RCSL: 31-D1k
Author: J. Lindballe,

H. Kold Mikkelsen
Edited: July 1971

TEST OF PERIPHERAL DEVICES

MAIN CHARACTERISTICS

T e e e o n o n o o o o s o o o " " 3 - " ——" - 4 W T o o o o e (s o i s e oy o s e e o

ABSTRACT: This paper describes the features of the loader 2. Further more
some of the standard facilities of different testprograms are described;

A/S REGNECENTRALEN
Falkoneralle 1
DK 2000 Copenhagen F

CONTENTS:

page

1.1. INTRODUCTION +ueuecennerenrrennnconneans

1.2, THE LOADER 2 vevvvvrcenncennrennseennoes

1.3. THE PROCEDURES seveevecveconneonsncannss 13
1.4, TEST PROGRAMS tevvveverennnesenncoonnees 26
1.5. INTERRUPTION sevevveevrenrenesnnnnnnanes 5l
1,60 BITPATTERNS tevevvveecnecnnncnnnnsanneae 33
1.7. THE RELOCATABLE LOADER 2 eveeeveeesenans 38

PREFACE:

This paper is an extension of 51-VBL31 by Jgrgen Lindballe.
All testprograms designed for the previous loader will equally well run

in loader 2.

1.1. INTRODUCTION

For each of the belowmentioned RC 4000 peripheral devices are made a number of
test programs. The purpose of some of these is to check the peripheral device
in question (checking programs), while the purpose of others is to help the op-

erator to localize errors if these occur (motion programs):

Kind of Peripheral Devices Number of Programs

Paper Tape Reader

Paper Tape Punch

Typewriter

Lineprinter, Data Product
Lineprinter, Anelex

Plotter

Magnetic Tape Station, 7 tracks
Magnetic Tape Station, 9 tracks
Drum

Disc

Interval Timer

Teletypewriter

R I ~ R B - S R I e o)

Display

Besides the test programs are programmed partly a set of standard procedurgs
used of the programs mainly for output on and input from the operator's type-
wvriter and partly a loader program, the aim of which is to place the test
programs of a given kind of peripheral devices and the mentioned procedures in
the core store, because the test programs are used independent of the RC 4000
monitor and operative system (because it is a demand to these programs that
they are possible to test any kind of peripheral devices within a core store

of minimum size: 4096 words).

The loader 2, the test programs as well as the procedures, are written in SLANG.

A test by means of these programs demands perfectly operating:

1. a central unit including

2. a core store not less than 4096 words.
3. a paper tape reader (device No. n).

L. a typewriter (device No. 2).

Furthermore it should be desireble that
5. an operatorkey (interrupt channel No. 3), and
6. a magnetic tape station (7 or 9 tracks)

are available,

The abovementioned programs are linked together in accordance with this hier-

archy:

SELECT KIND OF PERIPHERAL DEVICES

’

|

SELECT DEVICE NO. 8
SELECT TEST PROGRAM E
E
d -
| TEST PROGRAMS
&
INPUT-QUTPUT

so that, by the aid of the loader, all the test programs of a given kind of pe-
ripheral devices (say magnetic tape station or typewriter) can be placed in
the core store, and after this the operator may select the device number and
then the test program he wants to be executed. It is always possible to break
the execution of a test program by pushing the operatorkey; after this he may
select for the same device number a new test program, or for the same kind of
peripheral devices he may select another device number, or he may load the
test programs of a new kind of peripheral :devices, (Finally, after such an op-
erator termination, it is possible to have the contents of a part of the core

store typed out).

=

e i

The loader 2 and the procedures are found in & binary version punched on a
paper tape which may be read by the paper tape reader after activating the
autoload pushbutton.

The test programs are found in a binary version both punched on paper tave

(so that all the test programs for a given kind of peripheral devices are col-
lected on one tape) and written on magnetic tape (so that all the test prog-
rams for a given kind of peripheral devices are collected in one file, and in

such a way that each program forms a block).

Loader, procedures, and test programs are loaded as shown on the next page. It

’s noticed that only the first L096 words are necessary for a test.

Before the detailed description of this complex of programs, it must be men-
tioned that everywhere in this report, the output on the typewriter from the

programs is underlined so that it i1s not mistaken for the operator input.

Finglly it is a rule that the operator, when he has carried out what a program
has asked him to do, he must type in the character <NL>.

o

WORO-NO.

CORE STORE

oxZ

LOADER

(incl. jnterruptior and fobles)

523 x¢

1490 x2

40965x2

10 PROCEDURES

TEST - PROGCFAMS

for orne kind of
poerpheral aevice

Irput-ouiput
BUFFERS

(7f necessary,)

y\/\/\/\/\/\/\/\/\/\/

CORE STORE LAYOUT

1.2. THE LOADER 2.

When the binary tape, containing the loader and the procedures, has been plac-
ed in the paper tape reader (device No. 0), and the operator has activated the
RESET and then the AUTOLOAD pushbutton, the loader is read into the core store

by means of autoload word instructions in a 'bootstrap' as shown on the next

yage.

Next the loader, which occupies 523 words, is executed in a way explained on

the following pages.

First the loader is initialized whereby words Nos. 16, 18, 20, and 22 are fil-
led with the start addresses of U tables, which in this way are made available
for all the programs which later on are placed in the core store. These tables

are gradually filled with the following data:

word 1: The address of the first free word. This address is placed by the
loader when the last test program has been loaded. It is used by the

Tth procedure when a buffer area is reserved.

word 2: 2xthe number of test programs (incl. the name (chapter 4)). This num-
ber is placed by the loader when the last test program has been load-
ed. It is used when the 9th procedure delivers the directory (a des-
cription of the test programs stored (chapter 1.3)).

word 3: Last word address of the core store + 2. This address is stored by the
loader when initialized, and it is used by the Tth procedure.

word 4: When a test program, which tests the interrupt signal from the peri-
pheral device, is initialized, it stores in this word the start ad-
dress of its own interrupt sequence. Then, in case of interrupt sig-
nal from the peripheral device, a return jump from the loaders inter-

rupt sequence to this start address is performed.

word 5: Device No. of operator's typewriter < 6. This device No. is stored by
the loader when initialized, and it is used by the 1st and the Lth

procedure.

word 6: OQOutput dev. No. < 6.and is stored by the loader when initialized, and

is used by the 1st and the Uth procedure.
7

The Paper Tape

k
0 aw 2
2 aw L
L 5 0
6 aw alio1
8 aw x1 b
10 aw alio2
12 al wl x1 2
1k aw alio3
16 31. -l
18 5 wi ako1
20 0
y a300:
x+0 aboil: 0
x+2 aho2: 0
x+li alio3: 0
x+6 0
x+8 0
x+10 0
x+12 J1. wl 23500,

The Loader Bootstrap

(=x+0)
(=x+2)
(=x+4)

(=x+0)

(=y-x-12)

oo O

y-12

The Core Store

aw
aw

J1

a300:

1.

wl x1

2
U x+0 etc.
0

o)

¢« initialize

9

Jl. wl y-x-12

N FO OO0

word 1-10: Contain the addresses of the entry points of the 10 procedures.
These addresses are stored by the loader successively when the pro-

cedures are stored. They are used by all of the programs.

TABLE 3 (startaddress in word 20):

word 1-16: Contain the addresses of the entry points of the name (chapter 1.k4)
and the test programs. These addresses are stored by the loader
successively when the programs are stored. In connection with the
administration of a test they are used by the 9th procedure.
(chapter 1.3).

TABLE L (startaddress in word 22):

word 1,3,5: Device number(s) < 6

word 2,4,6: Interrupt chamnel number(s) #(-1)

When a test program is initialized, it fetches from here the device number(s),

and if it tests the interrupt signal then the interrupt channel number(s) too.

When the loader has been initialized, it reads (IO-instructions) from the pa-
per tape reader (device No. 0) the 9 procedures, and now it is able to communi-

cate wvith the operator's typewriter.

The loader first writes:

and the operator types the interrupt channel No. of the operator key and the
device No. of the typewriter he wants to use. (These numbers may be altered
later by activating the RESET and then the START push-button after which the

loader writes the above-mentioned questions again).

When after the message and question:
loader 2

input from device no.:

he operator has specified whether further inputs are wanted from the paper
tape reader (device No. = 0) or from magnetic tape station (device No. > 0)
(in the last case the typewriter writes:

file no.

and the operator must specify the file No. (chapter 1.4)), the test programs
are loaded. 9

The loader now writes:

After the questions:

it reads the device number(s), the interrupt channel number(s) and the wanted
output device number (> 0), it Jumps with IM(operator-key) = 1, IR = O and
interrupt enabled to the 9th procedure ('directory', chapter 1.3).

In case of interrupt No. O or when the operator-key is activated or in case of
interrupt signal from the peripheral device (if the test program tests inter-

rupt) a jump is performed to the loader's interrupt sequence, the start address
of which is placed by the loader in word No. 12. A detailed description of this

sequence is given in chapter 1.5.

The following rules apply to every program (a procedure or a test program)
which is read and stored by the loader:

1. It is stored with the protection key = 0 so that every test is performed in

the monitor mode.

2. The parity and (when punched on paper tape) the check sum are examined, and

in case of error, the following messages are given:

3. The first words of a program must contain a text string finished with the

character <0> and giving a description of the program.

L. Entry point of the program must be the first word after this textstring.

10

HMourr?
jpoaper ’‘qpe

Nex/ prog.
frorm read

al9 i

prog.r2o +/

prog.ro=

FIrstiree W

Next prog.
frorm fope

(&)

end of f1/e)

Slore

(rorme)

crrornre/
r70=

v

output dev.
no, =

v

f

Set M

'

CleariM

P!

D/'rEC'b/y

THE LO

> ernfry

Frrst free
woro

v

Word /2, /%
/6,/820.22

¥

~Prot key
=0

f

First free
word

?

Loacer
begrr?

2390

char. 170
oev. 170

al(//oader 2

—

/rapuf frons
oev. 770.

adss_

Start key

ADER 2

a /55

11

/00

/nterrypt
seque(?ce

bei/ﬂ

Store 4

W-reg

proc.

al/b

Returr furmp o

rfoble 7 (4)

‘nterrupt
70.0

THE INTERRUPT SEQUENCE

I

refood 4
w-reg

v

Je (/o)

12

1.3. THE PROCEDURES

The first programs which are read (by means of the IO-instruction) and stored

are punched on the same paper tape as the binary loader:

1. write a text
2. write a decimal number
. write a binary number
. read one character from the typewriter.

- read a decimal number from the typewriter.

. reserve buffer ares.

3

L

5

6. read a binary number from the typewriter.

7 :

8. write the contents of a part of the core store.
9

. administrate the test.
10. compare 2 binary words, write the result.

Each of these procedures, together occupying 967 words, are described in de-

tail one by one on the following pages.

13

This procedure writes a texts; the text, which may consist of an arbitrary

number of characters, must be finished with the character <O.

input output
(wO) = + or - text start address (wO) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. w0 {text start>.
am (18)
J1 0 w2 (+0)

if output on the operators typewriter.

ac. w0 {text start>.
am (18)
J1 w2 (+0)

if output on the spec. output device.

1k

2nd procedure: write a decimal number

This procedure writes in decimal a 2L-bit integer. The integer may be nega-

tive, zero, or positive.

input output
(wO0) = + or - address of integer (w0) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. w0 {int. addr.>.
am (18)
J1 w2 (+2)

if output on the operators typewriter.

ac. w0 {int. addr.>.
am (18)
1 w2 (+2)

o

{{f output on the spec. output device.

15

5rd procedure: write a binary number part 1

This procedure writes the leftmost bits of a word.

input output
(w0) = + or - word addr. (wO) = undefined
(wl) = No. of bits (wl) = undefined
(w2) = return address (w2) = undefined

It may be called in this way:

al. wO <word addr.>.
al wi <{No. of bits>
am (18)
J1 w2 (+4)

if output on the operators typewriter.
p

ac. w0 <word addr.>.
al wl {No. of bits>
am (18)
J1 w2 (+4)

1f output on the spec. output device.

16

Lbth procedure: read one character

(w2) = return address (w2) = status and char.

It may be called in this way:
am (18)
J1 oW (+6)
(5P 1s treated as a blind character.

If a parity error occurs, the character is replaced by a slash.

. 5th procedure: read a decimal number

This procedure reads a decimal integer typed on the operator's typewriter.
The integer, which may be negative, zero, or positive, must be followed by

a terminator (that is an arbitrary character which is not a digit or a

space).
input output
(wO0) = undefined (w0) = integer
(w2) = return address (w2) = terminator

It may be called in this way:

am (18)
J1 w2 (+8)
sn w2 10
sh w0 0
J1. -8

1f the call demands an integer greater than O and a terminator equal to <NLD.

18

6th procedure: read a binary number

This procedure reads a positive binary integer typed on the operator's type-

writer. The integer must be followed by a terminator (that is an arbitrary

character which is not a Q ora 1 or a space).

input
(w0) = undefined
(w2) = return address

It may be called in this way:

5
se
J1.

w2
w2

(18)

(+10)
10
-6

(w0)
(w2)

if the call demands a terminator equal to <NL>.

integer

terminator

This procedure reserves a part of the core store and it writes on the opera-

tor's typevriter:

fbw = <{address of first buffer word

(w0)

‘ (w2)

(]

No. of words wanted (w0) = No. of words

return address (w2)

start address

If it was not possible to reserve the wanted number of words within the avail-

able core store, the output value of both wO and w2 is O.

The procedure may be called in this way:

al wo <{No. of words>
am (18)
1 w2 (+12)
| sh w2 0
; Jl.
‘ If the input value of w0 1s equal to -(No. of words wanted) the procedure

waits for input after having written <{first buffer word>; if the operator in-
puts a character different from <NL> (for example /), it writes

and waits for another start address. This address must be within the free

part of the core store, i.e.

1) lower than the loader start address but not less than 24 (only signifi-
cant when using the relocatable loader)

2) higher than the last address of the test programs.

If <fow> is outside the free core the loader will request for a new <{fbw>.

After input from the operator it calculates and writes <last buffer word>.

20

This debug procedure is able to write on the operator's typewriter the con-
tents of a specified part of the core store (from word No. 8) inone of four

modes: text, decimal, binary, or machine instructions.

After an operator termination it is called when the operator types c; the core

store area is specified when the procedure writes:

first word addr. =

last word addr. =

respectively, and the mode is selected when the operator types t, 4, b, or i,
respectively.

In case of d(ecimal) and b(inary) the program waits for input of an integer
which specifies the print lay-out:

{ansver? lay-out
(new line) 24 vits
0 < <integer> <= 24 the word is divided into <integer> No.

of bits from the left and printed.

If d(ecimal) and if 24 mod <integer>
$ 0 then print the rest word as a bi-
nary number.

{integer> = 0 24 bits

The procedure may be called in this way:

am (18)
J1 w2 (+14)

21

Immediately after the selection of the device No. (and the interrupt channel
No.) for the peripheral device and the output device, a jump from the loader
to 'directory' is performed. In this procedure the test program and the num-
ber of runs are selected, and furthermore the procedure is gble to write on

the operator's typewriter s description of the stored test programs.

After the question:
test program:

the operator may type a letter: a, b, ¢, ... and in this way select the 1st,
2nd, 3rd, ... test program, or he may type <NL>, after which the procedure
writes the following directory:

These descriptions are fetched from the first words of each program

(chapter 1.4.).

22

When the operator has answered the question:

number of runs =

the test program is called Oth, 1st, 2nd, ..., last time. During call No. O
the test program is initialized. At each call the return address is placed in
w2, while
wi (22)
wl (23)

last call
Oth call

involving that run No. O and last run may be selected in this way:

sz wl 1

bl s run No. O (initiate)
and

sz wl 2

J1 s last run (finish).

Before some runs 'directory' writes:

run no. <run No.>

that is before

1st, 2nd,ee., 9th run, if 1 £ No. of rums < 9
1st, 11th, 21st,..., 91st run, if 10 { No. of runs < 99
1st, 101st, 201st,..., 901st run, if 100 { No. of runs < 999

etc., so that a test is always introduced with the message

and so that a message is sent each time such a nunber of runs are executed
that:
this number = the greatest 10-power which is less or

equal the specified number of rums.

Having performed the wanted number of runs, the procedure writes:
test end

after wvhich a new test program may be selected.

23

If the testporgram wants to finish the test before <No. of runs> are ex-
ceeded, it may return to the directory with return address:= return address

+2. I.e. if w2 contains the return address the {test en® may be executed in

the following way:

J1 x2 + 2

2l

This procedure compares two binary words and writes some of the leftmost
bits in the following way: the two words are called 'received pattern' (rec.)
and 'expected pattern' (exp.) respectively; the two words are compared bit
by bit and if they are,equal the value is written else one of the two let-
ters @ or x is written:

g if the bitvalue in rec. is 0 (a wrong zero),

x if the bitvalue in rec. is 1 (a wrong one).

input output
(wl) = + or - table address (wl) = undefined
(w2) = return address (w2) = unchanged

It may be called in this way:

al. wl <{table addr.>.
am (18)
Jj1 0 w2 (+18)

if output on the operators typewriter.

ac. wi {table addr.>.
am (18)
J1 w2 (+18)

it output on the spec. output device.

{table address> + 0: <blocksized <12 + <No. of bits>
+ 2: bit pattern {received>
+ b: bit pattern <{expected

where <blocksize> denotes the number of bits to be printed before a {space>;
if <blocksized <=0 or <blocksize> > = <No. of bits> no <{spaced's are printed.
¢No. of bits> denotes the tatal number of bits to be printed counted from
left to right.

25

1.4. TEST PROGRAMS.

For each kind of peripheral devices mentioned below is made a set of test prog-

rams:

File No.
RC 2000 Paper Tape Reader 1
RC 150 Paper Tape Punch 2
RC 315 Typewriter 3
RC 610 Lineprinter, Data Products etc.

RC 333 Lineprinter, Anelex
RC L4191 Plotter
RC 707 Megnetic Tape Station, T tracks
RC 709 Magnetic Tape Station, 9 tracks
RC L4415 Drum
RC U314 Disc
Interval Timer
Teletypewriter
DPCLO1 Display

The test programs in the binary version exist both on paper tapes (so that all
the programs for one kind of peripheral devices are punched on one paper tape)
and on 7- or 9-track magnetic tape (so that each program forms one block, and
so that all the programs for one kind of peripheral devices form one file. In
both cases the parity is odd.

AN Y/

1\ J
AV o
name 1-15 test programs end of tape or
tape mark

This drawing shows a paper tape or a file on magnetic tape containing the bi-

nary test programs for one kind of peripheral devices.

26

For each program (test program or procedure), which is read and stored by the
loader, the following rules apply:

1. The first 15 words (that is the first 45 ISO-characters) must contain
a text. This text is used by the loader in the message in case of pa-
rity error and check sum error, and it is used by the 9th procedure
when writing the directory.

2. The 16th word must be the entry point.

3. The program must be finished with a check sum when punched on paper
tape.
The paper tape/the file first contains a 15-word program containing the name
of the kind of peripheral devices, for example:

{:rc 707 magnetic tape station, 7 tracks<0> D

This is the text which is written by the loader immediately after the test

programs are stored.

After the name follows s number of test programs in arbitrary succession; if
the number exceeds 15, only the first 15 are loaded.

At the jump from 'directory' to a test program w2 contains the return address

and

[}
|

if Oth call then wi(23)
if last call then wi(22)

i
e

(the other bits are all 0) so that the test program may initiate and finish
the test.

27

The test programs are divided into two groups:

device.

Test programs:

2. Motion programs gggig%critical use of the

e oo s e e o e g o o

Within each group for a given kind of peripheral devices the programs are suc-

cessively numbered: 1.1, 1.2, ..., and 2.1, 2.2, ...

device is performed. If the device does not react in the expected manner, mes-

sages mentioned in chapter 3 are given. The test of

sense, control, read, write
exception register
interrupt signals

status

data

is included in these programs. It is a principle that whatever happens, the

test is going on. For example, the absence of an interrupt signal or even a

disconnected device causes a message to the operator, but the test continues;

but the operator may break the run by activating the operatorkey.

The exception register and the interrupt signal are tested as shown on the next

page and as explained below:

EX =

00:

O1:

The device is available and, if it has sent an interrupt signal, the
test continues; contrary this message 1s written (and the test con-
tinues):

no interrupt from device

The device is busy either because the transmission has not yet finish-
ed (especially because the device is in the local state) or because
of a hardware error. If the device remains busy for a time deépending
on the kind of device, the program writes:

device busy for <{time> sec.

and the test continues.

28

10

)

COUNTER
=0

NO

l

10 1
counter =
counter +1
YES e3 ¢ e2 ¢ NO
device busy device exrg= no'mterrtfpt
for <lim>sec disconnectad b N from device
eb

continue

YES

flag =0

5

10: The device is disconnected either because of an operator oversight

or because of a hardware error. After the message:

device disconnected

the test continues.

EX = 11: This is a hardware error which involves the message:

These programs use the peripheral devices in an uncritical way, that is they
do not apply interrupt signals, the status word is not examined, and they
hardly ever send error messages to the operator. In this way and by selecting
a great number of runs it is possible to encircle the error, for example by

oscilloscope measurements.

Each kind of peripheral device may be tested by means of a core store of mi-
nimum size that is 4096 words, but for high-speed devices it is possible to
place the input-output buffer anywhere in the free part of the available core

store.

The testprograms for high-speed devices are so designed that they propose the
buffer start address by writing:

fbw = {address of first free word

and wait for input. If the operator types <NL>, he accepts the start address;
if he types a slash, the programs write:

and he must input another start address. After input from the operator the
address of the last buffer word is calculated and written. (ref. Tth proce-

dure: reserve buffer area).

30

1.5. INTERRUPTION.

Interruption (that is interrupt signals, the interrupt register (IR), the in-
terrupt mask (IM), and interrupt ensbled/disabled) is applied in the following

way:

When the loader is stored and executed and when the interrupt sequence is exe-
cuted, interruption is disabled so that only interrupt No. O causes interrup-
tion. At all other times, that is during the execution of test programs and
procedures, interrupt is enabled.

At the Jump from the loader to directory the interrupt register is cleared, so
that old signals from the operator key or other peripheral devices should not

cause interruption. During the execution of directory IM(0) = IM(operator key)
= 1, involving that only interrupt No. O or the use of the operstor key causes

interruption.

At the jump to a test program applying interrupt signals from the peripheral
device furthermore IM (interrupt channel No.) is set to 1. (This mask is con-
structed by the test program when initiated; at the same time the test program
stores the start address of its own subinterrupt sequence in word No. U of
table 1 in the loader). So for these test programs interrupt signals from the
peripheral device cause interruption. At the return jump from test programs the

interrupt mask of directory is reloaded.

The interrupt sequence is placed inside the loader. Its start address is stor-
ed in word No. 12 by the loader when initiated. It is shown in the flow chart
in chapter 1.2, and is now further described.

At the Jump to the interrupt sequence, interrupt is disabled. Such a Jjump is
performed in the following situations:

1. Interrupt No. O which may always occur. If the interrupt sequence and the

first procedure are not destroyed, this message is written:

interrupt no. 0

If this occurs (due to a hardwere- or software-error), the loader should

be stored again.

31

By activating the operator key during the execution of a test program, di-

rectory or one of the other procedures. The interrupt sequence writes:

after which the operator may type t, o, 4, 1, or c. The typewriter now

continues to write one of the following underlined texts:

A Jump to directory is performed, and the operator may now select & new

test program for the same device No.

output dev. No.=

and the operator may select a new output device number > 0. Hint: when
using the cpu-timer as output dev. No. even checking programs may be
used as motion porgrams. This can only be used for testprograms newer
than medio 1971.

device no.

A jump to the statement in the loader where the device number(-s) is(are)
selected. In this way the operator may select a new device No. (and after
this a new interrupt channel No.) for the same kind of peripheral device

loader 2

A set of test programs for a new kind of peripheral device may be loaded.

core store contents

A jump to procedure No. 8 (chapter 1.3) is performed.

At interrupt signals from the peripheral device during the execution of a
test program which applies interrupt. In this case a return jump is per-
formed to the subinterrupt sequence of the test program with interrupt
still disabled. w2 contains the return address. The start address of this
sequence is stored by the test program when initiated in word No. 4 of
table 1 in the loader. The contents of the L4 W-registers and the excep-
tion-register are stored by the loader's interrupt sequence, and the re-
gisters are reloaded just before a jump with interrupt enabled is per-
formed to the broken test program.

32

1.6. BITPATTERNS.

acters are shown in the teble on the next page.

The character set has the following proporties:

1. Fxcept for 8 zeroes and 8 ones it contains (one or more times) all charac-

ters which are composed by 8 bits.

2. During the generation of the characters row by row each of the 8 bitposi=

tions is activated in a very irregular way.

3. The progremming of the generation is rather simple.

33

236
230
2kl
2k2
2L8

238
246
250
252

254

253

L

12
20
36

52
Ly
100
76

164

60
116
108
212
204
180

170
75
51

147
139
195

91
171
179
155
211
203
227

187
219
235
2u3

251

8

2k
Lo
T2
136

56
10l

200
152
168

73

120
252
216
169
153
105
170

150
102
86
39

135

182

87
105

55
167
151
199

119
183
215

.31

247

175

239

32

96
160
23
3k

22k
161
91
35

162
37

225
163

99
166
102
165
170

90
155

156
92
30

218

95
157
220
158

31

221
222

95
159

223

192
65
66

195

194
70
196
69

195
71
198
17
204
15
85

170 -

180
51
178
57
184
60

181
186
29
185
61
188
62

187
189
190

63

191

128

129
130
132
136

131
134
133
1ko
137

148

135
1k2
k1
154
153
150
170

85
105
102
101
11k
113
120

107
117
118
115
122
121
12k

119
123
125
126

127

34

The characters are gemerated by cyclic shifts and complementation of the 19
8-bit characters shown below.

These characters consist of 1, 2, 3, or U ones. After 8 cyclic shifts
1948 = 152 characters

are obtained, among which 6 + 4 + b = 14 characters are doublets (from the pat-
terns marked with ¥ and), i.e.

152 - 1b = 138 different characters.

By complementation of each of these
138x2 = 276 characters

are achieved, among which 8 + 4 + 8 + 2 = 22 characters are doublets (from the
patterns marked with dbt), so the result is

276 - 22 = 254 different characters

i.e. the characters 1 to 254. It is noticed that the 2 characters 0 and 255 are
not included.

—

00000001

00000011
00000101
00001001
00010001 o d)

00001101
00001011
00011001
00010011
11 00010101
12 00101001

2

3

L

5

6 00000111
"

8

9

10

13 00001111 *ht)
1b 00011101

15 00011011

16 00110101

17 00110011 bt))
18 00101101)
19 01010101 %)

1) the pattern is repeated after 2 cyclic shifts.
4t) the pattern is repeated after 4 cyclic shifts.

iii) the pattern is repeated after complementation and cyclic shifts.

35

s o v B oo - -

- -

[SRN

0000001

0000011
0000101
0001001

PSS I V)

0000111
0001101
0001011
0011001
0010101

W O~ oW

After T cyclic shifts
Tx9 = 63 different characters

are optained.

After complementation of each of these
63«2 = 126 different characters

are achieved, i.e. the characters 1 to 126. The 2 characters 0 and 127 are not
included.

36

Tn v o

acters:
1 000000001

000000011
000000101
000001001
000010001

2

3

L

5

6 000000111
7 000001101

8 000001011

9 000011001

10 000010011

11 000010101

12 000110001

13 000101001

14 000100101

15 001001001 %)

16 000001111
17 000011101
18 000011011
19 000010111
20 000111001
21 000110011
22 000100111
23 000110101
2k 000101101
25 000101011
26 001101001
27 001011001
28 001100101
29 001010101

%) the pattern is repeated after 3 cyclic shifts.

After 9 cyclic shifts
29x9 = 261 characters

are optained, among which 6 are doublets, i.e.
261 - 6 = 255 different characters.

By complementation of each of these
255x2 = 510 different characters
are achieved, i.e. the characters 1 to 510. It is noticed that 2 characters 0

and 511 are not included.

37

®

o o ——— - 00 o - - =" - - O D s s

The relocatable loader 2 consists of the sbovementioned loader and procedures,
however so designed that the relocatable loader and the testprograms may be
stored everywhere within the available core store, if the operator before ac-
tivating the AUTOLOAD push-button puts the start address into w3. This start
address must be so chosen that

0 { w3 £ length of core store -
(1length of relocatable loader +
length of testprograms)

All lengths are measured in No. of bytes. The length of the relocatable load-
er is 2980 bytes. '

When w3 = 0, the loader and the testprograms are stored as usual
(see Chapter 1.1, page 5).

38

