
Titles
Cache memory simulator RC8000/55,
RC8000 instruction counter.

Ic § REGNECENTRALEN RCSL No: 31-524
= Edition: x, 1978

Author: Bodil Larsen RC SYSTEM LIBRARY: FALKONERALLE | DK-2000 COPENHAGEN F

Keywords:

RC8000 cache memory simulation, Escape function.

Abstract:
Simulation of a cache memory on RC8000/55.

Examine hitrate for running programs with different cache and ~,

block sizes.

The escape routine in RC8000 is used to perform the simulation.

A list of used instructions in the supervised program is created

by the simulation.

24 pages.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC ot any Hime + \

Copyright A/S Regnecentralen, 1978 without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this monval

Printed by A/S Regnecentralen, Copenhagen ond shall not be responsible for any damages caused by
reliance on any of the materials presented.

PAGE

2.1.1 Function of the escape routine seeeeeereeres 7

2.1.2 Changeable simulation variablesccececeaeeeeeerere 8

2.2 Utility programs se eeeeecesenceesesesseces 9

2.2.1 Setescape been c cent terete cerecnncenenacseenens 9

2.2.2 Stopescape denen ere eneeccnnsesesereccessceececees IT

2.2.3 Clearescape ... ccc cee ececccecnccererecececrer aeneeaeesesene 1

2.2.4 Monitor procedure set escape . 11

2.3 Printout program escprint » 12

EXAMPLE oe cece ee cece eee tree certs eet eteeec stoner cestenesccses 14

3.1 FR PYOQram 2... ccc ccs e cece cence ne ee eens ene tesncneceeeeen 14

3.2 Program LiSting 1. ... cece cece cece ec ee cence eeteeeeteenes 15

3.3 Eseprint output 2.0... 0. ieee c cece cece ener ee ener ener cere 18

Results. ,,

4.1 Supervised programs ,,

INTRODUCTION.

This report describes the method and results simulating a cache

memory on the RC8000 computer.

The study was made by Bo Tveden Jgrgensen, Rime Einersen and

Bodil Larsen in August 1978.

References.

Ref. 1. RC8000 Ref. manual RCSL 31-D383.

Cache Memory.

A cache memory is a very fast storage which is set between the

primary storage and the CPU. The cache memory is directly con-

nected to the CPU so data is fetched without activating the bus..

The cache memory is used as a buffer between the CPU and the

primary storage so when a word is fetched from the primary sto-

rage it is stored in the cache.

This is done with the hope that many of the fetched data should

be used again. The percentage of reused data is called the

hitrate.

BUS PRIMARY

Time reduction using cache.

The time for fetching data fram the primary storage 900 ns.

Time for fetching data fram the cache 200 ns.

Lets consider 100 fetches fram the primary store:

Without cache 100 x 900

With cache and 75% hitrate 25x900 + 75x200

90000 ns.

37500 ns.

As seen,a good hitrate may give a high decrease in fetch time,

at the same time the load on the bus is decreased.

This calculation is not fully correct, as a store will g> to

the primary storage even if it is present in the cache memory.

V1. Set_associative cache.

length

The set. associative cache method is chosen.

The set associative method make a many to one Mapping of the

primary storage on the cache.

Say primary storage size =m=kxn

cache storage size n

Primary storage can now be split in the following way:

The elements 0, n, 2n, ...,m~-n are all stored in the same cache

element if fetched. Similar for the other elements.

This is a cache with single element sets, but a cache may con-

tain sets with several elements.

If the cache contains sets with more elements a primary sto-

rage element can be stored in one of the elements in the cor-

responding set of the cache. A strategy for storing in the dif-

ferent elements of the sets could be either cyclic, random or the

longest not used element.

In hardware all elements of a set can be scanned in parallel

which make the search fast.

Primary storage Cache
On2n3n.......... (k-t)xn

ee rs es eee set 0
: 1

Ty Lo f] [oh set i

[| fat fj set 1

Fig. 1 Set associative cache with set size p

The described method is used for our simulator, but there are

other cache strategies e.g. simple cyclical storing.

1.2 Blocks in cache.

Instead of moving one word to the cache at a time a whole block

can be transferred so that the sets consists of a number of

blocks.

As the program execution is basically sequential, the next

instruction will probably be found in the cache. This is not

necessarily true in case of data references.

As a whole block should be transferred when one word is refe-

renced, this should be done in one ‘operation’ on the bus.

In RC8000 it is only possible to monopolize the bus for the

time used to transfer two words from primary storage to the

CPU. A longer time period may result in dataoverrun on the

disc.

Therefore the blocksize was chosen to 2 words.

1.3 Cache strategy.

The chosen strategy is as follows:

A set associative cache is used.

Total cache size of 1 k and 4 k words is simulated.

Block size of 2 and 4 words is simulated.

Number of elements in a set is 1 block.

When a store is made it is stored through to the primary sto-

rage; if the address is in the cache, the new data is stored

here too. This feature is also called write-through.

The cache listen to the bus. So every transfer to an address

in the primary storage will result in the same transfer to the

corresponding address in the cache merory. This feature ensures

a correct content of the cache even if corresponding words in

the primary storage is changed by input from a peripheral de-

vice.

2.1

Simulation,

The cache strategy described in 1.3 is simulated using the

escape facility of the RC8000 to survey the program execution.

(cf ref. 1)

Three utility programs are used to set or clear the escape

function.

A printout program is created to output the collected tables

in a readable fom.

Escape routine.

2.1.1

RC8000 escape facility is used to supervise the program execu-

tion in order to simulate the cache.

The escape facility is implemented by means of an escape mode,

an escape mask and an escape address.

The escape mode teils the monitor if an escape should be per-

formed for this process. The escape mask tells which instructions

should be supervised and the escape address tells which routine

should be executed when: the escape is performed.

The instructions inside the escape routine are executed with

escape mode = no. A retin to the program is made by the in-

struction, return escape (RE) which sets the escape mode back

to yes.

Function of the escape routine.

The escape routine used for the simulator performs the follo-

wing:

1. Updates a table,with the first 12 bits of the instruc-

tion as, index, (instruction code, working reg, indirect,

relative and index register).

An occurrence of a 12 bit cnde is counted in this table.

2. Count no, of instructions, loads, stores and indirects.

3. Count instruction misses (instructions not found in

cache) load misses and store misses.

Changeable simulation variables.

The escape routine is made as a stand-alone routine incorpo-

rated in the utility program translation (cf 2.2)

There is a number of changeable variables in the routine, a re-

compilation is necessary if a change is wanted.

Variable Std. Description

name value

FO 1 own cache 1=yes, -1=no

If the cache tables are in a separate

process use no.

FI 1 Instruction count 1l=yes, -1I=no.

F2 1 Indirect count 1=yes, -1=no.

F3 1 Load count 1=yes, -1I=no.

F4 1 Store count 1=yes, -1=no.

FS 1 Clear cache on jd instruction 1=yes, -1=no.

A clear on jd is a simulation of a process

change.

F6 9 No, of bits in row index.

No, of bits in address part of cache block.

F? 1 No, of block index bits

Note Fé+F7=number of bits in cache defining

standard cachesize to 10 bits = 1024 = 1K

F8 11 No.of bits in standard cache table size

FQ 1 Count of cache element destroy by instruc.

I=yes, ~1=no.

FIO 1 Count of cache element destroy by loads.

j=yes, ~1=no.

2.2 Utility programs.

Three utility programs are created to control the escape function.

- setescape

+ Stopescape

. Clearescape

2.2.1 Setescape.

Call:

setescape

Function:

Moves the program stack to lower addresses to make space for

the escape routine, copy the routine to the created space

(cf. fig. 2).

Call the monitor procedure set escape to set escape address,

escape mode and escape mask.

If a new call of setescape is made with an escape routine of

different size, then the new escape routine is stored, else

nothing is changed in the stack. In both cases a new call of

the monitor procedure set escape is performed.

10

Fig. 2. Escape routine in FP stack.

FP FP

Program area

Program area

Process <

area

FP command

stack

Escape

; routine
iF

} FP command

| stack

IN IN
|
L OuT OuT

normal after setescape

Higher addrass

Y

2.2.2 Stopescape.

Call:

stopescape

Function:

Clears the escape mask and the ‘scape address.

So the escape function is no longer performed but the escape

routine is still in the FP stack.

2.2.3 Clearescape.

eall:

clearescape.

Function:

Clears the escape mask and the escape address.

Moves the program stack pointers back (cf 2.2.1 setescape) .

2.2.4 Monitor procedure set escape.

Procedure Set Escape, 1°

Set escape (escape-address, escape-specification)

w0 escape-specification (call)

wi

w2

w3 escape-address (call)

jd 154141

Defines the escape address, escape mode and escape mask of the *

calling process.

2.3

12

Sets the escape-specification = escape-mode and escape-mask

in the exception register (status register).

Escape-specification:

escape-Mode <Z2+ escapesmask <12

0 no escape function escape-mode 1 bit (no, of 7 escape function

escape-mask 6 bits (no, 6-11) (cf ref.1.)

The escape address must either be zero or point to an area

within the calling process. If zero no escape function is per-

formed.

Setting escape~specification or escape address to zero the es-

cape function is inactive.

PARAMETER ERROR: escape address outside calling process.

Printout program escprint.

This utility program helps print out the tables created by the

simulation.

The program prints the following:

+ list of the used changeable variables (cf. 2.1.2)

» table of used instructions printed in number, percent and split

into indirect, relative and indexed.

. tabel over x-addressings, split into pure, indirect and re-

lative.

+ number of instructions loads, stores and indirects,

. number of instructions, load and store misses,

+ number of times an instruction or load destroys something

in the cache,

- in percent how many words are averagely used in the cache.

. the total hitrate and the instruction, the load and the store

hitrate are printed,

13

Note the store hitrate is not interesting as we always store

through to the primary storage.

See example in chapter 3.

2.4 stime,

Note if the cache is large (e.g. 4K) and the jd clear facility is

used, 'systime' should be leftout from the supervised programs

as it may cause an endless loop in the simulation.

3. Example.

A program 'benchprog’ is supervised.

3.1 FP_program.

x)

The Fp calls to run the supervision could be as follows:

head cpu

(setescape + Set escape routine

benchprog } run program

stopescape)} 7 clear escape mode

head cpu

escprint } print cache tables

clearescape } clear escape routine

To run this program you need furthermore a file descriptor for

the sort file and some input parameters.

The actual FP program looks as follows:

ead | Ure
Neue dP eSb PE ae. Pec ott to Ate
CSETRS CAPE

Lb P re
sleer start}

giro mot flea
bam br Ube bh Dead vey tek S TIL Gre kere IP AF POSTER, *)

IPF) TErTR 4 FORSKYDES ¢ POSTTIONE® FRA POST TIL POST
nee bee
BSCE bE

Chr deb stare

Note: This shall actually be one line

15

3.2 Program listing.

BENCHPROGSALGO
BENCHMARK PROGRAM FOP GENFRESTION Oh POTNT OF RECHPENS,

He 0627,04,1977
RERTN

COMMERT PARPAMFTEHS ACE PFAN FROM ZONE INP

te. VINE # <PECOPNLENGTH> <hIIMBER Cf PECOPDS> CFEC TIONS <FTIF>

2. LINF # FUNCTIAN © S, GEREDATION MF RECOPOSs:

TRE PL OLINE COMTOINS A TEXT TO AF USER FOR THE CENFR
RATION OF RFCORNS, THE TEYT TS USER TO FILI UP Z *
FECORDIEMGTH CHAGATTERS whICHK ARE USED CYCLTCALI Y
WITH 8 BISPLACERFNT AF 7? FROW RECORD TO REEOPR,
FURCTTON > My BRINT OF FVERY FINCTTON RPECNRN:
THE LIME CONTAINS SSQKER POSTTTONE, THE LAST AHF « 1,

INTEGER FUNCTION, INTs SECLENGTH, PFEORASS
LONG ARRAY FILENANE(492)2

REAOCINs PECLENGTH, PECORPDS, FUNCTTOND?

REANSTRINGCING FYLFRAME, 193

REPFATCHAPCTM)S

WRTTECOUT, <FCTU>RECLENGTH? ¢>, BECLENGTHS
<3 RECORASS >, OECCRES,

«er FUNC TEONS 23, FURCTION,

“ FILENAMES s>, FIP ENAME,
ECM eTC ds >5

INT:2 43

REGIN

ZONE 2¢12B42,2,8TDERROR)?

INTEGFR RASEs CLASS. To TASTLCHAP, NFXTLEOS, POSLIN KS
TNTEGFP APPAY POSTTTON(1 E203
ROSLFAN ARRAY TEYTCAS eR ECL ESCTHD

ACOLEAN FIFLD CHAR?

<* SKIP THE PEST OF CURRENT TIRE #>
FOR CLASS:® PFADCHARCIN, CHAQ) WUTLE CLASS € A DO?
TF CHaP €> 25 THEN PL ASSr= 93

16

IF FUNCTION = C THEN
REGTIN

COMMENT CREATE RECHEDS:

Tes 13

DPER C2 ody STPING FILENAMECIACEFASECT)Y, O)5

LASTICHARE= 42 TRYT(1)2=2 FALSE OAD O73 «8 A wd
FOP Tee 4 STEP 4 UMTTE DwORCIEMGTE on
PEGIN

TF CLASS € & THEN Clasces OFANrHAECTN, fuARY?

TE CLASS « © THEN
BEGIN

TEXTCT se FOLSE Aon FRAP?

LaSTLCHARrS YT;
bap

FLSE
TEXTCT em TEXTOOCT = 4) MOP HASTLOHAR + 193

END PEAD THE TEYT £0 THE pECnDN RENFPATTION ?

RASEs2 13
FOR Tre 1 STEP 4 UNTTE @ECOERS ae
RFGIN

OUTRFCA(T, RECLEURIM)?
FOR CHARs= 4 STEP 4 UNTIL CFFEENGTH On
@eCHAR SR TEXTCHASE 4 fHaty;

RASE te PASE & 72 ce HIKE THE ARTGINAL TEYT CrCLTFsiiy
TF BASE > RECLENGTH TUEN FOSFes PASE » per Ler etu:

END QUTRECK;

CLOSECZ, TRIED?
END FURCTION © C, CREATE PECNERS
FLSE

+

PEGTH

COMMENT POTNT EVERY FREPTTON RErr en:

Ise 43
CREN(Zpdy STRIAG FILFNAMECIMNOREASECT 4 FY

<a REAM TP MARKING OPSTTIONS #>
FOR OPS_INY sm 4, POSLTNY @ TOUHTLE POSTTTIONEPRE THe © 1) > 9 00

READCTN, POSTT ION FPOS Tar))e

FOR Tre 4 STEP tT operyt weeaene ae

SEGIN
TNPFCAC7» FECL ERS TM)?

ITF (Tet) FOR FRC TION = € THEN

PEGIN
COMMENT PeTrT THE BDECARES

PCSLINYs2 45
NEXYTLPAS ss POSTTIONC DAG thd?

FOR CHAR se 4 STEP 4 UINTZI DEOL EM GT OBO
BFGIN

TR CHAR & bE YTLERE THER
RFGTE

WRETECOUT, erlesde

POSLINets POSLTAY 4+ 17

MEXTLPOS re POCTT PACES Tey)e
ERD MBPYEG PASTT TAM:

OUTCHARCOLT, 7 Chad FYTRACT 17)3

FND FOR Cuap?
TF CRAQ EF ONFYTLPAS THER PETE CONT, crte>d?
CUTECHAR COUT, 1972

ENn PRINT ThE pecnen;

FN ING EC AS

CLOSE C?,TRUEDS

EeR FUNCTION >» Cy, BOIMTS

ERD INNER AI OCKS

END

18

3.3 Fsceprint, output.

Here follows the output from a cache simulation run.

*HEAG FE Cru

ROL Tefsed1.da tetrad CHt Toe 1 Set,
HUSORTRLLSSET Gite vIS€ Stu foul cued
RSETES CAME

AE CHP RUG

RECLENGTHE du RECUSI SS Snr reetTivas 0 FILFAmE

FND 1y

FSTOPESCAPE

eHEAU CFI

BOL PSC S.TtetS VF LT ELS Cetr dase SEC,
KESCPHLET

ESCPR List

CACHES SYR wERUS
ROw [NDFX LEaGT? +4

BLACK FNGEX Leeota Cistosd: 1
Dw CACHES Yes
INS free COTS: YES
Invineg CouwiS: ves
LOAD ULotNT Ss: YES Changeable variables
STORE COUHTS: yes
JOKCLEARS YES

CACHE I4HLF: Vi
InSTR LESTROY YES

LUAL DESTROY YES
2

OSORTFEL

eses00000
oQ

So EFS8SC0999FT0 OCoFemZO0CCOCCS
13d

6
“
O
L

Be
S
3
A
L
L
V
V
3
e

s
v
U
a
H

ddd
6L

eUSh
w
t

S
B
L
N
3
U
T
O
N
T

4
¥
a
3
H

Ree
206

S
A
I
N
O
T
L
A
N
S
L
S
N
I

4¥
WNS

0
0

0
0

i]
0

0
1U

0
6

9
2L

6
U

Lu
2b

vw
Oo

0
C
£
E
r

wv
Qo

0
sete

Oo
D]

G
oO

9
Lbs

tose
0

t
O
e

9
$a

0
0

9
a

0
0

L
L

n
9

vu
c

€2
SS6E

609
a

0
St2

2
7a

is)
iG

i)
is)

tt)
0

+
oO

tt)
i)

oO
a

0
0

0
9

t
hd

zt
OAL

bob
0

0
6

le)
oo:

u
n

0
0

io)
0

ge92
0

bok
¢

7s
0

0
O

9
0

0
0

0
U)

0
0

0
9

0
S79

0
$99

os
o

it]
ebb

ie)
0

0
ie)

2
2

t
0

9
0

6

4
e
s
t

oO
2se2

b
NS

0
0

ad
0

0
0

2?
Sele

2
00€

uy
8

o
£28

0
66£

2
3s

Qa
Q

O2b
0

0
0

09
L

£9¢
22

29
Ble

9
ob

7
E
L
2
9

S
On2

€%
1s

it)
Bee

0
0

0
£ts

O
b
y
L

2
2
s
o
z
t

tOL
0

Bee
0

9
L
i
c
h
?

Bb
£SS

SOL
HS

a
a)

0
0

)
i)

0
0

9
0

0
tt)

i
Q

eee
10]

B
E

a1
0

i)
0O

0
i}

0
0

0
o

0
ebe

0
oO

0
S29

0
ees

sv
0

0
0

0
Oo

o
0

tt)
0

a
0

0
n

9
ras

0
2b

av
0

a
9

i)
9

u
0

0
9

0
iu

it)
Q

Q
E
2
2
n
9

F
£22

OF
sv

0
id)

0
it)

it)
iY)

it)
ul)

t
0

9
9

0
0

€
0

>
SN

0
oO

0
0

0
0

ay
4

0
0

e
BEd

0
*

0
a

bre
a

0
oO

0
ie}

0
0

0
a

0
0

0
0

0
90

t
9

L
SX

a
i)

o
0

0
9

O
2
S
t

0
t
9
L
O
r

0
0

$
be

98
Go

s
6
8

LY
SH

a
o

9
i)

0
0

99
o

g
0

0
aos

£24
2oL

bL
0

628
xe

ie)
if

0
oO

0
0

OL
i)

0
0

0
0

9S
0

t
oO

29
aa

ta]
it)

£bb
0

0
0

z
9
c
y

60
eee

2
9

O
8
2
L

E
E
A

LiBe
2

OL
90S

£6
su

is)
e
l
s
e

0
0

9
7295

0
292

0
2b

9
S
S
E

2
e
2
e
7
L

B
S
L
L

n
e

OL
bee

Lvl
Ta

0
iu

o
9

9
264

902
tv)

0
0

9
2ib

22b
E
9
L
O
e

Z2bL
6

S6S
Le

VW
0)

0
oO

0
to)

Q
teL

0
0

0
0

Oe
Ble

i]
L

0
026

va
0

is)
0

0
La]

0
68

0
0

0
id)

i}
9

oO
La)

0
S6

$3
0

i)
a

te)
0

0
£2

it]
0

0
0

5
0

Qo
0

0
£2

abd
0

o
ie]

0
it]

ie)
G

0
0

ny
Oo

0
a

0
ale

lt)
ale

or
a

0
orog

2
b

02
2e

B
L
I
R
?

1
Uv)

9
0

2
u
s
2

8
Q

out
9

bee
4s

wr
it)

i)
O
u

90
0

i
£e0b

UV
0

0
Oo

2
e
9
L

2602
9
2
8

£
2
2
5
9

9
Ooze

€S
Ww

ta)
a

0
0

tH
0

v
a

té]
0

0
a

oO
€

2)
z

0
o
b

wn
QO

a
tre

0
0

0
0

‘
‘ee

g
0

a
0

2
Ose

o
£60

4
wy

0
0

6
aq

i)
0

928
0

0
0

ta)
6
2
L
2
7

252
88

06
S

768
£4

$m
Lt)

2b
Q

Q
0

e2gl
ob

or
6

0
20g

2
b
y
L
o
n

2
26

ot
726

EOL
vA

0
Qo

0
0

0
iu

92
0

it)
0

0
0

iu
Q

a
0

92
1

0
Q

0
0

6
Q

fbb
0

fn
a

9
it)

9
1

gol
0

te’
01

0
9

9
9

0
oO

£22
Oo

)
0

9
0

8a
é

ve
0

aoe
vw

0
it

to)
0

0a
0

0
0

u
oO

0
Q

a
t

0
9

+
Th

a
a

0
2b

t
@

0
a

0
4

4
3

6
£

LeL
0

9Sb
VW

2uTe
bXTS

A
N
T
E

EXa
axa

Lxy
Oxy

£XxT
ext

Uxr
Oxi

x

ex
ux

Ox
Lid

N
O
T
A
W
N
S
L
S
N
I

20

ddv
IS

GeH
aT

e
Ls.

AWG

1
3
d

9G
F
e
e
l
i
n

J
A
N
I
S

L
i
d

<4
A
L
e
A

LTR
4
9
0
7

L
d

ve
S
L
V
M
E
T
H

I
S
e
T

Pvt
vA

Q
i
v
a
l
l
y

L
o
n

%
A
a
-
J
e
d
o
m
p

a
a
g
n

29eL
OP

ea
S
e
t
e

A
e
d
e
d

A
b
a
 a

S
A
U
N
E
S
4
G

a ynd
W
h
e

2
S
A
O
M
I
S
4
H
G

S
I
S
N
T

Liq
eo]

P
e
a
l

Se
S
u
w
a

a
a
l

e
S

92K
UFO

T
S

Aa
m
a
d
o

ese
a
1

S
U
M

Lary
Bee

L
e

S
S
O
T
U
I
I
H

ESET
vez

On
SSl-

Anays
AAG

OE
SShe

uyoq
i
n

SSde
dSal

Jt
A
V
L
I
V
I
A
N
T
I
S

F
4
4
K

Qe]
P
S
A

a
N

YS
69

P
A
s

w
d

AD
F
3
u
y

g
a
g

PSU
i
t
a
A
q
g
a
d
e
w
n
y

L
F

we
cp

Ad
L
d

V
a
d

erg
wv

tam
4G

OLS
SoL

479
$ya

eu
SGL

ATR
2

AAG
9G

a

2?
7EN

ZOU
a
E

OES
PONT

MASS
Tadyeex

O
e

n
F

O
L

AGA
GS

Tue
P
V
a
s
S
S
g
a
o
y
a
t
y

1dea
22

“
G
T

&
C27

ay
ang

ALG
BLL

POND
SASS

M
i
d
g
e

YX
CNT

99
430

A
T
L

Vas
V
I
I
A

I
E

taay

"

4. 1

21

Results,

Supervised programs.

As you get a factor 40 on running programs with this simulation,

we have only chosen rather small Programs to supervise,

We have run the programs with all combinations of the following:

Cache size: 1 K and 4 kK.

Block size: 2 words and 4 words

With or without clearing the cache in case of ja

instruction (simulation of process change).

The runs:

Algol translation of

BENCHMARK program (the program in chapter 3)

ESCPRINT

Run of programs:

MAXECON run with logfile input

BENCHMARK program (500 records)

ESCPRINI program

SORTBS (500 records)

The result of these runs are shown on fig.3.

The found total hitrate is within in the tabel

22

Fig 3 Hitrate for simulated cache runs.

program run:

jd-clear Block size: 2 words Block size: 4 words

no

jd-clear 4K 1K 4k 1K

Algol transi.| 96 94 97 6
BENCHMARK 99 96 99 97

Algol transl.) 95 95 98 97
ESCPRINT 100 97 100 98

MAXECON 87 83 92 89
94 85 96 1 |

BENCHMARK 98 97 99 98
500 records 100 98 100 - 99

as
i} ESCPRINT 96 92 98 8

97 92 98 95
SORT BS a

H 500 records 3 84 94 88. |
94 86 96 90 |

23

Conclusion.

The supervised runs are not enough to give a full picture of

how a cache memory would work.

The following runs should be supervised too:

mathematical-statistical programs

BOSS

Monitor

total system with common cache (cf 2.1.2 FO variable)

All in all we must say that the given material only is an

indicator for how various programs will use a cache memory.

Further possibilities:

+ For every instruction type the following instruction is re-

gistrated.

A very used sequence could introduce a new instruction.

+ Special cache version where only X2/X3 - addressings are

stored in the cache (ALGOL/FORTRAN machine) .

+ It might be interesting to see how much the monitor actual-

ly intervenes with the cache parts used by the processes.

Another strategy might be to have two cache memories: one for

the monitor and one for the unprivileged processes. A further

extension could be to have a number of independent cache memo-

ries and determin at the time of process creation which cache

memory should be used for instance by applying the reminiscent

pk-value.

24

Future:

The made measurements are only tentative real measurements

must be carried out on the RC8000/55,

Therefore the RC8000/55 must be equipped with possibility of

measuring par example:

- hits and misses in 48 bit counters.

+ time lost waiting for transfer of the rest of the block.

If this is done, it is possible to get knowledge of how to

construct the best cache memory for the RC8000 system.

Bo Tveden Jgrgensen ~ Rune Einersen - Bodil Larsen.

