Title: ,
Cache memory simulator RC8000,/55,

RC8000 instruction counter.

r‘ & REGNECENTRALEN RCSL No: 31-D524

@ Edition: November 1978

Author: Bodil Larsen

RC SYSTEM LIBRARY: FALKOMNERALLE I DK-20C0 COPEMHAGEN F

Keywords:
RCB000 cache mamory simulation, Escepe function.

~ Abstract: '
' - Similation of a cache memory on RC8000/55.
Examine hitrate for running programs with different cache and

block sizes.
'Iheescapem:tinemFCBOOOisusedtoperformthesi:mlatinm.

A list of used instructions in the supervised program is created
by the simulation. :

24 pages.

Users of this manua! are sautioned that the specifications
conmined herein are swbject to change by RC ot any time

. 4
Copyright A/S Regnecentralen ;, 1978 without prior notice, RC Is not resporsible For typographi-

cal or arithmelic errors which may appear in this manual

Printed bY /S RegneCEHtralen, Copenhagen ond shall not be responsibie for any damages caused by

reliance on any of the materials presented.

PAGE

Introduction, .,cc;ovvvvennnn. et eeererereneres Ceeeeaanas 1
References _, ., et eetter e, e rerecrraneraeras 2
Cache meory ,.,........... R e eereneranaans Ceeerereraenaan 3
1.1 Set associative cache |, fetrevenanann veree-. &
1.2 Blocks incache |, ,,,..... Ceerenereneaa, Ceteeeeeraenene.n 5
1.3 Cache strategy _.,........ e enerevenaaas Cereetaraneaanas 5

2.1 Escape routine ,,evveervneenns Ceeeearreeareannaa, vee 7
2.1.1 Function of the escape routine Ceeenreraena. 7
2.1.2 Changeable simulation variableseeeeveecsneencenens 8
2.2 Utility programs ,................ Creeraviesenearsronanesns 9
2.2.1 Setescape et ateneberenrrer e eanee e s nann 9
2.2.2 Stopescape ,......... G ereaarienssaranssassrrosasasarvasanres 11

2'2‘3 CleareSCaEe LR R B A I B A N LR B I B I R B BN BN BN R R] AR ERFE s 11
2.2.4 mwr pmu-e Se‘t esca.m I R R T R R T T N] 11

2.3 Printout program escprint ..., .. i iiiiiieieiiiiieaiaiae. 12
2'4 Systj'n-e LR I R R R N N I R N I I e T R L 13

XA |, . iirieririntrerarerancrsossoressantarsnsanssanscasas 14
3.1 FP Programl (... ueciessersecrooacasassnasanasassovonsocyen . 14
3.2 Program listing .,ccecevneencecrvonvencencecnnenaes 15
3.3 Escprint output |ttty 18

msults' A EEEEE Y R R OB A B B R R A R R E &R 4 B E R E S E RS s EE S S EE AR E S " EEEEERE 21
4.1 Supervised DPrOgYaMS |,eeenacenosennneraononosasannes 21

INTRODUCTION.

This report describes the method and results simulating a cache
memory on the RC8000 computer.

The study was made by Bo Tveden Jgrgensen, Rme Einersen and
Bodil Earsen in August 1978.

References.

Ref.

1. RCB00O Ref. manual RCSL 31-D383.

Cache Memory,

A cache memory is a very fast storage which is set between the
primary storage and the CPU. The cache mamory is directly con-
nected to the CPU so data is fetched without activating the bus..

The cache memory is used as a buffer between the CPU and the
pr.ﬁraiy storage so when a word is fetched fram the primary sto-
rage it is stored in the cache.

This is done with the hope that many of the fetched data should
be used again. The percentage of reused data is called the
hitrate.

BUS PRIMARY

Time reduction using cache.

The time for fetching data from the primary storage 900 ns.
Time for fetching data from the cache 200 ns,

lets consider 100 fetches from the primary store:

90000 ns.
37500 ns.

without cache 100 x 900
With cache and 75% hitrate 25x900 + 75x200

As seen,a good hitrate may give a high decrease in fetch time,
at the same time the load on the bus is decreased.-

This calculation is not fully correct, as a store will 3> to

the primary storage even if it is present in the cache memory.

1.1. Set associative cache.

The set associative cache method is chosen.

The set associative method make a many to one mapping of the
primary storage on the cache.

Say pfjnlaxy storage size =m =k x n

cache storage size

n

Primary storage can now be split in the following way:

The elements 0, n, 2n, ..., mn are all stored in the same cache

element if fetched. Similar for the other elements.

This is a cache with single element sets, but a cache may con-

tain sets with several elements.

If the cache contains sets with more elements a primary sto—
rage element can be stored in one of the eleaments in the cor-
responding set of the cache. A strategy for storing in the dif-
ferent elements of the sets could be either cyclic, random or the
longest not used element,

In hardware all elements of a set can be scanned in parallel
which make the search fast.

Primary storage Cache
On2n3n..........&k1xn
N B e 0_, | I set 0
Jength < - I P W N SRR set i
n .
_’ * __9 _
\ n=T {] set n~1

Fig. 1 Set associative cache with set size p

The described method is nsed for our simalator, but there are
other cache strategies e.g. simple cyclical storing.

Blocks in cache.

Instead of moving one word to the cache at a time a whole block
can be transferred so that the sets consists of a nuaiber of
blocks.

As the program execution is basically sequential, the next
instruction will probably be found in the cache. This is not

necessarily true in case of data references.

As a whole block should be transferred when one word is refe-
renced, this should be done in one 'operation' on the bus.

In RCBOOO it is only possible to monopolize the bus for the
time used to transfer two words from primary storage to the

CPU. A longer time period may result in dataoverrun on the

disc.
Therefore the blocksize was chosen to 2 words.

Cache strateqy.

The chosen strategy is as follows:

A set associative cache is used.

Total cache size of 1 k and 4 k words is simulated.

Block size of 2 and 4 words is simnlated,

Muber of elements in a set is 1 block.

When a store is made it is stored through to the primary sto-
" rage; if the address is in the cache, the new data 1s stored
here too. This feature is also called write~through.

The cache listen to the bus. So every transfer to an address

in the primary storage will result in the same transfer to the
corresponding address in the cache merory. This feature ensures
a correct content of the cache even if corresponding words in
the primary storage is changed by input from a peripheral de-

%rice .

The cache strategy described in 1.3 is simulated using the
escape facility of the RC8000 to survey the program execution.

Three utility programs are used to set or clear the escape

A printout program is created to output the collected tables
in a readable form.

2. Similation.
{cf ref. 1)
function.

2.1 Escape routine,

2.1.1

RC8000 escape facility is used to supervise the program execu-
tion in order to simulate the cache.

The escape facility is implemented by means of an escape mode,

an escape mask and an escape address.

The escape mode teils the monitor if an escape should be per-
formed for this process. The escape mask tells which instructions
should be supervised and the escape address tells which routine
should be executed when:the escape is performed.

The instructions inside the escape routine are executed with
escape mode = no. A return to the program is made by the in-
struction, return escape (RE) which sets the escape mode back

to yes.

Function of the escape routine.

v W e

The escape routine used for the simulator performs the follo-

wing:

Updates a table,with the first 12 bits of the instruc-

tion ar, index,(instruction code, working reg, indirect,

relative and index register).
An occurrence of a 12 bit onde is counted in this table.
Count no, of instructions,loads, stores and indirects.

Count instruction misses (instructions not found in

cache) load misses and store misses.

Changeable simulation variables.

The escape routine is made as a stand-alone routine incorpo-

rated in

There is
campilat

Variable
name

FO

F1
F2
F3
4
F5

F6

F7

the utility program translation (cf 2.2)

a mumber of changeable variables in the routine, a re-

ion is necessary if a change is wanted.

Std. Description

value

1 aown cache 1=yes, -1=no

If the cache tables are in a separate
process use no.

Instruction count. 1=yes, -1=no.
Indirect count T=yes, -1=no.

Ioad count 1=yes, -1=no.

Store count 1=yesg, =1=no.

el el ek el

Clear cache on jd instruction 1=yes, -1=no.
A clear on jd is a simulation of a process

change.
9 No, of bits in row index.

No.of bits in address part of cache block.
1 No. of block index bits

Note Fe+F7=number of bits in cache defining
standard cachesize to 10 hits = 1024 = 1K

F8 11 No.of bits in standard cache table size

- F9 1 Count of cache element destroy by instruc.
i=yes, ~1=no.
F10 1 Count of cache element destroy by loads.
i=yes, =1=no.

2.2 Utility programs,

Three utility programs are created to control the escape function.

. setescape
. Stopescape

. Clearescape

2.2.1 Setescape.

Call:

setescape

Function:
Moves the program stack to lower addresses to make space for
the escape routine, copy the routine to the created space
(cf. fig. 2).

Call the monitor procedure set escape to set escape address,
escape mode and escape mask.

If a new call of setescape is made with an escape routine of
different size, then the new escape routine is stored, else
nothing is changed in the stack. In both cases a new call of
the monitor procedure set escape is performed.

10

" Fig. 2. Escape routine in FP stack.

FP FP
Program area
Program area
Process<<
area
FP command
stack
Escape
f routine
|
i
j FP command
[stack
N IN
oUT ouT
normal after setescape

Higher address

Y

2.2.2

11

Stopescape.

2.2.3

Call:
stopescape

Function:
Clears the escape mask and the ~scape address.

So the escape function is no longer performed but the escape
routine is still in the FP stack.

Clearescape.

2.2.4

call:
clearescape.

Function:
Clears the escape mask and the escape address.

Moves the program stack pointers back (cf 2.2.1 setescape) .

Monitor procedure set escape.

Procedure Set Escape, 1°

set escape (escape-address, escape-specification)
wl escape-specification (call)

w1

w2

w3 escape-address (call)

3d 1<11+1

Defines the escape address, escape mode and escape mask of the -

calling process.,

2.3

12

Sets the escape-specification = escape-mode and escape-mask

in the exception register (status register).

Escape-specification:
escape-mode <Z2+ escape-mask <12

. 0 no escape function
escape-mode 1 bhit (n@a1){; escape function

escape-mask 6 bkits (no, 6-11) (cf ref.1.)

The escape address must either be zero or point to an area

within the calling process. If zerc no escape function is per-
formed.

Setting escape-specification or escape address to zero the es-

cape function is inactive.
PARAMETER ERROR: escape address outside calling process.

Printout program escprint.

This utility program helps print out the tables created by the
similation.

The program prints the following:
. list of the used changeable variables (cf. 2.1.2)

. table of used instructions printed in number, percent and split

into indirect, relative and indexed.

. tabel over x-addressings, split into pure, indirect and re-
lative.

. number of instructions loads, stores and indirects.

. mmber of instructions, locad and store misses.

. number of times an instruction or load destroys something
in the cache.

- in percent how many words are aweragely used in the cache.

. the total hitrate and the instruction, the load and the store

hitrate are printed,

2.4

13

Note the store hitrate is not interesting as we always store

through to the primary storage.

See example in chapter 3.

Systime,

Note if the cache is large (e.g. 4K) and the jd clear facility is
used, 'systime’' should be leftout from the supervised programs
as it may cause an endless loop in the simulation.

14

Exammle.

3.1

A program 'benchprog’ is supervised.

FP program.

The Fp calls to run the supervision could be as follows:

head cpu

(setescape ; set escape routine
benchprog ; un program
stopescape) ; Clear escape mode
head cpu

escprint ; print cache tables
clearescape ; clear escape routine

To run this program you need furthermore a file descriptor for

the sort file and some input parameters.

The actual FP program looks as follows:

IS TR B B W

SR FTEESET w0 D s 9 0 L Pl
CSF T FEs a0t

O R PR S S W ok o IR

Slgrewe Sy ¥}
it A v SRR BN
Exa bl b b el Lt kS THL Sk FRERTE I

IPEY TREYTE v FXRSKYDRES ¢ POSTTITONER
v Fogm LN
TR G I |

CLE A e T

Note! This shall actually be cne line

AE POSTEH,

FHA FUNI

1TL POSNT

%)

15

3.2 Program listing.

HEMOCHPROGEAL 60U
HEMCHYARE PROGRAM FOR GEMFRATION BLD PRINMT OF RECARPHS,
Jd D27, 01.1977
REATA
COMMENT PARAMFTERS APE PFEAD FROM JOME INE
Te | TNE 1 COECARNLEMATHD <MNIIMRER (F RPECOPRSY> CFHMETINND CFTLFY
ce LINF ¢ FUNCTTAN = D, GEREPATINNM NF RECARNS:
THE 2. LTME COMNTATMS & TEXTY TO RAF DEER FNAR THF CFENF=
RATION OF RFLARNS, THF TEXYT TS USEN TN FILI 1P 7
FELORNDI ELATH (HABAFTFRS WwHICH ARFE HSFEND CYCLTCALTL ¥
WITY & DTISPIACEMFNT OF 7 FROV RECORND TO RECOARP
FILAETTOAM » D, PREINT NF FYERY FIINETTONM RECNRN:
TUE LTYF CONTATMS MAQKFR POASTITTIOMNE, THE | AST NHE « 0O,

TNTEFRER FUNCTINN, InNT, PFCILENMATH, RELFORNK]
LONG ARRAY FILENANF({1:2):

REAQ(IM, PFCLENGTH, BFCORDS, FUNCTTON)?
READSTRINGCIN, FYLFMANME, 1)
REPFAYCHAPRP(IN);

WRTTECOLT, tC€TUDRFOLFMGTH2 1>, FFCLENGTH,

<! PECORNS: >, DECCRES,
< FIIRNCTTINANME o, FUAMCTTION,
L4 FTLFMAMES: 13, $TIENAWME,
€rC1detr>ey;

INTr2 43

RFEGTIN

ZONE 2(12B42,2,8TRERRNR)

INTEGFR RASE, CLASS, T, | AST_ CHAR, NFXT_FOS, POS_THY]
TNTEGFP ARPRAY POSTTINON(1:20)}

ROALFAN ARRAY TFYT(1sP*RFECLFHETHY?

ANNLEAN FIFLD CHawr;

<+ SKIP THF PFST OF FURRPEMT [TAF >
FCR CLASS = RFADCHAR(IN, (HAR) LUTLF () ASS ¢ & DN}
TF CHAR <> 25 THEAN] ASQe= N3

16

IF FaNECTYIAM = ¢ ThEN
AFGTN
CoOvMMENTY {CFATF RFCNODE:
1= 1;
NPEF{T+b, STRTING FTLFNAMECIRCEFASF(TYY, 0Y:

LASKT_CHARS= 1) TFYT(1)s= FA| <} ARD 7 €% A a>
FOP Tt= 1 QTEP 1 UNTIN Dx@FCIENGTE ' A
FEGIN

TF CLASE « F THE!) ARGr= CFANCWALE (Th, FWAR):

I‘ Ciﬁ‘cc ¢ ¥ THEM
BFEGIN
TEXTC(Y Yz FAprSF ADN FHLP?
LAST_ CHAFR:'= T:
Enp
FESE
TEXT(T):m TEXT((T = 1) ~Cp I AST_CHAR 4 13:
END READ THE TEYT £0P TYHE BFrnoD REMFRATTINN

RASF:x N}
FOR Tz 1 STEP 1 LUNTTI RECOEPS ne
RFGIN
OUTRFCA(T, RECLENRTHY;
FOR CH&Ry= 1 CTEP 1 INTTY CErfENGTH DI
ToCHAR ' TEXT(RASF 4 fHAG)?}

RACEsx PAGFE 4 72 <% |ICF THE ARTGTMAL TEYT el Trsity o>
IF BASE > NEC|LFMGTH THEM FAfFez PASF = pEr)EECTu:
END QITRECA;

CLOSF(Z, TRI'E):
END FURCTIOM = (', CPFATF BECNERS
FLSF

17

FEGTM
COMMENT PRIMT EVFRY FI-nFTTIAL RECCDR?

I:= 1;
OPEM{Z, b, STRING FUIFLAME(INCREASE(T)Y), I Y2

<* RFAR TF MAGKTMG PRSTTTIONS 4>
FOR PrS§_Thyam 1, POC_TaX & 1 LML F POSTTINM(RAG_THY = 1) > it DO
READ (TN, POSTTINMIPOG Twnr))

EOR Tre 4 RTEP 1 B+ TItL wBEEALRNE nAr

AFEGIN
TNEFCA(?, FECIEMLTH) ;

IF (T=1) MON FHRETION = 1 THE
PFGTIN
CcorvERY PRTHT THF BECOARP!
POS_TNXs= 95
NEXT_POSesz PASTTION(EAG_THYY

FOF CHARI®E 1 CTER 4 1INTT] 2EC{EAATH MO
RFGTM
TF CHAR =& FE¥T_FNg THEF
RFEGTH
LRTTFC(CI T, <rlan);
POS_ThNxes= POS_Thy + 1;
MEXT_PNSre PACTTINM(FErCe_THY)
FND MAPKEE PASTTYNMN]

OUTCHAB(PAI' T, 7.1UAD FYTIRACT 12)}

END FOP (Cuap; ,
TF CHAQ =& MFYT_PNC TR wPPTF(ODTY, Crlhexy}
aurTeHap (oYY, 11y

ENN PRINT THE PECORRP:

FND TNRED A
CLOSE(?,TRUEDY?
ErD FI'NECTTON > , FRTAT:

END INNER RI| OCYKY]
END

18

3.3 Fscprint cutput.
Here follows the output from a cache simulation run.

*HEAC T Py

By 1Y/ 17414 [P W Y CHEiyr 15401 SEU,
USRI R ILE=SET gty 0SSO Sty 00 fuegh

*SETFSCaMF

*FE A HP Y GG

RECLENGTH: Y b L2 g Srng FLo T ey 1" FILFisAmE =
Fyu 1y

FSTOHESNCAPE

*kHEAL (KL

BOL 1% e=.TH.1s 17217043 LHEUD Ims. b0 SEC,
*ESCPHlic]

ESCPR T

~

CACHE: 4iivA wiwws

ROw JwuFX LEGT M T

BLOCE THOEX LE®GIH (iuEds)T 1
Dwn CACHE 2 YE

INSFro COUHTST YES

Inwiw, CONIS: YES

LOAD (UUNTY: YES ? Changeable variables
STOrE CCUMTS: Y

JO=CLFAK: YES

CACRHE I1AHLF: 11

InsTe LESTROY YES

LUAl DESTROY YES

w

USCRTFIEL

=
OO0 QD0o
DOoOQTOoOTCQO0O
P
-
COCCOLUCQCOoOoDT D

OVOO0O0OoOOOoOC O
DOoOOoODODOoO0 000 oo CcoocC

= o Jom vl v o o Rl R o e COO0ODTTNOOOO
OCOCOo0oODOoOCD

cDoCoooCoCoOoo Qoo CcC oo oQ
"
—
—

OO0 TOoOOI2D0

fowe) CQOoOT Qoo oo OoCOoCOoOO0OCODTQO@
2oDCOMMOS DO W

| iy e e J o CcCoOoOoQOOI oW

N DO DOO
oo o0

0

S DD C

OSOoOVOoOoOQCODE

[
o
[

oot 00000

—NO D02

o

I
09

f£is

DM~ OoQQ

0451¢

%9
oL

294y
kARL

%02
Ll
6%
1 %4

BLYRY
£ENd

24

928

gi81L

ZLL
£2¢

OxXa

D30 DD

—

POl oDOo0O00OC coooo

Moo D Do

0

NSO D

r

£96
2258021

CC oS oo DD 00O V0ACNe-IID 2200 D

exi

[3']

DO NN D DT T D
fr o V]

- 0o
Lop IR o
[N |

-
T

-
-
CODODo2D0VLNMDIDID0D

VOO0 o2QOO0OWWwo oS0 MOo0

NSO OO0

[a VN - o]
COoODOCo0OQOrICD0CNITIOMOODODQDoGC D

WS Do oSO

62L2% 262

- 220 C Do
fooe e I e B a e e |

‘NEL 8L
‘LG 1L
R2% 204

0

L0se
609

"y
o
L)

CMehe D OO0 NOOYDOOOD
w0

oS D

2 L
- P
CONID2TDCMMODCOWNDTDTD DI D

DNV PO =M
[T = o)
- -

4 ;o
- -
-— M

DOV NO OV T T

-

—
fd
a

2L
£4%1
L ¥
i
(1417
S99
47
66¢
Nee
13}
B8Y
Bes
2i
£22
t\
t2e
I
6%8
648
49
90s
(%3]
566
026
56
1 %4
BlLE
3:19
0%
Ll
£60
768
726
92
Lg2
2%e
i
9851

f3AlivI3
FILNIVIANT v H3INM
PUINOILNNMLSNT 4¥ WNS

£
5oL

0%

L

£6
(3 4
Ly

e

€S

£
1A

avHIH

vy
$Q
al
¥
1S
0s
NS
s
s
HS
01
$7
ay
sy
SN
v
SX
SH
Xu
an
Sy
Ty
32
¥3
s3
X
ar
i
Y
WM
WY
SH
M
X1
01
vl
TH
ak|

NOTLNNBISNI

20

AT
CHe 4
KA Y
L & Uh
20wl
oL v/
£26 e
Y._VW Oy
ARG G}
=) =l
It FANLIYSANTG IR s ag Qe
Co RN INE ENE S0l B RV
v wl c)
BAT 4G 616 Lo 429 §wa
561 HR 2 A&1; BG
¢ ey 29 7 niRg
Db CAN ALA 1y
02y a4y g LS WL
IAT LY I3 = AI9INT I I3y

L34
12d
174
17
L

FANINFHM I) x

Ly

“a FivH | H
A AlvH]TH
Ly ALyMtTw
e EN|
i =093 I
dde L Gl o
A ey

SAomjSan
SALRLS <G

Tsolsrsan

L
34018
X Af I
18T
wa] TH
aaAsn
S AGe
At A3
g
#1801

A P

IR EAY T TN

Si03
ShGT AN
581~
QY
NI

“iarT
LRSS |
AL} €
GYon
PSal

"n:E:xLL;uv:_m
St Aadanc v

HE R

A R R N
SUMTPISNT 4
MR TN BRI RN Y]
TGN 3G

SRTARPY

-2 §
Npedy
Opa=tX
(e, X%

LK

21

Results,

4.

1

Superviged programs.

As you get a factor 40 on running programs with this simulation,
we have only chosen rather small programs to supervise,

We have run the programs with all combinations of the followings:

Cache size: 1 K and 4 K.

Block size: 2 words and 4 words
With or without clearing the cache in case of jd

instruction (simulation of orocess change) .

The runs:

Algel translation of

BENCHYARK program (the program in chapter 3)
ESCPRINT

Run of programs:

MAXFCON run with logfile input

BENCHMARK program (500 records)

ESCPRINT program

SORTBS (500 records)

The result of these runs are shown on fig.3.

The found total hitrate is within in the tabel

22

Fig 3 Hitrate for simulated cache runs.

program run:
fd-clear Block size: 2 words Block size: 4 words
_ no
jd-clear 4K 1K 4K 1K
Algol transl. 96 94 97 9%
BENCHMARK 99 9% 99 97
Algol transl. | — o, 95 98 97 _
ESCPRINT 100 97 100 98
MAXECON 87 83 92 89
94 85 96 91
BENCHMARK 98 97 99 98 //
200 records 100 98 100 - 99 ;
P
o
ESCPRINT 96 92 98 o5~ |
97 92 98 95 ;
SORT BS 7
91 84 94 8s_ -~
520 records 7 .I
94 86 96 90 f

23

Conclusion.

The supervised runs are not enough to give a full picture of
how a cache memory would work.

The following runs should be supervised too:

mathematical-statistical programs

BOSsS

Monitor

total system with common cache (cf 2.1.2 FO variable)

All in all we must say that the given material only is an
indicator for how various programs will use a cache MEmoTY .

Further possibilities:

. For every instruction type the following instruction is re-
gistrated.
A very used sequence could introduce a new instruction.

.- Special cache version where only X2/X3 - addressings are
stored in the cache (ALGOL/FORTRAN machine).

« It might be interesting to see how much the monitor actual-
ly intervenes with the cache parts used by the processes.
Another strategy might be to have two cache memories: one for
the monitor and one for the unprivileged processes. A further
extension could be to have a number of independent cache memo-
ries and determin at the time of process creation which cache
memory should be used for instance by applying the reminiscent
pk-value.

24

Puture:

The made measurements are only tentative real measurements
must be carried out on the RC8000/55,

Therefore the RC8000/55 must be equipped with possibility of

measuring par example:
. hits and misses in 48 bit counters.

. time lost waiting for transfer of the rest of the block.

1f this is done, it is possible to get knowledge of how to
construct the best cache memory for the RC8000 system.

Bo Tveden Jgrgensen - Rune Finersen - Bodil Larsen,

