RCSL No: 42-i1786
Edition: August, 1981

Author: Jan-Bardino

Title:

RC8000 PASCAL, User”s Guide

RCSL 42-11592

8 REGNECENTRALEN
: . af 1979

‘pejusse.d sjeie)ew 8y} Jo Aue uo soueyjes Aq pesned sebewep Aue
Joj ejqisuodsel eq jou [jeys pue jenuew sy} ur Jesdde Aew yoym
sious apswylpe Jo jeojydesSodA) so) siqisuodses Jou Si DY ‘8ol
-ou soud jnoypm swil Aue Je oy Aq abueys o} yoeiqns aie ulessy pau
-18juod suojjeaiyioeds sy} Jeyi pauoined aje [enuew SiY} JO Siesn

uabeyuado) ‘s26} e usjesyusseubay S/y Aq patulig

S/v J8indwo) Oy
6/61 e ugjenjuadaubay gy ‘186l & WybBuAdon

’.T—ZV ISTM

(sebed psjutad zgl)

*s3yona3suco uexboad Jo serduexs

pue Teosed-00080d JO uoT3xdTIossp 939TAWOD ® SUTP3UOD Tenuew Sy,
*Io3nduod 0008y SR IOT

pojusweTAWT se Teosed obenbue] Syz JIO0F TRTIOING © ST Tenuew STYL

Joensqy

Teosed pIepuels ‘sbenbue] ToasT UbBTH

:SPIOMADY

FOREWORD

First edition: RCSL No 42-i1786. ‘
This manual provides a camplete description of the programming
language Pascal as implemented for the RC8000 camputer.

The manual is directed to those who have previously acquired some
familiarity with camputer programming, and now wish to get

acquainted with the programming language Pascal. The-style @fthe

manual is that of a tutorial, i.e. a demonstration of the “lan- "
guage features by means of examples.

For a concise ultimate of the language definition ref. [1] or
ref. [2] may be used.

Sumnarizing tables and syntax diagrams are added as appendices.

Jan Bardino - D -
A/S REGNECENTRALEN af 1979, August 1981 -

iii

TABLE OF CONTENTS PAGE

10 INTKDDUCTION ® 9 0000000000000 000000006000000000800000000000 1

2. BASIC DEFINITION ccccocccsoscccsccscssoscsscscsscssossscscssscs
2.1 VocabUlary cceeccececceccscssssscssscssssscsssssssss

2.2 Program ElementsS ecoeecececessccsccsscsscsssoscssssssns
2.2.1 Syntax Diagrams R

2.2.2 Comments and SeparatOrS eceeceececccccccscsocs

2.2.3 Identifiers cieceecceccecscscossesssosscccns

2.2.5 Real Literal .iieeececssscccocssssssscncnnse

2.2.6 Strings of CharacCters ..ceeeececescccsccscnss

2.2.7 Boolean Litera@l cecececsccccoscsccsssscccccsss

0 N OO0 Ul DWW N

3. THE PASCAL IANGUAGE steeceeccoscsscoscossossssasssassssnas
3.1 The Program OUtlinNe seceseeecessssccscsesssssscccesss
3.2 The Program StrUCtUre .ceesssessssossscnssccasssces 11
3.3 The Declaration Part eeeeeeeseesccscossssscsssasces 13

3.3.1 IaPELS cevessvessosesscssssessscssssscessoces 14
3.3.2 Constants ceeeeeeescscsscsscscsssssccnnssssss 14
3.3.3.1 Enumeration TYPES eeecesssccscccces 17
3.3.3.2 Subrange TYPES ceeeeecsoscccscscces 19
3.3.3.3 Structured TYPeS «eeeeesocoscsncess 27
3.3.3.4 Type Compatibility .ecceceececeesecss 48

3.3.4 VariableS ..eeeeevecscescescescssccsncscaens 49
3.3.5 Value Part eeeeseeececessssesssssssscsssssss 50
3.3.6 Routine Declaration .ceesseeecssseessscessess 53
3.4 The Statement Part ..eeeeeececscssssscscsssssssssees 58
3.4.1 StatementsS cececececessssscccccsssssssosssssss 58
3.4.2 Assignment Statement ...eeeeeeesceescessesss 59
3.4.2.1 EXPreSSions sceceecessscescccsccssss 60

3.4.3 Goto Statement .seeeeeeesscessssessscssssesss 63
3.4.4 Repetitive Statements .ecceeesseesscccsssesss 63
3.4.5 Conditional Statements cceeeeseessccescsscess 66
3.4.6 Procedure Call s.coeeesececssscsscccccssssssnes 69
3.4.7 With Statement .veeseeescccsssscsssossssnses 72

iv

TABLE OF CONTENTS (continued)

PAGE

4.

'50

9'

DETATILED SCOPE RULES

© 0 0000000000000 00000000000000000000

PREDEFINED MJ’TINES ‘0.loooooco.o.ooono-oo.oo.-o-oooo;ooc
5!1 Standardprmedures 0 e 0000000000000 0000000 0000000

'5.1.1 File Handling ProcedUres «ecesceececscccecons

5.1.2 Dynamic Allocation Procedures ..cecececeees.

5.1.3 Transfer ProceUIeS ceceeseecceccsccscssesss

5.].4 Date andeme ® 000000000 se0 000000000000 00000

5.1.5 Program Control Procedure .eeeececscccceeess

5-2 StandardFunCtiOﬂs ©0 0000000000000 0000000000000 0000

5.2.1 Ariﬂunetic Flmctims ® 9 0 09 000 000000000 PeS

5'2.2 ’I‘ransfermnctims S 9 020 0% 020 00 00O S e NGNS

5.2.3 OrdinalFunCtiOhS © 0 0000000008008 000080000s0e0

502.4 Predicates #0000 020000000000 0000000000000000

5.2.5 Processing Time FUNCEION tevseseccrnosccens

5.2.6 DdonitorFunctims ® 9 0 0 2 ¢ 0 0P O PP OGS OO OGO OE N BSOS S
5.2.7 Access to File Processor Parameters ceceoces.

5.3 Camplete List of Predefined Routines ...eeeeeceesss

CXDMPILER DIRECI‘IVES 0 00 000000000000 PRCLIRNGELIOGIEOEOERTEIIEOIOEDBRIEETS

7.1 How to Campile a Pascal Program ..seeecscecssscccns

R[]NTIde ENVIK)NMT © 9 000 0000000000000 000 0000000000008

8.1 The Pascal Process at RUNEIME ceveeevocconss

8.1.1 Resident ProcedUreS «eeeeeessccesssscccsseses

ERROR MESSAGES

s 0000000000000 00

10. SOME PROGRAMMING HINTS AND WARNINGS «eeveeeecccsanonnses

75

76
76
76

77
77

77
77
78
78
79
79
80
80
81

82
84

86

89
89

O
———

92

93

95

TABLE OF CONTENTS (continued) . PAGE
APPENDICES:

A. REFERENCES «.ceveenscnccnssossassasssssnsssnsaasnssacose 99
B. RC8000 PASCAL SYNTAX DIAGRAMS 100

CI UI‘ILI’I’YPR%RADdS -oo.o.'-oo.oo-o-oooo..oo.:o.ooo..o.oooo 106
Cn] Indent © 9. 0000000600000 00000208008000000600600600000c000000 106

CQ2 Cross Reference PrmraIn ® 0 0 0 00000000 000 0PSSO NP 107
C.3 Use Of Indent andcross ® 9 0 0 00 0000000002 O OSSO OSESEPSOSOOIDS]09

C.4 Performance Measurement cccecccescssssscccccsscsses 114

D. ERK)R DESSAGm ® 8 9 0000 0009 000000000000 O NS ONLONDLONBSIPONNOS PSS]16
D.1 Error Messages fram First PassS .ecccecececssccessses 116

D.2 Error Messages fram Second PasS ceceeeescesccsccess 119
D.3 Runtime Error MeSSagesS .ceeeeeceescccccscccscssssss 120
D.3.1 Start Up ErYOrS cceeeeececescccsssccssccsass 120
D.3.2 Errors During Program Execution .eeeceeecese 120

INTRODUCTION

The language Pascal was designed by Professor Niklaus Wirth to
satisfy two principal aims.

1) To make available a language suitable for teaching pro-
gramming as a systematic discipline.

2) To define a language whose implementations could be both
reliable and efficient on then available computers.

A preliminary version was drafted in 1968, and the first compiler
became operational in 1970. After some revisions, dictated by two
years of experience in the use of the language, a Revised Report
was published in 1973.

BASIC DEFINITION 2.

2.1

Any Pascal program consists of a sequence of Pascal symbols. This
chapter defines this set of symbols. The Pascal symbols can be
divided into the following classes: reserved symbols; ident—
ifiers; literals and separators.

An algorithm can be written as a Pascal program which is divided
into two main parts: a declaration part and a statement part. The
declaration part defines a number of dbjects which can be manipu-
lated by the statement part. The data items used in an algorithm
are called variables and these are introduced by variable declar-
ations. The values that these data items can assume are defined
by type declarations. A number of variables constituting a single
entity may be cambined into a structured data type. A number of
declarations and cperations which form a closed entity may be
carmbined into a routine by a procedure or function declaration.
The statement part defines the main flow of the algorithm and
consists of a sequence of statements.

Vocabulary 2.1

The basic vocabulary consists of language symbols and user de-
fined symbols. The language symbols are reserved words (key
words) and punctuation marks. Tl'irougl'put this manual reserved
symbols will be written in capital nletters (e.g. BEGIN). The re-

sexrved symbols are all listed below:

AND END IN PACKED TO
ARRAY EXTERNAL LABEL PASCAL TYPE
BEGIN FIIE MOD PROCEDURE UNTIL
CASE FOR MODULE PROGRAM VAR
CoNST FORTRAN NIL RANDCOM VALUE
DIV FORWARD NOT RECORD WHILE
DO FUNCTION CF REPEAT WITH
DOWNTO &0TO OR SET

EISE IF OTHERWISE THEN

. 2.2

o
Il
]
.

';IIO+
t
Y
—

#
R
The user may not use the reserved words in a context othér than

that explicitly stated in the difinition of Pascal; in particu-
lar, these words may not be used as identifiers.

It should be noted that the following reserved synbols are not
used in the current version: RANDOM, EXTERNAL, FORTRAN, PASCAL
and MODULE.

Program Elements

2.2.1

Syntax Diagrams

The syntax of the various language constructions is defined by
means of syntax diagrams. A syntax diagram is a graphical repre—
sentation of a syntactical rule, every traversal of such a graph

corresponds to a particular application of that rule. Any such
traversal must follow the direction indicated by the arrows, i.e.

no legal traversal may encounter an arrow pointing in the
opposite direction.

The following is an example of a syntax diagram.

While statement:

—>WHILE ——>expression——>D0 ———>statement ———>

The syntax diagram defines the name (while statement) and syntax

of the language constructions. The name is used when the con-
struction is referred to elsewhere in the text or in other syntax

diagrams. Language symbols are either names in capital letters
(e.g. WHILE) or punctuation marks (e.g. :=).

2.2

2.2.1

.2

Constructions defined by other syntax diagrams are given by their

names in small letters (e.g. expression). To be able to disting- ‘
uish between several occurrences of a construct, its name may be
subscripted.

Camments and Separators 2.2.2

Camnent:

N
v

character<

non-printing symbol<—

v
~
A%
N’

aracter<

non-printing symbol<-

Camments may be inserted between any two identifiers, numbers or
special symbols. A camment does not affect the execution of the
program.

If the first character after the (* is a $ (dollar), the can—
ment is interpreted as a list of campiler options. For a canplete

description of the available options the reader is referred to
chapter 6. ’ .

Camments, spaces and ends of lines are considered to be token
separators. An arbitrary nunber of separators are permitted be-
tween any two consecutive tokens, or before the first token of a
program text. At least one separator is required between any con—
secutive pair of tokens made up of identifiers, word-symbols or
numnbers. Apart fram the use of the space character in character
strings, no separators occur within tokens.

Identifiers

Names denoting constants, types, variables, programs and routines
are called identifiers. They must begin with a letter which may
be followed by any cambination and mmber of letters, digits and
underscores. Identifiers are permitted to be of any lenth, but
only the first twelve are recognized as significant. Matching up-
per and lower case letters are equivalent in identifiers.

identifier:

>letter Sr

v

letter€——
digite———
S

letter is A,B,C,...,%2,3,0,C,4..,2
digit 1is 0,1,2,...,9

Examples of legal identifiers:
step use_count Local Message
very special defined identifier
Note: "Local Message" is identical to "local message",
"LOCAL MESSAGE" and any other cambination of matching small and
big letters.

Whereas none of the following are identifiers.
la
_day
The following are some of the predefined identifiers.
integer
real
text
succ
false

2.2.3

2.2.4

Numbers

2.2.5

Numbers are integer literals (mumeric values) and real literals.

numeric value:

e

<

—>#b >r->binary digit ——

Y

——>#0>>octal digit ——-B—-)ﬁ

<
T~

——>#h—>r->hexa digit

T

binary digits are 0..1
octal digits are 0..7

hexa digits are

Exampel of legal numbers:

7913 0033 #bl101

0..9 and a..f

#hf£00

—> (decimal integer)

#07654

Note: Blanks are not allowed between #b, #o and #h, and the fol-

lowing nurber.

Real Literal

A real literal is a real number with an optional scale factor.

real literal:

—>decimal integer->

> .

SN

—>digit:

>E->decimal integer—>—>

2.2.5

2.2.6

Note that if the real literal contains a decimal point, at least
one digit must precede and succeed the point. Also, no camma may
occur in a nurber.

Example of legal real numbers:
3.141592

0.31415E1
314E-2

Strings of Characters

A character string is a sequence of characters enclosed by quote
marks, both single and double quote marks are legal but the end
mark must match the start mark.

char literal:

"->string character ->" j >
'>string character ->'

string literal:

>" >->string character y>"—>—>

<

—>'—>>string character—y—>'—l

-~

String characters are the printable subset of the alphabet, ex-
cluding newline (nl) and form feed (ff), i.e. ' ', 'I', ...,'A!

Examples of legal strings:

"abed" " 'A' is a strange character" v

2.2.6

2.2.7

Note: If a string surrounded by single quote marks is to contain .
a quote mark or a string surrounded by double quote marks is to
contain the surrounding quote mark, then this quote mark is to be

written twice, for example """" is equivalent to '"', and '''' is
equivalent to "'",

Boolean Literal ’ 2.2.7

A boolean literal is one of the predefined constants true and
false.

boolean literal: .

—>true—

\ 4

—>fal se—

THE PASCAL LANGUAGE . 3.

3.1

This chapter consists of descriptions of the different camponents
of a Pascal program. First an example which shows the structure
of a ccrﬁplete program definition, and after the example is given
a more precise description of the syntactical definition of the
different parts of the program definition.

The Program Outline 3.1

A Pascal program consists of declarations of labels, constants,
types, variables, routines, some initializations (VALUE-part) and
sane statements which operate on the declared dbjects.

This is an outline of a Pascal mrogram:

PROGRAM catalog (output);
CONST
idlength = 10;
catalogsize = 256;
TYPE
identifier = ARRAY [1..idlength] OF char;

VAR
name: identifier;
found: boolean;
index: integer;
FUNCTION hash (id: identifier): integer;

VAR
key, next: integer;
ch: char;
VALUE
key = 1;
next = 0O;

10

BEGIN (* body of function hash *)
REPEAT ".
next:= next + 1;
ch:= id [next];
IF ch <> sp THEN
key:= key * ord (ch) MOD catalogsize + 1;

UNTIL (ch = sp) OR (next >= idlength);
hash:= key;

END; (* of hash *)

BEGIN (* main program *)

index:= hash (name);
REPEAT

UNTIL found

The program contains a declaration of

- two constants: idlength with the value 10 and catalogsize
with the value 256,

- a type: identifier which is an array of characters,

3.2

M

- three variables: name which can hold a value of type

identifier, found which can 1old a value of type boolean,
and index which can hold an integer,

- a function hash which maps an identifier to an integer.

The function has a formal parameter id and three local variables

key, next and ch. The value-part specifies initial values for key
ard next.

The assignment statement: index:= hash (name) contains a call of
the function; the result of the function is assigned to the vari-
able index.

All declared objects have names: catalog, idlength, catalogsize,
identifier, name, found, index, hash, id, key, next and ch. These
names are defined by declarations before they are used in state-

ments.

The Program Structure

The syntax of a Pascal program is

program:’

—>program heading —>block —> .

\ 4

The program heading specifies the interface to the enviromment in
which the program is executed.

3.2

program heading: ’

<
YA

—>PROGRAM ->program identifier->(-—>>file name >—>>)>; >

program identifier:

—>identifier

v

file name:

—>identifier >

l—>= >external name J ' .

v

The files denoted by the file names must be declared as file
variables in the block of the program, an exception to this is
input and autput. The files listed in the program heading are
called external files. The external name, if present, is an
RCBO00 catalog entry name in quotes. An external file which has a
file specification is automatically opened at the start of the
program, as if there had been an explicit cpen(file, external
name) (see 3.3.3.3), but there is no automatic call of 'reset' or

'rewrite'

On the RC8000 input and outplxt are initially connected to current .
input and output allocated by FP. If other files are used for in-

put and/or output by a program there must be an explicit call of

close before the program terminates.

Note: The program heading must contain the file name output.

3.3

13

Example of program heading

PROGRAM catalog (output, input= 'pip');:

block:

>label declaration part

——>constant definition part——

>type definition part

IS

L——>variable declaration part——

<

——>value part

[~

——>routine declaration part

~

——>statement part

A\ 4

statement part:

Y

—>canpound statement:

routine declaration part:

\/

>routine declaration->;

.l
<

The following sections will define and show examples of the dif-

ferent elements of a block.

The Declaration Part 3.3

The declarations of a program serve as a description of the data
which are manipulated by the actions performed by the program.

14

3.3.1 Labels 3.3.1.
A label is a non negative number less than 10000. Iabels must be
declared prior to their use. A label is defined in the campound
statement of a routine or program. Any such label must be de-
clared in the label declaration part of the routine or program
where it is defined. '
label declaration part:
—3>IABEL 3—>label >; >
2 ®
label:
—>—>digit >
Two labels which denote the same nunber are considered identical.
Labels follow the same rules of scope as other quantities; i.e.
they can be used in the rest of the program or routine where they
are declared.
3.3.2 Constants 3.3.2‘

The constant definition part consists of a number of definitions
of constants. Each of these definitions introduces an identifier
as a synonym for the value of a literal or as a synonym for an
enumeration constant fram a scalar type.

15

constant definition part:

N,
”~

—>>CONST->r->constant identifier = >constant->;

Vv

~

constant identifier:

—>identifier

v

constant:

—>r—>constant identifier >
—>enumeration constant——)
—>integer literal—
—>real literal
—>char literal >
—>string literal —
—>boolean literal

\ %

The use of constant identifiers generally makes a program more
readable and acts as a convenient documentation aid. It also al-
lows the programmer to group machine or example dependent quanti-
ties at the beginning of the program where they can be easily no-
ted and/or changed. (Thereby aiding the portability and modular—
ity of the program).

Example of constant definition part:
CONST
idlength= 10;
catalogsize= 256;
version date = '81.07.17';

There are some predefined constants:
alfalength = 12; (* nurber of characters in a variable of
type alfa (see 3.3.3.3) *)

maxint = 8388607; (* 2t23-1, the largest possible integer

value *)

3.3.3

]6 -

firstch = ' '; (* first character of the standard .
type char (see 3.3.3.1) *)

lastch ‘A (* last character of the standard
type char (see 3.3.3.1) *)

I
¢

setmax = 143; (* largest index allowed in a set
(see 3.3.3.3) %)

Types 3.3.3

A data type defines the set of values vhich may be assumed by ‘
variables and expressions (in the following called instances) of

that type. New data types may be defined in a type definition

part.

type definition part:

-
”

S>TYPE-y—>type identifier->= >type->; >

=

type identifier:

—>identifier > ‘
type:
->r->simple type >

—>structured type-3
—>pointer type —>3
—>type identifier—

simple type: ‘

tenwneration type >
real '

15

constant definition part:

N
Ll

~>SCONST—->r>constant identifier ->= Sconstant—>;

el
-

A 4

constant identifier:

—>identifier

v

constant:

—->—>constaht identifier >
—>enumeratibn constant——>
—>integer literal——>
—>real literal
—>char literal
—>string literal
“>boolean literal

v

The use of constant identifiers generally makes a program more
readable and acts as a convenient documentation aid. It also al-
lows the rogrammer to group machine or example dependent quanti-
ties at the beginning of the program where they can be easily no-
ted and/or changed. (Thereby aiding the portability and modular-
ity of the program).

Example of constant definition part:
CONST
idlength= 10;
catalogsize= 256; A
version date = '81.07.17';

There are some predefined constants:
alfalength = 12; (* number of characters in a variable of
type alfa (see 3.3.3.3) *)

maxint = 8388607; (* 2123-1, the largest possible integer

value *)

3.3.3

16

firstch = ' '; (* first character of the standard
type char (see 3.3.3.1) *)

lastch = 'A'; (* last character of the standard
type char (see 3.3.3.1) *)

setmax = 143; (* largest index allowed in a set
(see 3.3.3.3) *)

Types

A data type defines the set of values vwhich may be assumed by
variables and expressions (in the following called instances) of
that type. New data types may be defined in a type definition
part.

type definition part:

o
~

—>—>TYPE->—>type identifier->= >type->; >

type identifier:

—=identifier - >

type:
->r—>simple type >

—>structured type—3
—>pointer type —3
—>type identifier—

simple type:

tem:meration type —>
—>real

3.3.3

Enumeration Types 3.3.3.1

An enumeration type consists of a finite, totally ordered set of
values.

Enumeration type:

—>—>char
—>boolean————>)
—>integer ——————>)
—>scalar type
>subrange

v

scalar type:

—=>(->->enumeration constant >->)

\ 4

&
2

enumeration constant:

—>identifier >

A scalar type is defined by listing all the possible values in

increasing order as a list of identifiers.

Standard simple types
A standard type is denoted by a predefined type-identifier. The
values belonging to a standard type are manipulated by means of

predefined primitive operations. The following types are standard
in Pascal:

integer The values are a subset of the whole numbers, denoted
as described in 2.2.4. The predefined integer constant
maxint defines the subset of the integers available in
an implementation over which the integer cperations are
defined.

The range is the set of values:

—ITBXint-], —ma.Xint,-.., "],O,]l'ao' Haxint—] ,maXint.

18

real The values are a subset of the real numbers denoted as

defined in 2.2.5. The real values are in the range ‘
[_22047 ..=0.5%*2—2048 ,0,0. 5%9—2048 .22047] or

approximately in [10-6]6..106]6] or the corresponding

negative range. For more details see ref. [3] chapter
5'

boolean The values are truth values denoted by the identifiers
false and true, such that false is less than true.

char The values are a set of characters. The denctation of
character values is described in 2.2.6. The ordering
properties of the character values are defined by the

ordering of the ordinal values of the characters, i.e. .

the relationship between the character variables ¢l and

c2 is the same as the relationship between ord(cl) and
ord(c2). In all Pascal implementations the following
relations hold:

(1) The subset of character values representing the
digits O to 9 is ordered and contiguous.

(2) The subset of character values representing the
upper-case letters A to Z is ordered but not
necessarily contiguous. |

(3) The subset of character values representing the
lower-case letters a to z, if available, is ordered

but not necessarily contiguous.

Integer, boolean and char are enumeration-types. Real is a real-
type.

Operators applicable to standard types are defined in the follow—
ing.

3.3.3.2

19

Subrange Types

An enumeration type can also be defined as a subrange of another
enumeration type by specifying its min and max values (separated
by .. (double period)). A subrange of the type real is not al-
lowed.

subrange type:
—>min value—>.. —>max value

v

min value:
—>constant

v

§
G
i
4

The min value must not exceed the max value and they must be of
canpatible enumeration types.

A subrange type is in fact a synonym for an enumeration type with

. a range check included.

Often in this manual, the pghrase 'or subrange thereof' is assumed
to be implied but is not always mentioned explicitly.

The predefined function ord can also be applied to an instance of
a subrange type.

As a consequence of the ordering the following dyadic cperators
are defined on operands of any enumeration type. They all take
two operands of campatible types and yield a boolean result.

< 1less than
<= less than or equal

= equal
< not equal

> greater than A

>= greater than or equal

3.3.3.2

20

The following predefined functions apply to instances of all enu- ‘
meration types. They take one argument and for succ and red the

type of their result is campatible with the type of their ar-

gunent, if the result is defined.

pred

succ

ord

The result is the successor of the argument. If the ar-
gunent is the last (greatest) value of the type the re-

sult is undefined.

The result is the predecessor of the argument. If the
argument is the first (smallest) value of the type the

result is wndefined.

The result is of type integer and is the ordinal number
of the argument in the set of values defined by the

type of the argument.

The types iso and char

The type iso is a predefined enumeration type. Its values are the
(Danish) ISO characters.

0

1

2 3 4 5

6

7

8

10
20
30
40
50
60
70
80
90
100
110
120

K OB QN "R AN~

r's us

)
3

N0 0 o BOC @

sp ! " £
* + ., -
4 5 6 7
> ? @ A
H I J K
R S T U
g R t+
£f g h 1
P 9 r s
z = ¢ A&

char is defined as
char = firstch.. lastch; (* '.'..'~A' *)

5

s < B w o

o+ w.

2 QN W N oo

~

del

nul soh stx etx eot eng ack bel bs
nl vt ff cr so si dle dcl dc2
dcd nak syn etb can en sub esc fs

&
0

e

< = O X 2 U

21

Note: The Danish characters &, @, &, =, $ and & are special sym-
bols, they are not part of the set of characters used for ident-
ifiers, but they are used as [,\,],{, l and} And '#' is used
instead of '£’.

Examples of enumeration and subrange types and their use:
Given the declarations

TYPE
suits=(club, diamond, heart, spade);
days=(monday, tuesday, wednesday, thursday, friday,
saturday, sunday);
week end=friday..sunday; (* subrange type *)
months=(january, february, march, april, may, june, july,
august, september, october, november, december); '
seasons=(winter, spring, summer, autumn);
colours=(black, red);

Then the following relations are all true.
diamond<=heart
morday<sunday
december>=april
wednesday=succ(tuesday)
november=pred (december)

Whereas the following relations are all false.
club>=diamond
january=february
succ(november) =october

The Type Boolean

The type bolean is a predefined enumeration type. Boolean is pre-
defined as TYPE boolearr(false, true):;

The following operators can be applied to instances of type
boolean. They all yield a boolean result.

AND dyadic logical conjunction of the two operands.
OR dyadic logical disjunction of the two cperands.
NOT monadic logical negation of the cperand.

When the predefined function ord is applied to a boolean value

the result is the following. .
ord(false)=0
ord(true)=1

Each of the relational operators (=, <, <=, <, >, >=) yields a
boolean value. Furthermore, the type boolean is defined so that
false < true. Hence, it is possible to define each of the 16
boolean ocperations using the above logical and relational oper—
ators. For example, if p and g are boolean values, one can ex-—

press
implication as p<=gq .
equivalence, as =g ‘

exclusive or as p< g

The following table shows the value of some boolean expressions.

expression value
true AND true true

true AND false false
false AND true false
false AND false false

expression
true OR true

true OR false
false OR true
false OR false

A}

NOT true
NOT false

true<true
true<false
false<true
false<false

true=true
true=false
false=true
false=false

true>true
true<>false
falsetrue
false<>false

true<=true
true<=false
false<=true
false<=false

true>=true
true>=false
false>=true
false>=false

value
true
true
true
false

false
true

false
false
true

false

true
false
false
true

false
true
true
false

true
false
true
true

true
true
false
true

23

The type integer ‘

The following cperators can be applied to instances of type inte-
ger. They all yield an integer result.

+ dyadic integer addition of the values of the two cperands.

+ monadic monadic plus (redundant).

- dyadic integer subtraction of the value of the right
operand fram the value of the left operand.

- monadic monadic minus.

* dyadic integer multiplication of the values of the two
operands.

DIV dyadic the value of the left operand is divided by the .
value of the right gperand. The result is the quo-
tient truncated (i.e. the quotient is not rounded)
to integer.

MOD dyadic a MOD b is defined as a—((a DIV b)*Db)

The following predefined functions all take a single integer ar-

gument.

abs The integer result is the absolute value of the ar-
gument.

sqr The integer result is the square of the argument.

odd The boolean result is true if the argument is odd;
otherwise it is false. .

chr The result (of type char) is the character vwhich
has the ordinal value of the argument. As a conse-—
quence chr is only defined in the subrange
[0..127].

ord The result (of type integer) is equal to the value

of the argument.

25

The following relations are all true.

242=4
-2=2=-4

5*3=15

15 DIV 3=5

15 DIV 7=2

11 DIV 4=2

15 MOD 3=0

15 MOD 7=1

11 MOD 4=3

-15 DIV 3=-5
-11 DIV 4=-2
-11 MOD 4=-3
=15 DIV (-7)=2
=15 MOD (-7)=-1
abs(-3)=3
sqr(4)=16
sqr(—4)=16
odd(3)=true
odd (-3)=true
odd(4)=false
odd(-4)=false
odd(0)=false
chr(65)="'A" : -

The Type Real

The predefined type real consists of a finite subset of the real
numbers. A value of type real is represented in the RC8000 float-
ing point format [3] the mantissa has 36 bits including a sign
and the exponent 12 bits; thus there are at least 11 significant
decimal digits.

26

The following operators can be applied to instances of type real.

+ dyadic
+ monadic
- dyadic
- monadic
* dyadic
/ dyadic
<= dyadic
>= dyadic
< dyadic
< dyadic
> dyadic
= dyadic

Floating point addition of the values of the two
operards.

Monadic plus (redundant).

Floating point subtraction of the value of the
right operand fram the value of the left cperard.
Monadic minus.

Floating point multiplication of the values of
the two operands.

Floating point division of the value of the left
operand by the value of the right operand.

The boolean result is true if the specified rela-
tion holds between the two operands, otherwise it

is false.

The following predefined finctions can be applied to a real argu-

ment:

sin,cos,arctan, The result (of type real) is the result of apply-

1n, exp, sart,
abs, sqr,sinh,

arcsin

round

trunc

ing the specified mathematical function to the
argument.

The result (of type integer) is the argument
rounded (not truncated) according to the standard

mathematical conventions.

The result is the integer, with the same sign as
the argument, whose adbsolute value is the
greatest among the integers less than or equal to
the absolute value of the argument.

3.3.3.3

27

The difference between trunc and round is illustrated by the fol-
lowing examples

trunc(1.6)=1, trunc(-1.6)=-1, trunc(2.4)=2,

round(1.6)=2, round(-1.6)=-2, round(2.4)=2.

The operators = and < should be used with great care on real
arguments. This is due to the round-off error which often results
fram the representation of real values.

The relative precision of a real number lies between 3*] O—” and

6%107 !,

Structured Types

A structured type is a camposition of other types. The specifica-
tion of a structured type specifies the structuring method and
the camponent types.

structured type:
—>r—>PACKED ray type >
—>] >->record type ->

>set type——>
>file type—

Arraz ZYES

An array consists of a fixed mumber of camponents all of which
have the same type. The number of camponents is specified by an
enumeration type (index type). The index type must not be inte-
ger, but a subrange of type integer is allowed.

Note: The index type is static and cannot be varied dynamically.
This implies that the index type must e known at the campilation
time.

3'3.3'3

array type:

—>ARRAY > [—a-%index type >]—>C0F—>camponent type —>

index type:

—>enumeration type

\%

camponent type:

—>type

v

Arrays can either be used as a whole or camponent-wise. A whole
array is denoted by its array variable. A camponent of an array
is denoted by the array variable followed by one or more indices
separated by cammas and enclosed in brackets. An index consists
of a nutber of index expressions. The total mumber of index ex-
pressions must not exceed the dimension of the array. Furthermore
the value of each index expression rmust be of a type campatible
with the declaration of the corresponding index.

indexed variable:

—>array variable->[S—>expression 5]

Vv

?

array variable:

—>variable

Vv

Examples of array declarations and denotations:

Assune the declarations

TYPE

hours=8..16;

matrix=ARRAY([1..n,1..n] OF real; (*n is an integer constant *)
counter=ARRAY['a'..'z'] OF integer;

name of day=ARRAY[days] OF alfa;

occupied type=ARRAY[days,hours] OF boolean;

29

VAR
a,b,c: matrix;

occupied: occupied type;

Then the following lines give examples of correct array-denota—
tions.

a := b; (* the entire matrix b is copied into a *)
cl[il:=a[i]l; (* one row of a is copied into the correspording row
in c *)
c[i,jl:=alk,1]; (* cme camponent of a is copied into one caupo-
nent of c *)
occupied [wednesday, 9] :=true;
occupied [friday,15] :=false;

Record Types

A record consists of a fixed number of camponents called fields,
which may be of different types. For each field its field ident-
ifier and its type must be specified. A record can be divided in-
to a fixed part and a variant part, either or both bf these parts
may be empty.

record type:

—>RECORD >field list->END

Vv

field list:

N,
>

> >fixed part—3->;->3l—>variant part-->;—>—>

fixed part:

<
'S

>->l>field identifier Sb>: >type

v

Py-<
)

A

30 .

field list may have a number of variants, in which case a cer- .

tain field may be designated as the tag field, whose value indi-
cates which variant is assumed by the field list at a given time.
The tag field may be empty.

variant part:

—>CASE->tag field-»tag field type %F—ﬁﬁvariant—)————)

P
1€

tag field:

~
—

—>field identifier ->:

Vv

~,
4

tag field type:

—>enumeration type

A\

Note:

-I.

2.

All field names must be distinct - even if they occur in dif-

ferent variants.

If the field list for a label L is empty, the form is:

L:().

A field list can have only one variant part and it must suc-

ceed the fixed part(s). (However, a variant part may itself .
contain variants. Hence, it is possible to have nested vari-

ants) .

The tag field type must be an enumeration type. Each variant

must be labelled with one or more constants of a type campat-

ible with the tag field type. All such labels must be dis— |
|
tinct. |

31

variant:

—>case label list—>: >(—>field list ->)

A"

case label list:

—>—->constant—>

\ 4

<
'S

The value of the tag field determines which variant can be mani-
pulated.

'Records can either be used as a whole or camponent-wise. A canpo-
nent of a record is denoted by the record variable followed by
the field identifier of the camponent separated by a period.

field designator:

—>record variable . ->field identifier

\ 4

record variable:

—>variable

A 4

field identifier:
—>identifier

\4

Note: It is not checked that the tag field has the correct value
when a camponent of a variant part is referred to.

Examples of record definitions:

TYPE
date=RECORD
year: integer;
month: 1..12;
day:1..31

END;

person=RECORD .

name, firstname: alfa;
age: 0..99;

CASE married: boolean OF
true: (spousesname: alfa);
false:()

END;

figure=RECORD
X,y: real;
area: real;
CASE s: shape OF
triangle:(side:real; '
inclination, anglel, angle2: angle);
rectangle: (sidel, side2: real;
skew, angle3: angle);
circle:(diameter: real);
END;

Packed Representation

In order to reduce storage requirements a definition of an array
or record type can be prefixed by the symbol PACKED.

Note: The packed representation may result in an increase in ex-
ecution time and of the size of the campiled code. This is due to .
the packing and wnpacking operations which must be performed

every time a camponent is accessed.

Two redefined procedures are provided for the packing and un—
packing of an array of type char.

Assume that a and p are variables of the following types:

a:ARRAY[m. .n]OF char; P :PACKED ARRAY[u..V]OF char;
where (ord(n)-ord(m))>=(ord(v)-ord(u));
ord(m)<=ord(i)<=(ord(n)=-ord(v)+ord(u)); ‘

and the index tyoes of the arrays a and p and the type of i are
canpatible.

33

Then pack(a,i,p) is equivalent to

k:=1i;

plil:=alk];
k:=succ(k)
END

and wmpack(p,a,i) is equivalent to
k:=i;
FOR j:=u TO v IO
BEGIN
alk]:=p[3l;
k:=succ(k)
END

where j denotes an auxiliary variable not occurring elsewhere in
the program.

Use of the predefined procedures should be preferred because of
their more efficient implementation.

Note: No camponent of a packed structure may be used as a vari-
able parameter to a routine.

Strings

In 2.2.6 string literals were defined as sequences of characters
enclosed by quotes. Strings 'consisting of a single character are
constants of the predefined type char, those of n characters
(n>1) are constants of the type defined as: PACKED ARRAY [1..n]
OF char; furthermore the type alfa is predefined as: PACKED ARRAY
[1..alfalength] OF char; (on RC8000 alfalength is 12).

The relational operators <, >, <= and >= are applicable to
strings of the same length. The ordering is the lexicographic
ordering based on the ordering of the characters.

Set S

A set type consists of the set of all subsets of some enumeration
type. A set type definition is written as follows.

set type:

—>SET (F base type >

base type:

—>enumeration type >

The ordinal number of the largest element must not exceed 143, .

ard the ordinal mumber of the smallest must not be negative. It
follows that a set type can contain at most 144 elements.

set:
~
—> [3l>—>element— >] >
<
1
element:
—>expression .
—> >
-éex“*'esszhon1 . ->ex*~*e351on2—>-

A set denotes a set consisting of the expression values. The form
m..n denotes the set of all elements i of the base type so that
m<=i<=n. If m>n then [m..n] denotes the empty set. The set ex-—
pressions must all be of campatible enumeration types. The empty
set is denoted [] and is campatible with any set type.

35~

The following three operators take two operands of campatible set
types and their result is of a set type campatible with the
operand type. |
+ The result is the wion of the two operand sets.
* The result is the intersection of the two operand sets.
- The result is the set difference of the two operand
sets (i.e. the elements which belong to the left
operand but not to the right operand).

The following two operators take two operands of campatible set
types and give a boolean result.

<= The result is true if the left operand is included in
the right operand; otherwise it is false.
>= The result is true if the right operand is included in

the left cperand; otherwise it is false.

The following operator takes two operands.

IN The result is true if the left cperand is a member of
the set specified as the right operand. The left
operand must be an instance of an enumeration type can-
patible with the base type of the right operand.

Assume a and b are of type t and assume t is a set type.
Then the following expression is true.
(a-b)+(b-a)=atb-a*b

&)

Assumne the declarations

TYPE
workingdays=SET CF days;
characters=SET &F "!".."~";
VAR

workingday sworkingdays;
letters, digits, first, following: characters;
lazy: boolean;

36

Then the following lines are examples of applications of set and
set operators.

workingday:=[monday. . friday] ;

lazy:=NOT(saturday in workingday);

letters:=["a".."z","a".."z"]

digits:=["0".."9"];

first:=letters;

following:=first+digits;

The following relations are all true.

first*digits=[]

following*first=letters

File Types
A file-type is a structured-type consisting of a sequence of camn-
ponents which are all of one type. The number of camponents, cal-

led the length of the file, is not fixed by the file-type defini-
tion. A file with zero camponents is empty.

At any time only one camponent of the file is accessible. The
other camponents can be reached by sequencing through the file.

A file type can be defined as follows.

file type:

oTT s >
—>FILE F — >type >

The declaration of a file variable introduces a file buffer of
the canponent type. The file buffer is denoted by the file vari-
able followed by an up arrow (1t).

file buffer:

—>file variable->t

file variable:
—>variable >

37

The file buffer can be considered as a window through which
existing camponents of the file can be inspected (read) or new
canponents appended (written). A file position is implicitly as-
sociated with this window (the file buffer). The window is auto-
matically moved by certain file operations. It is, however, not
possible to alternate between reading and writing a file. In a
single pass the file can be either read or written.

The sequential processing and the existence of a file buffer sug-
gest that files are associated with secordary storage and periph-
erals. Exactly how the camponents are allocated varies, but
usually only a few camponents are present in primary storage at

any given time, and only the canmponent denoted by the file buffer
is directly accessible.

A special mark is placed after the last camponent of the file.
This mark is called the end-of-file mark (eof).

The mredefined routines for file handling are given below. It is
assumed that f is a file variable and x is of a type campatible
with the type of the camponents in the file f.

eof(£) This boolean function is true if the file is
positioned at the end-of-file mark, otherwise
it is false.

reset(£) The file is repositioned at the start, i.e.

the file buffer £t contains the first campo-
nent of the file. The file can now be read.
If the file is empty the value of ft is unde-
fined, and eof(f) is true.

rewrite(£) The file is positioned at the start for re-
writing. The value of f becames the empty
file, ft becames wmndefined, and eof(f) be-
canes true.

38

open(f,<file name>) Opens the file f specified by the <filename>

close(£)

get(f)

put(£)

read(f,x)

of type PACKED ARRAY [1..n] of char
(1<=n<=11). nly external files (see 3.2) may
be opened, and anly if they are not already
opened.

Closes the file f. Only external files may be
closed and only if they have been opened.

The position of the file is advanced to the
next canponent. The value of the file buffer
becames the contents of this camponent. If no
next camponent exists eof(f) becames true,
and the value of ft is wndefined. If eof(f)
is true prior to the execution of get(f) the
call will result in the runtime error message
'try to read past eof'. The call get(f) pre-
supposes that the immediately preceding cper-
ation on f was either get(f) or reset(f) or

equivalent forms.

The value of the buffer variable ft is ap-
perded to the file f. The value of ft becames
undefined. If the value of eof(f) is false
prior to the execution the call will result
in the runtime error message 'illegal zone-
state'. Otherwise the value of eof remains
true. The call put(f) presupposes that the
immediately preceding cperation on f was
either put(f) or rewrite(f) or equivalent
forms.

A call of read is exactly equivalent to ex-~
ecuting: x:=£t; get(f);

X must be of a type campatible with the type
of the camponents in the file f. If f is a
textfile the reader is referred to the fol-
lowing part about textfiles.

39

write(£,x) A call of write is exactly equivalent to ex-
ecuting: ft:=x; put(f);
X must be of a type canpatible with the type
of the camponents in the file f.

Note: An open file needs one area process, hence the maximum num—
ber of simultaneous open files are limited by the number of area
processes of the job.

Note: Routines which have local files should not be called recur—
sively.

Textfiles

A file of characters is called a textfile. Accordingly, the pre-
defined type text is defined as: FILE GF char.

Texts can be subdivided into lines. The following predefined rou-
tines are provided for manipulating the end-of-line mark (nl). It
is assumed that t is a variable of type text.

writeln(t) Terminate the current line of t i.e. write an

nl character.

readln(t) Skip to the beginning of the next line of t.
Subsequently tt becames the first character
of the next line if any. Thus readln(t) has
the same effect as the following statements:
WHILE NOT eoln(t) DO get(t); get(t);

eoln(t) The result of this boolean finction is true
if t is positioned at an end-of-line mark,
ard false otherwise. If true, tt contains a
blank.

page(t)

40

The parameter must be a textfile. page(t) is

equivalent to the statement: .
write(t,£ff); (* form feed *)

(This will uswally force a lineprinter to

start on a new page).

To facilitate the manipulation of textfiles, the predefined pro-

cedures read and write have some built-in transformation pro-

cedures. These translate numbers fram the internal binary repre-
sentation into a character sequence of decimal digits and vice

versa. These procedures are called in a non-standard way, since
they can be called with a variable number of parameters of vari-

ous types.

Let t denote a textfile and v,v1,v2,.....,vn variables of type

char, integer or real:

read(t,v)

A sequence of characters are read fram the
file t through the file buffer tt by means of
get(t). The first significant character is
the character in tt. ‘
If v is of type char, then read(t,v) is
exactly equivalent to executing v:=tt;

get(t);
If v is of type integer a sequence of digits
is transfommed into a (decimal) value which ‘

is assigned to v. Preceding non-digits are
skipped. The character sequence which follows
must be consistent with the syntax for deci-
mal integers given in chapter 2. If not, the
execution is terminated and a runtime error
message is given.

If v is of type real, a sequence of charac-
ters is transformed into a real value Wnich
is assigned to v. Preceding characters are
skipped. The character sequence which follows
must be consistent with the syntax for real
literals given in chapter 2; with the exten—
sion: both ' (quote) ard E are accepted as ‘

read(t,v1,v2,..,vn)

readln(t,v)

readln(t,vl,..,vn)

41

exponent part indicator. If not, execution is
terminated and a runtime error message is
given.

If v is of type char, then all preceding non-
char characters are skipped, except if tt=nl
then eoln(t) becames true, v becames ' '
(space), and the next character is moved into
the file buffer.

Is a shorthand notation for BEGIN read(t,vl1);
read(t,v2);.....read(t,vn) END

Is a shorthand notation for BEGIN read(t,v);
readln(t) END

Is a shorthand notation for BEGIN
read(t,vl,v2, ..,vn); readln(t) END

The mredefined procedure write is extended in a similar way. Iet
p/p1,p2,,pn be parameters of the form defined below, and let

t be a textfile:

write(t,p) The parameter p is transformed into a se-
quence of characters (according to the rules
given below). This sequence is written on t.

write(t,pl,p2,+¢4e..,pn)
This is just a shorthand notation for BEGIN
write(t,pl); write(t,p2); ; write(t,pn)
END

writeln(t,pl,......,pn)

This is just a shorthand notation for REGIN
write(t,pl,.....,pn); writeln(t) END

The parameters to the predefined procedures write and writeln

42

must have the following form.

parameter:

—>expression 3 >: >field width-3

field width:

—> expression

\
—>: ->fraction length-3

fraction length:

—>expression

The first expression (which is the value to be written) must be
of one of the following types: integer, boolean, char, real or
string. The field width indicates the minimun number of charac—
ters to be written. If the field width is longer than needed, the
value is written right justified. The field width must be an in-
teger expression with value greater than or eqﬁal to 0. If amnit-

v

ted a default value is chosen.

TYPE

integer

boolean

char

real

CEFAULT REMARKS
FIELD WIDTH
8
6 The string "true" or "false" is written.
1
14 If fraction length is not specified, the

value will be written with 1 digit before
the decimal point; 7 digits after the de—
cimal point; and a scaling exponent writ-
ten as '+ddd (floating point notation).

Vv

43

TYPE DEFAULT REMARKS
FIELD WIDTH

If fraction length is specified, the frac-
tion length must be at least two less than
the field width. The fraction length spec-
ifies the number of digits to follow the
decimal point. If the fraction length is
specified, no exponent is written (fixed
point notation).
If the field width is too short, the
necessary number of additional character

positions are used.

string length of If a non-zero field width less than the
string length of the string is specified, the
right part of the string is truncated.

alfa 12

A textfile t subdivided into lines can be scanned by the follow—
ing]g;iece of program.

WHILE NOT eof(t) DO
BEGIN
WHILE NOT eoln(t) DO
BEGIN
read(t,ch);
g(ch) (* process single character *
END
readln(t);
r(* process line *)
END;

S

A textfile t subdivided into lines with maximum n significant
characters in each line can be scanned by the following piece of
program.

WHILE NOT eof(t) DO

BEGIN
i:=0;

WHILE (i<n)>eoln(t) DO

BEGIN

ie=i+1;

read(t,line[i]);

END
readln(t);

r(* process line *)

END;

The Predefined Textfiles Input and Output

Two textfiles named input and output are predefined as
VAR input, output: text;

The first parameter to read, readln, write or writeln can be

omitted, in which case input or output respectively is used.

Let v denote a variable of type char, integer or real. ILet e de-

note an expression of type char, integer, real, boolean or

string.

write(e) is
writeln(e) is
read(v) is

o~ o 1

readln{v)

et
1]

equivalent to
equivalent to
equivalent to

equivalent to

write(output,e)
writeln(output,e)
read(input,v)

read1ln(input,v

On the RC8000, input and output are initially connected to cur-
rent input and output allocated by FP. If disc files are used for
input and/or output by a program, there must be an explicit call
of close before the program terminates, and if input and/or out-
put have not been connected to disk files, they must not be

closed.

45

Pointer Types

A static variable (statically allocated) is one that is declared
in a program and subsequently denoted by its identifier. It is
called static, for it exists (i.e. memory is allocated for it)
during the entire execution of the block to which it is local. A
variable may, on the other hand, be generated dynamically (with-
out any correlation to the static structure of the program) by

the procedure new. Such a variable is consequently called a
dynamic variable.

Dynamic variables do not occur in an explicit variable declara—
tion and cannot be referred .directly by identifiers. Instead,
generation of a dynamic variable introduces a pointer value
(which is nothing other than the storage address of the newly
allocated variable). Hence, a pointer type consists of an wn~
bounded set of values pointing to variables of a type. No oper-
ators are defined on pointers except the tests for equality and
inequality.

Pointer values are created by the standard procedure new. The

pointer value NIL belongs to every pointer type; it does not
point to a variable.

pointer type:

—>t->identifier

Vv

The identifier must denote a type which must not be a file type.
The value of a pointer variable is either undefined, NIL or a re-
ference to a variable of specified type. The variable referred by
a pointer is denoted by the pointer variable followed by an up
arrow (t).

referred variable:

—>pointer variable —>t >

46

pointer variable:

—>variable

v

The declaration of a pointer variable will only cause the can-
puter to allocate space for the pointer, hence no space is allo-
cated for any referred variable before this is explicitly denoted
by calling the mredefined procedﬁre new.

The type of a referred variable is the type specified in the
declaration of the pointer type.

The predefined procedures on RC8000 provided for manipulating
pointer variables are new and dispose. .

new(p) A new variable of the type associated with p
is allocated on the top of the core area for
dynamic variables and a reference to this
variable is assigned to p.

new(p,cl,c2,..,cn) In case the type associated with p is a re-
cord type with variants, the form
new(p,cl, ..,cn) can be used. cl,2,..,cn is a

list of constant selectors used to determine

the size of the allocated variable. The size

is as if the variable was declared of a .
record type with the field list formed by the

following rule of selection: First, the

variant corresponding to the selector cl is

selected. Then, the field list of this

variant is formed by using the selectors

c2,..,cn (by a recursive application of this

rule). Finally the so far formed field list |
is prefixed by the tag field (if non—empty) :
and 1is then substituted for the variant |
part.

The above description does not imply any as— '
signment to the tag fields.

47

Note: The variant of the allocated variable
must not be changed, and assigmment to the
entire variable is not allowed. However, the

value of single camponents can be altered.

dispose(p)

dispose(p,cl,c2, ..,cn)
In the RC8000 implementation the area used
for dynamic variables is handled as a stack,
i.e. a call of new(p) is a stacking of a new
element of type pt. The wnstacking is per-
formed by means of the procedure dispose. The
call dispose(p) implies that the core re-
served for pt and later allocated variables
will be released and reused on later calls of

new.
Examples of use of pointer variables.

A list structure can be declared as follows.

TYPE
list= RECORD
inf: ...;
next: tlist
END;
VAR

head: tlist;

A list structure with two elements can be created as follows.

new(head) ;

headt.inf:= ...;
new(headt .next);
headt.nextt.inf:= ...;
headt .nextt .next :=NIL;

3.3.3.4

Assume the declarations:

CONST
maxval=50;
TYPE
atamr=RECORD
name: alfa;
nurber: integer;
weight: real;
occupied: SET CF 1..maxval;
bindings: ARRAY[1..maxval] OF tatom;
charge: (plus, minus, neutral);
saturated: boolean
END;
VAR
a: atom;

Then the following statements give all names of atoms to which a
is bound.

WITH a DO

FOR i:=1 TO maxval DO
IF i IN occupied THEN writeln(i,bindings[i]t.name);

Type Compatibility

Canpatibility of types is defined by so-called "name equivalence"
as llows:

Any type is campatible with itself.

Any two types are campatible if a type exists that is canpatible
with both of them.

Any two set types are campatible if their base types are campat-—
ible. The type of the empty set [] is campatible with any set
type.

3.3.3.4

3.3.4

y 49

Any subrange type is campatible with the type of which it is a
subrange.

Any two file types are campatible if their camponent types are
canpatible.

two pointer s are campatible if the variables referred by
type

the pointers are of campatible types. The type of the pointer
value NIL is campatible with any pointer type.

Variables

A variable is a named data structure that contains a value. Each
variable must be declared in a variable declaration part prior to

its use. The name and data type of each variable must be spec-
ified. '

variable declaration part:

>~
>

—>VAR->->->identifier Sr>: >type ->;

A\

o
7 S

Several variables of the same type né.y be declared in a single
list of identifiers followed by the type.

An entire variable is denoted by its identifier.
If a variable is of array type or record type, a single camponent

is denoted by the identifier, followed by a selector specifying
that canponent (see subsection 3.3.3.3).

3.3.4

50

variable:

——>identifier >

—>indexed variable —>f
—>field designator ——>
—>referenced variable—>
—>file buffer

\%

3.3.5

3.3.5 Value Part
value part:
—>—>VALUE ->r->value —; >
value:

—>entire variable->=->const specification

const specification:

Vv

onstant >
(=>structured const->) >
NIL

[>set const list >]—

structured const:

—>r->str const element

<
s

str oconst element:

onst specification

< ->index range > > * —>const specification-

constant->: (—>structured const->)

v

51
set const list:

S

S>constant >
L .o —>consta.nt;I

G
1 <

\ 4

The value-part is used to give local variables initial values on
entry to a block, each variable in the value part is initialized
according to the const specification on the right hand side of
the equal sign.

For structured variables all parts must be specified, and the tag
field in a RECORD with a CASE must be specified even if the tag
field is empty in the definition of the RECORD. The initializa-
tion of a tag field and the associated variant are specified by

value of the tag field : (value of variant)
Examples of value specifications:

Let x be declared as
X: RECORD
al: char;
CASE integer OF
1: (a2 : boolean:
a2l : SET &r 0..10);
(a3: 0..25; a4, aS5: char);

(ab: real);

% w N
~e (1] (1]

If the value part contains
x=('A"',1:(true,[0,3..5])) then
x.al is initialized to ‘A’

x.a2 is initialized to true
x.a21 is initialized to [0, 3,4,5]

52

or if the value part contains
x=('B',2:(5,'Cc','D"')) then

x.al is initialized to 'B'
x.a3 is initialized to 5
x.a4 is initialized to 'C'
x.a5 is initialized to 'D'

As a campact notation for giving the same value to a nunber of
consecutive array elements it is possible to specify the index
range followed by the specification of one value.

e.g. If b is declared as ‘
b: ARRAY [2..25] OF integer

and if the valuepart contains
b=(5,<3..10> * 0,3,4,<13..25> * 10) then

b[2] is initialized to 5
b[3] is initialized to O
b[10] is initialized to
b[11] is initialized to

Wi 2] is ini

Lo

w O

!
g
AN

b[13] is initialized to 10
b[25] is initialized to 10 \

Note: Pointer variables may only be initialized to NIL. Each va-
riable may only occur once in the valuepart.

3.3.6

53

Routine Declaration 3.3.6

A routine declaration serves to associate an identifier with a
set of definitions, declarations and a statement. The execution
of this statement can be invoked by a routine call. Routine is a
generic term for procedures and functions.

routine declaration:

procedure heading
block >

function heading
procedure heading:
—>PRCCEDURE >procedure identifier >formal parameters->; >
fqnction heading:

—>FUNCTION->function identifier->formal parameters ->:—

L—type identifier->; >

procedure identifier:

—>identifier

\ %

function identifier:

—>identifier

v

type identifier:

v

—>type

A list of formal parameters may be specified in the routine head-
ing. For each formal parameter is specified its name (formal na—
me) and its kind. There are the following four parameter kinds:
value, variable, procedure and finction. The kind value is as-

suned if nothing else is specified. The kinds variable, procedure
ard function are specified by the symbols VAR, PROCEDURE and
FUNCTION respectively. In addition the types of all value, vari-
able or function parameters must be specified. The parameter kind
defines the binding between actual parameters and formal par-

54

ameters in a routine (see 3.4.6).

formal parameters:

N
e

—<>(—>>parameter description-r>)

-
H

parameter description:

- > >—>>formal name >y—>: Stype
nr

FUNCTION—
PROCEDURE—>r—>formal name

Vv

identifier >

formal name:

—>identifier

In the block of the routine formal parameters are denoted by

their formal names.

A formal parameter of kind value may be used as a lccal variable

of the specified name and type, the value of which is initialized

v

to the value of the actual parameter at the routine call.

A formal parameter of kind variable denotes a variable of the

specified name and type. The denoted variable is the actual par-

ameter.

A formal parameter of kind mrocedure or function may be used as
if it was locally declared with all formal parameters of kind

value.

55

The difference between the various kinds of parameters is ex-
plained in subsection 3.4.6.

The following are all examples of routine headings.

FINCTION my own sqrt(x:real):real;

FUNCTION zero(lower,upper:real;FUNCTION f:real):real;
PROCEDURE insert(element:camponent type);

PROCEDURE update(VAR element: camponent type);

The block of a routine consists of a number of definitions and
declarations and a canpound statement.

 Within the block of the routine the routine name itself may be
used to denote a recursive call of the routine. However the oc-
currence of a function identifier as a left hand side of an as-
signment statement denotes changes in the current value of the
function. Such occurrences are only allowed within the campound
statement of the block of the function.

The type of the values which can be returned by a function must
be specified in the function head. The value of a function is
determined by the dynamically last value assigned to the function
identifier within the block of the function. The type of a func-
tion is restricted to be a simple type or a pointer type.

56

The following are all examples of function declarations. ‘
FUNCTION zero(FUNCTION test: boolean; lower,upper: real; FUNCTION f:
real):real;
VAR centre,y:real;s:boolean;
BEGIN(* campute solution to f(x)=0 by bisection *)
s:=f(lower)<0;
REPEAT
centre:=(lower+upper)/2;
y:=f(centre);
IF(y<0)=s THEN lower:=centre
EISE upper:=centre;
UNTIL test(lower,upper);
zero:=centre ’
END(* zero *);

test(lower,upper) is true if and only if the difference between
lower and upper is small enough.
The following machine-independent function can be used unless the

solution is 0.0.

FUNCTION test(i,u: real): boolean;
BEGIN

test:=((uti)/2=u) OR ((ut+i)/2=i)
END

FUNCTION sign(x: real):integer;

MBYITAT
DILAILIN

if x<0 THEN sign:=-1 ELSE sign:=ord(x>0)
END;

57

FUNCTION bincoef(p,q:integer):integer;
(* Calculates binamial coefficient p!/(ql*(p-q)!). The function
is camputationally inefficient but may be useful when only single
values are desired *)
BHEHGIN

IF p-g<q THEN q:=p-q;

IF g<O THEN bincocef:=0

EISE

IF =0 THEN bincoef:=1

EISE

bincoef :=bincoef(p-1,g-1)+bincoef(p-1,q)
END;

The names introduced by a definition or by a declaration in a
routine, (a local definition or declaration) are only valid in
the rest of the block of the routine. On the other hand local
definitions and declarations take precedence over definitions and"
declarations in the surroundings (global definitions and declara-
tions). As routine declarations can be nested, the same routine
name can be introduced at several levels. In this case a use of

the name will always refer to the innermost declaration.

Routine Pseudo—-declaration

The scope rules of Pascal (see chapter 4) require that the de-
Claration of a routine must appear in text before use.

A routine may be pseudo-declared by substituting the block of the
routine declaration with the identifier FORWARD.

routine pseudo~declaration:

—>routine heading->FORWARD

\%

A routine declaration where the block is substituted by the
identifier FORWARD serves as an announcement of the full block
which is given in text later. The block itself is then just
headed by a routine head the formal parameters are not needed,
but it is allowed to specify them again.

58

Example:

The scope rules of Pascal lead to a conflict in the situation .
where two routines call each cother. (Which one should be declared

first?). The conflict can be avoided by substituting the reserved

word FORWARD for the body of the first routine and postponing the
specification of the routine body. The following is an example of

this.

FUNCTION g(x:real):real;FORWARD;
FUNCTION f(x): real:;

® 0000

BEGIN.....g(xX).....END;

FUNCTION g(x:real):real;

BEGIN.....f(%X).....END;
3.4 The Statement Part 3.4
This section contains subsections describing the syntax and the
use of the different statements which are included in the lan-
guage.
3.4.1

Statements 3.4.1 .

The statements of a program describe the manipulations performed
on data when the program is executed. These statements are col-
lected in a compound statement.

compound statement:

——>BEGIN—>r>statement >—>END >

» &
2

The statements are executed one at a time in the specified order.

3.4.2

59

Below, all statement forms are given together with references to

their precise description:

statement: subsection:

—>canpound statement ———> 3.4.1
—>procedure call 3.4.6
—>assignment statement——>) 3.4.2
—>case statement > 3.4.5
—>for statement 3.4.4
—>1f statement 3.4.5
—>repeat statement——m————> 3.4.4
—>while statement 3.4.4
—>with statement 3.4.7
->goto statement > 3.4.3
—>labelled statement——e7-m——> 3.4.3

Assignment Statement

assignment statement:

—>—>variable S>> = ——expression
—>function identifierj

YV

The type of the variable must be campatible with the type of the

expression.

Within the statement part of a function, assignment may be per-
formed to the function identifier of that function.

Assignment can be made to variables of any type except file vari-

ables (but assignment to the file buffer of a file is, of course,
legal).

The assigrment statement replaces the current value of the vari-
able by the value of the expression.

3.4.2

3.4.2.1

Expressions

An expression defines a rule of camputation for dbtaining a value

by application of operators to operands. An expression is
ated using the following precedence rules.

NOT has the highest precedence followed by
*, /, DIV, MOD, AND followed by
+, -, R followed by
=5 <, <= 02, >= 1IN

Expressions are written in infix notation.

evalu-

Note: All factors in an expression may be evaluated and hence

should all be defined.

expression:

—>simple expression S>r—>
—> = —>r>simple expression-'
> <S>
—> < —>
> <=—>
= > —3
—> >=—3
> IN—

simple expression:

>r—>term >
—> + “— + <
Lo - — e— - <«
&«— OR <—

term:

—>r—>factor
6—— * <_

v

<— / <«—
<—DIV <—
<—MOD <——
le—AND «—

factor:

—>—>constant >
—>variable
—>function call
> (>expression->)
—>NOT ->factor

—>set

\

Examples of expressions:

The following relations are all true.
2%3-4*5=(2%3)-(4*5)

15 DIV 4*4=(15 DIV 4)*4
80/5/3=(80/5)/3

4+2%3=4+(2*3)

For any b] ' b2, b3 of type boolean the following relation is true.
b; QR NOT by AND b3 = b; OR ((NOT b,) AND bj)

The following is not a legal expression.
O<x AND x<10
The expression should be written as

(0<x) AND (x<10)

62

The following two statements are different.

IF (1<=n) AND (table[l]=key) THEN s;
IF 1<=n THEN IF table[l]=key THEN s;

The following table gives all valid cambinations of dyadic oper-
ators and operand types:

operator(s) left operand right operand result
o+, integer integer integer
integer real real
real integer real
real real real ‘
any set type T T T
DIV, MOD integer integer integer
/ integer integer real
integer real” real
real integer real
real real real
OR,AND boolean boolean boolean
=< any type T (see Note) T boolean
<=,>=,<,>,< any string type T T boolean
any enum.type T T boolean
IN any enum.type T SET &F T boolean

Note: Files cannot be campared.

The corresponding table for monadic cperators is as follows:

operator(s) operand result

+,- integer integer
real real

NOT boolean boolean

Note: During evaluation of an expression, intermediate results
are kept in registers and in some reserved locations. If the num-
ber of intermediate results exceeds the capacity of reserved

3.4.3

63

spaée, the expression cannot be translated and the campiler is-
stes the error message 311: Not enough roam for temporaries. To
remedy this, the expression must either be rewritten with a less
canplicated paranthesis structure or split into two or more ex-—

pressions.

Goto Statement

3.4.4

goto statement:

>Q0TO >label

A 4

Execution continues at the statement labelled by the label
(labelled statement).

The statement defining the label must be within the same or a
surrounding block of the block where the goto is given, i.e. it
is not possible to jump into an inner routine by a goto state-
ment. Furthermore the result of jumping into an inner statement

of an if, while, repeat, with, for or case statement is unde—
fin@.

labelled statement:

—>label —>: —>statement ' —

Repetitive Statements

Repeat Statement

The repeat statement specifies that a sequence of statements is
to be executed repeatedly.

repeat statement:

—>REPEAT ——>statement—>—>UNTIL —>expression —>

. &
A

3.4.3

3.4.4

64

The result of the expression must be of type boolean.

The statement sequence is executed one or more times. Every time

the sequence has been executed, the expression is evaluated, when

the result is true the repeat statement is campleted.

While Statement

The while statement specifies that a statement is to be executed
a number of times.

while statement:

—>WHILE ->expression->DO->statement > .

The expression must yield a result of type boolean. The statement
following DO will be executed a number of times (possibly 0) and
the expression will be evaluated before each execution. This will

be repeated until the evaluation of the expression yields a re-
sult which is false. Thus, for example if the value of the ex—
pression is false mrior to the execution of the while statement,
the statement following DO will not be executed at all.

For Statement

for statement:

—3FCR —>variable —:= —>for list —>»D0—>statement —>

for list:

—>TO————>

—>expression]—9

+—>DOWITO -

——->expression2 >

The two expressions must be of the same enumeration type and the

type of the variable must be campatible with this.

65

The repeated statement must not change the value of the control

variable.

The control variable must be simple (i.e.' not of array type, not
of record type, not of pointer type and not function identifier).

The statement is executed with consecutive values of the variable.
The ordinal value of the variable can either be incremented (in
steps by 1 (succ)) fram expression. TO expressionz, or descre-
mented (in steps by 1 (pred)) fram expression] DOWNTO expressionz.
The two expressions are evaluated once, before the repetition. If

the value of expression] is greater than the value of expression2
and TO is specified, the statement is not executed.

Similarly, if the value of expression] is less than the value of
expzression2 and DOWNTO is specified, the statement is not ex-
ecuted.

The value of the variable after the for statement is dependent of

the expressions.

The value of i=]j in the following example depends on the value of
n. If n is less than 1 i is wnchanged, else i is equal to n.

FOR i:=1 TO n DO...:
IF i=j THEN...

The assignment statement i:=n+1 in the following example is not
allowed.

FOR i:=]1 TO n DO
BEGIN

is=n+l;

END;

3 .4.5

66

Conditional Statements 3.4.5

A conditional statement, an if or case statement, selects a
single statement of its component statements for execution.

If Statement

if statement:

—>IF—>expression—§THENf>statement]—>—>false part—->r—>

~
e

false part:

—>ELSE—>statement2 >

The expression must yield a result of type boolean. Statement1
will only be executed if the value of the expression is true. If

it is false, the statement (if any) following ELSE (statementz)
will be executed.

The ambiguity arising fram the construction:
IF e, THEN IF e THEN s ELSE s
1 2 1 2

is resolved by interpreting the construction as equivalent to:

IF e_I THEN
BREGIN
JF e THEN s ELSE s
2 1 2
END

67
The following are examples of if statements.

IF day=sunday THEN next:=monday
EISE next:=succ(day)
IF x>y THEN
BHGIN
min:=y; max:=x
END
EISE
BEGIN
min:=x; max:=y
END; |

Note: The following two statements are different.
IF (1<=n) AND (table[l]=key) THEN s;
IF 1<=n THEN IF table [l]=key THEN s;

In the case where 1>n the former may evaluate table[l]=key and

probably cause an index error.

If the expression is constant no testing ccde is generated, and
code is only produced for the chosen part of the if statement.

Example.

The constant 'test' may be true in the debugging phase, and set
to false in the resulting program, i.e. code for test output is

only generated while the program is tested.

CONST
test=false;

.

if test then writeln ('Kilroy was here');

.
.

Case Statement

A value of an enumeration type can be used to select one of sev-

eral statements for execution.
case statement:

—>CASE—»expression->0F -»->case list element->r>end part->

&
~

i

end part:

v

,]

A case list element is a statement labelled by one or more con—
stants. These constants must all be of a type campatible with
that of the expression. All labels (constants) in a case state—
ment must be wmique. The statement labelled by the current value
of the expression is selected for execution. Upon canpletion of
the selected statement the case statement is also campleted.

case list element:

>constant >: —>statement—r>

N
7~

Notes: The case statement is translated into a jump table. The

size of this table is limited. Hence no two labels 11 and l2 of
one case statement may be chosen so that
abs(ord(l])-ord(l2)) > 4000.

"Case labels" are not ordinary labels and cannot be referred by a
goto statement. Their ordering is arbitrary; however, labels must

be wmique within a given case statement.

The valwe (-maxint-1) is not allowed as case label.

3‘4.6

69
Assume the declarations
VAR

suit: suits;

colour: colours;

Then the following is an example of a case statement.

CASE suit OF

club, spade: colour:=black
END
OTHERWISE colour:=red;

Procedure Call

A routine call serves to establish a binding between actwal and
fomal parameters and to allocate locally declared variables and
invoke execution of the campound statement of the routine block
in its proper surroundings. A routine call consists of the rou-
tine identifier followed by a list of actual parameters.

When the campound statement is campleted, locally declared vari-
ables are deallocated, and execution is resumed at the point im-
mediately after the routine call.

routine call:

\ 4

—>routine identifier-y>actual parameters

.

actual parameters:

<

—>(—>>r>expression >) >

—>routine identifier—
>variable

3.4.6

If the routine is declared without formal parameters, the routine

70

call consists of the routine identifier only.

If the routine is declared with a list of formal parameters, this

list will be replaced by the list of actual parameters gprior to
the execution of the routine. The number of actual parameters

must be identical to the number of formal parameters. An actual
and its correspording formal parameter have the same position in

their respective lists.

There exists the following four kinds of bindings between an ac-

twl and its corresponding formal parameter:

value

variable

The actual parameter must be an expression or a vari-
able of a type campatible with that of the formal par-
ameter. The value of the expression or variable will
be evaluated and substituted in place of the formal
parameter. Changes within the block of the routine to
the formal parameter will not affect the actual par-
ameter. (The usual term for this parameter binding is
call by value).

The actual parameter must be a variable of a type can-
patible with that of the formal parameter. All changes
within the block of the routine to the formal par-

ameter will affect the actual parameter directly. The
formal parameter denotes throughout the routine body a

specific variable of the specified type. The actwal
parameter specifies which actual variable the formal
parameter must denote, if the actual parameter denotes
a canponent of a structured type or a referenced vari-
able the camputation of which variable is to be de-
noted is only performed once at the routine call. (The
uswal term for this parameter binding is call by re-

ference).

A camponent of a packed structure cannot be given as

an actual variable parameter.

71

All the actual variable parameters of a given call
should denote distinct variables, or else the effect
of the routine call will be difficult to camprehend.

procedure The actual parameter must be the name of a procedure.
This procedure must either be declared with all formal
parameters specified as kind value or it must itself
denote a formal parameter of kind procedure.

function The actual parameter must be the name of a function.
This function must either be declared with all fommal
parameters specified as kind value or it must itself
denote a formal parameter of kind finction.

The type of the actual parameter function must be can—
patible with the type of the formal parameter.

Note: If the routine call is a call of a formal parameter of kind
procedure or function the correspondence between the lists of
actual and formal parameters cannot be checked by the campiler.

Note: A predefined routine must not be used as an actual par-

ameter of kind procedure of function.

Note: A parameter of file type must be passed as a variable par-
ameter.

As a guide to the choice between value ard variable specification
the following should be noted:

If a parameter is not used to transfer a result of the procedure

a value parameter is generally preferred.

The referencing is then quicker and one is protected against mis-
takenly altering the data. However in the case where a parameter
is of a structured type one should be cautious because the value
specification may lead to inacceptable inefficiency campared to a
variable specification. The explanation is as follows: A pro-
cedure allocates a new storage area for each value parameter
which the formal parameters denoted.

3.4.7

72

The value of the actual rarameter is assigned to this storage
area. The assignment cperation may be time consuming and the
amount of storage allocated to the formal parameter may be large.

The set of local variables of a routine can be regarded as asso-
ciated with a specific call of the routine; they exist fram the
manent the execution of the routine starts and wntil it is can—
pleted. Thus, in case of recursive calls of a routine, several
incarnations of the local variables and formal parameters may
exist simultaneously, namely one incarnation for each uncampleted
call. By execution of a routine is meant the execution of the
campound statement of its body. The execution is campleted,
either vwhen the campound statement is campleted, or when a jump
to a label in a swrrounding routine is performed. The only dif-
ference between a procedure and a function call is that a pro-
cedure call is a statement, and a function call is a factor which

may be used in an expression.

Example:

TYPE
1list=ARRAY[1..100] OF integer;
FUNCTION maximum (VAR 1: list): integer;
(* 1 is of kind variable to save time and space *)
VAR

FOR i:=2 TO 100 DO
IF max<1[i] THEN max:=1[i];
max imums =max
END;

With Statement

A with statement can be used to facilitate the manipulation of

record camponents.

3.4.7

73

with statement:

—>WITH-r—>record variable -x—>D0->statement

A\ 4

<
Y2

Within the statement the fields of the record variable(s) can be
denoted by giving their field identifiers only (without preceding
them with the denotation of the entire record variable).

For a nested with statement in the fom
WITH v1 DO
WITH v2 DO

WITH vn DO s:;

you may use the following shorthand notation
WITH v1,v2,.¢...,vnn DO s;

If a set of variables (of enumeration type) is used for selecting
the record variable (e.g. the variable i in the statement

WITH a [i] DO) then the values of these variables must not
be changed in the statement. However, a violation of this rule
cannot be checked. The only effect of such a violation will be
the change of the values of these variables.

Examples:

WITH hand[1] DO

BEGIN
t:=normal;
suit:=club;
rank :=3

END;

74

WITH date DO

IF month = 12 THEN
BEGIN
month:= 1; year:=yeart]
END

ELSE month:=month+]
is equivalent to

IF date.month=12 THEN
BEGIN

date.month:=1; date.year:=date.year+]
END

EISE date.month:=date.month+l

75

DETAILED SCOPE RULES

This chapter contains the detailed scope rules.

The scope of a name is the declarations and statements in which
the declaration of the name is valid. All names must be declared
textually before they are used.

The scope depends on the kind of the object denoted by the name.

Label-, Constant-, Type-, Variable- or Routine-names.

The scope of the name is the rest of the mrogram or routine in
which it is declared.

Parameter—-names.

The scope of a formal parameter is the body of the routine.

Field-names.

The scope of a field name in a record is only that record.

Enumeration-values.

The scope of an identifier introduced as a value of an enumer—
ation type is the rest of the program or routine in which it is
declared.

Program-name.

The program name has no significance within the program.

The same identifier must be introduced at most once in each body
or record. If the scopes of an identifier overlap, it is always

the innermost scope which is valid.

76

PREDEFINED ROUTINES 5.

5.1

Standard routines are predeclared in the implementation of Pas~
cal. Since they are, as all standard quantities, assumed as de-
clared in a scope surrounding the program, no conflict arises
fran a declaration redefining the same identifier within the pro-
gram. The standard procedures are listed and explained below.

Standard Procedures 5.1

5.] .]

Standard procedures are not allowed as actwal procedural par—
ameters.

File Handling Procedures 5.1.1

put(£) see under FILE types in subsection 3.3.3.3
get(£) -

read -
readln -

write -

writeln ’ -

page(f) - ' . ‘

reset(f) -

rewrite(f) -

open(£, file name) -

close(£f) -

77

5.1.2 Dynamic Allocation Procedures 5.1.2
new(p) see wnder Pointer Types in subsection
3.3.3.3
dispose -
5.1.3 Transfer Procedures 5.1.3
pack see under Packed Representation in
unpack subsection 3.3.3.3
5.1.4 Date and Time 5.1.4
date(a): assigns the current date to the alfa
variable a, in the form: 'yy.mm.dd. '.
time(a): assigns the current time to the alfa
variable a, in the form: 'hh.mm. ',
5.1.5 Program Control Procedure : 5.1.5

replace (program name)

The procedure replace terminates the cur-
rent program and invokes the program
denoted by program name. Program name
must be the name of a Pascal cbject file,
i.e. a canpiled Pascal mrogram.

The program which calls replace must
prior to the call close all files, (ex-
cept input and output, if they are not
connected to external files).

The procedure is restricted only to be
called fram the main program.

78

The procedure returns to the invoked
program. If an error occurs during the
replacement the execution is terminated

and an error message is given.

Standard functions are not allowed as actual functional par-

2 Standard Functions
ameters.
2.1 Arithmetic Functions

For the following arithmetic functions, the type of the expres-
sion x is either real or integer. For the functions abs and sqr,
the type of the result is the same as the type of the parameter,
X. For the remaining arithmetic functions, the type of the result
is always real.

abs(x) computes the absolute value of x.

sqr(x) computes the square of X.

sin(x) computes the sine of X, where x is in radians.
cos(x) computes the cosine of x, where x is in radians.
exp(x) computes the value of the base of natural logarithms

5 raised to the power X.

1n(x) computes the natural logarithm of x, if x is greater
than zero. If x is not greater than zero an error oc—
curs.

arcsin(x) computes the principal value, in radians, of the arc-
sine of X.

sinh(x) computes the hyperbolic sine of x.

sqrt(x) computes the positive square root of x, if x is not
negative. If x is negative an error occurs.

arctan(x) computes the principal value, in radians, of the arc—

tangent of x.

5.2

5.2.1
@

79

. 5.2.2 Transfer Functions ' 5.2.2

trunc(x)

round (x)

Fram the real parameter x, this function returns an
integer result which is the integral part of x. The
absolute value of the result is not greater than the
absolute value of the parameter.

For example:
trunc(3.7) yields 3
trunc(=3.7) yields -3

Fran the real parameter x, this function returns an
integer result which is the value of x rounded to the
nearest integer. If x is positive or zero then
round(x) is equivalent to trunc(x+0.5), otherwise
round(x) is equivalent to trunc(x-0.5).
For example:

round(3.7) yields 4

round(=3.7) yields —4

5.2.3 Ordinal Functions 5.2.3

ord(x)

chr(x)

The parameter X is an expression of ordinal-type. The
result is of type integer. If the parameter is of type
integer then the value of the parameter is yielded as
the result. If the parameter is of any other ordinal-
type, the result is the ordinal mumber determined by
mapping the values of the type on to consecutive non-
negative integers starting at zero.
For example:

ord(false) yields O

ord(true) yields 1

Yields the character value whose ordinal number is
equal to the value of the integer expression x, if

such a character value exists.

5.2.4

succ(x)

pred(x)

Predicates

5.2.5

odd(x)

eof(£)

eoln(f)

Processing

80

For any character value, ch, the following is true:
chr(ord(ch))=ch ‘

The parameter x is an expression of ordinal-type. The
result is of a type identical to that of the expres-
sion. The function yields a value whose ordinal number
is one greater than that of the expression, if such a
value exists. If such a value does not exist, the

result is wndefined.

The parameter x is an expression of ordinal-type. The

result is of a type identical to that of the expres-

sion. The function yields a value whose ordinal number

is one less than that of the expression x, if such a .
value exists. If such a value does not exist, the

result is wmdefined.

5.2.4

Yields true if the integer expression x is odd, other—
wise it yields false.

Indicates whether the associated buffer variable ft is
positioned at the end of the file f.

Indicates whether the associated buffer variable ft is

positioned at the end of a line in the textfile f.

Time Function 5.2.5

clock

Clock is a parameterless real fincticn, the result of
which is the current processing time in seconds with
an accuracy given by the length of a time slice
(uswally 25.6 nﬁ_lliseconds) .

5.2'6

81

Monitor Functions

The integer function 'monitor' is the Pascal equivalent of the
RC8000 monitor procedures. For the time being only the folldwing
calls are implemented:

‘create entry' (40)

'lookup entry' (42)

'change entry' (44)

The call is:
result:= monitor(wanted function,<file>,tail);

where
wanted function is one of the allowed numbers (40,42,44),
<file> is a file identifier,
tail is declared as tail: ARRAY [1..10] OF integer, and cor-
responds to the tail of the file catalog entry.
For further information see ref. [4] and ref. [5].

Example:
If the result of "lookup pascal" is
pascal =set 224 disc d.810113.1045 0 0 2.0 68 ; system
;159 139 3 -8388607 8388605

then the Pascal statements
file name := 'pascal';

result := monitor(42, file name, tail);

will return with
result = 0

and the following contents in tail:

5.2.6

5.2.7

82

index word char half words
1 224 0 0 224 0 224
2 6580595 100 105 115 1606 -1677
36488064 99 0 O 1584 0
4 0O 0 0 o 0] 0
5 00 0 0 ©O 0 0
6 7846624 119 186 224 1915 -1312
7 0O 0 0 o 0 0
8 0O 0 0 ©oO 0 0
9 8192 0 32 0 2 0
10 68 0 0 68 0 68

where: tail [1] = length of file
tail [2..5] = document name
tail [6] = date and time
tail [9] = contents key * 4096

The function call is sucessful if and only if the result is zero.

For further information about the unsuccessful results see

chapter 2 of ref. [5].

Access to File Processor Parameters

The function 'system' of type integer gives access to the par-
ameters from the FP-command stack, i.e. the call of the program.

result, paramno, int: integer;
alf: alfa;

5.2.7

83

The result of a call:
result := system (paramno,int,alf);
is:
IF (paramno >= 0) AND (paramno <= number of parameters in FP-
stack) THEN
result := separator length
EISE result := 0;

where separator length is built as: seperator *4096 + length,

int and alf are set according to the following scheme:

IF length = 4 THEN
BEGIN (* the stack parameter is a number *)
int := the parameter;
alf := undefined
END
EISE
IF length = 10 THEN
BHGIN (* the stack parameter is a word *)
int := undefined;
alf := the parameter;
END;

The seperator values are
O: end of parameter list
2: new line (start of list)
4: space

6: equality sign

8: point

Example of the numbering of the parameter stack items:

pl = pascal p heap.1000
1 2 3 4

(@}

Result of calls of system:

paramo result int alf
0 2*409%6+10 - 'pl !
1 6*4096+10 - 'pascal '
2 4*409%+10 - 'p !
3 4*40%+10 - 'heap !
4 8*40%+4 1000 =

otherwise O - -

For further informmation about separator see ref. [6].

Camplete List of Predefined Routines

Name: Subsection:

abs 3.3.3.2 5.2.1
arcsin 3.3.3.2 5.2.1
arctan 3.3.3.2 5.2.1
chr 3.3.3.2 5.2.3
clock 5.2.5

close 3.3.3.3

cos 3.3.3.2 - 5.2.1
date 5.1.4

dispose 3.3.3.3

eof 5.2.4

eoln 5.2.4

exp 3.3.3.2 5.2.1
get 3.3.3.3

1n 3.3.3.2 5.2.1
monitor 5.2.6

new . 3.3.3.3

odd 3.3.3.2 5.2.4
open 3.3.3.3

ord 3.3.3.2 5.2.3
pack 3.3.3.3

page 3.3.3.3

pred 3.3.3.2 5.2.3

put 3.3.3.3

Name:

read
readln
replace
reset
rewrite
round
sin
sinh
sgr
sqrt
succ
system
time
trunc
unpack
write

writeln

Subsection:

3.3.3.3
3.3.3.3
5.1.5
3.3.3.3
3.3.3.3
3.3.3.2
3.3.3.2
3.3.3.2
3.3.3.2
3.3.3.2
3.3.3.2
5.2.7
5.1.4
3.3.3.2
3.3.3.3
3.3.3.3
3.3.3.3

85

5.2.2
5.2.1
5.2.1
5.2.1
5.2.1
5.2.3

5.2.2

86

COMPILER DIRECTIVES

The campiler has some optional features. In particular, it may be
requested to insert or amit run—time test instructions. Campiler
directives are written as camments and are designated by an
$—character as the first character of the camment:

(*$<cption sequence> <any camments> *)

The option sequence is a sequence of instructions separated by
camas. Each instruction consists of a letter, designating the
option, followed either by a plus (+) if the option is to be ac-
tivated or by a minus (-) if the option is to be deactivated.

The following options are available on RC8000:

1 Lists the program text between (*$1+*) and (*$1-*). Default
is (*$1-%).
This option may be used for partial listing of a program in
the contrary to the list directive of the call (see chapter
7).

r The code of the procedures between (*$r+*) and (*$r-*) will
during initialization be transferred to core and remain re-
sident during the run (see chapter 8).

c Lists the generated code for the procedures/finctions be-
tween (*$ct*) and (*$c—*), default is c-.
The listing may be used for calculations of execution times

for the different parts of a grogram.

t Includes run—time tests that check

- all (non constant) array indexing operations, to ensure
that the index is within the specified array bounds,

- all (non constant) assignments to variables of subrange
types, to make certain that the assigned value is within
the specified range,

87

- all case statements, to ensure that the case selector
corresponds to one of the specified case labels, if no
otherwise part is present an empty otherwise part is as—
sumed.

The standard mode is:

include tests for:

- array indexing ocperations unless the test ought to be super-
flwus according to the type of the index expression and the

index type.

Example:
assume the declarations
TYPE
index range = 1..6;
super range = 0..7;
VAR
index : index range;

super_index: super range
table : ARRAY [index range] OF 1..2;

then no code for index check is generated in the following state—
ment

table [index]:= 1;
Indexing with a constant expression is tested at campile time.

- Assigrments to variables of subrange types unless the test
ought to be superfluous according to the type of the expression
ard the type of the variable.

Example: ;
Assume the above declarations, then no code for range test is
generated in the statement:

super index:= index;

- Case statements. If no explicit OTHERWISE part is specified, an

empty one is assumed.

88

The super check mode (t+) is mainly introduced as a debugging
tool. The difference between standard mode and t+ mode is the
tests for legal values of subrange variables, i.e. uninitialized
variables are easily found in t+ mode. The following example may
emphasize the usefulness of t+.

PROGRAM index check (output);
TYPE
index range = 1..6;

table: ARRAY [index range] OF 1..2;
index 1: index range;
index 2: 2..5;

VALUE
table=(1,2,1,2,1,2);

BEGIN
index 1:= index 2;
CASE table [index 1] OF
1: write(' odd ');
2: write(' even ');
erd; (* of case statement *)
write (' index ');
END.
In standard mode the result may be " index
uninitialized. In t+ mode this would have resulted in an error
message, detected at the line index 1:= index 2; unless the con-
tents of the memory location allocated for index 2 accidentally
are a value inside the bounds of index range.

", because index 2 is

89

CALL OF THE PASCAL COMPILER 7.

How to Compile a Pascal Program . 7.1

The campiler works in the job process and the campilation is
started by means of an FP-cammand specifying the source text, the
canpiler options and the file where the resulting dbject program
should end. The result of the campilation is, in case no error is
detected, a binary file with code for the procedures/functions
ard the main program, value segments for value initialization,
and procedure table and an information segment; with each of
these items occupying an integral number of bs—segments. The cb-
ject code may be loaded ard executed by means of the Pascal Run—
time system - see below.

Syntax of the FP-call:
. 1 1 . oo
(<object> =) 0 pascal(<source>)o(<option>)O

<dbject> ::= <bs-file name for the generated dbject code>

<source> ::= <text file>, if not specified then primary

input is assumed.

<gption> ::= list.<on or off>
l heap.<integer>
] codesize .<integer>
I survey.<on or off>

<on or off> ::= yes l no
Semantics of the coptions:

list.yes
produce a program listing on current output, with line num-
bers added.
Default is list.no

survey.yes
Produce a table of the campiled routines and same informa-
tion about them, for example start line number, size of

code, required stack size and same other information neces-
sary for the Pascal system.

Default is survey.no

heap.<int>
<int> is the size of a core area initially assigned to the
use of the heap (default is heap.0). If a program uses the
heap it may be convenient to set the heapsize because it may

save same execution time.

codesize.<int>
<int> is the maximum number of instructions which may be

generated for the statement part of a "main program", pro-
cedure or function. (Default is codesize.1500). <int> is

rounded up to the nearest multiplum of 500; the maximum size
is 6000.

Storage Requirements

The campiler requires a job with a core area of at least 50000
halfwords. A too small size may cause the campilation to termi-
nate with the alarm 'pascal runtime error: process too small'. A

greater core area may remedy the prcblem.

The campiler uses the following files: 'pascalpif’ and

'pascalenv', in addition to current input and output.

How to Run a Campiled Pascal Program

The dbject code produced by the Pascal compiler may be loaded and

executed by the FP-cammand:
(<param>=)2) <cbject> (<parameters>) g

During execution two area processes are used, one to the Pascal

library placed in the file 'pascallib' and cne to the dbject
file.

RUNTIME ENVIRONMENT 8.

8.1

Unsophisticated users should not read all the details of this
chapter.

The Pascal Process at Runtime 8.1

A Pascal dbject code file contains instructions for initializa-

tion of the core area, i.e. loading of the run time system
(PASCRIN) and the main program, after loading control is given to
the main program.

After the initialization the core image looks like:

T start of rocess
FP

global variables
resident
runtime
procedures

T+ start of procedure table

T start of libray procedures
T top of procedure table

+ w2 (stacktop)

T code top

main program (if not in the resident part)
+ top of heap

heap

T+ top of resident procedures

resident mrocedures
+ 1top of user area

FP stack, data buffers for input and cutput
+ top of process

8.1.1

92

A call of a procedure vwhich is not already in core implies a
transfer of code fram backing storage to core, and the code will .
be placed inside the area between the code top and the stack top.

The code area is managed by means of a logical segmentation algo-
rithm, handling each routine as one segment.

If enough space is available, the procedure is allocated space
fran the code top towards the stack top. Else the runtime system
will decide which routine(s) to declare 'not in core'. The ccde

area is managed according to a modified round robin strategy.

Resident Procedures 8.1. 1'

During initialization the procedures declared to be resident are
read into core and reside there during the whole run. The re-
sident procedures are placed cutside the nommal used area for
code, therefore these procedures do not influence the former men-
tioned algorithms.

3

ERROR MESSAGES ' 9.

Errors in a program are indicated depending of the categori of
the error. Campile time error messages are separated into two
categories. Errors discovered during the first pass are indicated
byaﬂlextna]ine.h1thex;ogran]isting,mdth,antgarnmvpoﬁmﬁng
at/after the erroneous item, and a number between 0 and 300
according to the messages given as appendix C.

Errors discovered during the second pass are indicated by:

'error no <int> in line no <int>'.

Examples:

Passl error: mis-spelling, i.e. identifier not declared:

81.09.14. 15.51. pascal version 1981.01.08
1 PROGRAM show_error(output);
2 VAR
3 result : integer;
il int : integer;
5 alf : alfaa;
REXXRRER K 101
6 ,
7 0 BEGIN
8 1 resutl := system(1, int, alf);
FRREREXER “101
9 END.
number of errors : 2
number of warnings: 0

error description
101: 4identifier not declared

end
blocksread = 88

~

81.09.14. 15.51. pascal version 1981.01.({f)
1 PROGRAM pass2_error(output);
2 VAR
3 int : integer;
4 0 BEGIN
5 1 int := 9000000;
6 END.

error no 301 in line no 5

Code: 0K + 20 Halfwords
Error(s) found in pass2
number of errors : 1

error description
301: decimal integer constant too large

end
blocksread = 61 '

In case of a run time error a message indicating the error is
written on current output, and the program is terminated. The
line number where the error occurred is written followed by a

trace of the active routines.

Example of a procedure for program exit with a trace of the
active routines. This may be used as a debugging tool.

81.09.14. 15.52. pascal version 1981.01.08

PROGRAM runtime error(output); .
PROCEDURE stop;
BEGIN
writeln(output, ~ intentionally stop ...)
readln(output);
END; (* procedure stop ¥)

= O

BEGIN
stop;
END.
Code: 0K + 74 Halfwords

O\W OO~ O =W
= O

-

end
blocksread = 67
intentionally stop ...

illegal zonestate

occured in 5 line 2 of stop

called from 10 line 2 of runtime erro

blocksread = 8 ‘

10.

95

SOME PROGRAMMING HINTS AND WARNINGS

1) There is no check for overflow on integers.

2) It is not checked if the tag field of a record with variant
part has the correct value when a campanent of the variant
part is referenced.

3) Unrestrained use of packed records and arrays may slow down
the program execution, because of the many slow shift oper-
ations which are required, i.e. the saved space for the vari-

ables is paid for in execution time.

4) If the variable requirement is so extensive that it is desir-
able to use packed data types it may be helpful to doserve the

following advices:

1. For sequential referencing of the items of a packed array
of char (e.g. in a for-statement): operate on an unpacked
array and use the standard procedures 'unpack' and 'pack’,

before and after the referencing.

2. It is cheaper to use data types occupying an integral nmum-
ber of halfwords, even if it is not necessary, instead of
data types of different sizes with only cne or two items in

each word.

3. For packed records with items with different storage re-
quirements, the number of shifts may be minimized if the

items are declared with descending size.

Example:

a) £1 : PACKED RECORD b) t2 : PACKED RECORD
bool : boolean; pos_int : O..maxint;
pos_int : O..maxint; bool : booleah

END; ° END;

10.

96

in case a) an assignment to bool will require between 14.2
and 18.6 microsecords just for the shift operations, in

case b) the interval is 5.4 to 9.8 microsecords.

An assignment 'boolean variable := tl.bool' (with

boolean variable and tl declared on the current level) re-
quires 3 instructions, if t1 was wunpacked the same assign—-
ment would require 2 instructions.

5) The value-statement may be a very convenient construction, but
it has some disadvantages:

Initialization of a structure with the same value to almost
all the items may be fast but it will require about three
words of code per item, and if the number of elements exceed
255 words it will involve a transfer of data fram backing sto-
rage, which takes about 30 milliseconds, plus 1 msec. for each
segment to transfer to core, in that case it will be much

faster and less space consuming to use a for-statement.

6) Sets are convenient to use for many purposes, but it is a
rather expensive construction. The expression 'ch IN ["a",
"b", "q"]' will cause 18 words of code. This is due to the
fact that a set is always constructed as a 6-word bit map,
with each bit indicating if the set element with the corres—
ponding mumber is in the set (elements are counted fram 0).

In the case of 'colour IN [red,blue]' three words of code is
saved (the range check) if 'colour' is declared as a subrange
of elements, the ordinal values of which lies between 0 and
143. E.g. variables of type ISO or char fulfil this cordition.

If the cardinality of 'colour' in the example sbove is less
than 24, then the test for IN only requires 7 words of code.

97

7) The heap is implemented as a stack. This means that each time

8)

9)

the standard procedure 'new' is called, a piece of core is al-
located on top of the heap. This piece of core is able to
contain a variable referenced by the pointer variable used as
argument to new.

Dispose(p) work as wnstacking. The core inclusive the part re-
ferenced by p is released and may now be reused.

Compile time if-statement (conditional code).

In the statement:

IF <const bool expr> THEN stl ELSE st2
code will only be produced for either stl (if the value of
<const bool expr> is true) or st2 (if the value is false).

In the case of:
IF <const bool expr> THEN st

no code at all will be produced if <const bool expr> is false.

It is not allowed to 'close’ input and cutput, if they are not
comnected to external files.

98

A. REFERENCES A.

1]

[2]

(3]

[4]

(5]

(6]

The Programming Language PASCAL,
Acta Informatica, 1, 35-63, 1971

ISO Draft International Standard ISO/DIS 7185:
Specification for Computer Programming Language Pascal

RCSL No 42-i1235:

RCB000 Computer Family, Reference Manual
June 1979, Einar Mossin

RCSL No 31-D476:

RCB000 Monitor, Part 1, System Design
November 1979, Henrik Sierslev and Pierce C. Hazelton

RCSL No 31-D477:

RC8000 Monitor, Part 2, Reference Manual
January 1978, Tove Ann Aris and Bo Tveden-Jgrgensen

RCSL No 31-D364:
System 3, Utility Programs, Part one
H. Rischel

RC8000 PASCAL SYNTAX DIAGRAMS

The shaded areas denote differences/extensions in proportion to

the report [1].

program

—— PROGRAM — identifier — (— file list —) —

identifier

— letter

[—- letter 41

file 1list

—>— file identfier -.‘-f_;-::*af,:.'.;-mafﬁa,oﬂo-: file name ——

; = block - .

!l

3

unsigned integer

——> lidentifier — =

—> constant

P

3

———> identifier — =

- type

-> VAR

&

—> ldentifier —

3

’

— : —» type

2

— VALUEQa—-j:—-)*value~specific&tion
- ‘ i

A 4
-

3

e S RS

———> BEGIN ~———

3

—> FUNCTION — identifier —

——> statement

&

parameter list — : — type identifier —¥

—

b

~—> PROCEDURE ——> identifier — parameter list

END

block

>

v

parameter list

101

&

s (ol

L

FUNCTION —<

H
identifier 1

VAR ——3

PROCEDURE

3

—> : — type identifier —

| idenfif,‘ie-r' —I——

expression

———> simple expression

1) Sy

A A A)
< > O <= >
|

IR R

[}

IN

simple expression

> simple expression

A\ 4

> term >
L Liog
term 41—4—l——4J
term
—> factor T T 1 I T —

102

unsigned integer

digit 4——>

constant

uns

r> + __] ~—— constant identifier ———
L -

——> unsigned number

character N RN

igned number

]
—> unsigned integer -L> « = digit > E L) unsigned integer

typ

e

simple type

£

Y > 1 —> type identifier
¢— PACKED 4J

|5 arraY — [=5 stmple type 14— 1 —> OF —> type —

————e———>» FILE —» OF —— type

> SET OF simple type

le———————— RECORD — field list > END

103

simple type

—> type identifier

(> identifier F——>)
« |

L

-———> constant —— .. ——> constant —e- 1|

field 1list

o L
3

I 3
T > 1dentifier] > - type l >
L CASE —— identifier — : —>—3 type identifier — OF —

|

>

t—— constant 2 > > (> field list —)

\\4

104

statement

——> unsigned integer — : —1

L1

L1

L1

L> function identifier J

variable N = expression

> procedure identifier > | expréssion L)

L—> procedure identifier :]

BEGIN —r— statement ——a—> END *

<

.
3

IF — expression —» THEN — statement —L> ELSE — statement

CASE — expression — OF —>—>r> constant 1—) : =» statement
3
H

L> END

WHILE — expression — DO —— statement

REPEAT —ﬁ:—> statement _j——> UNTIL —» expression
H

DOWNTO -
FOR — identifier — := — expression TO

L

L> expression = DO — statement ——m —3

—, —
WITH —l> variable ——> DO — statement

GOTO — unsigned integer

v

105

factor

v

> unsigned constant

—> variable

Nz

————> function identifier —> (->r> expression 1—9)
&
,

> (> expression >)

NOT > factor

L>—> expression —r> .. —> expression ——ﬁ——J

k)

unsigned constant

- constant identifier

-————————> unsigned number —
> NIL
> 7 NI character L -

variable

[:: variable identifier
. field identifier [=»> experssion Té] =
p .

L

3

—> . > field identifier -3
> 1

UTILITY PROGRAMS

C..l

106

Indent (Text Formatting Program)

The program performs
the options specified

indention of source programs depending on
in the call and on the keywords (reserved

words) of Pascal/PASCALSO.

call:

1
(<outputfile>=) 0 ind

<option>::= lines
mark

list
noind
myind
1c

uc

help

Storage requirements:

ent <input file> (<option>);°

line numbers are added

the blockstructure is made clear by means of
! between matching begin-ends

the same as: lines mark

the output will be left justified

the output indention is the same as the in-

put indention

lists keywords in capital letters and ident-
ifiers in small (lower case) letters

both key words and identifiers are listed in
upper case letters

produces a list of legal options

The core store required for indent is 16000 hw (size 16000).

Error messages:

?22? illegal input~filename

input file must be specified

C.2

107

call: "indent help", for help
an error is detected in the program call, a new call "in-
dent help" will produce a list of the valid options

ek warning, end(s) missing
an error in the begin-end structure has been detected

*k premature end of file
canment or string not terminated

Cross (Cross Reference Program)

The program produces a cross reference listing of the identifiers
and numbers and a use count of the Pascal/PASCALS80 key words used
in the input text.

The cross reference list is made with no regard to the block -
structure of the program. The list is sorted according to the
ISO~alphabet, i.e. numbers before letters, but with no difference
between matching upper and lower case letters.

The occurence list for an identifier consists of a sequence of
Pascal /PASCALS0 -line numbers. The occurrence kind is specified by

means of the character following the line number:

* meaning the identifier or number is found in a declaration
part.

= meaning the identifier is assigned to in the line spec-
ified.

meaning the identifier or number occured as a label.

blank all other uses

<LKLLKLKLKLLKKLLin the list is a warning denoting that the name
consists of more than 12 characters, which is the number
of significant characters for Pascal-identifiers.

C.2

108

Call:

1
<output file> = cross <input file> (<option>)0

<option>::= bossline. <yes or no>

<yes or no>::= yes bosslines are added to the listing.
(Default).

no only Pascal/PASCAL80 line nunbers are
generated.

Storage Requirements:

The core store required for cross is at least 40000 hw (size

40000), but the requirement depends on the size of the input
text. '

Error Messages:

22? illegal autput-filename
left hand side of the call must be a name

222 illegal input-filename
input file must be specified
2272 yes Oor no expected
option 'bossline' must be 'bossline.yes' or 'bossline.no'
222 error in bracket structure, detected at line: xx
missing ")" ('s)
2272 error in blockstructure, detected at line: xx

unmatched END

Cl3

109

% warning: hash table overflow at line: xx
the name table ran full at line xx, the cross referencing
continues for the names met wntil line xx, new names and
nurbers in the following lines are ignored.

Use of Indent and Cross

Indent and cross are two idependent programs but a sequence of
calls similar to the following will produce a nice listing of a
Pascal program with line numbers according to those of the cam-
piler listing, i.e. the numbers used in case of errors.

Example of program calls:

10 job jaba 600 time 4 O size 50000

20 udlist= set O

30 sourcelist= indent source mark lc
40 udlist= cross sourcelist bossline.no
50 convert udlist

60 finis

The contents of source and output fram the job are shown on the
following pages.

C.3

110

Contents of source.

program test_listing(output);

label

7913;

const

first = 1; last = 25;

type

structure = record

fieldl, field2 : real;

random_field : integer;

name_field : alfa;

case cheat : boolean of

true : (name_conv : alfa);

false : (intl, int2, int3 : integer)3
end;

var

random_help, help : integer;

very_long identifier name : alfa;

table : array £ first .. last R of structure;
value

table = (<first .. last> * (0.0, 1.0, 13, “abcdef”,
true : (7)))

function random_number : integer;

(¥ generate a pseudo random number sequence ¥)
begin

random_number := (random_help # 1023) mod last + 1;
end ;

begin
random_help := 13;
(% .

*)

for help := first to last do
with table E help & do

begin

random_field := random number;
end;

(% .

*)
7913:
end.

111

Contents of udlist.

1

23ed

faaqunu wop

0d

*dNd
€16
(=%

* %)
: _ faNd
ugd =: PISTJI wopued j
NIbad
od ¥y drey ¥ °r1de3 HLIM
4SBT QL 3SJT1J =: Qﬁmcﬁmom
*

. *v
€T =: dray wopued
NIDI

[e e e ot v e e e e e e ems e e e

He R

T + 38BT AOM (£20T % dI9Yy wopued) =: Jaqunu diopued j

(% ©ouenbss asqunu wopurd
fa93a3ut

SC (L L)+ @8nag
€ _Jepoge, ‘€1 ‘0°1 ‘0°0) =

foangonaqs 40 Y 3Sel
‘eJre :
fao

€(ae8ej3ur : €auUT ‘gautr ‘I3ul)
$(BJI® : AUOD awWelu

JO uearooq :

‘feJre :

fasl3oqur : PI
f1{eda : 2pl®

(

NIDdd
opnasd ® 93BJI2UST)

! Jdequnu wopued NOTIIONNL

<3SBT ** 3SJ4TJ>) = °1de3
HNTVA

*t 3S8dTJ ¥ AVHYY ¢ 919®3

aweu JdTJT3uspl Juol Kasa

aqut : diey ‘drsy wopued
VA
CaNd i
: asTeJ i
) : 8nasg i
38aYd_HSVO i
pIe1J suweu j
9TJ wopued i
TJ ‘IPTI®TI i
YodHY = @24n3ondjs
HdAL
fGg = 3s®BL {1 = 3841J
LSNOD
‘E€16L
Tdgv'1

10dqno)JuT3sTT 3593 WYUDHOUd
*6h°0T °GT°60°18

— QN oNar OO
— e
O —H AN M N
s

— N NI N0 ~0 ONO
i

{1}

(e}

—
o~
[V}

— O N IO ~C0 O

18T[994N08

112

(Contents of udlist contd.)

2ODOODDODOIOOOOODIIIIIIIIIIIIIIIII>D>

POOIIIIIDIOIIIIDIIIIIIIIIIIIIIIIIIS>D

Ge 9¢

%¥€¢C

3

2 o3ed

#LT

sueU JaTJTAUSPT Juol KJ9a

#1¢
9¢ %0¢C
#8T
gt =9¢
=0¢ 9¢
uuwm
%02 #8T
%91 #€T
9¢ =G¢
£0¢ *8T
YA %cT
“hn
0¢
9¢ #0¢2
¥0¢ #0¢
*6h°01

EXAN
#T
¥81
'y
%9
$€2

anaqg

BUT3STT 3899

a1qel

2an3oNnJq8

[ead

Jdaqunu uopued
dray_wopurd
pPI2TJ wopued

#91
x6
%1
#0T
EYAN
%G
%6
#ET
#€71
*€1
%91
#G
#8
#8
#E1
#11
#11
#0T
%€
92
*S
¥0¢
%G
#0¢

*GT1°60°18

pmguzo

pIoTJ_euru
AUOD 2WBU

€161
€201
T4
€T

T

0

iset
Jd989quT
fqut
Zaut
13Ut
diay
3841J
c¢PIdTJ
IpIeTd
asTR]
1B8aYD
ugaro00q
BIT®

18T[904N0S

113

(Contents of udlist contd.)

1 HLIM
T VA
1 HNTVA
T Hdd AL
1 Od
T aqoody
1 WVHD0dd
[d0
1 dONW
T Td4aVv1
T NOTLONNH
T q04
h aNdg
¢ 0d
T LSNOD
T dsvo
€ NIDHd
T AVHYY
G

o3ed ‘6 0T *GT1°60°18 3STI[90anos

c.4

114

Performance Measurement c.4

Because of the software managed program segmentation on routine
level it is possible to gather statistical information for a Pas-
cal program during execution, without extra statements in the
program and without special campilation. The running system is
provided with two sets of code for call and exit management. The
standard action is without gathering information for statistics.
The statistical version is chosen if the FP mode bit 'listing' is

set (mode listing.yes). At program end the measurement is tabul-
ated as shown below.

Each table entry contains information as:

routine name (first entry is for the main program), begin-line, .
nurnber of times the routine has been called and some time con-
sunption informations. It should be noted that the time informa-
tion is real time (not CPU-time). This means that swap out and
backing storage transfer time is accounted and hence may disturb
the result. The reason why real time is measured instead of CPU-
time is based upon experience showing that input and output cper-
ations very often constitute the greater part of the. program ex—
ecution time, and this would not be seen fram CPU~time measure—
ments.

115

€E6E"S

€0E°h I2€C°0
£00° . LLLE*0
€L€°2 082170
96€°TT 9HT9°0
QTG €€ GL0og" T
LEG*0 0620°0
GELT 9€60°0
000°0 0000°0
8E" 9T 9£88°0
8€0 " 8L12°0
9T.°QT 1600°T

swTl3 JOo % (988) 1®B30]

T€00°0

8900°0
LLLE"O
08cT°0
€T100°0
L100°0
6000°0

9€88°0
L100°0
1600° T

(o8s) 9a3easay

686°1
8G0°0
8G0°0
LG8 9¢
06L°19
GGl°1
GLT°0
000°0
8G0°0
L6T"° .
860°0

60.L1

he

STI®2 JO % DP8T1T®)D

066
6464
00§
1ot
€le
09¢
Lye
08T
681
43
€29

aUTT

181810

S — ——— ——— —- {— {—— G S ———" " o~ — —— — o~ S S S ——— " S— —

BITBOGTaM
21qe3 jutad
a1qe3 3Jd0s8
PT O3 ppe
T[oquAsgyxau
19)0BJIQNO9YD
a3vdmau
Jd0Jddd

3TuTt

PT 3jJesuTtT
§80490 [BOS®Ed

aweN

! weaBoad TYQSYd J40J AJBWUNS JUOWSINSBOW S90UBUIO JISJ

116

D. ERROR MESSAGES

D.1 Error Messages from First Pass

number meaning

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
o41
ok42
043
O44
045

illegal character

“program” or “module” expected
identifier expected

error in parameter list
ldentifier expected

“:7 or 7,” expected

“)" or 7;” expected

“;7 expected

digit expected

“37 or 7,7 expected

digit expected

“=" expected

constant expected

unsigned constant expected
error in declaration

“file” expected

“E” expected

<type> expected

“..” expected

“)" or 7,7 expected

“R” expected

“of” expected

“,” or A7 expected

unpacked structured type expected
“(” expected

)" expected

“end” expected

<const specification> expected
<set const element> expected
“A” or 7, expected

<str const element> expected
“>7 expected

“#%#” expected

“module” expected

“pascal” or “fortran” expected
“end” or “;” expected
“begin” expected

“:=" expected

<simple expression> expected
expression expected
expression expected
expression expected

“to” or “downto” expected
“do” or 7,7 expected

“do” expected

“then” expected

117

0l6 “:” expected

047 “else” expected

048 “until” or “;” expected
049 “.” expected

050 string expected

051 end of file expected

100 error in real constant: digit expected

101 identifier not declared

102 identifier declared twice

103 illegal integer constant

104 incompatible subrange types

105 subrange bounds must be scalar

106 index type must be scalar or subrange

107 not a type

108 illegal type

109 only tests on equality allowed

110 illegal pointer type

111 type of variable is not record

112 no such field in this record

113 previous declaration was not “forward”

‘114 too many digits in label

115 multideclared label

116 illegal value name

117 not a variable

118 type of variable must be file or pointer

119 type of variable is not array

120 index type is not compatible with declaration
121 type of variable must be boolean

122 incompatible set element: types

123 illegal set element type

124 type conflict of operands

125 illegal type of operand(s)

126 file comparison not allowed

127 strict inclusion not allowed

128 not a function

129 undeclared label

130 illegal type of expression

131 number of parameters does not agree with declaration
132 illegal parameter substitution

133 actual parameter must be a variable

134 not a procedure

135 incompatible with tagfield type ;

136 label type incompatible with selecting expression
137 type of expression must be boolean

138 unsatisfied forward pointer reference

139 function type does not correspond to the forward declaration
140 parameter list does not correspond to the forward decleration
141 undeclared external file

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

already forward declared

error in option

missing file “output” in program heading

unsatisfied forward function/procedure declaration

undefined label(s)

multidefined label(s)

array elements out of sequerice

no variant part in this record

erroneous number of fields in this record

valuespecification incompatible with recorddeclaration

number of array elements does not agree with declaration
multiple occurence of variable in value part

illegal formatting .
module name(s) must be unique

assignment to function not allowed at this level

illegal procedure call :

cnly “value” parameter(s) allowed in formal function/procedure
control variable must be a variable or a parameter
multidefined external file

“input” not in program heading

“input” has illegal type

readln and writeln only allowed on text files

not a constant

not an external declared file

assignment to function identifier must occur in function itself
textstring not terminated within the same line

file parameter must be VAR-parameter

comment did not terminate

119

D.2 Error Messages from Second Pass D.2

number meaning

301
302
303
304
305
306

307
308
309
310
311
312
313

314
315
316
317
318
319
320
321
322

323
324

4ol
4o2
403
4oy
Los
406
ho7
408

decimal integer constant too large

non-decimal integer constant too large

exponent in real constant too large

index type too large

basetype of set too large »

too many nested function/procedure declarations

and/or too many parameters/labels in this procedure

first element in subrange specification less than second
multideclared label

the lowest integer 1s not allowed as case-label

the range of case-labels is too large

not enough room for temporaries

constant out of subrange bounds

comparison and assignment of strings with different length
not fully implemented yet

not enough room for parameters, structure too complicated
range of set-elements only with constant bounds

tag field values must be scalar

no such tag field in this record

too many tag fields specified

standard routine argument too complicated in this context
erroneous arguments to pack or unpack

#%¥%¥%¥% warning: label may lead to erroneous code

standard procedure “replace” may only be called from
main program

packed fields not allowed as var-parameters

division by zero not allowed

compiler constant “maxident” too small

compiler constant “stringmax” too small

compller error (should be reported to maintenance staff)
compiler constant “maxnest” too small

too much code: use option “codesize”

random files not implemented

read and write of user defined scalars not implemented
pack and unpack only implemented on array of char

120
T ow
D.3 Runtime Error Messages D.3
D.3.1 Start Up Errors L D.3.1
During the start w (initialization) of the running program some
error messages may appear.
The error message consists of two lines:
*** pascal init trouble
WO = <status> <message>
<status> is the result delivered by some monitor calls causing
the error. .

<message> may be one of the following:

'cannot create area process'

the job is run with too few area procésses.

'error in program call'
the call to get a campiled program executed is wrong.

'wrong answer'
the dbject file is not ok. It cannot be loaded or it is not

possible to read fram it.

'process too small'

D.3.2 Errors Duringv Program Execution D.3.2

~ During the execution of a Pascal program the program may be ter-

.;“ml.nated by a runtime error. Rntime error messages consist of a
message and a trace of the active routines (see the example in
chapter 9).

The messages are: T KU

'b, o or h expected' | o
during the reading of a number with base 2, 8 or 16 a wrong ‘base~ > &
has been encountered. '

giveup, blocklength = <integer>
possibly because of too few bs—resources.

'digit expected'
during the reading of a number an erroneous character has been

encountered.

'dispose outside used area’ ’
the reference used as argument to dispose is outside the used
area of the heap.

'file cannot be connected for I/0: <file name>'
an external file cannot be used, maybe because the job is run

with too few area processes.
‘file does not exist: <name>'

'illegal argument to arcsin' 4

the argument to arcsin has an absolute value greater than or
equal to 1.0.

'illegal argumerit to exp or sinh' »

exp or sinh has been called with a too big argument.”

'index or subrange out of bounds, value is: <value>'
' integer overflow’

during input an mteger greater than maxz.nt (8388607) has been
read. ‘ *

S

| 122
'negative argutent to 1ln or sqrt'

negatlve fleld w:.dth'

jlt is trled to wrlte a number with a negatJ.ve number of signifi-
cant dlglts. a Sn e . ‘

the program cannot be executed in a process with the size used. '

'J_llegal zonestate'
illegal use of a flle-

read before reset or write before rewrite.
'illegal pointer value'

'try to read past eof'
during input ™ has been encountered.

'wrong answer on input request'

a p:ocedure cannot be transferred fram backing storage to core
(if no hardware problens it should be reported to the maintenance
staff)

'wrong no of hal fwords r.ransferred'
a procedure cannot be transferred from backing storage to core

(lf no hardware pr:oblems it should be reported to the maintenance
staff)

Uncontrolled runtime error.
Use of an wndefined pointer variable (uninitalized) may cause a
ek break O <address> '

L ‘f“

RETURN LETTER

Title: RCB000 PASCAL, User”s Guide RCSL No.: 42-11786

aogt

A/S Regnecentralen af 1979/RC Computer A/S mamtams a contmual 7 ffort to 1m-

prove the quality and usefulness of its publications! To- do ‘this effeét ély we need
user feedback, your critical evaluation of this manual. T

Please comment on this manual’s completeness, accuracy, orgamzatxon,ysabdxty,
and readability:

Lo M-

Do you find errors in this manual? If so, specify by pagc

S s R e

i
: . * G /
How can this manual be improved? »
8 e & =)
3,,:5. e & T
Other comments? - . o ST - ,
* el j’ : % Ho i
':}:ﬁ
. s F: g £

Name: ; Title:
Company:
Address:
Date: §
Thank you %

I T T S A

.................

....... FOldﬁél'é I T I U
Do not-tear - Fold here and staple
Affix. |
postage
‘here:
@REGNECENTRALEN

L s af 1979 *

Informatwn Department SN

Lautrupbjerg 1
DK-2750 Ballerup
Denmark

