
SB4

Title: Neva 1 ee Yoon)
4 lew Cc

eee ‘

. Oo SYSTEM 3 UTILITY PROGRAMS

Part One FP ~- MANUAL

lc & REGNECENTRALEN RCSL No: 31-D364
Edition: Apr. 75 Third printing

RC SYSTEM LIBRARY: FALKON Author: Hans Rischel ERALLE 1 DK-2000 COPENHAGEN F Vig ea: Aris

Keywords:

RC 4000, Basic Software, File Processor, User's Guide

Abstract:

This first part of the utility program manual describes the central control program in
the utility system, the File Processor, which together with the operating system controls
the execution of the user's program and the access to his files.
This 2nd edition is equivalent to RCSL 31-D106 except for a few corrections on the
pages: 4-4 and 7-1.
(50 pages)

ISBN 87 7557 025 4

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time

Copyright © A/S Regnecentralen, 1978 — safe notice. RC is not responsible for Hepat
i cal or arithmetic errors which may appear in this manua Printed by A/S Regnecentralen, Copenhagen and shall not be responsible for any damages caused by

reliance on any of the materials presented,

Om]

CONTENTS 2 pages

PREFACE 1 page

REFERENCES 1 page

°
@

e

H
O

O
N

N
W

F
u
h

—
oe

®
¢e
¢

e¢

w
i

F
i

po

e
o

@e
6

6
O
N

F
h

F
R
E
E
 E
E

W
o
L

INTRODUCTION 10 pages

The File Processor

Files
The FP command reading and execution

A simple example of FP commands

Compound commands

Creation of file names

Further examples and remarks
Reselection of current input or output

Reserved file names
O Positionable and unpositionable media

COMMAND LANGUAGE : > pages
Meta language

Syntax for FP commands
Semantics of FP commands
Format of the FP command stack

» JOB AND OPERATING SYSTEM 3 pages
Job and parent

Parent messages
Job start. Initialization of FP

Job termination

Break actions

. THE EXECUTION OF FP COMMANDS , > pages
Current input and output. Zone stacking
The mode bits
Command reading

Program loading

Program termination

Resource requirements

0-2 ‘CONTENTS

« REFERENCES TO FILES
1 Document name of a file
2 File descriptor, File name

53 The constituents of a file descriptor
4 Catalog entries
5 Formation of the file descriptor
6 Entry tails

1 Text files and EM characters

2 Connection of a file

4 Termination of the use of a file

4 Data transfers, Status word
5 Standard recovery actions
6 Errors on current input or output

o APPENDIX
1 Mode-kinds
2 Standard file names and file descriptors

4 Contents keys

4 Error messages

INDEX

6 pages

8 pages

> pages

2 pages

PREFACE 0-3

Preface

This first part of the utility program manual describes the cen-
tral control program in the utility system, the File Processor
(FP). The first chapter is a general introduction to the utility
system and is intented to be read in parallel with the introduc-
tion in Boss 2 user's manual (ref. 10). The other chapters gives
further information about FP and requires further knowledge
about the other parts of the software system.

The second part of the utility program manual consists of de-
scriptions of the individual utility programs (except editor, as-
sembler and compilers which have their own manuals).

The appendix contains various tables - in particular a survey of
the error messages from FP,

During the preparation of this manual the author got many
valuable suggestions and corrections from collegues, in
particulary Tove Ann Aris and Christian Gram.

The programming of the File Processor and the utility programs
in the RC 4000 software system 3 was based on the system 2 ver-
sions. The necessary changes and the programming of new utility
programs was done by Tove Ann Aris, Bo Tveden Jgrgensen, Jgrgen
Zachariassen and the author.

Hans Rischel
A/S Regnecentralen, May 1973

REFERENCES @ O-4

References

1. Peter Lindblad Andersen: Monitor 3
RCSL No: 31-D109

2. Hans Dinsen-Hansen: Appendix to RCSL 55-D141: Algol 6
appeared as draft.

5. Allan Giese and Kirsten Mossin: Definition of external processes
RCSL No: 31-D37

4, Torkild Glaven: Do, an fp utility program
RCSL No: 55-D81

5. Jens Hald and Allan Wessel: Fortran
RCSL No: 31=-D103

6, Per Brinch Hansen: Multiprogramming system
RCSL No: 55-D140 r

7. Per Brinch Hansen: Slang Assembler
RCSL No: 55-D18

8, Peter Kraft: Editor I
RCSL No: 55-D22

9. Sgren Lauesen: Algol 5. User's manual
RCSL No: 55-D141

10. Sgren Lauesen: Boss 2. User's manual
RCSL No: 31-D211

11. Sgren Lauesen: Boss 2. Operator's manual
RCSL No: $1-D230

12. Séren Lauesen: Boss 2. Installation and maintenance
RCSL Nos 31-D191

13. Hans Rischel: Utility programs. part II
RCSL No: 31-D233

14, Tom Sandvang: Code procedures.
RCSL No: 31-D199

15. Bjgrn @. Thomsen: New Version of the Editor
RCSL No: 55-D101

16. Bo Tveden-Jgrgensen: Crossreferences in Algol @
RCSL No: 55-D156

17. Bo Tveden-Jgrgensen: New version of the slang assembler
To appear.

INTRODUCTION 1-1

1. INTRODUCTION

1.1. The File Processor

The File Processor - in the sequel called FP - is a control pro=
gram which together with the operating system controls the exe-
cution of the user's programs and the access to his files.

When an RC 4000 computer with system 3 software is ready for
use, the system programs are stored partly in core, partly on
the backing storage. The Monitor program and the nucleus of the
operating system BOSS are core resident while the remainder of
the programs are stored on the backing storage, usually consi-
sting of the magnetic drum and one or more disc files. The run
of a job is controlled by commands to two control programs: The
operating system and FP, FP may be used in connection with vari-
ous operating systems - in the sequel we assume that the opera-
ting system BOSS is used.

A file is an unbroken string of data such as a roll of paper
tape, one deck of cards, a data area on the backing storage, the
data between two tape marks on a magnetic tape reel. A job uses
many different files - beside the files containing the input and
output data we have the files containing the user's programs and
files in the software system (containing compilers, editors etc).

The files can be divided into different types according to their
relation to the job:

Standard files of the job:

(1) The job file specifies the tasks of the job. It is entered
into the computer as described in the Boss 2 User's Manual
chapter 1. The job file contains (except for 'go' jobs) a
heading job specification which is interpreted by BOSS. The
rest of the job file is forwarded by BOSS to the job as the
primary input file,

1-2 INTRODUCTION @ ‘

(2) The current input file is a file from which the job reads

commands to FP and various other input. During the job seve-
ral files may in turn be selected as current input file. At
job start the primary input file is selected as current in-
put.

(3) The current output file is a file used for output from the
job. During the job several files may in turn be selected as
current output file - the file selected at job start is cal-

led the primary output file.
(4) Primout is a backing storage area used by BOSS in the spoo-

ling of the output printed on the primary output file. After
the termination of an on-line job this area is available and

contains the data printed on primary output during the job.

In ALGOL/FORTRAN programs the current input and output files are
available via the standard zones IN and OUT. (These zones should @
be used for character input/output only).

System files:

A number of files mainly on the backing storage are permanently

available to all jobs. These files contain compilers, utility
programs and standard library programs.

The paper tape reader, the line printer (and the card rea-

der, if any) are usually considered as containing files, owned

by and accessed through BOSS,

Private files:

The users programs and data files may be stored on any media

available in the system. The various types of files are describ-
ed in the BOSS 2 user's manual chapter 4-9.

FP and the utility programs refer to files by means of names. A

name is a small letter followed by at most 10 digits or small @
letters.

1.3. The FP command reading and execution

The job execution is governed by the commands which FP reads
from the current input file. Each command is executed as the

call of one or several programs.

INTRODUCTION 1-3

In more details FP acts according to the following scheme:

1. FP reads a command from the current input file. The command

may be a simple command or a compound command consisting of
several simple commands enclosed in brackets

2. The simple commands are executed one by one. The execution
of a simple command means that a program file is loaded into

core store and entered, Each program terminates by returning

to FP which then executes the next simple command

3. When the list of simple commands (read as described in 1)
is exhausted FP resumes the command reading from the cur-
rent input file.

Remarks:

Ad 2: The program called by a FP-command may be one of the
user's own binary programs or a utility program which can
perform tasks like:

editing a text file into another text file,
compilation of a source text into a binary program,

reselection of the current input or output file,

termination of the job,
etc.

Ad 3: The current input file is used not only by FP but also by
the programs called by the FP-commands. The programs can
therefore read ahead in the current input file before FP
starts reading commands again - they may in fact even select
another file as current input.

The command reading and execution is more detailed described in

chapter 4 of this manual.

1.4. A simple example of FP conmands

An FP-command consists of one or several simple commands. A

simple command is a text line (terminated by a NL character) -
and has either the form

<result file> = <program name> <parameter list>
or

<program name> <parameter list>

1-4 INTRODUCTION @

Our example is the example on page 1-2 in the Boss 2 User's Ma-
nual. By removing the job specification we get the primary input
Pile:

p=algol

begin real a,b;
read(in,a,b) ;
write(out,a**b) ;

end

Pp
2 10
finis

FP reads the command 'p=algol' and executes it by starting the
ALGOL compiler. The compiler takes input from current input (as
no special input file is specified) and reads from the point @
where FP stopped i.e. starting with 'begin...'. The reading
stops when the ALGOL source program is completed i.e. after
‘end'. The object program is stored in a backing storage area
named 'p' and the compiler terminates by returning to FP which
resumes the command reading and thereby reads the command 'p'.
This command is executed as a call of the ALGOL object program
which reads the two integers 2 and 10 from current input (by the
call of procedure READ on the zone IN). After output of the re-
sult the program returns to FP which in turn reads the command
'finis' and thereby the utility program FINIS is called and ter-
minates the job.

1.5. Compound commands

A compound command to FP consists of an opening bracket (1 fol-
lowed by one or several FP-commands (which may again be compound
commands) and terminated by a closing bracked ')'. As stated
above a compound command is read by FP as a unit. Afterwards the @
Simple commands in the compound command are executed one by one.

INTRODUCTION 1-5

The primary input file

p=algol

p
finis

)
begin real a,b;

read(in, a b) 3
write(out, ax*b) 3

end

2 10
has essentially the same effect as the one above but now FP
starts by reading the entire compound command (the first five
lines) and next the commands are executed. The first command

calls the ALGOL compiler which continues reading from current
input where FP stopped. When the translation is done the next
command 'p' calls the translated program which reads the inte-
gers 2 and 10 as it continues reading where ALGOL left the Pile.
Finally the command 'finis' is executed.

1.6. Creation of file names

Files are referred to by means of names. New file names can be
"declared' by means of the utility program SET. By the FP-com-
mand

Pip=set 40 1
an area with name 'pip' containing 40 segments is created on
the backing storage. The parameter '1' specifies that the area
should preferably be situated on a disc. The command

pip=set 40
creates an area preferably on drum.

By the FP-conmmand

pap=set mto mt471100 0 3
the name 'pap' is declared as pointing to file number 3 on the

magnetic tape reel mt71100 (mto=magnetic tape with odd parity).

Beside these explicit ways of creating a file we have also an’
implicit creation of files:

If a non existent file is specified as output file for a
utility program (or if the file specified is protected)
the utility program creates an area on the backing storage

and uses it for the output.

19

1-6 INTRODUCTION

In the earlier examples the call of the ALGOL compiler
p=algol

created the backing storage area 'p' to hold the translated pro-
gram. An area created implicitely by the call of a utility pro-
gram is in most cases placed on a dise. The ALGOL/FORTRAN com-
pilers, however, will (if possible) place the translated program
on drum.

Remark; If the access to a magnetic tape is initiated in an AL-
GOL/FORTRAN program by means of the standard procedures OPEN and
SETPOSITION, the name of the tape reel is used (mt471100 above)
but a 'file name' as 'pap!' above is not needed.

1.7. Further examples and remarks

The program text and the data are often too large to be conve-
_ niently included in the primary input file. Consider the input

to FP

p=algol ptext

if ok.no

finis

if warning.yes
(p=algol ptext list.yes
finis)
p pdata

finis

The first line is executed by FP as a call of the ALGOL compiler
which takes input from the file 'ptext' (input is not taken from
current input because this file is specified). After compilation
the utility program IF is called. It tests the 'ok bit! which
has been set by the compiler. If there was severe errors in the
compilation (input file not found, no room for the output) the
‘ok bit! is 'no' and the job is terminated by the following FI-
NIS command - otherwise the 'ok bit' is 'yes' and the program
IF skips the next command 'finis'. Next IF is called once more
and tests the 'warning bit' as set by the compiler. If the 'war-
ning bit' is 'no' the next command (in the brackets) is skipped.
Let us assume that there are Syntax errors in the program. Then
the next command is not skipped and FP executes the two simple
commands in the parentheses. The first causes an extra compila-
tion but now with a listing of the program. After compilation
the run is terminated by the FINIS command. Next assume that the
program was accepted by the compiler. Then the compound command

INTRODUCTION 1-7

is skipped by IF and FP reads the command 'p pdata'. This command
is executed as a call of our program 'p'. The parameter 'pdata!
has the function that 'p' takes input from the file 'pdata!
(more precisely: the file 'pdata' is current input while the
program 'p' is running). Finally the job terminates by the FINIS
command.

This example assumes that the files named 'ptext' and 'pdata!
are available to the job. There are many ways of obtaining that,
for instance:

(1) The files are on paper tapes which are loaded prior to job
start by load commands to BOSS in the jobs specification (cf
Boss 2 User's Manual, chapter 2).

(2) The files are permanent files on the backing storage.
(3) The files are available as magnetic tape files. In this case

the names 'ptext' and 'pdata' mst be declared by FP com-
mands like

ptext=set mto mt71100 0 1
pdata=set mto mth71100 O 2

which declare the names 'ptext' and 'pdata' to describe file
number 1 and 2 respectively on the tape mt471100.

(4) The files are kept on backing storage, when used - on magtape
when not used: The software admits the so called login files
on the backing storage which are retained as long as the user
is logged in at a terminal but cancelled at logout time. If
the installation has sufficient login resources the user may
start the operations from a terminal with a job which loads
the files from magnetic tape to the backing storage by cal-
ling the utility program LOAD. The files are now available
until the terminal is logged out. If a new version of the
files is produced it must be output to magnetic tape by a
job which calls the utility program SAVE.

1.8. Reselection of current input or output

The utility program I selects a new file as current input file
in such a way that reading from the 'old' file may later be con-
tinued (at the point where we stopped) by a call of the utility
program END (I performs a 'stacking' - END an 'unstacking! of
the current input file).

4

co
2

{8

1-8 INTRODUCTION

The command

i commds

selects the file named 'commds' as new current input file. When
FP resumes the command reading the commands are input from
cia (unless current input has changed again in the mean-
time).

The compound command

(i cola
pip
end)

has the effect that the file 'cola' is current input while the
program 'pip' is running: The first command selects 'cola' as
current input the second calls 'pip' and the third switches cur-
rent input back again. Note that FP does not read from the file
‘eola',

The utility program 0 selects a new file as current output file.

Consider the FP-conmands

oO specialout

p pdata

oc

convert spectalout
The first command calls 0 which creates an area 'spectalout!' on
the backing storage and selects it as current output file.
Next the program 'p' is called and produces output on 'special-
out'. The second call of O selects the primary output file (de-
noted by 'c') as current output again. The call of CONVERT tells
BOSS to print the contents of the file 'specialout'.

Warning: If an ALGOL/ FORTRAN program compilation with listing is
performed while a backing storage area is selected as current
output file, the listing and the binary program are competing
for the room on the backing storage. The area for the listing
(the current output) should in advance be given a size suffi-
cient to hold the program text (and the error messages). This is
done by commands like

listout=set ho 1
o listout
p=algol ptext list.yes
oc

INTRODUCTION 1-9

1.9. Reserved file names

The following names are reserved for special purposes and cannot
be used as names for private files:

boss,c,fp, primout,s, terminal,v
printer,punch,reader and other
names of devices

The names c and v describe the primary output and input files.

The name of a system program may in principle be used as name
for a private file but this will make the system program inac-
cessible for the user. Beside the bulk of system program names
we have standard names for certain files on peripheral devices as
given in the appendix.

1.10. Positionable and unpositionable media

Files on magnetic tape or backing storage admits a ‘positioning!
operation i.e. upspacing or backspacing on the tape station, se-
lection of another segment on backing storage. A similar opera-
tion does not exist on the paper tape reader, the paper tape
punch or the line printer. This fact is important because a
file, when connected, is 'taken from the beginning' (the only
exception being the unstacking to a former current input file).
A couple of examples illustrates the problem:

The names 'text1' and 'text2' denotes two text files. If 'f3' is
a name pointing to a magnetic tape file the commands

f3=copy text
P3=copy text2

has the effect that 'text1' is output to the file and next the
tape is backspaced and 'text2' output erasing the output just
made. Contrary to that the commands

tpe=copy text1

tpe=copy text2

will produce two paper tapes containing 'text1' and 'text2! re-
spectively.

If the data for the binary algol program 'p' is a backing sto-
rage area (or a magnetic tape file) named 'pdata' the commands

Pp pdata

Pp pdata

1-10 IVTRODUCTION

will yield the same output twice. Contrary to that the commands
p trf
p trf

causes two calls of the program with (usually) different input
as each command will request the operator to load the next of
the user's paper tapes as input for the program.

The primary input and output files are maintained by BOSS as un-
positionable files i.e. one will never get the same part of the
primary input file twice during the job and the data written on
primary output will never overwrite earlier parts of the output.

COMMAND LANGUAGE 2=1

2. COMMAND LANGUAGE

2.1. Meta language

In the previous section we showed some examples of FP-commands.
In this section we will describe the syntax of FP-commands by
means of a modified Backus notation. The new meta-language ele-
ment introduced is

{ <string id

<string n>

with one or more strings above each other. The meaning is, that

any of these strings may appear at this place in the construc-
tion. A sequence of these strings in any order is denoted by:

es i b

<string n> J a

where a and b give the minimum and the maximum number of strings

in the sequence, The symbol oo in the place of b means just a
large number of times (determined by limitations in core storage

or the like).

2.2. Syntax for FP-commands

Kach time the command reading is started FP will input one com-
mand terminated by new line:

<FP-input> ::= <command> <new line>

A command is a simple command or a sequence of commands enclosed
in a parenthesis. New lines may be inserted in front of a com-

mand or a closing parenthesis:
<command> ::=

<simple command>

<new lines> 0
(<command> { <rew line> <conmand>} <new lines>)

A simple command is the name of a program file, possibly preceded

by '<result file>=' and followed by a parameter list:
<simple command> 35

{ <result file> = 3 <program> <parameter list>

2=2 COMMAND LANGUAGE

Result file and program are given by names
<result file> ::= <name>
<program> ::= <name>

The parameter list is either empty or consisting of one or seve-
ral parameters separated by. spaces: a

<parameter list> ::= <s><param> }°

A parameter is a sequence of names and integers separated by
points ©

<name> -<name>
<param> ::=

<integer> .<integer>

A name is a small letter followed by at most ten small letters
or digits. A name may be preceded or followed by spaces:

0
<name> :3=

[~] {<>}
(e)

The integers in the commands has at most eight digits and may be
preceded or followed by spaces:

<integer> ::= {<>} {<aigit>¥! {<s>}°

60 <small letter> ‘
{<s>} <small letter>

(9) <digit> 0

Comments may be inserted between semicolon or asterisk and new
line:

<Ni>
<new line> ::= 3<text not containing NL> <NL>

*<text not containing NI> <NL>

of

<new lines> ::= {<new Line>}

The delimiter <s> has two forms:
, <SP>

<s> i:

9 <text not containing NI> <NI>

The second form is used to divide long simple commands into se-
veral text lines,

COMMAND LANGUAGE 2-35

All characters read by FP must be coded according to the ISO al-
phabet (cf. the ALGOL Manual page 11). Source texts on paper
tape in flexowriter code or punched cards in EBCDIC code may be
used, as the software (the monitor) converts the characters to
the equivalent ISO characters when the text is read by the com-
puter, Similarly there is a conversion of capital letters to
small letters by input from teletypewriters offering capital
letters only.

The following ISO characters are meaningful to FP:

1. Small letters, digits, = (equality sign), SP (space), point,
comma, semicolon, asterisk, parenthesis.

2, NL (new line) and FF (form feed, working as new line).
3. CAN (cancel). A line containing a CAN character is skipped

by FP. The question mark button is normally used for the CAN
character.

The following characters are always treated as syntactical er-
rors:

1. BS (back space), CR (carriage return) and all characters
with a value greater than 127.

2. Graphic characters not mentioned above

3, Capital letters.

All other characters are skipped by FP.

2.3. Semantics of FP-commands

The command (simple or compound) read by FP is stored in the FP
command stack (a part of the core area for the job). Next the
Simple commands are executed one by one. The simple command

{<result file> = ¥ <progranm> <parameter list>

is executed as a call of the program named <program>. The pro-
gram will usually examine the simple command which caused the
call of the program in order to get the parameter list and find

the name of a possible result file.

The use of result file and parameters depends on the program in
question but as general rules we have:

2a COMMAND LANGUAGE

Result file: For most utility programs this name specifies an
output file. If no file with this name exists or if the file
found is protected, an area on the backing storage is created
and used for the output. For some utility programs (SET, ENTRY)
the result file name specifies a catalog entry which is to be
created or changed, In the call of a translated ALGOL/FORTRAN
program the result file name has only the function that it is
available from the program by a suitable call of procedure SY-
STEM.

Parameter list: The parameters in the parameter list specify
input files, various modes of operation for the program etc. For
programs requiring text input (i.e. compilers, assembler) we
have the convention, that input is taken from current input if
no input files are specified and otherwise from the specified
files, If the first parameter (following the program name) in
the call of a translated ALGOL/FORTRAN program is a single name
(not followed by a point) the file given by this name is used as
current input for this program; if the parameter is a single
integer the program overwrites FP (cf. the ALGOL Menuel—appen- users manual 0.3.2.2
4ixB,2). A translated ALGOL/ FORTRAN program may examine the pa-
rameter list by means of procedure SYSTEM,

2.4. Format of the FP command stack

The FP command stack consists of items each containing a sepa-
rator and the succeeding name or integer (if any). The heading
word of an item has the format

<separator> shift 12 + <length>
The <separator> is an integer with the values

-4: end of command list
-2: end parenthesis

O: begin parenthesis

2: new line

ls space
6: equality sign
8: point

The <length> is an integer with the values
O: nothing follows

23; the next separator follows

4: an integer follows
10: a name follows

COMMAND LANGUAGE 2=5

The integers in the parameters are converted to binary numbers
stored in 24 bit words. The names are stored as 8-bit ISO cha-
racters with three characters per word.

Example: The command

pip=prog avs.3 2.muks

appears as follows in the FP command stack

2 shift 12+10 new line, name follows od

pip 3 name, 4 words
6 shift 12+10 3 equality sign, name follows
prog 3 name, 4 words
4 shift 12+10 3 space, name follows
avs 3 name, 4 words
8 shift 12+4 3 point, integer follows
3 3 integer, one word

4 shift 12+4 3 space, integer follows
2 3 integer, one word

8 shift 12+10 3 point, name follows
muks 3 name, 4 words
-4 shift 12+0 3 end command stack

The item which terminates the simple command (here: end stack)
is not available by using the procedure SYSTEM in an ALGOL/FOR-

TRAN program - the 'end of simple command' is conveniently sig-
nalled by the value of SYSTEM (cf. the ALGOL Manual).

JOB AND OPERATING SYSTEM 3-1

3. JOB AND OPERATING SYSTEM

301. Job and parent

The phrase 'the operating system' is somewhat ambiguous as seve-
ral operating systems may be present, A BOSS-job may in fact act
as an operating system and start a 'child' job inside it's own
core area.

We will use the term parent to denote the operating system for
the job considered.

3.2. Parent messages

A job commmicates with it's parent by sending parent messages.
A parent message is sent when the job needs the help of the ope-

rator (mounting of magnetic tapes etc.) or when an action from
ete) is needed (the job is through and wants to be removed,
etc).

Most parent messages are send automatically by FP and the other
programs when needed (e.g. mounting of magnetic tapes), some pa-

rent messages like

FINIS, MOUNTSPEC, TIMER, CONVERT
are send by calling special utility programs. The Boss 2 User's
Manual (ref. 10) contains a complete list of the parent messages.

3.3. Job start. Initialization of FP

At job start the parent inputs FP (or rather a part of FP) to the

foremost part of the job area and starts the initialization of FP
with informations about primary input and output. During the ini-
tialization of FP the job creates catalog entries named v andc
describing the primary input and output files respectively (if
such entries are already present at job start they are removed
by the job, unless they point to the proper files, in which case
no new v and c are created). The initialization ends by connec-
ting the primary input and output files as current input and

output files and the FP command reading is entered.

3x2 JOB AND-OPERATING SYSTEM

The parent imposes at job start three catalog bases on the job:

standard base, user base and max base. These bases determines
which files on the backing storage the job may access and how
the catalog entries created by the job are placed in the cata-

log (cf. Boss 2 User's Manual ch. 4 and tf).

The resource claims of the job are fixed at job start. The house-
keeping of the backing storage, message buffer and area process

claims during the job run is done by the monitor (and the actu-
al values may be found in the monitor's process description of
the job process cf. the Monitor 3 Manual ch. 4) the other resour-
ces are maintained all time by the parent.

Before entering any program FP selects the full precision mode
for floating point arithmetic and the overflow/underflow inter-

rupts (integer overflow, floating - point overflow/underflow)

are masked off.

3.4. Job termination

When the job is terminated by the FP-command FINIS the following

happens: The current output buffer is emptied and a 'finis' mes-
sage is send to the parent. The finis message causes BOSS to re-
move the job and afterwards scan the catalog and remove all tem-
porary catalog entries belonging to the job which just finished.

The operating system may remove the job without request from the
job (a time limit is exceeded, the job is killed by the operator
etc.). In this case BOSS performs a 'provoked break! on the job
(see below). If the FP code is intact (which is normally the ca-
se) an error text is printed on current output (***break 8) and

a ‘break! message is sent to the parent (alias BOSS) who removes
the job.

3.5. Break actions

In some severe error situations the FP break routine is entered.
The break routine outputs an error text on current output, emp-

ties the buffer and sends a 'break' message to the parent. When
BOSS receives the break message it makes a partial clearing af-
ter the job and if the job has not used all of it's run time and
not read all of it's primary input file the job is restarted
with a fresh FP (cf. Boss 2 User's Manual sections 10.4, 10.5).
The error text is:

JOB AND OPERATING SYSTEM 3-3

<instruction counter>

**¥*¥break <cause>

<break 10 reason>

The integer <cause> explains why the break routine was entered:

cause = 0: Internal interrupt

Caused by attempt to execute an illegal instruction (may
for instance occur in an ALGOL/FORTRAN program with index
error and translated with 'index.no').

cause = 2: Integer overflow

cause = 4: Floating point overflow/underflow

cause = 5: Parameter error in monitor call
This error is provoked by the t/o system if there are not
‘enough message buffers' - it may also be caused by for in-
stance a wrong use of procedure MONITOR in ALGOL/FORTRAN
programs,

cause = 8: Parent break
Breakpoint caused by the parent - see above

cause = 10: Zone stack error

The break routine was entered because of troubles during
stacking or unstacking of a zone (cf. the next chapter).
The zone stack error may occur for various reasons. The
most common is

*** break 10 1
caused by resource limitations (lack of entries or segments
on the backing storage). In details we have the following
possibilities:

reason = 0: The zone has too many shares - erroneous zone
stacking in the utility program.

reason = 1: The job has not the resources (entries or seg-

ments) on the backing storage for stacking the zone.

reason = 2: I/o troubles during zone stacking. .
reason = 3: The entire buffer area does not comprise a ml-

tiple of 512 storage bytes - erronous zone stacking in
the utility program.

reason = 4; Same as reason=3 but during a zone unstacking.
reason = 5: The zone unstacking cannot proceed because a

previously stacked zone is not found in the catalog.

reason = 6: I/o troubles during wnstacking of the zone.

‘THE EXECUTION OF FP-COMMANDS hey

kh, THE EXECUTION OF FP-COMMANDS

The reading and execution of FP-conmands are performed by the
command reading routine, the program loading and the program
termination routine in FP, By setting the mode bits the program-
mer may modify the function of these routines in various ways.

4.1. Current input and output. Zone stacking

The FP-commands are read from the current input file. At job
start, after a break or by a reinitialization of FP the primary
input and output files are selected as current input and output
files.

The current input and output files may be reselected during the
run (cf. section 1.8). The selection of a new current input

file by the I command uses a zone stacking where the actual
contents of the data buffer is stored in an area on the backing

storage (the stacked zone) before the new file is connected. The
reselection of the former file by the END command is the oppo-
site process - a zone unstacking - where the former contents of

the data buffer is restored from the stacked zone.

Many of the utility programs use zone stacking for internal pur-
poses. The programmer needs normally not care for that, but if

the resources (entries and segments on the backing storage) nee-

ded for the zone stacking is not present it may, however, result
in a "break 10' in unexpected situations.

The current input and output files are available for character
input and output respectively from ALGOL/FORTRAN programs via

the standard zones IN and OUT (cf. sections 1.2 and 1.8).
Warning: Block oriented input/output procedures (INREC, OUTREC) or
the procedures OPEN and CLOSE should not be applied to the zones
IN or OUT as this may have a serious influence on the function
of FP. If a certain file is wanted as current input while an AL-
GOL/FORTRAN program is running, the file should be given as pa-
rameter in the program call (cf. section 2.3). If a certain file
is wanted as current output the O command is at hand.

42 THE EXECUTION OF FP-COMMANDS @

4.2. The mode bits-

FP contains 24 mode bits each of which has value 'yes' or 'no!,
The mode bits are numbered 0,...,23. They are set by the MODE
command and tested by the IF command. Furthermore FP sets some
of the bits at each program termination.

The bits with numbers 0 to 11 may be used by the programmer as
'flags' the other bits have special functions. These special mode
bits has names. At present the following special mode bits are
in use:

bit 23: list
Governs the 'list mode' of FP. In the list mode each FP- @
command is listed on current output just prior to execution
(cf. 'program loading! below).

bit 20: pause

If this bit is 'yes' the break routine of FP is entered
after program termination (cf. 'program termination' be-
low).

bit 19: error

If this bit is 'yes' and a program terminates unsuccessfully
(with 'ok no'), the FP break routine is entered (cf. 'pro-
gram termination! below).

bit 18: ok
bit 17: warming

These bits are set by FP at program termination reflecting
the successfulness of the program just executed.

(bit 16: if
Used internally by FP)

bit 15: listing

This bit is tested by assembler and compilers. If it is
‘yes! the source program is listed unless 'list.no! is sta- @
ted in the FP-command calling the assembler (compiler).

At job start and after a 'break!' all the mode bits have the value
‘no'. The mode bits 'ok' and 'warning' are set by FP at each
program termination, the other mode bits may be changed by the
MODE commands, A severe error which causes a reinitialization
of FP but not a 'break' (e.g. syntax error in the FP-commands)
sets the 'ok' and 'warning' bits but the other mode bits are
left unchanged,

- THE EXECUTION OF FP-COMMANDS 4%

4.3. Command reading

The FP command reading is entered at job start or whenever all
the simple FP-conmmands read so far are executed (command stack
empty). It proceeds as follows:

An FP-command (simple or compound, cf. chapter 2) is read from
current input, syntax checked and stored in the FP command stack
in the job process.
The FP command stack pointer is set and the FP load program rou-
tine is entered.

If an EM character is found during the command reading the cur-
rent input file is unstacked and the command reading continued.

An FP syntax error is treated as a severe error: Primary output
is selected as current output, an error text containing the last
few characters read from current input and a list of the chain
of stacked current input files is printed on current output and

FP is reinitialized.

4,4, Program loading

The FP program loading routine proceeds as follows:
The FP command stack pointer is upspaced and if the command stack

is exhausted, the command reading routine is entered.
The program name in the actual simple FP-command is looked up in
the catalog and it is checked whether the file is a binary pro-
gram file (contents key ef. section 5.3).
If the 'list bit' is 'yes' the command is listed on current out-
put.

Full precision mode in floating point arithmetic is selected.
The program is loaded into core and entered.

If the program name is not found in the catalog, if the name
does not describe a program file or if the loading of the pro-

gram causes troubles (core size too small, i/o troubles) an er-
ror text is printed on current output and the FP program termi-
tion routine is entered (instead of the program) as after an un-

successful execution.

hol THE EXECUTION OF FP-COMMANDS

4.5. Program termination

A program can terminate in four different ways:

(1) Exit to the FP program termination routine.
_ (2) Termination caused by hard error on a file (i/o troubles).

o (3) Exit to the FP break routine.
(4) Exit to FP job finis.

In the two last cases the "break' or 'finis' action as described
in chapter 3 is performed and the FP code, which is currently in
the job core area, does not return to normal operation: The pa-

/0 rent may remove the job or load a fresh FP.

If the termination is caused by i/o troubles an error text (***
device status...) identifying the file and the error is printed
on current output and the FP program termination routine is en-
tered with 'ok.no' and 'warning.yes'. (Hard errors on current

/S input or output causes further action before the program termi-
nation routine is entered).

The FP program termination routine has the following function:

The 'ok' and 'warning' bits are set as signalled by the program.
If the 'pause' bit is 'yes' or if the ‘error! bit is 'yes' and

29 the 'ok' bit is 'no' the FP break action is entered.
Remark: The IF and MODE programs makes an anomalous exit to FP
which bypasses the actions described so far.
The overflow/underflow interrupts are masked off.
A NULL character is printed on current output. If current output
is connected to a character oriented device (typewriter, printer,
punch) the data buffer is output. If the current input zone has
been stacked by the program for internal purposes, the zone is

unstacked, (The I-program tells that the current input zone

should not be unstacked by setting the 'i-bit': bit 1 shift 0
in the give up mask in current input zone).
The area processes in the monitor is scanned, If the job is user
of an area process and the area process does not belong to cur-
rent input, current output or the file 'fp', the area process is
removed,

The event queue of the job process is scanned and pending ans-
wers not belonging to the current input file are waited for. The
FP load program routine is entered. (The terms: area process,
wa én answer are explained in the Monitor Manuals ref. 1
and 6).

_THE EXECUTION OF FP-COMMANDS a)

4.6. Resource requirements

The File Processor needs a minimum core area of 3584 storage by-
tes in order to be able to operate. The core area is used as

follows:

2560 storage bytes are occupied by the resident FP code and
buffers for current input and output.
A variable part (usually small) is used for the command
stack.

512 further storage bytes are used by FP between execution
of the programs.

When a program is executed a core area of the size:

job size - 2560 - command stack size
is available for the program.

Beside core storage the programs and FP needs other system re-
sources like message buffers, area processes, segments and en-
tries on the backing storage etc. Note, that many utility pro-
grams perform one or several zone stackings each of which uses
an entry and one or two slices on backing storage.

The standard resources of a BOSS job are usually chosen to be
enough to execute any of the utility programs.

REFERENCES TO FILES 5-1

5. REFERENCES TO FILES

5.1. Document name of a file

All data transfers in RC 4000 are under supervision of the moni-
tor: the transfer of a data block is initiated by a call of the
monitor procedure 'send message' and the completion of the trans-
fer is awaited by a call of the monitor procedure ‘wait answer'.
An 'i/o message' sent by a 'send message' is addressed to a pro-
cess which is so to say the monitor's representative of the data
file. The i/o messages are sent automatically by the i/o system.
The name of the process (representing the data file) is called
the document name of the file.

Corresponding to the different types of peripheral equipment the

monitor has various types of processes: the line printer corre-
sponds to a process named 'printer', the paper tape reader to a

process named 'reader', the paper tape punch to a process named

'punch', the console and terminal typewriters to processes with
names like 'console1', terminal3' etc. A magnetic tape station
corresponds to a process carrying the same name as the magnetic
tape reel, which is currently mounted on the station.

The backing storage is treated in a special way because one

single device (a drum or a disc) is divided into several files
(data areas). An area on the backing storage is identified by
it's name and this area name becomes the document name when the
area is used for input/output: The i/o system prepares the ac-
cess to the area by calling the monitor procedure ‘create area
process! with the area name as parameter; this results in an

area, process to which the i/o messages are addressed.

Remark: Each drum or disc kit has a name which distinguishes it
among other drums or disc kits. This name is of interest to the

programmer in other connections, for instance when a new area is

created. The use of the term 'document name' in the monitor ma-

nual to denote this device name should not be confused with the

above concept of document name for a file.

52 REFERENCES TO FILES

5.2. File descriptor. File name

The software has two i/o systems, the ALGOL/FORTRAN i/o system
and the FP i/o system. The first is used by translated ALGOL/
FORTRAN programs, the second by FP itself and the machine coded
utility programs. The two i/o systems differ in the way the
programmer has to specify the files.

The information needed in order to connect a file forms a file
descriptor. It includes (among other things) the document name
of the file. When an ALGOL/FORTRAN program connects a file, the
file descriptor is given in the list of parameters to the proce-

dures OPEN and SETPOSITION.

When a file is connected by the FP i/o system a file name is

used to specify the file (cf. chapter 1). This file name is the
name of a catalog entry containing the file descriptor for our
file. The use of the catalog entry is described in section 5.5

below.

5.5. The constituents of a file descriptor

The file descriptors used by the FP i/o system consists of the
following parts:

Document name: The significance of this name is explained above.

Kind: This integer selects the actions to be taken by the i/o
system when the file is connected, when the use of the file
is terminated, and if special situations should occur du-
ring a data transfer (see the next chapter for further de-

tails). Each kind corresponds roughly to a type (or a class
of types) of peripheral equipment.

Mode: This integer specifies a certain hardware mode (e.g. den-
sity or parity on magnetic tape) or a code conversion (e.g.

conversion from flexo to ISO code by paper tape input). The
mode is a part of the i/o message which starts the transfer
of a data block and the mode specified is contained in each

i/o message.
File count: Integer, relevant for magnetic tape only. A magnetic

tape reel is divided into files numbered 0,1,2,... by tape
marks. Usually the file number O contains an ISO label iden-
tifying the tape reel (cf. Boss 2 User's Manual, chapter 5).

REFERENCES TO FILES 5-3

Block count: Integer, relevant for backing storage and magnetic

tape. The blocks are numbered 0,1,2,... . By specifying a
block count different from zero the 'subfile' starting at

this block is obtained.
Contents key: Integer, specifying the intended use of the con-

tents of the file (e.g. text file, binary program etc.). A
list of the values is given in the appendix.

Entry point: Integer, relevant for binary programs only. Speci-
fies the entry point address relative to the start of the
program.

Load length: Integer. Specifies for a binary program the number
of bytes which should be loaded to core before the program

is entered (for a program using segmentation only a part of

the program needs to be loaded).

The combination of mode and kind is called the mode-kind. For
each kind only certain modes can be used. The commonly used

mode-kinds are listed in the appendix.

5.4. Catalog entries,

The monitor maintains a file catalog on the backing storage.

This catalog is a backing storage area named 'catalog' and con-

sists of records called catalog entries. Changes in the catalog

i.e. creation, change or removal of catalog entries are done by

the monitor on request from internal processes (e.g. the job,

BOSS) calling the special monitor procedures 'create entry',

‘change entry', 'rename entry', 'remove entry' etc. The use of
these 'catalog procedures' are subject to certain restraints as
desertbed in the monitor 3 and the Boss 2 Manuals (ref. 1 and
10).

A catalog entry consists of a 7 word entry head and a 10 word

entry tail: When a catalog entry is created or changed the name

and the entry tail is specified (and based on this, the monitor

computes the entry head). The utility programs SET and ENTRY
create or change catalog entries by calling the relevant monitor

procedures. The entry name and tail in these monitor procedure
calls are taken from the parameters in the SET (or ENTRY) com-
mand.

EEE

5a REFERENCES TO FILES @

By means of the sign of the first word in the entry tail the mo-
nitor distinguishes between two types of catalog entries. If the
first word is non-negative the entry is an area entry otherwise
the entry is a non-area entry. The area entries are used by the
monitor in the management of the backing storage. Each area en-
try defines a data area where the size and physical location is
determined by means of the entry head and the first five words
of the entry tail. The first word in the entry tail contains the
number of segments in the area, the next four contains the name
of the drum or disc kit on which the area is located.

525 Formation of the file descriptor.

The connection of a file by the FP i/ Oo system start with a @
catalog lookup for the file name. The tail of the entry found is
used to form the file descriptor as follows:

a) Document name, mode, kind:

al) Area entry: If the entry is an area entry the file name is
used as document name and the values

mode=0, kind=4
as mode-kind. This means simply that we are going to

connect the data area determined by the area entry.

a2) Non-area entry: Document name, mode and kind are taken from

the first five words of the entry tail as follows:
word 1 : 1 shift 23 + mode shift 12 + kind
word 2-5: document name

b) The rest of the file descriptor:

The rest of the file descriptor is determined by word 6-10 | ®
in the entry tail. The use of this part of the entry tail
depends on the value of the left byte of word number 9 (the

contents key)

b1) Contents key <> 4 and < 32:

word 6 : not used
word 7 : file count

word 8 : block count
word 9 contents key shift 12 + entry point
word 10 : load length

REFERENCES TO FILES 5-5

b2) Contents key=4 or >= 32:
The file is an ALGOL/FORTRAN procedure.
The values

file count = block count = 0

are used. Entry point and load length are irrelevant,
as FP does not interpret the file as a program file.
The five last words in the entry tail is used (by the
ALGOL/FORTRAN compilers) as follows:
word 6 : procedure code entry specification
word 7-8 : procedure parameter specifications
word 9 s contents key shift 12 + start ext. list

word 10 : code seem, shift 12 + own core area.
Further details are found in the code procedure manu-

al, ref. 14.

5.6. Mntry tails

By collecting the information above we find that there are four
types of entry tails:

I. Area entry, not ALGOL/FORTRAN procedure:

Ansys [he w. word 1 number of segments in the area
td beph satruty word 2-5 : name of drum or dise kit as le Bboy
oar 4 . word 6 : shortclock = 404 woe Y Aimy 2B Om YY G
Rotel word 7 : file count emmy . c

word 8 : block count va po
word 9 : contents key shift 12 + entry point = contry
word 10 : load length 2. Aatfwmrots ‘(Aur)

Remark: The area entries are characterized by word 1 >= 0.
The name in word 2-5 is not used by FP when the file is
connected but the entry name is used as document name. The
value of contents key is <> 4 and < 32.

II. Area entry describing ALGOL/FORTRAN procedure:

word 1 : number of segments in the area.
word 2-5 : name of drum or disc kit.
word 6 : procedure code entry specification sagmaent / uct
word 7-8 : procedure parameter specifications #« 7+ 4/4 ee, pahonedey
word 9 : contents key shift 12 + start ext. list OOD
word 10 : code segments shift 12 + own core area i

Remark: Further details are given in the code procedure ma- |
nual, ref. 14.

Prcecah ey Lath tideheg »

@

5-6

Non wb

IIT.

IV.

Non-area

word 1

word 2=5
word 6
word 7

word 8
word 9

word 10

Non-area

word 1

word 2-5

word 6
word 7-8
word 9

word 10

REFERENCES TO FILES

aol buy (Ctwyt Lee a7 ha Lo a? 6.0%

(d

ney

entry, not ALGOL/FORTRAN procedure:

1 shift 23 + mode shift 12 + kind

document name

not used

file count

block count

contents key shift 12 + entry point
load length

entry describing ALGOL/FORTRAN procedure:

| shift 23 + mode shift 12 + kind
document name

procedure code entry specification
procedure parameter specification

contents key shift 12 + start ext. list
code segments shift 12 + own core area

THE FP INPUT-OUTPUT SYSTEM 6-1

6, THE FP INPUT-OUTPUT SYSTEM

6.1. Text files and EM characters

The i/o system is concerned with the proper transfer of the data
only and not with the meaning of the contents of the data blocks.
This fact is important in dealing with text files, where the ap-
pearance of an EM character signals the end of the text. As the
i/o system does not examine the individual characters, the EM
character does not cause any 'end text signal' from the i/o sy-
stem but the program which is processing the text, has instead
to discover the EM character by inspecting each character in the
input.

An EM character needs not be present, but the file may instead
just finish (e.g. end of a paper tape). In this situation the
i/o system simulates the input of a data block containing an EM
character and in this way the program still gets the proper in-
formation about the text end.

The utility programs write a terminating EM character in text
files on backing storage or magnetic tape but not in text files
on other media, It is advisable to do so whenever the output of
a text file is terminated.

6.2. Connection of a file

The connection of a file is based on a file descriptor (obtained
from the file name as described in the previous chapter) . The

connection includes initialization of various tables (zone and

share descriptions) and some sort of initialization of the pro-
cess associated to the file. The i/o system is able to operate
under the primitive operating system S as well as the advanced
operating system BOSS, In the latter case some of the devices
(typewriters, tape reader, card reader, line printer) are spooled

and the 'i/o conversation’ goes via pseudoprocesses (cf. the mo-
nitor 3 manual (ref. 1) page 2-18). The i/o system is suited to
deal with this type of processes too.

The connection proceeds according to the kind specified in the
file descriptor:

6=2 THE FP INPUT-OUTPUT SYSTEM @

Kind

Kind

= 0: The maximum buffer length is set to 512 bytes (768 cha-
racters) and the existence of the process is checked,

= 4; (Backing storage area) The maximum buffer length is set
to 512 bytes (768 characters). If the process is not alrea-
dy present, the area process is created. If the area is to
be used for output, the area process is reserved. The con-
nection may also - depending on circumstances - include
creation of the area.

Kind

Kind = 10: (Paper tape reader) The maximum buffer length is set to

Kind

= 8: (Typewriters) The maximum buffer length is set to 10k
bytes (156 characters) and the existence of the process is
checked,

36 bytes (54 characters). The process is reserved and input
messages are sent until ‘empty reader' is sensed. Then a
"load reader' message is sent to the parent and the mounting
of the tape is awaited by attempting a block input once
every second until a non-empty block is obtained. If the
reader was reserved by another process, a 'wait for reader'
message is sent to the parent and the job awaits the reader

by making an attempt to reserve it once every second until

the reservation is successful. (Under BOSS the major part
of these actions are dummy).

= 12: (Paper tape punch) The maximum buffer length is set to

Kind

80 bytes (120 characters) the process is reserved and 100
NULL characters (blank tape feed) are output.

Kind = 1h; thine printer) The maximum buffer length is set to 80
bytes (120 characters) and the process is reserved.

Kind = 16; tend reader) The maximum buffer length is set to 80 ®
bytes (120 characters), Apart from that the connection pro-
ceeds as for kind = 10 (paper tape reader).

= 18: (Magnetic tape) The maximum buffer length is set to 512
bytes (768 characters) and the process is reserved. If the
process is not available for the job a 'mount tape! message
is sent to the parent. If the file is to be used for output

and the write-enable ring is not mounted, a 'mount ring!

THE FP INPUT-OUTPUT SYSTEM 6-3

message is send to the parent. Finally a 'set mode' and a
'yosition' message is send to the process - the latter
starts the positioning to the file and block count given in

the file descriptor.

Kind = 20: (Plotter) Treated as a line printer.

6.3. Termination of the use of a file

When the use of a file is terminated, the process is released in
order to make it available to other, and the area process (if
any) is removed in order to retain the area claims. On a punch

(kind = 12) a tape feed of 100 NULL characters is output. For
magnetic tape output two tape marks are written after the last

block.

Note that a 'release message' is not sent to the parent when a
magtape file is terminated and hence BOSS (if it is the parent)

will keep the magtape on the station so that a new mounting is

not needed if the tape is used later in the job. The release
message to the parent may be send by a RELEASE command. In this
way the station is made available for mounting of another tape

reel (cf. the Boss 2 User's Manual, chapter),
AY

6.4. Data transfers, Status word

When the transfer of a data block is checked, the outcome of the
transfer is expressed by the number of storage bytes transferred
and a 24 bit status word. The 12 leftmost status bits are genera-
ted by the monitor which takes most of the bits directly from the
hardware, the other bits are generated by the i/o system. The two
i/o systems (ALGOL/FORTRAN and FP) use the same status bits (cf.
the AlgolyManual ,(ref. 9) section 6.4).

Users pert L 4.43
The meaning of the bits is as follows:

1 shift 23: (Intervention) The device was in the local mode.
1 shift 22: (Parity error) A parity error was detected during

the transfer.

1 shift 21: (Timer) The operation was not completed within a cer-
tain time defined by the hardware or the monitor.

6-4 THE FP INPUT-OUTPUT SYSTEM

shift 20: (Data overrun) The high speed data channel was over-
loaded and could not transfer the data.

shift 19: (Block length error) A block input from magnetic tape

‘was longer than the buffer area allowed for it.

shift 18: (End of document) Means various things on the diffe-
rent types of devices: Data transfer outside the backing

storage area was attempted, the paper tape reader was emp-

ty, the paper tape was exhausted on the punch, the paper

supply was low on the printer, the input hopper was empty
on the card reader, the end of tape reel was sensed on mag-
netic tape, the pen got off the paper on the plotter.

shift 17: (Load point) The load point was sensed after an ope-

ration on magnetic tape.
shift 16: (Tape mark or attention) The attention button was

pressed during i/o to the typewriter, a tape mark was
sensed or written on the magnetic tape.

shift 15: (Writing enabled) A writing-enable ring is mounted

on the magnetic tape.

shift 14: (Mode error) A wrong mode (density or parity) was
selected on the magnetic tape station,

shift 13: (Read error) Read error on the card reader.
shift 12: (Card rejected) The card was rejected by the card

reader.
shift 11: (Checksum error) Checksum error detected by the in-

var/outvar system.
shift 10: (Bit 13) Not used.
shift 9: (Bit 14) Not used.
shift 8: (Stopped) Less than wanted was output to a file of

any kind or no data was input from a backing storage area.
The bit appears for instance if the job was stopped (swop-

ped) during the data transfer.
shift 7: (Word defect) The number of characters transferred to

or from a magnetic tape is not divisible by the number of
words transferred, i.e. only a part of the last word was
transferred.

shift 6: (Position error) The position on the magnetic tape

(file and block count) reported by the monitor differs from
the position expected (e.g. an unexisting position was spe-
cified in a positioning, the magtape was by mistake used
for two purposes at the same time).

1 shift 5: (Process does not exist) The document name does not
correspond to any process. For backing storage this may in-
dicate that the area does not exist or that the job does

not have the resources to create the area process (area

claim too small).
1 shift 4: (Disconnected) The power on the device was switched

off.
1 shift 3: (Unintelligible) The operation attempted is illegal

on that device (e.g. input from a printer).
1 shift 2: (Rejected) The job is not allowed to use the process

as it should be reserved first (the device was not claimed
in the job specification, the area is protected against
output from the job. Can also occur if the file by mistake
was used for two purposes at the same time and then relea-

sed by the termination of one of the uses).
1 shift 1: None of the status bits 1 shift 5 to 1 shift 2 are

set i.e. the monitor has accepted the operation and the de-

vice has attempted to execute the operation.
1 shift 0: The standard recovery actions could not succeed i.e.

hard error on the transfer,

If a hard error on a file causes a program termination a 'device
status' error text containing the status word of the unsuccess-

ful transfer is printed, The status bits are given by the la-
beling texts in the brackets above (the bits 1 shift 1 and 1
shift O are ignored in printing the error text).

If the error is caused by hardware malfunction the FP end pro-
gram routine reports the error not only to the programmer (by
the 'device status! text) but also to the parent by sending a
'status' message. The parent may then attend the operator (BOSS
displays the status message on the main console).

6.5. Standard recovery actions

The FP i/o system has a standard recovery routine which is en-
tered if an anomalous status word appears. The recovery proceeds
according to the kind specified. All situations not covered are
treated as hard errors. A hard error causes termination of the
program and output of an error text on current output (see
above). If the hard error is on the current input or output
file special measures are taken before the error text is output

(cf. section 6.6 below).

6-6 THE FP INPUT-OUTPUT SYSTEM

= 0: Kind

Intervention: Ignored,

End of document during input: Ignored
End of document during output: A 'change' message is sent

to the parent. Upon the receipt of the answer from the
parent the remaining part of the data block is output.

Stopped: The remaining part of the data block is transfer-
red.

= 4 (Backing storage area): Kind

Data overrun: The transfer is repeated
End of document during input: The input of two bytes con-

taining an EM character is simulated

End of document during output: The area is enlarged and the
transfer is repeated.

Stopped: If the end document bit is not present the remai-
ning part of the data block is transferred.

Process does not exist: The area process is created and
furthermore reserved if the operation is output. After
this the transfer is repeated.

Rejected during output: The area process is reserved and

the transfer is repeated.

Kind.

Kind

= 8 (Typewriters):
Timer during input: Ignored

Tape mark or attention (attention button pushed): Ignored
as the action on the stopped bit makes the necessary
repeating of the transfer.

Stopped: The transfer of the remaining part of the data
block is repeated,

= 10 (Paper tape reader):
Intervention: Ignored

Parity error: Ignored. (The monitor replaces the invalid
character by a SUB character).

End of document: If the number of bytes transferred is ze-
ro, the input of an EM character is simulated.

Load point: Ignored

- THE FP INPUT-OUTPUT SYSTEM 6-7

Tape mark or attention: Ignored

Read error: Ignored
Card rejected: Ignored

~ Kind

Kind

= 12 (Paper tape punch):
Intervention: Ignored
End of document: A 'change' message is sent to the parent.

Upon the receipt of the answer from the parent the re-

maining part of the data block is output.

Stopped: If the end of document bit is not present the re-

maining part of the data block is output.

= 14 (Line printer):

Kind

Kind

Same actions as for kind = 12.

= 16 (Card reader):
Same actions as for kind = 10.

= 18 (Magnetic tape):
Intervention: Ignored
Parity error: The operation is repeated up to five times.

In case of output the bad spot on the tape is erased.

Data overrun: Treated as parity error.
Block length error: Treated as parity error.
Load point: Ignored during data transfers but used in pos-

tioning of the tape. .
Tape mark: The expected position on the tape is calculated

once more as the tape mark may indicate shift to ano-
ther file, and next the position error bit is recalcu-
lated by compairing the position obtained with the
one given by the monitor. If a tape mark is read, the
input of an EM character is simulated.

Writing enabled: This bit is checked during the action on

the stopped bit but does not in itself cause any spe-

cial action.
Stopped: If the writing enabled bit is set (ring present)

the output transfer is repeated, otherwise a ‘mount
ring' message is send to the parent and the mounting
awaited. When the answer from the parent is received
the process is reserved, the tape is positioned and

the transfer is repeated.

Word defect: Treated as parity error.

6-8 THE FP INPUT-OUTPUT SYSTEM

Position error: Hard error (but the presence of the tape
mark bit may cause a recalculation of the position
which removes the error) .

Process does not exist: A 'mount tape! message is send to
the parent. When the answer is received, the process

is reserved, the tape is positioned and the transfer
is repeated.

Rejected: The process is reserved and the operation is re-
peated.

Kind = 20 (Plotter):
Same actions as for kind = 12,

If anything goes wrong during a recovery action (reservation im-
possible, area claim exceeded, no segments available for exten-
sion

Some

of the area, etc.) the error is classified as a hard error.

of the utility programs have private recovery actions dif-
ferent from the standard ones (especially programs dealing with
files which are not text files),

6.6. Errors on current input or output

Hard errors on current input or output are treated in a special
way because of the key role played by these files.

Hard error on the current input file:

Hard

The primary output file is selected as current output file.

"device status! error text is printed.
primary input file is selected as current input file

and the chain of stacked current input zones is abandoned.

The remaining part of the FP command stack (if any) is
skipped.

error on the current output file:

The primary output file is selected as current output file.
The 'device status' error text is printed.

Te APPENDIX

Tele Mode-Kinds

The list contains the commonly used mode-kinds together with the
abbreviations used by the ENTRY, SET, LOOKUP and SEARCH programs.

abbreviation mode kind use of the mode-kind

ip 0 0 i/o via internal process
bs) 4 backing storage
tw 0) 8 typewriter
tro) 10 tape reader, odd parity
tre 2 10 tape reader, even parity
trn 4 10 tape reader, no parity
trf 6 10 tape reader, flexo code
tpo 0) 12 tape punch, odd parity
tpe 2 12 tape punch, even parity
tpn 4 12 tape punch, no parity
tpf 6 12 tape punch, flexo code
tpf 8 12 tape punch, teletype code
lp 0) 14 line printer
erb 0) 16 card reader, binary
erd 8 16 card reader, decimal
ere 10 16 card reader, EBCDic
mto 0 18 mag tape, odd parity, normal
mte 2 18 mag tape, even parity, normal
nrz TF 18 mag tape, odd parity, special
nrze 6 18 mag tape, even parity, special
pl 0) 20 plotter

7e2. Standard file names and file descriptors

The software contains a number of standard file names correspon-

ding to commonly used files on peripheral devices, A standard
file name is the name of a catalog entry containing a file de-
scriptor (cf. chapter 5) of the file in question. The use of the
standard file names presumes that the peripheral units have the
standard names e.g. reader, printer, punch, as it is normally
the case, Most of the standard file names coincides with mode-
kind abbreviations but this does not cause any conflict as the
use of the mode-kind abbreviations is 'a private agreement! be-
tween the four programs SET, ENTRY, LOOKUP and SEARCH.

At present the following standard names exist:

File name document name mode kind mode-kind abb.

term terminal) 8 tw
tro reader 0) 10 tro

tre reader 2 10 tre

trn reader 4 10 trn
trf reader 6 10 trf
tpo punch O 12 tpo
tpe punch 2 12 tpe

tpn punch h 12 tpn
tpf punch 6 12 tpf
tpt punch 8 12 tpt
lp printer @ 14 lp
erb cardreader 0 16 erb
erd cardreader 8 16 erd
ere cardreader 10 16 ere
pL plotter 0) 20 pl

7.9. Contents keys

O Text file
1 Reserved
2 Binary program to be loaded by FP i.e. a utility program, a

translated ALGOL/FORTRAN program etc.
5 Directly executable program. FP itself is of this type.
4 Translated ALGOL/FORTRAN procedure.
5 Stacked zone (cf. section 4.1).
6 Program file in logical blocks with the block length in the

first word of each logical block.
7 ‘Dumped core area.
8 'Self contained! binary program i.e. program which can be

loaded by FP, instead of FP, as well as instead of S. The
program BOS, which is loaded when BOSS is started, is of

this type.

9 Virtual core in algol, initialized context data.
20 Files belonging to the bs-system.
21 Files belonging to the sq-system.
30 Reserved for various installations.

31 Reserved for various installations.
>=32 Reserved for special purposes in the ALGOL/FORTRAN system.

files compressed by the program contract
cobol object program

10

11

13 cobol data file

15 program to be loaded by the RC8000 Loader/Paging

System
17 reserved for gier simulator
22 files belonging to the isq-system
23 files belonging to the sys80 system

7.4, Error messages.

The list contains only the error messages from FP itself. An
error message from a utility program has the form

*** <program name> <text>

The meaning of the error text is found in the description of the
program,

FP can output the following error messages:

***break <cause> <instruction counter/break 10 reason>

The break routine of FP was entered because of some severe
error (see list of causes in section 3.5). BOSS restarts
the job with a fresh FP and continues with the next line in
the job file.

*breakpoint <testoutput>

Private testoutput from a utility program. The program con-
tinues after printing of the testoutput.

*xxxdevice status <document name> <status word>

Hard error on the file specified. The status bits are given
by text lines (cf. section 6.4). The actual program is ter-
minated with 'ok no' and 'warming yes'. If the file is the
current input file, the current input and output files are

switched back to the primary input and output files. If the
file is the current output file, the current output file is
Switched back to primary output.

*¥*fp call <program>

The names specified was not the name of a program file (cf.
section 4.4). FP continues with 'ok no' and 'warning yes',

*xx*xfp cancel

A line was cancelled during the command reading because of
the appearance of a CAN character (cf. section 2.2). FP
continues the command reading.

*x*fp connect <program>

The program file could not be connected (cf. section 4.4).
FP continues with 'ok no! and 'warning yes’.

*fp init troubles

The FP initialization (or reinitialization) could not suc-
ceed and the job is terminated, For a BOSS job the error
message is displayed on the main console (the error mes-
sage is actually a parent message).

***fp job termination

The job was terminated because 10 syntax errors was found @
in the input to FP,

***fp name <program>

The program name was not found in the catalog (cf. section
4.4). FP continues with 'ok no' and 'warning yes'.

***fp reinitialized

The FP initialization was entered because of some severe

error (cf. sections 3.3 and 4.1).

**exfp size <program>

The core area could not hold the program or the entry point

was outside the program (cf, section 4.4). FP continues with
ok no' and 'warning yes'.

*e*fp stack <last few characters input> @

Overflow of the FP command stack.

***fp syntax <last few characters input>

Syntax error in the input to FP. After a stack or a syntax

error FP is reinitialized

*¥*fp troubles with ¢c

The job was terminated because the primary output file
could not be connected in the proper way (with creation of
the catalog entry c etc.). For a BOSS job the message is
printed on the main console.

The entries below refer to chapter or section numbers.

Area (on backing storage) 1.6, 561
area process 5.1

area entry 5.4, 5.6
attention 6.4

Backing storage 1.1, 1.6,
backing storage area 1.6,
backing storage unit 1.6
block count 5.3
block length error 6,4
break 3.5
break message 3.5

breakpoint 7.4

0D, Fol
Del

e 5 el 9

C 3.3
call of program 1.3, 4.4
card reader 6 :
card rejected 6.4
catalog 5.4
catalog base 3.3

catalog entry 5.4
change message 6.5
checksum error 6.4
claims 3.3, 4.6
command reading 1.3, 4.3
command stack 2.4
compound command 1.5
connection of a file 6,2
contents key 5.3, 7.3
current input 1.2, 1.8
current output 1.2, 1.8

Data area 1.6, 561
data overrun 6.4
device status 6.4
disconnected 6.4
document name 5.1

EM character 6.1
end of document 6.4
entry (in catalog) 5.4, 5.6
entry head 5.4
entry tail 5.6
entry point 5.3

error bit 4.2

File 1.2

file count 5.3
file descriptor 5.3
file name 1.6, 5.5
finis message 3.4, 4.5

Head (of entry) 5.4

I-bit 4.5
in 1.2

intervention 6.4

Job file 1.2

job start 3.3
job termination 3.4

Kind 5.3, 7o1

Line printer 6
list bit 4.2
listing bit 4.2
load length 5.3
load message 6.2
load point 6.4

Mode 5.3, Tol
mode bit 4,2
mode error 6.4
mode-kind 5.3, 7.1
mount message 6.2
mount ring message 6,2

Non-area entry 5.4, 5.6

Ok-bit 4,2
out 1.2
overflow 3.3, 4.5

Paper tape punch 6
paper tape reader 6
parent 3.1
parent message 3.2

parameter list 2.2

parity error 6.4
pause bit 4.2
position error 6.4
precision mode 3.3, 3.4
primary input 1.2, 3.3
primary output 1.2, 3.3
primout 1.2
process does not exist 6.4

Read error 6.4
rejected 6.4
release message 6.4

shortclock 5.6
Stack zone 1.8, 3.5, 4.1
status 6.4
status bit 6.4

status word 6.4
stopped 6.4

Tail (of catalog entry) 5.6
tape mark 5.3
tape mark or attention 6.4
text file 6.1, 7.3
timer 6.4
typewriter 6

Underflow 3.3, 4.5
unintelligible 6.4

Vv 3.3

warning bit 4.2
word defect 6.4
writing enabled 6.4
write-enable-ring 6.2

