
Title:

Keywords:

Abstract:

1 8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS
RC SYSTEM LIBRARY: FALKONERALLE 1 - DK- 2000 COPENHAGEN F

RCSL No: 28-D3

Edition : March 1972

Author:
J¢grgen Winther

Mdsort

RC 4000, Software, Disc, Sorting, Program

Mdsort sorts a backing storage area holding records of

either fixed or variable length. Mdsort is based upon

the standard procedure mdsortproc. 8 pages,

Standard program mdsort page 1

Purpose,

Masort J[merge-disc-sort, is a sorting program intended for fast

sorting of one disc file holding records.cf either fixed or vari-

able length.

File format.

Records of fixed length are handled by means of inrec6/outrec6,

records of variable length are handled by invar/outvar.
The length of a file is either given in the catalog entry of the

input file:

inputfile=set <segments> <storage device> <number of records>

or by a special end of file record. See the call definition below.

Method.

The program is based upon the external algol procedure mdsortproc.

This procedure performs the sort in 2 phases:

1: The input file is read, and sorted strings of the maximm

length are output consecutively in one area.

2: The strings generated in phase 1 are merged together in

the needed number of passes.

The procedure will optimize the sorting by variation of the number

of passes, the blocklengths, and the number of shares, and by uti-
lization of 2 disc stores if available.

Requirements.

The merge technique requires 2 backing storage areas able to hold

the data.
One of these areas can be the input f is allow

to clear it.

The job process must own at least 7 message buffers, but it is re-

commended to have at least 8, and especially in connection with
sorting of short records, (4 to 20 bytes), a higher number of mes-
sage buffers can be utilized (10 to 18).
If the number of free message buffers indicates that the job

process has got less than 10 message buffers, a warning is given.

The minimm core size is given in bytes by the following expres-

sion:

11000 + 512x(inputblocklength + outputblocklength)
+ Txmaxleng h + 12xnoofkeys.

The blocklengths are given in segments, (512 bytes), and the maxi-

mum recordlength in bytes.

Standard program mdsort page 2

The minimum core size for blocklengths of 2 segments is thus about
13 to_14000 bytes, but it is emphasized that this core size will
give a very inefficient sort, 30 to 50000 would be more appropri-
ate, depending on the data volume,

Example of program call.

For a more exhaustive definition, see the next section.

mdsort in.filel out.file2 , input and output files
block.2.2 » input and output blocklengths in

» Segments.
var. 34 » variable reclength, max 34 bytes.
long.8 , first sorting criterion, ascending
real.20.d » second, descending
word. 10 » ete.
byte.11.d

Program call definition.

Two different calls are possible.

1. mdsort <sortfiles> <sortspecification>

2. mdsort <sortspec.file> <sortfiles>

The call syntax defined in the following demands that points are
used where specified here, and only there, also in the sortspec.-

file.

Sortfiles,

Fp-parameters defining input and output.

<sortfiles>::= in.<input file> <.clear>0/1 <.count>0/1
out.<output file> <.<output disc> >0/1

<input file>, <output file>, and <output disc>::= <name>

The signature 0/1 means that the preceding quantity can be omit-

ted.
The clear parameter defines, whether the input file should be
cleared or not. The parameter may be necessary in connection with

great data volumes.

The count parameter is only usefull in connection with the eof-

parameter in the sortspecification, because its effect is to

counteract the eof-parameter.

The output file is created by the program, and placed on the

output disc, if this parameter is given.

An existing file of the same name as output file is cleared.

Standard program mdsort page 3

Sortspecification.

Fp-parameters defining the details of the sort.

<sortspecification>::= block.<input blockl.>.<output blockl.>
<fix or var>.<maxlength>

< eof.<eof 1>.<eof 2 >0/1
<keyfield> 1/n

<input blocklength>, and <output blocklength>: := <integer>

Two integers specifying the blocklengths of the input file and
the final output file as a number of segments, (512 bytes).
whe maximum blocklength 1s 20 sesments.

<fix or var>::= fix | var

Defines whether the records of the input file was created by

outrec or by outvar.

<maxlength>: := <integer>

Defines the fixed or the maximum length of a record measured in

bytes.
It must be even, and not less than 4 in the case of fixed record-
length, and not less than 8 in the case of variable recordlength.
It is important for the efficiency of the sort that maxlength is
given as accurate as possible in the case of variable record-

length.

<eof 1>, and <eof 2>::= <integer>

If the eof parameter does not occur, then the length of the in-

put file is given by the content of the catalog entry of the file,

The word succeeding the name of the disc storage device in the

tail of the entry must contain the number of records to be sor-

ted:
inputfile=set <segments> <storage dev.> <number of records>

But if the eof parameter is given, then the file end of the in-

put file is defined by a special record having <eof 1>, and <eof

2&> as the values of the first 2 words of the user part of the

record, i.e., byte 1 to 4 of fixed length, and byte 5 to 8 of
variable length records.

If the count parameter occurred in <sortfiles>, then the number

of records in the input file is fetched from the catalog entry

in any case.

The number of sorted records is always inserted in the catalog

entry of the output file, and an end of file record is written

at the end of the file.
If the eof parameter is not given the value zero is used for

<eof 1>, and <eof 2 in this record.

Standard program mdsort . page 4

<keyfield>::= <type>.<position> <.d0/1

This is the specification of one keyfield.
Up to 30 keyfields can be defined in the order of decreasing
priority.

<type>::= byte | word | long | real

The types correspond to the types 1 to 4 in the internal sorting

system of rc#000 algol.

<position>: := <integer>

Specifies the fleld address of the keyfield.
The keyfield must be entirely within the user part of a maximum
length record, and only a byte keyfield may have an odd position.

<.d>

If the sorting order should be descending, this parameter must

occur.

Sortspec. file.

In case of program call 2, the sortspecification is given as the

content of a textfile, defined by <sortspec. file>.

<sortspec.file>::= <name>

The same fp-syntax is maintained however, with the exceptions

that the cancel character, and the construction <s> are not al-

lowed.
Empty lines at the beginning of the sortspec. file are skipped,

but if the sortspecification should continue over several lines

the comma must be used as usual as the continuation symbol.

The philosophy behind program call 2 is that the more dynamic

parts of the program call, the file names, should be separated

from the more static parts, the sortspecification.

It is in fact allowed to break the call into two parts in any way

after the <sortspec. file> parameter.

The call: mdsort <sortspec. file>, is thus completely legal,

if <sortspec. file> contains the required parameters.

Standard program mdsort page 5

Variable length records.

The sum check facility of invar is used during the reading of the

input file.

The record length mst not exceed maxlength, and it mst not be

odd.
The minimum record length is given by the greatest of the two val-

ues: 8 and the position of the first keyfield.

Thus some of the keyfields of a short record may in fact be situ-

ated outside the record.

Such a record is sorted as if all the bits of keyfields outside

the record were equal to zero.

Printed output.

1. The call is listed on current output in a standard way.

2, The text: sort start:, is printed when all parameters have been

read and syntax checked.

3. The procedure mdsortproc will print a warning if the job owns

less than 10 message buffers.

4, The procedure mdsortproc will print the expected remaining sor-

ting time in minutes two times, the first one, when the para-

meters have been finally checked, and the second time, just be-

fore phase 2 is entered.

The expected sorting time is printed both as a parent message,

and on current output.

5. The text: sort ok:, anda report of the number of records and

segments output, and the time consumed is printed on current

output if the sort was successfull.

6, Alarms.
The sort is stopped by a runtime alarm if some parameter is

illegal, in case of the lack of some resource, or in case of

some error concerning the file format.

The alarm is preceded by the text: ~omdsort alarm:, if mdsort

detected the error, if mdsortproc did it, the text: ~omdsort-

proc alarm:, precedes the alarm.

The ok-bit will be false after an alarm.

Standard program mdsort

alarms from mdsort.

alarm text.

syntax

wr. param

noofkeys
no input
noofrecs

e.store

b.store

out disc

alarm integer.

param number

param number

number of keys
monitor result
tail(6)
needed bytes
needed segments

O

page 6

comment

syntax error in sortspec.file.
wrong parameter structure.

too many keyfields.
error in lookup input file.
number of recs in tail < 0.
not sufficient core storage.

not sufficient backing storage.
output disc does not exist.

Note that if the clear parameter is used, then the input file
may have been cleared in the case of the b.store alarm occur-
ring after the first print of the expected sorting time, and

that it has been cleared for certain if some alarm occurs after

the second print of the expected sorting time, but alarms so

late in the sort should be very uncommon.

alarms from mdsortproc.

alarm text.

param

keyfield
infile
relength
mess.buf

create

lookup

change

rename

remove

passes

reccount

alarm integer.

N
U
N

keyfield no.
tail(1)
record length
buffers of job
monitor result

20

record count

comment

wrong input blocklength.

wrong output blocklength.

wrong maxlength.

noofkeys > maxlength.
illegal position of keyfield..
input file is not an area.
illegal variable length.
too few message buffers.

should not occur.

final output cannot be renamed.

input file cannot be cleared.

should not occur.

In addition alarms from stderror may occur if record or file

formats are strongly illegal.

The alarm r.length, and stderror alarms occurring during the

reading of the input file are also preceded by a line, pro-

viding the number of input records accepted before the error

was detected.

Standard program mdsort page

Examples of time consumption.

1. Fixed record length, 100 bytes.

core size = 42000 bytes.
noofrecs = 15000 records.

file size = 3000 segments.

one RC 433 disc store available.
real time 8.7 minutes = 35 milliseconds per record.
cpu time 2.9 minutes. ue

l

2. Fixed record length, 4 bytes.

core size = 42000 bytes,
noofrecs = 20000 records.
file size = 157 segments.

one RC 433 dise store available.
real time 1.9 minutes = 5.7 milliseconds per record.

cpu time 1.6 minutes.

3. Variable record length, max 160 bytes.

random record length, 8 to 160 bytes.
core size = 42000 bytes.
noofrecs = 7000 records.

file size = 1190 segments.
one RC 453 disc store available.
real time = 4.6 minutes = 39 milliseconds per record.
epu time = 1.9 minutes.

4, Variable record length, max 80 bytes.

mean record length = 50 bytes.

core size = 65000 bytes.
noofrecs

file size

75785 records.
7350 segments.

two RC 433 disc stores available.
real time

epu time

20.7 minutes = 16,4 milliseconds per record.
15.2 minutes.

The job had only got 7 message buffers, a higher number of

pufs might have decreased the real time to about the cpu time

above.

