
Edition:

Author:

Title: DG

Ls

= 8 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS
RC SYSTEM LIBRARY: FALKONERALLE 1- DK-2000 COPENHAGEN F

RCSL No: 31-D280

July 1973

Torkild Glaven,
minor changes: Jens Ramsbgl

Keywords: RC 4000, Basic Software, File Processor Utility Program

Abstract: The do language is intended for monitor and hardware te-

sting. However it is designed so that it can be used as

a@ general progranming language. 21 pages.

FILE PROCESSOR UTILITY PROGRAM: DO

ABSTRACT:

The do language 1s intended for monitor and hardware testing and super-

vising, but it is designed so that it can be used as a general program-

ming language, in which the user can set register and core store con-

tents, execute monitor and FP procedures as well as slang instructions,

output any information about the core store in an easy readable form etc.

Examples:

The command:

do write 102,word.4 116

will output the contents of words 102, 104 and 116, i.e. the values of

max time slice, time slice and number of storage bytes.

The command:

do wiew2 w2.w3.in.20 140.w3

will execute w1:= w2, w2:= w3 + 20, word 140:= w3.

The command:

outfile=do w0.74, 3 wor= 74

wO.x0.0, 3 wO:= word(w0)

w1e76, 3 wl:= 76

Z1.X1.0, 3 21:= word(w1)

do wO.in.2, 3 wWO:= wO + 2

while wO.ne.z1, 3 while wO > 21

w2.x0.0, 3 w2:= word(wo)

write x2,peripheral.26 end,

’ 3 write 26 bytes of x2 with

’ 3 layout peripheral

od 3 end inner do

will on outfile output the first 26 bytes of the descriptions of all pe-

ripheral devices.

See also further examples sec. 6

1. SYNTAX:

The program is called as follows:

<output file> = do <s> <do command>

<assignment>

<write command>

<monitor call>

<fp call>

<slang command>

jump <s> <value>

clear

<do command> ::= <wait conmmand>

if <s> <value>

fi

do

while <s> <value>

od

go <s> <value>

og

exit

<wait command> ::= wait <s> 4% <integer>

<name>

66

<value> ::= <expression> { -<expression> }
f-)

<assignment> ::= ¢ <simple variable> <expression tai

<array base>

<simple variable> ::= ("|

Zz

W
w

wp
e

—|

Oo

<array base> ::= ¢ <integer>

<array name>

y <name>

e<expression> ©

-

Oo

<array name> ::= 17]

b)

Lo -)

<expression tail> ::= {. <operator> . <operand> }

<expression> ::= <operand> <expression tail>

[<integer>

<simple variable>

<indexed variable>

<operand> i= ba

ec

fp

\ hn

<indexed variable> ::= <array name> . <integer>

(in

=|

le

ri

or

an

eq

<operator> ::=4€ ne

=f
1s

ng

nl

mu

di

mo

20 |

<write command> ::= write <s> <write action> {=

+

shift left

shift right

logical or

logical and

o>

>

<

f)

//
modulo

HX

<end of do call>

[- =}

<simple variable> { . <format> }
e <bytes>

e <format>

<write action> ::=¢ <base> {

 <array pase> \

ba

<base> ::= ec y

fp

hn
\bittable)

<integer>

<bytes> ::=¢ <simple variable>

<indexed variable>

<format> ::= ¢ <simple format>

<structured format>

f emty

word

bytes

octets

sixtets

octal

binary

<simple format> ::=¢ text

code

double

groups

all

binword

words5

bytes10

name

procname

\ zroonanes

\

°

nothing is output

word as signed integer

2 bytes

3 8-bit groups

4 6-bit groups

positive octal number

bit pattern

3 iso-characters

slang instruction

2 words as double word

word, bytes, octets, sixtets, octal

code, octal, word, bytes, octets, text

word and binary

5 words/line

10 bytes/line

4 words as text

fuser
area

peripheral

<structured format> ::=¢ internal »

tail

zone

share

<mon. 2 format>

\ <tuon. 4 format>

<mon, 2 format> ::= note

answer

<mon. 3 format> ::= 4 chaintable

entry

<slang command> ::= slang <s> <value> J <s> <instruction> " end }

{s w <word> (eo do call>

oy*
<s>] [w 1

<instruction> ::= <code> e Wt 2

p)

\ <word>)

4 (fo) °°

coro wd ft ae >
(2

\ \ <integer>)
°

<code> ::= <two letter memonic slang instruction>

monitor <s> procedure <s> <integer>

set <s> interrupt

process <s> description

initialize <s> process

reserve <s> process

release <s> process

include <s> user

exclude <s> user

Send <s> message

wait <s> answer

wait <s> message

send <s> answer

wait <s> event

get <s> event

get <s> clock

<monitor call> ::= set <s> clock

create <s> entry

look <s> up <s> entry

change <s> entry

rename <s> entry

remove <s> entry

permanent <s> entry

create <s> area <s> process

create <s> peripheral <s> process

create <s> internal <s> process

start <s> internal <s> process

stop <s> internal <s> process

modify <s> internal <s> process

remove <sS> process

generate <s> name

copy

<mon., 2 call>

<mon. 3 call>

<mon. 2 call 3::

<mon. 3 call ::

f moaity <s> backing <s> store

Select <s> backing <s> store

select <s> mask

test <s> log

\ Teturn <s> status

f set <s> catalog <s> base

set <s> entry <s> base

lookup <s> head <s> and <s> tail

Set <s> backing <s> storage <s> claims

create <s> pseudo <s> process

regret <s> message

create <s> backing <s> storage

insert <s> entry

remove <s> backing <s> storage

permanent <s> entry <s> in <s>

auxiliary <s> catalog

\ czeate <s> entry <s> look <s> process)

<fp call> ::=

[fp <s> procedure <s> <integer>

finis <s> message

inblock <s> current

inblock

outblock <s> current

Outblock

wait <s> ready <s> input

wait <s> ready <s> output

wait <s> ready

inchar <s> current

inchar

outchar <s> current

outchar

connect <s> current <s> input

connect <s> input

connect <s> current <s> output

connect <s> output

stack <s> input

stack <s> zone

unstack <s> input

unstack <s> zone

outtext <s> current

outtext

outinteger <s> current

outinteger

outend <s> current

outend

closeup <s> current

closeup

parent <s> message

wait <s> free <s> input

wait <s> free <s> output

walt <s> free

break <s> message

terminate <s> input

terminate <s> output

terminate <s> zone

2. FUNCTION:

The program processes the list of commands given in the program call. All

variables are placed so that they remain unchanged by successive calls. A

sequence of commands can therefore be executed in one or several do calls,

provided these calls are of same kind (all with or without specified out-

put file).

(numbers in [] refer to the examples in section 5)

WO, wi, w2, w3, z0, z1, z2, and 23 are names of simple variables [1,3].

x0, X1, X2, X35, yO, yl, ye, and y3 are names of arrays. An array name

followed by a point and an integer acts as an indexed variable [2,3,5,7].

The start address of an array depends on the context.

An expression is a list of alternating operands and operators separated

by points [1,2]. The list mst begin and end with an operand. An expres-

sion is interpreted from left to right. The result is an integer word.

The operands and their values are:

<integer> the integer value.

WO-W3, 20-29 the value of the variable.

x0-x3, indexed the word addressed by the value of the correspon-

ding wevariable increased by the index.

yOey3, indexed the word addressed by the value of the correspon-

ding z-variable increased by the index,

ba the buffer address (first free byte).

ee the current command address (the byte after the

last free byte).

fp the fp base.

hn the address of a word array containing the fp h-

names (h0-h99).

All operators are dyadic and have the same priority [24]. The notation,

the meaning, and the effect of the operators are (left and right refer to

the operands) :

in increase left + right

de decrease left - right

le left shift (logical) left shift right

ri right shift (logical) left shift (-right)

or or (logical) left or right
an and (logical) left and right
eq equal if left=right then -1 else 0

ne not equal if left<right then -1 else 0

er greater if left>right then -1 else 0

1s less if left<right then -1 else 0

ng nog greater if left<=right then -1 else 0

nl not less if left>=right then -1 else 0

mu . multiply left * right

at divide left / right

mo modulo left mod right

po power left ** right

-10-

2.1. ASSIGNMENTS TO SIMPLE VARIABLES:

An expression where first operand is a name of a Simple variable assigns

the result to the variable [358]. If the expression is followed by one or

more other expressions or names, the result of the last expression or the

first word of the last name is assigned to the variable [2,4].

2.2. ASSIGNMENTS TO ARRAYS:

An array assignment consists of a start address (an integer or an array

name) followed by a list of expressions and names stored in consecutive

words. Expression values are stored as integer words, names as four text

words [5,7].

Four fields corresponding to the names x0-x3 are reserved for building up

arrays. Each field has a size of 34 bytes. An assignment to one of the

names x0-x3 will place the array in the corresponding field, and trans-

fer the address of this field to the w-variable of same number,

When assigning to y-names the value of the corresponding w-variable will

be used as start address, (About the use of x- and y-arrays in expres-

sions, see p. 9, in write actions, p. 11, and in slang, p. 13).

An integer used as start address is interpreted as an absolute address in

core.

2.3. WRITE COMMAND:

Output from the do-program is controlled by write commands. Current out-

put is used unless the call specifies another file, in which case current

program zone (h19) is used.

-11-

Notation: write <write actions separated by spaces> end

The terminating word (end) may be omitted at the end of the parameter
list.

All output concerns core store content. There are three kinds of write

actions:

1. simple variable write action

2. array write action

3. special write action

1. simple variable write action:

The write action consists of the name of the simple variable [9]. Ini-

tially the format is integer word. This can be changed by one or more

formats (see later) [10].

2. array write action:

The write action consists of a write base defining the start address

[13]. The write base can be an integer using this as the start address,

an X-name using the value of the corresponding w-variable as start ad-

dress, an y-name using the value of the corresponding z-variable as

start address, or one of the constant operands, ba, cc, fp and hn, using

this value as start address. Initially the number of bytes to be output

is two and the format is integer word. Bytes and format can be changed

by placing parameters after the write base [13]. Bytes can be defined

by an integer, a simple variable, or an indexed variable. For each defi-

nition the number of bytes will be output using the current format. The

format can be changed by one or more formats (see later). Simple formats

define how words or small groups of words should be output. Each word or

group of words is output in the same way [15]. A structured format de-

fines a relative start address and a structure of several simple formats.

Further it defines the number of bytes to be output [37], wless this is

specified after the format.

3. special write action:

This acts as an array write action except for the write base which is a

name defining a special set of start address, initial number of bytes,

and initial format [16].

- 12 -

The special write actions are:

pbittable the bittable placed at the top of the core store contains

one bit for each backing store segment (only used in moni-

tor 2).

Format: binary.

The simple formats are:

empty

word

bytes

octets

sixtets

octal

binary

text

code

double

groups

binword

all

words5

bytes10

name

procname

procnames

nothing is output

signed integer

two bytes as positive integers

three 8-bit groups as positive integers

four 6-bit groups as positive integers

a positive octal number

binary number with points instead of zeroes

three 8-bit groups as iso characters. Character values less

than 32 are output as spaces,

Slang instructions

two words as a double word integer

a combination of word, bytes, octets, sixtets, and octal

a combination of word and binary

a combination of code, octal, word, bytes, octets, and text

five words on one line

ten bytes on one line

four words as a text

a Signed integer followed by a point and the name of the

process having the word value as process description address

a binary word followed by the names of the internal proces-

ses, the identification bits of which match the ones in the

word value.

The structured formats are:

(the words are output using simple formats corresponding to their con-

tents). In the paranthesis is specified the standardlength in bytes for

monitor 2 and monitor 3.

puffer

area

a message buffer (24, 24)

an area process description (20, 24)

peripheral a peripheral process description (90, 100)

internal an internal process description (74, 92)

tail a catalog entry tail (20, 20)

~-13-

zone a zone descriptor (50, 50)

share a share descriptor (2h, 2)

note an fp note (22, -)

answer an answer from external process (10, 10)

entry an area entry (-, 36)

chaintable a chaintable head and a part of the table (-, 66)

Qnly the last format of a sequence of formats is used. For all write ac-

tions output takes place only after an explicit definition of bytes or

at the end of the write action.

2.4. CALL OF MONITOR PROCEDURES:

A monitor procedure will be called when its name appears in the parame-

ter list [35]. The call uses the variables wO-w3 as register values. On

return the registers are stored in these variables. The names of the

procedures can be found in the syntax description. New procedures will

be included when appearing. The first procedure has the following ef-

fect:

monitor <s> procedure <s> <integer> jd 1<11+<integer>

2.5. CALL OF FILE PROCESSOR PROCEDURES:

A file processor procedure will be called when its name appears in the

parameter list [18]. The call uses the variables wO-w3 as register va-

lues. On return the registers are stored in these variables. The names

of the procedures can be found in the syntax description. New procedures

will be included when appearing. The first procedure has the following

effect:

fp <s> procedure <s> <integer> jl w3 <fpbase>+<integer>

2.6. SLANG COMMAND:

Notation: slang <value> <instructions> end

Function: stores a list of instructions and word values in consecutive

words starting with the address defined by <value> [50]. An instruction

starts with a mnemonic code, Modifications are determined thus:

<s> w-name working register

wename relative mark and working register

<s> xXename index register

e xX-name indirect mark and index register.

- 14.

Qnly the last modification of each kind is used. A word value starts with

the letter, w. The word value and the instruction displacement are deter-
mined as the sum of 4 zero and possible appearings of the values:

<s> integer + <integer>

e integer - <integer>

<s> yename + <value of w-variable>

* yYyename - <value of w-variable>

<s> z-name + <value of zevariable>

e Zename <value of z=variable>

fete JUMP COMMAND:

Notation: jump <value>

Function: jumps to the address defined by <value> with link in w3. The

variables wO, wl, and w2 are used as register values. On return w0, wi,

and w2 are stored in these variables [58].

2.8, CLEAR COMMAND:

Notation: clear

Function: clears all variables and the buffer area by setting zeroes

into the process area not occupied by the file processor and the do-pro-

gram itself.

2.9, WATT COMMAND:
Notation: wait <s> <integer>

or wait <s> <name>

Function: An integer denotes the number of seconds (CPU-time) in which

dummy instructions are executed. A name is assumed to be a process name

and the do-program tries to reserve the process until it succeeds doing

this. If the name is not a process name it is looked up in the catalog

and its possible document name is used as process name [8].

2.10. IF COMMAND:

Notation: if <s> <expression>

Functions: if the expression is negative (true) » the command has no ef-

fect. If it is positive (false), commands up to and including the corre-

sponding fi command are skipped. This means that nesting of conditions

is possible [26].

-15-

2.11. FI COMMAND:

Notation: fi

Function: No effect [26], but see the if command,

2.12. DO COMMAND:

Notation: do

Function: Stacks a return point for the corresponding od command [39].

2.15. WHILE COMMAND:

Notation: while <s> <expression>

Function: If the expression is negative (true), the command has no ef-

fect. If it is positive (false), commands up to and including the corre-

sponding od command are skipped and the command pointer is unstacked,.

Unstacking the outermost command pointer has no effect [28].

2.14, OD COMMAND:

Notation: od

Function: Interpretation continues at the stacked command pointer [29],

See do command,

2.15. GO COMMAND:

Notation: go <value>

Function: The command is a procedure declaration head or a procedure

call. <value> defines the procedure number which must not be negative or

above a certain limit which for the moment is 30. The first appearance

of a command with a given number acts as the head of a procedure decla-

ration [43]. The command pointer is saved and the procedure body termi-

nated by the corresponding og-command is skipped. Later appearances of a

go-command act as procedure calls [48]. The command pointer is stacked

and interpretation continues at the saved procedure command pointer.

2.16. OG COMMAND:

Notations og

Function: The command pointer is unstacked and interpretation conti-

nues at this command pointer [46].

2017. EXIT COMMAND:

Notation: exit

Function: Termination of the program [33].

-16-

3. STORAGE REQUIREMENTS :

5730 bytes plus the FILE PROCESSOR.

4. MESSAGES:

Appearing on current output.

**¥do param <illegal parameter>

parameter in illegal syntactical position. The parameter is ignored.

*x*xdo connect <i> <outfile>

<outfile> could not be connected for output because of a hard error,

The value of <i> determines the error:

1 no resources

2 malfunctioning

3 not user, non-exist

4 convention error

5 not allowed

6 name format error

The ok-ebit is set to false and the program is terminated.

***do no core

the core area is too small. The ok bit is set to false and the pro-

gram is terminated.

¥¥*do core addr

attempt to use a storage word outside the core store. The ok bit is

set to false and the program is terminated.

¥do format

error in the format table (error in the do-program). The ok bit is

set to false and the program is terminated.

xx¥do niveau

the number of format niveaus is exceeded. The number is an assembly

option. Indicates possibly an error in the format table (error in the

do-program). The ok bit is set to false and the program is terminated.

wo

w
o

we

w
o

w
e

w
o

we

w
e

Ye
o

we

w
o

eo

wo

wo

Ww
e

we

we

we

Ne
o

5. EXAMPLES:

(numbers in [] used for references

[1] do wo. 17

[2] do wi.ce.x1.0

[3] do z22.cc.y2.2

[4] do z3.longname

[5] do x2.0.de.1.test.1.2

[6] do w3.w2,in.10

[7] do y3.wo

[8] do wait 1p

[9] do write wo,

[10] wl bytes,

[11] z2,octets,

[12] 23.text,

[13] x2.code.2,

[14] ename,.8,

[15] -word. 44,

[16] bittable.2 Ne
o

in section 2)

wo:= 173

wi:= current command;

w1:= word(w1) 3

z2:= current command;

Z2:= word(z2+2) ;

Z33= <:loni>3;

w2:= address of w2-fields

word(w2):= 0-13

words(w2+2:w2+8) := <:test:>3

word(q2+10):= 13

word(w2+12) = 23

Wos= w2t+l0$

word(w3) := w0;

wait until lp is ready;

write(out,w0,

<<bytes>,w1,
<<octets>, 22,

<<text>, 23,

<<code>, word(w2),

<<name>, words(w2+2:w2+8) ,

<<word>, words (w2+10:w2+12) ,

<<binary>, word(bittable)) ;

-17-

The following example reads characters from current input and determines

the two types: digit and other.

[17] do,

[18] inchar current,

[19] ZO.w2 w2.10,

[20] outchar current,

[21] w2.z0 outchar,

[22] w2.32 outchar,

[23] Z1oZOenBedT,

[24] Z2.z0.n1.48.,an.z1,

[25] x0 other,

[26] if 22 x0.digit fi,

[27] outtext,

Ww
e

we

“W
o

w
e

w
o

w
o

w
o

ve
o

‘w
e

Ww
e

begin

starts

inchar(i) ;

outchar(10) ;

outchar(1) 3

outchar(32) ;

digit:= i<=575

digit:= digit and i>=48;

text:= <:other:>;

if digit then text:= <:digit:>35

outtext(text) $

[28]

[29]

[30]

[31]

[32]

while z0.1s.124,

od,

w2.10 outend,

w1ehn.x1.40.in.fp,

write x1.zone

alp3¢

wo

ve
o

wo

w
e

No
o

w
e

if 1<12h then

goto start;

outend(1 0);
in:= fPpbaseth20;3

write(<<zone>, in)

end alp3¢

[33] do exit so this is not executed

- 18 .

The following example prints the process description and the event queue

for the internal process, s,.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

The following example assembles,

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]
[59]

do x3.58,

process description,

if wO.ger.0,

write x0.internal end,

wO.in.14 w2.w0,

do w2.x2.0,

while w2.ne.w0,

write x2.buffer end,

od.

do go 0,

wO.in.1,

write wO end,

Og»

clear,

go 0 go O

do w2.fp,

slang ba,

rsewo 0,

al w0O 11,

al.wi 4,

ac we x2 0,

jl.w0.x0.8,

end,

write ba.code.10 end,

jump ba,

write ba wO wl we fp.0

w
o

w
o

we
e

w
e

w
o

w
o

begin

process description(<:s:>, proc) ;

if proc>O then

begin write(<<internal>, proc) $

head:= buf:= proc+th3

for buf:= word(buf)

while buf<head do

write(<<buffer>, buf)

end end;

procedure go 03

begin wO:= w0+13

write(w0

end;

clear 3

go O03 go O

)

e
3

prints, and executes a piece of code.

we:= fp base; wo
o

wo

we

N
e
o

we

e
?

w
e

Ww
e

we

slang(ba) ;

begin save link;

wO:

wis

113

bas

wes: -w23

goto saved link;

end $

write(<<code>, words(ba:bat8)) ;

jump(ba)
write(ba, word(ba) ,wO,w1,w2,fp) 3

Output from examples:

wo = 17

wl = 2 10

z2 = 120 100 111

Z> = lon

x2,234598 7

+2 test

+10 17
+12 2

bittable, 262138
+0 eoeeeelI111111111111 1016

a other

1 digit
p other

3 digit

@ other

X1 232350
-36 244789
-34 245301
-32 = 2534-74
-30 «6.233474
-28 = 233474

=26 208 0
-2h boss
-16 8900
-14 0
-12 0
-10 69

-8 eecccceccecceccecececon!

-6 232034
--+ 10 1 #0
-2 0 0 0 0 0 0 0 0 0 0 90000000

40 2h4791
+2 2hh7935
+4 0
+6 0) 0 0 OO OO 0 0 0 0 00000000

+8 0 @) 0 0 0 OO 0 0 0 O Q0000000
+10 oO 10) oO (e) O (@) Oo 0 O O 00000000

+12 0 0 0 0 0 0O 0 0 0 O QD000000

x0.16804.
-4. ~£8388607
-2 8388606
+0 0
+2 sg

+10 eccccceeclecsceoleseliii

+12 eleccccscccccccccccecece

+14 16818
+16 16818
+18 16822
+20 16822
+22 32304
+24 26214)
+26 3 1
+28 .eecccceecced11111111111
+30 0
+32 eccclesceesccesecceeccec

+3 1001111979911111111111111
+36 32304
+38 37080 9 216 0
+0 35992 8 322k 0
+2 0 © 0)
+hh 3 0 3 0
+46)
+8 34.090
+50 O.
+52 116
+56 LOLS
+60 f@)
+64 1767260780000
+66 16818
+68 ~8388607
+70 8388605
+72 =8388607
+74 8388605
+76 -8388607
+78 8388605
+80 0 0
+82))
+8,))
+86 fe) O

wo = 1

wo = 2

bae 239824
+0 rs.w3 0 239824
+2 al wO 11
+4 alwwi = 239824
+6 ac we x2+0
+8 jl. (-8) 23982h

ba. 239824
+0 236310

wo = 11

wl = 239824

W2 = -231990

fp.231990

yo 443

(o
)

o
O
0
O
0
°
0

o
O

M
v

9
O
0
O
O
W

Be
en
e)

W
o
r
 E

F 00110330
00106230
00000000
00000003

- 20 -

