
RCSL No: 42-i1786 _
Editio ion: August, 1981
Author Jan: Bardino

Title:

RC8000 PASCAL, User”s Guide

RC
SL

4
2
-
1
1
5
9
2

8 REGNECENTRALEN
= af 1979

"‘peyueseid sjetej}ew 8y) so Aue uo soueles Ag pesneo sebewep Aue
JOj e;qisuodse, eq jou jjeys pue yenuew siyj ul seedde Aew yorum
$1016 DHewY}Ie JO jeo}ydes5odA} 10; afqisuodse: you S$} OY *89!}
Ou JON jnoUM eu} Aue ye OY Aq aBueyo 0} yOe!qns Je UleJ8Y peu
18jUCD SUO}}edIWIOedS GY} JEU] PeUolNED ase jeNUewW Siy} JO SESH

uebeyuados ‘6261 Je uajesjuaceubey Spy Aq paqulig
S/v 4ajndwog oy
626} se UsjeszusdeUBey sry ‘Legh © ywbuAdo

@
.
.

I
S
R

(sebed pequtad 7z¢1)

*sjonzzsuoo weriboid jo seTdurexe
pue Teoseg-000gdu JO ucTAdTzosep ejeTduod e suTe UCD Tenueu suz

*zeanduwos 000gay euy AOF
pejuSuSTdUT se [Teoseg ebenbuel[ouj Joy TetTz0jNQ e& ST Tenuew stu

OeNSsdYy

Teosegd prepueqs ‘obenbuet [east ubTH

:SplomMAOyY

FOREWORD

First edition: RCSL No 42-i1786. |

This manual provides a canplete description of the programming

language Pascal as implemented for the RC8000 camputer.

The manual is directed to those who have previously acquired some

familiarity with computer programming, and now wish to get

acquainted with the programming language Pascal. The~style of the + eee

manual is that of a tutorial, i.e. a demonstration of the“lan~

guage features by means of examples.

For a concise ultimate of the language definition ref. [1] or

ref. [2] may be used.

Summarizing tables and syntax diagrams are added as appendices.

Jan Bardino oe : poo ~

A/S REGNECENTRALEN af 1979, August 1981 -

iii

TABLE OF CONTENTS PAGE

1. INTRODUCTION eeoeeeeseeseeseeeeeeeeeeeeeeeseeeeeeeaeeeneveene]

2. BASIC DEFINITION ..ccccccccccccccvcsccccccccccscevcccves

2.1 VOCabDULArY ccccccccccccccccvevcccescccccvccccevccee

2.2 Program ELEMentsS ..cccccccccccccccccccvccvccsovvccs

2.2.1 Syntax Diagrams vec ceccevucacceccecbccesencs

2.2.2 Comments and Separators ..cccccrecccccsccece

2.2.3 Identifiers ...ccccccrccccccccncccccccvccene

2.2.5 Real Literal ..cccccccrcccccccccssccvccccces

2.2.6 Strings of Charactersecccccccccrcccccce

2.2.7 Boolean Literal .ececccccccccccccvescccccces O
Y

N
D
A

UU

A
W
W
D

Dd

3. THE PASCAL LANGUAGE ..ccccccccccccccccccccccessccscceces

3.1 The Program Outline ..ccsccccscccccsccsccvnsseveses

3.2 The Program Structure ..ccscccsscccccscccccccsseees§ I]

3.3 The Declaration Part ...ccceccccccccccscccccvesceee 13

3.3.1 Labels ccccscsccccccccccccvccscccccesccccees 14

323.2 CONSTANTS .occeccccccercccccccccesecevssesee 14

3.3.3.1 Enumeration Typescecccccccccee 17

3.3.3.2 Subrange TypeS .ecceccccccccceveees 19

3.3.3.3 Structured TypeS ..cccesecesececeee 27

3.3.3.4 Type Compatibilitycecceeees 48

3.3.4 Variablesccceccecceeceececceccsscesees 49
3.3.5 Value Part ..crccccccccccccccccecscvcccseses 50

3.3.6 Routine Declarationcceccccccveccccveee 53

3.4 The Statement Part ...ccceccccccccncccccccvveecsees 58

3.4.1 StateMentS 2... cccccccccvcccccccsccsccessecss 58

3.4.2 Assignment Statementccecccccccccceceess 59

3.4.2.1 Expressionsccccccceccccccceeee 60

3.4.3 Goto Statementcecccvcccccccsvecscsecses 63

3.4.4 Repetitive Statementscecececsccscevecee 63

3.4.5 Conditional Statementsccccececccccee 66—

3.4.6 Procedure Call ..cccccccccccvccccccsceeceses 69

3.4.7 With Statementccccccccccccccccscceeese 72

iv

TABLE OF CONTENTS (continued) PAGE

4.

5.

9.

DETAILED SCOPE RULES eeeveseeeeeseeeeeseeereeeeseeneeseeoeee

PREDEFINED ROUTINES emcee recs cece cc eccccccceccceccseecs

5.1 Standard Procedures eoereeeeeseseseeeevneeeeeneseeeene

‘5.1.1 File Handling Procedures ...cecccccscccccece

5.1.2 Dynamic Allocation Procedures ..ccecececcecs

5.1.3 Transfer Procedurescccccccccccccessccces

5.1.4 Date and Time eeoeoeseeeeeaneeeoeseeeseoeneneeveee

5.1.5 Program Control Proceduresccccececceces

5.2 Standard Functions eoeeeseseseeeeeeeseeseeeseseeeneoe

5.2.1 Arithmetic Functions esveosvev eevee s eevee eveseeveve8

5.2.2 Transfer Functions aeeonpeeoeveeeseeeeveseneevn ev evens

5.2.3 Ordinal Functions eeoeveseereeeeeseeeseeeeseeeeseon

5.2.4 Predicates eeoereceoeszseeeeseeeseereeeeeeeesesesveseves

5.2.5 Processing Time Function ...ccsscccscccececs

5.2.6 Monitor Functions eeoeoensvsevoeeoeveevpe eee eesvseeeeveseenean

5.2.7 Access to File Processor Parameters

5.3 Complete List of Predefined Routines ...secceeccees

COMPTLER DIRECTIVES eoeereeeeeeneeseeeeereereeeaneseeeeeeeenes

7.1 How to Compile a Pascal PLOGraMm ...eceesssecssscees

RUNTIME ENVIRONMENT eeoeceeseeeereseeeeseeeseeneeseeseeoeesesens

8.1 The Pascal Process at Runtime ...ceecccvcees eee cees

8.1.1 Resident Proceduresccccccccccccccccvsecs

ERROR MESSAGES eseeeeeeeneeeseeceee

10. SOME PROGRAMMING HINTS AND WARNINGScccceecccccvcces

75

76

76

76

77

77

77

77

78

78

79

79

80

80

81

82

84

86

89

89

Ke
)

m
e
l

92

93

95

TABLE OF CONTENTS (continued) _____ PAGE

APPENDICES:

A, REFERENCES ..seeeeeceeceecceccecceeccccesssnccscnssesess 99

B. RC8000 PASCAL SYNTAX DIAGRAMS seteeetedsdveuguacsedeneds 100

Cc. UTILITY PROGRAMS soe eseseoeesoseosscorccsceareseresseoeocs 106

C.1 Indent evoeeseeeeeeeeeeeneeeseeeseeeeeeeseeeeeeeeeeeeese 106

C.2 Cross Reference Program eeeeveeoeeveeee eevee seoeee ee ese 107

C.3 Use of Indent and Cross eeoeeoevceeeoevneveseeeeveeeveevseeee eee 109

C.4 Performance Measurement .cccccccccccccscccccssesses 114

D. ERROR MESSAGES @eseeesvaeeses eevee eeeseseeeeveeseev eee eeeeaesees eee 116

D.1 Error Messages fram First PaSS ..ccccocccccecccceee 116

D.2 Error Messages from Second PasS ...ccceeeccccvcveee 119

D.3 Runtime Error MesSageS ...ccceccccccccecccccesceces 120

D.3.1 Start Up Errors ..cccccccccecccccccccvccceee 120

D.3.2 Errors During Program Executione56- 120

INTRODUCTION

The language Pascal was designed by Professor Niklaus Wirth to

satisfy two principal aims.

1) To make available a language suitable for teaching pro-

gramming as a systematic discipline.

2) To define a language whose implementations could be both

reliable and efficient on then available computers.

A preliminary version was drafted in 1968, and the first compiler

became operational in 1970. After some revisions, dictated by two

years of experience in the use of the language, a Revised Report

was published in 1973.

BASIC DEFINITION

2.1

Any Pascal program consists of a sequence of Pascal symbols. This

chapter defines this set of symbols. The Pascal symbols can be

divided into the following classes: reserved symbols; ident-

ifiers; literals and separators.

An algorithm can be written as a Pascal program which is divided

into two main parts: a declaration part and a statement part. The

declaration part defines a number of objects which can be manipu-

lated by the statement part. The data items used in an algorithm

are called variables and these are introduced by variable declar-

ations. The values that these data items can assume are defined

by type declarations. A number of variables constituting a single

entity may be canbined into a structured data type. A number of

declarations and operations which form a closed entity may be

canbined into a routine by a procedure or fimction declaration.

The statement part defines the main flow of the algorithm and

consists of a sequence of statements.

Vocabulary

The basic vocabulary consists of language symbols and user de-

fined symbols. The language symbols are reserved words (key

words) and punctuation marks. Throughout this manual reserved

symbols will be written in capital ‘letters (e.g. BEGIN). The re-

served symbols are all listed below:

AND END IN PACKED TO

ARRAY EXTERNAL LABEL PASCAL TYPE

BEGIN FILE MOD PROCEDURE UNTIL

CASE FOR MODULE PROGRAM VAR

CONST FORTRAN NIL RANDOM VALUE

DIV FORWARD NOT RECORD WHILE

DO FUNCTION OF REPEAT WITH

DOWNTO GOTO OR SET

ELSE IF OTHERWISE THEN

2.1

. 2.2

eo
 I e °

a

'
6

+t

¥

e
m

o {5
The user may not use the reserved words in a context other than

that explicitly stated in the difinition of Pascal; in particu-

lar, these words may not be used as identifiers.

It should be noted that the following reserved symbols are not

used in the current version: RANDOM, EXTERNAL, FORTRAN, PASCAL

and MODULE.

Program Elements

2.2.1 Syntax Diagrams

The syntax of the various language constructions is defined by

means of syntax diagrams. A syntax diagram is a graphical repre

sentation of a syntactical rule, every traversal of such a graph

corresponds to a particular application of that rule. Any such
traversal must follow:the direction indicated by the arrows, i.e.

no legal traversal may encounter an arrow pointing in the

opposite direction.

The following is an example of a syntax diagram.

While statement:

———_ >wHILE ———-3expression ———->D0O ———>statement —_——_>

The syntax diagram defines the name (while statement) and syntax

of the language constructions. The name is used when the con-
struction is referred to elsewhere in the text or in other syntax

diagrams. Language symbols are either names in capital letters

(e.g. WHILE) or punctuation marks (e.g. :=).

2.2

2.2.1

°2

Constructions defined by other syntax diagrams are given by their

names in small letters (e.g. expression). To be able to disting- e

uish between several occurrences of a construct, its name may be

subscripted.

Comments and Separators 2.2.2

Camment :

N v

character<

non-printing symbol<—4

v
T
T

Vv

V
V
—
~

aracter<

non-printing symbol<4

Canments may be inserted between any two identifiers, numbers or

special symbols. A camment does not affect the execution of the

program.

If the first character after the (* is a $ (dollar), the can-

ment is interpreted as a list of campiler options. For a canplete

description of the available options the reader is referred to

chapter 6. r

Camments, spaces and ends of lines are considered to be token

separators. An arbitrary number of separators are permitted be-

tween any two consecutive tokens, or before the first token of a

program text. At least one separator is required between any con-

secutive pair of tokens made up of identifiers, word-symbols or

numbers. Apart from the use of the space character in character

strings, no separators occur within tokens.

Identifiers

Names denoting constants, types, variables, programs and routines

are called identifiers. They must begin with a letter which may

be followed by any cambination and mmber of letters, digits and

underscores. Identifiers are permitted to be of any lenth, but

only the first twelve are recognized as significant. Matching up-

per and lower case letters are equivalent in identifiers.

identifier:

>letter > Vv

letter<—

digit

_ <—

letter is A,B,C,...,Z,A,D,C,.0,Z

digit is 0,1,2,...,9

Examples of legal identifiers:

step use_count Local_Message

very special defined _identifier

Note: "Local Message" is identical to "local_message",

"LOCAL MESSAGE" and any other canbination of matching small and

big letters.

Whereas none of the following are identifiers.

la

__day

The following are some of the predefined identifiers.

integer

real

text

succ

false

2.2.3

2.2.4 Numbers

20225

Numbers are integer literals (numeric values) and real literals.

numeric value:

i=

}+——>#b >-Sbinary digit > >

2.
xv

-——>#0>>octal digit >
<
™~

——>th—>Shexa digit

™~

binary digits are 0..1

octal digits are 0..7

hexa digits are 0..9 and a..f

Exampel of legal numbers:

f +

> =foppaiai —> (decimal integer)

7913 0033 #b1 01 #h££00 #07654

Note: Blanks are not allowed between #b, #0 and #h, and the fol-

lowing mumber.

Real Literal

A real literal is a real mimber with an optional scale factor.

real literal:

———decimal integer3> . > odigit >E->decimal integer> >

2.2.5

2.2.6

Note that if the real literal contains a decimal point, at least

one digit must precede and succeed the point. Also, no cama may

occur in a number. ©

Example of legal real mumbers:

3.141592

0.31415E1

314E=2

Strings of Characters

A character string is a sequence of characters enclosed by quote

marks, both single and double quote marks are legal but the end

mark must match the start mark.

char literal:

“—>string character" 7 >

'->string character>'

string literal:

>"> string character >>"—»—>
<

—>'->->string character>>'—— >!

~

String characters are the printable subset of the alphabet, ex-

Cluding newline (nl) and form feed (ff), i.e. ' ', '1', ...,'s!

Examples of legal strings:

"alocd" "'a' is a strange character" mu

2.2.6

2.2.7

Note: If a string surrounded by single quote marks is to contain @

a quote mark or a string surrounded by double quote marks is to

contain the surrounding quote mark, then this quote mark is to be

written twice, for example """" is equivalent to '"', and '''' is

equivalent to "'",

Boolean Literal : 2.2.7

A boolean literal is one of the predefined constants true and

false.

boolean literal: @

—>true-——

Vv

—>false—

THE PASCAL LANGUAGE 3.

3.1]

This chapter consists of descriptions of the different camponents

of a Pascal program. First an example vhich shows the structure

ofa canplete program definition, and after the example is given

a more precise description of the syntactical definition of the

different parts of the program definition.

The Program Outline 3.1

A Pascal program consists of declarations of labels, constants,

types, variables, routines, some initializations (VALUE-part) and

sane statements which operate on the declared cbjects.

This is an outline of a Pascal program:

PROGRAM catalog (output);

CONST

idlength = 10;

catalogsize = 256;

TYPE

identifier = ARRAY [1..idlength] OF char;

VAR

name: identifier;

found: boolean;

index: integer;

FUNCTION hash (id: identifier): integer;

VAR

key, next: integer;

ch: char;

VALUE

key = 13

next = 0;

10

BEGIN (* body of function hash *)

REPEAT @

next:= next + 1;

ch:= id [next];

IF ch sp THEN

key:= key * ord (ch) MOD catalogsize + 1;

UNTIL (ch = sp) OR (next >= idlength);

hash:= key;

END; (* of hash *)

BEGIN (* main program *)

index:= hash (name);

REPEAT

UNTIL found

The program contains a declaration of

- two constants: idlength with the value 10 and catalogsize

with the value 256,

- a type: identifier which is an array of characters,

3.2

VU

- three variables: name which can hold a value of type

identifier, found which can hold a value of type boolean,

and index which can hold an integer,

- a function hash which maps an identifier to an integer.

The function has a formal parameter id and three local variables

key, next and ch. The value-part specifies initial values for key

and next.

The assignment statement: index:= hash (name) contains a call of

the function; the result of the fimction is assigned to the vari-

able index.

All declared objects have names: catalog, idlength, catalogsize,

identifier, name, found, index, hash, id, key, next and ch. These

names are defined by declarations before they are used in state-

ments.

The Program Structure

The syntax of a Pascal program is

program:’

—>program heading—>block—> . Vv

The program heading specifies the interface to the environment in

which the program is executed.

3.2

program heading: ©

La
o~

—>PROGRAM >program identifier—->(—> file name >——>>) >; >

program identifier:

—>identifier Vv

file name:

—>identifier >

~ >external name x . @

Vv

The files denoted by the file names must be declared as file

variables in the block of the program, an exception to this is

input and output. The files listed in the program heading are

called external files. The external name, if present, is an

RC8000 catalog entry name in quotes. An external file which has a

file specification is automatically opened at the start of the

program, as if there had been an explicit open(file, external

name) (see 3.3.3.3), but there is no automatic call of 'reset' or

‘rewrite’

On the RC8000 input and output are initially connected to current r)

input and output allocated by FP. If other files are used for in-

put and/or output by a program there must be an explicit call of

Close before the program terminates.

Note: The program heading must contain the file name output.

3.3

13

Example of program heading

PROGRAM catalog (output, input= 'pip');

block:

>label declaration part

-———>constant definition part———

>type definition part

a

t——>variable declaration part-———

<

H————>value part

=

———>routine declaration part

_

————>statement rart Vv

statement part:
Y — >camnpound statement

routine declaration part:

Vv >routine declaration;

ee.

<<

The following sections will define and show examples of the dif

ferent elements of a block.

The Declaration Part 3.3

The declarations of a program serve as a description of the data

which are manipulated by the actions performed by the program.

14

3.3.1 Labels 3-31

A label is a non negative number less than 10000. Labels must be

declared prior to their use. A label is defined in the compound

statement of a routine or program. Any such label must be de-

clared in the label declaration part of the routine or program

where it is defined. .

label declaration part:

——>- > IABEL >> label >; >

< @
label:

digit >

Two labels which denote the same number are considered identical.

Labels follow the same rules of scope as other quantities; i.e.

they can be used in the rest of the program or routine where they

are declared.

3.3.2 Constants 3.3.20

The constant definition part consists of a number of definitions

of constants. Each of these definitions introduces an identifier

as a synonym for the value of a literal or as a synonym for an

enumeration constant from a scalar type.

15

constant definition part:

S
eo

> SCONST—>constant identifier S= >constant->; Vv

_

constant identifier:

— identifier Vv

constant:

—>>constant identifier >

->enumeration constant——>

->integer literal——__—_—__>

->real literal

->char literal >

H>string literal ——_—_———

->boolean literal

Vv

The use of constant identifiers generally makes a program more

readable and acts as a convenient documentation aid. It also al-

lows the programmer to group machine or example dependent quanti-

ties at the beginning of the program where they can be easily no-

ted and/or changed. (Thereby aiding the portability and modular-
ity of the program).

Example of constant definition part:

CONST

idlength= 10;

catalogsize= 256;

version date = '81.07.17';

There are some predefined constants:

alfalength = 12; (* number of characters in a variable of

type alfa (see 3.3.3.3) *)

maxint = &388607; (* 2t23-1, the largest possible integer

value *)

3.3.3

16 +

firstch = ' '; (* first character of the standard r

type char (see 3.3.3.1) *)

lastch ‘A! (* last character of the standard = iN?

type char (see 3.3.3.1) *)

setmax = 143; (* largest index allowed in a set

(see 3.3.3.3) *)

Types 3.3.3

A data type defines the set of values vhich may be assumed by e

variables and expressions (in the following called instances) of

that type. New data types may be defined in a type definition

part.

type definition part:

>.
a

>> TYPE>>type identifier >= >type>; >

=

type identifier:

identifier > ®

type:

>—>simple type >

—>structured type

->pointer type——}

->type identifier—

simple type:

Lome type >

real r

15

constant definition part:

>»
a

> SCONST—>>constant identifier >= >constant->;

A
Ss

Vv

constant identifier:

— identifier Vv

constant:

—>->constant identifier >

L>enumeration constant———>

->integer literal—————

>real literal

->char literal

>string literal

“>boolean literal

Vv

The use of constant identifiers generally makes a program more

readable and acts as a convenient documentation aid. It also al-

lows the programmer to group machine or example dependent quanti-

ties at the beginning of the program where they can be easily no-

ted and/or changed. (Thereby aiding the portability and modular-
ity of the program).

Example of constant definition part:

CONST

idlength= 10;

catalogsize= 256;

version date = '81.07.17';

There are some predefined constants:

alfalength = 12; (* number of characters in a variable of

type alfa (see 3.3.3.3) *)

maxint = 8388607; (* 2t23-1, the largest possible integer

value *)

3.3.3

16

firstch = ' '; (* first character of the standard

type char (see 3.3.3.1) *)

lastch = ‘A’; (* last character of the standard

type char (see 3.3.3.1) *)

setmax = 143; (* largest index allowed in a set

(see 3.3.3.3) *)

Types

A data type defines the set of values which may be assumed by

variables and expressions (in the following called instances) of

that type. New data types may be defined in a type definition

part.

type definition part:

>
~~

~>-STYPE-—>->type identifier= >type >; >

type identifier:

> identifier >

type:

>->simple type >

->structured type

->pointer type——>

->type identifier—

simple type:

“[oomeresion type >

—>real

3.3.3

Enumeration Types 3.3.3.1

An enumeration type consists of a finite, totally ordered set of

values.

Enumeration type:

> char

+->boolean-—___>

+>integer —————>

H>scalar type

+>subrange

Vv

scalar type:

—>(—+>—-enumeration constant > >) V

<
a.

enumeration constant:

— identifier >

A scalar type is defined by listing all the possible values in

increasing order as a list of identifiers.

Standard simple types

A standard type is denoted by a predefined type-identifier. The

values belonging to a standard type are manipulated by means of

predefined primitive operations. The following types are standard

in Pascal:

integer The values are a subset of the whole numbers, denoted

as described in 2.2.4. The predefined integer constant

maxint defines the subset of the integers available in

an implementation over which the integer cperations are

defined.

The range is the set of values:

-maxint-1, —maxint,..., —1,0,1, 08, maxint-1 ;maxint.

18

real The values are a subset of the real numbers denoted as

defined in 2.2.5. The real values are in the range ©}

[-22047 , .-9..5*27-2048 9,9 52-2048 , 22047] or
approximately in [107616 | 19616} or the corresponding

negative range. For more details see ref. [3] chapter

5.

boolean The values are truth values denoted by the identifiers

false and true, such that false is less than true.

char The values are a set of characters. The denotation of

character values is described in 2.2.6. The ordering

properties of the character values are defined by the

ordering of the ordinal values of the characters, i.e. @

the relationship between the character variables cl and

c2 is the same as the relationship between ord(cl) and

ord(c2). In all Pascal implementations the following

relations hold:

(1) The subset of character values representing the

digits 0 to 9 is ordered and contiguous.

(2) The subset of character values representing the

upper-case letters A to Z is ordered but not

necessarily contiguous. |

(3) The subset of character values representing the

lower-case letters a to z, if available, is ordered

but not necessarily contiguous.

Integer, boolean and char are enumeration-types. Real is a real-

type.

Operators applicable to standard types are defined in the follow

ing.

3.3.3.2

19

Subrange Types

An enumeration type can also be defined as a subrange of another

enumeration type by specifying its min and max values (separated

by .. (double period)). A subrange of the type real is not al-

lowed.

subrange type:

—>min value—>..—>max value Vv

min value:

—>constant Vv

: a 4 Vv

The min value must not exceed the max value and they must be of

canpatible enumeration types.

A subrange type is in fact a synonym for an enumeration type with

. @ range check included.

Often in this manual, the phrase ‘or subrange thereof' is assumed

to be implied but is not always mentioned explicitly.

The predefined function ord can also be applied to an instance of

a subrange type.

As a consequence of the ordering the following dyadic qerators

are defined on operands of any enumeration type. They all take

two operands of canpatible types and yield a boolean result.

< less than

<= less than or equal

= equal

> not equal

> greater than .

>= greater than or equal

3.3.3.2

20

The following predefined fimctions apply to instances of all enu- }

meration types. They take one argument and for succ and pred the

type of their result is compatible with the type of their ar-

gument, if the result is defined.

pred

succ

ord

The result is the successor of the argument. If the ar-

gument is the last (greatest) value of the type the re-

sult is undefined.

The result is the predecessor of the argument. If the

argument is the first (smallest) value of the type the

result is undefined.

The result is of type integer and is the ordinal mimber

of the argument in the set of values defined by the

type of the argument.

The types iso and char

The type iso is a predefined enumeration type. Its values are the

(Danish) ISO characters.

fe)] 2 3 4 #5 6
7

8

10

20

30

40

50

60

70

80

90

100

110

120 ~
Bp

a
N

Uv

TY

A
N
Y

rs ous

)
3

<
0

0
B
L
K

A

sp ! " £

* + , -

4 5 6 7

> ? @ A

H I J kK

R S T UV

$ A t |

Fgihii

P q Yr s

z 2x gf Aa

char is defined as

char = firstch.. lastch; (* 'u'..'a' *)

6

-
<4

Ww

Ow

ct

ou
.

=

A
Oo

™

oe

nv

del

nul soh stx etx eot eng ack bel bs

nl vt ff cr so si dle dcl dc2

dc4 nak syn etb can em_ sub esc fs

&

¢)

oe

C
F
O

M
B

Y
O

21

Note: The Danish characters £, 9, A, x, 6 and & are special sym

bols, they are not part of the set of characters used for ident-

ifiers, but they are used as LN,1{, | and}. And '#' is used

instead of 'f'.

Examples of enumeration and subrange types and their use:

Given the declarations

TYPE

suits=(club, diamond, heart, spade);

days=(monday, tuesday, wednesday, thursday, friday,

saturday, sunday);

week _end=friday..sunday; (* subrange type *)

months=(january, february, march, april, may, june, july,

august, september, october, november, december); .

seasons=(winter, spring, summer, autumn);

colours=(black, red);

Then the following relations are all true.

diamond<=heart

monday<sunday

december>=april

wednesday=succ (tuesday)

november=pred (december)

Whereas the following relations are all false.

club>=diamond

january=february

succ (november)=october

The Type Boolean

The type bolean is a predefined enumeration type. Boolean is pre-

defined as TYPE boolear=(false, true);

The following operators can be applied to instances of type

boolean. They all yield a boolean result.

AND dyadic logical conjunction of the two operands.

OR dyadic logical disjunction of the two operands.

NOT monadic logical negation of the operand.

When the predefined function ord is applied to a boolean value

the result is the following. @

ord(false)=0

ord (true)=1

Each of the relational operators (=, <<, <, <, >, >=) yields a

boolean value. Furthermore, the type boolean is defined so that

false < true. Hence, it is possible to define each of the 16

boolean operations using the above logical and relational qoer-

ators. For example, if p and q are boolean values, one can ex-

press

implication as p<#q .

equivalence, as =q @

exclusive or as pOq

The following table shows the value of some boolean expressions.

expression value

true AND true true

true AND false false

false AND true false

false AND false false

expression

true OR true

true OR false

false OR true

false OR false

Y

NOT true

NOT false

true<true

true< false

false<true

false<false

true=true

true=false

false=true

false=false

true<>true

true<>false

falseOtrue

falseOfalse

true<=true

true<=false

false<=true

false<=false

true>=true

true>=false

false>=true

false>=false

value

true

true

true

false

false

true

false

false

true

false

true

false

false

true

false

true

true

false

true

false

true

true

true

true

false

true

23

The type integer Y)

The following operators can be applied to instances of type inte-

ger. They all yield an integer result.

+ dyadic integer addition of the values of the two operands.

+ monadic monadic plus (redundant).

- dyadic integer subtraction of the value of the right

Operand fran the value of the left operand.

- monadic monadic minus.

* dyadic integer multiplication of the values of the two

operands.

DIV dyadic the value of the left operand is divided by the @

value of the right cperand. The result is the quo-

tient truncated (i.e. the quotient is not rounded)

to integer.

MOD dyadic a MOD b is defined as a-((a DIV b)*b)

The following predefined functions all take a single integer ar-

gument.

abs The integer result is the absolute value of the ar-

gument.

sor The integer result is the square of the argument.

odd The boolean result is true if the argument is odd;

otherwise it is false. Yd)

chr The result (of type char) is the character which

has the ordinal value of the argument. As a conse-

quence chr is only defined in the subrange

{[0..127].

ord The result (of type integer) is equal to the value

of the argument.

25

The following relations are all true.

2+2=4

—2-2=-4

5*3=15

15 DIV 3=5

15 DIV 7=2

11 DIV 42

15 MOD 3=0

15 MOD 7=]

11 MOD 43

-15 DIV 3=5

-11 DIV 42

-11 MOD 4=-3

-15 DIV (-7)=2

-15 MOD (-7)=-1

abs (-3)=3

sqr(4)=16

sqr(—4)=16
odd (3)=true

odd (-3)=true

odd(4)=false

odd(-4)=false

odd(0)=false

chr (65)='A' : -

The Type Real

The predefined type real consists of a finite subset of the real

numbers. A value of type real is represented in the RC8000 float-

ing point format [3] the mantissa has 36 bits including a sign

and the exponent 12 bits; thus there are at least 11 significant

decimal digits.

26

The following operators can be applied to instances of type real.

+ dyadic

+ monadic

- dyadic

- monadic

* dyadic

/ dyadic

<= dyadic

>= dyadic

<= dyadic

< dyadic

> dyadic

= dyadic

Floating point addition of the values of the two

operands.

Monadic plus (redundant).

Floating point subtraction of the value of the

right operand fran the value of the left qoerand.

Monadic minus.

Floating point multiplication of the values of

the two operands.

Floating point division of the value of the left

operand by the value of the right operand.

The boolean result is true if the specified rela-

tion holds between the two operands, otherwise it

is false.

The following predefined fimctions can be applied to a real argir

ments:

sin,cos,arctan, The result (of type real) is the result of apply-

ln, exp, sqrt,

abs, sqr,sinh,

arcsin

round

trunc

ing the specified mathematical function to the

argument.

The result (of type integer) is the argument

rounded (not truncated) according to the standard

mathematical conventions.

The result is the integer, with the same sign as

the argument, whose absolute value is the

greatest among the integers less than or equal to

the absolute value of the argument.

3.3.3.3

27

The difference between trunc and round is illustrated by the fol-

lowing examples

trunc(1.6)=1, trunc(-1.6)=-1, trunc(2.4)=2,

round(1.6)=2, round(-1.6)=-2, round(2.4)=2.

The operators = and <} should be used with great care on real

arguments. This is due to the round-off error which often results

fran the representation of real values.

The relative precision of a real mmber lies between 3*1 gl! and

6*107!!

Structured Types

A structured type is a canposition of other types. The specifica-

tion of a structured type specifies the structuring method and

the camponent types.

structured type:

—>->PACKED: ray type >

4 > >record type>

>set type——

>file type——

Array Types

An array consists of a fixed mimber of camponents all of which

have the same type. The number of canponents is specified by an

enumeration type (index type). The index type must not be inte-

ger, but a subrange of type integer is allowed.

Note: The index type is static and cannot be varied dynamically.

This implies that the index type must be known at the canpilation

time.

3.3.3.3

array type:

—>ARRAY> [—y> index type >>]—>cF—>camponent type—>

index type:

—>enumeration type Vv

camponent type:

—>type Vv

Arrays can either be used as a whole or camponent-wise. A whole

array is denoted by its array variable. A canponent of an array

is denoted by the array variable followed by one or more indices

separated by canmas and enclosed in brackets. An index consists

of a number of index expressions. The total mumber of index ex-

pressions must not exceed the dimension of the array. Furthermore

the value of each index expression must be of a type campatible

with the declaration of the corresponding index.

indexed variable:

—array variable>[—> expression >>] Vv

?

array variable:

—variable Vv

Examples of array declarations and denotations:

Assume the declarations

TYPE

hours=8..16;

matrix=ARRAY[]..n,1..n] OF real; (*n is an integer constant *)

counter=ARRAY['a'..'z'] OF integer;

name_of day=ARRAY[days] OF alfa;

occupied _type=ARRAY [days ,hours] OF boolean;

29

VAR

a,b,c: matrix;

occupied: occupied type;

Then the following lines give examples of correct array-denota-

tions.

a := b;(* the entire matrix b is copied into a *)

c[i]:=ali]; (* me row of a is copied into the corresponding row

in c *)

c[i,j]:=alk,1]; (* qe camponent of a is copied into one canpo-

nent of c *)

occupied [wednesday, 9] :=true;

occupied [friday, 15]:=false;

Record Types

A record consists of a fixed number of camponents called fields,

which may be of different types. For each field its field ident-

ifier and its type must be specified. A record can be divided in-

to a fixed part and a variant part, either or both of these parts

may be empty.

record type:

—>RECORD >field list-—>END Vv

field list:

>
>

> fixed part >>; >> variant part >>; >

fixed part:

<a
~

>> >field identifier s>: >type Vv

i -
as

A

30 .

field list may have a number of variants, in which case a cer- @

tain field may be designated as the tag field, whose value indi-

cates which variant is assumed by the field list at a given time.

The tag field may be empty.

variant part:

—>CASE>tag field->tag field type POR evar iant >>

<
7s

tag field:

~
—> ->field identifier >: Vv

~~,
oo

tag field type:

—>enumeration type Vv

Note:

].

2.

All field names must be distinct - even if they occur in dif-

ferent variants.

If the field list for a label L is empty, the form is:

L: ().

A field list can have only one variant part and it must suc-

ceed the fixed part(s). (However, a variant part may itself @

contain variants. Hence, it is possible to have nested vari-

ants).

The tag field type must be an enumeration type. Each variant

must be labelled with one or more constants of a type ccmpat-

ible with the tag field type. All such labels must be dis- |
|

tinct. |

31

variant:

—>case label list->: >(—>field list >) V

case label list:

—ro-constant->

<
aos

Vv

The value of the tag field determines which variant can be mani-

pulated.

Records can either be used as a whole or camponent-wise. A camnpo-

nent of a record is denoted by the record variable followed by

the field identifier of the camponent separated by a period.

field designator:

—>record variable>.—>field identifier V

record variable:

— variable Vv

field identifier:

— identifier Vv

Note: It is not checked that the tag field has the correct value

when a component of a variant part is referred to.

Examples of record definitions:

TYPE

date=RECORD

year: integer;

month: 1..12;

day:1..3]

END;

person=RECORD @

name, firstname: alfa;

age: 0..99;

CASE married: boolean OF

true: (spousesname: alfa);

false:()

END;

figure=RECORD

x,y: real;

areas real;

CASE s: shape OF

triangle: (side:real; @

inclination, anglel, angle2: angle);

rectangle: (sidel, side2: real;

skew, angle3: angle);

circle: (diameter: real);

END;

Packed Representation

In order to reduce storage requirements a definition of an array

or record type can be prefixed by the symbol PACKED.

Note: The packed representation may result in an increase in ex-

ecution time and of the size of the campiled code. This is due to @

the packing and wmpacking qperations which must be performed

every time a camponent is accessed.

Two predefined procedures are provided for the packing and m-

packing of an array of type char.

Assume that a and p are variables of the following types:

a:ARRAY[m..n]JOF char; p:PACKED ARRAY [u. .vJOF char;

where (ord(n)-ord(m))>=(ord(v)-ord(u));

ord (m)<=ord(i)<=(ord(n)-ord(v)+ord(u)); e@

and the index tyoes of the arrays a and p and the type of i are

compatible.

33

Then pack(a,i,p) is equivalent to

K:=1;

pl[3] s=alk];

k:=succ(k)

END

and wmpack(p,a,i) is equivalent to

k:=1;

FOR j:=u TO v DO

BHGIN

alk] :=p[J];

k:=succ(k)

END

where j denotes an auxiliary variable not occurring elsewhere in

the program.

Use of the predefined procedures should be preferred because of

their more efficient implementation.

Note: No camponent of a packed structure may be used as a vari-

able parameter to a routine.

Strings

In 2.2.6 string literals were defined as sequences of characters

enclosed by quotes. Strings ‘consisting of a single character are

constants of the predefined type char, those of n characters

(n>1) are constants of the type defined as: PACKED ARRAY [1..n]

OF char; furthermore the type alfa is predefined as: PACKED ARRAY

[1..alfalength] OF char; (on RC8000 alfalength is 12).

The relational qperators <, >, <= and > are applicable to

strings of the same length. The ordering is the lexicographic

ordering based on the ordering of the characters.

Set s

A set type consists of the set of all subsets of some enumeration

type. A set type definition is written as follows.

set type:

—>SET CF >base type >

base type:

—>enumeration type >

The ordinal number of the largest element must not exceed 143, @

and the ordinal mmber of the smallest must not be negative. It

follows that a set type can contain at most 144 elements.

set:

>

— (>> element— >] >

<a.

a

element:

->expression @

=> >

~wexpression, . expression,»

A set denotes a set consisting of the expression values. The fom

m..m denotes the set of all elements i of the base type so that

m<=i<=n. If m>n then [m..n] denotes the empty set. The set ex-

pressions must all be of campatible enumeration types. The empty

set is denoted [] and is compatible with any set type.

35 °

The following three operators take two operands of campatible set

types and their result is of a set type compatible with the

Operand type. |

+ The result is the union of the two operand sets.

* The result is the intersection of the two operand sets.

- The result is the set difference of the two operand

sets (i.e. the elements which belong to the left

operand but not to the right operand).

The following two operators take two operands of compatible set

types and give a boolean result.

<= The result is true if the left operand is included in

the right operand; otherwise it is false.

>= The result is true if the right operand is inclwied in

the left operand; otherwise it is false.

‘The following operator takes two operands.

IN The result is true if the left operand is a member of

the set specified as the right operand. The left

operand must be an instance of an enumeration type car

patible with the base type of the right operand.

Assume a and b are of type t and assume t is a set type.

Then the following expression is true.

(a-b)+(b-a)=atb-a*b

CI@ED
Assume the declarations

TYPE

workingdays=SET OF days;

characters=SET OF "1". ."A";

VAR

workingday :workingdays;

letters, digits, first, following: characters;

lazy: boolean;

36

Then the following lines are examples of applications of set and

set operators.

workingday := [monday. . friday];

lazy:=NOT(saturday in workingday);

letters:=["A".."Z","a".."z"j

digits:=["0".."9"];

first :=letters;

following:=first+digits;

The following relations are all true.

first* digits []

following*first=letters

File Types

A file-type is a structured-type consisting of a sequence of can

ponents which are all of one type. The mumber of camponents, cal-

led the length of the file, is not fixed by the filetype defini-

tion. A file with zero canponents is empty.

At any time only one camponent of the file is accessible. The

other camponents can be reached by sequencing through the file.

A file type can be defined as follows.

file type:

ITT a ~, FILE F— >type >

The declaration of a file variable introduces a file buffer of

the camponent type. The file buffer is denoted by the file vari-

able followed by an up arrow (t+).

file buffer:

— file variable—t

file variable:

— variable >

37

The file buffer can be considered as a window through which

existing components of the file can be inspected (read) or new

camponents appended (written). A file position is implicitly as-

sociated with this window (the file buffer). The window is auto-

matically moved by certain file operations. It is, however, not

possible to alternate between reading and writing a file. na

single pass the file can be either read or written.

The sequential processing and the existence of a file buffer sug-

gest that files are associated with secondary storage and periph-

erals. Exactly how the camponents are allocated varies, but

usually only a few canponents are present in primary storage at

any given time, and only the component denoted by the file buffer

is directly accessible.

A special mark is placed after the last camponent of the file.

This mark is called the end—of-file mark (eof).

The predefined routines for file handling are given below. It is

assumed that f is a file variable and x is of a type campatible

with the type of the camponents in the file f.

eof(f) This boolean fumction is true if the file is

positioned at the end-of-file mark, otherwise

it is false.

reset(f) The file is repositioned at the start, i.e.

the file buffer ft contains the first campo-

nent of the file. The file can now be read.

If the file is empty the value of ft is unde-

fined, and eof(f) is true.

rewrite(f) The file is positioned at the start for re-

writing. The value of f becames the empty

file, ft becanes undefined, and eof(f) be

canes true.

38

open(f,<file name>) Opens the file f specified by the <filename>

close(£)

get(f)

put(£)

read(f,x)

of type PACKED ARRAY [1..n] of char

(1<=n<=11). Qily external files (see 3.2) may

be opened, and only if they are not already

opened.

Closes the file f. Qly external files may be

closed and only if they have been opened.

The position of the file is advanced to the

next camponent. The value of the file buffer

becanes the contents of this camponent. If no

next camponent exists eof(f) becames true,

and the value of ft is undefined. If eof(f)

is true prior to the execution of get(f) the

call will result in the runtime error message

"try to read past eof'. The call get(f) pre-

supposes that the immediately preceding cper-

ation on f was either get(f) or reset(f) or

equivalent forms.

The value of the buffer variable ft is ap-

pended to the file f. The value of ft beccmes

undefined. If the value of eof(f) is false

prior to the execution the call will result

in the mmtime error message ‘illegal zone-

state’. Otherwise the value of eof remains

true. The call prt(f) presupposes that the

immediately preceding operation on f was

either put(f) or rewrite(f) or equivalent

forms.

A call of read is exactly equivalent to ex-

ecuting: x:=£t; get(f);

xX must be of a type campatible with the type

of the camponents in the file f. If fisa

textfile the reader is referred to the fol-

lowing part about textfiles.

39

write(£,x) A call of write is exactly equivalent to ex-

ecuting: ft:=x; put(f);

x must be of a type canpatible with the type

of the camponents in the file f.

Note: An open file needs one area process, hence the maximum num

ber of simultaneous open files are limited by the number of area

processes of the job.

Note: Routines which have local files should not be called recur-

sively.

Textfiles

A file of characters is called a textfile. Accordingly, the pre-

defined type text is defined as: FILE GF char.

Texts can be subdivided into lines. The following predefined rouw-

tines are provided for manipulating the end-of-line mark (nl). It

is assumed that t is a variable of type text.

writeln(t) Terminate the current line of t i.e. write an

nl character.

readl1n(t) Skip to the beginning of the next line of t.

Subsequently tt becames the first character

of the next line if any. Thus readln(t) has

the same effect as the following statements:

WHILE NOT eoln(t) DO get(t); get(t);

eoln(t) The result of this boolean fimction is true

if t is positioned at an end-of-line mark,

and false otherwise. If true, tt contains a

blank.

page(t)

40

The parameter must be a textfile. page(t) is

equivalent to the statement: ©

write(t,ff); (* form feed *)

(This will usually force a lineprinter to

start on a new page).

To facilitate the manipulation of textfiles, the predefined pro-

cedures read and write have some built-in transformation pro-

cedures. These translate numbers fran the internal binary repre-

sentation into a character sequence of decimal digits and vice

versa. These procedures are called in a non-standard way, since

they can be called with a variable number of parameters of vari-

ous types.

Let t denote a textfile and v,vl,v2,.....,vn variables of type

char, integer or real:

read(t,v) A sequence of characters are read fram the

file t through the file buffer tt by means of

get(t). The first significant character is

the character in tt. .

If v is of type char, then read(t,v) is

exactly equivalent to executing v:=tt;

get(t);

If v is of type integer a sequence of digits

is transformed into a (decimal) value which @

is assigned to v. Preceding non-digits are

skipped. The character sequence which follows

must be consistent with the syntax for deci-

mal integers given in chapter 2. If not, the

execution is terminated and a mmtime error

message is given.

If v is of type real, a sequence of charac-

ters is transformed into a real value which

is assigned to v. Preceding characters are

skipped. The character sequence which follows

must be consistent with the syntax for real

literals given in chapter 2; with the exten-

sion: both ' (quote) and E are accepted as e@

read(t,vl,v2,..,vn)

readlin(t,v)

readin(t,vl,..,vn)

4)

exponent part indicator. If not, execution is

terminated and a runtime error message is

given.

If v is of type char, then all preceding non-

char characters are skipped, except if tt=nl

then eoln(t) becames true, v becames ' '

(space), and the next character is moved into

the file buffer.

Is a shorthand notation for BEGIN read(t,vl);

read(t,v2);.....read(t,vn) END

Is a shorthand notation for BEGIN read(t,v);

readin(t) END

Is a shorthand notation for BEGIN

read(t,vl,v2,.+-.,vn); readln(t) END

The predefined procedure write is extended in a similar way. Let

p,pl,p2,....,pn be parameters of the form defined below, and let

t be a textfile:

write(t,p) The parameter p is transformed into a se-

quence of characters (according to the rules

given below). This sequence is written on t.

write(t,pl,p2,.....+,pn)

This is just a shorthand notation for BEGIN

write(t,pl); write(t,p2); ; write(t,pn)

END

writeln(t,pl,......,pn)

This is just a shorthand notation for BEGIN

write(t,pl,.....,pn); writeln(t) END

The parameters to the predefined procedures write and writeln

42

must have the following fom.

parameter:

—>expression +>: >field width3

field width:

— expression

\
-—>:->fraction length

fraction length:

—>expression

The first expression (which is the value to be written) must be

of one of the following types: integer, boolean, char, real or

string. The field width indicates the minimum muimber of charac

ters to be written. If the field width is longer than needed, the

value is written right justified. The field width must be an in-

teger expression with value greater than or equal to 0. If anit-
Vv

ted a default value is chosen.

TYPE

integer

boolean

char

real

CLEFAULT REMARKS

FIELD WIDTH

8

6 The string "true" or "false" is written.

]

14 If fraction length is not specified, the

value will be written with 1 digit before

the decimal point; 7 digits after the de-

cimal point; and a scaling exponent writ-

ten as 'tddd (floating point notation).

Vv

43

TYPE DEFAULT REMARKS

FIELD WIDTH

If fraction length is specified, the frac—

tion length must be at least two less than

the field width. The fraction length spec-

ifies the number of digits to follow the

decimal point. If the fraction length is

specified, no exponent is written (fixed

point notation).

If the field width is too short, the

necessary number of additional character

positions are used.

string length of If a non-zero field width less than the

string length of the string is specified, the

right part of the string is truncated.

alfa 12

A textfile t subdivided into lines can be scanned by the follow

ing piece of program.

WHILE NOT eof(t) DO

BEGIN

WHILE NOT eoln(t) DO

BEGIN

read(t,ch);

q@(ch) (* process single character *

END

readin(t);

r(* process line *)

END;

ow
ed

A textfile t subdivided into lines with maximum n significant

characters in each line can be scanned by the following piece of

program.

WHILE NOT eof(t) DO

BEGIN

i:=0;

WHILE (i<n)>eoln(t) DO

BEGIN

i:=itl;

read(t,line[i]);

END

readin(t);

r(* process line *)

END;

The Predefined Textfiles Input and Output

Two textfiles named input and output are predefined as

VAR input, output: text;

The first parameter to read, readin, write or writeln can be

omitted, in which case input or output respectively is used.

Let v denote a variable of type char, integer or real. Let e de-

note an expression of type char, integer, real, boolean or

string.

write(e) is

writeln(e) is

read(v) is

==) readin({v) o
d

78)

equivalent to

equivalent to

equivalent to

equivalent to

write (output, e)

writeln(output,e)

read (input, v)

readin(input,v

On the RC8000, input and output are initially connected to cur-

rent input and output allocated by FP. If disc files are used for

input and/or output by a program, there must be an explicit call

of close before the program terminates, and if input and/or out-

put have not been connected to disk files, they must not be

closed.

45

Pointer Types

A static variable (statically allocated) is one that is declared

in a program and subsequently denoted by its identifier. It is

called static, for it exists (i.e. memory is allocated for it)

during the entire execution of the block to which it is local. A

variable may, on the other hand, be generated dynamically (with-

out any correlation to the static structure of the program) by

the procedure new. Such a variable is consequently called a

dynamic variable.

Dynamic variables do not occur in an explicit variable declara-

tion and cannot be referred ‘directly by identifiers. Instead,

generation of a dynamic variable introduces a pointer value

(which is nothing other than the storage address of the newly

allocated variable). Hence, a pointer type consists of an um-

bounded set of values pointing to variables of a type. No oper-

ators are defined om pointers except the tests for equality and

inequality.

Pointer values are created by the standard procedure new. The

pointer value NIL belongs to every pointer type; it does not

point to a variable.

pointer type:

—t—-identifier Vv

The identifier must denote a type which must not be a file type.

The value of a pointer variable is either wmdefined, NIL or a re-

ference to a variable of specified type. The variable referred by

a pointer is denoted by the pointer variable followed by an up

arrow (t+).

referred variable:

—>pointer variable—>t >

46

pointer variable:

— variable Vv

The declaration of a pointer variable will mmly cause the can-

puter to allocate space for the pointer, hence no space is allo-

cated for any referred variable before this is explicitly denoted

by calling the pwedefined procedure new.

The type of a referred variable is the type specified in the

declaration of the pointer type.

The predefined procedures on RC8000 provided for manipulating

pointer variables are new and dispose. @

new(p) A new variable of the type associated with p

is allocated on the top of the core area for

dynamic variables and a reference to this

variable is assigned to p.

new(p,cl,c2,..,cn) In case the type associated with p is a re-

cord type with variants, the form

new(p,cl,..,cn) can be used. cl,c2,..,m isa

list of constant selectors used to determine

the size of the allocated variable. The size

is as if the variable was declared of a r

record type with the field list formed by the

following rule of selection: First, the

variant corresponding to the selector cl is

selected. Then, the field list of this

variant is formed by using the selectors

c2,..,cn (by a recursive application of this

rule). Finally the so far formed field list |

is prefixed by the tag field (if non-empty)

and is then substituted for the variant |

part.

The above description does not imply any as- ry

signment to the tag fields.

47

Note: The variant of the allocated variable

must not be changed, and assignment to the

entire variable is not allowed. However, the

value of single components can be altered.

dispose(p)

dispose(p,cl,c2,..,cn)

In the RC8000 implementation the area used

for dynamic variables is handled as a stack,

i.e. a call of new(p) is a stacking of a new

element of type pt. The unstacking is per-

formed by means of the procedure dispose. The

call dispose(p) implies that the core re-

served for pt and later allocated variables

will be released and reused on later calls of

new.

Examples of use of pointer variables.

A list structure can be declared as follows.

TYPE

list= RECORD

inf: ...;

next: tlist

END;

VAR

head: tlist;

A list structure with two elements can be created as follows.

new(head) ;

headt.inf:= ...;

new(headt .next);

headt.nextt.inf:= ...;

headt .nextt .next:=NIL;

3.3.3.4

Assume the declarations:

CONST

maxval=50;

TYPE

atomFRECORD

name: alfa;

number: integer;

weight: real;

occupied: SET GF 1..maxval;

bindings: ARRAY[]..maxval] OF tatom;

charge: (plus, minus, neutral);

saturated: boolean

END;

VAR

a: atom;

Then the following statements give all names of atoms to which a

is bound.

WITH a DO

FOR i:=] TO maxval DO

IF i IN occupied THEN writeln(i,bindings[i] t.name);

Type Compatibility

Canpatibility of types is defined by so-called "name equivalence"

as fpllows:

Any type is compatible with itself.

Any two types are campatible if a type exists that is compatible

with both of them.

Any two set types are canpatible if their base types are campat-

ible. The type of the empty set [] is compatible with any set

type.

3.3.3.4

3.3.4

’ 49

Any subrange type is canpatible with the type of which it isa

subrange.

Any two file types are canpatible if their camponent types are

canpatible.

two pointer s are compatible if the variables referred by type

the pointers are of compatible types. The type of the pointer

value NIL is compatible with any pointer type.

Variables

A variable is a named data structure that contains a value. Each

variable must be declared in a variable declaration part prior to

its use. The name and data type of each variable must be spec-

ified. ,

variable declaration part:

>,
>

> PVAR-> >> identifier >>: >type >; Vv

<u
7

Several variables of the same type may be declared in a single

list of identifiers followed by the type.

An entire variable is denoted by its identifier.

If a variable is of array type or record type, a single ccmponent

is denoted by the identifier, followed by a selector specifying

that canponent (see subsection 3.3.3.3).

3.3.4

50

variable:

>> identifier >

->indexed variable ——>

—>field designator ———>

-—>referenced variable-— >

->file buffer

Vv

3.3.5 3.3.5 Value Part

value part:

> VALUE >> value >; >

value:

—entire variable+= const specification

const specification:
Vv

onstant >

(structured const->) >

NIL

[set const list >]}——

structured const:

—>ostr const element

<A
as

str const element:

onst specification

< index range > > *—>const specification

constant >: (—>structured const—>)

Vv

51

set const list:

>

>constant > >

L ee sconstant-+

<<
as

Vv

The value-part is used to give local variables initial values on

entry to a block, each variable in the value part is initialized

according to the const specification on the right hand side of

the equal sign.

For structured variables all parts must be specified, and the tag

field in a RECORD with a CASE must be specified even if the tag

field is empty in the definition of the RECORD. The initializa-

tion of a tag field and the associated variant are specified by

value of the tag field : (value of variant)

Examples of value specifications:

Let x be declared as

xX: RECORD

al: char;

CASE integer OF

1: (a2 : boolean;

a2] : SET G@ 0..10);

(a3: 0..25; a4, a5: char);

(a6: real);

B
Ww

‘N
O

~
e

e
e

o
o

If the value part contains

x=('A',1:(true,[0,3..5])) then

x.al is initialized to ‘A!’

x.a2 is initialized to true

x.a2]1 is initialized to [0,3,4,5]

52

or if the value part contains

x=('B',2:(5,'C','D')) then

x.al is initialized to 'B'

x.a3 is initialized to 5

x.a4 is initialized to 'c'

x.a5 is initialized to 'D'

As a compact notation for giving the same value to a number of

consecutive array elements it is possible to specify the index

range followed by the specification of one value.

e.g. If b is declared as @

b: ARRAY [2..25] OF integer

and if the valuepart contains

b=(5,<3..10> * 0,3,4,<13..25> * 10) then

b[2] is initialized to 5

b[3] is initialized to 0

b[10] is initialized to

b[11] is initialized to

bl 2] is ini
wLi

Ww
W

Oo

f 8 pS

b[13] is initialized to 10

b[25] is initialized to 10

Note: Pointer variables may only be initialized to NIL. Each va-

viable may only occur once in the valuepart.

3.3.6

53

Routine Declaration

A routine declaration serves to associate an identifier with a

set of definitions, declarations and a statement. The execution

of this statement can be invoked by a routine call. Routine is a

generic term for procedures and functions.

routine declaration:

procedure heading

DLock >

function heading

procedure heading:

—>PROCEDURE procedure identifier—>formal parameters >; >

function heading:

—>FUNCTIONfunction identifier—->formal parameters >: ——

+—>type identifier; >

procedure identifier:

— identifier V

function identifier:

— identifier Vv

type identifier:

Vv
 —>type

A list of formal parameters may be specified in the routine head-

ing. For each formal parameter is specified its name (formal na

me) and its kind. There are the following four parameter kinds:

value, variable, procedure and fimction. The kind value is as-

3.3.6

54

sumed if nothing else is specified. The kinds variable, procedure

and function are specified by the symbols VAR, PROCEDURE and

FUNCTION respectively. In addition the types of all value, vari-

able or function parameters must be specified. The parameter kind

defines the binding between actual parameters and formal par-

ameters in a routine (see 3.4.6).

formal parameters:

+»
oO

>->(—>-Sparameter description >>)
°
f

parameter description:

> > >->>formal name >>: >type

a
FUNCTION-——

PROCEDURE——>;>formal name

Vv

identifier >>

formal name:

—identifier

In the block of the routine formal parameters are denoted by

their formal names.

A formal parameter of kind value may be used as a local variable

of the specified name and type, the value of which is initialized

Vv

to the value of the actual parameter at the routine call.

A formal parameter of kind variable denotes a variable of the

specified name and type. The denoted variable is the actual par-

ameter.

A formal parameter of kind procedure or function may be used as

if it was locally declared with all formal parameters of kind

value.

55

The difference between the various kinds of parameters is ex-

plained in subsection 3.4.6.

The following are all examples of routine headings.

FUNCTION my _own_sgqrt(x:real):real;

FUNCTION zero(lower ,upper:real;FUNCTION f:real):real;

PROCEDURE insert(element:camponent_type);

PROCEDURE update(VAR element: canponent_type);

The block of a routine consists of a number of definitions and

declarations and a canpound statement.

"Within the block of the routine the routine name itself may be

used to denote a recursive call of the routine. However the oc-

currence of a function identifier as a left hand side of an as-

signment statement denotes changes in the current value of the

function. Such occurrences are only allowed within the compound

statement of the block of the fimction.

The type of the values which can be returned by a fimction must

be specified in the fimction head. The value of a fimction is

determined by the dynamically last value assigned to the function

identifier within the block of the function. The type of a fine

tion is restricted to bea simple type or a pointer type.

56

The following are all examples of fimction declarations. e

FUNCTION zero(FUNCTION test: boolean; lower,upper: real; FUNCTION f:

real) :real;

VAR centre,y:real;s:boolean;

BEGIN(* campute solution to f(x)=0 by bisection *)

s:=f£(lower)<0;

REPEAT

centre:=(lowert+upper) /2;

y:=f£(centre);

IF(y<O)=s THEN lower:=centre

ELSE upper:=centre;

UNTIL test(lower,upper);

zero:=centre @

END(* zero *);

test(lower,upper) is true if and only if the difference between

lower and upper is small enough.

The following machine-independent fimction can be used unless the

solution is 0.0.

FUNCTION test(i,u: real): boolean;

BEGIN

test:=((uti) /2=u) OR ((uti)/2=i)

END

FUNCTION sign(x: real) :integer;

RMGVITAT
DOGLIN

if x<O THEN sign:=1 ELSE sign:=ord(x>0)

END;

57

FUNCTION bincoef(p,q:integer) : integer;

(* Calculates binomial coefficient p!/(q!*(p-q)!). The function

is canputationally inefficient but may be useful when only single

values are desired *)

BEGIN

IF p-q<q THEN q:=p-q?
IF q<O THEN bincoef :=0

ELSE

IF gO THEN bincoef:=1

ELSE

bincoef :=bincoef(p-1,q-1)+bincoef(p-1,q)

END;

The names introduced by a definition or by a declaration in a

routine, (a local definition or declaration) are oly valid in

the rest of the block of the routine. Mm the other hand local

definitions and declarations take precedence over definitions and~

declarations in the surroundings (global definitions and declara-

tions). As routine declarations can be nested, the same routine

name can be introduced at several levels. In this case a’ use of

the name will always refer to the innermost declaration.

Routine Pseudo-declaration

The scope rules of Pascal (see chapter 4) require that the de-

Claration of a routine must appear in text before use.

A routine may be pseudo-declared by substituting the block of the

routine declaration with the identifier FORWARD.

routine pseudo-declaration:

—>routine heading FORWARD Vv

A routine declaration where the block is substituted by the

identifier FORWARD serves as an announcement of the full block

which is given in text later. The block itself is then just

headed by a routine head the formal parameters are not needed,

but it is allowed to specify them again.

58

Example:

The scope rules of Pascal lead to a conflict in the situation @

where two routines call each other. (Which one should be declared

first?). The conflict can be avoided by substituting the reserved

word FORWARD for the body of the first routine and postponing the

specification of the routine body. The following is an example of

this.

FUNCTION g(x:real) :real;FORWARD;

FUNCTION f(x): real;

eoese

BEGIN.....g(x).....END;

FUNCTION g(x:real) :real;

BEGIN....-£(x)....-.END;

3.4 The Statement Part 3.4

This section contains subsections describing the syntax and the

use Of the different statements which are included in the lan-

guage.

3.4.1 Statements 34,1)

The statements of a program describe the manipulations performed

on data when the program is executed. These statements are col-

lected in a compound statement.

compound statement:

————> BEGIN—> > statement > >END >

2=<.
7s

The statements are executed one at a time in the specified order.

3.4.2

59

Below, all statement forms are given together with references to

their precise description:

statement: subsection:

+>canpound statenent-—————> 3.4.1

->procedure call 3.4.6

->assignment statement ———> 3.4.2

->case statement > 3.4.5

>for statement 3.4.4

->if statement 3.4.5

H>repeat statement-———————-> 3.4.4

—>while statement 3.4.4

>with statement 3.4.7

->goto statement > 3.4.3

->labelled statement-———————> 3.4.3

Assignment Statement

assignment statement:

—>— variable >>: = ——>expression

——>finction sdentitier J

Vv

The type of the variable must be campatible with the type of the

expression.

Within the statement part of a fimction, assignment may be per-

formed to the fimction identifier of that fimction.

Assignment can be made to variables of any type except file vari-

ables (but assignment to the file buffer of a file is, of course,

legal).

The assignment statement replaces the current value of the vari-

able by the value of the expression.

3.4.2

3.4.2.1 Expressions

An expression defines a rule of canputation for obtaining a value

by application of operators to operands. An expression is

ated using the following precedence rules.

NOT has the highest precedence followed by

*, /, DIV, MOD, AND followed by
+, -, & followed by

= 2, %] = > >=, IN

Expressions are written in infix notation.

evalu-

Note: All factors in an expression may be evaluated and hence

should all be defined.

expression:

—>simple expression >>

-> = —>->simple expression!

> o>

> <—>

> <=> .

> >—>

> =

_> INS

simple expression:

>—>term >

—> + <—+ <4

L>-—» Ke-- <—

<—OR <4

term:

—>— factor

<——— * |

Vv

<— | <—-

<—-DIV <——

<—MoD <——

<—-AND <——

factor:

—>->constant >

>variable

+>function call

+->(->expression—>)

+->NOT factor

—>set

Vv

Examples of expressions:

The following relations are all true.

2*3—-4 *5=(2*3)-(4*5)

15 DIV 4*4=(15 DIV 4)*4

80/5 /3=(80/5)/3

44+2*3=4+(2*3)

For any b , bo, b, of type boolean the following relation is true.

b) OR NOT by AND bg = b; OR ((NOT bo) AND b3)

The following is not a legal expression.

O<x AND x<10

The expression should be written as

(O<x) AND (x<10)

62

The following two statements are different.

IF (l<=n) AND (table[1]=key) THEN s;

IF 1<=n THEN IF table[1]=key THEN s;

The following table gives all valid cambinations of dyadic qper-

ators and qperand types:

operator(s) left operand right operand result

_ +,-,* integer integer integer

integer real real

real integer real

real real real @

any set type T T T

DIV, MOD integer integer integer

/ integer integer real

integer real real

real integer real

real real real

OR, AND boolean boolean boolean

=, any type T (see Note) T boolean

<=,>=,<,>,< any string type T T boolean

any enum.type T T boolean

IN any enum.type T SET OF T boolean

Note: Files cannot be compared.

The corresponding table for monadic qperators is as follows:

operator(s) operand result

+,- integer integer

real real

NOT boolean boolean

Note: During evaluation of an expression, intermediate results

are kept in registers and in some reserved locations. If the nm-

ber of intermediate results exceeds the capacity of reserved

3.4.3

63

space, the expression cannot be translated and the canpiler is-

sues the error message 311: Not enough roan for temporaries. To

remedy this, the expression must either be rewritten with a less

canplicated paranthesis structure or split into two or more ex-

pressions.

Goto Statement

3.4.4

goto statement:

>GOoTO >label Vv

Execution continues at the statement labelled by the label

(labelled statement).

The statement defining the label must be within the same or a

surrounding block of the block where the goto is given, i.e. it

is not possible to jump into an inner routine by a goto state-

ment. Furthermore the result of jumping into an inner statement

of an if, while, repeat, with, for or case statement is unde-

fined.

labelled statement:

—> label —>: —>statement , —

Repetitive Statements

Repeat Statement

The repeat statement specifies that a sequence of statements is

to be executed repeatedly.

repeat statement:

—>REPEAT —>—statement—>—>UNTIL —>expression—>
<
as

3.4.3

3.4.4

64

The result of the expression must be of type boolean.

The statement sequence is executed one or more times. Every time

the sequence has been executed, the expression is evaluated, when

the result is true the repeat statement is campleted.

While Statement

The while statement specifies that a statement is to be executed

a number of times.

while statement:

—>WHILE >expression-—>D0>statement > @

The expression must yield a result of type boolean. The statement

following DO will be executed a number of times (possibly 0) amd

the expression will be evaluated before each execution. This will

be repeated tmtil the evaluation of the expression yields a re-

sult which is false. Thus, for example if the value of the ex-

pression is false prior to the execution of the while statement,

the statement following DO will not be executed at all.

For Statement

for statement:

—>FOR —>variable —>:=—>for list—>D0—>statement ——>

for list:

-—>TO——>

—>expression —>

-—>DOWNTO >

p—>expression, >

The two expressions must be of the same enumeration type and the

type of the variable must be compatible with this.

65

The repeated statement must not change the value of the control

variable.

The control variable must be simple (ise. not of array type, not

of record type, not of pointer type and not fimction identifier).

The statement is executed with consecutive values of the variable.

The ordinal value of the variable can either be incremented (in

steps by 1 (succ)) fram expression. TO expression, or descre-

mented (in steps by 1 (pred)) fran expression, DOWNTO expression, .

The two expressions are evaluated once, before the repetition. If

the value of expression, is greater than the value of expression,

and TO is specified, the statement is not executed.

Similarly, if the value of expression, is less than the value of

expression, and DOWNTO is specified, the statement is not ex-

ecuted.

The value of the variable after the for statement is dependent of

the expressions.

The value of i=j in the following example depends on the value of

n. If n is less than 1 i is unchanged, else i is equal to n.

FOR i:=] TO n DO...;

IF i=} THEN...

The assignment statement i:=n+] in the following example is not

allowed.

FOR i:=] TO n Do

BHGIN

is=nt];

END;

3 4.5

66

Conditional Statements 3.4.5

A conditional statement, an if or case statement, selects a

single statement of its component statements for execution.

If Statement

if statement:

“> IF Sexpress ion >THEN >statement, >>false part>>
>
oo

false part:

~PELSE>statement., >

The expression mist yield a result of type boolean. Statement

will only be executed if the value of the expression is true. If

it is false, the statement (if any) following ELSE (statement,)

Will be executed.

The ambiguity arising from the construction:

IF e THEN IF e THEN s_ ELSE s
1 2] 2

is resolved by interpreting the construction as equivalent to:

IF e THEN

BEGIN

IF e THEN s ELSE s
2] 2

END

67

The following are examples of if statements.

IF day=sunday THEN next :=monday

ELSE next:=succ(day)

IF x>y THEN

BEGIN

min:=y; max:=x

END

ELSE

BEGIN

min:=x; max:=y

END; |

Note: The following two statements are different.

IF (1<=n) AND (table[1]=key) THEN s;

IF 1<=n THEN IF table [1]=key THEN s;

In the case where l>n the former may evaluate table[1]=key and

probably cause an index error.

If the expression is constant no testing code is generated, and

code is only produced for the chosen part of the if statement.

Example.

The constant 'test' may be true in the debugging phase, and set

to false in the resulting program, i.e. code for test output is

only generated while the program is tested.

CONST

test=false;

e

if test then writeln (‘Kilroy was here');
°

°

Case Statement

A value of an enumeration type can be used to select one of sev-

eral statements for execution.

case statement:

—>CASE- expression >0F >->case list elenent> end part >

<
™ i

end part:

Vv

|

A case list element is a statement labelled by one or more con-

stants. These constants mist all be of a type compatible with

that of the expression. All labels (constants) in a case state-

ment must be unique. The statement labelled by the current value

of the expression is selected for execution. Upon canpletion of

the selected statement the case statement is also campleted.

case list element:

>constant >:-—>statement >>

S..
oa

Notes: The case statement is translated into a jump table. The

size of this table is limited. Hence no two labels 1, and 1, of

one case statement may be chosen so that

abs(ord(1,)-ord(1,)) > 4000.

“Case labels" are not ordinary labels and cannot be referred by a

goto statement. Their ordering is arbitrary; however, labels must

be wmique within a given case statement.

The value (-maxint-1) is not allowed as case label.

3.4.6

69

Assume the declarations

VAR

suit: suits;

colour: colours;

Then the following is an example of a case statement.

CASE suit OF

club, spade: colour:=black

END

OTHERWISE colour :=red;

Procedure Call

A routine call serves to establish a binding between actial and

formal parameters and to allocate locally declared variables and

invoke execution of the canpound statement of the routine block

in its proper surroundings. A routine call consists of the rou-

tine identifier followed by a list of actual parameters.

When the canpound statement is campleted, locally declared vari-

ables are deallocated, and execution is resumed at the point im

mediately after the routine call.

routine call:

Vv
 — routine identifier+—>actual parameters

>».

actual parameters:

<

>(>> expression >) >

—>routine identifier

>variable

3.4.6

70

If the routine is declared without formal parameters, the routine

call consists of the routine identifier only.

If the routine is declared with a list of formal parameters, this

list will be replaced by the list of actual parameters prior to

the execution of the routine. The number of actual parameters

must be identical to the number of formal parameters. An actual

and its corresponding formal parameter have the same position in

their respective lists.

There exists the following four kinds of bindings between an ac

tual and its corresponding formal parameter:

value The actual parameter must be an expression or a vari-

able of a type campatible with that of the formal par-

ameter. The value of the expression or variable will

be evaluated and substituted in place of the formal

parameter. Changes within the block of the routine to

the formal parameter will not affect the actual par-

ameter. (The usual term for this parameter binding is

call by value).

variable The actual parameter must be a variable of a type car

patible with that of the formal parameter. All changes

within the block of the routine to the formal par-

ameter will affect the actual parameter directly. The

formal parameter denotes throughout the routine body a

specific variable of the specified type. The actual

parameter specifies which actual variable the formal

parameter must denote, if the actual parameter denotes

a camponent of a structured type or a referenced vari-

able the camputation of which variable is to be de-

noted is only performed once at the routine call. (The

usual term for this parameter binding is call by re-

ference).

A canponent of a packed structure cannot be given as

an actual variable parameter.

7]

All the actual variable parameters of a given call

should denote distinct variables, or else the effect

of the routine call will be difficult to comprehend.

procedure The actual parameter must be the name of a procedure.

This procedure must either be declared with all formal

parameters specified as kind value or it must itself

denote a formal parameter of kind procedure.

fimction ‘The actual parameter must be the name of a function.

This fimction must either be declared with all formal

parameters specified as kind value or it must itself

denote a formal parameter of kind fimction.

The type of the actual parameter function must be can-

patible with the type of the formal parameter.

Note: If the routine call is a call of a formal parameter of kind

procedure or function the correspondence between the lists of

actual and formal parameters cannot be checked by the campiler.

Note: A predefined routine must not be used as an actual par-

ameter of kind procedure of fimction.

Note: A parameter of file type must be passed as a variable par-

ameter.

As a guide to the choice between value and variable specification

the following should be noted:

If a parameter is not used to transfer a result of the procedure

a value parameter is generally preferred.

The referencing is then quicker and one is protected against mis-

takenly altering the data. However in the case where a parameter

is of a structured type one should be cautious because the value

specification may lead to inacceptable inefficiency campared to a

variable specification. The explanation is as follows: A pro-

cedure allocates a new storage area for each value parameter

which the formal parameters denoted.

3.4.7

72

The value of the actual parameter is assigned to this storage

area. The assignment operation may be time consuming and the

amount of storage allocated to the formal parameter may be large.

The set of local variables of a routine can be regarded as asso-

ciated with a specific call of the routine; they exist fram the

moment the execution of the routine starts and wmtil it is cam

pleted. Thus, in case of recursive calls of a routine, several

incarnations of the local variables and formal parameters may

exist simultaneously, namely one incarnation for each uncanpleted

call. By execution of a routine is meant the execution of the

campound statement of its body. The execution is campleted,

either when the canpound statement is campleted, or when a jump

to a label in a surrounding routine is performed. The oly dif

ference between a procedure and a function call is that a pro-

cedure call is a statement, and a finction call is a factor which

may be used in an expression.

Example:

TYPE

list=ARRAY[1..100] OF integer;

FUNCTION maximum (VAR 1: list): integer;

(* 1 is of kind variable to save time and space *)

VAR

FOR i:=2 TO 100 Do

IF max<l[i] THEN max:=1[i];

max imum: =max

END;

With Statement

A with statement can be used to facilitate the manipulation of

record canponents.

3.4.7

73

with statement:

—>WITH record variable > —>D0 >statement Vv

<
as

Within the statement the fields of the record variable(s) can be

denoted by giving their field identifiers only (without preceding

them with the denotation of the entire record variable).

For a nested with statement in the fom

WITH vl DO

WITH v2 DO

WITH vn DO s;

you may use the following shorthand notation

WITH vl,v2,....-,vn DO s;

If a set of variables (of enumeration type) is used for selecting

the record variable (e.g. the variable i in the statement

WITH a [i] Do) then the values of these variables must not

be changed in the statement. However, a violation of this rule

cannot be checked. The only effect of such a violation will be

the change of the values of these variables.

Examples:

WITH hand[1] Do

BEGIN

t:=normal;

suit:=club;

rank :=38

END;

74

WITH date DO

IF month = 12 THEN

BEGIN

month:= 1; year:=year+]

END

ELSE month:=month+tl

is equivalent to

IF date.month=12 THEN

BEGIN

date.month:=1; date.year:=date.year+]

END

ELSE date.month:=date.montht+l

75

DETATLED SCOPE RULES

This chapter contains the detailed scope rules.

The scope of a name is the declarations and statements in which

the declaration of the name is valid. All names must be declared

textually before they are used.

The scope depends on the kind of the cbject denoted by the name.

Label-, Constant-, Type-, Variable- or Routine-names.

The scope of the name is the rest of the program or routine in

which it is declared.

Parameter—names.

The scope of a formal parameter is the body of the routine.

Field-names.

The scope of a field name in a record is only that record.

Enumeration-values.

The scope of an identifier introduced as a value of an enumer-

ation type is the rest of the program or routine in which it is

declared.

Programname.

The program name has no significance within the program.

The same identifier must be introduced at most once in each body

or record. If the scopes of an identifier overlap, it is always

the innermost scope which is valid.

76

PREDEFINED ROUTINES 5.

5.1

Standard routines are predeclared in the implementation of Pas-

cal. Since they are, as all standard quantities, assumed as de-

clared in a scope surrounding the program, no conflict arises

fran a declaration redefining the same identifier within the pro-

gram. The standard procedures are listed and explained below.

Standard Procedures 5.1

5.1 1

Standard procedures are not allowed as actwal procedural par-

ameters.

File Handling Procedures 5.1.1

put(f) see under FILE types in subsection 3.3.3.3

get(£) -

read -

readin -

write -

writeln -

page(f) - . , ©

reset(£) =

rewrite(f) -

open(f, file name) -

close(£) -

77

5.1.2 Dynamic Allocation Procedures 5.1.2

new(p) see under Pointer Types in subsection

3.3.3.3

dispose -

5.1.3 Transfer Procedures 5.1.3

pack see under Packed Representation in

unpack subsection 3.3.3.3

5.1.4 Date and Time 5.1.4

date(a): assigns the current date to the alfa

variable a, in the form: ‘'yy.mm.dd. .

time(a): assigns the current time to the alfa

variable a, in the form: ‘hh.m. ,

5.1.5 Program Control Procedure ; 5.1.5

replace (program name) The procedure replace terminates the cur-

rent program and invokes the program

denoted by program name. Program name

must be the name of a Pascal object file,

i.e. a compiled Pascal program.

The program which calls replace must

prior to the call close all files, (ex-

cept input and output, if they are not

connected to external files).

The procedure is restricted only to be

called fram the main program.

78

The procedure returns to the invoked

program. If an error occurs during the

replacement the execution is terminated

and an error message is given.

Standard functions are not allowed as actual functional par-

2 Standard Functions

ameters.

2.1 Arithmetic Functions

For the following arithmetic functions, the type of the expres-

sion x is either real or integer. For the functions abs and sqr,

the type of the result is the same as the type of the parameter,

x. For the remaining arithmetic functions, the type of the result

is always real.

abs (x) computes the absolute value of x.

sqr(x) computes the square of x.

sin(x) computes the sine of x, where x is in radians.

cos(x) computes the cosine of x, where x is in radians.

exp(x) computes the value of the base of natural logarithms

raised to the power x.

1n(x) computes the natural logarithm of x, if x is greater

than zero. If x is not greater than zero an error oc

curs.

arcsin(x) computes the principal value, in radians, of the arc

sine of x.

sinh(x) computes the hyperbolic sine of x.

sqrt (x) computes the positive square root of x, if x is not

negative. If x is negative an error occurs.

arctan(x) computes the principal value, in radians, of the arc-

tangent of x.

5.2

5.2.1

@

79

® 5.2.2 Transfer Functions 5.2.2

trunc(x)

round (x)

From the real parameter x, this fimction returns an

integer result which is the integral part of x. The

absolute value of the result is not greater than the

absolute value of the parameter.

For example:

trunc(3.7) yields 3

trunc(-3.7) yields -3

Fran the real parameter x, this fimction returns an

integer result which is the value of x rounded to the

nearest integer. If x is positive or zero then

round(x) is equivalent to trunc(xt0.5), otherwise

round(x) is equivalent to trunc(x-0.5).

For example:

round(3.7) yields 4

round(-3.7) yields +4

5.2.3 Ordinal Functions 5.2.3

ord (x)

chr (x)

The parameter x is an expression of ordinal-type. The

result is of type integer. If the parameter is of type

integer then the value of the parameter is yielded as

the result. If the parameter is of any other ordinal-

type, the result is the ordinal mimber determined by

mapping the values of the type on to consecutive non-

negative integers starting at zero.

For example:

ord(false) yields 0

ord(true) yields 1

Yields the character value whose ordinal number is

equal to the value of the integer expression x, if

such a character value exists.

5.2.4

succ(x)

pred(x)

Predicates

522-5

odd(x)

eof(£)

eoln(£)

Processing

80

For any character value, ch, the following is true:

chr (ord(ch))=ch @

The parameter x is an expression of ordinal-type. The

result is of a type identical to that of the expres-

sion. The fimction yields a value whose ordinal number

is one greater than that of the expression, if such a

value exists. If such a value does not exist, the

result is undefined.

The parameter x is an expression of ordinal-type. The

result is of a type identical to that of the expres-

sion. The function yields a value whose ordinal mumber

is one less than that of the expression x, if such a @

value exists. If such a value does not exist, the

result is undefined.

5.2.4

Yields true if the integer expression x is odd, other-

wise it yields false.

Indicates whether the associated buffer variable ft is

positioned at the end of the file f.

Indicates whether the associated buffer variable ft is

positioned at the end of a line in the textfile £.

Time Function 5.2.5

clock Clock is a parameterless real fimction, the result of

which is the current processing time in seconds with

an accuracy given by the length of a time slice

(usually 25.6 milliseconds) .

5.2.6

8]

Monitor Functions

The integer function 'monitor' is the Pascal equivalent of the

RC8000 monitor procedures. For the time being only the following

calls are implemented:

‘create entry' (40)

‘lookup entry' (42)

‘change entry' (44)

The call is:

result:= monitor(wanted_function,<file>,tail);

where

wanted function is one of the allowed numbers (40,42,44),

<file> is a file identifier,

tail is declared as tail: ARRAY [1..10] OF integer, and cor-

responds to the tail of the file catalog entry.

For further information see ref. [4] and ref. [5].

Example:

If the result of "lookup pascal" is

pascal =set 224 disc d.810113.1045 0 0 2.0 68 ; system

; 159 139 3 -8388607 8388605

then the Pascal statements

file name := 'pascal';

result := monitor(42, file name, tail);

will return with

result = 0

and the following contents in tail:

5.2.6

5.2.7

82

index word char half words

] 224 O O 224 O 224

2 6580595 100 105 115 1606 -1677

3 6488064 99 OO O- 1584)

4 0 0 O O 0)

5 0 oO oO O) 0

6 7846624 119 186 224 1915 -1312

7 0 O O O))

8 0 0 O O) fe)

9 8192 0 32 0O 2 8)

10 68 0 0 68 0 68

where: tail [1] = length of file

tail [2..5] = document name

tail [6] = date and time

tail [9] = contents key * 4096

The function call is sucessful if and oly if the result is zero.

For further information about the unsuccessful results see

chapter 2 of ref. [5].

Access to File Processor Parameters

The function 'system' of type integer gives access to the par-

ameters from the FP-command stack, i.e. the call of the program.

result, paramno, int: integer;

alf: alfa;

5.2.7

83

The result of a call:

result := system (paramno, int,alf);

is:

IF (paramno >= 0) AND (paramno <= number of parameters in FP-

stack) THEN

result := separator length

ELSE result := 0;

where separator length is built as: seperator *4096 + length,

int and alf are set according to the following scheme:

IF length = 4 THEN

BEGIN (* the stack parameter is a number *)

int := the parameter;

alf := undefined

END

ELSE

IF length = 10 THEN

BHGIN (* the stack parameter is a word *)

int := undefined;

alf := the parameter;

END;

The seperator values are

O: end of parameter list

2: new line (start of list)

4: space

6: equality sign

8: point

Example of the numbering of the parameter stack items:

pl = pascal p heap.1000

] 2 3 4 oO

Result of calls of system:

paramno result int alf

fe) 2*4096+10 - "pl '

1 6*4096+10 —- ‘pascal '

2 4*4096+10 - se) ‘

3 4*4096+10 - "heap _

4 8*4096+4 1000 -

otherwise 0 - -

For further information about separator see ref. [6].

Camplete List of Predefined Routines

Name: Subsection:

abs 3.3.3.2 5.2.1

arcsin 3.3.3.2 5.2.1]

arctan 3.3.3.2 5.2.1

chr 3.3.3.2 5.2.3

clock 5.2.5

close 3.3.3.3

cos 3.3.3.2 _ 5.2.)

date 5.1.4

dispose 3.3.3.3

eof 5.2.4

eoln 5.2.4

exp 3.3.3.2 5.2.1

get 3.3.3.3

ln 3.3.3.2 5.2.1]

monitor 5.2.6

new . 3.3.3.3

odd 3.3.3.2 5.2.4

open 3.3.3.3

ord 3.3.3.2 5.2.3

pack 3.3.3.3

page 3.3.3.3

pred 3.3.3.2 5.2.3

put 3.3.3.3

Name:

read

readin

replace

reset

rewrite

round

sin

sinh

sqr

sqrt

succ

system

time

trunc

unpack

write

writeln

Subsection:

3.3.3.3

3.3.3.3

5.1.5

3.3.3.3

3.3.3.3

3.3.3.2

3.3.3.2.

3.3.3.2

3.3.3.2

3.3.3.2

3.3.3.2

5.2.7

5.1.4

3.3.3.2

3.3.3.3

3.3.3.3

3.3.3.3

85

5.2.2

5.2.1

5.2.1

5.2.1]

5.2.1

5.2.3

5.2.2

86

COMPILER DIRECTIVES

The compiler has some optional features. In particular, it may be

requested to insert or anit run-time test instructions. Compiler

directives are written as camments and are designated by an

$-character as the first character of the canment:

(*$<option sequence> <any camments> *)

The option sequence is a sequence of instructions separated by

cammas. Each instruction consists of a letter, designating the

option, followed either by a plus (+) if the option is to be ac-

tivated or by a minus (-) if the option is to be deactivated.

The following options are available on RC8000:

1 Lists the program text between (*$1+*) and (*$1-*). Default

is (*$1-*).

This option may be used for partial listing of a program in

the contrary to the list directive of the call (see chapter

7).

xr The code of the procedures between (*$rt+*) and (*$r-*) will

during initialization be transferred to core and remain re-

sident during the mm (see chapter 8).

c Lists the generated code for the procedures/finctions be-

tween (*$ct*) and (*$c*), default is ce.

The listing may be used for calculations of execution times

for the different parts of a program.

t Includes run-time tests that check

- all (non constant) array indexing operations, to ensure

that the index is within the specified array bounds,

- all (non constant) assignments to variables of subrange

types, to make certain that the assigned value is within

the specified range,

87

~ all case statements, to ensure that the case selector

corresponds to one of the specified case labels, if no

otherwise part is present an empty otherwise part is as-

sumed.

The standard mode is:

include tests for:

- array indexing operations unless the test ought to be super-

fluous according to the type of the index expression and the

index type.

Example:

assume the declarations

TYPE

index_range = 1..6;

super _ range = 0..7;

VAR

index : index range;

super_index: super_range

table : ARRAY [index range] OF 1..2;

then no code for index check is generated in the following state-

ment

table [index]:= 1;

Indexing with a constant expression is tested at compile time.

- Assignments to variables of subrange types unless the test

ought to be superfluous according to the type of the expression

and the type of the variable.

Example:

Assume the above declarations, then no code for range test is

generated in the statement:

super index:= index;

- Case statements. If no explicit OTHERWISE part is specified, an

empty one is assumed.

88

The super check mode (t+) is mainly introduced as a debugging

tool. The difference between standard mode and t+ mode is the

tests for legal values of subrange variables, i.e. uinitialized

variables are easily found in t+ mode. The following example may

emphasize the usefulness of t+.

PROGRAM index check (output);

TYPE

index_range = 1..6;

table: ARRAY [index range] OF 1..2;

index_1: index_range;

index 2: 2..5;

VALUE

table=(1,2,1,2,1,2):

BEGIN

index_1:= index 2;

CASE table [index 1] OF

1: write(' odd ');

2: write(' even ');

end; (* of case statement *)

write (' index ');

END.

in standard mode the result may be " index

uninitialized. In t+ mode this would have resulted in an error

message, detected at the line index 1:= index 2; unless the con-

tents of the memory location allocated for index 2 accidentally

are a value inside the bounds of index_range.

", because index 2 is

89

CALL OF THE PASCAL COMPILER 7.

How to Compile a Pascal Program 7.1

The canpiler works in the job process and the campilation is

started by means of an FP-canmand specifying the source text, the

canpiler options and the file where the resulting cbject program

should end. The result of the compilation is, in case no error is

detected, a binary file with code for the procedures/fimctions

and the main program, value segments for value initialization,

and procedure table and an information segment; with each of

these items occupying an integral mimber of bs-segments. The ob-

ject code may be loaded and executed by means of the Pascal Run-

time system - see below.

Syntax of the FP-call:

.]] ; co
(<object> =) 0 pascal (<source>) | (<option> 5

<object> ::= <bs-file name for the generated cbject code>

<source> ::= <text file>, if not specified then primary

input is assumed.

<option> ::= list.<on or off

| heap. <integer>

codesize .<integer>

| survey.<on or off>

<on or off ::= yes | no

Semantics of the options:

list.yes

produce a program listing on current output, with line mm

bers added.

Default is list.no

survey.yes

Produce a table of the campiled routines and scme inform-

tion about them, for example start line number, size of

code, required stack size and same other information neces-

sary for the Pascal system.

Default is survey.no

heap. <int>

<int> is the size of a core area initially assigned to the

use of the heap (default is heap.0O). If a program uses the

heap it may be convenient to set the heapsize because it may

save same execution time.

codesize.<int>

<int> is the maximum number of instructions which may be

generated for the statement part of a "main program", pro-

cedure or function. (Default is codesize.1500). <int> is

rounded up to the nearest multiplum of 500; the maximum size

is 6000.

Storage Requirements

The compiler requires a job with a core area of at least 50000

halfwords. A too small size may cause the compilation to termi-

nate with the alarm 'pascal runtime error: process too small'. A

greater core area may remedy the problem.

The compiler uses the following files: 'pascalpif' and

‘pascalenv', in addition to current input and output.

How to Run a Campiled Pascal Program

The coject code produced by the Pascal compiler may be loaded and

executed by the FP-ccmmand:

(<paran>=) | <cbject> (<parameters>)

During execution two area processes are used, ome to the Pascal

library placed in the file 'pascallib' and ome to the cbject

file.

RUNTIME ENVIRONMENT 8.

8.1

Unsophisticated users should not read all the details of this

chapter.

The Pascal Process at Runtime 8.1

A Pascal object code file contains instructions for initializa-

tion of the core area, i.e. loading of the mm time system

(PASCRUN) and the main program, after loading control is given to

the main program.

After the initialization the core image looks like:

7 start of process

FP

global variables

resident

runtime

procedures

7 start of procedure table

y+ start of libray procedures

+ top of procedure table

7 w2 (stacktop)

+ code top

main program (if not in the resident part)

+ top of heap

heap

7 top of resident procedures

resident procedures

+ top of user area

FP stack, data buffers for input and output

+ top of process

8.1.1

92

A call of a procedure which is not already in core implies a

transfer of code fram backing storage to core, and the code will r)

be placed inside the area between the code top and the stack top.

The code area is managed by means of a logical segmentation algo-

rithm, handling each routine as one segment.

If enough space is available, the procedure is allocated space

fran the code top towards the stack top. Else the mmtime system

will decide which routine(s) to declare 'not in core’. The code

area is managed according to a modified round robin strategy.

Resident Procedures 8.1. @

During initialization the procedures declared to be resident are

read into core and reside there during the whole run. The re-

sident procedures are placed outside the nommal used area for

code, therefore these procedures do not influence the fommer men-

tioned algorithms.

93

ERROR MESSAGES , 9.

Errors in a program are indicated depending of the categori of

the error. Compile time error messages are separated into two

categories. Errors discovered during the first pass are indicated

by an extra line in the program listing, with an uparrow pointing

at/after the erroneous item, and a mumber between 0 and 300

according to the messages given as appendix C.

Errors discovered during the second pass are indicated by:

‘error no <int> in line no <int>'.

Examples:

Pass] error: mis-spelling, i.e. identifier not declared:

81.09.14. 15.51. pascal version 1981.01.08

1 PROGRAM show_error(output);
2 VAR
3 result : integer;
4 int : integer;
5 alf >: alfaa;

HER RKKKKH *101
6

7 0 BEGIN
8 1 resutl := system(1, int, alf);

HXKHKKKHK “101

9 END.
number of errors : 2
number of warnings: 0

error description
101: identifier not declared

end

blocksread = 88

~

81.09.14. 15.51. pascal version 1981.01.@

1 PROGRAM pass2_error(output);
2 VAR
3 int : integer;
4 0 BEGIN
5 1 int := 9000000;
6 END.

error no 301 in line no 5

Code: OK + 20 Halfwords
Error(s) found in pass2
number of errors : 1

error description
301: decimal integer constant too large

end

blocksread = 61 @

In case of a run time error a message indicating the error is

written on current output, and the program is terminated. The

line number where the error occurred is written followed by a

trace of the active routines.

Example of a procedure for program exit with a trace of the

active routines. This may be used as a debugging tool.

81.09.14. 15.52. pascal version 1981.01.08

PROGRAM runtime _error(output); r
PROCEDURE stop;
BEGIN

writeln(output, ~ intentionally stop ...)
readin(output);

END; (* procedure stop *)

p
O

am

@)

BEGIN

stop;
END.

Code: OK + 74 Halfwords

O
W

C
O
I
N

E
W
M

rR

©

hh

end
blocksread = 67
intentionally stop...

illegal zonestate
occured in 5 line 2 of stop
called from 10 line 2 of runtime erro
blocksread = 8 r

10.

95

SOME PROGRAMMING HINTS AND WARNINGS

1) There is no check for overflow om integers.

2) It is not checked if the tag field of a record with variant

part has the correct value when a campment of the variant

part is referenced.

3) Unrestrained use of packed records and arrays may slow down

the program execution, because of the many slow shift oper-

ations which are required, i.e. the saved space for the vari-

ables is paid for in execution time.

4) If the variable requirement is so extensive that it is desir-

able to use packed data types it may be helpful to cbserve the

following advices:

1. For sequential referencing of the items of a packed array

of char (e.g. in a for-statement): operate om an unpacked

array and use the standard procedures 'unpack' and 'pack',

before and after the referencing.

2. It is cheaper to use data types occupying an integral num-

ber of halfwords, even if it is not necessary, instead of

data types of different sizes with only me or two items in

each word.

3. For packed records with items with different storage re-

quirements, the number of shifts may be minimized if the

items are declared with descending size.

Example:

a) t] : PACKED RECORD b) t2 : PACKED RECORD

bool : boolean; pos_int : O..maxint;

pos_int : 0..maxint; bool : boolean

END; END;

10.

96

in case a) an assignment to bool will require between 14.2

and 18.6 microseconds just for the shift operations, in

case b) the interval is 5.4 to 9.8 microseconds.

An assignment 'boolean variable := t].bool' (with

boolean_variable and tl declared on the current level) re-

quires 3 instructions, if tl was unpacked the same assign

ment would require 2 instructions.

5) The value-statement may be a very convenient construction, but

it has some disadvantages:

Initialization of a structure with the same value to almost

all the items may be fast but it will require about three

words of code per item, and if the mimber of elements exceed

255 words it will involve a transfer of data from backing sto-

rage, which takes about 30 milliseconds, plus 1 msec. for each

segment to transfer to core, in that case it will be much

faster and less space consuming to use a for-statement.

6) Sets are convenient to use for many purposes, but it is a

rather expensive construction. The expression 'ch IN ["a",

"pb", "q'"]' will cause 18 words of code. This is due to the

fact that a set is always constructed as a 6-word bit map,

with each bit indicating if the set element with the corres-

ponding mmber is in the set (elements are coumted fran 0).

In the case of 'colour IN [red,blue]' three words of code is

saved (the range check) if 'colour' is declared as a subrange

of elements, the ordinal values of which lies between O and

143. E.g. variables of type ISO or char fulfil this condition.

If the cardinality of 'colour' in the example above is less

than 24, then the test for IN only requires 7 words of code.

97

7) The heap is implemented as a stack. This means that each time

8)

9)

the standard procedure 'new' is called, a piece of core is al-

located on top of the heap. This piece of core is able to

contain a variable referenced by the pointer variable used as

argument to new.

Dispose(p) work as unstacking. The core inclusive the part re-

ferenced by p is released and may now be reused.

Compile time if-statement (conditional code).

In the statement:

IF <const bool expr> THEN st] ELSE st2

code will only be produced for either stl (if the value of

<const bool expr> is true) or st2 (if the value is false).

In the case of:

IF <const bool expr> THEN st

no code at all will be produced if <const bool expr> is false.

It is not allowed to 'close' input and output, if they are not

connected to external files.

98

A. REFERENCES A.

[1]

[2]

[3]

[4]

[5]

[6]

The Programming Language PASCAL,

Acta Informatica, 1, 35-63, 1971

ISO Draft International Standard ISO/DIS 7185:

Specification for Computer Programming Language Pascal

RCSL No 42-11235:

RC8000 Computer Family, Reference Manual

June 1979, Einar Mossin

RCSL No 31-D476:

RC8000 Monitor, Part 1, System Design

November 1979, Henrik Sierslev and Pierce C. Hazelton

RCSL No 31-D477:

RC8000 Monitor, Part 2, Reference Manual

January 1978, Tove Ann Aris and Bo Tveden-J¢érgensen

RCSL No 31-D364:

System 3, Utility Programs, Part one

H. Rischel

RC8000 PASCAL SYNTAX DIAGRAMS

The shaded areas denote differences/extensions in proportion to

the report [1].

program

—- PROGRAM —> identifier — (+ file list >) >

identifier

—> letter

[_ letter 7

file list

—>——> _ file identfier —> = > Re8000 file name —

3 —@ block =>.

‘|

>

unsigned integer

identifier — > = — constant

<a
3

identifier — > = — type

— VAR

>

identifier ——> : > type

<
>

3

— ee

eo . ag .

» a
x

3
sccaincioeni secansnesiiasemnii

——> BEGIN ——,

H—> FUNCTION — identifier —

——> statement ——— >

<
>

hH—> PROCEDURE —— > identifier —> parameter list

END

block
3

parameter list + : — type identifier

V

parameter list

10]

<

sco
L_

FUNCTION —«

3
identifier :

VAR ——

PROCEDURE

>

1 idenfifier —l_I

expression

—— simple expression

—> : —> type identifier ot>) “

Ltt lied
< > <> «ss

Ltt ot td

v
IN

|

simple expression

[. ; “| term

term

\

> simple expression

ty & R
term al cI

Ww

—> factor
L

102

unsigned integer

digit ———_>

constant

uns

Pr + J e——-> constant identifier —,

Ly . —] ———-> unsigned number

character —lL> -

igned number

= —— unsigned integer |, _ ro digit > E [unsigned integer

typ e

simple type

he
.

. > f —> type identifier

f—— PACKED a

Ls array —> | -L->’simple type L> 1 —> of — type 4

n> TLE —> OF ———» type

> SET OF simple type

LHe? RECORD —> field list > END

103

Simple type

—> type identifier

(> identifier +——>)
va | LL

===> COnstant — > .. ——> constant —————__!

field list

* ££
>

{ >

] > identifier] > 3 > type >

L CASE ——> identifier —> : —» >» type identifier —> OF —

|
>

Lee constant _t >: > (> field list — >)

v
w

104

statement

fm _~unsigned integer — : 1

variable > := expression

L, function identifier |

> procedure identifier > (I expression L>)

Vv

L, procedure identifier |

H——> BEGIN —>—> statement ——— END |

< .
>

IF — expression — THEN — statement ts ELSE — statement

L
|

CASE — expression — OF rr constant rT : «= statement

3

3

L, END

b——> WHILE — expression — DO —— statement

e—> REPEAT statement UNTIL —> expression a md nd

DOWNTO —
a> FOR — identifier > := — expression TO

ra

L, expression — DO — statement —————}

—- _—_—_—
-H—-> WITH —>l> variable —l» DO > statement

p——> GOTO —> unsigned integer

105

factor

Vv
 > unsigned constant

— variable Mz

H——> function identifier —~-> (or expression Tr)
xz ><

> (> expression >)

NOT > factor

L>> expression Tr .. — > expression ee

>

unsigned constant

- constant identifier

p> UNS gNed number —>

> NIL

> 7 abs character | “

variable

. variable identifier

@ field identifier [>> experssion T i—
¥ . L

3

p—> . ——e> field identifier

> tf

UTILITY PROGRAMS

C.1

106

Indent (Text Formatting Program)

The program performs

the options. specified

indention of source programs depending on

in the call and m the keywords (reserved

words) of Pascal/PASCALSO.

call:

]
(<output file>=) 0 ind

<option>::= lines

mark

list

noind

myind

le

uc

help

Storage requirements:

ent <input file> (<option>) ©"

line numbers are added

the blockstructure is made clear by means of

! between matching begin-ends

the same as: lines mark

the output will be left justified

the output indention is the same as the in-

put indention

lists keywords in capital letters and ident-

ifiers in small (lower case) letters

both key words and identifiers are listed in

upper case letters

produces a list of legal options

The core store required for indent is 16000 hw (size 16000).

Error messages:

?2?? © ©=illegal input-filename

input file must be specified

C.2

107

call: “indent help", for help

an error is detected in the program call, a new call "in-

dent help" will produce a list of the valid options

wm warning, end(s) missing

an error in the begin-end structure has been detected

x premature end of file

canment or string not terminated

Cross (Cross Reference Program)

The program produces a cross reference listing of the identifiers

and numbers and a use count of the Pascal/PASCAL80 key words used

in the input text.

The cross reference list is made with no regard to the block ©

structure of the program. The list is sorted according to the

ISO-alphabet, i.e. numbers before letters, but with no difference

between matching upper and lower case letters.

The occurence list for an identifier consists of a sequence of

Pascal/PASCAL80 line numbers. The occurrence kind is specified by

means Of the character following the line number:

* meaning the identifier or mimber is found in a declaration

part.

= meaning the identifier is assigned to in the line spec-

ified.

meaning the identifier or number occured as a label.

blank all other uses

KKKKK<X<<<<<<<<in the list is a warning denoting that the name

consists of more than 12 characters, which is the number

of significant characters for Pascal-identifiers.

C.2

108

Call:

]
<output file> = cross <input file> (<option>) |

<option>::= bossline. <yes or no>

<yes or no>::= yes bosslines are added to the listing.

(Default).

no only Pascal/PASCAL80 line numbers are

generated.

Storage Requirements:

The core store required for cross is at least 40000 hw (size

40000), but the requirement depends on the size of the input

text.

Error Messages:

22? illegal output-filename

left hand side of the call must be a name

22? illegal input-filename

input file must be specified

2??? yes or no expected

Option 'bossline’ must be 'bossline.yes' or 'bossline.no'

2??? error in bracket structure, detected at line: xx

missing ")" ('s)

22? error in blockstructure, detected at line: xx

unmatched END

C.3

109

**x*kk warning: hash table overflow at line: xx

the name table ran full at line xx, the cross referencing

continues for the names met until line xx, new names and

numbers in the following lines are ignored.

Use of Indent and Cross

Indent and cross are two idependent programs but a sequence of

calls similar to the following will produce a nice listing of a

Pascal program with line numbers according to those of the car

piler listing, i.e. the numbers used in case of errors.

Example of program calls:

10 job jaba 600 time 4 0 size 50000

20 udlist= set 0

30 sourcelist= indent source mark Ic

40 udlist= cross sourcelist bossline.no

50 convert udlist

60 finis

The contents of source and output fran the job are shown on the

following pages.

C.3

110

Contents of source.

program test_listing(output);
label
79133
const
first = 1; last = 25;
type
structure = record
fieldl, field2 : real;
random field : integer;
name_field : alfa;
case cheat : boolean of
true : (name_conv : alfa);
false : (intl, int2, int3 : integer);
end;
var
random help, help : integer;
very_long identifier_name : alfa;
table : array &£ first .. last A of structure;
value
table = (<first .. last> * (0.0, 1.0, 13, “abedef’,
true : (7 “)))3

function random number : integer;
(* generate a pseudo random number sequence *)
begin
random number := (random_help * 1023) mod last + 1;
end;

begin

random_help := 13;

(* .

*)
for help := first to last do
with table £ help A do
begin
random field := random_number;
end;

(* .

#)
7913:
end.

111

Contents of udlist.

T
a
s
e
d

f
a
e
q
u
n
u

wop

od

*
C
N
a

7ET6L
(x

*
¥)

:
_

‘aNd
u
U
B
d

=
:

P
T
e
T
I

w
o
p
u
e
d

j

NIDad
od

y
d
i
e
u

¥
e
T
q
e
d

H
L
I
M

488T
OL

8
A
T
s

=:
a
t
e
d

wod
¥

.
#
)

f¢T
=:

d
r
e
y

w
o
p
u
e
d

N
I
O
d

(Oe ee ee ee ee ee ee ee ee ee ee ee ee

‘dNa
$T

+
488T

GOW
(€ZOT

x
ATeu

w
o
p
u
e
d
)

=:
a
a
q
u
m
u

t
o
p
u
e
d

j

(x
9
o
0
u
U
e
n
b
e
s

J
a
q
u
n
u

w
o
p
u
e
d

£
q
9
B
a
4
u
t

£(
(

(

~)
+

a
n
d
y

‘_gepoqe,
SET

SO°T
£0°0)

«#

f
S
e
d
n
g
o
n
d
4
s

FO
Y

4
8
e
T

‘
e
I
T
e

:
f
a
a

$(.
desaquy

:
Equt

“equy
‘TquT

)
‘(

e@gJTe@
:

auood
s
w
e
u

dO
u
e
e
t
o
o
g

:

f
e
j
r
e

:

f
A
9
B
Z
a
q
u
t

:
PL

{[e@ed
:

e
p
r
e

*(

N
I
D
a
d

o
p
n
e
s
d

&
3
4
e
d
0
u
e
d

x)
:

J
a
q
u
n
u

w
o
p
u
e
d

N
O
T
L
O
N
N
A

<48@T
°°

48dTJ>)
=

eTqGe4
an

TVA
*'

984TsS
WY

A
V
U
U
V

*
B
T
I
e
4

eueu
ABT

J
F
I
U
S
P
T

B
u
o
T

A
u
r

Baqguy
:

drtey
S‘drtey

w
o
p
u
e
d
 YUVA

SaNa
i

2
e
s
T
e
y

i
)

:
ondy

i
q
e
e
y
o

qsvo
i

Ppletsy
owueu

j
eTj

w
o
p
u
e
d

j

TI
SIPTETS

fj
C
Y
O
O
u
H

=
e
d
n
q
o
n
a
4
y
s

a
d
A
L

'GZ
=

98PT
ST

=
4sdts

L
S
N
O
O

*ET6L
T
H
V
T

q
n
d
q
n
o
)
3
u
t
4
s
t
t

3894
WvYDOUd

"6H
OT

*ST*60°T8

mt OO =r LAO
aaa

OANMaTW
aaa

aN Oat LNW P-O NO
Leal

LN
loa)

aN

i
N

AN OO =r LANO Dh CO ON

48}
[
T
e
o
r
n
o
s

112

(Contents of udlist contd.)

2
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>

>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>>>
>
>
>

Ge
gc

#EC

Ge

2
aZed

#LT
aueu

d
o
t
j
J
T
q
u
e
p
y
E

Buopt
A
a
a
a

#1¢

9E
#02
#9T

ge
=
9
C

=0€
9¢

=
Q

xO¢
#8T

#9T
#€T

gE
=GE

#0¢
¥QT

#11
acl
“ht

O€
9¢

#0C

#0¢
#0OC¢

"
6
°

OT

x
c

¥T
¥OT

#1,
#8
#OC

andy

BuUTISTL
98aq

atqey
a
u
n
q
g
o
n
d
4
s

[eed

dJaequnu
w
o
p
u
r
d

d
r
t
s
y
_
w
o
p
u
e
d

p
L
e
T
y

w
o
p
u
r
d

O
T

#6
#T

¥0T
x
c

#G
#6
#ET
xET
x€T
#
9
T

#S
#8
#8
xET
#11
#IT

#OT
#€ 92

#5
¥OC
#9
*0C

*
S
T
°
6
0
°
T
8

q
n
d
q
n
o

P
T
e
T
s
_
e
w
u
e
u

Auod
eweU

€T6L
€cOT
Ge
€T
T 0

4
s
e
t

J
3
B
9
4
q
u
t

€qut
Z4Ut
T9Ut
d
t
e
y

4
S
a
T
J

c
P
L
e
t
d

I
P
T
e
E
t
s

e
s
t
e
s

q
e
o
y
o

u
e
a
q
T
o
o
g

e
s
t
e

4
s
T
[
T
e
o
u
n
o
s

113

(Contents of udlist contd.)

T
H
L
I
M

T
YUVA

T
aN

IVA
T

adAdb
T

Ow
T

duOo0ue
T

W
V
Y
d
O
"
d

c
AO

T
dow

T
T
H
V
T

T
N
O
T
L
O
N
 NA

T
you

t
aNg

¢
od

T
L
S
N
O
O

T
a
s
v
o

€
N
I
O
d
d

T
A
V
U
Y
V

G
aBed

"6H
OT

"
G
T
°
6
0
°
T
S

3
S
T
T
e
0
u
n
o
s

C.4

114

Performance Measurement C.4

Because of the software managed program segmentation on routine

level it is possible to gather statistical information for a Pas-

cal program during execution, without extra statements in the

program and without special campilation. The mmning system is

provided with two sets of code for call and exit management. The

standard action is without gathering information for statistics.

The statistical version is chosen if the FP mode bit 'listing' is

set (mode listing.yes). At program end the measurement is tabul-

ated as shown below.

Each table entry contains information as:

routine name (first entry is for the main program), begin-line, e

number of times the routine has been called and some time con

sumption informations. It should be noted that the time infomna-

tion is real time (not CPU-time). This means that swap out and

backing storage transfer time is accounted and hence may disturb

the result. The reason why real time is measured instead of CPU-

time is based upon experience showing that input and output oper-

ations very often constitute the greater part of the. program ex-

ecution time, and this would not be seen fram CPU-time measure-

ments.

115

CEGE°S

COE
*th

T
2
€
2
°
0

€00°L
LLLE*O

ELE*z
0gzT*0

96€*IT
9n19°0

GIG*EE
GLOQ*T

LES*0
0620°0

GEL*T
9£60°0

0
0
0
°
0

0
0
0
0
°
0

n@E°9T
9£88°0

gfO°n
glIz*0

O
T
L
°

ST
7
6
0
0
°
T

o
u
t
a

Jo
%

(098s)
[
e
q
o
,

T
E
0
0
°
0

8
9
0
0
°
0

LLLE*O
O
8
c
T
°
O

€
T
0
0
°
0

L
T
0
0
°
0

6
0
0
0
°
0

9€88°0
L1T00°0
1
6
0
0
°
T

(098)
e
d
e
i
a
a
y

686°T
8
5
0
°
0

8
S
0
°
0

158°
9¢

0
6
L
°
T
9

G
G
L
°
T

GLT°0
0
0
0
°
0

8
S
0
°
0

L6T*L
8
S
0
°
0

60LT

he

S
T
T
B
O

JO
%Z

pertteo

0GS
649%
00S
O
t

EL2
09¢
Lye
OST
68T
Gee
€e9

aut]

:STeqo07

e
e

ce
Co

ee
ee

Gee
SY

GEE
Ge

Ge
GEE

MOY
eS

Sem
Gane

GN
Meee

See
Mane

Gene SRE
MeN

GineD
GED

SERN
GY

SO
Seeee

Gomee
MiueR

Ginn
Se

Gone
GN

SD
Sn

S
J
T
C
O
V
T
I
M

eTqeq
4utad

e
T
q
e
y

4aos
PT

0F
ppe

T
o
q
u
A
s
y
x
e
u

q
a
y
o
e
r
q
y
o
o
y
o

a
Z
e
d
m
o
u

JOdd9d

F
U
T

PT
Jaoesut

s
s
o
u
o

[
e
o
s
e
d

o
u
e
N

>
w
e
d
s
o
u
d

T
y
O
s
v
d

Joy
A
u
e
w
u
u
n
s

q
u
e
w
e
i
n
s
e
o
u

s
o
u
e
U
d
o
j
i
a
g

116

D. ERROR MESSAGES

D.1 Error Messages from First Pass

number meaning

000
001
002
003
004
005
006
007
008
009
010
O11
O12
013
014
015
016
O17
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
O40
O41
O42
043
O44
O45

illegal character
“program” or “module” expected
identifier expected
error in parameter list
identifier expected
“:" or “~,° expected
“)" or 73° expected
“3; expected
digit expected
“3° or “,° expected
digit expected
“=" expected
constant expected
unsigned constant expected
error in declaration
“file” expected
“BE” expected
<type> expected
“..” expected
“)" or *,” expected
“RA” expected
“of” expected
“,° or “A” expected
unpacked structured type expected
“(" expected
“)* expected
“end” expected
<const specification> expected
<set const element> expected
“A” or “,” expected
<str const element> expected
“>” expected
“#° expected
“module” expected
“pascal” or “fortran” expected
“end” or “;° expected
“begin” expected
“:=" expected
<simple expression> expected
expression expected
expression expected
expression expected
“to” or “downto” expected
“do” or “~,” expected
“do” expected
“then” expected

117

046 “:° expected
O47 “else” expected
O48 “until” or “;° expected
O49 “~.° expected
050 string expected
051 end of file expected

100 error in real constant: digit expected
101 identifier not declared
102 identifier declared twice
103 illegal integer constant
104 incompatible subrange types
105 subrange bounds must be scalar
106 index type must be scalar or subrange
107 not a type
108 illegal type
109 only tests on equality allowed
110 illegal pointer type
lll type of variable is not record
112 no such field in this record

113 previous declaration was not “forward”
-114 too many digits in label
115 multideclared label

116 illegal value name
117 not a variable
118 type of variable must be file or pointer
119 type of variable is not array
120 index type is not compatible with declaration
121 type of variable must be boolean
122 incompatible set element: types
123 illegal set element type
124 type conflict of operands
125 illegal type of operand(s)
126 file comparison not allowed
127 strict inclusion not allowed
128 not a function
129 undeclared label
130 illegal type of expression
131 number of parameters does not agree with declaration
132 illegal parameter substitution

133 actual parameter must be a variable
134 not a procedure
135 incompatible with tagfield type ;
136 label type incompatible with selecting expression
137 type of expression must be boolean
138 unsatisfied forward pointer reference

139 function type does not correspond to the forward declaration
140 parameter list does not correspond to the forward decleration
141 undeclared external file

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

already forward declared
error in option
missing file “output” in program heading
unsatisfied forward function/procedure declaration undefined label(s)
multidefined label(s)
array elements out of sequerice
no variant part in this record
erroneous number of fields in this record
valuespecification incompatible with recorddeclaration number of array elements does not agree with declaration
multiple occurence of variable in value part
illegal formatting

@ module name(s) must be unique
assignment to function not allowed at this level
illegal procedure call
cnly “value” parameter(s) allowed in formal function/procedure control variable must be a variable or a parameter
multidefined external file
“input” not in program heading
“input” has illegal type
readin and writeln only allowed on text files
not a constant
not an external declared file
assignment to function identifier must occur in function itself textstring not terminated within the same line
file parameter must be VAR-parameter
comment did not terminate

119

D.2 Error Messages from Second Pass D.2

number meaning

301
302
303
304
305
306

307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322

323
324

401
402
403
4OYy
405
406
4O7
408

decimal integer constant too large
non-decimal integer constant too large
exponent in real constant too large
index type too large

basetype of set too large '
too many nested funct ion/procedure declarations

and/or too many parameters/labels in this procedure
first element in subrange specification less than second
multideclared label

the lowest integer is not allowed as case-label
the range of case-labels is too large
not enough room for temporaries
constant out of subrange bounds

comparison and assignment of strings with different length
not fully implemented yet
not enough room for parameters, structure too complicated
range of set-elements only with constant bounds
tag field values must be scalar
no such tag field in this record
too many tag fields specified
standard routine argument too complicated in this context
erroneous arguments to pack or unpack
#***%% warning: label may lead to erroneous code
standard procedure “replace” may only be called from
main program

packed fields not allowed as var-parameters
division by zero not allowed

compiler constant “maxident~ too small
compiler constant “stringmax” too small
compiler error (should be reported to maintenance staff)

compiler constant “maxnest”~ too small
too much code: use option “codesize”~
random files not implemented
read and write of user defined scalars not implemented
pack and unpack only implemented on array of char

120

~

D.3 Runtime Error Messages D.3

D.3.1 Start Up Errors oe D.3.1

During the start up (initialization) of the mmning program some

error messages may appear.

The error message consists of two lines:

*** pascal init trouble

WO = <status> <message>

<status> is the result delivered by some monitor calls causing

the error. ©

<message> may be one of the following:

"cannot create area process'

the job is run with too few area processes.

‘error in program call'

the call to get a campiled program executed is wrong.

‘wrong answer'

the object file is not ok. It cannot be loaded or it is not

possible to read fram it.

‘process too small'

D.3.2 Errors During Program Execution D.3.2

_ During the execution of a Pascal program the program may be ter-

inated by a runtime error. Rmtime error messages consist of a

message and a trace of the active routines (see the example in

chapter 9).

The messages are: Bea 1 gaindeg

"b, © or h expected' | aS

during the reading of a mumber with base 2, 8 or 16 a wrong base’ >
has been encountered.

giveup, blocklength = <integer>

possibly because of too few bs-resources.

‘digit expected'

during the reading of a number an erroneous character has been

encountered.

"dispose outside used area' .

the reference used as argument to dispose is outside the used

area of the heap.

‘file cannot be connected for I/O: <file name>"

an external file cannot be used, maybe because the job is mn

with too few area processes.

‘file does not exist: <name>'

‘illegal argument to arcsin' .

the argument to arcsin has an absolute value greater than or

equal to 1.0.

"illegal argumerit to exp or sinh! .

exp or sinh has been called with a too’big argument.”

‘index or subrange out of bounds, value is: <value>'

‘integer overflow’

during input an integer greater than maint (8388607) 2 has been

read. ‘

a
e

| 122

"negative arguttent to 1n or sqrt'

‘negative field width"

“it is. tried to write a number ‘with a negative number of signifi-

cant digits. . ope

the program cannot be executed in a process with the size used. |

“illegal zonestate'

illegal use of a file:

read before reset or write before rewrite.

‘illegal pointer value! _

‘try to read past eof’

during input EM has been encountered.

‘wrong answer on input request’

a procedure cannot be transferred fram backing storage to core

(if no hardware problens it should be reported to the maintenance

staff) .

‘wrong no of hal fwords transferred!

€@ procedure cannot be transferred from backing storage to core

(if no. hardware problems it should be reported to the maintenance

staff).

Uncontrolled runtime error.

Use of an undefined pointer variable (iminitalized) may cause a

“eek break O <address> .

@
*

W
s

RETURN LETTER

Title: RC8000 PASCAL, User“s Guide RCSL'No.: " azittes
cae os

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To: ‘do ‘this effeét ely we need

user feedback, your critical evaluation of this manual. EAE E

Please comment on this manual’s completeness, accuracy, organization, usability,

and readability:
8 Sop yehR BAe Fee ae A ge

Do you find errors in this manual? If so, specify by page.
Seer oy. oe ne

oN

; ; ' ae ‘
How can this manual be improved? .

3 Le we)

S08 Pad . oe

Other comments? a 7 in
. i eee : % & L

oF

“ aie é ahs Xe

Name: Title:

Company:

Address:

Date: a

Thank you %

Cn 2

a Y

vee ee es Fold heré CR eee ee ww ew ww wie we wwe

Do not ‘tear - Fold here and staple... 2... eee

Affix. |
postage
‘here:

git REGNECENTRALEN
1s win af 1979 ;

Information Depatiinent ae
Lautrupbjerg 1
DK-2750 Ballerup
Denimark

