parameter 'a' 'shifts' times. The
result of the rotation is returned by the function. If 'shifts' is
positive, the shift is to the left; otherwise the shift is to the
right.

3.4.3.11 Swap

FUNCTION swap(i: integer): integer;

Predefined.

- The conversion takes place by swapping the two bytes of the in-
teger i. This effective way of swapping may be used for con-
version between integers and the u-fields in message headers.

Example 7. SWAP

PROGRAM example7;

VAR

i, j: integer;

r: reference;

3.4.3 Miscellaneous Arithmetic Routines Available Routines

RC3502 Real-Time Pascal 69

m: mailbox;

BEGIN

wait(r, m);

i:= swap(u2(r)) OR u3(r); -- i:
setu3(r, swap(j) AND 255); -- u3:
setu4(r, j AND 255); -- ué:

END. (* example7 *)

3.4.3.12 Uadd

FUNCTION uadd(a, b: integer):

Not predefined.

= u2*256+u3

j DIV 256
j MOD 256

integer;

- Addition in the range 0..65535.

An exception occurs, if the

3.4.3.13 Udiv

FUNCTION udiv(a, b: integer):

Not predefined.

result is outside the range 0..65535.~

integer;

- Division in the range 0..65535.

An exception occurs, if 'b'=0.

3.4.3.14 Ult

FUNCTION ult(a, b: integer): boolean;

Not predefined.

- ‘less than' ('a'<'b') in the range 0..65535.

3.4.3.15 Umod

FUNCTION umod(a, b: integer):

Not predefined.

integer;

- Modulo operation in the range 0..65535.

An exception occurs, if 'b'=0.

Available Routines 3.4.3 Miscellaneous Arithmetic Routines

70 RC3502 Real-Time Pascal

3.4.3.16 Umul e

FUNCTION umul(a, b: integer): integer;

Not predefined.

- Multiplication in the range 0..65535.

An exception occurs, if the result is outside the range 0..65535.

3.4.3.17 Usub

FUNCTION usub(a, b: integer): integer;

Not predefined.

- Subtraction in the range 0..65535.

An exception occurs, if the result is outside the range 0..65535.

3.5 Clock Routines

This section describes a number of routines declared in rc3502env for
operations on the types 'clocktype' and "coded_inc'. These types are
also defined in rc3502env.

3.5.1 Clock difference

FUNCTION clock_difference(t1, t2: clocktype): coded_inc;

Defined in rc3502env.

- Returns the difference between two clock values. If the dif-
ference exceeds 32 days, the value 31 days, 23 hours, 59
minutes, 59 seconds, and 999 milliseconds is returned. @

3.5.2 Clock increment

FUNCTION clock_increment(t: clocktype; inc: coded inc): clocktype;

Defined in rc3502env.

- Returns the clock value 't+inc’'.

3.5.2 Clock increment Available Routines

RC3502 Real-Time Pascal 71

3.5.3 Clock less than

FUNCTION clock_less_than(tl, t2: clocktype): boolean;

Defined in rc3502env.

- Returns the value 'true' if 'tl' precedes 't2', otherwise 'false'.

3.5.4 Getclock

FUNCTION getclock: clocktype;

Defined in rc3502env.

- Returns the current value of the system clock. The type 'clock-
type’ is defined in rc3502env (cf. I.1). As opposed to the get
clock request, when using the sendtimer procedure, the 'get-
clock' function works without message communications with the
TIMER.

3.6 Miscellaneous Routines

3.6.1 Getid

FUNCTION getid: integer;

Not predefined.

- returns the value of the 16 bit ID register, IDR201. The re-
gister is normally installed on RC3502 when used as a node in a
communications network.

3.6.2 Getlfgt

PROCEDURE getlfgf(VAR If, gf: 32bittype);

Not predefined.

- delivers the current values of the stack pointers ‘local frame'
and 'global frame'. Together with the procedure 'print' it is
possible to print specific areas of a stack.

Available Routines 3.6.2 Getlfgf

72 RC3502 Real-Time Pascal

Example 8. GETLFGF
PROGRAM examples;

TYPE

addr= RECORD

base, disp: integer;

END;

PROCEDURE getlfgf(VAR 1f, gf: addr): EXTERNAL;

PROCEDURE print(VAR z: zone; base: byte; first_disp, last_disp.

words per line: integer); EXTERNAL;
VAR

lf. gf: addr;

Z: zone;

PROCEDURE exception(code: integer):
BEGIN

(* the zone must be initialized for output *)

getlfgf(1f. gf): :
print(z, gf.base, gf.disp, 1f.disp, 1);

END;

BEGIN

(* program body *)

END. (* example 8 *)

3.6.3 Getswitches

PROCEDURE getswitches(VAR b0, bl : byte);

Not predefined.

- Returns the current values of the Cswitches controlling the
autoload procedure of RC3502.If the first byte of Cswitches
equals zero, the contents of the Switches are transferred to
Cswitches and returned to the caller. For further information,
consult /Operating Guide/.

3.6.4 Maxconnections

FUNCTION maxconnections: 0..maxint;

Defined in imc3502env.

- Returns the maximum number of connections which the IMC net-
work allows to any one port.

3.6.5 Memerrorlog

FUNCTION memerrorlog(baseword: integer): integer;

Not predefined.

- returns an errorlog word from the memory module specified by
the parameter 'baseword', which is the base of the first 64K
byte RAM module on MEM205. For further details consult
"MEM205 General Information" /MEM205/.

3.6.5 Memerrorlog Available Routines

RC3502 Real-Time Pascal 73

3.6.6 New

PROCEDURE new(ptr: ptrtype);

Predefined.

- Memory for a variable of the base type of the type of the pa-
rameter 'ptr' is allocated on the heap of the calling process. If
an initial value is defined for the variable or any components of
it (pointers and shielded), the initialization takes place immedia-
tely after allocation. The value of the parameter becomes a po-
inter to the allocated variable. If the claimed amount of memory
is not available, the pointer becomes NIL after the call of new.
Memory for the heap is allocated from the machine's pool of
free memory, i.e. it is not part of the memory, which was
reserved when the process was created. The heap is for dynamic
allocation of objects, not necessarily dynamic sized objects. But
the amount of heap storage has nothing to do with the reserva-
tion of stack for static and dynamic sized objects and routine
calls. The heap of a process is returned to the machine's pool
of free memory when the process is removed.

3.6.7 Readram

PROCEDURE readram(VAR result: byte; index: integer);

Not predefined.

- returns the value of the byte with index 'index'
in the control microprocessor ram.

Relevant indices are:

9: version

10: switches 0-7

11: switches 8-15

42: COM204 mask

43: COM204 result

(For further information, refer to /Operating Guide/, appendix K).

3.6.8 Restart

PROCEDURE restart;

Not predefined.

- Performs a remove, create, and start of ADAM. All messages at
OPERATOR and TIMER are deallocated. The programs in the
LINKER catalogue are not unloaded.

Available Routines 3.6.8 Restart

74 RC3502 Real-Time Pascal

3.6.9 Setswitches

PROCEDURE setswitches(b0, bl: byte);

Not predefined.

- Updates the current values of the Cswitches, controlling the au-
toload procedure of RC3502. For further information, consult /O-
perating Guide/.

3.6.10 Setwatchdog

PROCEDURE setwatchdog(i: integer);

Not predefined.

- the "watchdog high" byte in the control microprocessor is
initialized to 'i'.

‘i'= 0 disables the watchdog function.
‘i't= 1 equals 640 msec.
"i'= 255 equals 163,200 msec.

3.6.11 Wild compare

FUNCTION wild_compare(name, key: alfa): boolean;

Not predefined.

- The value 'key' may contain wild characters, "*", where one
wishes to specify zero or more occurrences of "I don't care"
characters. E.g.: 'a*b' matches 'ab', 'aab', 'abb’, ‘acdegfb', and
in fact any name that begins with an "a" and ends with a "b".

The value 'true' is returned if this comparison is successful, other-
wise ‘false’.

3.7 Routines for Operator Communication

This section describes a set of routines which may be used for in-
put/output to the OPERATOR process or another character oriented
input/output driver.

Communication takes place via variables of type zone.

The type zone is a simple implementation of the zone concept known
from ALGOL8 /ALGOL/ and MUSIL /MUSIL/.

Section 3.7.1 describes the initialization of variables of type zone.

3.7 Routines for Operator Communication Available Routines

RC3502 Real-Time Pascal 75

Section 3.7.2 describes the output procedure outchar and a set of
output procedures, which use the procedure outchar.

Section 3.7.3 describes the input procedure inchar and a set of input
procedures, which use the procedure inchar.

Ioenv contains declarations of the types and routines and is listed in
appendix K.3.

Appendix L contains a more comprehensive example of OPERATOR
communication.

The routines conform to the driver conventions /Driver Conv./
regarding the use of the user u-fields and the buffer attributes.

3.7.1 Initialization

The type zone is defined in the environment ioenv as:

zone= RECORD
driver,

answer: { mailbox;
dataready,
free: mailbox;
cur: reference;
u2val,
state: byte
readstate,
nextp,

lastpos: integer
END;

"driver' - points to the driver mailbox (e.g. the OPERATOR
mailbox).

‘answer' - point to the mailbox, where answers arrive from the
driver

‘dataready' - holds the answers from the driver, if this mailbox is
specified as 'answer' in the call of openzone or ope-
nopzone. 'dataready' is normally specified, when the
zone is used for input from OPERATOR

'free' - holds the empty messages.

‘eur' - refers the message which is currently in use for rea-
ding input or writing output.

"u2val' - whenever a message is signalled to the driver mail-
box, the u2 attribute (result attribute) of the messa-
ge is initialized to u2val. According to the driver
conventions /Driver Conv./, some drivers utilizes the

Available Routines 3.7.1 Initialization

76 RC3502 Real-Time Pascal

specific convention, that 'u2' never takes the value 7
in answers from a driver, thereby distinguishing mes-
sages from application processes and answers from
e.g. internal driver interruption processes.

"state' - holds the result attribute (u2) from the message
referred by 'cur'. State is updated when a message is
taken from 'free' as a new current message for
output in the procedure outchar, or when a message
is taken from 'dataready' in the procedure opwait as
a new current message holding input data.

'readstate' - specifies the state of the zone when used for input
after each call of one of the input routines.

Readstate is initialized to -1 after call of ‘openzone' .
or 'openopzone'.

The following interpretation of readstate holds:

"Readstate'=-1
No input was ready (‘cur'='nil') when an input pro-
cedure was called or the current input message beca-
me empty during call.

‘readstate'=0

The call of an input procedure succeeded with no
syntax errors.

"readstate'>0
This value range is intended for indication of a syn-
tax error detected during the call of the input proce-
dure. The routines in this manual do not deliver
positive values.

"nextp - is the index of the next position in current message
for reading or writing.

"lastpos' - is the index of the last position in current message
for reading or writing.

3.7.1.1 Openopzone

PROCEDURE openopzone(VAR z: zone; driver, answer: t mailbox;
bufs: integer; VAR home: pool; vl, v2, v3, v4: byte);

Defined in ioenv.

- Messages from the pool 'home' should be able to hold variables
of type:

RECORD

first, last, next: integer;

3.7.1 Initialization Available Routines

RC3502 Real-Time Pascal 77

name: alfa;
chars: ARRAY (firstindex..lastindex) OF char;

END;

‘first', 'last', and 'next' are the buffer attributes, according to the
driver conventions /Driver Conv./ of the earlier Real-Time Pascal
implementations. The values of the attributes are used for computa-
tion of the buffer attribute values ‘offset', 'top', and 'bytecount'.

A type 'opbuffer' is defined in ioenv with
lastindex-firstindex+1=80.

The procedure assigns to the field 'name' the value of the process
name field of the process descriptor (cf. ownname) in all messages,
whereupon it performs as the procedure openzone.

The OPERATOR process identifies the input and output messages by
means of the parameter 'name'.

If the actual driver mailbox pointer is nil (an undefined mailbox poin-
ter), the procedure will automatically open the zone with the
operator mailbox as driver mailbox.

3.7.1.2 Openzone

PROCEDURE openzone(VAR z: zone; driver, answer: { mailbox;
bufs: integer; VAR home: pool; v1, v2, v3, v4: byte);

Defined in ioenv.

Openzone prepares the zone 'z' with messages for input/output.

Note: If OPERATOR communication is wanted, use openopzone.

'z! - the zone which is initialized.

"driver' - a pointer to the driver mailbox, which is assigned to
'z.driver'.

‘answer' - a pointer to a mailbox where answers arrive from the
driver. 'answer' is assigned to 'z.answer'.

"bufs' - specifies the number of messages which the procedure
will allocate the zone z. The messages are placed in
'z.free'.

"home' - the messages are allocated from the pool 'home'. The
messages conform to the driver conventions /Driver
Conv./ and should be able to hold a variable of type:

RECORD

first, last, next: integer;
chars: ARRAY (6..max) OF char;

Available Routines 3.7.1 Initialization

78 RC3502 Real-Time Pascal

END;

'y1', 'y2',

'y3', 'v4! - the user attributes of the messages are initialized to
'v1l', 'v2', 'v3', and 'v4'. 'v2' is used to reset the
result attribute (u2), whenever a message is signalled
to the driver.

3.7.2 Output

If the process does not want to be activated, when an output messa-
ge returns from the driver, it uses a mailbox pointer with value nil as
the actual parameter 'answer' in the call of openzone or openopzone.
In this way empty output messages return directly to the mailbox
"z.free' as available messages for continued output.

If the program wants to supervise the answers, it uses a mailbox
pointer which is not nil in the call of openzone or openopzone. The
messages must be signalled to 'z.free' afterwards.

3.7.2.1 Outaddr

PROCEDURE outaddr(VAR z: zone; a: 32bittype);

Not predefined.

- writes the three least significant bytes of the variable a in hex-
adecimal form with the layout:

BB.DDDD

The routine is intended for output of RC3502 addresses.

3.7.2.2 Outalfa

PROCEDURE outalfa(VAR z: zone; VAR text: !alfa);

Defined in ioenv.

- writes the variable 'text' by calling outchar. The character '#'
acts as a stop character.

3.7.2 Output Available Routines

RC3502 Real-Time Pascal 79

3.7.2.3 Outchar

PROCEDURE outchar(VAR z: zone; ch: char);

Defined in ioenv.

- places the character 'ch' in the current message 'z.cur’.

If no current message is available, a wait is performed on the mail-
box 'z.free'.

If the message becomes full, the procedure outend is called.

3.7.2.4 Outdate

PROCEDURE outdate(VAR z: zone; date: coded_ date);

Defined in ioenv.

- writes the parameter date with the layout:

YYYY.MM.DD

The type 'coded_date' is defined in rc3502env and is used throughout
the run time system, especially the timer system (see description of
the procedure sendtimer).

3.7.2.5 Outdouble

PROCEDURE outdouble(VAR z: zone; d: double; pos: integer);

Defined in ioenv.

- writes the double 'd' on decimal form. If the double occupies
less than ‘'pos' positions (including the '-' character, if
negative), the double is prefixed a number of spaces to fill the
‘pos' positions. If the number occupies more than 'pos'
positions, all significant digits are written (inclusive a possible
minus sign).

3.7.2.6 Outend

PROCEDURE outend(VAR z: zone);

Defined in ioenv.

- signals he current message 'z.cur' to the driver mailbox
'z.driverf'.

Available Routines 3.7.2 Output

80 RC3502 Real-Time Pascal

3.7.2.7 Outfill

PROCEDURE outfill(VAR z: zone; filler: char; rep: integer);

Defined in ioenv.

- repeats the character 'filler', 'rep' times.

If 'rep' is negative, no fill character is written.

3.7.2.8 Outhex

PROCEDURE outhex(VAR z: zone; i, pos: integer);

Defined in ioenv.

~ writes the number 'i' in hexadecimal form. If pos is greater
than four, pos -4 space characters are prefixed the number. If
"pos' is less than four, the following is valid. If the number oc-
cupies more than 'pos' positions, then number is printed as four
hex characters. If the number occupies less than "pos' positions,
the number is prefixed a number of zeroes to fill the ‘pos’ posi-
tions.

3.7.2.9 Outinteger

PROCEDURE outinteger(VAR z: zone; i, pos: integer);

Defined in ioenv.

- writes the number 'i' on decimal form. If the number occupies
less than 'pos' positions (including the '-' character, if
negative), the number is prefixed a number of spaces to fill the
‘pos' positions. If the number occupies more than "pos'
positions, all significant digits are written (inclusive a possible
minus sign).

3.7.2.10 Outnl

PROCEDURE outnl(VAR z: zone);

Defined in ioenv.

- writes the character nl and signals the message to the driver by
calling outend.

3.7.2 Output Available Routines

RC3502 Real-Time Pascal 81

3.7.2.11 Outtext

PROCEDURE outtext(VAR z: zone; text: alfa);

Not predefined.

- works as outalfa, which should be used instead of outtext.

3.7.2.12 Outtime

PROCEDURE outtime(VAR z: zone; time: coded_time);

Defined in ioenv.

- writes the parameter time with the layout:

HH.MM

The type coded_time is defined in rc3502env.

3.7.2.13 Print

PROCEDURE print(VAR z: zone; base: byte; first_disp, last_disp,
words per line: integer);

Not predefined.

- prints the memory words:

"base.first_disp' through 'base.last_disp'

with the layout:

<address> {<word hex> <word decimal> <MSB decimal>

words per line
<LSB decimal> <MSB char> <LSB char} <nb

The procedure terminates if the 'state' field of the zone becomes not
OK (<0).

3.7.2.14 Print descriptor

PROCEDURE print_descriptor(VAR z: zone;
VAR d: lookup_descriptor_segment);

Not predefined.

- prints selected fields from the type lookup_descriptor_segment,
which is defined in rc3502env with the layout:

Available Routines 3.7.2 Output

82 RC3502 Real-Time Pascal

<kind> <name> <source date> <object date> <version>
<program size> <no_of_pages> <pagesize> <last_ page length>
<default appetite> <no_of params> <nlb

<kind>::= PROGRAM | PROCEDURE | FUNCTION | DATA

A record of type lookup_descriptor_segment may be obtained by means
of the 'sendlinker(lookupname)' routine. See 3.2.25.

3.7.2.15 Printmessage

PROCEDURE printmessage(VAR z: zone; VAR r: reference; firstindex,
lastindex, words per line: integer);

Defined in ioenv.

- prints the attributes of the message and the specified data area.
The message buffer is supposed to be of type: @

buffer= ARRAY (0..max) OF byte

The printed area is from 'buffer(firstindex)' to "buffer(lastindex)'.

3.7.3 Input

The input procedures consist of routines for communication with the
driver (OPERATOR) process, i.e. opin and opwait, besides a set of
routines for converting the contents of an input message to variables
of type 'char', 'integer', 'double', or ‘alfa’.

If the process wants to be activated only when an input message re-
turns from the driver, it uses a mailbox pointer with value nil as the
actual parameter 'answer' in the call of openzone or openopzone.

More commonly, the process is also activated by other events. In that
situation, it specifies a mailbox pointer which is not nil as the actual r
parameter 'answer' in the call of openzone or openopzone and uses o-
panswer to place the message in the input zone for further reading.

3.7.3.1 Inchar

PROCEDURE inchar(VAR z: zone; VAR ch: char);

Defined in ioenv.

- the next character from the current message 'z.cur' is read.

If the message becomes empty, it is signalled to 'z.free’.

After the call the variable 'z.readstate'. indicates the state of the
zone with the interpretation:

3.7.3 Input Available Routines

RC3502 Real-Time Pascal 83

z.readstate
0 Successful reading.

- 1 This message was empty before call. The character nl
is returned.

3.7.3.2 Indouble

PROCEDURE indouble(VAR z: zone; VAR d: double);

Defined in ioenv.

- works as ininteger except that reading is in the range
-2147483648..2147483647.

3.7.3.3 Inhex

PROCEDURE inhex(VAR z: zone; VAR i: integer);

Defined in ioenv.

- reads a hexadecimal number according to the pseudo syntax:

{<non hex digit>} . {<hex digit>}

z.readstate
0 At least one hex digit is read.

- 1 No hex digit was met in the buffer. The value 0
is returned and the buffer is empty

Hex digits are read as long as the number is in the range
#h0000..#hF FFF.

3.7.3.4 Ininteger

PROCEDURE ininteger(VAR z: zone; VAR i: integer);

Defined in ioenv.

- reads a decimal number according to the pseudo syntax:

{<nondigit>} . <sign>{<digit>}

<sign>::= + | - | <empty>

Digits are read as long as the number is in the range -32768..32767.

z.readstate
0 At least one digit is read.

- 1 No digit was met in the message. The message is
empty and the value 0 is returned.

Available Routines 3.7.3 Input

84 RC3502 Real-Time Pascal

Examples:

Input Result (i):

Y bel2*abcde 12

y be+--+179ab 179

Y be+-001234567 -12345

Y be327 68 3276

(y indicates the value of nextp before and after the call).

3.7.3.5 Inname

PROCEDURE inname(VAR z: zone; VAR name: alfa);

Defined in ioenv.

- reads a name of maximum 12 characters after the syntax:

{<not letter or >} . <letter or _> {<letter, digit or >}

Examples:

Input: Result:

YY
a be a

Y
_abc89 6c; _abc89 6c

Y
12ab ab

The characters are delivered in the parameter 'name' from left to
right. 'name' is not initialized by ‘inname', so 'name' must be initi-
alized before the call. The variable 'z.nextp' may be used to cal-
culate the number of characters read (inclusive leading blanks).

z.readstate

0 At least one <letter or > is transferred to ‘name’.
- 1 No <letter or _> was met in the buffer. The buffer

is empty and possibly a number of spaces was skip-
ped.

3.7.3.6 Inwildname

PROCEDURE inwildname(VAR z: zone; VAR name: alfa);

Not predefined.

- Works as the routine INNAME except that the legal characters
are extended with the wild character "*".

3.7.3 Input Available Routines

RC3502 Real-Time Pascal 85

3.7.3.7 Opanswer

PROCEDURE opanswer(VAR r: reference; VAR z: zone);

Defined in ioenv.

- signals the message referenced by 'r' to the mailbox 'z.datarea-
dy'.

The routine is intended for use, when the process waits at a main
mailbox and sorts out all arriving input messages.

3.7.3.8 Opin

PROCEDURE opin(VAR z: zone);

Defined in ioenv.

- signals a message from 'z.free', if any, to the driver mailbox
'z.drivert',

3.7.3.9 Optest

FUNCTION optest(VAR z: zone): boolean;

Defined in ioenv.

- is true if a message is queued at 'z.dataready', otherwise false.
This may be used to avoid a wait in the procedure opwait.

Example:

IF optest(z) THEN

BEGIN

opwait(z, inputpool);

(* process input data from zone z *)
END

ELSE

(* do something else *)

3.7.3.10 Opwait

PROCEDURE opwait(VAR z: zone; VAR inputpool: pool);

Defined in ioenv.

- is used to wait for specific input to the zone, which returns
directly to 'z.dataready', or to a mainmailbox together with
other messages. If a message is queued at 'z.dataready', this
message is taken. Otherwise, a wait is performed on 'z.answer '.
‘opwait' checks, that an arriving message originates from the
‘inputpool' when the zone was opened, and that (ul MOD 8)=1
(read). Other arriving messages are queued temporarily in the

Available Routines 3.7.3 Input

FO _S™TSCS nee

86 RC3502 Real-Time Pascal

zone until a zone message returns. The queued messages are put
back in the mainmailbox and the zone message prepared for
later calls of inchar.

3.7.4 Advanced Use

Besides the ordinary use of the OPERATOR to send output and rece-
ive input from the console, additional facilities are offered. These
services are requested by sending a message to the OPERATOR asking
for the wanted facility.

3.7.4.1 Input - Output Mode

Normally OPERATOR sends output to the console and receives input.
from the console.

On request OPERATOR will send output to r
- the console
- a process requesting the output

On request OPERATOR will send input message to (receive input
from)

- the console
- a process requesting the input message (and generating input)

There are four i/o modes:
loc_i globo (0): input from console

output to request process
loc iloco (1): input from console

output to console
glob i loco (2): input from request process

output to console
glob_i glob o (3): input from request process

output to request process

Default mode is 'loc_i loc o'. r

The mode 'loc_i_loc_o' is kept unchanged until a change mode request
is received.

The modes are reset to 'loc i loc o' after 30 seconds, if no process
requests the messages. Otherwise, the mode is kept for a new period
of 30 seconds.

Section 3.7.4.2 on events describes how a process can use the event
mechanism to manipulate the input - output streams.

The change of i/o mode is requested by sending a change message to
the OPERATOR mailbox.

3.7.4 Advanced Use Available Routines

RC3502 Real-Time Pascal 87

to OPERATOR from OPERATOR
ul 0 unchanged
u2 - ok
u3 wanted mode unchanged
u4 - unchanged

A process requests the messages in accordance with the actual i/o
mode by sending a request message to the OPERATOR

to OPERATOR from OPERATOR
ul 12 unchanged
u2 - result
u3 - unchanged
u4 - unchanged

The request message is placed in a queue of waiting request messa-
ges.

The waiting input messages and/or output messages in accordance
with i/o mode are stacked and the first request message is pushed
upon the stack. Finally the stack is returned to the answer mailbox
of the request message.

Results Meaning
0 ok, some messages are returned
1 not_processed, i/o mode was loc i loc _o

3.7.4.2 Events

Processes may send some event messages to the OPERATOR.

Event messages are queued until
- they are regretted (see section 3.7.4.3)
- the operator presses 'ESC' and types the 'name' of the event

message.

Event messages can be used by processes to control the input-output
streams as described in the following example:
A process normally sends output to and receives input from request
Processes, but sometimes the operator wants to send a command from
the console. In this case, the process:

- sends an event message to OPERATOR with the name set to
"command'

- requests 'glob_i glob o' mode continuosly.

When the operator presses 'ESC' and types "‘command', the event
message is returned. Now the process can change i/o mode according
to the need, and later continue with the ‘glob_i glob_o' mode.

Available Routines 3.7.4 Advanced Use

88 RC3502 Real-Time Pascal

to OPERATOR from OPERATOR

ul 4 unchanged
u2 - result
u3 - unchanged
u4 - unchanged

Message buffer:
The buffer is supposed to hold a record of type 'opbuffer' (appendix
K.3). The field 'name' is used to identify the message.

Results Meaning
0 ok, no input message available when needed.
1 not_processed, the event message is regretted.

3.7.4.3 Regret

A process can regret messages previously sent to OPERATOR by
sending a regret message.

to OPERATOR from OPERATOR
ul 8 unchanged
u2 - 0 (ok)
u3 - unchanged
u4 - unchanged

The queues holding event messages, input messages and output messa-
ges are searched. Messages originating from the same pool as the
regret message are returned with result 'not_processed' and finally
the regret message is returned.

3.7.4.4 Match

A process may simulate input from the console by sending a match
message to OPERATOR.

to OPERATOR from OPERATOR
ul 6 unchanged
u2 - result
u3 - unchanged
u4 - unchanged

The buffer is supposed to hold a record of type ‘opbuffer' (appendix
K.3). The field 'name' is used as the key in searching the queue hol-
ding input messages. If an input message is found with matching 'na-
me' field, the data from the 'match' message is copied to the input
message, and both messages are returned.

Results Meaning

0 ok, data copied
1 Notprocessed, no matching input message.

3.7.4 Advanced Use Available Routines

RC3502 Real-Time Pascal 89

3.8 Driver Input/Output Routines

In the description of the input/output routines a device is considered
as containing a number of registers:

- control

- statusin

statusout

datain
dataout 1

where information is transferred to/from by means of commands issued
by the RC3502 machine.

The procedures inbyteblock, inwordblock, iowbwe, outbyteblock, and
outwordblock interprete the actual message buffers as being of the .
pseudo type:

buffertype= ARRAY (0..65535) OF byte

The message buffer attributes, according to the driver conventions
/Driver Conv./, are therefore treated as unsigned attributes in the
range 0..65535.

3.8.1 Clearinterrupt

PROCEDURE clearinterrupt;

Not predefined.

- clears the current interruption level and waits for an interrupt.
If the process has status "timedout', the call has no effect.

3.8.2 Control

PROCEDURE control(control_word: 16bittype;VAR chmsg: reference);

Not predefined.

- The contents of the parameter 'control_word' are transferred to
the CONTROL register in the device selected by the channel
message chmsg. The current interruption level is not cleared so
the next statement is executed without waiting for interrupt
from the device. The type of ‘control_word' may be any type of
size 16 bits.

An exception occurs if:

- the reference variable 'chmsg' is nil.
- the reference variable 'chmsg' is not a channel message.

Available Routines 3.8.2 Control

90 RC3502 Real-Time Pascal

3.8.3 Controlelr

PROCEDURE controlclr(control word: 16bittype);

Not predefined.

- The contents of the parameter 'control _word' are transferred to
the CONTROL register in the device selected by the current in-
terrupt level. If the process does not have status "timedout',
the current interruption level is cleared, and the next statement
is executed when an interrupt arrives from the device. If the
process has status 'timedout', execution continues immediately.

The type of control_word may be any type of size 16 bits.

An exception occurs if:

- the reference variable chmsg is nil
- chmsg is not a channel message

3.8.4 Ctrwaitid

FUNCTION ctrwaitid(c: 16bittype; msecs: integer): activation;

Not predefined.

- waits for two kinds of event:

1. An interrupt (a_interrupt)
2. Expiration of a delay period (a_delay)

The timer field of the process descriptor is initialized to the value of
"msecs' DIV 1000 and the control word 'c' is sent to the external
device connected to the current interruption level, before the wait is
performed.

Note that delay activation only takes place, if the routine 'defineti-
mer' has been called.

3.8.5 Ctrwaitim

FUNCTION ctrwaitim(c: 16bittype; VAR r: reference;
VAR m: mailbox): activation;

Not predefined.

- waits for two kinds of event:

1, An interrupt (a_interrupt)
2. The arrival of a message to the mailbox m (a_mailbox)

3.8.5 Ctrwaitim Available Routines

RC3502 Real-Time Pascal 91

The control word 'c' is sent to the external device connected to the
current interruption level, before the wait is performed.

An exception occours if:

- the reference variable 'r' is not nil.

3.8.6 Ctrwaitimd

FUNCTION ctrwaitimd(c: 16bittype; VAR r: reference;
VAR m: mailbox; msecs: integer): activation;

Not predefined.

- waits for three kinds of event:

1. An interrupt (a_interrupt)
2. The arrival of a message to the mailbox m (a_mailbox)
3. Expiration of a delay period (a_delay)

The timer field of the process descriptor is initialized to the value of
"msecs' DIV 1000, the control word 'c' is sent to the external device
connected to the current interruption level, and the wait is perfor-
med.

Delay activation only takes place, if a call of '‘definetimer' has been
issued. An exception occurs if:

- the reference variable is not nil.

3.8.7 Eoi

FUNCTION eoi: boolean;

Predefined.

- true if the EOI (End Of Information) status bit is 1 in the pro-
cess status word in the process descriptor. The EOI status bit is
updated whenever a read or write data command is issued by
the process.

A call of eoi returning the value true after a read command indicates
that the device has responded with no data. A call of eoi returning
the value true after a write command indicates that the device has
accepted the data and wants no more data.

Available Routines 3.8.7 Eoi

92 RC3502 Real-Time Pascal

3.8.8 Getbufparam @

PROCEDURE getbufparam(VAR bufparam: 64bittype; first, last: integer;
VAR msg: reference);

Not predefined.

- The parameter 'bufparam' is supposed to be of type

bufparamtype= RECORD

top, count: integer;
datastart: 32bittype;

END;

- returns the start address of the byte with index first in the
message buffer referenced by msg. As a side effect count and
top are updated as:

count:= madd(usub(last, first), 1)
top:= madd(last, 1) r

The procedure is intended for initializing a DMA controller with the
start address and count for an input/output operation.

The following exceptions may occur

- the value of the reference is NIL
no message buffer
size too small
ult(last, first)

3.8.9 Inbyteblock

PROCEDURE inbyteblock(VAR next: integer; first, last: integer;
VAR msg: reference);

Defined in rc3502env.

- inputs a block of bytes to the message buffer specified by e
'msg', 'first' and 'last' from the device specified by the current
interruption level. When the procedure terminates, 'next' will be
the index of the byte following the last byte input.

The procedure will terminate in two situations:

- when next=madd(last, 1);

- when eoi=true

If nothing is input 'next'='first'.

The following exceptions may occur:

- the reference variable 'msg' is nil
- the message 'msg' has no message buffer

3.8.9 Inbyteblock Available Routines

RC3502 Real-Time Pascal 93

- size of 'msg' is too small
- ult(last, first)

3.8.10 Inword

PROCEDURE inword(VAR word: l6bittype; VAR chmsg: reference);

Not predefined.

~ the contents of the DATAIN register in the device selected by
the channel message 'chmsg' is transferred to the parameter
‘word'. If eoi=true after the call, the contents of ‘word! are
undefined.

The type of 'word' may be any type of size 16 bits.

An exception occurs in the following situations:

- the reference variable 'chmsg" is nil
- 'chmsg' is not a channel message

3.8.11 Inwordblock

PROCEDURE inwordblock(VAR next: integer; first, last: integer;
VAR msg: reference);

Defined in rc3502env.

- inputs a block of words to the message buffer specified by
'msg', 'first', and 'last' from the device specified by the cur-
rent interruption level.

The procedure terminates in two situations:

- when next=madd(last, 1)
- when eoi=true

If nothing is input 'next'='first'.
First and last must specify an even number of bytes (usub(last, first)
must be odd).

The following exceptions may occur:

- the reference variable 'msg' is nil
- the message 'msg' has no message buffer

"madd(usub(last, first), 1)' is odd
- size of 'msg' is too small

ult(last, first)

Available Routines 3.8.11 Inwordblock

94 RC3502 Real-Time Pascal

3.8.12 Inwordclr

PROCEDURE inwordclr(VAR word : 16bittype);

Not predefined.

- The contents of the DATAIN register in the device, selected by
the current interruption level, is transferred to the parameter
‘word'. If the process has status 'timedout', execution continues
immediately. If the process does not have status "timedout', the
current interruption level is cleared, so the next statement is
executed when an interrupt arrives from the device.

The type of 'word' may be any type of size 16 bits.

3.8.13 Iowbwe

PROCEDURE iowbwc(bufparam: 64bittype);

Not predefined.

- the parameter 'bufparam' is supposed to be declared as
bufparamtype= RECORD

top, count: integer;
datastart: 32bittype;

END;

The procedure outputs a block of words from a buffer specified by
'datastart'. The number of words will be 'count' DIV 2 (count=0 is
interpreted as 32 K words).

The procedure is intended for simultaneous output of data residing in
one message. The actual parameter to the procedure may be obtained
by means of the procedure 'getbufparam'.

The procedure can be called after declarations as shown below

TYPE

bufparamtype = RECORD

top, count: integer;
datastart: 32bittype;

END;

PROCEDURE iowbwc(bufparam: bufparamtype); EXTERNAL;

3.8.13 Iowbwe Available Routines

RC3502 Real-Time Pascal 95

3.8.14 Messagekind

FUNCTION messagekind(VAR msg: reference): integer;

Defined in rc3502env.

- returns a negative number if the designated message is a chan-
nel message, otherwise the result is greater than or equal to 0.

An exception occurs if:

- the reference variable 'msg' is nil

3.8.15 Outbyteblock

PROCEDURE outbyteblock(VAR next: integer; first, last: integer;
VAR msg: reference);

Defined in rc3502env.

- outputs a block of bytes from the message buffer specified by
‘msg', 'first', and 'last' to the device specified by the current
interruption level. When the procedure terminates, 'next' will be
the index of the byte following the last byte output. The proce-
dure will terminate when "next=madd(last, 1)'.

If nothing is output next=first.

The following exceptions may occur:

- the reference variable 'msg' is nil
- the message 'msg' has no message buffer
- size of 'msg' is too small

ult(last, first)

3.8.16 Outword

PROCEDURE outword(word: 16bittype; VAR chmsg: reference);

Not predefined.

- The contents of the parameter 'word' are transferred to the
DATAOUT register in the device selected by the channel messa-
ge 'chmsg'. The current interruption level is not cleared so the
next statement is executed without waiting for interrupt from
the device.

The type of 'word' may be any type of size 16 bits.

An exception occurs in the following situations:

- the reference variable 'chmsg' is nil

Available Routines 3.8.16 Outword

96 RC3502 Real-Time Pascal

- 'chmsg' is not a channel message

3.8.17 Outwordblock

PROCEDURE outwordblock(VAR next: integer; first, last: integer;
VAR msg: reference);

Defined in rc3502env.

- outputs a block of words from the message buffer specified by
‘msg', 'first', and 'last' to the device specified by the current
interruption level.

The procedure terminates when next=madd(last, 1).

If nothing is output the value of next becomes the value of first.

First and last must specify an even number of bytes (usub(last, first) ©
must be odd).

The following exceptions may occur:

the reference variable is nil
the message 'msg' has no message buffer
the value of madd(usub(last, first), 1) is odd
size of 'msg' is too small
ult(last, first)

3.8.18 Outwordclr

PROCEDURE outwordclr(word: 16bittype);

Not predefined.

- the contents of the parameter 'word' are transferred to the
DATAOUT register in the device selected by the current inter- @
ruption level. If the process does not have status "timedout',
the current interruption level is cleared, so the next statement
is executed, when an interrupt arrives from the device. If the
process has status 'timedout', execution continues immediately.

The type of 'word' may be any type of size 16 bits.

3.8.18 Outwordclr Available Routines

RC3502 Real-Time Pascal 97

3.8.19 Reservech

FUNCTION reservech(VAR chmsg: reference; level, mask: integer):
integer;

Defined in rc3502env.

- allocates the channel message to the interruption level specified
by the parameter 'level'. The parameter 'mask' is intended for
specification of the actions the user wants to perform on the
interruption level. The parameter is not used in this revision.

Results Meaning
0 Reservation OK. 'chmsg' refers to the allocated channel

message.
1 The interruption level is already reserved or is not installed.
2 The reference variable 'chmsg' is not nil before call.

3.8.20 Reserveextmem

FUNCTION reserveextmem(VAR r: reference; class, size, memno,
disp: integer): integer;

Not predefined.

- allocates a message buffer in the area 80.0000 to 9e.ffff, cal-
led ‘external RAM'. The start address is specified by 'memno'
and 'disp'. The buffer size is specified by 'size' in words.
'Class' specifies the type of check, the routine performs during
reservation.

The memory has the format (by convention):

mem= RECORD
intr,
reset,

class,
sizelsb,
sizemsb,
version,
intrno: byte;
spare: ARRAY (7..31) OF byte;

END

If 'size'= 0 , the size is taken from the memory locations 'sizelsb',
and 'sizemsb', which is the size in bytes on Intel integer form.

The following checks are performed:
class=1 No check.

class=2 mem.reset=6.
otherwise mem.class=class.

Result Meaning

Available Routines 3.8.20 Reserveextmem

98 RC3502 Real-Time Pascal

0 Reservation ok. 'r' refers a message, where the buffer
is the specified memory. The value of 'bufsize' is the
actual size in bytes.

1 Already reserved. The memory is occupied, or the re-
quested memory overlaps an area, which is already
reserved.

2 The reference variable 'r' is not nil before call.
3 Illegal 'memno'. Only modules in the range 0..15

are legal.
4 No memory. No physical memory is installed in the re-

quested area.
5) Illegal class. The requested class does not match the

location 'mem.class'. Note classl and class2.
6 No resources. Message headers could not be allocated

to describe the requested memory area.
7 Illegal size. 'size-0' is returned from the memory loca-

tions 'sizelsb', and 'sizemsb'.

3.8.21 Sense

PROCEDURE sense(VAR Status in: 16bittype; status out: 16bittype;
VAR chmsg: reference);

Not predefined.

- The contents of the parameter 'status out' are transferred to
the STATUSOUT register in the device selected by the channel
message 'chmsg'. As a response from the device the contents of
the STATUSIN register are transferred to the parameter
"status_in'. The current interruption level is not cleared so the
next statement is executed without waiting for interrupt from
the device.

The type of 'status_in' and 'status out' may be any type of size 16
bits.

An exception occurs in the following situations:

- the reference variable 'chmsg' is nil
- chmsg is not a channel message

3.8.22 Senseclr

PROCEDURE senseclr(VAR status in: 16bittype; status out: 16bittype;
compare, mask: integer);

Not predefined.

- The contents of the parameter 'status out' are transferred to
the statusout register in the device selected by the current in-
terruption level. The contents of the STATUSIN register are
transferred to RC3502. If the value of statusin is true and

3.8.22 Senseclir Available Routines

RC3502 Real-Time Pascal 99

‘mask' has value 'compare', the original contents of the statusin
register are transferred to the parameter 'status in', and the
next statement is executed without waiting for interrupt from
the device. Otherwise the current interruption level is cleared
and the procedure is repeated, when the next interrupt arrives
from the device, unless the process changes status to 'timedout'.

The type of ‘status in' and "status_out' may be any type of size 16
bits.

3.8.23 Setinterrupt

PROCEDURE setinterrupt(VAR ch: reference);

Not predefined.

- activates the interruption level controlled by the channel messa-
ge 'ch',

The following exceptions may occur:

- the reference variable chmsg is nil
- chmsg is not a channel message

3.8.24 Timedout

FUNCTION timedout: boolean;

Not predefined.

The results are:

- true: The process has status 'timedout'. The status is cleared
and the timer field of the process descriptor is set to
zero.

- false: The process is not 'timed out’.

3.8.25 Waiti

PROCEDURE waiti;

Defined in rc3502env.

- waits for an interrupt from an external device. If executed on
interruption level 0 (class II or III), the caller will be per-
manently descheduled (i.e. suicide).

Available Routines 3.8.25 Waiti

100 RC3502 Real-Time Pascal

3.8.26 Waitid

FUNCTION waitid(msecs: integer): activation;

Defined in rc3502env.

- waits for two kinds of event:
1. An interrupt (a_interrupt)
2. Expiration of a delay period (a_delay)

The timer field of the process descriptor is initialized to the value of
"msecs' DIV 1000 before the wait is performed.

Note that delay activation only takes place if the routine 'defineti-
mer' has been called.

3.8.27 Waitim

FUNCTION waitim(VAR r: reference; VAR m: mailbox): activation;

Defined in re3502env.

- waits for two kinds of event:
1, An interrupt (a_interrupt)
2. The arrival of a message to the mailbox m (a_mailbox)

An exception occurs if the reference 'r' is not nil.

3.8.28 Waitimd

FUNCTION waitimd(VAR r: reference; VAR m: mailbox;
delay: integer): activation;

Defined in rc3502env.

- waits for three kinds of events:

1. An interrupt (a_interrupt).
2. The arrival of a message to the mailbox m (a _mailbox).
3. Expiration of a delay period (a_delay).

An exception occurs if the reference 'r' is not nil.

3.9 Routines for Backwards Compatibility

The following routines, defined in rc3502env, are included for back-
wards compatibility, only. They should not be used, except in very
special cases, where the use of the equivalent RTP constructs is im-
possible.

3.9 Routines for Backwards Compatibility Available Routines

RC3502 Real-Time Pascal 101

@ 3.9.1 First

FUNCTION first=offset(VAR r: reference): integer;
FUNCTION first=offset(VAR c: chain): integer;

Defined in re3502env.

- Cf. offset.
- The attribute name 'first' is the old RTP name for the RTP de-

fined attribute 'offset'
- If the 'first' function is called with a parameter with value NIL

or the message is a header message only, an exception occurs.
Otherwise the result is the value of the 'first' attribute of the
designated message.

NOTE: The 'first' attribute is the first word in the buffer, according
to the driver conventions /Driver Conv./. A message with bufsize gre-
ater than 0 always holds the 'first' attribute. So the buffer is acces-

r sed without locking the reference variable.

3.9.2 Last

FUNCTION last(VAR r: reference): integer;
FUNCTION last(VAR c: chain): integer;

Defined in rc3502env.

- Cf. top.
- The attribute name 'last' is the old RTP name for the RTP de-

fined attribute 'top', the relation is: top=last+1.
- If the 'last' function is called with a parameter with value NIL

or the message is a header message only, an exception occurs.
Otherwise the result is the value of the 'last' attribute of the
designated message.

NOTE: The 'last' attribute is the second word in the buffer, accor-
@ ding to the driver conventions /Driver Conv./. A message with bufsize

greater than 0 always holds the 'last' attribute. So the buffer is ac-
cessed without locking the reference variable.

3.9.3 Next

FUNCTION next(VAR r: reference): integer;
FUNCTION next(VAR c: chain): integer;

Defined in rc3502env.

- Cf. bytecount.
- The attribute name 'next' is the old RTP name for the RTP de-

fined attribute 'bytecount', the relation is:
bytecount=next-first.

Available Routines 3.9.3 Next

102 RC3502 Real-Time Pascal

- If the 'next' function is called with a parameter with value NIL
or the message is a header message only, an exception occurs.
Otherwise the result is the value of the 'next' attribute of the
designated message.

NOTE: The 'next' attribute is the third word in the buffer, according
to the driver conventions /Driver Conv./. A message with bufsize gre-
ater than 0 always holds the 'next' attribute. So the buffer is acces-
sed without locking the reference variable.

3.9.4 Ref

FUNCTION ref(VAR mbx: mailbox): ¢ mailbox;

Defined in rc3502env.

- returns a pointer value to the pointed object 'mbx'. 'Ref' can
only be applied to variables of type mailbox.

Ref is the old RTP means for getting mailbox pointers. As an alterna-
tive, a pointer to mailbox may be achieved by allocating the mailbox
on the heap.

3.9.5 Setfirst

PROCEDURE setfirst(VAR r: reference; val: integer);
PROCEDURE setfirst(VAR c: chain; val: integer);

Defined in rc3502env.

- Cf. setoffset.
- If the 'setfirst' procedure is called with a reference parameter

with value NIL, or the message is a header message only, an
exception occurs. Otherwise the value of the 'val' parameter is
assigned to the 'first' attribute of the designated message.

NOTE: The 'first' attribute is the first word in the buffer, according
to the driver conventions /Driver Conv./. A message with bufsize gre-
ater than 0 always holds the 'first' attribute. So the buffer is upda-
ted without locking the reference variable.

3.9.6 Setlast

PROCEDURE setlast(VAR r: reference; val: integer);
PROCEDURE setlast(VAR c: chain; val: integer);

Defined in rc3502env.

- Cf. settop.
- If the 'setlast' procedure is called with a reference parameter

with value NIL, or the message is a header message only, an

3.9.6 Setlast Available Routines

RC3502 Real-Time Pascal 103

exception occurs. Otherwise the value of the 'val' parameter is
assigned to the 'first' attribute of the designated message.

NOTE: The 'last' attribute is the second word in the buffer, accor-
ding to the driver conventions /Driver Conv./. A message with bufsize
greater than 0 always holds the 'last' attribute. So the buffer is up-
dated without locking the reference variable.'

3.9.7 Setnext

PROCEDURE setnext(VAR r: reference; val: integer);
PROCEDURE setnext(VAR ec: chain; val: integer);

Defined in re3502env.

- Cf. setbytecount
- If the 'setnext' procedure is called with a reference parameter

with value NIL, or the message is a header message only, an
exception occurs. Otherwise the value of the 'val' parameter is
assigned to the 'next' attribute of the designated message.

NOTE: The 'next' attribute is the third word in the buffer, according
to the driver conventions /Driver Conv./. A message with bufsize gre-
ater than 0 always holds the 'next' attribute. So the buffer is upda-
ted without locking the reference variable.

3.10 RTP Language Supporting Routines

The following list of routine names denote the routines which the
RTP system uses for support of the more complicated language
features. These routines should not be explicitly called by the user, if
done, an error message may be given.

checkstack, _initchainrc,
delete_semaphore, _initmbx__re,
empty, _initpool_re,
getmembyte, _initproc_re,
initpool, _initprog re,
initsem, _initref__re,
_bufsize__rce, _initsem__re,
_dec_byte_re, _initsh___re,
_exchange re, _last rc,
_exit rc, _new rc,
_first rc, _nilref___re,
_heapproc_re, _region re,
_heapref__ re, _reg exit_re,
_heapsh___re, _sendallocrc,
_inc_byte_rc, _shift rc

Available Routines 3.10 RTP Language Supporting Routines

104 RC3502 Real-Time Pascal

3.10 RTP Language Supporting Routines Available Routines

RC3502 Real-Time Pascal 105

4, THE RC3502 MACHINE

4.1 Run Time Environment

After autoload and system initialization, the process structure is:

(~) ALLOCATOR OPERATOR

Fig. 4.1. Process structure after initialization

MONITOR performs medium term scheduling (start, stop).

TIMER performs delay timing, time out of processes, and
controls a system clock for time stamping.

ALLOCATOR administers allocation and deallocation of RAM memory
and interruption levels.

ADAM is the root of the dynamic tree of processes. ADAM
automatically creates and starts a number of incarna-
tions:
- FS
- IMCSTART
- OPSYS
- §

The RC3502 Machine 4.1 Run Time Environment

106 RC3502 Real-Time Pascal

LINKER administers a catalogue of programs and routines, the
LINKER catalogue.

OPERATOR is the interface between a human operator and the run-
ning processes. OPERATOR performs input/output to the
debug console.

OPERATOR handles messages signalled to the operator mailbox.

OPSYS is a command interpreter, functioning as an interface
between a human operator and the Run Time processes.

EXCEPTION prints a list of the dynamic chain of routine calls,
when the procedure trace is called or the systems ex-
ception procedure is called as a result of run time er-
ror in a process.

SS) If a program S exists in the LINKER catalogue, an
incarnation of S will be created and started. This will
be the case when a program S is blasted in PROM or
autoloaded.
S may replace OPSYS by its own NEW_OPSYS.

4.2 Monitor Process

The main purpose of the monitor is to control the set of active pro-
cesses,

The active processes are divided into three priority classes:

Class I: High priority
Class II: Medium priority
Class III: Low priority

Scheduling of class I processes is managed by the hardware interrupt
priority mechanism. Processes in class I are running on an interruption
level greater than zero.

Class II and III processes are running on interruption level 0.

Scheduling of class II and III processes is also performed by the
hardware.

The class II processes (coroutines) are scheduled according to internal
priority in the class and round robin for a given priority.

The class III processes are scheduled after a time sliced round robin
algorithm with built-in priority.

The monitor is activated, when processes call the routines break, re-
move, start, resume or stop.

4.2 Monitor Process The RC3502 Machine

RC3502 Real-Time Pascal 107

4.3 Driver Processes

By definition, a driver process is a program which contains the

CHANNEL <reference variable> DO <statements);

construction or the standard input/output routines from section 3.

Access to most input/output routines and the CHANNEL statement is
a reference variable which refers to a message of kind 'channel mes-
sage' (cf. FUNCTION messagekind).

A channel message is obtained by calling the routine reservech speci-
fying the device or interruption level, the process wants to control.

The system guarantees that at most one channel message is allocated
per device or interruption level.

When a process executes a CHANNEL statement or calls an input/out-
put routine, which demands a channel message, it is checked that the
reference variable is not nil and that the reference variable refers to
a message of kind ‘channel message’.

In the input/output routines, which do not wait for an interrupt from
the device, this is also checked.

Before execution of the first statement in the CHANNEL statement,
the incarnation has entered the class I priority class. A possible
‘timed out' status is cleared.

The statements in the CHANNEL statement are executed on the hard-
ware interruption level specified by the channel message.

After execution of the last statement in the CHANNEL statement, the
Process reenters the priority class (II or III) which the process left,
when entering the CHANNEL statement. An eventually ‘timed out'
status is cleared.

The user should be very much aware of the fact that the execution
of processes in the priority classes II and III, besides all processes
running at a hardware interruption level less than the interruption le-
vel of the user's processes, is disabled while executing statements in
a CHANNEL statement.

This is true for all statements except those input/output routines,
which wait for an interrupt, and thereby allow processes on lower in-
terruption levels to execute instructions.

Therefore, the following recommendations should be followed:

- minimize the number of statements which are executed ina
CHANNEL statement.

- the statements in a CHANNEL statement should mainly be in-
put/output routine calls.

The RC3502 Machine 4.3 Driver Processes

108 RC3502 Real-Time Pascal

The system allows a process to possess several channel messages, but
it is emphasized that it is the channel message used in the CHANNEL
statement that defines the interruption level, where the incarnation is
sensitive for interrupts.

Therefore it is normally the same channel message which is used both
in the CHANNEL statement and in the input/output routines.

The channel messages in a CHANNEL statement and an input/output
routine may differ. This may be used to sense a device with another
device address than the interruption level defined by the CHANNEL
statement, or even outside a CHANNEL statement.

4.3.1 Time Out

Time out is the activation of a process with status 'timed out’.

Time out of processes is performed by the TIMER process which de-
crements once per second the timer field of the process descriptor in
all incarnations, which have called the routine definetimer.

Time out takes place, when the variable is decremented from 1 to 0.

The 'timed out' status is cleared, by calling the routine timedout or
by exit of a CHANNEL statement.

4.4 Timer Process

The Timer Process:
- returns messages after a specified interval (Delay Timing),
- maintains a system clock,
- controls time out of processes.

Delay timing is requested by calling the procedure sendtimer (see sec-
tion 3.2.27).

Time out is requested by assigning the time out period in seconds to
the timer field of the process descriptor (assignment to own.timer), or
by using one of the combined wait functions specifying a delay. Count
down of the timer field will only happen after a call of the routine
definetimer.

4.4 Timer Process The RC3502 Machine

RC3502 Real-Time Pascal 109

4.5 Allocator Process

After startup of the system, ALLOCATOR controls the available me-
mory.

Memory is allocated to contain the process stack, when a process is
created.

Variables of type pool may be allocated memory, when a newborn
process is started, or when the routine allocpool is called.

The memory possessed by a process is deallocated when the control-
ling father process or an ancestor calls the remove procedure.

Memory is allocated in the following order: c0, c2, -5 fe, a0, a2, ...,
be. This is done for hardware test purposes.

ALLOCATOR also controls access to all interruption levels. This is
done by messages of kind channelmessage.

An interruption level is reserved by calling the routine reservech
specifying:

level - interruption level,
mask - facility mask.

A channel message is released by the statement:
release(channel_message);

4.6 Linker Process

LINKER administrates the LINKER catalogue describing all programs in
the system. The programs are linked to physical memory (statically
relocated) and all calls of external routines are resolved.

The LINKER processes link/unlink requests from running processes (see
the routines link and unlink).

A lookup function and a crcl6 check function may also be requested
(see the sendlinker routine).

The RC3502 Machine 4.6 Linker Process

110 RC3502 Real-Time Pascal

4.7 Adam Process

Immediately after restart of the system the process tree may look
like the figure below. (The figure is not complete).

S (om) 7 (me) S

Fig. 4.2. Snapshot of part of the process structure

ADAM is the root of the dynamic tree of processes.
ADAM creates and starts a number of processes during initialization:

1. OPSYS, which interprets commands from the console and con-
verts the commands to ADAM, LINKER, or TIMER messages.

2. S, which is the root of an application.

MONITOR (=) ALLOCATOR (=)

2
a”

=
~

a

Fig. 4.3. Snapshot of process structure if S is included.

ADAM contains declarations of two classes of programs. The first
class has no parameters. The second has one parameter, the 'system-
vector':

s_type0= EXTERNAL PROGRAM;

s_typel= EXTERNAL PROGRAM(VAR sv: system vector);

S is application dependent, and the formal parameters of the actual S
must conform to one of these declarations.

4.7 Adam Process The RC3502 Machine

RC3502 Real-Time Pascal 111

ADAM controls a pool of program declarations, which conform to
these declarations. These declarations may be used to request creation
of new application sub-trees with ADAM as the controlling father (see
later).

The parameter 'sv' may be used to pass references to system mail-
boxes like:

adam mailbox sv(adammbx)
operator mailbox sv(operatormbx)

These mailboxes might as well be obtained by the routine search -
mailbox, because ADAM names the same mailboxes during initializa-
tion:

systemvector searchmailbox

adammbx ‘adammbx'
operatormbx ‘operatormbx'
loadermbx "loadermbx'
globalmbx "globalmbx'
loaddrivermbx ‘'loaddrivermbx'
paxmbx "paxmbx'
restartmbx ‘restartmbx'

Furthermore these mailboxes and new mailboxes may be manipulated
by a number of requests to ADAM.

ADAM may be requested to stop and remove any of the children and
unlink the program by sending a message to the ADAM mailbox speci-
fying the function to perform.

Example:
1. A human operator may stop, remove, and unlink the whole

application tree (S) and start up a completely different applica-
tion tree.

2. The application tree may stop, remove, and unlink OPSYS. A
NEW_OPSYS may be created and started as a child of S.

Messages signalled to the ADAM mailbox are interpreted as having a
message buffer of type:

adamtype= RECORD

namel: alfa;
name2: alfa;
aux: integer;

END;

Be aware of the difference between sending a link, create, start,
stop, break, remove, or unlink message to ADAM and the call of the
predefined routines link, create, start, stop, break, remove, unlink.
The former operates on declarations in ADAM, the latter on declara-
tions in the calling process. Messages to/from ADAM have the follo-
wing user attribute interpretation:

The RC3502 Machine ~ 4.7 Adam Process

112 RC3502 Real-Time Pascal

ADAM message Answer
ul function unchanged
u2 not used result
u3 not used unchanged
u4 not used unchanged

All messages which cannot hold a variable of type adamtype are
returned with result=-1. An unknown function is returned with
result=15.

Function=1 (link)

If ADAM has a free program declaration of either s_typeO or s typel
the program 'namel' is linked to a free program declaration.

Results Meaning
0 ok
2 A program is already linked to a program declaration in

ADAM with the external name 'namel'.
3 No free program declarations.
4 Program with name 'namel' does not exist in the LINKER

catalogue.
5 Program with name 'namel' exists in the LINKER catalogue,

but the number of parameters or the type of parameters do
not match.

Function=2 (create)

An incarnation with name 'name2' of the program 'namel' is created
with size 'aux'. More than one incarnation per program can be cre-
ated.

Results Meaning
0 ok
6 An incarnation of program 'namel' with name 'name2' is al-

ready created.
7 No program with external name 'namel' is linked to a pro-

gram declaration in ADAM.
8 No storage or demanded size (aux) is too small.

Function=3 (start)

The process with name 'name2' is started with priority 'aux'.

Results Meaning
0 ok
9 Unknown process.

Function=4 (stop)

The process with name 'name2' is stopped.

Results Meaning
0 ok

4.7 Adam Process The RC3502 Machine

RC3502 Real-Time Pascal 113

10 Unknown process.

Function=5 (remove)

The process with name 'name2' is removed.

Results Meaning
0 ok

11 Unknown process name.

Function=6 (unlink)

The link to the program with external name 'namel' is deleted.

Results Meaning
0 ok

12 No program with external name 'namel' is linked to a pro-
gram declaration in ADAM.

13 ADAM still controls an incarnation of the program 'namel'.

Function=7 (break)

A break operation is performed upon the process with name 'name2'
with exception code '‘aux'.

Results Meaning
0 ok

14 Unknown process.

Function=8 (name mailbox)

A mailbox is created and catalogued under the name "namel',

Results Meaning
0 ok

16 Overlap.
17 No resources.'

Function=9 (delete mailbox)

The mailbox catalogued under the name 'namel' is made invisible, i.e.
further calls of search mailbox will fail.

Results Meaning
0 OK

18 Unknown mailbox

Function=10 (rename mailbox)

The mailbox catalogued under the name 'namel' is catalogued under
the name 'name2'. The name 'namel' is deleted from the mailbox
catalogue of ADAM.

The RC3502 Machine 4,7 Adam Process

114 RC3502 Real-Time Pascal

Results Meaning
0 OK

19 Overlap, a mailbox is already catalogued under the name
"name2',

20 No catalogued mailbox with the name 'namel' is found.

4.8 Operator Process

Read and write messages signalled to the OPERATOR mailbox sv(ope-
ratormbx) should at least contain a message buffer of type:

buffertype= RECORD
first: integer;
last: integer;
next: integer;
name: alfa; (* 12 chars *)
databuf: ARRAY (18..max) of char

END;
@

The message buffer follows the driver conventions /Driver Conv./. It
is checked that the following assertions hold:

1. 18<=first
2. first-1<=last

3. databuf(last) is accessible in the buffer

OPERATOR identifies the input and output messages by the parameter
‘name’,

Section 3.7 describes a set of routines for OPERATOR communication.

Messages to OPERATOR

- control: ul=0
- read: ul=1

The message is queued until it is "activated" by the human operator. r

- write: ul=2

The message is printed as soon as possible.

Answers from OPERATOR

All messages are returned, when the appropriate action has been per-
formed.

ul, u3, u4 are unchanged
u2 = result: 0=ok

l=not processed
4=-unintelligible

"next" is undefined, unless result=ok.

4.8 Operator Process The RC3502 Machine

RC3502 Real-Time Pascal 115

A, REFERENCES
/ALGOL/

/Driver Conv./

/DSA-IMC/

/MEM205/

/MUSIL/

/Operating Guide/

/RC3502 Loader/

/RC3502 Ref. Man/

/RTP/

P. Naur (Ed.)
Revised Report on the Algorithmic Language
ALGOL 60
Regnecentralen
Copenhagen, 1962

RCSL No. 31-D652:
PASCAL80, Driver Conventions

RCSL No. 42-11983
DSA Inter Module Communication
Functional Description

RCSL No. 52-AA1182:
MEM205, General Information

RCSL No. 44-RT740
MUSIL

PN: 99000771
RC3502/2, Operating Guide

RCSL No. 52-AA1137:
RC3502 LOADER, Reference Manual

RCSL No. 52-AA1192:
RC3502/2, Reference Manual

PN: 99110141:
Reference Manual for the Programming Language
Real-Time Pascal

A. References

116 RC3502 Real-Time Pascal

A. References

RC3502 Real-Time Pascal 117

B, USE OF THE REAL-TIME PASCAL COMPILER

B.1 Call of the Compiler

The RC8000 calling syntax is:

{<bin file>=} RTP3502 {{<s><option>} {<s><context>}}*
{<s><option>}* {<s><source>}

- <source> is a text file defining a program, a routine or a library
of routines/programs (cf. Appendix B.2). If no source is speci-
fied, the compiler reads the source from current input.

- <context> is a text file containing declarations of types,
constants, and external routines. Contexts can be used for de-
finition of libraries. The syntax is described in appendix B.2.

- <bin file> is a file descriptor describing the backing storage
area where the object code is stored.

If "<bin file>="_is omitted, "pass6code=" is assumed.

- <option>::= codelist.<yes or no>
codesize.<size>
exception. <appetite>
list.<yes or no or name>
measure.<yes or no>
pagelength.<length>
pagewidth.<width>
preserve.<yes or no>
set.switchname.switchvalue
short.<yes or no>
spacing.<intervalb
stack.<appetite>
stop.<pass nr>
survey.<yes or no or pass>
title.<title_name>
version. <version>

- <size> is an unsigned integer in the range 0-65535. The size
denotes the maximum number of bytes to be generated on one
"program code page".

- <yes or no>::= yes | no

- <yes or no or name>::= yes | no | <name>

Use of the Real-Time Pascal Compiler B.1 Call of the Compiler

118 RC3502 Real-Time Pascal

list.yes means turn on listing of input on current output.
list.no means turn off listing of input (default)
list.<name> means turn on listing of input on file with name
<name>

Listing of the standard environments is always suppressed, even
if list.yes is specified.

<title_name> will appear in the page headings, if listing is
turned on. Cf. the $TITLE directive.

<length> and <width> indicate the length, in lines, and the
width, in characters, of the pages of the list file, if listing is
turned on. Cf. the $PAGELENGTH and the $PAGEWIDTH directi-
ves.

measure.<yes or no>: consult appendix C: Performance Measure-
ment.

short.yes controls the compiler to use short encoded instructions
in the generation of code whenever possible.

stack.<appetite> (in words)
This option overrides the default stack size, which the compiler
estimates and outputs in the generated code (also known as de-
fault create size). The default stack size is used when the crea-
te routine is called with size=0.

The "size" of a program incarnation may be calculated in the
following way:

size:= dynamic appetite

+ exception code appetite
+ 10 (for dump of the register stack)

The dynamic appetite is the static appetite as mentioned for the
program in the compilation survey plus the dynamic appetite for
the most hungry of the called routines. The dynamic appetite of
a routine is the static appetite plus the dynamic appetite for
the most hungry of the called routines etc. In this connection
please note the standard routines, the appetite of which is spe-
cified in the package description.

For recursive procedures the appetite has to be multiplied by
the maximum depth of the recursion.

B.1 Call of the Compiler Use of the Real-Time Pascal Compiler

RC3502 Real-Time Pascal 119

The exception appetite amounts to a default value, which is
specified in the package description. The appetite may be over-
ruled by the 'exception' option in the call of the compiler.

NOTES:

If declaration of shielded objects occur, some standard initializa-
tion procedures are called.

Memory for the heap is not part of the stack space.

The stack space of the children is not taken from the stack of
the parent process, but from the machine's pool of free memory.
Create checks that there is memory for the process descriptor,
the actual program parameters, and for dump of the register
stack, before the child is created.

exception.<appetite> (in words)
This option is used for specifying the amount of stack space a
Process will reserve for exception handling. The default value is
the room necessary for a call of the standard exception proce-
dure. For a user defined exception procedure the option value
may be the appetite seen in the information list from the compi-
lation of the routine,(see further under the 'stack' option).

codelist.yes means, list the generated code (on current output)
in symbolic form with information about instruction execution
times, logical addresses, and some comments.

preserve.yes means, do not remove intermediate work files after
use

<yes or no or pass>::= yes | no | pass number

survey.yes implies listing of some statistical information. cf. the
following figure.

survey.pass number implies listing of some statistical information
from the indicated pass of the compiler.

Use of the Real-Time Pascal Compiler B.1 Call of the Compiler

120 RC3502 Real-Time Pascal

89.07.19. 14.05. REAL-TIME PASCAL for RC3502/2 version 89.07.01

1 program survey test;
2 begin ~
3 end.

Information survey from REAL-TIME PASCAL, pass3, version 89.07.01
Max number of active names: 849
Deepest nesting: 6
Deepest stack of names: 5
Max number of active types: 108
Max number of active strings: 52
Max number of active operands: 50
Page faults: 87

Information survey from REAL-TIME PASCAL, pass4, version 89.07.01
Deepest name stack: 257
Deepest operand stack: 2
Constant area size: 1
Deepest structure nesting: 0
Page faults: 77

Information survey from REAL-TIME PASCAL, pass5, version 89.07.01

name headline beginline endline appetite(words) default create-size

survey _test 2 3 3): 45 45
exception external, called 1 time(s)

Information survey from REAL-TIME PASCAL, pass6, version 89.07.01
Max number of active labels: 72
Max number of labels at one instruction: 3
Max number of unsolved interdependencies: 1
Deepest block nesting: 4
Max number of unsolved jumps: 0
Max number of unsolved references: 10
Greatest case table or structured constant: 8
Elapsed time: 0.00.48
CPU time in seconds: 22

code: 0 . 130 = 130 bytes

end of REAL-TIME PASCAL compilation for RC3502/2

end

blocksread = 62

Fig. B.1. Survey Information from the Compiler

~ set.switchname.switchvalue implies setting/defining a switch. The
so defined switches may be used in the expressions of IF and
ELSEIF directives (cf. 2.18 Compiler Directives).

- version.<version> implies setting of the version directive (cf.
2.18 Compiler Directives).

<version>::= <integer>

<byte>.<byte>
<release>.<edition>.<variant>

B.1 Call of the Compiler Use of the Real-Time Pascal Compiler

RC3502 Real-Time Pascal 121

- <interval> is the distance between two source line number re-
cords. The line number records are used by the standard excep-
tion procedure to relate the address of a run time error to a li-
ne interval of the source program.

<pass nr>s= 1 [3 |4 [15 | 6

- stop.<pass nr> terminates the translation after the pass speci-
fied.

A short description of the passes:

pass 1 performs syntax analysis
pass 3 performs machine independent semantic analysis
pass 4 performs storage allocation and machine dependent se-

mantic analysis
pass 5 performs symbolic code generation
pass 6 performs transformation of symbolic code to binary for-

mat

- default values:

the call:

RTP3502 inputfile

is equivalent to:

pass6code=RTP3502 list.no codesize.512 spacing.52 stop.6 ,
measure.no exception.11 short.yes survey.no codelist.no,
stack.*** preserve.no inputfile

***: the default stack appetite is set according to a compiler
generated value, computed as the sum of static appetites
of the routines of and main body of the program.

Resource requirements

At least 45,000 hW memory (size 45000) area 8 temp disc at least 6
slices and 6 entries.

Use of the Real-Time Pascal Compiler B.1 Call of the Compiler

122 RC3502 Real-Time Pascal

B.1 Call of the Compiler Use of the Real-Time Pascal Compiler

RC3502 Real-Time Pascal 123

C, PERFORMANCE MEASUREMENT
It is possible to make some performance measurements on running Re-
al-Time Pascal programs. The result of measuring includes the number
of routine activations and the amount of time spent in the routines.
The time indications are real-time, i.e. system overhead, time slicing
and time for wait are included.

Measurement is initiated by a call of the procedure "start_measure'
with a mailbox as parameter. All succeeding routine calls and returns
trigger update of a table. The table is allocated and initialized by
"start_measure'.

The measurement is terminated by a call of "stop_measure' with the
same mailbox parameter as "start_measure'. 'Stop measure' signals the
table to a system mailbox and a new call of "start_measure' is pos-
sible. Measurements may be started and stopped as long as it is pos-
sible to allocate an area of 2574 bytes to be used as measurement
area.

The measurement results may be printed on the console by means of
the program 'print_statis(tical_information)'. The order of results is
FIFO. The output program deallocates the measurement areas after
printing of the results.

There is an upper limit of 255 different routines per program, i.e. per
Program including internal sub-programs. If more than 255 different
internal and external routines are called the (statically) last routines
will use one common table entry, and the output program will put
'FREEAKERERE' inctead of name.

The output format may be seen in the following example. The number
of calls is modulo 64K and the time amounts are given as:

hours.minutes.seconds.hundredths of a second

Since the names are found in the code of the routines, the output
program must be run before the routines and programs are unloaded.

Use of the measurement tools:

The programs to be measured must be compiled together with 'measu-
reenv' and with 'measure.yes' in the call of the compiler. 'Measure-
env’ includes external declarations of 'start_measure' and "stop_mea-
sure', cf. K.4.

The necessary routines for measuring are supplied in 'measureplib',
which is required in order to load/link processes compiled with me-
asure.yes.

The output program is supplied as 'bprintstat'.

C. Performance Measurement

124 RC3502 Real-Time Pascal

Example 9. Traptest

PROGRAM traptest;

VAR

measure _mbx: mailbox;

PROCEDURE empty 1;
BEGIN END;

PROCEDURE empty 2;

BEGIN END;

BEGIN
start_measure(measure_mbx) :
FOR stepl:= 1 TO 32 DO

FOR step2:= 1 TO 1000 DO

BEGIN
empty 1;

empty 2;

END;
stop_measure(measure_mbx) ;
start_measure(measure_mbx) ;

FOR stepl:= 1 TO 33 DO

FOR step2:= 1 TO 1000 DO
BEGIN
empty _ 2;

empty 1;
END;

stop_measure(measure_mbx) ;
END.

run traptest

run print_statis

>print_statis
Performance measurement for traptest

name called time

traptest o1 0.00.34.60

start_measur 01 0.00.00.00

empty 1 32000 0.00.15.55

empty 2 32000 0.00.15.30
end

Performance measurement for traptest

name called time

traptest o1 0.00.34.75

start_measur 01 0.00.00.05

empty _1 33000 0.00.16.75
empty 2 33000 0.00.16.20
end

Fig. C.1. Performance Measuring.

C. Performance Measurement

RC3502 Real-Time Pascal 125

D, REAL-TIME PASCAL MESSAGES
If errors are detected during compilation, the compiler initializes the
ok-bit to ok.no.

When the contexts and the source is spread over more files, the line
number is set to 0, when a new file from the call line is to be com-
piled, files included as the result of an INCLUDE directive lead not
to resetting the line number.

D.1 Messages from Pass 1

Messages from pass 1 are warnings, errors and fatal errors. All three
kinds are marked with an arrow below the text line where the error
was discovered. Warnings are given when the compiler is able to re-.
pair the problem, and compilation goes on. Errors are worse and the
compilation stops after pass 1. The fatal errors are worst and com-
pilation stops immediately.

The messages are:
Illegal character or fatal error
Identifier expected
'.' expected (end of process, prefix or context)
's' expected
Identifier expected
"s' expected
',' or ':' expected
Error in declaration
Set element or '.)' expected
(structured) constant or ':)' expected
"(' expected
')' expected
Error after '&', string or character constant name expected
Constant, variable or '(<expression>)' expected
Expression expected
Expression expected
")' or ',' expected
Actual parameter expected
's)' or ',' expected
'.)' or ',' expected
Identifier or '?' expected
'OF' expected
"PROGRAM! expected
Expression expected
'," expected
"ARRAY' or 'RECORD' expected after 'PACKED'
',." expected
"END! or ';' expected
';' or ')' expected
's' expected
'.<field name>' or ';' expected
Unsigned integer expected
"BEGIN' expected

O
O
N
O
U
R
W
N
H
H
 O
C

W
W
W
N
N
N
N
N
N
N
N
N
N
P
R
E

R
P
E

RB

Re

e
e
e

EY

N
r

C
O
O
N

H
U
T
R
W
N
H
N
F
O
W
O
W
M
N
A
H
U
A
W
N
H
H
O

Real-Time Pascal Messages D.1 Messages from Pass 1

126 RC3502 Real-Time Pascal

33
34
35
36
37
38
39
40
Al
42
43
44
45
46
47
48
49
50

100
101
102
103
104
105
106
107
108 Name after concatenation symbol ('&') is not name of char

109 Exitloop or continueloop statement not inside repetitive statement
110
111

Error in FOR-variable specification
'TO' or 'DOWNTO' expected
Error in CHANNEL- or REGION-variable specification
variable denotation or 'TO' expected
"DO' expected
"DO' or ',' expected
"then' expected
Label expected (name or integer)
"else' expected
'5', 'end', or 'otherwise' expected
‘end’ or ';' expected
‘until’ expected
‘endloop' or ';' expected
Error in label declaration list (',' or ';' expected)
's' expected
'=' expected
Only procedure or function declaration allowed in a prefix
End of program expected
Error in real constant: digit expected
String did not terminate within line
Line too long, more than 150 characters.
Comment not terminated
export kind expected (value, size, address, disp, or offset)
lock type expected
';' met, changed to '='
String too long, remaining part of string skipped

constant

Routines in environment must be EXTERNAL declarations
VAR-section not allowed in contexts

Warnings in conjunction with compiler directives:
KX

EX

KX

EX

REX

HE

EX

eX

KEK

KEK

KX

Except for the 'not defined' message all the messages are followed

expression expected
(X)OR expected
AND expected
")" expected
"=" expected

switch not defined, value 0 assumed
unknown directive
value outside range
ENDIF without matching IF
ELSEIF without matching IF
ELSE without matching IF or ELSEIF

by the line:
KEK

The following messages indicating fatal errors may appear from passl
of the Real-Time Pascal compiler. The message will be preceded by
the line just being parsed with an indication of error number 0 dis-

directive line skipped

covered.

D.1 Messages from Pass 1 Real-Time Pascal Messages

RC3502 Real-Time Pascal 127

E.g.:

917 if prod = 1305 then

t 0
*** const 'chbufmax' too small.

In case no other errors are discovered a fatal error may indicate that
one or more of the compiler tables are insufficient in size. But most
often this kind of fatal errors appear in consequence of syntactical
errors, and after correction of the marked errors the fatal error may
disappear.

The messages are:

*** parse stack overflow. const 'stackmax' too small
Parsing of a too complicated syntactical construction.

*** end of file encountered
Input exhausted before the parsing of the program/prefix has be-
en successful.

*** recovery abandoned
The error recovery was unsuccessful.

*** reduction buffer overflow. const 'redumax' too small
Parsing of a too complicated syntactical construction.

*** const 'stringmax' too small
Literal text string too long.

*** const 'chbufmax' too small
Parsing of a too complicated syntactical construction.

*** const 'typebuffersize' too small
Too complicated type definition.

D.2 Messages from Pass 3

Error messages from pass 3 have the format:

*** pass 3 line <lineno>.<operand no> <kind> <error no> (, in en-
vironment '<env. name>') (: '<name>')

where:

<lineno> is the line number where the error is detected,

<operand no> gives a hint of where in the line the error was.

Operands are: identifiers and numbers. (Note: The empty set does not
count).

Real-Time Pascal Messages D.2 Messages from Pass 3

128 RC3502 Real-Time Pascal

First operand in a line has number 1. (Note: If <operand no> is 0,
the error occurred before the first operand in the line, maybe even in
the last part of the previous line).

<kind> indicates whether it is a warning or an error.

<error no> indicates which error was discovered. A list of error
descriptions follows the error indications.

<env. name> is, if present, the name of the environment where the
error is found.

<name> is, if present, the name (or the type name) of the identifier
which caused the error. For example the name of an undeclared iden-
tifier.

The error descriptions are:

1 = identifier not declared
2 = identifier used before declaration
3 = identifier already declared at this level
4 = label-identifier not declared at all
5 = other identifier used as label-name
6 = label defined several times at this level
7 = label-identifier declared at surrounding level
8 = use of a multiple defined label
9 = a label-ident has been used in inner routine

10 = goto leading into control-structure
11 = goto out of lock- or channel statements
12 = label is not defined
13 = identifier is not a type-identifier
14 = object is not of parameterized type
15 = not parameter name of objects type
16 = unbound parameterized type not implemented
17 = unbound parameterized type only allowed as formal parame-

ter type
18 = := assumed between type and (:
19 = type of structured constant not specified
20 = (: expected after type name
21 = error in record or array etc.
22 = constant is used in its own definition-expression
23 = pool... of <illegal type>, shielded components not allowed
24 = illegal size'ing of pool type
25 = illegal limit-types in subrange def
26 = redefinition of object
27 = mailbox, chain, external program and pool may only be de-

clared at program level
28 = programs inside functions/procedures forbidden
29 = formal type may not be used in this context
30 = functiontype may not contain shielded components
31 = only variables of surrounding scope allowed
32°= call of function not allowed in environment
33 = '‘'new' paramlist may be empty or exact the same
34 = forward-declared type/routine not followed by the real body

D.2 Messages from Pass 3 Real-Time Pascal Messages

RC3502 Real-Time Pascal 129

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67 =

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85

function-value has not been defined at all
locktype contains pointer-types
lock-/with-type contains shielded component(s)
operands not of same typename
for-variable/startvalue/endvalue not of compatible types
Case-expression/caselabels not of compatible types
if-expression must be boolean type
until-expression must be boolean type
while-expression must be boolean type
short form of multiple locks not allowed
buffer name missing in lock statement
buffer type specification is missing
lock-variable must be reference type
channel-variable must be reference type
type of operand must be enumeration-type
varsizecall: identifier is not name of a variable
operand cannot be used as variable
<variable> in front of <.> is not a record
<name> after <.> is not a fieldname of <variable>
operand is not a SHARED object name
<variable> in front of <uparrow> is not a pointer
elements in set-value may not be of mixed types
illegal mixture of types in relation
illegal mixture of types in term or factor
illegal type for monadic operator
real occurring in expression
real-division of integers not impl
illegal operand kind in expression
too few actual parameters to routinecall (or strucrecord
error in routinecall
error in structured-record constant
typename in front of structured constant must be record or
array
the '***' operator must only occur in structured-array
constant
name in front of arglist is not of array-type
index-expression doesn't match array-declaration
incompatible types in assignment
incompatible types in exchange
the statement is not a procedure-call
for-variable, with-variable or actual var-param is packed
operand may not be assigned to, type is shielded or frozen
operand may not be exchanged, type is mailbox, external
program, pool or frozen
type must be: reference or process
formal and actual type must match exactly .
actual and formal types are not compatible
formal is not frozen, therefore actual may not be frozen
the '?' may only occur in structured constants
incomp. types in structured array-constant
incomp. types in structured record-constant
incomp. types in var-initialization
repetition must be integer
value-export demands constant

Real-Time Pascal Messages D.2 Messages from Pass 3

130 RC3502 Real-Time Pascal

86 = offset-export demands variable
87 = _ size-,disp-,addr-export demands constant or variable
88 = disp-export demands 'fielding'
89 = xor, integer-and, and integer-or not implemented on z80
90 = a program may not be FORWARD declared
91 = FORWARD specified type must be pointer
92 = process, chain, external program, and reference not allowed

in SHARED
93 = actual parameter type must be reference or chain

Fatal Errors from Pass 3

The following message indicates a more complicated source program
structure than the dimensioning of pass 3 is prepared for.
The message will be preceded by:

*** error found in pass3, at sourceline: <line no>

The message is:
max_nested_calls exceeded <limit>

More than <limit> nested routine calls and/or index specifications.

Compiler Errors from Pass 3.

The following messages indicate errors in the compiler, and should be
reported to the maintenance staff. The messages are preceded by:

*** program inconsistency in pass3, at sourceline <line no>
cause is;

The messages are:

unknown-namekind
unknown-argkind
unknown-opcode
unknown-routinekind

r
unknown-paramkind
unknown-spix
unknown-stdtype-name
unknown-typekind
unknown-rectype
wrong passl/pass3 combination
unstack-nontype
inconsistent allocation of type node

the message is followed by a trace of active routines of pass3 and an
RC8000 fp break 0.

D.2 Messages from Pass 3 Real-Time Pascal Messages

RC3502 Real-Time Pascal 131

D.3 Messages from Pass 4

All error messages from pass 4 have the format:

*** pass 4 line <no>, <text>

where <no> is the line number where the error is detected.

<text> is one among the following:

subrange def.

set def.

pool def.

record size

array size

no init. or program
in environment

constant value

case label range

constant

set constant

times

not constant

stack

overflow

dynamic variable
not allowed

Error in the definition of subrange type - lower
bound greater than upper bound.

Error in the definition of set type - lower bound
of the basis subrange type is negative.

Error in the definition of pool type - number of
elements is negative.

Size of record type greater than 65536 bytes.

Size of array type greater than 65536 bytes.

Initialization of variables and program
declarations in environment not allowed.

Value of constant outside interval bounds.

Value of first label greater than value of last la-
bel in a case label interval.

Syntax error in number.

Error in set constant, - negative constant, or
value of constant element, or interval with ele-
ment(s) with value greater than 1023.

Wrong number of values in constant of array
type.

Variable, or SET constant used in expression,
outside the statement part of a procedure or
program.

Variable(s) in a block occupies more than 65536
bytes. :

Value of constant or constant expression outside
the interval -32768..32767.

Illegal use of dynamic string variable.

Real-Time Pascal Messages D.3 Messages from Pass 4

132 RC3502 Real-Time Pascal

initialize dynamic
type not allowed

dynamic type
not allowed

Variables of dynamic types cannot be initialized
in the declaration part.

Dynamic types are not allowed for: set, pool,
Program parameter, VALUE routine parameter,
function result, and structured constant.

access to zero sized object

WITH-AS: size of new type exceeds that of old

compiler error

<text> Error in pass 4. Should be reported to the
maintenance staff. <text> may be one of the
following:
addressing
bit count
for error
scalar error
wrong input: <no>
illegal type
error code = <no>

Compilation terminated by <error> where <error> is:

stack error

name table overflow

wrong pass 4

internal compiler inconsistency; should be
reported.

inconsistency between pass3 and pass4

wrong version of pass 4.

Pass 4 may give a warning:
WARNING, trouble with code file: <file name>
After this warning the next pass of the compiler may not be able to
read the output from pass4. Possibly because of disc troubles.

D.4 Messages from Pass 5

Errors detected by pass 5 are indicated by the text:

*** pass 5 line <line no>, <text>

where <text> is one of the following:

+decl caselabel

Case labels are not distinct.

D.4 Messages from Pass 5 Real-Time Pascal Messages

RC3502 Real-Time Pascal 133

too many formal parameters
Too many formal parameters of program or routine.

RTP3502lib does not exist
The library of standard routines is not found, this error may
also be indicated by the Pascal system message: "file does not
exist: RTP3502lib", followed by a trace. This error should
be reported to the operator of the RC8000.

user is not allowed to call system-routines
Some system-routines are protected against user call.

Fatal errors are indicated by:

*** pass 5 line <line no>, compilation terminated by <text>

where <text> is one of the following:

external routine table overflow
Use of too many external declared routines.

too many formal parameters
Too many formal parameters of program or routine.

operand stack overflow

pass 4 code error
Internal inconsistency, should be reported.

inconsistency in pass 5
Should be reported.

wrong pass 4/pass 5 combination

hardware stack overflow, should be reported.

The fatal error messages are followed by some internal pass 5 status
information:

token = <current code>
no of items= <no of read items>
stack = stack size
hw stack size=<size of work area>

This status information is followed by the pascal error message:
Break, followed by a trace of the active pass5 routines.

Internal errors in pass5 during code generation (should be reported):

error in hw stack evaluation.

followed by a line with one of the messages.

Real-Time Pascal Messages D.4 Messages from Pass 5

134 RC3502 Real-Time Pascal

occurred in generating code for simple open function.
occurred when generating code for array with system components
occurred when generating code for ref removal
occurred when generating code for process removal

followed by the line:
hw_stack size is: <size>

D.5 Messages from Pass 6

The messages are:
constant <name> too small. Source line number = <line no>.

If <name> is "buffersize" the program contains a structure occu-
pying more than 64k bytes.

If <name> is "descrl_ size" there are too many formal parameters
in the program or routine. The indicated source line is the last @
line of the program.

Compiler error detected. Please inform the compiler group.

Meaning: internal compiler inconsistency.

Error in compilation.
Use option codesize, with at least <number> as page size.

Meaning: the program contains a structure which needs <number>
consecutive bytes on the same code page.

D.5 Messages from Pass 6 Real-Time Pascal Messages

RC3502 Real-Time Pascal 135

E, REAL-TIME PASCAL SOURCE PROGRAM UTILITIES

E.1 Indent, Text Formatting Utility

The program performs indention of source programs depending on the
options specified in the call and on the keywords(reserved words) of
Pascal/Real-Time Pascal.

call :
{output file =} indent input file {option}*

Available options are:
noind no indention, the text is left justified
myind indention is not changed
lines line numbers are generated
Ie lower case identifiers, upper case key words
uc the text is converted to upper case :
mark(.count) mark begin/case/record - end matching. If count

specified then mark with digits, else with !
blockcount show current block number at the left of the text
list equivalent to: lines mark
pascal RC8000 pascal indention mode
rtp RTP3502 indention mode
RTP35022 RTP35022 indention mode
include expand $INCLUDE directives
set.switch.val assign the value of val to switch
help produce this list of help information

Storage requirements:
The core store required for indent is 16000 hW (size 16000).

Error messages:

If errors are detected, the ok-bit is initialized to ok.no.

The messages are:
22? ~~ illegal input/filename

Input file must be specified.

** warning, end(s) missing
An error in the begin-end structure has been detected.

** premature end of file.
Comment or string not terminated.

The default language, i.e. set of key words, are detected from the
catalogue entry tail of indent. The word following the date and time
is coded as follows:

1 for Pascal
2 for RTP

22 for RTP35022

RTP Source Program Utilities E.1 Indent, Text Formatting Utility

136 RC3502 Real-Time Pascal

E.2 Cross Reference Program

Produces a cross reference listing of the identifiers and numbers and
a use count of the PASCAL/Real-Time Pascal keywords used in the
input text.

The cross reference list is made with no regard to the block struc-
ture of the program. The list is sorted according to the ISO-alphabet,
i.e. numbers before letters, but with no discrimination between upper
and lower case letters.

The occurrence list for an identifier consists of a sequence of
Pascal/Real-Time Pascal line numbers. The occurrence kind is speci-
fied by means of the character following the line number:

* meaning the identifier or number is found in a declaration part.

meaning the identifier is assigned to in the line specified.

meaning the identifier or number occurred as a label.

blank all other uses.

KKKKKKKKKKKKKKin the list is a warning denoting that the name
consists of more than 12 characters, which is the number of signifi-
cant characters for Pascal-identifiers. Only produced if the language
is Pascal.

Syntax of call:
output_file = cross input_file {option}*

Available options:
bossline.<yes or no> default is no, i.e. do not add boss line

numbers
survey.<yes or no> default is no, ie. no print of survey

information
pascallines.<yes or no> yes is default for Pascal programs, no is

default for RTP programs.
title.<name> default name is input file name the name

will appear in the page headings
keywords.<yes or no> default is yes, i.e. the keywords are listed

separate with occurrence counts
Ipp.<number> number of program/cross ref Lines Per Page
cpp.<number> number of cross reference Columns Per Page
language. <language> for selection of language specific keywords

<language>= pascal | rtp (for RTP3502) | RTP35022

The default language and page format of CROSS is obtained from the
catalogue entry tail. The word following the date and time holds the
information. By means of the utility crossinst is it possible to
check/change the default settings, see below.

Storage requirements:

E.2 Cross Reference Program RTP Source Program Utilities

RC3502 Real-Time Pascal 137

The core store required for cross is at least 40000 hW (size 40000),
but the requirements depend on the size of the input text.

If errors are detected, the ok-bit is initialized to ok.no.

The messages are:
222° ~~ illegal output-filename

Left hand side of the call must be a name.

222 + output file must be specified

222 + ~illegal input-filename
Input file must be specified.

222° ~=~yes or no expected

22? ~~ error in bracket structure, detected at line: xx
Missing ")"('s)

?2? ~~ error in blockstructure, detected at line: xx
Unmatched end.

***** warning: element queue ran full. Some of the names of a list
are not marked with the correct attribute (7, = *).

E.2.1 Crossinst

The default settings of language and page format of the cross re-
ference program may be checked/changed by means of the program
crossinst. Below is an example of a run of crossinst followed by
the result of a lookup of the catalogue entry tail of cross. The word
after the date and time is coded as follows:
Left half word (in front of the period) contain language information:

1 for Pascal
2 for RTP

22 for RTP35022

Right half word (following the period) contain page format informa-
tion, the value is coded as:

Lines Per Page*16+Columns Per Page.

RTP Source Program Utilities E.2.1 Crossinst

138 RC3502 Real-Time Pascal

Example on use of crossinst:

*crossinst

Current settings are shown in brackets

Language: 1: pascal / 2: RTP3502 / 3: RTP35022 (1)
1

Page format:

Program/cross reference lines per page, 5-255, (46)
46

Number of cross reference columns in the table, 1-15, (15)
15

end

blocksread = 7

*lookup cross
cross =set 41 discl d.890411.1301 1.751 0 2.0 68 ; project

193 76 3 -8388607 8388605

E.3_RTP-Compress

Some compilation time may be saved if common contexts are compres-
sed. Typically, contexts are compiled over and over, but only changed
now and then. Hence, compilation time is spent on comments and su-
perfluos blanks from contexts which are of minimal interest for the
main program. Supplied with the compiler is a utility program called
rtpcompress. This program may compact the text by removing com-
ments and blanks. The syntax of call of the program is:

{outfile=} rtpcompress inputfile

If <outfile> is omitted current output is chosen.

E.3 RTP-Compress RTP Source Program Utilities

RC3502 Real-Time Pascal 139

F, REAL-TIME PASCAL OBJECT PROGRAM UTILITIES

F.1 PLIBINSERT

Program or routine libraries for RC3502 may be constructed by means
of the program plibinsert.

Plibinsert may collect a group of object programs into one object file.
The cross linker may then include all the programs if specified as
<obj file> in the call, or just include the programs referenced from an
included object program if specified as <lib file>.

Plibinsert may also be used for updating an existing library. If the
program to insert already is in the library the old one will be repla-
ced by the new one.

The call is:

{<new lib>=} plibinsert {<new object>}* {lib.<old lib>}

<new lib> is the updated library; default name is "lib".

<old lib> is the old library, possibly empty; default name is
“oldlib".

<new object> is the name of a file containing object programs to be
inserted into <old lib», possibly replacing existing
entries; default name is "pass6code".

F.2_ PLIBLOOKUP

Pliblookup produces a catalogue listing of the programs included in a
library. Programs of imagefiles may also be listed. The call is:

pliblookup {<library>}

<library> is the library to be scanned; default name is "lib".

F.3_ PLIBALL

Pliball produces a catalogue listing of the programs in a library. A
list of all the external routines called by the programs is produced
for each program in the library. The call is identical to the call of
PLIBLOOKUP.

RTP Object Program Utilities F.3 PLIBALL

140 RC3502 Real-Time Pascal

F.4 PLIBDELETE

Plibdelete may be used to remove programs from an existing library.

The call is:

{<new lib>=} plibdelete {<entry>}* {lib.<old lib>}

<new lib> is the updated library; default name is "lib".

<old lib> is the old library; default name is "oldlib".

<entry>::= entry.<number>

<program name>

Program names consisting of more than 11 characters
and names including underscore may only be specified as
"entry.<number>"; the entry number may be found by
means of a call of pliblookup.

F.5_ PLIBEXTRACT

Plibextract may be used to extract programs from an existing library.

The call is:

{<new lib>=} plibextract {<entry>}* {lib.<old lib>}

<new lib> is the result library containing the extracted entries;
default name is "lib".

<old lib> is the old library; default name is "oldlib".

<entry>::= entry.<number>
<program name>

Program names consisting of more than 11 characters
and names including underscore may only be specified as
"entry.<number>"; the entry number may be found by
means of a call of pliblookup.

F.5 PLIBEXTRACT RTP Object Program Utilities

RC3502 Real-Time Pascal 141

F.6_ PLIBCONVERT

Plibconvert produces an RTP3502 library object file from a list of in-
put files of arbitrary contents. The individual programs in the result
file have the new kind DATA and the same name as the corresponding
input file. The result file may be inspected by PLIBLOOKUP.

<outfile> = plibconvert {descriptor.<yes or no>} <infile>

<outfile> is the resulting library object file.

<infile> is the name of a file of arbitrary contents.

descriptor defines whether the descriptor segments are generated
for the input files during converting. 'descriptor.yes' is
mandatory, when the final receiver of the result file is
the RC3502 LOADER. 'descriptor.no' may be specified,
if you want a transparent file transfer to the receiver
(NOT the RC3502 LOADER).

Default: descriptor.yes.

RTP Object Program Utilities F.6 PLIBCONVERT

142 RC3502 Real-Time Pascal

F.6 PLIBCONVERT RTP Object Program Utilities

RC3502 Real-Time Pascal 143

G, LOAD OR AUTOLOAD FILE GENERATION ON RC8000
The Real-Time Pascal compiler generates binary relocatable object
Programs. The object programs may be loaded by the RC3502 LOADER
(cf. /RC3502 Loader/ and /Operating Guide/) via an FPA, or from an
application program, simulating an external device. Subsection G.1
describes this way of program load. The RC3502 LOADER performs the
necessary linkage editing and allocation of memory for the programs.

Another way to load programs in the RC3502 is autoloading by means
of the RC3502 BOOT program. In that case the necessary linkage edi-
ting of the object programs must be performed by the CROSSLINK
Program on RC8000, before an autoload file is produced. This is de-
scribed in subsection G.2.

G.1 How to Generate a Load File

G.1.1 Generating an FTS Load File

If 'xxxplib is a binary object program, produced by the Real-Time
Pascal compiler, a load file for later load via RcLAN from an FTS
server is generated on RC8000 by the call:

<out file>=convertplib xxxplib

G.1.2 Generating an FPA Load File

If 'xxxplib' is a binary object program, produced by the Real-Time
Pascal compiler, a loadfile for later load from FPA is generated on
RC8000 by the call:

<out file>=crcl6 xxxplib

If the name of the outfile is the name of an RC8000 main process,
the CRC16 program outputs directly to the device denoted by the
main process description according to the autoload protocol.

G.2 How to Generate an Autoload File

G.2.1 CROSSLINK

The CROSSLINK program will generate a file containing all the speci-
fied object programs and the necessary library routines. The file will
be a core image, i.e. references between the programs are solved.

Call:

<outfile>=crosslink {<lib file> | <obj file> | <params>}

<outfile> contains the generated coreimage.

Autoload File Generation G.2.1 CROSSLINK

144 RC3502 Real-Time Pascal

<obj file>::= <file name>
<file name>

contains one or more object programs which (all) must be inclu-
ded in the core image.

<lib file>::= lib.<file name>
<file name>

contains one or more object programs (routines) which may be
included by CROSSLINK, if they are referenced from an included
object program.

<obj file> and <lib file> can be output file(s) from the Real-Time Pa-
scal compiler or may be generated by the utility program PLIBINSERT
(see appendix F).

<params>::= start.<base>.<displacement>
descr.<yes or no>
map.<yes or no>
print.<yes or no>.<words per line>
bind.<yes or no>

start

<base> and <displacement> specify where the first word of the
coreimage is supposed to be autoloaded. The start-param may
only occur before the first filename.

<base>::= <integer> | h<hexadecimal digits>
<displ>::= <integer> | h<hexadecimal digits>

Default is: hc0.h0100.

NOTE: If the coreimage is to be autoloaded by the BOOT pro-
gram, start must be: start.hc0.h0100.

descr
defines whether the descriptor segments of the following pro-
grams are included in the coreimage or not.

NOTE: This option should not be used. Descr.no will generate a
fatal error from CROSSLINK.

Default: descr.yes.

map
controls listing of the included programs. Each included program
is listed with:

<programkind> <programname> <date time> <start of descriptor
segment> <start of code segment> <length>

Default: map.yes.

<date time> is date and time of compilation of the program.

G.2.1 CROSSLINK Autoload File Generation

RC3502 Real-Time Pascal 145

print
controls printing of the core image. Each line consists of:

<A>. <C>.<D> <hexadecimal contents of core image words>

<A> and is the absolute address(i.e. base and displacement)
of the first word in the line.

<C> and <D> is the corresponding relative address(within the
program).

bind
bind.yes secures that a new memory module always starts with
a descriptor segment.

Default: bind.yes.

Bind.no will generate an error message from CROSSLINK if the
programs are not for RC3502/2.

Example:

coreimage= crosslink start.hc0.h0100,
blinker, *
bmonitor, *
ballocator, *

bexception, * (or bminiexcept),
btimer, *
boperator, *
bopsys, * may be substituted by your own
; operating system
bloader, *
userprocess 1,

eeey
userprocess n,
lib.stdplib

will generate a core image in a file with the name coreimage contai-
ning (all) the object program(s) in the files explicitly mentioned, ex-
tended by the necessary object programs from the library file stdplib,
which contains all standard runtime routines (link, create,).

The core image will start in memory module c0, displacement 256, as
demanded by the BOOT program.

The modules marked with an * constitutes the library 'system3502',
this name might have been specified instead of all the module names.

A supplementary loader map is printed (see the example below).

Autoload File Generation G.2.1 CROSSLINK

146 RC3502 Real-Time Pascal

*coreimage=crosslink system3502 lib.stdplib

cross linker, version 88.10.29

linking solved in: 4 scans

kind name date time descr code length (hex)

PROGRAM linker 1989.06.19 12.19 c0.0100 c0.012c Ofb4
PROGRAM monitor 1989.06.19 12.19 c0.10b4 c0.10e0 1218
PROGRAM timer 1989.06.19 12.19 c0.22cc c0.22f8 OcbO
PROGRAM allocator 1989.06.19 12.19 c0O.2f7c cO.2fa8 113e
PROGRAM printexcept 1989.06.19 12.19 c0.40ba c0.40e€6 14c4
PROGRAM adam 1989.06.19 12.19 c0.557e c0.55aa 2010
PROGRAM opsys 1989.06.19 12.19 c0.758e c0.75be 22ca
PROGRAM loader 1989.06.19 12.19 c0.9858 c0.9888 2180
PROGRAM loaddriver 1989.06.19 12.19 c0.b9d8 cO.bal0 O21c
PROCEDURE break 1989.05.30 14.06 cO.bbf4 cO0.bc28 O00f6
FUNCTION create 1989.05.30 14.06 cO.bcea cO.bd2a 033e
PROCEDURE definetimer 1989.05.30 14.06 c0.c028 c0.c058 O0ac
FUNCTION deletemailbo 1989.05.30 14.06 c0.c0d4 c0.c108 O0dc
FUNCTION delete _semap 1989.05.30 14.06 cO.clbO cO.cle4 0076
FUNCTION empty 1989.05.30 14.06 c0.c226 cO0.c25a 007c
PROCEDURE exception 1989.05.30 14.06 c0.c2a2 cO.c2d2 00e0
PROCEDURE getswitches 1989.05.30 14.06 c0.c382 c0.c3b6 0086
FUNCTION hometest 1989.05.30 14.06 c0.c408 c0.c440 0076 r
FUNCTION initpool 1989.05.30 14.06 c0.c47e cO.c4ba 0152
FUNCTION initsem 1989.05.30 14.06 c0.c5d0O c0.c60c 013e
FUNCTION link 1989.05.30 14.06 c0.c70e c0.c746 00e2
FUNCTION link 1989.05.30 14.06 cO0.c7f0 c0.c828 0078
FUNCTION memerrorlog 1989.05.30 14.06 c0.c868 c0.c89c 0092
FUNCTION namemailbox 1989.05.30 14.06 cO0.c8fa c0.c932 0116
FUNCTION name_semapho 1989.05.30 14.06 cO.cal0 c0.ca48 007c
PROCEDURE remove 1989.05.30 14.06 c0.ca8c cO.cabe 0470
FUNCTION reservech 1989.05.30 14.06 cO.cefc c0.cf38 00e4
PROCEDURE restart 1989.05.30 14.06 cO.cfeO c0.d00c 0078
FUNCTION searchmailbo 1989.05.30 14.06 c0.d058 cO0.d08¢ 00a8
FUNCTION search_semap 1989.05.30 14.06 c0.d130 c0.d164 0078
PROCEDURE _sendallocre 1989.05.30 14.06 cO.dla8 c0O.did8 O006e
PROCEDURE sendlinker 1989.05.30 14.06 c0.d216 c0.d246 006e
PROCEDURE sendtimer 1989.05.30 14.06 c0.d284 c0.d2b4 006e
PROCEDURE setfirst 1989.05.30 14.06 c0.d2f2 c0.d326 0070
PROCEDURE setlast 1989.05.30 14.06 c0.d362 c0.d396 0070
PROCEDURE setswitches 1989.05.30 14.06 c0.d3d2 c0.d406 006e
PROCEDURE setul 1989.05.30 14.06 c0.d440 c0.d474 006c
PROCEDURE setu2 1989.05.30 14.06 cO.d4ac c0.d4e0 006c
PROCEDURE setwatchdog 1989.05.30 14.06 c0.d518 c0.d548 00a8
PROCEDURE start 1989.05.30 14.06 c0.d5cO c0.d5f4 O00f0
PROCEDURE stop 1989.05.30 14.06 c0.d6b0 c0.d6e0 O00b8
PROCEDURE tofrom 1989.05.30 14.06 c0.d768 c0.d7a8 00a6
FUNCTION unlink 1989.05.30 14.06 c0.d80e c0.d842 O0fe e
FUNCTION wild compare 1989.05.30 14.06 c0.d90c c0.d944 Ol6e
PROCEDURE checkstack 1989.05.30 14.06 cO.da7a cO.daaa 006e
PROCEDURE openopzone 1989.05.30 14.06 cO.dae8 c0O.db38 0178
PROCEDURE opin 1989.05.30 14.06 cO0.dc60 c0.dc90 00a8
PROCEDURE opwait 1989.05.30 14.06 c0.dd08 c0.dd3c 013c
PROCEDURE alloc 1989.05.30 14.06 c0.de44 cO0.de7c O0aa
PROCEDURE print_descri 1989.05.30 14.06 cO.deee cO.df22 01d2

FUNCTION double mul 1989.05.30 14.16 c2.0330 ¢c2.0368 0222
FUNCTION double divmo 1989.05.30 14.16 c2.0552 c2.058e 032e
FUNCTION double div 1989.05.30 14.16 c2.0880 c2.08b8 0082
FUNCTION double mod 1989.05.30 14.16 c2.0902 c2.093a 0082

tree height : 8

externals : 91

end, cross linker.

end

blocksread = 92

*oc

Fig. G.l. Example on Loader Map from CROSSLINK)

G.2.1 CROSSLINK Autoload File Generation

RC3502 Real-Time Pascal 147

G.2.1.1 Error messages from CROSSLINK

The possible error/warning messages are:

No outfile specified
Error in crosslink
Error in call of crosslink; parameter number NN
Illegal hexadecimal number in call; parameter number NN
Bad version, recompile NNNNN
yes or no expected after "descr."
Illegal contents of object or library file
Too many modules, (more than 200)
Illegal value of "start"-parameter; parameter number NN
Too many formal parameters, module: NNNNN
yes, no or yes.<number> expected after "print."
Unknown option; parameter number NN
Name expected after "lib."; parameter number NN
Inconsistency in loader map
yes or no expected after "map."
yes or no expected after "bind."
"bind.yes" required by RC3502/2

G.2.2 Generating an FTS Autoload File

Assume coreimage has been generated by CROSSLINK.
The call:

<out file>=convertplib coreimage
will generate a file with the correct format for autoload via RcLAN
from an FTS server.

G.2.3 Generating an FPA Autoload File

Assume coreimage has been generated by CROSSLINK.

The call:

<out file>=crcl6 coreimage
will generate a file with the correct format for the RC8000 AUTO-
LOAD-program.

If the name of the outfile is the name of an RC8000 main process,
the CRC16 program outputs directly to the device denoted by the
main process description according to the autoload protocol.

Autoload File Generation G.2.3 Generating an FPA Autoload File

OO

148 RC3502 Real-Time Pascal

G.2.3 Generating an FPA Autoload File Autoload File Generation

RC3502 Real-Time Pascal 149

H, COMPLETE LIST OF LANGUAGE SYMBOLS

AND
ARRAY
AS
BEGIN
BEGINBODY *)
CASE
CHANNEL
CONST
CONTINUELOOP
DIV
DO
DOWNTO
ELSE
END

ENDLOOP
EXIT
EXITLOOP
EXPORT **)
EXTERNAL
FOR
FORWARD
FUNCTION
getswitch
GOTO
IF
IN
INSPECT
LABEL

*) reserved for internal use.

**) reserved for Z80 version.

<>
.

eX

R
—
~

W
n
t

*

LOCKBUF
LOCKDATA
LOOP
MOD
NOT
OF
OR
OTHERWISE
PACKED
POOL
PREFIX
PROCEDURE
PROGRAM
RECORD

—

t
r

A
N

°

REGION
REPEAT
SET
SHARED
SHIFT
THEN
TO
TYPE
typesize
UNTIL
VAR
varsize
WHILE
WITH
XOR

H. Complete List of Language Symbols

150 RC3502 Real-Time Pascal

H. Complete List of Language Symbols

RC3502 Real-Time Pascal 151

I, PREDEFINED CONSTANTS, AND TYPES
The following constants and types are predefined:

CONST

alfalength= 12;

maxint= 32767;

minint= -32768;
maxpriority= 0;

minpriority= -2;
stdpriority= minpriority;

TYPE

priotype= minpriority..maxpriority;

CONST
create _ok= 0;
create process _not_nil= 1;
create program not_linked= 2;
create_no_memory= 3;

TYPE

create_result= create _ok..create_no_memory;

CONST

link_ok= 0;
link_not_found= 1;
link_no_parameter_match= 3;
link_already linked= 6;

TYPE

link_result= link_ok..link_ already linked;

CONST

unlink _ok= 0;
unlink_no_program_linked= 1;
unlink_program_busy= 2;

TYPE

unlink result= unlink _ok..unlink_program_busy;

bit= 0..1;

byte= 0..255;

base _type= PACKED

RECORD

onebit: bit;

mem_no: 0..63;
nilbit: bit

END;

adr=

RECORD

base: base type;
disp: integer

END;

addr=

RECORD

nulbyte: byte;

base: base type;

disp: integer;
END;

activation= (a_interrupt, a_mailbox, a_delay):
boolean= (false, true);

I. Predefined Constants, and Types

152 RC3502 Real-Time Pascal

char=

0 *) nul, soh, stx, etx,
10 *) nl, vt, ff. cr,

20 *) dc4, nak, syn,

30 *) rs, us, ?

40 *) ?,
50 *)

60 *)

70 *)

80 *)

90 *)

100 *)

110 *)

120 *)

130 *)

140 *)

150 *)
160 *)

170 *)

180 *)
190 *)

200 *)
210 *)

220 *)

230 *)

240 *)

250 *)

wn

o u
e
)

f
o
m
)

CN
R

Mt

DY

e
e

Ms

OM

Me

Bs

Es

De

Be

O
E
S

R
e
)

.
. .

. .

. .

.
. .

. .

. . . .

. . .

. . . .

. . .

. . .

. . . .

. . . .

. . .

. . .

.
. . .

. .

ER

P
N

n
S

PN

NC

OR
C
C

IC

C
S

n
e

eC

D
D

D
D

D
D

D
D

OD

OD

O
D

~
~
.

D
D
D

Dd

Dd

ed

OD

OD

OD

OD

OD

OD

OD

OD

OD

OD

OD

OD

OD

OD

ON
D
D
d

d
O

Od

ed

d
D

Od

ed

OD

OD

A

OD

OD

OD

OD

OD

OD

OD

OD

&

x . V
V

V
V

V
V

V
w

d
v

V
e
d

d
v

e
v

ed

v
d

VU

,

O
d

Od

Dd

Dd

D
O

D
D

D
O
D

OD

OD

OD

OD

OD

OD

eot, enq,

si, dle,

?,

y
o
y

e
s
e

. .
H
D
D

DI

OD

OD

OD

OD

OD

.

.

.
.

.
. .

. .
.

.
. .

S
E
N

EN

EN
RO

N
ME

N
SEN

ME

N
MEM

E
SC
EN
E

of
}

O
D
D

OD

I
OD

OD

ND

D
D

OD

UD

®

. .

alfa= ARRAY (1..alfalength) OF char;

mailbox=

RECORD

?: addr;

?: {mailbox;
END;

message_header=

RECORD

?: byte:

tmessage_header;
, 2, 2, 2: byte;

integer;

integer;

addr;

{mailbox:
fmailbox:
{message_header;
{message_header;
byte;

byte;
byte;

byte; V
V

VY

Y
d

D
Y

VY

VY

VD

OD

END;

process=
RECORD

?: f{niltype:
?: {process;

END;

reference= {message header:

chain _element=

RECORD

?: reference;

?: {chain_element;
?: [chain_element;

END;

co
)

O
D
I

DI

D
D

OD

D
D

OD

OD

ed

o
S

can, em,

H
Y

OD

D
D

OD

ON

.
.

.
.

.
.

.
.

.
.

ack, bel, bs,

dcl, dc2, dc3,

sub,
? oe

oh
)

esc, fs,

ht,

gs.

I. Predefined Constants, and Types

RC3502 Real-Time Pascal 153

chain=

RECORD

23

2:

2:

END;

{chain_element;
{chain_element;
O..maxint;

shared_descr=

RECORD

?: reference;

?: f{mailbox;
END;

program_descriptor=
RECORD

?: integer;

?: fniltype:
?: integer;

?: f{niltype;
?: alfa:

?: {program_descriptor;
END;

programrec=
RECORD

programref: tprogram_descriptor;
?: [niltype:
?: integer;

END;

adammbxtype= (adammbx, operatormbx, loadermbx,. globalmbx,
loaddrivermbx,
? ? ? ? Sr or rr

restartmbx, ?, ?, ?, ?. ?, ?, ?
? ? ? ? ? ? 9? ?): o, ¢ t)e o 8, Se Fe 2, 2,

adamvector= ARRAY (adammbxtype) OF tmailbox:

system_vector= !adamvector;

process _descriptor=
RECORD

2

C
N
C

RE
N

ME
IC
 M

EN
S
M
E
C
N

RE
C

MEI
C

ME
N

RET
O

ME
NG

 R
EN

EN
C

RN
C

C
N

C
C

END;

VAR

own:

timer: integer;
: byte;

{process_descriptor;
integer;

addr;

addr;

integer;

integer;

integer;

integer:

{program_descriptor;
{mailbox;
{reference;
[process:
{message_header:
{program_descriptor;
mailbox;
{niltype:
reference;
fniltype:
alfa; (* procname *)

{process descriptor;
{process;

process descriptor;

The procname field is initialized by the create routine, and may be

—
_

Predefined Constants, and Types

154 RC3502 Real-Time Pascal

changed by the setownname routine.

The values of the predefined type integer constitutes the subrange
minint..maxint.

I.1 Implementation Dependent Definitions

The following constants and types are defined in rc3502env:

CONST
break_by father= 47;

TYPE

double=

RECORD

msp, lsp: integer;
END;

coded_date= PACKED

RECORD

year_after_1900: 0..127:
month: 0..12;

day: 0..31;

END;

coded_time= PACKED
RECORD

?: 0..31:

hour: 0..23;

minute: 0..59;
END;

coded_secs= PACKED
RECORD

sec: 0..59;
msec: 0..999;

END;

coded_inc= PACKED
RECORD

days: 0..31;

hours: 0..23:;

mins: 0..59;

secs: 0..59;

msecs: 0..999;

END;

delaytype=

RECORD

prev_date: coded_date;

prev_time: coded_time;
prev_secs: coded secs;

inc: coded_inc;
END;

clocktype=

RECORD
date: coded_ date;
time: coded_time;
secs: coded_secs;

END;

I.1 Implementation Dependent Definitions Predefined Constants, and Types

RC3502 Real-Time Pascal LU o1

o

lookup_descriptor_segment=
RECORD

name: alfa;

descriptor length,

no_of_ pages,
pagesize,

last_page_ length,

kind: integer;

default_appetite,

last_param_offset,

no_of params: integer;
date: coded date;
time: coded_time;
source_date: coded_ date;
source time: coded_time;
version: integer:

END;

Predefined Constants, and Types I.1 Implementation Dependent Definitions

156 RC3502 Real-Time Pascal

I.1 Implementation Dependent Definitions Predefined Constants, and Types

RC3502 Real-Time Pascal 157

J, PREDEFINED ROUTINES
Routine names starting with one or more _ characters are routines
used by the system, and cannot be called as user routines. The formal
type reforchain indicates that the routine in question may be called
with actual parameters of type reference or chain. The type niltype
indicates that the type checking is special and known by the com-
piler.

J.1 Language Intrinsic Routines

FUNCTION abs(n: niltype): niltype;

PROCEDURE alloc(VAR r: reference; VAR p: pool;
VAR m: mailbox) ;

FUNCTION allocdelay(VAR r: reference: VAR p: pool;
VAR m: mailbox; msecs: integer): activation:

FUNCTION allocpool(VAR p: pool;

number, bytes: integer): integer:

FUNCTION bufcount (VAR r: reference): integer;

FUNCTION bufsize(VAR r: reforchain): integer;

FUNCTION bytecount (VAR r: reforchain): integer;

PROCEDURE chaindequeue(VAR r: reference: VAR ch: chain) ;

PROCEDURE chaindown(VAR ch: chain);

PROCEDURE chainenqueue(VAR r: reference: VAR ch: chain):

FUNCTION chainlength(VAR ch: chain): integer;

PROCEDURE chainreset (VAR ch: chain);

PROCEDURE chainstart(VAR ch: chain):

PROCEDURE chainup(VAR ch: chain):

FUNCTION chr(int: 0..255): char:

FUNCTION create(INSPECT processname: alfa: prog: programrec;
VAR proc: process; bytes: integer;
priority: priotype): create result;

PROCEDURE dec(VAR i: integer);

PROCEDURE dec byte rc(VAR b: byte);

PROCEDURE delay(msecs: integer);

PROCEDURE exception(excode: integer);

FUNCTION hometest(VAR r: reference: VAR P: pool): boolean;

PROCEDURE inc(VAR i: integer):

PROCEDURE _inc byte_rc(VAR b: byte);

FUNCTION link(INSPECT external_name: alfa:
VAR prog: program_descriptor) : link_result;

FUNCTION locked(VAR m: mailbox): boolean:

Predefined Routines J.1 Language Intrinsic Routines

158 RC3502 Real-Time Pascal

PROCEDURE new(VAR p: fniltype);

FUNCTION nil(VAR r: fniltype): boolean;

FUNCTION _nilref_orc(VAR r: reference): boolean:

FUNCTION offset(VAR r: reforchain): integer;

FUNCTION open(VAR m: mailbox): boolean:

FUNCTION openpool(VAR p: pool): boolean:

FUNCTION ord(x: niltype): integer;

FUNCTION passive(VAR m: mailbox): boolean:

PROCEDURE pop(VAR rl, r2: reference):

FUNCTION pred(x: niltype): niltype;

PROCEDURE push(VAR rl, r2: reference);

PROCEDURE release(VAR r: reference);

FUNCTION releasepool(VAR p: pool: no: integer): integer:

PROCEDURE remove(VAR proc: process);

PROCEDURE resume(VAR proc: process):

PROCEDURE return(VAR r: reference):

PROCEDURE setbytecount (VAR r: reforchain: val: integer);

PROCEDURE setoffset(VAR r: reforchain: val: integer);

PROCEDURE settop(VAR r: reforchain: val: integer):

PROCEDURE setul(VAR r: reforchain: val: byte);

PROCEDURE setu2(VAR r: reforchain: val: byte);

PROCEDURE setu3(VAR r: reforchain: val: byte);

PROCEDURE setu4(VAR r: reforchain: val: byte);

PROCEDURE signal(VAR r: reference: VAR m: mailbox):

FUNCTION stackdepth(VAR r: reference): integer;

PROCEDURE start (VAR proc: process; priority: integer):

PROCEDURE stop(VAR proc: process);

FUNCTION succ(x: niltype): niltype;:

FUNCTION swap(i: integer): integer:

FUNCTION top(VAR r: reforchain): integer;

PROCEDURE trace=exception(code: integer);

FUNCTION unlink(VAR prog: program descriptor): integer:

FUNCTION ul(VAR r: reforchain): byte:

FUNCTION u2(VAR r: reforchain): byte:

FUNCTION u3(VAR r: reforchain): byte;

FUNCTION u4(VAR r: reforchain): byte:

J.1 Language Intrinsic Routines Predefined Routines

RC3502 Real-Time Pascal 159

PROCEDURE wait(VAR r: reference: VAR m: mailbox):

FUNCTION waitdelay(VAR r: reference: VAR m: mailbox;
msecs: integer): activation;

FUNCTION _bufsize_rc(VAR rv: reference): integer;

PROCEDURE exchange _rc(VAR procl, proc2: process):

PROCEDURE exit re:

FUNCTION _first_ rc(VAR r: reference): integer;

PROCEDURE _heapproc_re (p: {niltype) 3

PROCEDURE _heapref__rc(p: {niltype);

PROCEDURE _initchainrc(p: fniltype);

PROCEDURE _initmbx__rc(p: {niltype);

PROCEDURE _initpool_rc(VAR m: mailbox;
humber, size: integer):

PROCEDURE _initproc_re(p: {niltype):

PROCEDURE _initprog _rc(p: f{niltype:; q: {niltype);:

PROCEDURE initref__rc(p: {niltype);

FUNCTION _last_rc(VAR r: reference): integer;

FUNCTION _new re(bytes: integer; wordalignment: boolean): tniltype:

PROCEDURE region rc(VAR sh: shared_descr) ;

PROCEDURE reg _exit_rc(VAR sh: shared_descr) ;

PROCEDURE shift _ rc(a, b: integer);

J.2 Implementation Dependent Standard Routines

The following routines are defined in rc3502env:

PROCEDURE break(VAR proc: process: excode: integer);

PROCEDURE callremote(VAR r: reference: INSPECT m_name: alfa): integer;

FUNCTION clock_difference(t1, t2: clocktype): coded_inc:

FUNCTION clock_increment(t: clocktype; inc: coded_inc): clocktype:

FUNCTION clock _less_than(t1, t2: clocktype): boolean;

FUNCTION crcl6(opl1, op2: integer): integer;

FUNCTION crcl6buf(VAR r: reference: frombyte, tobyte: integer:
quotient, startvalue: integer): integer:

PROCEDURE definetimer(onoff: boolean):

FUNCTION deletemailbox(INSPECT mbx_name: alfa): integer;

FUNCTION eoi: boolean;

FUNCTION first=offset(VAR r: reforchain): integer;

FUNCTION getclock: clocktype:

Predefined Routines J.2 Implementation Dependent Standard Routines

160 RC3502 Real-Time Pascal

PROCEDURE inbyteblock(VAR next: integer; first, last: integer;
VAR msg: reference);

PROCEDURE inwordblock(VAR next: integer; first, last: integer:
VAR msg: reference):

FUNCTION last(VAR r: reforchain): integer;

FUNCTION messagekind(VAR msg: reference): integer;

FUNCTION namemailbox(VAR m: mailbox: INSPECT mbx_name: alfa):
integer;

FUNCTION next(VAR r: reforchain): integer:

PROCEDURE outbyteblock(VAR next: integer: first, last: integer:
VAR msg: reference):

PROCEDURE outwordblock(VAR next: integer: first, last: integer:
VAR msg: reference):

FUNCTION ownname(VAR name: alfa): byte:

FUNCTION ownprogramname(VAR name: alfa): byte;

FUNCTION ref(VAR m: mailbox): f{mailbox:

FUNCTION reservech(VAR ch_msg: reference:
level, mask: integer): integer:

FUNCTION searchmailbox(INSPECT mbx_name: alfa): {mailbox;

PROCEDURE sendlinker(VAR r: reference):

PROCEDURE sendtimer(VAR r: reference);

PROCEDURE setfirst(VAR r: reforchain: val: integer);

PROCEDURE setlast(VAR r: reforchain: val: integer);

PROCEDURE setnext (VAR r: reforchain: val: integer);

PROCEDURE setownname(INSPECT name: alfa);

PROCEDURE setpriority(priority: integer);

PROCEDURE tofrom(VAR toref: reference: toindex: integer:
VAR fromref: reference; fromindex: integer; bytes: integer):

PROCEDURE waiti:

FUNCTION waitid(msecs: integer): activation:

FUNCTION waitim(VAR r: reference: VAR m: mailbox): activation;

FUNCTION waitimd(VAR r: reference; VAR m: mailbox;
msecs: integer): activation:

J.2 Implementation Dependent Standard Routines Predefined Routines

RC3502 Real-Time Pascal 161

K, RC3002 SYSTEM SUPPORTED ENTITIES
The following subsections contain the definitions of constants, types,
and routines which are supported by the RTP3502 system for the
RC3502 machine.

K.1 Doubleenv

CONST
double_min= double(:minint, 0:);
double zero= double(:0, 0:);
double_one= double(:0, 1:);
double _two= double(:0, 2:);
double_max= double(:maxint, -1:);

FUNCTION double_add(d1, d2: double): double:

PROCEDURE double dec(VAR d: double):

FUNCTION double div(dl1, a2: double): double:

PROCEDURE double_inc(VAR d: double):

FUNCTION double_int(i: integer): double:

FUNCTION double_1t(d1, d2: double): boolean:

FUNCTION double madd(dl, d2: double): double:

FUNCTION double _mod(dl, d2: double): double:

FUNCTION double _msub(dl, d2: double): double;

FUNCTION double _mul(dl, d2: double): double:

FUNCTION double_sub(d1, d2: double): double:

FUNCTION double uint(i: integer): double:

FUNCTION int_double(i: double): integer:

FUNCTION uint_double(i: double): integer:

K.2 Imc3502env

Entities for inter module communication (IMC)

CONST ’
max_imc_id= 10; <

TYPE

scope _type= (anonymous, local, regional, global, ?);

r
portmessage= Zz

RECORD

?: 1..maxint;

name: alfa;

scope: scope type;

no_of_conns: 0..maxint;

rcev_all: boolean;
?: 1..maxint;

END;

RC3502 System Supported Entities K.2 Imc3502env

162 RC3502 Real-Time Pascal

port= <7
RECORD

?: { mailbox:
?: pool 1 OF portmessage;

?: mailbox:
?: reference:

?: reference:

port_params: !portmessage;:

END;

event_type=

(not_event, message event, answer event, process_removed, port_closed,
disconnected, ?, ?, local_connect, remote_connect,
reset_indication, reset_completion, credit,
data_sent, data_arrived, data_overrun, ?,
dummy _lenct, dummy_rcnct, dummy _rindic, /
dummy_rcmpl, dummy_credit, dummy_sent, dummy_arrived, ?, ?);

reason_type=

(reason_ok, reason_name, reason_resource, /

reason_closed, reason_network) :

conn_service=
(cs_normal, cs_high);|/

@

alfa3= ARRAY(1..3)O0F char; U/

alfa9= ARRAY(1..9)OF char; |/

masknames_t=
RECORD

linkno: integer:

length: byte;

name: alfa9; V4
END;

PROCEDURE closeport (VAR p: port); VS

PROCEDURE connect (VAR p: port; index: 1..maxint:
VAR compl, disc: reference; remote name: alfa; /
service: conn_service);

FUNCTION creditcount(VAR r: reference): 0. .maxint; |/

PROCEDURE disconnect (VAR p: port: index: 1. .maxint):\/

FUNCTION eventkind(VAR r: reference): event type; S

PROCEDURE getconnection(VAR p: port; index: 1..maxint: i/
VAR compl, disc: reference):

PROCEDURE getcredit(VAR p: port; index: 1..maxint; (/
VAR credbuf: reference):

PROCEDURE getreset(VAR p: port; index: 1..maxint: vA
VAR indic: reference):

4

FUNCTION imcexists(imc_id: O..maxint): boolean; 2.

FUNCTION index(VAR r: reference): 0..maxint: /

r PROCEDURE initport (VAR p: port: imc_id: 0O..maxint); y/ «
A

PROCEDURE masknames(VAR r: reference; VAR mask: !alfa3: 7 cep-sen vw?
imc_id: 0..maxint):

FUNCTION maxconnections: 0..maxint; VA

PROCEDURE openport (VAR p: port; VAR closebuf: reference:
name: alfa; scope: scope_ type;

no_of_conns: 0..maxint; rcv_all: boolean); he PY
_- ee nna

<7 prbeol-

K.2 Imc3502env RC3502 System Supported Entities

RC3502 Real-Time Pascal 163

FUNCTION reason(VAR r: reference): reason_ type;

PROCEDURE receive(VAR p: port: index: 1..maxint: La
VAR databuf: reference):

PROCEDURE receiveall(VAR p: port; VAR databuf: reference); cL

PROCEDURE reset (VAR p: port; index: 1..maxint: L-
VAR compl: reference):

a
PROCEDURE resetevent (VAR r: reference): 7:

PROCEDURE send(VAR p: port; index: 1..maxint: t~
VAR databuf: reference):

K.3 Ioenv

Entities for text input/output by means of so-called zones.

CONST

linelength= 80;

firstindex= 6+alfalength:
lastindex= firstindex+linelength-1;

TYPE

opbuffer=
RECORD

first,
last,

next: integer:
name: alfa;
chars: ARRAY (firstindex..lastindex) OF char

END;

zone=
RECORD

driver: {mailbox: (* operator program *)
answer: [mailbox; (* answers returns here *)
dataready: mailbox: (* buffers with data *)
free: mailbox; (* free buffers *)
cur: reference; (* current buffer *)
u2val: byte; (* u2 to driver *)
state: byte: (* resultcode from answer *)
readstate: integer; (* 0: ok, >0: error, -1: cur=nil *)
nextp: integer: (* pointer into databuf *)
lastpos: integer: (* last position in buffer*)

END;

PROCEDURE inchar(VAR z: zone: VAR t: char);

PROCEDURE indouble(VAR z: zone: VAR a: double) ;

PROCEDURE inhex(VAR z: zone: VAR num: integer):

PROCEDURE ininteger(VAR z: zone: VAR num: integer);

PROCEDURE inname(VAR z: zone: VAR name: alfa);

PROCEDURE opanswer(VAR msg: reference: VAR z: zone);

PROCEDURE openzone(VAR z: zone: driv, answ: tmailbox;
bufs: integer; VAR home: pool 1; vil, v2, v3, v4: byte);

PROCEDURE openopzone(VAR z: zone: driv, answ: {mailbox;
bufs: integer: VAR home: pool 1; vl, v2, v3, v4: byte):

PROCEDURE opin (VAR z: zone);

FUNCTION optest(VAR z: zone): boolean:

RC3502 System Supported Entities K.3 Ioenv

164 RC3502 Real-Time Pascal

PROCEDURE opwait(VAR z: zone: VAR inputpool: pool):

PROCEDURE outaddr(VAR z: zone; a: addr);

PROCEDURE outalfa(VAR z: zone: VAR text: !alfa):

PROCEDURE outchar(VAR z: zone: t: char):

PROCEDURE outdate(VAR z: zone; date: coded_ date);

PROCEDURE outdouble(VAR z: zone: ad: double; pos: integer);

PROCEDURE outend(VAR z: zone):

PROCEDURE outfill(VAR z: zone: filler: char: rep: integer):

PROCEDURE outhex(VAR z: zone: num, pos: integer);

PROCEDURE outinteger(VAR z: zone: num, pos: integer);

PROCEDURE outnl1(VAR z: zone):

PROCEDURE outtime(VAR z: zone: time: coded_time) ;

PROCEDURE printmessage(VAR z: zone: VAR r: reference:
firstindex, lastindex, words per line: integer):

K.4 Measureenv

Entities for performance measurement of a program.

TYPE

time_stamp=

RECORD

hour: coded _time;
msec: integer:

END;

measure_rec=
RECORD

access count: integer:

name_ptr: addr;
hours, minutes: byte:

h_secs: integer
END;

measurement_area=
RECORD

current, former: time_stamp;
dif_msec, dif minute, dif_hour: integer;
table: ARRAY (0..255) OF measure rec;

END ;

PROCEDURE trap_code rc;

PROCEDURE start_measure(VAR mbx: mailbox);

PROCEDURE stop_measure(VAR mbx: mailbox);

K.4 Measureenv RC3502 System Supported Entities

RC3502 Real-Time Pascal 165

L, OPERATOR INPUT/OUTPUT EXAMPLE

PROGRAM testiol;

(* Communication with operator *)

(* All input is terminated by <NL> *)
(* Input is echoed on the console *)

CONST
readcode= 1;
writecode= 2;
message= 7:

no_of_opbuffers= 2;
no_of_inbuffers= 1;
no_of_outbuffers= no_of_opbuffers-no_of inbuffers;

VAR

keyboard, display: zone;
nilmbx: “mailbox; -- pointer to mailbox
t: char;

homepool: pool 2 OF opbuffer:

BEGIN

(* Open zone display for output *)

openopzone (display,
nilmbx, -- nilmbx is by default the operator
nilmbx, -- no action on return of messages
no_of_outbuffers,

homepool,

writecode,

message,

0, 0);
outfill(display, '.', 10);
outalfa(display. ‘Welcome ');:

outalfa(display, ‘to ');
outalfa(display, own.procname) ; -- Incarnation name
outfill(display, '.', 10);
outnl (display) ;: -- New Line

(* Open zone keyboard for input *)

openopzone (keyboard,
nilmbx, -- nilmbx is by default the operator
nilmbx, -- activated on return of messages
no_of_inbuffers,
homepool,

readcode,

message,

0, 0);

LOOP

outalfa(display, ‘Input <NL>: ');
outend (display) ;

opin (keyboard) ;

opwait (keyboard, homepool) ;
REPEAT

inchar (keyboard, t);:

outchar(display,. t);:
IF t= NL THEN

BEGIN

outchar(display, BEL):

outend (display) :
END

UNTIL keyboard. readstate<0;
ENDLOOP

END.

L. Operator Input/Output Example

166 RC3502 Real-Time Pascal

L. Operator Input/Output Example

RC3502 Real-Time Pascal 167

M, EXCEPTION CODES
Code (Hex) Error Text

01 - parity error
02 - registerstack error
03 - undefined opcode
04 - odd number of bytes
05 - stack overflow
06 - pointer = nil
07 - signal: reference = nil
07 - push: first param = nil
07 - pop: second param = nil
07 - lock: reference = nil
07 - reference = nil
08 - wait: reference <> nil
08 - pop: first param <> nil
09 - push: param locked
09 - pop: second param locked
09 - signal: reference locked
09 - reference locked
0A - lock overflow
0B - arithmetic overflow : "lop"-"rop"
OB - arithmetic overflow : "lop"+"rop"
OB - arithmetic overflow : "lop"*"rop"
OB - arithmetic overflow : "lop" div "rop"
OB ~ arithmetic overflow : "lop" mod “rop"
OB - arithmetic overflow : -"op"
0B - arithmetic overflow : abs "op"
0c - index out of bounds: "index value"
0c - subrange out of bounds: "operand value"
0D - illegal textstate
OE - field overflow : "operand value"
OF ~ move wraparound :
10 - push: identical arguments
11 ~ push: first param not empty
12 - lock: size error : "buffer size" "new size"
12 - size too small
13 - top <= offset
14 - lock: not data message
14 - not data message
15 - not channel message
16 - word block i/o : odd number of bytes
17 - block i/o at level 0
18 - setcr: first limit negative

- 19 - setad: truncation error
1A - no resources
1B - file does not exist : "file name"
1c - position outside file
1D - wrong answer
1E - setpriority: illegal priority
1F - pool : no core
20 - process = nil
21 - arithmetic overflow : "Idop" * "rdop"

M. Exception Codes

168 RC3502 Real-Time Pascal

22 - system error
23 - system error
24 - illegal switch in case construction
25 - upper limit in call of succ
26 - lower limit in call of pred
27 - with: retype overflow : "size of old" < "size of new"
28 - lockdata: top < computed
29 - local reference variable not nil at routine exit
2A - local process variable not nil at routine exit
2B - system error
2C - system error
2D - system error
2E - system error
2F - break by father

M. Exception Codes

RC3502 Real-Time Pascal 169

N. INDICES

N.1 Survey of Figures

Fig. 2.1. Process Stack Layout (snapshot) 11
Fig. 2.2. Memory Layout for Simple Variables in Stack Frame 12
Fig. 2.3. Memory layout for packed record. M(q)=11 14
Fig. 3.1. Example on the Behaviour of Push 56
Fig. 4.1. Process structure after initialization 105
Fig. 4.2. Snapshot of part of the process structure 110
Fig. 4.3. Snapshot of process structure if S is included. 110
Fig. B.1. Survey Information from the Compiler 120
Fig. C.1. Performance Measuring. 124
Fig. G.1. Example on Loader Map from CROSSLINK 146

N.2 Catchword Index

! (frozen type) 4
$ 20
$ACCESSCHECK 22
$CODE 21
$CREATESIZE 21
$DEFAULT 22
$EJECT 21
$ELSE 23
$ELSEIF 23
$ENDIF 23
$IF 23
$INCLUDE 22
$INDEXCHECK 21
$LIST 21
$NOACCESSCHECK 22
$NOCODE 21
$NOINDEXCHECK 21
$NOLIST 21
$NORANGECHECK 22
$PAGELENGTH 21,118
$PAGEWIDTH 21,118
$RANGECHECK 22
$ROUNDUPLINE 22
$SET 22
$SUBTITLE 21
$TITLE 21,118
$VERSION 22
=; (exchange) 17
? (parameter) 20

A
abs 65,157
ACCESSCHECK 22
activation= 151

Indices N.2 Catchword Index

170 RC3502 Real-Time Pascal

actual parameters:
adam process
adammbxtype=
adamvector=
addr=
adr=
alfa3=
alfa9=
alfa=
alfalength=
alignment
alloc
allocator process
allocdelay
allocmempool
allocpool
arithmetic routines
attributes, message buffer
autoload file

B
base_type=
BEGINBODY

bit size S(T)
bit=
boolean=
break
break (ADAM)
break _by_father=
bufcount
bufsize
byte=
bytecount

C
call of compiler
callremote

chain=
chaindequeue
chaindown
chainenqueue
chainlength
chainreset
chainstart
chainup
chain_element=
channel message
channel statement
channel statement:
char=
checkstack
chr

20
110
153
153
151
151
162
162
152
151
9
49,157
109
49,157
6
50,157
65
6
143

151
3
8
151
151
25,159
113
154
50,157
50,157
151
6,51,157

117
33,159
153
51,157
51,157
52,157
52,157
52,157
52,157
53,157
152
95,97,107
18
18
152
103
61,157

N.2 Catchword Index Indices

RC3502 Real-Time Pascal 171

clearinterrupt
clock routines
clocktype=
clock difference
clock_increment
clock_less_than
closeport
CODE
coded_date=
coded_inc=
coded_secs=
coded_time=
codelist
codesize
common type specification:
communication
compilation switches
compilation unit
compiler (switch)
compiler call options
compiler directives
compiler error messages
compress, rtp

conditional compilation
connect
conn_service=
control
control, program
controlclr
convertplib
crcl6
crcl 6buf
create
create (ADAM)
create size, default
CREATESIZE

create_no memory=
create_ok=
create_process_not_nil=
create_program not_linked=
create_result=
creditcount
cross reference
crosslink
ctrwaitid
ctrwaitim
ctrwaitimd

D
dec
DEFAULT

default create size
defined type:

89
70
154
70,159
70,159
71,159
33,162
21
154
154
154
154
117
117
3
32
23
20
24
117
20
125
138
23
33,162
162
89
25
90
143
42,65,159
53,159
26,157
112
118
21
151
151
151
151
151
53,162
136
143
90
90
91

66,157

118

Indices N.2 Catchword Index

172
RC3502 Real-Time Pascal

definetimer
delay
delay message
delaytype=
delete mailbox (ADAM)
deletemailbox
delete_semaphore
directives, compiler
disconnect
double
double routines
double=
doubleenv
double_add
double_dec
double _ div
double_inc
double int
double It
double_madd
double_max=
double_min=
double_mod
double_msub
double_mul
double_one=
double_sub
double_two=
double_uint
double_zero=
driver process
driver routines

E
EJECT
ELSE
ELSEIF
empty
ENDIF
eoi
error messages, compiler
event messages, operator
eventkind
event_type=
exception
exception codes
exchange statement
EXPORT

34,159
34,157
44
154
113
34,159
103
20
35,162
5)
62
154
161
62,161
62,161
62,161
63,161
63,161
63,161
63,161
161
161
63,161
64,161
64,161
161
64,161
161
64,161
161
107
89

21
23
23
103
23
91,159
125
87
54,162
162
27,117,157
167
17
3

N.2 Catchword Index Indices

RC3502 Real-Time Pascal 173

R
fault (exception codes)
first
firstindex=
formal type specification:
frame, stack
frozen type
frozen-type definition:
function formals:
function heading:

G
get clock
getbufparam
getclock
getconnection
getcredit
getid
getlfgf
getmembyte
getnames
getreset
getswitches
global frame
goto statement:

H
heap
hometest

l
i/o modes
IF

imc3502env
imcexists
inbyteblock
inc
inchar
INCLUDE
indent
index
INDEXCHECK
indouble
inhex

ininteger
initpool
initport
initsem
inname
input

167
6,101,159
163
4
9
4
4
19
19

45
92
71,159
35,162
35,162

71
103
36
36,162
72
11
17

73,119
36,157

86
23
161
37,162
92,160
66,157
82,163

135
54,162
21
83,163
83,163
83,163
103
37,162
103
84,163
82,114

Indices N.2 Catchword Index

174 RC3502 Real-Time Pascal

input mode
intel

int_double
inwildname

inword

inwordblock
inwordclr

ioenv

iowbwce

K
keywords

[
label declaration:
label:
labelled statement:
lambda
language symbols
last
lastindex=
layout, memory
linelength=
link

link (ADAM)
linker process
link already _linked=
link not_found=
link _no_parameter_match=
link ok=
link result=
LIST
load file
loader map
local frame
lock statement
locked
locktest

lookup_descriptor_segment=

M
madd
mailbox=
masknames
masknames _ t=
match message
maxconnections
maxint=
maxpriority=
max_imc_id=
measure

86
67
64,161
84
93
93,160
94
163
94

149

17
17
17
67
149
6,101,160
163
9
163
27,157
112
109
151
151
151
151
151
21,117
143
145
11
18
37,157
37
155

68
152
38,162
162
88
72,162
151
151
161
117

N.2 Catchword Index Indices

RC3502 Real-Time Pascal 175

measureenv 164
measurement_area= 164
measure_rec= 164
memerrorlog 72
memory layout 9
mem _ type 6
message buffer attributes 6
messagekind 95,160
message _header= 152
minint= 151
minpriority= 151
mmul 68
monitor process 106
msub 68

N
name mailbox (ADAM) 113
namemailbox 38,160
new 73,158
next 6,101,160
nil 38,158
NOACCESSCHECK 22
NOCODE 21
NOINDEXCHECK 21
NOLIST 21
NORANGECHECK 22

0
offset 6,54,158
opanswer 85,163
opbuffer= 163
open 38,158
open families 3
Openopzone 76,163
openpool 55,158
openport 39,162
openzone 77,163
operator event messages 87
operator process 114
operator regret message 88
operator routines 74
opin 85,163
optest 85,163
options (directives) 20
options, compiler call 117 =
opwait 85,164
ord 61,158
outaddr 78,164
outalfa 78,164
outbyteblock 95,160
outchar 79,164
outdate 79,164

Indices N.2 Catchword Index

176 RC3502 Real-Time Pascal

outdouble
outend
outfill

outhex

outinteger
outnl

output

output mode
outtext

outtime
outword
outwordblock
outwordclr
ownname
ownprogramname

P
PAGELENGTH
PAGEWIDTH
passive
performance measurement
pi3 get
pi3_link
pliball
plibconvert
plibdelete
plibextract
plibinsert
pliblookup
pool type:

pop
port=

portmessage=

pred
PREFIX

preserve
print
printmessage
print_descriptor
priority
priotype=
procedure heading:
process=
process_descriptor=
procname
program control
programrec=
program _descriptor=
push

79,164
79,164
80,164
80,164
80,164
80,164
78,114
86
81
81,164
95
96,160
96
28,160
28,160

21,117,118
21,117,118
39,158
123
29
29
139
141
140
140
139
139
6
55,158
162
161
61,158
20
117
81
82,164
81
30,106
151
19
152
153
153
25
153
153
55,158

N.2 Catchword Index Indices

RC3502 Real-Time Pascal 177

R
RANGECHECK 22
re3502env 154,159
readram 73
reason 56,163
reason_type= 162
receive 39,163
receiveall 39,163
ref 102,160
reference= 152
regret message, operator 88
regret message, timer 47
release 57,158
releasepool 57,158
remove 29,158
remove (ADAM) 113
rename mailbox (ADAM) 113
representation, variable 7
reservech 97,160
reserveextmem 97
reset 40,163
resetevent 40,163
restart 73
resume 30,158
return 40,158
rotate 68
ROUNDUPLINE 22
routine declaration: 19
routines, arithmetic 65
routines, clock 70
routines, double 62
routines, driver 89
routines, operator 74
routines, RTP supporting 103
rtp compress 138
RTP supporting routines 103

5
scheduling 106
scope_type= 161
searchmailbox 41,160
send 41,163
sendlinker 41,160
sendtimer 44,160
sense 98
senseclr 98
SET 22,117
set clock 45
set-type definition: 5
setbytecount 6,57,158
setfirst 102,160
setinterrupt 99

Indices N.2 Catchword Index

178 RC3502 Real-Time Pascal

setlast
setnext
setoffset
setownname

setpriority
setswitches
settop

setul
setu2
setu3
setu4
setwatchdog
shared_descr=
shielded type:
short
signal
spacing
stack
stack frame
stackdepth
Start
start (ADAM)
start_measure
statement:
stdpriority=
stop

stop (ADAM)
stop_measure
string type
structured values
SUBTITLE
succ
survey
swap
switches, compilation
systemvector
system_vector=

T
target (switch)
time out
timedout
timer field

timer process
timer regret message
time_stamp=
TITLE
tofrom
top
trace
trap_code_re
type definition:

102,160
103,160
6,57,158
30,160
30,160
74
6,958,158
58,158
58,158
59,158
59,158
74
153
9)
117
48,158
117
117
9
59,158
30,158
112
164
16
151
31,117,158
112
164
7
7
21
62,158
117
68,158
23
111
153

24
108
99
34
108
47
164
21,117,118
59,160
6,60,158
31,158
164
4

N.2 Catchword Index Indices

RC3502 Real-Time Pascal 179

U
ul 60,158
u2 60,158
u3 60,158
u4 61,158
uadd 69
udiv 69
uint_double 65,161
ult 69
umod 69
umul 70
unlink 32,158
unlink (ADAM) 113
unlink _no_program_linked= 151
unlink ok= 151
unlink program_busy= 151
unlink result= 151
usub 70

V
variable representation 7
VERSION 22,117

W
wait 48,159
waitdelay 48,159
waiti 160
waitid 100,160
waitim 100,160
waitimd 100,160
wild_compare 74

Z
zone 74
zone= 163

_bufsize__rec 103,159
_dec_byte_re 103,157
_exchange re 103,159
_exit rc 103,159
_first rc 103,159
_heapproc_rc 103,159
_heapref__re 103,159
_heapsh___re 103
_ine_byte_rc 103,157
_initchainre 103,159
initmbx rc 103,159

Indices N.2 Catchword Index

180 RC3502 Real-Time Pascal

_initpool_re
_initproc_re
_initprog re
initref re
_initsem__re
_initsh__re
_last rc
_new re
_hilref_re
_region re
_reg exit _re
_sendallocre
_shift re

103,159
103,159
103,159
103,159
103
103
103,159
103,159
103,158
103,159
103,159
103
103,159

N.2 Catchword Index Indices

