
RCSLNo: 31-D590

Edition: January 1980

Author: Finn G. Str¢@bech

Title:

SYSTEM 3 UTILITY PROGRAMS

Part Two .

FP - Koworndoer

§ REGNECENTRALEN
7 af 1979

Keywords:

RC4000, Basic Software, File Processor, User's Guide.

Abstract:

This second part of the utility program manual contains detailed

descriptions of the individual programs performing catalog handling,

data handling, and job control. This 6th edition comprises 61 program

names in alphabetic order.

(139 printed pages)

ISBN 87 7557 0319

42
-1

12

86

Copyright © 1979, A/S Regnecentralen af 1979
RC Computer A/S

Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cal or arithmetic errors which may appear in this manual
and shall not be responsible for any damages caused by re-
liance on any of the materials presented.

CONTENTS
(RCSL 31-D494)

CONTENTS

le

26

De

4,

Sandor
56

Contents COCCOe ODS eDOOTOSHFEDXOBBeESHEBB00e000080
000000

Preface €©00008000808000000000008808000
0800880880088 80

References ececonon oes oo BoCO OOOO eee eoeoaG200008e000008

Abstracts
Catalog Handling Programs eecaoceeeno0eec0ee000200000000

Data Handling Programs ceaesecneeceesoseso0cnse0c0008s00e00

JOb Control ProgramS sescccececreecccceccre00e00000

Program descriptions
Account 0000000880008 6088 800000800000000000088080800

Assign eeeeeeseoeocoeeeeerceeeesene0e00809080000000

Backfile cece cece ec ccs c cece cece secs ccasesecccocee

Binin Sec eeseeeeeoeoDoeTHFKHeeTHHHeeeeecnxee8002800900

Binout eaenceerceseseneescceseseseeeneenesasoeaoee00000

Boss,job cece coe ee ero cee ee eee cee esroeeeresossessoe00

Catsort ecececerceneesesncescecaegneeeeeoesea2g0700000808

Change coVeeeseenececcceese009s90000FH8 0002000900000 000

Changeentry eecnoceeeconeoenseeeesecveageaeseaeeeea200000380

Char eevee ecesaceseeseeeceeeneesaveeeeeseneeeeneosaend

Claim cocVeseeecsesecoceseesseeceeagso0geee0ns
0000000

ClaIMteSt ceccesccccccccccscsasccsceccssssesscccece

CLlEaYr ecovcceecerrce
 rcs ce cece eee esooc00e000e00000808

Clearmt seccccccescecrrcsee
r ccs ceeeeooceseososo0gne

CONVELE ceoecrecccscrcesrrceseerc00e ese eeas0esero0008

Copy CeCKeCOeOSSAHOHSEHESESABOADSEO
AGODSSEOSEDEEHTBE2000

Corelock CeoocVeeecnceceeseenceceeTeTe0e
0se80890890900 000

Coreopen soe eoeesoeovn Fee eooceseesaHernesre0ee0009000008

COFTECE eeovreccerveeccrcces
rr ec cee e0eerer0e8ee00000

Edit eee cseocoeeccecocco OA FHe De eSeGeDeDeee2DFFE2F2FH F900

End CeO eeaCeeSOOCeHSHODFEDBOTOBFOS EH AHEHTDESEBDDESFA9Ne

Entry COOCOCOOCOHSEEETOHOCOHSHOHDHEHC
HOHDHHEOHET9290080080

Finis ereednenvvLec1TFeDLeTL Hee DF HHHRSSHOKDIDAeT0200880080

Head COKCOCOCE SOA SOHOECHeTDOSSDEDOSETESESEHDB0
R9000000008

Headpunch ecoceennooooKFe cence eeseeensoeG00009900000

2

a
o

s
b

O
N
A

=
O

M
A
M

N
N

H
U
W

H
O
A

V
I
I

hp

—

pages

page

page

page
pages
pages

page
pages

page
pages

page s

page
page s

page
pages
page
page s

Pag es

pages

page
page s

pages

page
page
pages

page s

page
pages

page
page
page

CONTENTS
(RCSL 31-D494)

I eon c eco eon Meee soe eeeseseoreseernaoceseeeseoseeseres
&

If esecceeecesesceeneseneseesersenaeverd

Job

Kit ee enone eenteeceeoeneeeeeereeseseeoceeeseeeeserneeses

Label cecnsceccccccececeeenessescsene

Load eeeevneeceseveetoe esas ce eeoeeevoter ee

Lookup ee cee een arersesessesensesccece

Message eeoeenneseeeeeseeeesasaeerercseeeeseose2eene?

eeceecesesetoe ed

@eeeceeoceeoecseceoe

eeecVenceoneesece

Mode eeececeseeseeeseeetesoeeeeseseresneeneosree
seenesces

Mount eceeteecesaesesnenceeeecesescereeeeoesceoaeeaeseeered

Mountspec eeceeeerneecesedcetoeeesneeeeeeeeseeseces een?

Move eseeeeseenesecceoceeeee es e@esneevee eeeeeesaseoesed

Newjob een eensceancecesecnesesesoseeaeeseeesceeoeseeeare

Nextfile eeoereesesceseeeeeses0eceeeae

0 ecco nc eco ee ee eeeeeneseesercoeaceeseecoseseneeerese?

Qniine

Opcomm eeoenceeseececteeeteesecsesessesesreeneeeoe eee

eeeecosene ceo cee eeeerecesasesooeaeee eon He

Opmess Cceroesesesosceeeseroeaeesesesesereosesoonse
s

Permanent eveee

Print eecocenecseesnesceeeseseseseesensreseerosees earner es eed

Procsurvey Cee eesoneseeereceeseesneeeoeeeenereereRRe ee

Release cocccccscecscece eenevecevcvcreeeeeenese eevee

Rename eeeoceeeeseseeecevrseeeeesreeeeesteeessersee 200 He

Repeat eceedceeceeesecoeeeeresesesesceeeoerecneseeenese
e

Replace eco eee ere coerce eraeeeesererseeeeso00ee20000808

Ring eee eeceeceeeneeseeseeeeeserasesesecesoeaneseoe des

Rubout eovveeeseveeoeeneesete

Save eoevceeoctsoe

eaoeceaecceeeseeveeeesveenone

eoeeereneeeensoeeeeeoeeeenerearnsee eee

Scope eoeeeeeeseseesecoeenesenceseteoeanesereeseenes
ed

Search erseoceoeeetneeee eevee eee000# 38 ee

Set @esese8

Setmt .wecocee.

evoeeeveeseoeced

coe Coes eeseeeoceseosceseceetseenseeoecesseoseeeee

eeoeesocreseerecescoeesecossex20
e 0090000980

Skip eee ceensecseceereeseseoeenceesovesreoeoernecee
oon e

Suspend .wsccecese

Timer eeesecoevcvc#eeaeoee

Translated

Qugt a c¢ ope

eoevesesneosoe eee

eceeeeeeereeeceeseseceoneeseos eae eseaee

e@es0vcvet®oceeeees e
e

N
e

U
O
N
N
A
N

AH
B
N
A

A
V
I
A

aw
OA
H

Y
H

B
O
H
N

ABM
H
N
O

A
N
 A

AH

W
N
Y
 pages

pages

page
page
pages

pages
pages

page
page
pages

page
pages

page
page
pages

page
pages

page
page
pages

page
page
page
pages
page
page
pages
pages
pages
pages
pages

page
pages

page
page
page

PREFACE 1

(RCSL 31-D49h)

PREFACE

This second part of the utility program manual contains detailed descriptions

of the individual programs except those which have their own manuals (compilers,

editors, special programs). These manuals are found in the list of references

on the next page.

Each description of a utility program has individual page numbering to

facilitate updating. Revised versions of the program descriptions will be

distributed separately and may thus be inserted in the manual.

Part I of the Utility Program Manual gives a general introduction to the

file processor and utility program system and a detailed description of

certain important features of the system.

The file processor and the utility programs in system 3 are based on the

system 2 versions. The necessary changes in the programs and coding of new

programs was done by Tove Ann Aris, Bo Tveden Jgrgensen, Jgrgen Zachariassen

and the author.

The advices and corrections from Christian Gram and Tove Ann Aris have been

of great help during the preparation of this manual.

Hans Rischel
A/S Regnecentralen, April 1973

(first edition: June 1972)

Third edition:

This edition is similar to second edition with below exceptions.

Following descriptions have been added: assign, changeentry, char,

correct, edit, headpunch and setmt, clearmt. Following descriptions

have been changed: account, backfile, bossjob, catsort, claim,

convert, copy, entry, head, i, load, move, newjob, o, print, save

and scope.

Tove Ann Aris

A/S Regnecentralen, September 1974

2 PREFACE
(RCSL 31-D494)

Fourth edition:

Following descriptions have been added: procsurvey, rubout.

Following have been totally rewritten: save, load. Following have been

changed: binout, catsort, changeentry, char, clearmt, copy, convert,

correct, edit, entry, head, headpunch, mode, move, replace, set and

setmt.

Tove Ann Aris

A/S Regnecentralen, March 1977

Fifth edition:

Following description has been added: label.

Following have been changed: binin, catsort, copy, finis, load, print

and save.

Tove Ann Aris

A/S Regnecentralen, April 1978

Sixth edition:

Following descriptions have been added: claimtest, job, permanent, translated.
Following descriptions have been changed: assign, catsort, clear, copy, finis,

load, print and save.

Finn G. Stroébech
A/S Regnecentralen af 1979, January 1980

REFERENCES 1
(RCSL 31-D494)

REFERENCES

Ref. 1 Bent Bak Jensen: Boss 2, User's Manual, RCSL No 42-i1265.

Ref. 2 Henrik Sierslev, Pierce Hazelton: RC8000 Monitor, Part 1, System

Design, RCSL No 31-D476.

Ref. 3. ‘Tove Ann Aris and Bo Tveden J¢rgensen: RC8000 MONITOR, Part 2,

Reference Manual, RCSL No 31-D477.

Ref. 4 Niels Carsten Jensen: Corrections to RCSL No 31-D477, RC8000
Monitor, Part 2, RCSL No 31-D584.

Ref. 5 Palle Andersson: RC8000 Monitor, Part 3, Definition of External

Processes, RCSL No 31-D478.

Ref. 6 Palle Andersson: Operating System S, Reference Manual, RCSL No

31-D455.

Ref. 7 Palle Andersson: Algol 7, User's Manual, Part 2, RCSL No 42-i1278.

Ref. 8 Jens Hald and Alan Wessel: Fortran, RCSL No 31-D392.

Ref. 9 Palle Andersson: Slang Assembler, Programming Guide, RCSL No 42-i0785.

Ref. 10 Hans Rischel: Utility Programs, Part 1, RCSL No 31-D364.

Ref. 11 Rume Einersen, Lars Otto Kj#r Nielsen and Bent Bek Jensen: Boss 2,

Operators Manual, RCSL No 31-D498.

Ref. 12 Tove Ann Aris and Hans Rischel: Utility Programs, Part 3, RCSL No

31-D379.

This page is

intentionally left blank!

ABSTRACTS 1
(RCSL 31-Dl94)

Catalog Handling Programs

BACKFILE

CATSORT

RCSL No. 31=D305

Creates or changes a temporary entry so that the tail of

the two specified entries become identical.

RCSL 31-D279
Subtracts one from the file number (unless it is 0) in the

tails of the entries specified and signals reach of file 0.

RCSL No. 31-D488
Lists on current output selected parts of the main catalog

(or any subcatalog) sorted according to the parameters. At

last also total number of entries and segments output are

listed.
CHANGFENTRY RCSL No. 31-D424

CLEAR

LOOKUP

NEXTFILE

Changes an existing catalog entry according to the parame-

ters in the call. The program is a supplement to the pro-

grams SET and ENTRY and is used when one wants to change

some of the elements in the entry tail by copying from the

tails of other catalog entries.
RCSL No. 31-D235

Removes catalog entries with name and scope as specified.

RCSL No. 31-D425

Removes catalog entries according to the parameters.

RCSL No. 31-D426
Creates or changes a temporary catalog entry according to

the parameters in the call. The program is a supplement to

the program SEI and is used when one wants to set some

of the elements in the entry tail by copying from the _

tails of other catalog entries.
RCSL No. 31-D427
Finds and lists catalog entries with specified name.

RCSL No. 31-D238

Adds one to the file number in the tail of the catalog

entries specified.

PERMANENT RCSL No. 31-D364
Changes the permanent key of the specified entry to the

specified integer.

PROCSURVEY RCSL No. 31-D391

RENAME

SCOPE

SEARCH

SET

Lists types of procedures and their parameters, as well

as the procedure date.
RCSL No. 31-D239

Changes the names of catalog entries as specified.

RCSL No. 31-D331

Changes the scope of catalog entries as specified in the

call of the program.

RCSL No. 31-D2/H
Finds and lists all catalog entries with a given scope.

RCSL No. 31-D428
Creates a new catalog entry with scope temp or changes an

already existing entry (with scope temp) according to the

parameters.

SEIMT

Data Handling

ABSTRACTS
(RCSL 31-D49h)

RCSL No. 31-D429
Creates catalog entries of scope temp describing files on

magnetic tape according to the parameters.

BINOUT

COPY

CORRECT »

EDIT

HEAD

HEADPUNCH

LABEL

MESSAGE

RCSL No. 31-D2h3

The program can input files generated by the program BINOUT.

The programs BININ and BINOUT are primarily used when

binary files are stored on paper tape.
RCSL No. 31-D487
The program can output catalog entries and contents of

files in a format (a binout file) which may be input by
the program BININ or the program INITIALIZE CATALOG. The

program can furthermore output autoload tapes.
RCSL No. 31=-D431
Outputs the specified character the specified number of

times.
RCSL No. 31-D489
Copies one or several files into another file and calcu-

lates the number of characters copied and the sum of their

ISO values. Blind characters are not copied. The program

can be used instead of EDIT if only a simple copying is

wanted. Furthermore the program may be used for check

reading of text files (e.g. texts punched on paper tape).
RCSL No. 31-D433
The program corrects specified words on the backing storage

according to the parameters. The program may also be used

to print specified bits as integers.

RCSL No. 31-D434
Edit is a line oriented program for editing of text files.

RCSL No. 31=D435

Prints a number of form feeds and a page head containing

the name of the job and the date.
RCSL No. 31-D436
The program punches a readable text pattern according to

the parameters. The same information is also written on

current output.

RCSL No. 31-D467
Outputs a boss label on file O of the specified magnetic

tape.

RCSL No. 31-D491
The program can input catalog entries and bs-files from a

magnetic tape file generated by the program SAVE.

RCSL No. 31-D2h8
May be used (together with HEAD) to make nice headings on

the output. The parameter list in the call of message is

simply output when the program is called.

PRINT

RUBOUT

SAVE

ABSTRACTS 3
(RCSL 31-D494)

RCSL No. 31-D438

Performs blockwise copying of files on backing storage

or magnetic tape.
RCSL No. 31-D492
Prints from a backing storage area or directly from the

core store with specified formats. The program is primarily

intended for printing of dumped core areas.

RCSL 31-D380
Rubs out the contents of the specified backing-storage

files. If demanded the catalog entry is removed after the

cleaning.

RCSL No. 31-D493
The program can output catalog entries and bs files to a

magnetic tape file for later reestablishment by the program

LOAD.
TRANSLATED RCSL No. 31-D302

Prints the date of translation which is found in all algol/
fortran programs.

Job Control Programs

BOSSJOB

CHANGE

CLAIM

CLAIMTEST

RCSL No. 31-D336

Sends an account message to the parent (the operating
system) who is then expected to produce a record in the
account file. Only used when jobs running under BOSS wants

to produce special account information .- ~

RCSL No. 31-D557
Sends a newjob message to BOSS (the internal process

named BOSS) demanding the specified file enrolled as

job file in an off line job. In this way a job running

under another operating system may create a BOSS job.

The actual job continues with the next FP-command.

Further details are found in section1.3, newjob and replacejob,
in the BOSS User Manual.
RCSL No. 31-D254
Sends a change paper message to the parent (the operating
system). The program is only used when a job axecuted

under BOSS uses job controlled printer, (cf, the BOSS?
User Manual, ch. 6.2).
Output on printer from a job running under BOSS is

normally made either by printing on current output or as

off-line printing initiated by the FP-command CONVERT.

RCSL No. 31-0338
Lists the bs-area claims of the process.
RCSL No. 31-D564

Checks the claims of the calling process according to the call
parameters and leaves the ok-bit true if the claims specified
are present, false otherwise.

CONVERT

CORELOCK

COREOPEN

END

FINIS

IF

KIT

JOB

ABSTRACTS
(RCSL 31-D4gh)

RCSL No. 31-D440
Sends a convert message to the parent (the operating
system) who is then expected to print the specified

packing storage area. A file with scope login is not

accepted and the file mst not be in use (for instance

the file must not be current output). A temporary file

converted will immediately disappear from the reach of

the job. Each convert operation performed by BOSS requi-

res a cbuffer which mst be reserved in the job speci-

fication (cf. the BOSS2 User Manual ch. 3 and 6.2).
RCSL. No. 351=D257

Sends a corelock message to the parent (the operating

system) demanding that the job should stay in core the

specified number of seconds. This feature is only used

in comnection with process control devices producing

data with a high rate, cf. the BOSS2 User Manual ch.3.4 and 6.7.

RCSL No. 31-D258

Sends a coreopen message to the parent (the operating

system) signalling the end of a corelock period (cf.

the program CORELOCK). The program is only used on

process control installations.
RCSL No. 31-D259

Returns current input to the previous current input at the

position where it was left.
RCSL No. 31-D490
Finis terminates the job.

RCSL No. 31-D340
Selects a new file as current input. The former file may

later be resumed at the position where it was left (for

instance by a call of END). ~

RCSL No, 31-D262
Makes the execution of the next FP-command conditioned by

the values of one (or several) mode bits. The condition

may reflect the success of the latest program executed

as the ok and warming bits are set at program end (or it

may correspond to the mode bits as set by a call of the

program MODE).
RCSL No. 31-D263
Sends a mount disc message to the parent (the operating

system) demanding a disc kit with a specified name to be

mounted on a specified disc unit (cf. the BOSS2 Operators

Manual ch. 3 and 5.3). :

RCSL No. 31-D96 -

Makes it possible to use tapes containing a BOSS job request

in runs directly under "s".

ABSTRACTS 5
(RCSL 31-D49h)

MODE RCSL No. 31-D444
Changes the FP mode bits specified in the call and may
thereby change the working cycle of FP.

MOUNT RCSL No. 31=D265
Sends a mount message to the parent (the operating system)
who is then expected to ask the operator to mount the tape

reel (cf. the BOSS2 User Manual ch. 6.1).The program
does not await the mounting, unless there is asked for
mounting of an unspecified worktape.

MOUNTSPEC RCSL No. 31-D266
Sends a mount special message to the parent (the operating
system) limiting a later mounting of the specified magnetic
tape reel to the station with the specified device number
(cf. the BOSS User Manual ch. 6.1).

NEWIOB RCSL No. 31-D3!1
Sends a newjob message to the parent (the operating system)
demanding the specified file enrolled as job file in a new
off line job i.e. in this way a new job is created. The
actual job continues with the next FP-command. Further
details are found in sec. 1.3, newjob and replacejob,
in the BOSS User Manual.

0 RCSL No. 31=-D342
Selects a new file as current output.

ONLINE RCSL No. 31-D269
Turns the job into the conversational mode where the
current input to the job is typed on the terminal at
run time. A conversational job is very resource demanding
and the user must have a special option in the user

- catalog (cf. the BOSS User Manual ch. 3.2).
OPCOMM RCSL No. 31-D270

Sends the parameter list in the call as a print message to
the parent (the operating system) with request for an answer
from the operator and types the answer (when received) on

current output.
OPMESS RCSL No. 31-D271

Sends the parameter list in the call as a print message to the
parent (the operating system). If the operating system is BOSS
the message is typed on the main console.

RELEASE RCSL No. 31-D272

Sends a release message to the parent (the operating system)
releasing the specified magnetic tape reel (cf. the BOSS User
Manual ch. 6.1). :

REPEAT

REPLACE

RING

SKIP

SUSPEND

TIMER

ABSTRACTS
(RCSL 31-D494)

RCSL No. 31=D273
The program makes it possible to repeat (a specified number
of times) a series of FP-commands placed in brackets.
RCSL No. 31-D442
Sends a replace message to the parent (the operating system)
defining a file as replacement for the current job file. After

termination of the job BOSS will create a new job with the same

name and the specified file as job file. A replace message from

an on-line job is not accepted by BOSS.
RCSL No. 31=D275
Sends a mount ring message to the parent (the operating
system). The program is normally not used as the software
sends the mount ring message automatically when needed.
RCSL No. 31-D276

Bypasses parts of current input as specified in the parameter

list.
RCSL No. 31=D277
Sends a suspend message to the parent (the operating system)
asking for suspension of the specified magnetic tape reel.
This is relevant for worktapes only. The station is now

available for mounting of another tape reel, but the suspen-

ded worktape is still reserved for the job until it termi-

nates or releases the tape reel. Each suspend operation uses

a suspend buffer. (cf. the BOSS2 User Manual, ch. 6.1).
RCSL No. 31-D278
Sends a timer message to the parent (the operating system)

demanding a provoked interupt after a certain time.

ACCOUNT 1
(RCSL 31-D336)

ACCOUNT

Sends an account message to the parent (the operating system) who is then
expected to produce a record in the account file. Only used when jobs

running under BOSS wants to produce special account information.

Call: 3
——aeeount <s> <account kind>[<s> <integer>},
where the parameters <account kind> and <integer> are integers.

Function:
The program sends an account message containing the integers.

Storage Requirements:

1550 bytes plus space for FP.

Error Messages:
*e¥account call

The program was called with a left hand side.

*x**account <parameter list> parameter error

Parameter error in the call of the program.

***account <parameter list> kind illegal.
The account kind was not accepted by the operating system _

In case of any error no account record is produced.

This page is

intentionally left blank!

/ < merten /9.3

¢ . "ASSIGN
@ ‘ (ROSL 31-D305)

P
h
,

Assign

Creates or changes a temporary entry so that the tail of the two specifie
entries become identical. The program is used together with the program
entry and nextfile

Example:

Ine programmer wants to set an entry in the file longname and instead of
new=entry longname longnam= longname longname longname,

2.6 longname
the following commands are used

t=assign longenane

@ new=entry t t+ t t t 2.6
The program calls:

nextfile tape

nextfile tape

progfile=assign tape
will set progfile equal to the current value of tape.

Call:

<resultname> = assign <oldname>

Function:
Creates or changes a temporary entry so that the two entry tails becomes
identical. Apart from the parameter treatment the program works exactly
like entry.

Storage requirements:
@ 1550 bytes plus space for FP

ASSIGN 1

(RCSL 31-D305)

Assign

Creates or changes a temporary entry so that the new entry becomes a sub entry to
the old one, if the old one is an area entry, and the two entries become identical
if the old one is a nom-area entry. The program is used together with the programs.

entry and nextfile.

Example:
The programmer wants to set an entry in the file longname and instead of

new=entry longname longname longname longname longnane,
2.6 longname

the following commands are used
t=assign longname
new=entry tt ttt 2.6

The program calls:
nextfile tape

nextfile tape
progfile=assign tape

will set progfile equal to the current value of tape.

Call:

<resultname> = assign <oldname>

Function:
If <oldname> is an area entry, <resultname> will became a bs-entry, i.e. mode-
kind = 1<23+4 and document name = <oldname>.
If <oldname> is a non-area entry, <resultname> will become identical to
<oldname>.

Storage requiments:
1536 bytes plus space for FP.

2 ASSIGN
(RCSL 31-D305)

Error messages:

#*assign call

No left hand side in the call of the program.

***assign param <parameter>

Parameter error in the call of the program

***assion <oldname> unknown

The file <oldname> was not found in the catalog

**¥¥assign <result name> change kind impossible

A change of an area entry to a non-area entry or vice versa was attemp-

ted.

***assion <result name> change bs device impossible

A change of kit/doc name of an area entry was attempted.
***assign <result name> bs device unknown

The bs device specified was not found.

¥**assien <result name> no resources

The resources of the job did not allow the wanted creation or change of
an entry. ;

*exassign <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is created or changed.

BACKFILE

(RCSL 31-D279)

BACKFILE

Substracts one from the file mmber (unless it is 0) in the tails of the
entries specified and signals reach of file 0.

Examples:

Tr the catalog entries old and new describe file 4 of magtape mt310514
and file 2 of mt310515 respectively, then the command

backfile old new

will change old to describe file 3 of mt310514 and new to describe file 1
of mt310515. A repeated call will change old to describe file 2 and new
to describe file O and set the warning bit to yes. A following call will
change old to deseribe file 1 and leave new unchanged - the ok bit is

set to no,

Calls: oo

backfile {<s><nane>}

Function:
For each name in the list a catalog lookup is made and the file number
in the tail of the entry is decreased by one unless it is zero.

-If any file number becomes zero then the warning bit is set to yes.
If any file number already was zero then the ok bit is set to no.

Storage requirements: ~

Space for IP

Error messages:

*exbackTile call
Left hand side in the call. Program terminates without further ac-
tions. .

*x**backPile <name> param

Parameter error. The faulty parameter starting with the name speci-

fied is skipped and the program continues with the next parameter.
*x**backfile param

Same as above except that the faulty parameter does not start with a
name,

*e*backPile <name> unknown
No entry with the specified name was found. The program continues

with the next parameter.
*x**backfile <name> protected

The job was not allowed to change the tail in the entry found. The

program continues with the next parameter.

If any error message occurs then the ok bit is set to no.

This page is
intentionally left blank!

BININ 1
(RCSL 31-D487)

BININ

The program can input files generated by the program BINOUT. The pro-
grams BININ and BINOUT are primarily used when binary files are stored

on paper tape.

Example:
A paper tape was produced by the FP-command:

tpo=binout fup

It may be loaded by the FP-command
binin tro

and thereby the catalog entry 'fup', the area and its contents are ree-
stablished. When using BOSS one should load the tape by a load command

in the job specification like this
load trn pip

and then get the file 'fup' by the following call of binin in the job

file:
binin pip

Note, that the no parity mode is used in the load command.

Calls
{ 0

4 . . 4
{<other output> =} binin { List. § ves}| {xpinout file> {.<modifier>}, ,

a

<other output> ::= <name of output file>

<binout file> ::= <name of input file>

<modifier> ::= s.<binout segments>
<binout segments>

c.<binout segments>

<no of binout segments>

<binout segments> ::=
<no of binout segments> . <first binout segment>

The elements <no of binout segments> and <first binout segment> are integers.

2 BININ
(RCSL 31-D487)

Function:

If the parameter list.yes is specified, all entry names found are listed

on current out.
The input to BININ is a number of binout files, each consisting of a

number of binout segments. A binout segment is a stream of 68-bit cha-

racters with odd parity, the second bit of each character being 0. A bin-

out segment is terminated by a sum character, a character with the se-

cond bit being 1. A binout segment input by BIVIN is transformed to a

number of words, each composed of the rightmost 6 bits of 4 characters.
The rightmost 6 bits of the sum character form the sum modulo 64 of all

other characters in the binout segment; this sum is checked by BININ.

BININ scans the parameter list from left to right, and loads the sequence

of binout segments defined by the binout files. When a file is exhausted,

the input is continued from the file described by the next element in the

parameter list, and when it is exhausted, the execution of BININ is ter-

minated.
The left side in the call of BININ determines how the binout segments are

interpreted:
1) <other output> is not present.

The very first binout segment is input and interpreted as a

command segment. The commands in the command segment are execu-

ted one by one, and when the command segment is exhausted, the

next binout segment is input and interpreted as a command seg-

ment. If a command segment includes a load command, a number of

binout segments following the present command segment is input

and moved to backing store or magnetic tape as defined by the

load command. The following segment is interpreted as a command

segment and so on. A tape produced by BINOUT may be read in

this way. ~

2) <other output> is present.
All binout segments of the binout files are interpreted as load

segments and loaded to the file described by <other output>.

A command segment must not exceed 256 words; a load segment can be of

any length.

Modifier

<pinout segments> This modifier has only effect if other output is spe-

cified (left side in call occurs). The first <first

segment> binout segments of the actual in-file are skip-

ped, and only <no of binout segments> binout segments are

loaded to the output file. If <first segment> does not

occur, no segments are skipped.

28 The modifier causes each load segment to be preceeded

by one word in the output. This word is an integer

which is the length of the entire segment (no of

bytes). The last segment is terminated by a word being 0.

BININ
(RCSL 31-D487)

ec This modifier causes the binout file to be checked

only; i.e. the commands in the command segments are

checked for syntax errors, and only the <:end:> com-
mand is executed. The sums of all binout segments are

checked, but no load segments are output to the files

specified. :

Commands :

BININ uses the same command language as the program INITIALIZE CATALOG
(cf. ref. 2). .
A command in a command segment is identified by a textstring consisting
of at most 6 ISO characters (including NULL characters). This textstring

may be followed by a fixed number of parameters. Parameters can be cata-

log entry names and words. A name is a textstring of 12 ISO characters

beginning with a small letter followed by a maximum of 10 small letters

or digits terminated by NULL characters. The possible commands are:

<snewcat:> has no effect

<:oldeat:> has no effect.

<send:> terminates BININ,.

<:create:>,<name>,<entry tail of 10 words>
Creates a temporary catalog entry with the name and contents as spe-

cified. If the first word of <entry tail> is positive, an area of
that size is reserved on the backing store. If the entry already

exists, it is first removed.

<: change:>,<name>,<entry tail of 10 words>
Changes an existing catalog entry with a given name as specified. If
the entry describes an area on the backing store, the number of seg-

ments is reduced to the value specified by the first word of entry
tail.

<:; rename :>,<name>,<newname>
The catalog entry, <name>, is renamed to <newname>.

<: remove :>,<name>

Removes the catalog entry specified; if the entry describes a backing
store area, this is removed too.

<:perman:>,<name>,<catalog key>

Makes the catalog entry specified permanent with the catalog key

<catalog key>. If <catalog key> equals 3, then the entry base is
changed to the user base i.e. the entry becomes user scope.

h BININ
(RCSL 31-D487)

<:load:>,<name>,<no of binout segments>
Loads a number of binout segments following the present command-~seg-

ment to the file described by <name>. On magnetic tape each binout

Segment is output as one block. On backing store the boundaries of
backing store segments are ignored. The sum characters are not trans-

ferred to the output file.

Storage requirements:
The core storage requirement for BININ is approx. 4096 bytes plus the
space needed by FP.

Error messages:

***binin param <erroneous parameters>

Parameter error in call of BININ. The program proceeds, ignoring the
erroneous parameters.

***binin <binout file> exhausted
The last character of <binout file> is not a sum character, when
<binout file> is the last input file.

**binin input name missing

The parameter list does not include a <binout file> or <end of para-
meter list> is found before a normal termination of BININ.

***binin <binout file> input impossible

<binout file> is wnknow or the input process can not be initialized.

***binin <output file> output impossible
<output file> can not be reserved or is unknown. _

***binin <binout file> core size

No core space for buffers etc.

***binin <binout file> sizeerror
A command segment from <binout file> occupies more than 256 words in

core store.

***binin <binout file> sumerror in command segment

***binin <binout file> sumerror in load <output file>

x*e*binin <text string> syntaxerror

The <textstring> is not recognized as a command.

BININ
(RCSL 31-D487)

*x**binin <binout file> create <name> result <result>

Create entry, result < 0 (monitor function).

**x*binin <binout file> remove <name> result <result>

Remove entry, result <> 0 (monitor function).

*#**binin <binout file> change <name> result <result>

Change entry, result <> 0 (monitor function).

***binin <binout file> rename <name> result <result>
Rename entry, result <> 0 (monitor function).

***binin <binout file> perman <name> result <result>
Permanent entry, result <> 0 (monitor function).

If an error is detected BININ continues with the next parameter in the
list.

Further examples:

binin tro tro
inputs two paper tapes; command segments are required in the input.
The tapes may f.inst. be produced by the FP-commands:
tpo=binout fpnames.p move.b

tpo=binout algolprog

‘pinin tro.c

The binout paper tape is checked, but no catalog functions are
called, and no output is produced.

copyarea=binin tro.s
tpo=binout .copyarea.ne.a

In this way it is possible to copy binout tapes. Another copy is made
by a new call of BINOUT, without reading the tape again.

codeZ=binin bincode1.2 bincode2.1.2 bincodel.4.3
Loads segments 1,2 from bincodel, segment 3 from bincode2 and segments
4,5,6,7 from bincode1 thus merging two binouts of slang programs
into code 3.
Possible command segments are regarded as load segments, because
<other output> is specified.
The areas bincode1 and bincode2 may e.g. be produced by the FP-conmiands:
bincodel=binout codel.s.ne

bincode2=binout code2.s.ne

This page is

intentionally left blank!

BINOUT
(RCSL 31-D430)

BINOUT

The program can output catalog entries and contents of files in a format
(a binowt file) which may be input by the program BININ or the program
INITIALIZE CATALOG (cf. ref. 3). The program can furthermore output
autoload tapes.

Example:

The program file named "Pup! is output on paper tape by the FP-command
tpo=binout fup

(compare with the example under the program BININ).

Call:
out file> = binout { <s> <input description>}”

\e

“P
4

»b {.<bytes>|

-s .<field>

a .<field>
<input description> ::= <name>

° np ~

ene)
©

<bytes> ::= <no of bytes>

<no of blocks>

<field> ::=

<no of blocks> . <first block>

The elements <no of bytes>, <no of blocks> and <first block> are inte-
gers. The elements .p, .b.<bytes> , .s.<field> , .a.<fiel@ , np, and
ene are in the following called modifiers.

Function:
The output from BINOUT is a binout file consisting of binout segments.

2 BINOUT
(RCSL 31-D430)

The binout file is a stream of 8-bit characters on magnetic tape, ina
backing store area, or on paper tape. Each binout segment is terminated
by a special character, called the sum character.

Normally each <input description> causes the output of a number of bin-
out segments. The first of these consists of the catalog entry defined by
<name>, and determines the number of the remaining binout segments. This
first binout segment is called a command segment. If the <input descrip-
tion> defines a program file, the command segment is followed by a num-
ber of binout segments, being the contents of this file. The latter seg-
ments are called load segments.
Depending on the modifiers of the input description, either the command
segment or the load segments may be omitted, and it is also possible to

output text files as load segments, The output from BINOUT is normally
used as follows:

1) As input to BININ,
2) As input to INITIALIZE CATALOG, as described in ref. 2, chapter

14-15. In this case, the output from BINOUT must be a paper tape
or a magnetic tape file, including the command segments.

3) As an AUTOLOAD PROGRAM. The output must then be a paper tape
without command segments.

Binout file:

ine output file is defined by:

<out file>, which must be the name of a catalog entry describing
& paper tape punch, a backing store area, or a file on magnetic

tape. If the output file is paper tape, BINOUT will select_the
output mode to odd parity, independent of the mode defined by the

file descriptor.

Input description:
ihe <input deseription> is a name, which may be followed by a set of mo-
difiers; it defines the binout segments to be output:
<name> is the name of an arbitrary catalog entry. If the <input

description> consists of the name only, the corresponding

catalog entry determines the format of the output:

The command segment is output but load segments are only

output, if <name> describes a file containing a program. A

file on magnetic tape, and a backing store area, which is

organized as logical blocks, is output as a number of load

segments, each load segment being a block of the file.

Other program files are output as a single load segment.

The format of the output may also be chosen explicitely, by means of the
modifiers. The effects of these modifiers are as follows:

BINGUT
(RCSL 31-D430)

Pp Intended for output of text files. The <name> must describe a
file on magnetic tape or a backing store area. The contents of
this file is output as a single load segment.

b.<bytes> Intended for output of slang programs. Has the same effect as p,
except that only the first <bytes> bytes of the actual file
are output. If <bytes> is not present, the last word of the
Piledescriptor associated with <name> determines the number of

‘bytes. This number may be set by SLANG, just after translating
a program.

s.<field> Intended for output of SLANG programs fulfilling below
requirements. The <name> mst describe a file on magnetic tape or

a backing store area, which is assumed to be organized as logical

blocks (i.e. the first word of each block defines the length of

the entire block; a block with a non-positive length terminates

the area.). The contents of the file is output as <no of
blocks> load segments, and if <first block> is present, the
first <first block> blocks of the file are skipped. In this case
the modifier .ne is normally used too. If the <field> specifi-
cation is empty, all blocks of the file are output.

a.<field> Intended for output of autoload programs.
Has the same effect as s.<field>, except that the first word of
each block is not output.

np No program, i.e., no load segments are output.

Normally not used.

ne No entry, i.e., the command segment is not output.
Used for instance for output of files which may later be loaded
to defined areas (fuss=binin tro). —

Note, that in a sequence of modifiers, only the latest of the modifiers:
Pp, b.<bytes>, s.<field>, a.<field>, and np

has effect; e.g. the <input description:
jza.s.ne.a.1.3.p

has the same effect as the <input description>:

jza.ne.p

Binout segment:

A Pinout segment is a stream of 8-bit characters with odd parity, the

left-most bit of each character being the parity bit. The last character
in the segment is a sumcharacter, which is characterized by the second

bit being one. The right-most 6 bits of this character form the sum modulo
64 of all other characters in the segment.
Each byte of the input is output as two characters. The second bit of -

these is always 0, whereas the right-most 6 bits are a copy of the cor-
responding 6-bit group of the byte.

h BINOUT
(RCSL 31-D430)

Command segment:
The contents of a command segment is a number of commands, sufficient to
create a catalog entry and load the load segments in a later call of

BININ or INITIALIZE CATALOG. The command segment, as output by BINOUT,
consists of at most 3 commands, which are the output of the following

words:

<:create:> 3 2 words, text string

<name of entry> 3 4 words, text string
<entry tail 3 10 words
<:perman :> 3 2 words, text string
<name of entry> 3 4 words, text string
<catalog key> 3 1 word, integer

<:load:> 3 2 words, text string

<name of entry> 3 4 words, text string
<no of load segments> 3 1 word, integer

The <:perman:> command is omitted if the catalog entry has catalog key 03
and the <:load:> command is only included if load segments are output.

Storage requirements:

The core storage requirement for BINOUT is approx. 3072 bytes plus the
space needed for FP.

Error messages:

***binout <name> output impossible

No left side in the call, or the output device defined by <name> is

reserved or does not exist, or <name> does not describe a binary
file.

***binout <name> <List of erroneous parameters> ~

Parameter error in call of BINOUT. If the parameters are part of an
input description, this is ignored.

***binout input name missing
End of parameter list is found before an expected input description.

**binout <name> unknown
<name> is not name of a catalog entry.

***binout <name> input impossible
<name> describes an input device from which input is not possible, or

<name> is unknown.

***binout core size

The core store space needed for buffers etc. is too small.

BINOUT
(RCSL 31-D430)

***binout <name> prog or entry
The input description demands output of load segments in spite of
that <name> does not describe a file, or the input description causes

no output.

*k*pinout <name> segments <integer>

The input description demands more output than possible; only <inte-
ger> load segments from the file described by <name> are output.

If an error is detected BINOUT continues with the next parameter in the
list.

Examples on the use of the modifiers:

the contents of the areas textarea and codearea containing a text and

a program file respectively (for instance produced by EDIT and SLANG) are
output on a paper tape by the FP-command

tpo=binout textarea.p codearea.b

Only the part of codearea which contains code is output.
The tape may be input later by the FP-command:

binin tro

A binary paper tape may be copied by the FP-commands

copyarea=binin tro.s
tpo=binout copyarea.ne.a

(cf. the description of BININ).

The ALGOL compiler may be moved to magnetic tape - say mt71100, file 1
(this may be useful if the backing storage is very small). If ALGOL is
present on the backing storage, this is done by the FP-commands:

tapealgol=entry mto mt71100 0 1 0 algol algol ;
auxarea=binout algol.ne.s.12 3 as algol has 12 logical segments
tapealgol=binin auxarea

Now the areas algol and auxarea may be cleared and tapealgol renamed
to algol and permanented in the catalog. (The tape reel may now be
dismounted and will be requested whenever ALGOL is called.)
The ALGOL STANDARD PROCEDURES are of course not moved,

This page is

intentionally left blank!

BOSSJOB 1

(RCSL 31=D337)

BOSSJOB

Sends a newjob message to BOSS (the internal process named BOSS) demanding
the specified file enrolled as job file in an off line job. In this way a
job running under another operating system may create a BOSS job. The actual
job continues with the next FP-conmand. Further details are found in section
1.3, newjob and replacejob in the BOSS User Manual.

Calls
bossjob <s> <file name> { <name of remote batch printer>},

where <file name> is a name of a permanent job file. a
<name of remote batch ‘Printer>: :=<name of max 6 char>

Function:
A newjobd message containing the specified name(s) is sent to BOSS.

Storage Requirements:

1550 bytes plus Space for FP,

Error Messages:
*e*D0ss joo call

Left hand side in the call of the program,
**xbossjob <parameter list> parameter error

Parameter error in the call of the program.
**xbossjob <filename> <error cause>

Error during creation of the new job. The cause may be any of the
following:
job queue full

job file not permanent
job file wnknown
job file unreadable
user index too large
illegal identification
user index conflict
job file too long
temp claim exceeded
option unknown
param error at job

syntax error at job
line too long
attention status at remote batch terminal
device unknown
device not printer
parent device disconnected

remote batch malfunction
In case of any error no new job is created,

This page is
intentionally left blank!

CATSORT 1
(RCSL 31-D488)

CATSORT

Lists on current output selected parts of the main catalog (or any subca-

talog) sorted according to the parameters. At last also total number of

entries and segments output are listed. :

Example:

The FP-command:
catsort base.project.min

will output all files with a base contained in the project base, i.g. be-

longing to the actual project. The parameter min causes that only name,

segments docname, date and scope is output.

The FP-command:
catsort

will output all non-system entries in the main catalog sorted according to

pase and entry name.
See also Further Examples.

Call: a

_— 4 <catalog spec>
{ <outfile>= } ° ecatsort \ <limit spec>

<sorting spec>/,

{ver}
maincat. (no

<catalog spec> ::= yes

subcat. no

<integer>
Sdocument name> -

only
system. yes

no
name.<entry name>

<limit spec> ::= docname.<document name>

pase. (<scope> {.min} j
{ <baselow>.<baseup>.

basesort yes

<sorting spec> ::= docsort .

slicesort

nosort no

project

user
<scope> ::=) login

temp

<baselow> :3:= <integer>

<baseup>

2 CATSORT @
(RCSL 31-D488)

Format of output:

Each entry is output on one line in the form:

<entryname> <first slice> <name key> <catalog key> <lower entry base>

<upper entry base> <mode.kind or segments> <kit/doc name>
<remaining entry tail>

If the parameter min is specified the output is:

<entryname> <segments> <kit/docname>

Function: -
Tf an outfile is specified, this file is used for output, otherwise

current output file is used.

The catalogs are one by one copied into a working bs file, which is sorted

according to the parameters.
The sorting parameters are:

basesort.yes meaning sorted after the entry base (which means grouped

after project and users). @

docsort. yes meaning that each area entry is followed by all sub-

entries (which have a kit/document name equal to the en-
try name of the main entry).

slicesort.yes meaning sorted according to first slice. This parameter

will cancel the parameter docsort.yes and has the same

priority.

The priority of the sorting parameters are basesort, docsort.

The last sorting criterion will always be alfabetic sorting on en-

try name.

nosort.yes meaning that no sorting at all is performed. The total

catalog will be output, neglegting all other parameters

_ but mainecat and subcat.

Other parameters:

maincat defining whether the maincatalog is output

subcat defining whether the subcatalogs are output (if any),

an integer or a documentname specifies a subcatalog to be
output (0 corresponds to maincat).
will prevent the maincat from being output, unless explicitly r
specified by maincat.yes or subcat.0.

system defining whether the system files are output.

name.<entry name>: only entries with the name <entry name> are output. On-

ly 1 name parameter is allowed.

docname.<document name>: only entries containing the kit/doc name <docu-
ment name> are output. Only 1 docname parameter is

allowed.

base.<scope> only entries with the specified scope are output.
base.<baselow>.<baseup>: only entries contained in the specified base are

output. A negative value of <baselow> or <baseup> must
be given as the positive complement e.g. the integer
-1000 is specified as
16777216-1000=16776216.

CATSORT 3
(RCSL 31-D488)

The parameters are initialized as follows:

maincat.yes
subcat.no

system.no
basesort.yes
docsort.no
slicesort.no

Error messages:
*x*catsort error param <erroneous and following parameters>

Parameter error in the call.
x*xcatsort, create sortarea impossible

It was impossible to create an area for sorting.

In case of any error message, the program terminates.

Further examples:
catsort nosort.yes

will output the total main catalog in unsorted form.

catsort subcat.yes system.yes
will output all entries in the subcatalogs sorted according to base and

entry name.

catsort name.pip docname.pap basesort.no

will output all non-system entries in the main catalog with entry name pip
or document name pap, sorted according to entry name.

catsort docname.disc system.yes
will output all entries in the main catalog with document name disc, sor-

ted according to base and entry name.

catsort subcat.disc1 system.yes
will output all entries in the subcatalog with document name disci sorted
according to base and entry name.

This page is

intentionally left blank!

CHANGE 1
(RCSL 31-D2544)

CHANGE

Sends a change paper message to the parent (the operating system). The program
is only used when a job executed under BOSS uses job controlled printer. (cf.

the BOSS2 User Manual, ch. 6.2).
Output on printer from a job running under BOSS is normally made either by

printing on current output or as off-line printing initiated by the

FP-command CONVERT,

Call:
Change <s> <device name> <s> <paper type>

where the parameter <paper type> is an integer.

Function:
Xchange message containing the specified device name and paper type

is send to the parent who is then expected to. perform the necessary actions

(message to the operator etc.)

Storage Requirements:
1550 bytes plus space for FP,

Error Messages:

**x*change call
The program was called with a left hand side. ~-

*x**change <parameter list> parameter error

Parameter error in the call of the program.

***change <parameter list> <error cause>

The change message was not accepted by BOSS for one of the following

causes:

1. no buffers

2. job printer not allowed (cf. the BOSS2 User Manual).

In case of any error the change action is not performed by BOSS.

This page is

intentionally left blank!

CHANGEENTRY 1
(RCSL 31-D424)

CHANGEENTRY

Changes an existing catalog entry according to the parameters in the call.

The program is a supplement to the programs SET and ENTRY and is used when

one wants to change some of the elements in the entry tail by copying from

the tails of other catalog entries.

Example:

Suppose that the catalog entry named ‘source’ contains the name of a mag-

tape reel in the document name field. By the FP-commands
filex=changeentry filex source filex filex filex filex filex

the entry filex is changed to contain the name of the tape reel.

A catalog entry named 'source' containing the name - say mt+71100 - may

be created by a call of SET:
source = set mto mt71100

Call:
Zresult name> = changeentry {<s> <kind> {<s> <kit/doc name>

<s> <free param> {<s> <file> {<s> <plock>
<s> <contry> {<s> <length>}; } }’ ye ey

°o

<kind> <integer>
<kit/doce name> 235 <integer1> . <integer2>

<name>

<word>
<free param> 235 <bytel>.<byte2>

d.<isodate>.<clock> ~

<isodate> 23> <at>
0 O is interpreted as now

<clock> 235 <hhmm> may be omitted in case no

entry named d exists

<file> <word>
<block> 23= <bytel> . <byte2>

<contry>
<lLength>

<bytel>
<byte2>

<word>

<name>

<integer>

2 CHANGEENTRY ©
(RCSL 31-D424)

Function:
The lert hand side is looked up. If it does not exist, the program termi-
nates. Otherwise the parameters are interpreted as described below yiel-
ding the wanted entry tail. From this point the program continues exact-
ly as the program SET.

Parameters
Rind:

<integer>: The value is placed in the tail.

<integer1> . <integer2>: The value <integer1> shift 12 + <integer2>
is placed in the tail.

<name>: First the name is searched for in the table of mode-kind
abbrevations and if found here the value found is used. If not
found in the mode-kind table (see Utility Programs, part 1, Appendix) r
it is searched for in the catalog and the kind of the entry found

is used.

Kit/doc name:
<integer>: The value is placed in the tail.
<integeri> . <integer2>: The value <integer1> shift 12 + <integer2>

is placed in the tail.

<name>: If the kind just found is the mode-kind bs (2048 shift 12 + 4)
the name itself is used in the tail. For all other kinds the name
is looked up in the catalog and the kit/doc name in the tail of the
entry found is used. ;

The other parameters:
A parameter of the form <bytel> . <byte2> gives separate specifica-

tions of the two 12-bit bytes in the word. _
<integer>: The value is placed in the tail as the word or byte in

question

<name>: The name is looked up in the catalog and the value of the
word or byte in question in the entry tail found is used.

If the parameter list does not specify all of the tail, the rest of the @

tail is set to zero,

Storage requirements:

1550 bytes plus space for FP

Error messages:

**changeentry call

No left side in call of the program

*xxchangeentry param <parameter>

Parameter error in call of the program
*xchangeentry <name> unknown :

Lefthand side or a parameter was searched in the catalog but not found.

CHANGEENTRY
(RCSL 31-D42))

***xchangeentry <result name> change kind impossible
A change of an area entry to a non-area entry or vice versa was at-
tempted. oo

**changeentry <result name> change bs device impossible

A change of kit/doc name of an area entry was attempted.
**changeentry <result name> bs device unknown

The bs device specified was not found.
***changeentry <result name> no resources

The resources of the job did not allow the wanted creation or change
of an entry.

***changeentry <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is changed.

This page is

intentionally left blank!

CHAR 1
(RCSL 31-D431)

CHAR

Outputs the specificd character the specified number of times.

Example:
The current output is divided in groups by the call

char n1.8
which produces 8 newlines on current output.

char ff nl
produces a top of form and a newline on current output.

Call:

4 <iso value>

{ <outfile> = } char
° <iso value>.<repeat factor>

<iso-value> ::= <integer>|n1/ff|em|sp
<repeat factor> ::= <integer>

Function:
Ir no repeat factor is specified the character will be output one time

else the character will be output as many times as specified by repeat

factor.

The repeat factor may be changed by the program, e.g. ff.19 will

be changed to ff.6 and nl.100 will be changed to nl.64, Other characters
will be repeated max. 133 times.

If an outfile is specified this is used for the output else current

output is used. ~

Storage requirements:

TO2n bytes plus space for FP.

Error messages:
x*char param <parameter>

Parameter error in the call. The program continues in the parameter list.

This page is
intentionally left blank!

CLAIM
(RCSL 31-D338)

CLAIM

Lists some claims of the process.

Examples:
Tn an installation with two bs-devices, named drum and disc, the call:

claim
may print:

area 6 buf 4 size 16384 first core 25492

drum: 1 segm/slice
temp O segm 19 entr

login O segm O entr
perm O segm O entr

disc: 36 segm/slice
temp 900 segm

login 432 segm 4 entr
perm O segm O entr

The call:
claim perm.disc temp

will print: ‘

area 6 buf 4 size 16384 first core 25492 -

disc: 36 segm/slice
perm O segm O entr

drum: 1 segm/slice
temp O segm 19 entr

disc: 36 segm/slice
temp 900 segm

Call:

4 <scope> °°

{ <output file=> } claim 4 <docname>
o <scope>.<docname>

<docname> ::= <name of drum or disc kit>

temp
<scope> ::= 4 login

perm
key

2 CLAIM
(RCSL 31-D338)

Functions
The program scans the parameter list. For each parameter group,
the internal tables in the monitor are scanned. If a document name
is specified in the parameter group, the resources of catalog entries
and segments for each permanent key on that device are listed, else
the resources on all bs-devices are listed. If <scope> is specified,
the listing of resources is restricted to the specified scopes.

perm is equal to scope user + project.

If <scope> is specified to key, the permanent keys will be output in-
stead of the scope names.

Note that temp entries are only output for the main eatalog, since all
temporary entries are counted only here, cf. ref. 2 and 3.

If claim is called in the beginning of a job, the value of area is al-
ready reduced by 1, which is the one used by FP.

An empty parameter list means: all bs-devices, all scopes.
If there is a left side in the call of claim, the output will appear
on <output file> otherwise on current output.

Storage Requirements:
900 bytes plus space for FP.

Error messages:
*¥claim connect <output file>

The specified output file could not be connected. Current output
is chosen as. output.

***claim param <list of erroneous parameters>
Parameter error in call of claim.

x*xclaim <docname> unknown

A bs-device named <docname> does not exist.

CLAIMTEST 1
(RCSL 31-D564)

CLAIMTEST

Checks the claims of the calling process according to the call-parameters
and leaves the ok-bit true if the claims specified are present, false
otherwise.

Example:
The job

claimtest perm.disc1.1000.10
if ok.no
finis

is terminated if the permanent resources on disci are less than 1000
segments and 10 entries.

Call:

-perm.<bs claims> °°
login.<bs claims>
temp.<bs claims>

claimtest<s>(buf.<buffer claim> }
area.<area claim

size.<size>

Lint. <internal> 0

<bs claims>::= <document name>.<segments>.<entries> ~
<document name>::= <name of drum or disc>

<segments> 4
<entries>

<bs claims>

<buffer claim>

<area claim
<size>
<internals> J

Function:

The parameters in the call are examined one by one.
If an error in the parameter occurs or the claims specified exeed the claims
available according to the process description of the calling process, the
program terminates setting the ok-bit false.
If the program reaches the end of the parameter list, the program terminates
settig the ok-bit true.

Storage requirements:

7144 halfwords (4096 halfwords + space for fp).

2 CLAIMTEST
(RCSL 31-D564)

Error messages:

*ekClaimtest: parametererror, unknown fpparameter <parameter>

The parameter is neither of the seven names: perm, login, temp,

buf, area, size, int.
*kkclaimtest: parametererror, parameter must be (Boor read <param

The parameter is a name or an integer when it should an integer

“or a name.
xkkclaimtest: syntaxerror, seperator must be <point> read <sep>

Separator not a point.
**xkclaimtest: unknown bs-device <name>

The bs-device with the name <name> is not included in the bs-system.

CLEAR

(RCSL 31-D235)

CLEAR

Removes catalog entries with name and scope as specified.

Example
By the FP-command

clear user text
the catalog entry (if any) with scope user and name text4+ is removed

from the catalog. A catalog entry with the same name but another scope

is not affected.

Call: fa
Clear <s> <scope spec> {<s> <name>},

4

<scope spec> ::= <scope> { .<device name>},

temp

login

<scope> ::=

user
project

<device name> ::= <name of drum or disc kit>

Function:
The scope specification is interpreted and then the name list is scanned.
For each name in the list the name is searched in the catalog. If an en-
try with the specified name and scope is found, it is removed from the
catalog.

Scope specification:
The concept of scope of a catalog entry is explained in the BOSS2 User
Manual ch. 4.1. A device name means a further restriction to entries
which are either

(a) area entries, where the data area is placed on the specified bs
device

or (b) non-area entries, which are present in the auxiliary catalog on

the device cf. ref. 3.

2 CLEAR
(RCSL 31-D235)

Storage requirements:

2045 bytes plus space for FP.

Error messages:

**¥clear call

The program was called with a left hand side. No entries removed.
***clear <scope spec> illegal scope

The scope specification was illegal. No entries removed.
*x**clear <scope spec> bs device unknown

The specified device was not on the computer. No entries removed.

**kCclear <scope spec> bs device not ready

The bs device specified was not ready or catalog i/o error.
No entries removed.

***clear param <parameter>

Illegal parameter. The rest of the parameter list is skipped.
***clear <scope spec> <name> unknown

The entry to be removed was not found. The program continues with
the next name in the parameter list.

***clear <scope spec> <name> entry in use

The entry could not be removed because another job was using it.

The program continues with the next name in the parameter list.

CLEARMI
(RCSL 31-D425)

CLEARMT

Removes catalog entries according to the parameters

Example:
The FP-command:

pap=clearmt mt004711.3
will remove the entries papl pap2 pap3.
The FP-command:

f=clearmt f.3.5
will remove the entries £3 fl f.

Call:
<result name> = clearmt <mtname>. { <umer integer> i

<lower integer>.<upper integer>

The <mtname> is not used during interpretation of the parameters.

If no <lower integer> is specified, it is set to 1.

Function:

Entry names <resultname> followed by <lower integer> to <upper integer>

are removed.

Storage Requirements:
512 bytes plus space for FP

Error Messages:
*** clearmt call .

No left hand side or left hand side of more than 9 characters

x** clearmt param
Parameter error in the call, e.g. <integer> greater than 99.

x clearmt <resultname> catalog error
Error in catalog, monitor or hardware

In case of above error messages the program terminates

*** clearmt <resultname> unknown
The specified entry was not found. The program continues

This page is

intentionally left blank!

CONVERT 1
(RCSL 31-D440)

CONVERT

Sends a convert message to the parent (the operating system) who is then

expected to print the specified backing storage area. A file with scope

login is not accepted and the file must not be in use (for instance the
file mst not be current output). A temporary file converted will imme-

diately disappear from the reach of the job. Each convert operation per-

formed by BOSS requires a cbuffer which mst be reserved in the job

specification (ct. the BOSS2 User Manual ch. 3 and 6.2).

Example:
TY program has produced a text file in the area outi . It is printed by the

FP-command
convert out)

<S>
Call: Va
“convert <s> <name> {<name of remote batch printer>}, {xs> <integer>},

<name of remote batch printer> ::= <name of max. 6 char>

Functions
The convert message with the specified name(s) and integer (or zero if no
integer is specified) is sent to the parent.

Paper Types:
0 standard paper, i.e. monitor format, one copy.

A page is 64 lines of 133 positions.
Alu upright, one copy. A page is 64 lines of 72 positions.
Ah across, one copy. A page is 42 lines of 112 positions.
Monitor, two copies.
Al upright, two copies
Al across, two copies.
Monitor, three copies.
AL upright, three copies.
Ah across, three copies.

-99 for extensions, *

100-999 special forms. Requires agreement with the operator.

O
O

C
O
A

N
O
N
I

F
u
l

Po

Storage Requirements:
1550 bytes plus space for FP.

CONVERT
(RCSL 31-D440)

Error Messages:
xexconvert call

Left hand side in cail of the program
x<“convert <parameter list> parameter error

Parameter error in call of the program.
*x¥*convert <parameter list> <error cause>

The convert message was not accepted by BOSS for one of the following

causes:

1.

26

Do
h,

9.
10.
11.
12.

In case of any error the convert operation is not performed by BOSS.

no cbuffers
file does not exist

file has login scope
no resources
file in use

file is not area

attention status at remote batch terminal

, device unknown
device not printer
parent device disconnected
remote batch malfunction
not textfile

COPY
(RCSL 31-D489)

COPY

Copies one or several text files into another file and calculates the num-

per of characters copied and the sum of their ISO values. Blind characters

are not copied. The program can be used instead of EDIT if only a simple

copying is wanted. Furthermore the program may be used for check reading

of text files (e.g. texts punched on paper tape).

Example:

The text files 'text1' 'text2' are output as one paper tape file by the

FP-command
tpe=copy text1 texte

and the number and the sum of the characters are printed on current output.

One may then check the tape by reading it in a later job by the FP-command

copy tre

Under BOSS the tape should be input by a load command

load tre pip

in the job specification. The check reading is then performed in the job

file by the FP-command

copy pip

Call:

4 <infile>

4 es <lines> 4

{ <outette> copy sist. ¥ { <infile>.$, <iso value>.<appearances>

0 mn o message.yes 7

message .no

<infile> 233 <name>

<lines> :3:= <integer>

iso value> $35 {ens Letter}
<integer>

<appearances> ::= <integer>

Function:

Tf the parameter list.yes is specified, the input is listed on current out.

The program interpretes one parameter at a time as follows:

<infile> The file is copied on <outfile> if any. If no <outfile> is spe-

ecified only the calculation of number and sum of characters is

performed.

COPY
(RCSL 31-D489)

<lines> This number of visible lines are copied from current
input on <outfile> if any.

<iso value>.<appearances> and
<infile>.<iso value>.<appearances>

The program copies from <infile> if specified, else from
current input on <outfile> if any.
Copying stops when the specified number of appearances of the

iso character are met. The last character is not output.

message.yes or message.no
Determines whether the following should be output on
current output (standard: message.yes)
1. after each param:

<infile> segm. <number of segments>
number of characters < 128
sum of characters

. number of characters >= 128 (if any)
number of blind characters (0,127) - (if any)
number of sub characters (26) - (if any)

2. at program end (only if the call contains an <outfile>
and more than one param):
<outfile> segm. <number of segments>
total number of characters < 128 ~
total sum of characters
total number of characters >= 128 (4 any
.total number of sub characters (26) - (if any).

Storage Requirements:

1520 bytes plus space for FP.

Error Message:

All errors cause the warning bit to be set.

***cOpy connect <outfile> <cause>

The output file cannot be connected for output. The ok bit is set to no
and the program is terminated.
<cause> may be:

1. no resources

2. not found

3. In use
maybe file is the job file

4, convention error
output attempted on input device or vice versa

5. error
catalog, monitor or hardware error

***copy connect <infile> <cause>
An input file cannot be connected for input. The parameter is ignored.

***copy param <illegal parameter> ;
Illegal parameter syntax. The parameter is ignored.

*x**xcopy end medium
Current input is exhausted because the parameter <lines> or <iso value>.
<appearances> demands reading past EM. The program continues with the
next parameter.

**xCOpy no core
The call is not executed because the process is too small.

CORELOCK
(RCSL 31-D257)

CORELOCK

Sends a corelock message to the parent (the operating system) demanding
that the job should stay in core the specified number of seconds. This
feature is only used in connection with process control devices producing

data with a high rate, cf. the BOSS2 User Manual ch. 3.4 and 6.7.

Example:
The FP-command:

corelock 5

demands corelock for a period of 5 seconds.

Call:

corelock <s> <seconds>

where <seconds> is an integer.

Storage requirements:

1550 bytes plus room for FP.

Error Messages:
***xcorelock call

Left hand side in the call of the program
***corelock <parameter list> parameter error

Parameter error in the call of the program.

In case of any error no corelock message is sent.

This page is

intentionally left blank!

COREOPEN
(RCSL 31-D258)

COREOPEN

Sends a coreopen message to the parent (the operating system) signalling

the end of a corelock period (cf. the program CORELOCK). The program is
only used on process control installations.

Example:
The program is called without parameters:

coreopen

Call:

coreopen

Storage Requirements:

1550 bytes plus room for FP.

This page is
intentionally left blank!

@ CORRECT
(RCSL 31-D453)

CORRECT

The program corrects specified words on the backing storage according
to the parameters. The program may also be used to print specified
bits as integers,

Example:

The FP-call:

correct bsfile.4 addr.O bits.0.11 if 700 then neg.456,
bit.12.23 if neg.1234 then 4000,

e adr.8 if O then 1

will make the following corrections on segment 4 of bsfile:
byte O is changed to -456 (in case it is 700)

1 - 4000 - -1234
- 8:9 - 1 0

No corrections are made if <oldvalue> is not correct in all cases,

Call:

correct <bsfile>.<segmo>
ts)

{ adaress.<addr> {<bitspec> if <oldvelue> then <newvalue>} },

empty (identical to bits.0.23)
<bitspec> ::=|(bits.<firstbit>.<lastbit>

{ eee} <integer>
<newvalue>j3:= | negative.<integer>

@ <segmno>
<addr>
<firstbit> | :3:= <integer>
<lastbit>

Function:

Segment number <segmmno> is input and for each address it is
tested whether the specified <oldvalue> is found, in which case
it is replaced by <newvalue>. If no errors are found the segment is
output.

Note that the file will be connected in the standard way for
utilities, i.e. segmno is calculated as segmmo + block count cf.
Utility Programs, Part I, section 5.5.

9 CORRECT
(RCSL 31-D433) e@

During syntax check only the first 3 letters in the words:
address, bits, then, negative are tested. adr is accepted for address.

Odd. addresses are reduced by 1.

<segmno> and <addr> are counted from 0.

Shortlock in catalog entry is updated. In case <bsfile> describes

an external procedure, the internal date is updated.

Storage requirements:

726 bytes plus space for FP.

Error messages:
secorrect call

Left hand side in the call. @
*x*correct param <faulty parameter>

syntax error in the call
**correct param missing

end of parameter list when more parameters are expected
**xxcorrect <bsfile> not conneted

<bsfile> could not be connected, maybe not present or not kind bs
*x*xcorrect segm.<segmno>

<segmno> >= size of <bsfile>
*x*xxcorrect addr.<addr>

<addr> > 511
*x*correct addr.<addr> bits.<firstbit>.<lastbit>

<firstbit> > <lastbit> or <Lastbit> >23
*x*correct addr.<addr> bits.<firstbit>.<lastbit> oldvalue=<oldvalue>

<oldvalue> is greater than the specified bits allow ~
xexcorrect addr.<addr> bits.<firstbit>.<lastbit> newvalue=<newvalue>

<newvalue> is greater than the specified bits allow
*x<xcorrect addr.<addr> bits.<firstbit>.<lastbit>

oldvalue=<oldvalue> ,found=<oldvalue found>
the specified <oldvalue> is not equal to the found value @

In the last case the program continues in the parameter list (but no
corrections will be made), in all other cases the program terminates
immediately.

In case of any of above error messages no corrections are made.

*xcorrect entry inconsistent
*xxxcorrect code inconsistent

The date of an external procedure is incorrectly described either
in the catalog entry or in the code. The correction has been per-
formed.

EDIT
(RCSL 31-D434)

EDIT

Edit is a line oriented program for editing of text files.

Example:
The FP-call and edit commands:

COMMENTS

betterfinal=edit finaltext fp call
1./vad/,r/bad/good/,f edit conmand

will produce in betterfinal a corrected version of the text finaltext.

The FP-call:

(i corrfile
newtext=edit oldtext

end) -

will correct the text in oldtext with the edit commands in corrfile.

The FP-command end ensures that FP will not read from corrfile in

ease edit exits before the finis command.

BOSS User Manual shows several very relevant examples of the use

of EDIT.

Call:

4 00
{ <outfi1e>=} eait {<source>}

° 9

Function: ;

é program will edit the text in <source> by the commands in

current input and store the resulting text in outfile.

<outfile> can be any kind of document. If no outfile is
specified, no text is stored.

<source> if no source is specified this is interpreted as an

empty source.

When EDIT is loaded and prepared for input of commands the message

edit begin

is printed, and before EDIT exits, it prints the message:

edit end.

EDIT
(RCSL 31-D434)

Edit commands:

The editing is performed by means of the following commands. Only

the first letter in the word is tested by EDIT:
line

delete

insert

replace

global
finis

and less important
print

source
mark

verify
where

3 <comments> (this line is skipped by EDIT)

The commands are separated by NL or COMMA. Superfluous Nis are blind.

SPs between commands are blind. Commands separated by COMMA form a
Sequence. At end of each single command or sequence, the line on which
the line pointer points is printed (mless the command: vn is given)
see verify.

Delimiters: .

QR special feature of edit is that the delimiter is chosen each time

as the first symbol following the command letter(s), e.g.

Pp ;
In the last case p was the first letter in the following word. Illegal

symbols, SP, NL and EM cannot be used as delimiters.
The delimiter must not be a part of the string to be searched, the
string to be removed or the replacing or inserted string.

In all following examples only the delimiter / is shown.

Warning 2 ¢ &
Those letters have a special meaning and cannot be used in the strings —

unless the following command is given:
COMMENTS

me mark empty

see Mark.

Line:

EDIT
(RCSL 31-D434)

RIT corrections are made in the current line, so first of all this
must be found. At start the line pointer points at the first line.

17
1-4
1t
1b

1./find/

COMMENTS
Move line pointer 7 lines forwards

Move line pointer 4 lines backwards
Line top, move line pointer to line 1
Move line pointer to line bottom, i.e.
the line containing EM.

The line pointer is moved forwards to
point at the first line containing the
string find

Empty lines are not counted. They have the same number as the following

line. This is the case for all commands. The line pointer points at the
first of the empty lines.
In case the search string consists of several lines, the line pointer
will point at the last line. A NL must not be specified by 2102 as
NL has a special representation. This is also the’case for the commands
delete and print.

Delete:

ad
d
da
ad
ad

o
t

h
E

./fina/

COMMENTS
Delete current line
Delete current and 4 following lines
Delete current and 2 preceeding lines

Delete current and all in front

Delete current and all following

Delete current and including the line
containing the textstring find

After deletion the line pointer points at the line following the-last
deleted line.

Re. NL se Line.

Insert:

/

elefants

monkeys

COMMENT'S
The two lines are inserted in front
of the current line. After insert the
line pointer points at the line in

front of the terminating delimiter

(here the line monkey)
Note that it is a syntax error if the first delimiter is not followed
by NL. SPs between the first delimiter and the NL are blind.

Replace:

77 bad/2004/

r/something/ /

r//something/

COMMENTS
In the current line the first string

bad is replaced by the string good.

Remove the first string something from

the line

Before anything else on the line place

the string something

EDIT
(RCSL 31-D434)

The string, which is to be replaced, must be within one line, i.e. a NL

character can only be used in connection with empty lines. A NL character

must not be specified by #102. The replacing string can be of any number

of lines. The line pointer points at the last line in the replacing

string.
If position not found, the line pointer points at the next line.

Global:
~—~g/bad/good/

g 2/bad/good/

g-6/bad/good/

g t/bad/gooda/

g b/bad/good/

g b/unwanted//

Re. NL see Replace.

Finis:

Print:

Pp
pe

p-2

pt

pb

p./find/

COMMENTS
In the current line any bad is replaced
by good. The line pointer is unchanged.

In the current and 2 following lines

any bad is replaced by good. The line
pointer is moved 2 lines forwards.

In current and 6 preceeding lines any
bad is replaced by good. The line
pointer is not moved.

In current and all preceeding lines
any bad is replaced by good. The line

pointer is not moved.

In current and all following lines any

pad is replaced by good. The line pointer

points at the line following the last

line.
Remove the string unwanted from current

line and until bottom.

COMMENTS
EDIT copies to EM and exits _

COMMENTS
Prints current line

Current and 2 following lines are

printed

Current and 2 preceeding lines are
printed with normal direction.

All lines in front of and including

current line are printed with normal

direction

Current and all following lines

until EM are printed
The current and all lines inclusive

the line with the string find are

printed

EDIT
(RCSL 31-D434)

The line pointer points at the last printed line.

Re. NL see Line.

Source:

The sources are the parameters to the call of edit and are numbered

from 1

s 2

Example: the programmer wants to produce a textfile new which is

text1l with the procedure error from text2 placed between procedure

testoutput and procedure calculate and to link textd to text:

text1:

begin real a,b,c,d3
procedure testoutput;
begin
write(out,<:<10>:>,a,b,¢) 3
end testoutput;

procedure calculate(x)3
real x3

begin

new=edit text! text2 text3
1./ure calculate/,
$2
d./boolean ok/,
1./end error/,11,
$1
d./end testoutput/,
1b
s 3
f

AeA uy P > Olid PP

COMMENTS

Edit with input from source number 2

text2:
begin integer i,j,k;
boolean ok$

procedure error(i);
integer 13
begin
write(out,<:<10>alarm :>,1)3
end errors

procedure merge(a,b,x)3

COMMENTS :

Edit call with 3 source

Copy until this line from source 1
Continue from source 2

Delete inclusive this line

Copy until this line
Continue from source 1

Delete inclusive this line

Copy to last line
Continue from source 3

Copy and exit.

6 EDIT r
(RCSL 31-D434)

Mark:

EDIT is initialized to: COMMENTS
ms Mark standard, which is equivalent

to the 3 following commands

mn e Mark numeric #
The character #2 is here chosen to be
used to specify a character by its
numeric code, i.e. an integer between
O and 127, e.g. x12e

meg Mark character ¢

The character g is here chosen to be
used as character replace mark, see

example.
mil & Mark line & |

The character & is here chosen to be
used as line erase mark, i.e. the r |
total line containing the letter 4

is erased.
If those 3 characters should be treated like other letters, use the

following command

me Mark empty
Any other characters may be chosen as mark numeric, mark character or

mark line, e.g.
mnz Mark numeric z .

The selected characters should not be used in any other context in the

edit commands.

Examples of use of mark characters:

COMMENTS ~

r/formfeed/21 2e/ Replace the text formfeed by the
character formfeed

r/ax*b/a//ba Erase faulty line (on a console or
terminal % should be used as this
causes the monitor to erase the line.

Under BOSS % only works until timeout, @
later BEL can be used)

r/abgde<BS><BS><BS>g<BS>c<SP><SP>f¢/alphabet/
Result: r/abcdefg/alphabet/
only to be used when typed on devices
which has a backspace BS character.

used for correction of one character

without changing the rest of the line.

EDIT 7
(RCSL 31-D434)

Verify:
Normally the line is listed at end of each command sequence. This may
be omitted by the EDIT command

COMMENTS
vn Verify no

and reset by
vy Verify yes

Where:
The EDIT command

w
prints the number of the current source text line, e.g.

3 line.

Matching strings:
The characters 5P, NL and non-graphic characters are blind for
identification, i.e. they are skipped by the matching procedure
when met in the source string.

In case those characters are part of the search string, they

will take part in the matching.
Two strings are considered identical, if the source text has a
minimum the same number of SP and NL (and other blind characters)

as the search string, e.g.
v/a b/ak/

will accept

ab

a bd ~

but not

ab

Parity errors:
When a parity error is met in the source text, the message

parity error on <source>
is typed on current out, and edit continues and copies the character 26.

During verification and printing of a line, the character will be printed
as the character 38 (ampersand).
The character may be changed as any other symbol, by using the numerical
value of the character, e.g.

COMMENTS .

1./026a/,r/2262/e/,f The faulty character is replaced by g

8 EDIT
(RCSL 31=D434)

Error messages:

1. initial alarms
*x<*xedit end. no core

The current process is too small
*x*xedit end: param.

The parameters to the call of edit are not syntactically
correct.

*x*edit end: connect object.
The object document cannot be connected by the file processor. If

an output area should be created the alarm may indicate that
there is no room on the backing store.

**¥edit end: work area.
There is no room on the backing store for the work area needed for
intermediate storage of commands,

2. alarms concerning commmication with peripheral devices
***xed1t <command no.> connect source,

The source document can not be connected by the file processor.

Note: when the source command is used to select a source
outside the source given in the parameter list, the source document
is defined as empty.

x*xedit <command no.> source unknown.
The source is not found.

xxxedit <command no.> work area.
Not enough backing storage for output

*x**xedit <command no.> character
A character with a code greater than 127 has been input either from
the source document or the command document. ;

*xexedit <command no.> correction area
Not enough backing storage area for a long correction.

<command no.> is reset to 1 at start of each sequence.

Other errors in connection with the transfer of characters and blocks

are handled by the file processor and treated as hard errors.

EDIT
(RCSL 31-D434)

3. alarms caused by errouneous commands:
*«<*edit <command no.> syntax.

A syntax error in the command format is found.
*x*xedit <command no.> position not found

A line position cannot be found, or no match with the string in
a replace command can be obtained, The string looked for is printed.

*x<*edit <command no.> backspace error

If random access to the text is not allowed. i.e. when the
outfile is not backing storage, backspacing is only allowed a
limited number of lines. The alarm is given when backspacing is
attempted beyond this number of lines, which among other things
is dependent on process size.

<command no.> is reset to 1 at start of each sequence.

REFERENCES:
RCSL 55=D22 Editor 1
RCSL 55-D101 New version of the editor.

This page is

intentionally left blank!

END
(RCSL 31-D259)

END

Returns current input to the previous current input at the position where
it was left.

Call:

end

Function:
The function is the same as when an EM character is read by FP from
current input. The actual current input is unstacked, and FP continues
reading from the previous current input.

Storage Requirements:
1024 bytes plus space for FP.

Error Messages:
x¥end call

Left hand side in the call. The end action is still performed.

***end param <parameter>
Wrong parameter in the call. The end action is still performed.

This page is
intentionally left blank!

ENTRY 1
(RCSL 31-D426)

ENTRY

creates or changes a temporary catalog entry according to the parameters
in the call. The program is a supplement to the program SET and is used
when one wants to set some of the elements in the entry tail by copying
from the tails of other catalog entries.

Example:

Suppose that the catalog entry named ‘source’ contains the name of a
magtape reel in the document name field. By the FP-commands

filel=entry mto source O 1
file2=entry mto source 0 2
filej=entry mto source 0 3

one gets catalog entries 'filel', 'file2', 'file5' which serves as file
descriptors for file 1, 2 or 3 on the tape reel.

A catalog entry named ‘source! containing the name - say mt471100 = may
be created by a call of SET;

source = set mto mt#71100

Call:

<result name> = entry {<s> <kind { <s> <kit/doc name> { <s> <free param>
{<s> <file> Ue <block>, { <s> <contry>
{<s> <length> }! YEP PEE

<kind> <integer>
<kit/doc name>] ::= | <integerI> . <integer2>

<name> ;

<word>
<free paran> 23:= 4 <bytel>.<byte2>

d.<isodate>.<check>

<isodate> t= i fe <yymmad> }
QO is interpreted as now

<clock> s3= <hhmm may be omitted in case no entry

named d exists.

<file> <word>
<block> <bytel> . <byte2>
<contry>
<length>

<bytel> <name>

<word> 33= {<txteser>}

<byte2>

ENTRY
(RCSL 31-D426)

Function:
The parameters are interpreted as described below yielding the wanted

entry tail, From this point the program continues exactly as the pro-

gram SET.

Parameters

Rind:
<integer>: The value is placed in the tail.

<integer1> . <integer2>: The value <integer1> shift 12 + <integer2>

is placed in the tail.

<name>: First the name is searched for in the table of mode-kind

abbrevations and if found here the value found is used. If not ~

found in the mode-kind table (see Utility Programs, part 1, Appendix)

it is searched for in the catalog and the kind of the entry found

is used.
Kit/doc name:

<integer>: The value is placed in the tail.

<integer1> . <integer2>: The value <integer1> shift 12 + <integer2>

is placed in the tail.

<name>: If the kind just found is the mode-kind bs (2048 shift 12 + 4)

the name itself is used in the tail. For all other kinds the name

is looked wp in the catalog and the kit/doe name in the tail of the

entry found is used.
The other parameters:

A parameter of the form <bytel> . <byte2> gives separate specifica-

tions of the two 12-bit bytes in the word.
<integer>: The value is placed in the tail as the word or byte in

question
<name>: The name is looked wp in the catalog and the value of the

word or byte in question in the entry tail found is used.

If the parameter list does not specify all of the tail, the rest of the

tail is set to zero.

Storage requirements:
15350 bytes plus Space for FP

Error messages:
exentry call

No left side in call of the program

x*entry param <parameter>

Parameter error in call of the program
*e*xentry <name> unknown

A parameter was searched in the catalog but not found.

ENTRY
(RCSL 31-D426)

**entry <result name> change kind impossible
A change of an area entry to a non-area entry or vice versa was at-
tempted.

entry <result name> change bs device impossible
A change of kit/doc name of an area entry was attempted.

***entry <result name> bs device unknown
The bs device specified was not found.

*e*xentry <result name> no resources
The resources of the job did not allow the wanted creation or change
of an entry.

*exentry <result name> entry in use
The entry could not be changed because another job was using it.

If any message appears no entry is created or changed.

This page is

intentionally left blank!

FINIS 1
(RCSL 31-D490)

FINIS

Finis terminates the job.

Call: es 4
finis { cutout. y }}

no }

Function:

The current output file is terminated (emptying of buffers etc.) and a
finis job message is send to the parent (the operating system), who is
then expected to remove the job.
If parameter output.no is specified, and the parent is boss, the finis
message will specify that output of primout is not wanted.

Storage Requirements:
1024 bytes plus Space for FP.

Error Messages:
etinis call

The program was called with a left hand side - the finis action is
still performed.

*exfinis param <parameter>
Erroneous parameter in the call - the finis action is still performed.

This page is

intentionally left blank!

HEAD
(RCSL 31-D435)

HEAD

Prints a number of form feeds and a page head containing the name of the
job and the date and clock.

Example: -
The output from two programs is separated in a nice way by calling HEAD
in between:

head 1
This command prints one form feed and a page head on current output.

head iso cpu

This command prints a page head with the date in iso form (i.e. year
month day), followed by the cpu time used by the job.

Call:
— 3

4 <s> <integer>
{ <out file> =| head f <s> cpu

° <s> iso|old

Functions
Tr an integer is given as parameter, that many form feeds are printed.
Next, one line consisting of job name, date and clock is printed. If an
outfile is specified this is used for the output, else the current out-
put file is used. Date in iso form is standard. The parameter old will

cause the date to be printed as day month year.

Storage requirements:
1024 bytes plus space for FP.

Error messages:
x*xnhead param <parameter>

Parameter error in the call. A page head is still output.

This page is
intentionally left blank!

HEADPUNCH
(RCSL 31-D436)

HEADPUNCH

The program punches a readable text pattern according to the
parameters. The same information is also written on current
output. -

Examples:

The FP-call:
headpunch

punches a textpattern consisting of: jobname, date and clock
headpunch data 2

punches the text pattern: data 2
headpunch in. textarea

punches a text pattem corresponding to the contents of textarea.

The FP-calls:
o top
head.
message tre
copy textprogram
oe
headpunch in. top
tpe=copy taxprogram

will cause the output to start with an optically readable text, e.g.
ta0 1977.03.22 11.12 tre taxprogram 7 segm. 12345 /678901.

Call:
4

headpunch { <parameter rist>} ~
c-)

in.<bs-area>
<parameter list> ::=]}<any sequence obeying the fp-syntax>

Function:
The text pattern is output on punch in tpn mode, and the text

is written on current output. Current output should not be punch.
If no parameters are specified, the output will be: jobname,

date and clock.
If the parameter is in.<bsearea> and the program succeeds to

connect to this area, the contents of this area is output until
a character=25 (EM) or >127 is found or until 120 characters have
been output. NL is punched as space.

In all other cases the parameter list is copied.

Storage requirements:

1556 bytes plus space for FP.

Error messages:

*xheadpunch call
Left hand side in the call of the program.

*xx*headpunch connect tpn
tpn cannot be connected. The program terminates.

This page is
intentionally left blank!

I
(RCSL 31-D340)

i
Selects a new file as current input. The former file may later be resumed

at the position where it was left (for instance by a call of END).

Example:

If we have the following FP-commands in a job file
i commdsi
i commds2

the first will cause FP to start reading from the file 'commds1'. When
this file is exhausted FP will return to the job file and read the next
call of I, which in turn causes FP to read commands from the file 'commds2',

EDIT reads the editorial commands from current input. The commands to EDIT
may be kept on a separate file 'editcomds' if the editing is done by the
following composite FP-commands:

the file 'editcomds' is connected
as current input file.

(i editcomds

Ww
e

w
e

w
e

W
o

w
o

newtext=edit oldtext call of EDIT

end) reselects the previous current
input file

The parentheses are essential here. If they were omitted FP would immediately
start reading from the file 'editcomds' instead of calling EDIT.
(The END command is not necessary if EDIT reads and accepts all of the
file 'editcomds', It ensures however that FP does not start reading
from 'editcomds!' ,)

Calls

i <s> <file name>

Function:

The current input file is stacked so that reading may be resumed later (when
the new file is exhausted or by a call of END). Next the specified file is
connected as current input.

I
(RCSL 31-D340)

Storage Requirements:
7024 bytes plus space for FP.

Error Messages:

xe*1 call
Left hand side in the call.

**x*1 param
Parameter error in the call.

***L <document name> <cause>
‘The specified file could not be connected for some reason which is explained

by <cause> as follows:

no resources forbidded by the parent (the operating system)
disconnected device disconnected
name unknown the file did not exist

kind illegal the file could not be used for input

reserved the file was used by another job

In case of any error FP forgets about all previous current input files and

returns to the primary input file (the job file).

IF 1
(RCSL 31-D262)

a

Makes the execution of the next FP-command conditioned by the values of
one (or several) mode bits. The condition may reflect the success of the
latest program executed as the ok and warning bits are set at program
end (or it may correspond to the mode bits as set by a call of the
program MODE).

Example:

Tf the translation of an Algol source program goes wrong, you want to do
the translation once more with listing of the program. If the translation
error is serious you want to terminate the run. Proceed as follows:

progi=algol text translate

if warning.yes if syntactical errors
progi=algol text list.yes then translate and list

Ww
e

No
o

Yo
o

W
o

W
o

if ok.no if serious errors
finis then terminate job
prog] 3 else execute the program

Call: 90
it {<s> <mode bit> . ves} }

<integer> _

ok

listing

<mode bit> ::= warning
error
pause
all

Function:
The next (possibly composite) FP-command is executed if each of the mode
bits mentioned in the parameter list has the specified value ‘yes’ or ‘no’.
If not, the next FP-conmand is skipped. The program IF does not change any
mode bit (even not the ok and warning bits) hence repeated questions may
be asked on the same mode bits by several succesive calls of IF.

= WARN. NE. fee iF wAel ne Yeo of Ff WARN. NE, WE iF MARMN, ves CA Oe A
E On - vo fon . . ‘ CSVRKY
(50 Rey y a SN NRG avew et Find j

—_——
FE iw is)

IF
(RCSL 31-D262)

Storage Requirements:

1024 bytes plus space for FP.

Error Messages:
eee call

Left hand side in the call - does not affect the function of the program.
***if param <parameter>

Wrong parameter in the call. The erroneous parameter is skipped and

the program continues with the next parameter.

JOB 1
(RCSL 31-D096)

JOB

Makes it possible to use tapes containing a BOSS job request in runs

directly under s.

Example:
Assume you have a paper tape punched like this:

job kl1l 1 841
t=algol trf
t trft
finis

If you type 'i trf£' on the console and load the tape there will be no errors
caused by double use of the tape reader as there would have been if 'job' was

not called.
If you run under BOSS and use the same paper tape as job file the text
‘job k11 1 841' will be read as a correct job request. The same paper tape
can, aS you see, be used both under BOSS and S,

Call:
job -<s> <parameter list>

<parameter list> may consist of any sequence of parameters obeying the FP-syntax.

Function:
JOB creates a working area of 100 segments on the backing storage and copies
current input to that area. When ‘end medium' is met, the area is cut to the
number of segments actually used and the current input medium is released.
Finally the area is connected as current input.

Storage requirements:
512 halfwords plus space for FP.

Error messages:

*xkk job create area result = <integer>
Impossible to create a working area of 100 segments. The integer is the
monitor result from create entry.

This page is

intentionally left blank!

KIT
(RCSL 31-D263)

Kir
Sends a mount disc message to the parent (the operating system) demanding
a disc kit with a specified name to be mounted on a specified disc unit

(cf. the BOSS2 Operators Manual ch. 3 and 5.3).

Example:

The FP-command
kit 12 dise5

asks for mounting of the disc kit “aise! on the disc wit with device
number 12,

Call:

kit <s> <device no> <s> <kit name>
where <device no> is an integer and <kit name> is a name,

Function:
Kmount kit message containing the device number and name specified is
sent to the parent.

Storage Requirements:
1550 bytes plus space for FP,

Error Messages:
*¥¥*KIt call

Left hand side in the call of kit.

*x**xkit <parameter list> parameter error
Parameter error in the call of kit.

*x**xkit <parameter list> not available

The kit specified by the kit name is not available for the job.

In case of any error no mount kit message is sent.

A

This page is

intentionally left blank!

LABEL 1
(RCSL 31-D467)

LABEL

Outputs a boss label on file O of the specified magnetic tape.

Example:

The fp-call:
label mto mt123456 p 789012

outputs a boss label on mti23456.

If you have a filedescriptor, e.g.:
f=set mto mb123456 0 1

the call:
label f f p 789012

will have the same effect.

Calls
4

label <modekind> <mtname> { <access> <project mumber> f.

mto
mte

nrz
nrze
<name of filedescriptor>

<modekind>:

<mtname> ::=/<name of magnetic tape> j
<name of filedescriptor>

P
<access> ::=j7TFr

W

<project number> ::= <integer, max. 999999>

Name of magnetic tape must start with mt followed by exactly 6 characters,

the first 2 may be letters or digits, 4 last must be digits.

Function:
Tiabel in the format accepted by boss (cf. BOSS2 Users Manual, ch. 5.3)

will be written in file 0 of the tape. Next, two tapemarks are written

(i.e. an empty file 1), and approx. 5 inches of tape is erased.

Notice: this means that the first part of the previous contents of the

tape will unconditionally be destroyed.

2 LABEL
(RCSL 31-D467)

Error messags:
¥eelabel, call

Left hand parameter in the call

x**label, <parameter> param
Tllegal parameter in the call

**label, <parameter> modekind error
Filedescriptor does not describe a magnetic tape.

**%label, <modekind param> unknown

Modekind does not describe mto, mte, nrz, nrze or a filedescriptor.

x*label, <parameter> illegal tapename

Tapename is illegal.
x*label, <parameter> illegal access kind

Access must be p, r og w
xexlabel, project number missing

If access is specified, a project number is demanded

x#label, <parameter> illegal project number

Project number must be max. 999999

***label, too many parameters
The program accepts max. 4 parameters

**label, parameter missing
The program demands at least 2 parameters.

#xlabel, connect tape unsuccessful

Hard error.

LOAD 1
(RCSL 31-D491)

LOAD
ee

The program can input catalog entries and ps-files from magnetic tape

files generated by the program SAVE. -

Examples

All catalog entries and bs-files saved on mt#71100 file 1 are reestab-

lished by the FP-command:

load mt+71100.1

In case: t=set mto mt71100 O 1
the same is obtained by the command:

load t.0

All catalog entries and bs-files of scope temp plus the entry by name

pap are loaded by the FP-command:

load mt+71100.1 scope.temp pap

See also: Further examples.

Calls
4

{ <outfile>= }
) 4

load { <nountparam>.}, <tape parameter> <special param> <load spec>

<mountparam> ::= { mountspec.<deviceno>.} {<nodexina>.} {release {res} i |
no

9

<tape parameter> ::= <tepename>.<fileno>{.<tapename for next volumen>}

<tapename> 3::= | <ftledeseriptor describing a magnetic tape file>}

<name of magnetic tape>

<fileno> ::=¢ last i

<integer>

check yes
survey |.no

<special param> ::=< load
eyes

list ¢ .no

name

<modifiers> }
<load spec> ::= 4 <kit spec>

<entry spec>

changekit.all.<bs device spec>

oo

<modifiers> “= Sergi device spec>.<bs device sree

newscope.<newscope spec> 0

2 LOAD
(RCSL 31-D491)

<kit spec> ::= kit.<bs device spec>

<bs device name>
main

<bs device spec> ::=) 0
1

cS ¢]
<name>

<name>.Scope.<scope spec>
<entry spec> ::= { docname.<docname>

docname .<docname>.scope.<scope spec>

scope.<scope spec> °

Function:

The contents of the dump label (see SAVE) is checked and listed on current
out.

Next the program loads from the magnetic tape all the entries and bs-files
specified by <load spec>. If <entry spec> is empty all the entries are
loaded.

Each entry is created with scope and <bs device spec> as defined in the
entry record. For area entries <bs device spec> defines the kit name for
non-area entries, the kit into which the entry is permanented.

Function, mountparam

If no mountparam is specified, the program will use a standard magtape
station, modekind=mto (or in case mtname is a filedescriptor, then -the
modekind of this filedescriptor) and the tape will be released at end of
program.

€.8. mountspec.10.nrz.release.no,.
mountspec.10.

nYZo

release.no.

Function, tapeparameter.

In case mtname is a filedescriptor, filenumber will be understood
relative to the filenumber in the filedescriptor. The modekind of the
filedescriptor will be used.

if <fileno>=last, the file in front of the first file which does not
contain a version label is loaded. This parameter gives a longer run time
than an integer parameter.

Tapenames of following volumes is only necessary in case the following
volume has a name different from what is stated in the continuation block.
This may be the case if saving was performed with 2 parallel tapes.

LOAD 3

(RCSL 31-D491)

Function, special param

check. ves} Std. is check.yes.

no If check.no, then the program continues, if the mtname

or the fileno in the dumplabel is wrong. Also when the

dumplabel is a continuation label.

survey. ves} Std. is survey.no

no If survey.yes, then all entries from file 1 to <fileno>

are listed but not loaded. ;

load. yes Std. is load.yes, the specified entries are loaded.

no If load.no, then all specified entries in the file are

listed but not loaded.

yes Std. is list.yes, all loaded entries are listed.

list.{ no If list.no, the entries are not listed.

name If list.name, then only the names of the entries are

listed.

If an outfile is specified, this file is used for output,

otherwise current output file is used.

Function, modifiers

If <bs device spec> = 0, the area is - if possible - created on a drum,

otherwise on a disc.

If <bs device spec> = 1, the area is - if possible - created on a disc,

otherwise on a drum.

If <bs device spec> = main, the area is created on the bs-device containing

the main catalog. ~

If <bs device spec> = a name < main, the area is created on the ps-device

with this name.

changekit.<saved kit>.<loaded kit>

This parameter is valid for the total call.

Each entry, which on the tape is described as an

entry on <saved kit> will be loaded on <loaded kit>.

C.Ze changekit.disc1.disc2

changekit.all.<loaded kit>
as above, except all entries specified, no matter their
document name, are loaded on <loaded kit>.

newscope.<newscope spec>

Std. is newscope.std, meaning no change in scope.

This parameter is valid for the following entry specifi-

cations. They will all be created with <newscope spec>.

<newscope spec> ::= temp [login |user |project | std

@.2. newscope. temp

Function, kit spec

General about <bs device spec>, see modifiers.

kit.<saved kit> Std. is main, meaning all devices.

Only entries which in the tape is described as addressing

this kit will be loaded (or entries which after a changekit

parameter is addressing this kit). The parameter is

valid for all following <entry spec> until a new kit

parameter is specified. If a kit parameter specifies a not

LOAD
(RCSL 31-D491)

connected kit, a changekit parameter, changing this kit
to a connected kit name, must be specified earlier in the
parameter list.
Gogo Kit.disc2

Function, entry spec

<scope spec> ::= temp [login [user |project |own |system [perm |all

<name> All entries of the name are loaded.

scope .<Scope spec>

All entries with this scope are loaded.

<name>.Scope.<scope spec>

An entry of specified name and scope is loaded.

docname .<docname>
All entries with specified docname (maybe kitname) are
loaded

docname .<docname>.scope.<scope spec>
All entries with specified docname (maybe kitname) and
specified scope are loaded.

Tape format: see SAVE.

Load of systemdump.

Entries which are saved at scope.perm (or scope.all) may be loaded in
a boss job. Entries with bases corresponding to scopes temp, login and user
will be loaded if their name is specified. For sake of security it is decided
that entries of scope project mst be specified by <name>.scope.project.

Storage requirements:
12000 bytes.

Error messages;

***load: error in tapeparam <erroneous and following parameters>
Parameter error in the call. The program terminates.

**load: error in modekind spec.
<tapename> describes an entry of kind 18, but mode is neither 0 nor 4,

*x*load: error in param <erroneous and following parameters>

Parameter error in the call. The program terminates.
*x*load param, kitnames exceeded

The program does not accept more than 10 bs-device names different

from the bs-devices connected. The program terminates,
Remedy: two calls of load.

*xx*load: no dumplabel on file <fileno>
The Pile contains no dumplabel. The program terminates,

LOAD
(RCSL 31-D491)

*x**load: dumplabel <specification>
Error in the specified part of the dumplabel. The program terminates.

<name> entry inconsistent
<name> code inconsistent

The date of an external procedure is incorrectly described, either in
the catalog entry or in the code. The entry is loaded.

<name> bad tape: <pattern> ;
Hard error during run. The pattern shows the status word.

<name> bad tape: <pattern> Dblocklength = <blocklength>
Blocklength error on the tape.

<name> bad tape, blocks skipped <skipped blocks>
The blocks could not be interpreted by the program.

<name> bad tape, segm. loaded <segments>
The segments loaded do not correspond to the number of segments
specified in the entry record.

bad tape, entry no. <d> missing
<name> bad tape, segm. no. <d> missing
<name> monitor <co result <y> <explanation>

The call of the algol procedure monitor with the parameter <oo gave
the unwanted result <y>.
<explanation>:

device not mounted
process base error
no work resources
no perm resources
entry in use
impossible (catalog error)

xexnot found <entry spec>
<entry spec> was not found on the tape.

**xLload not ok <d>

This message occurs at program exit in case of any error. ~
<d> is the number of errors,

Further examples:

1) The programmer wants to load the entries and bs-files pr1 and pr2 from a
saved file, which contains several other entries, furthermore he wants to
change the scope of pr2 to user:

load mt71100.2 prl newscope.user pr2

2) The programmer wants to load the entry named pip and all his entries
which belong to the catalog on kit5, from a file which contains other entries

as well:

load mt471100.3 pip kit.kit5 scope.own

3) The programmer wants to check the contents of mt+71100

load mt71100.last survey.yes

LOAD
(RCSL 31-D491)

4) The programmer wants to load file 8 but gets the output

dump mth71100 006 vers. 130473.12 s=1 wunhappydays
***load dumplabel fileno

at repeated calls. This suggests that the start of the magnetic tape has
been overwritten and probably the wanted file will be found on file 10.
Try the FP-command:

load mt#71100.10 check.no load no

LOOKUP 1
(RCSL 31-D427)

LOOKUP

Finds and lists catalog entries with specified name.

Example:
The FP command

lookup pip
finds and lists the entries with name 'pip' and prints something like:
pip =set 16 disc d.770523.1021 0000 $3 temp

3 92170 -56 -56
The first line gives the tail and the scope of the entry, the second

line gives the entry head.

Call
“{<outfile> =} Lookup {<s> <name> 7

Function:
Each name in the list is searched in the catalog and all entries with
this name which may be accessed by the job are listed. If an <outfile>
is present this file is used for the output -: otherwise the current out-

put file is used.

Format of the output:
Each catalog entry is listed as two lines:
<name> =set <entry tail> 3 <scope spec>

3 <entry head>

The name and entry tail appear exactly as in a call of the program SET
for creating the entry. 7
The scope specification has the form

4
<scope> { .<device name>}

where <scope> is one of temp, login, user, project, system or *** (the
last one means scope undefined) and where a <device name> tells that the
entry is permanented into the auxiliary catalog on this device.

2 LOOKUP
(RCSL 31-D427)

The entry head is output as the five integers

<first slice> <name key> <catalog key> <interval lower> <interval upper>

as described in the manuals for the monitor (ref. 2 and 3).

Storage requirements:
2500 bytes plus space for FP,

Error messages:

¥**€LOOKkUp connect <outfile>
The specified output file could not be connected - current output is

used instead,

***lLookup param <parameter>

Parameter error. The remainder of the parameter list is skipped.
***Lookup <name> unknown

No entries with the given name was found. The program continues with
the next name in the list.

***lLookup <name> no resources

The program has terminated because the job has too few area

processes,

Storage requirements:

MESSAGE
(RCSL 31-D2k8)

MESSAGE

May be used (together with HEAD) to make nice headings on the output.
The parameter list in the call of message is simply output when the pro-
gram is called.

Example:

The FP command
message program run no.l

outputs the text , program run no.1 , on current output.

Call: 4

[Routfile> =%, message <s> <parameter list>
<parameter List> may consist of any sequence of parameters obeying the
FP-syntax. .

Function:

The parameterlist is copied on <outfile> or current output (if no out-
file is specified). The output is terminated by a NL character.

512 bytes plus space for FP.

Error messages:
*x*xxmessage connect <outfile>

The specified output file could not be connected. Current output is

used instead.

This page is

intentionally left blank!

MODE
(RCSL 31-D441)

MODE

Changes the FP mode bits specified in the call and may thereby change

the working cycle of FP.

Examples

The FP-command

mode list.yes
causes FP to change to list mode i.e. each FP-command is listed on
current output just before execution.

The FP-command:
mode what

causes all modebits to be listed.

Call: a

<s> what yes
mode }<s> <mode bit>. } no ,

<integer>
listing
warning

<mode bit> ::={ ok
error
pause
list

all

The integer values of the mode bit names are as follows:

listing=15, warning=17, ok=18, error=19, pause=20, list=23. Bit 16-is
used internally by FP.

The mode bits are explained in Utility Programs, part one, ch.

42.

Function:
The FP mode bits are changed as specified in the call.

Storage Requirements:

1024 bytes plus space for FP.

Error Messages:

*eemode call .

Left hand side in the call - does not affect the function of the

program.

*xexmode param <parameter>
Wrong parameter in the call. The parameter is skipped and the pro-

gram continues with the next parameter.

This page is

intentionally left blank!

MOUNT
(RCSL 31-D265)

MOUNT

Sends a mount message to the parent (the operating system) who is then

expected to ask the operator to mount the tape reel (cf. the BOSS2 User

Manual, ch. 6.1). The program does not await the mounting, unless
there is asked for mounting of an unspecified worktape.

Example:

When a program needs a magnetic tape reel which is not mounted, the

mounting is automatically requested and the job waits for it. The scheduling

of a job which uses several tape reels is however improved if the tape reels

are requested right at the beginning of the job, i.e. if the tape reels

named ‘mt280007', 'mt280008" and ‘mt280009’ are needed during the job one may
start the job file with the FP-commands

mount mt280007
mount mt280008
‘mount mt280009

If p7, pO, p9 are names for files on these magtapes, e.g.
pf=set mto mt280007 0 3
po=set mto mt280008 0 1
po=set mto mt280009 0 2

the same result is obtained by the FP-commands: ~
mount p7
mount po
mount p9

An unspecified worktape is requested as follows:

workfile=set mto 0 0 1

mount workfile

This call of MOUNT asks for mounting of a worktape and places the name
of the magtape reel in the entry. File number 1 on the tape is now

available under the name workfile!,

The worktape is released and made available to other users when the job

terminates or if the tape is released during the job. One may suspend
the use of the worktape by a SUSPEND command (cf. the description of
SUSPEND) . ;

Call:

mount <s> <name>

2 MOUNT
(RCSL 31-D265)

Function:
Amount message is sent to the parent.
The name in the message is found as follows: The name is looked up in
the catalog. If an entry describing a magnetic tape file (kind=18) is
found and if this entry if not protected (e.g. not of scope system) the
document name in the entry is used. Otherwise the name specified is
used. The document name in the entry may be empty (zero). In this
ease a worktape is mounted and the name of the worktape placed as

document name in the entry.

Storage Requirements:
1550 bytes plus space for FP,

Error Messages:
“mount call

Left hand side in call of mount.

***mount <parameter list> parameter error
Parameter error in call of the program.

In case of any error no mount message is sent.

MOUNTSPEC
(RCSL 31-D266)

MOUNTSPEC

Sends a mount special message to the parent (the operating system) limiting
a later mounting of the specified magnetic tape reel to the station with
the specified device no. (cf. the BOSS2 User Manual ch. 6.1).

Example:
Tf the installation has some standard magnetic tape stations (say 9-track)
and a non standard (say 7-track) with device number 6 and one has a

7-track tape reel named mt123456 the FP-command
mountspec 6 mt123456

ensures, that BOSS will accept the reel only when mounted on station no. 6.
if loin! is the name of a file on a magtape e.g.

pip=set mto mt123456 0 7
the same result is obtained by the FP-conmmand

mountspec 6 pip

Call:
mountspec <s> <device no> <s> <name>

where <device no> is an integer.

-Function:

The name is looked up in the catalog. If an entry describing a magnetic

tape file (kind=18) is found and if this entry is not protected (e.g.
not of scope system) the document name in the entry is used. Otherwise

the name specified is used. Next a mount special message containing

the specified device number and the name is sent to the parent. —

Storage Requirements:

1550 bytes plus space for FP,

Error Messages:

**x*¥mountspec call

Left hand side in the call of the program.

**xmountspec <parameter list> parameter error

Parameter error in the call of the program.

***emountspec <parameter list> tape name missing

The entry specified has a zero document name.

In case of any error no mountspec message is sent.

This page is

intentionally left blank!

MOVE
(RCSL 31-D438)

MOVE

Performs blockwise copying of files on backing storage or magnetic tape.

Examples: -
The content of the backing storage area with name , text4 , is moved to
file 5 on the magnetic tape reel named , mt314711 , by the FP commands:

file5S=set mto mt314711 0 5
file5=move text4

Files number 3, 4, 5, 6 on the magtape , mt312223 , will be copied to the
magnetic tape , mt312224 » starting at file number 7 by the FP commands

fromfile=set mto mt312223 0 3
tofile=set mto mt31222h 0 7
tofile=smove fromfile.4

Call:
The program may be called in two ways depending on the kind of the left

hand side: 4
<bs-file> = move i message.yest, {ps-file> <mt-file>}

or 4 Cy
<mt-file> = move {message.yes}, {<bs-file> | <ut-file-set>}.

<bs-file> must be a catalog entry describing a file on the backing sto-
rage.
<mt-file> mist be a catalog entry describing a file on a magnetic tape.

<mt-file-set> ::= <mt-file> {.<no-of-files> {.<skip>}? }'
<no-of-files> is an integer defining how many files to copy. ;
<skip> is an integer defining how many files to skip before the copying.

Function:

Move pertorms blockwise copying of files on backing storage or magnetic

tape.

The parameter message.yes will cause output of bytes and checksum.

If the output file specifies magnetic tape, as many files as specified
in the input parameters will be written, separated by tape marks.

MOVE
(RCSL 31-D438)

If the files on both sides of the move-call specifies magnetic tape, the

block lengths of the input file(s) are kept on the output file(s).

If the output file describes a bs-area, the length of the area will be

decreased corresponding to its new contents. If the input file describes

a bS-area too, the last 5 words of the catalog entry tail will be inser-~

ted in the output tail.

Storage requirements:
The core storage required for move is 2850 bytes plus the space for FP.

When copying from a magnetic tape with block lengths greater than 512

bytes, more core storage will be needed. In a process with 10000 bytes

of core storage, the maximum block length is about 1600 bytes.

Error messages:

xeemove: no core
The process area is too small to contain the input and output buffers.

**xmove call
No left hand side is specified in the call

xexmove param: <parameter list>

An input specification has an erroneous format. The specification is

shown as <parameter list>. *)

*exmoves input kind
*xemove: output kind ~

The specified file is neither a bs-file nor a mt-file. +)

**move: connect input
xemoves connect output

It has not been possible to connect an input or an output file.

*move: too many parameters
It is attempted to copy more than one file to a bs-file.

*x*xmove: change error
It is not possible to change the catalog entry describing the output

bs-file. : :

*) The parameters will be checked and handled one by one. Therefore one

or more files may have been copied even if the program is terminated by

an alarm.

MOVE 3
(RCSL 31-D438)

Further examples of use:
Tn the following tne catalog entries mt1 and mt2 describe file number one

on two magnetic tapes, and bs1, bs2 --- describe areas on the backing

storage.

move mt1

causes the alarm:

*eemove call
because no output file is specified

mtl = move bs1 bs2 trf
The areas bs1 and bs2 will be moved to file number 1 and 2 on the
tape the last parameter causes the alarm:

*** move: input kind

mt1 = move mt2.2 bs} mt2.2.3
After this call, the tape described by mti will contain:

file no contents from

unchanged
mt2 file 1
mt2 file 2
bs3

mt2 file 4
mt2 file 5 N

I
E

ul

pO

|
©

mti = move mt2.1.1.1

causes the alarm:
*xexmove param: mt2.1.161

because of the erroneous parameter, and no copying is performed.

This page is

intentionally left blank!

NEWJOB 1
(RCSL 31-D341)

NEWJOB

Sends a newjob message to the parent (the operating system) demanding the
specified file enrolled as job file in a new off line job i.e. in this
way a new job is created. The actual job continues with the next FP-command.
Further details are found in section 1.3, newjob and replacejob,in the
BOSS2 User Manual.

Call:

~Newjob <s> <file name> { <name of remote batch printer>}"
where <file name> is a name of a permanent job file.

<name of remote batch printer> ::= <name of max 6 char>

Function:
A newjob message containing the specified name(s) is sent to the parent,

Storage Requirements:

1p20 bytes plus space for FP.

Error Messages:
*exnewjob call

Left hand side in the call of the program.

*newjob <parameter list> parameter error
Parameter error in the call of the program.

**xnewjob <filename> <error cause>
Error during creation of the new job. The cause may be any of the
following:

job queue full
job file not permanent
job file unknown
job file unreadable
user index too large
illegal identification
user index conflict
job file too long
temp claim exceeded
option unknown
param error at job
Syntax error at job
line too long
attention status at remote batch terminal
device unknown
device not printer
parent device disconnected

remote batch malfunction
In case of any error no new job is created.

This page is

intentionally left blank!

NEXTFILE
(RCSL 31-D238)

NEXTFILE

Adds one to the file number in the tails of the catalog entries specified.

Example:

Tf the catalog entries ‘to’ and ‘from! describe file 3 of the magtape
‘mt312223' and file 6 of the magtape ‘'mt31222h', respectively, the FP

command

nextfile to from

will change them to describe file h and 7 of the tapes in question.

Calls:)

nextfile { <s> <name>},

Function:
For each name in the list a catalog lookup is made and the file number in

the tail of the entry is increased by one.

Storage requirements:

1550 bytes plus Space for FP.

Error messages:
wemextrile call

Left hand side in the call. The program terminates without further

actions.

**enextfile param <parameter>
Parameter error. The faulty parameter is skipped and the program

continues with the next parameter.
xmextfile <name> unknown

No entry with the specified name was found. The program continues

with the next parameter.
*enextfile <name> protected

The job was not allowed to change the tail in the entry found. The

program continues with the next parameter.

This page is

intentionally left blank!

0
(RCSL 31-D342)

Oo

Selects a new file as current output.

Example:

The text output from an algol translation may be put on a special file in
the following way:

o list 3 the file 'list' is chosen as current output
program=algol text list.yes $3 translation of the algol program
oc current output is shifted back to the

w
e

w
e

primary output file

Note, that in case of larger programs, the area 'list' may be too small
and unable to be extended. Remedy: set a sufficiently larger area before
the call of the program '.' e.g, list=set 150.

Calls:

Oo <s> <file>

Function:

The actual use of the current output file is terminated (emptying of buffers)
and the file given as parameter is connected as current output.
There is no stacking and unstacking of previous used output files as for
current input files.
If <file> is not found in the catalog an area with this name on the backing
storage (preferably on a disc) is created and connected as current output.
The name 'c' - however - is used for the primary output file and is treated
in the following way. Whenever the program 0 connects current output to 'c!
(either because of the command 'o c! or because of some error) the following
is done: If a catalog entry named 'c! is present, the file described by this
entry is connected. If the catalog entry is not present it is created as
describing the primary output file and current output is connected to the file,

Storage Requirements:

1024 bytes plus space for FP.

2 9)
(RCSL 31-D342)

Error Messages:

**¥*O call
Left hand side in the call.

x**O param <param>
Parameter error in the call.

***O <document name> <cause>

The file could not be connected. The reason is explained by <cause>:
no resources the job resources are exceeded

disconnected the device is disconnected
kind illegal the Pile could not be used for output

reserved the file was used by another job.

In case of any error the primary output file is connected as current output
file °

ONLINE
(RCSL 31-D269)

ONLINE

Turns the job into the conversational mode where the current input to the

job is typed on the terminal at run time. A conversational job is very

resource demanding and the user must have a special option in the user

catalog (cf. the BOSS User Manual ch. 3.2).

Call:

online

Function:
The process ‘terminal’ is connected as current input and selected as a new

primary input.

Contrary to the FP-command
i term

the FP-command
online

has the advantage that an FP syntax error will not return current input to
the job file.

Storage Requirements:

512 bytes plus space for FP.

Error Messages:

***online connect terminal }
The job does not have the option ' online yes

This page is

intentionally left blank!

OPCOMM 1
(RCSL 31-D270)

OPCOMM

Sends the parameter list in the call as a print message to the parent
(the operating system) with request for an answer from the operator and
types the answer (when received) on current output.

Example:
Zuser with initials hsr and project number 47 is placed at a terminal
and needs a new project tape reel. The labeling of the reel and an answer
back. telling the reel name may be requested by the FP-commands :

opmess label new p 47 reel
opeomm return name of reel

This causes the following lines to appear (among the other messages from
BOSS) on the main console

message hsrO label new p 47 reel
pause hsrO return name of reel

When the operator has labeled the reel - say with the name "t271536- he
returns the name to hsr by typing

answer hsrO mt271536
on the main console.
In the meantime OPCOMM has been waiting for the answer. The answer is now
output as the text

*operator answer: mt271536 0
on current output (for hsr0).

Call:

opcomm <s><parameter list>
The parameter list may consist of any sequence obeying the FP syntax.

Function:
The first 21 characters (if that many are present) in the parameter list
are packed as a print message and sent to the parent.

The answer is then awaited and when it arrives printed on current output
in the form

*operator answer: <name> <integer>
where <name> and <integer> are the answer as typed by the operator,

2 OPCOMM
(RCSL 31-D270)

Storage Requirements:

1530 bytes plus space for FP,
Error Messages:
*x*xopcomm call

Left hand side in call of the program. No message is sent and no
waiting is performed.

OPMESS 1
(RCSL 31-D271)

OPMESS

Sends the parameter list in the call as a print message to the parent

(the operating system), If the operating system is BOSS the message is
typed on the main console.

Example:

In example of the use is given in the description of the program OPCOMM,

Call:

opmess <s> <parameter list>
The parameter list may consist of any sequence of parameters obeying
the FP syntax,

Function:

The first 21 characters (if that many are present) in the parameter list
are packed as a print message and sent to the parent,

Storage Requirements:

15250 bytes plus space for FP,

Error Message:
***opmess call

Left hand side in call of the program. No message is sent.

This page is
intentionally left blank!

PERMANENT 1
(RCSL 31-D304)

PERMANENT

The program changes the catalog key of the specified entry to the speci-

fied integer.

Example:

The fp-call:

permanent pip.3

will change the catalog key of the entry pip to 3. Normally the program

Scope should be used.

Call:

3

permanent { <s><name>.<integer> }

Function:

For each name a catalog lookup is made and the catalog key of the en-

try found is changed to the specified vaiue. This may cause an illegal

scope.

Storage requirements:

2048 bytes plus space for FP.

Error messages:

*x**permanent call

Left hand side in the call. The program terminates

xx*¥permanent param <parameter>

Parameter error in the call. The faulty parameter is not treated

***permanent <name> unknown

No entry with the specified name was found
¥x¥permmanent <name> protected

The job was not allowed to change the entry key of the specified entry.

*xe*permanent <name> no resources

The job has no permanent resources left on the relevant kit.

***permanent <name> error

Catalog or hard error.

This page is

intentionally left blank!

PRINT
(RCSL 31-D492)

PRINT

Prints from a backing storage area or directly from the core store with

specified formats. The program is primarily intended for printing of

dumped core areas.

Example:
The core of the job process has been dumped into a backing storage area

named 'image' (under BOSS this is for instance provoked by the FP

command ‘mode pause.yes' just before the call of the program we are g0-

ing to debug).
By the FP command

print image 0.14 1536.1600
the words mumber 0 to 14 and 1536 to 1600 of the area are printed on

current output as integers, halfwords and code. (The words 0 to 14 con-

tains the start address of the core area and the registers at the time of

the dump).
If the area is described with contents 7 (dumped core areas should al-

ways have this contents. When BOSS makes a core dump the contents is set

to 7) the output is numbered with absolute addresses (as the program was

placed in core when the dump was made). One can select the part to be

printed by specifying such absolute addresses: The command

print image 45236.4u5344.a
peshi the part of the dump originating from the core addresses 45236 to

5 Oto

Call: 4 eo
T<out file> = 3 ° print <source> { <format list> <field>}

<bs area name>

<source> ::= 9 <intermnal process name>

<integer>

integer

word

half
abshalf

char
<format list> 3::= \ octal

code

text

pits <pattern>

all
\ words . <words per line 5

2 PRINT
(RCSL 31-D492) @

Lo]

<pattern> ::= f. <first bit> . last pit},

i ‘
.c.<center> |

= J <from - to>j .r |
0a °

<from addr>.<to addr>.<from block>

<from addr>.<to addr>.<from block>.<to block> |

<from addr>

<from = to> ::=
<from addr>.<to addr>

<words per line>, <first bit>, <last bit>, <center>, <from addr>,

<field> ee

oo

<to addr>, <from block> and <to block> are integers.

Function: @

The format list is initialized to all (see below).

The parameter list is scanned and the printing source is determined. If

<source> is the name of an area on the backing storage PRINT prints from

this area. If <source> is the name of an internal process PRINT prints

from core with the start address of the process as base address. If

<source> is an integer the printing takes place from core with this integer

as base address,

The program enters the following cycle until the end of the parameter list:

1) When a <format list> is recognised the printing format is changed

accordingly.

2) When a <field> is recognized the printing is activated. The prin-

ting is done with the current format.

The output occurs on <outfile> if specified - otherwise on eurrent out-

put.

Format list: @

The elements of a <format list> defines how the current word of the ac-

tual field appears in the output:

integer current word is printed as a signed integer.

word current word is printed as a signed integer.

half current word is printed as two signed integers, being the

two halfwords of the word.

abshalf current word is printed as two positive integers, peing

the two halfwords of the word.

char current word is printed as three unsigned integers i.e.

the iso values of a text is printed.

octal current word and address is printed as octal. If code is

also specified, the final address is printed as octal.

PRINT 3
(RCSL 31-D492)

code current word is printed as an instruction in symbolic form.

If the instruction includes relative addressing, the out-

put is supplied with the corresponding final address ac-

cording to the numbering of words:

final address = displacement + number of current word

This final address is printed immediately after the dis-

placement.

text current word is printed as 3 ISO characters, non-graphic

characters replaced by SP.
bits.<pattern> current word is printed as a number of unsigned integers

according to <pattern>. Denoting the bits from 0 to 23,

each integer is the value of the bit group defined by

<first bit> and <last bit>. The value of <pattern> is ini-

tialized to:

O.Oeloly eee 9 22.22.25.23

which causes the current word to the printed as 24 integers,

peing the value of each bit of the word.

words.<words per line> determines the number of words to be printed in

each line. The line is headed by an integer corresponding

to the numbering of words, as explained above. The value of

<words per line> is initialized to 1.

all is equivalent to the <format list> integer pits.0.11 code

If a <format list> consists of more elements, the current word is prin-

ted in all forms, as defined by the elements of this list. The different

forms occur in a certain order in the output, according to the following

sequence: :

<text> <integers, halfwords and bit patterns> <instruction>$;

<integers, halfwords and bit patterns> are printed in the same order as the

corresponding elements in <format list>.

The <format list> is initialized to:
integer bits.0.11 code

which causes current word to be printed in the 3 forms:

<integer> <left-most halfword> <instruction>.

Field specification:

The limits for the printing are determined from the integers <from

addr> and <to addr> by rules depending on the other part of the field

specification. (A <from addr> alone means <from addr>.<from addr>.)

If only <from addr> and <to addr> are in the field specification they

give the limits relative to the start of the packing storage area or to

the base address for the core area.

4 PRINT
(RCSL 31-D492)

Specification of <from block> and <to block> is significant only for bs

areas. The area is considered divided into segments (each on 512 bytes)

and from each segment with segment number between <from block> and <to

plock> (<from block> alone means just this single block) the part of the

segment determined by <from addr> and <to addr> is printed.

The modifier .i (indirect addressing) causes the contents of the words

specified by <from addr> and <to addr> to be interpreted as absolute ad-

dresses and used as limits. The values <from addr> and <to addr> are in-

terpreted relative to the base address. (If the source is a bs area it

should have contents = 7.)

The modifier .c.<center> (indirect addressing around a center): The contents

of the word with relative address <center> (relative to the area start or

the base address) is interpreted as an absolute address and taken as center

for printing and the printing limits becomes <from addr> below the center

and <to addr> above the center. (If the source is a bs area it should have

contents = 7).

In case of the modifier .a (absolute addressing) the printing limits are

the integers <from addr> and <to addr> taken as absolute addresses. (A

bs area source should have contents = 7).

The modifier .r (relative addresses in output) belongs in a way to the

-format specification. It causes the absolute addresses used as numbering

in the output to be replaced by relative addresses.

Storage requirements:

The core store Space needed by PRINT is approx. 2048 bytes plus the

space needed by FP.

Error messages;

“eprint param <erroneous parameters>

parameter error in call of PRINT. If the parameters are part of a

syntax element, this has no effect.

**print nunbering

The field specification attempt to define words outside area.

x**print <name> area

area process cannot be created or trouble during input data transfer.

*xeeprint connect out

output file cannot be connected.

PRINT 5
(RCSL 31-D492)

x <name> unknown

<name> is neither name of a catalog entry or an internal process,

*x<*print core size
No core space for segment buffers; at most 512 halfwords more are needed.

In the first two cases PRINT continues with the next parameter in the list.

In the other cases PRINT terminates.

Further Examples:

print sin
prints the total area sin as integer bits.0.11 code

print datas integer 0.510.1
prints the second segment of datas as integers

print algol text all 10.20.0.4

prints halfwords 10 to 20 on the first 5 segments of algol as

text integer bits.0.11 code

print image 0.14 16.10.c.12 1594.1604 1614.1616 1598.1582.4
prints relevant parts after break of algol program

(see RCSL No. 31-D199,.Code Procedures and Run Time Organization

of Algol Programs). Corrections in Running System may change

these numbers in which case a correction for above manual will

be issued.

0) first address

2 wO

k wil
6 w2
8 w3
10 exeption register

12 instruction counter

14 interrupt cause

16.10.c.12 8 words before and 5 words after breakpoint

1594 Uv
1596 UW
1598 lastused
1600 last of program
1602 first of program
1604 segment table base

1614 saved stack ref

1616 saved w3

1598.1582.i total stack

. This page is

intentionally left blank!

PROCSURVEY 1
(RCSL 31-D391)

PROCSURVEY

Lists types of procedures and their parameters, as well as the

procedure date.

Example:

The FP-conmand:

procsurvey invar in

will produce the output:

integer procedure invar: 4.760830. 1405
param 1: zone

zone in, rs entry no.: 26

Function:

Each name is looked up in the catalog, if several entries with the

same name exists, only the one with the smallest scope will be listed.

Procedures and standard variables will be listed, as above, other entry

types will cause an error message.

Storage Requirements:
2500 bytes plus space for FP.

Error messages:

*<*procsurvey call
Left hand side in the call.

*x*procsurvey <integer> param
Integer parameter.

*x**xprocsurvey <name> unknown
The name was not found in the catalog.

*x<*procsurvey <name> connect error
The area could not be connected.

xxxprocsurvey <name> not procedure
The name does not describe a procedure or an algol std. identifier.

*xe*procsurvey <name> entry inconsistent
The start external list in the entry description,

contains a byte>500, i.e. the entry does not describe a legal procedure.

*xeprocsurvey <name> code inconsistent
Illegal contents of the internal list in the code body.

In case of error, procsurvey continues after the error message.

This page is

intentionally left blank!

RELEASE
(RCSL 31-D272)

RELEASE

Sends a release message to the parent (the operating system) releasing
the specified magnetic tape reel (cf. the BOSS2 User Manual ch, 6.1).

Example:

TI? the total number of tape reels used during a job exceeds the numbers of
stations available one has to release one of the tapes during the job

in order to tell BOSS that the reel could be dismounted. The FP-command
release mt123456

tells BOSS that mt123456 can be dismounted.
If Ipip! is a name of a file on the magtape e.g.

pip=set mto mt123456 0 7
the same result is obtained by the FP-command

release pip

In general it is good manners to release a tape reel as soon as it is

not longer required. .

Call:

release <s> <name>

Function:
release message is sent to the parent. The name in the message is
found as follows: The name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry

is not protected (e.g. not of scope system) the document name in the

entry is used. Otherwise the name specified is used.

Storage Requirements:
1550 bytes plus space for FP.

Error Messages:

%xe*release call
Left hand side in the call of the program.

x**release <parameter list> parameter error

Parameter error in the call of the program.
***release <name> tape name missing

The entry specified has a zero document name.

In case of any error no release message is sent.

This page is

intentionally left blank!

RENAME
(RCSL 31-D239)

RENAME

Changes the names of catalog entries as specified.

Example:

By the FP command
rename pip.fup oY ' ’

the name of the catalog entry named pip is changed to fup. The scope,
entry tail and the contents of an associated data area remains un-
changed.

Call: *
rename {<s> <oldname> . <newname> } 4

Function:
Each <oldname> in the list is looked up in the catalog and the name of
the entry found is changed to the corresponding <newname>.

Remark: if several entries with the same name are present, the catalog
lookup will find the entry with the 'smallest’ scope (corresponding to —
the order: temp, login, user, project).

Storage requirements:
1550 bytes plus space for FP.

Error messages:

***rename call

Left hand side in the call. The program terminates without further
actions.

***rename param <parameter>

Parameter error. The remainder of the parameter list is skipped.
***rename <oldname>.<newname> name conflict

The entry could not get the name changed because an entry named
<newname> already exists.

***rename <oldname>.<newname> unknown

No entry named <oldname> was found.
***rename <oldname>.<newname> protected

The job was not allowed to change the name of the entry.
***rename <oldname>.<newname> entry in use

The entry could not be renamed because another job was using it.

In the last four cases the program continues with the next parameter,

This page is

intentionally left blank!

REPEAT
| (RCSL 31-D273)

REPEAT

The program makes it possible to repeat (a specified number of times)

a series of FP-commands placed in brackets.

Example:
By the following FP-commands files number 1 to 20 on mt#71100 and

_mt71200 are checked by to program COPY (which outputs the number and
sum of characters for each of the 40 files):

ti=set mto mt+71100
+2=set mto mt471200

(repeat 20
nextfile t1 +2
copy t1 +2)

Call: A]

(nf <FP-command> },
{<outfile>=} repeat <s> <total number of times> <parameter list> <NI>

*{<fP-command>}P)

<total number of times> ::= an integer greater than 0

<parameter list> ::= any sequence obeying the FP-syntax

Function:
Tie program augments the command stack so that the rest of the compound

command containing the call of repeat, will be executed the specified

number of times.

<outfile> and <parameter list> have no effect at all, but in mode list.yes

they may be used to identify the repeat call to be executed.

Storage requirements:
5i2 bytes plus space for FP.

Error messages:
**¥repeat no core

There is no room in the process area for the augmentations of the

command stack made by repeat. (The command to be repeated must be

exceptionally long.)

2 REPEAT
(RCSL 31-D273)

***repeat no factor
Either there are no right hand parameters to the call or the first

right hand parameter is not an integer.
***repeat factor O

The integer <total number of times> is equal to 0

*¥*repeat nothing to repeat
The call of repeat is the last command in the compound command

containing repeat.

In case of error messages, the commands following the repeat call will

be executed once.

REPLACE
(RCSL 31-D442)

REPLACE

Sends a replace message to the parent (the operating system) defining

a file as replacement for the current job file. After termination of

the job BOSS will create a new job with the same name and the speci-

fied file as job file. BOSS accepts only replace messages from off-line

jobs, not from on-line jobs.

Example:
The FP-conmand

replace pip

defines the file 'pip' as replacement for the job file.

The FP-command

replace pip newid

defines the file 'pip' as replacement for the job file and the identi-

fication to be changed according to the job head in the file 'pip!.

Calls 4

replace <s> <job file> <s> oLeia |
newid J,

where <job file> is a name of a permanent bs-file . Oldid is standard.

Function:
ER replace message containing the specified name is sent to the parent.

Storage Requirements:
15350 bytes plus space for FP.

Error Messages:
*xeereplace call

Left hand side in the call of the program.

*xxreplace <parameter list> parameter error

Parameter error in the call of the program.

xx#replace <parameter list> not allowed from on-line job

The replace message was not accepted as the job is an on-line job.

In case of any error no replace message is sent.

This page is
intentionally left blank!

RING 1
(RCSL 31-D275)

RING

Sends a "mount ring’ message to the parent (the operating system). The
program is normally not used as the software sends the mount ring message
automatically when needed.

Call:
ring <s> <name>

Function:
XK mount ring’ message is sent to the parent. The name in the message is

found as follows: The name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry
is not protected (e.g. not of scope system) the document name in the
entry is used. Otherwise the name specified is used.

Storage Requirements:
1550 bytes plus space for FP,

Error messages:

“ering call
Left hand side in the call of the program.

*x**ring <parameter list> parameter error

Parameter error in the call of the program.

-***ring <name> tape name missing.

The entry specified has a zero document name.

In case of any error no mount ring message is sent.

This page is
intentionally left blank!

RUBOUT
(RCSL 31-D380)

Rubs out the contents of the specified backing-storage files.

If demanded the catalog entry is removed after the cleaning.

Examples

By the P=command

rubout user clear yes text

the file text is filled with a fill-pattern after which the entry

is cleared.
The following two FP-commands

rubout user text
rubout user clear.no text

are identical, since the clear parameter is initialized to no.

The entry is not removed.

Calls
<name> Cy

rubout <s> <scope> { <s> yes \
clear.)

no

temp
login

<scope> ::= { user
project

own

Function:
The files are filled with a fill-pattern after which it is cleared

in case the value of the parameter clear is yes. The fill-pattern

is a long consisting of 3 NUL-characters and 3 EM-characters.
Scope own means all of temp, login, user and project.

Storage requirements:
1530 bytes plus space for FP.

Error messages:

x*¥rubout call ;
The program was called with a left hand side.
No file rubout.

**x*xrubout param <parameter>
Illegal parameter.
The rest of the parameter list is skipped.

«ax*erubout <scope> illegal scope
The scope was illegal.
No file rubout.

2 RUBOUT
(RCSL 31-D380)

*x*rubout <scope> <name> unknown
The entry was not found.
The program continues with the next parameter in the list.

*xxxrubout <scope> <name> entry in use

The entry was not changed or removed because another job was

using it.
The program continues with the next parameter in the list.

x*erubout <scope> <name> not bs-area

The entry did not describe a backing-storage area.

The program continues with the next parameter in the list.

xx*rubout <scope> <name> catalog error
Catalog- monitor- or hard error.
The rest of the parameter list is skipped.

SAVE 1
(RCSL 31-D493)

SAVE

The program can output catalog entries and bs-files to magnetic tape

files for later reestablishment by the program LOAD. yy,
AAZPE Pytawpt,

Example:

All catalog entries and bs-files of scope login are output to mt71100

file 2 by the FP-command:

save mt/+71100.2

In case: t=set mto mt+71100 0 2
the same is obtained by the command:

save t.0

All catalog entries specified in the bs-area savefiles are saved, de-
stroying a possibly earlier saved file 2, by the command

save mt/+71100.2.label.account4 in.savefiles

(as a standard the label parameter should always be used on file 1).
File 2 and the following will be labelled account}.
All catalog entries and corresponding bs-files of scope project and
scope user and the entry named pap (in case several entries are named
pap, the entry of the smallest scope will be selected) are saved by the
FP-command:

save mt471100.2 scope.project scope.user pap

Compare with the examples under the program LOAD. See also further

examples.

Calls

{ <outete }.

save { <nountperam>.}) {<tape parameter>}. <special param> <Save spec>

<mountparan> ::= { mountspec. <deviceno>} femodekind>} { release ef y
no

<tape parameter> ::= <tapename>. <fileno>{, <tapename for next volumen>}
{.lebel.<dump-label name>}'

<tapename> ::= <filedescriptor describing a magnetic tape file>

<name of magnetic tape>

<filleno> ::= last

<integer>

yes
<special param> ::=< list.{no

name
segm,.<integer>

2 SAVE
(RCSL 31-D493)

<modifiers>
<save spec> 3:= {<kit spec>

<entry spec>

chancekit.all.<bs device spec>

newscope. <newscope spec>

<modifiers> ::= fchangekit.<bs device name>.<bs device -_

<kit spec> ::= kit.<bs device name>

<bs device name> <3:=< main
<name of bs device>

<bs device name>

<bs device spec> :3:=70
1

<name>

<name>.sScope.<scope spec>

<entry spec> ::= { docname.<docname>
docname.<docname>.scope.<scope spec>

scope.<scope spec>

in.<bs-file>

Function:

After label check (see below) the catalog entries and bs-files specified

by <save spec> are saved on the magnetic tape file.

If <entry spec> is empty, the program acts as if the parameter

scope.login was specified.

A possible dump-label is read and listed on current out. If it is a

version label (see Tape Format) and a label parameter is not specified,

the program terminates.

After the label check a version label containing current date and hour

is written, overwriting the former one and also listed on current out.

The program terminates by writing an empty-label on the following file.

Function, mountparam

If no mountparam is specified, the program will use a standard magtape

station, modekind=mto (or in case mtname is a filedescriptor, then the

modekind of this filedescriptor) and the tape will be released at end of

program.

@.2. mountspec.10.nrz.release.no.

mountspec.10.

nrz.

release.no.

SAVE 3
(RCSL 31-D493)

Function, tapeparameter.

In case mtname is a filedescriptor, filenumber will be understood

relative to the filenumber in the filedescriptor. The modekind of the

filedescriptor will be used.

If <fileno>=last, the first file which does not contain a version

label is saved. This parameter gives a longer run time than an integer

parameter.

If two tape parameters are specified, they are treated completely in

parallel and after saving the two magnetic tape files will contain

exactly the same information, except for the tapenames.

Function, special param

yes Std. is list.yes, all loaded entries are listed.
list.jno If list.no, the entries are not listed.

name If list.name, then only the names of the entries are

listed.
If an outfile is specified, this file is used for out-

put, otherwise current output file is used.

segm.<integer> Integer must be between 1 and 9. Integer segments are

saved in each magnetic tape block. Std. is 1 segm.

Function, modifiers

changekit.<actual kit>.<saved kit>
Each entry on <actual kit> will be saved with

bs device name <saved kit>. ,

changekit.main.main, means: change all devices to main.

For <bs device spec> = 0 or 1, see LOAD.

changekit.all.<saved kit>
As above, except all entries, no matter their document nare,
are saved with bs device name <saved kit>.

newScope.<newscope spec>
Std. is newscope.std, meaning no change in scope.

This parameter is valid for the following entry specifi-

cations. They will all be saved with <newscope spec>.

newscope ::= temp |login |user |project |std
e.g. newscope. temp

Function, kit spec

kit.<saved kit> Std. is main, meaning all devices.
Only area entries with this kit/docname and non-area
entries which are permanented into this device will be

saved. The parameter is valid for all following <entry

spec> until a new kit parameter is specified.

e.g. kit.disc2

h SAVE
(RCSL 31-D493)

Function, entry spec

<scope spec> ::= temp |login |user [project |own |system |perm [all

<name> The entry of the name is saved. If several entries
exists, only the entry of smallest scope is saved.
<name> must not be one of the following reserved

names: cv primout fp

scope .<scope spec>

All entries with this scope are saved.

<name>. Scope.<scope spec>

An entry of specified name and scope is saved.

docname.<docname>
All entries with specified docname (maybe kitname) are
saved,

docname .<docname>. scope.<scope spec>
All entries with specified docname (maybe kitname) and
specified scope are saved.

in.<bs-file> <save spec> is read from <bs-fille>.
In this file a <NI> is allowed as separator between

the parameters.

The parameters

scope all
and

scope. perm

meaning all or all non-temporary files (contained in the standard base,
i.e. temp base) are intended for system maintenance.

Entries saved by these parameters are identified by base and perma-
nent key, whereas other entries are identified by scope and these may
thus be transferred to another user or project.

Tape format:

The first block of a save file and the first block in the file after
a save file is always a dump-label (the last one may have been destroyed
later) » containing 25 double words holding an iso textstring terminated

by <EM, so that it can be read by edit.
1: <:dump :>

2=3: #<btapename normalized by spaces>
<<zdd >,filenumber
<:empty :>, <:vers. :> or <:cont.:>
<ddmmyy>, date
<.hh >,hour
<:s=<segment per block>:>

<dump-label name> Oo

O
A

O
N

00

«6

08

08

@6

oe

Ne
) i] 3

SAVE
(RCSL 31-D493)

11: <s: dn.i>or<: :>
12-153: <bs file name> or <: ‘>

143 9 <3<NL>:>
15=253; <33>
According to double word no. 5, the dump-label is called an empty
label, a version label. or a continuation label.
In case <save spec> is read from a file, double words 11-13 contain
the name if this input file.

The rest of the save file consists of logical records written with

the physical blocklength 25 or 2+128*segm double words. The records

are of the following 4 types:

entry-record: (heading each entry)
1: 1, 1f system dump then 52 else 48
23 entryno, number of segments

3-4; entry name
5-93 entry tail

10: if system dump then permanent key
else scopekey
(Zesystem, 5=project, 6=user, 7=login, 8=temp)

11-12: bs device spec
13: if system dump then (entry base low, entry base up)

else (1,48)
14.25: if system dump then (1,52) else (1,48)

seement-record: (containing a saved segment)
1: 2,8+512*segm
2: entry. number, Segment number

3=130: contents of one segment
131-258: contents of one segment
eoso

end-record: (terminating each file)
1: 3,8
2: total number of entries, total number of segments

3-25: 3,8

continuation-record: (when a tape overflows)
1: 4,16
2: entry number, total number of segments until now

3-4; name of next tape
5-25: 4,16

Example of picture of file on tape:

After save of the two files tal (3 segments, scope temp) and
ta2 (2 segments, scope login) saved by the call:

save mb123456.1.label.picture tal ta2
the tape mt123456 looks as follows
file 1

(block 0 - version label)
<:dump mt123456 001 vers. 130473.12 s=1 picture :>

6 SAVE
(RCSL 31-D493)

(block 1 entry record)
1,48 1,3 <:tal:> <entry tail of tal> 8 dise 1,48 1,48 ...
(block 2 = segment record)
2,520 1,0 <contents of 0. segment of tal>
(block 3 - segment record)
2,520 1,1 <contents of 1. segment of tal>
(block 4 ~ segment record)
2,520 1,2 <contents of 2. segment of tal>
(block 5 = entry record)
1,48 2,2 <:ta2:> <entry tail of taa 7 dise 1,48 1,48 ...
(block 6 = segment record)
2,520 2,0 <contents of 0. segment of taz>
(block 7 - segment record)
2,520 2,1 <contents of 1. segment of taz>

(block 8 = end record)

3,8 2,5 3,8 3,8 aoo

FILEMARK
file 2
<:dump mt123456 002 «empty 130473.12 picture :>

Multivolumen file conventions:

When end of tape is encountered during save, a continuation-block

is written, and the next tape of the tape list is mounted.
The continuation tapes contain no dump-label.

When a continuation-block is encountered during LOAD, the next

volumen is mounted and the run continued. If a tape-parameter descri-

ping the volume is present it will be used, otherwise the name in the

continuation record is used.
Example:

save mt1.1.mt2 mt3.1.mtl
saves two copies each on two volumes.

load mt1.1.mt2

or
load mt1.1

loads from the first copy, the second volume of which is mt2.

load mt1.1.mt4
loads from volume 1 of the first copy and volume 2 of the second

CcOpy.

Storage requirements:

12000 bytes.

Error messages:

xx*Save error in tapeparam <erroneous and following parameters>

Parameter error in the call. The program terminates.

The magnetic tape is unchanged.
*xe¥Save: error in modekind spec.

<tapename> describes an entry of kind 18, but mode is neither O nor 4,

xxxsave, infile <name> unknown
The program terminates. The magnetic tape is unchanged.

x*x*Save error param <erroneous and following parameters>

Parameter error in the call. The program terminates.

The magnetic tape is unchanged.

SAVE 7
(RCSL 31-D493)

*x*x*Save mode error
The tape is not in the mode defined by <tapename>.
The program terminates. The magnetic tape is unchanged.

*x**Save dumplabel <specification>
Error in the specified part of the dumplabel.
The program terminates. The magnetic tape is unchanged.

<name> bad area: <patterm>
Hard error during run. The pattern shows the status word.

<name> bad area, segm. saved = <segmno>
Number of segments saved does not correspond to the size specified

in the catalog.
<name> entry in use.

<name> is in use and cannot be saved.
<name> not allowed

<name> must not be ec v_ primout fp
<name> entry inconsistent
<name> code inconsistent

The date of an external procedure is incorrectly described either
in the catalog entry or in the code. The entry is saved.

*not found: <entry spec> .

<entry spec> was not found in the catalog.
*xSave not ok <d>

This message occurs at program exit in case of any error.
<d> is the number of reasons for the alarm.

Further examples:

1) The progranmer wants to save all his scope user files and his two
files datal and data2, so that they will be loaded as scope login:

save mt+71100.1.label.try newscope.login scope.user datal data2
The files can be loaded by:

load mt71100.1

2) The programmer wants to switch his files on kit] and kit2 and move

his disc files to kit}:

save mtlt71100.1.label.switch changekit.kit1.kit2 changekit.kit2.kitl,
changekit.dise.kit3 kit.kit1 scope.own kit.kit2 scope.own,

kit.dise scope.own

The file can be loaded by:
load mt+71100.1

This page is

intentionally left blank!

SCOPE 1
(RCSL 31-D331)

SCOPE

Changes the scope of catalog entries as specified in the call of the

program.

Example :

By the FP command
scope user pip

the scope of the catalog entry named 'pip' is changed to 'user'., The
catalog entry is now a permanent entry and is not removed when the job

terminates,

Calls oo
scope <s> <scope spec> {<s> <name>} 4

1
<scope spec> := <scope> {- <device name>}

tenp

sLogin

user
project J

<scope> :3=

<device name> ::= <name of drum or disc kit>

Function:
The scope specification is interpreted and then the name list is scanned.
For each name a catalog lookup is made and the scope of the entry found
is changed to the specified scope. The entry may hereby replace a cata-
108) ony with the same name (this 'old'! entry is removed from the cata-
log).

Remark: if several entries with the same name are present, the catalog
lookup will find the entry with the 'smallest' scope (corresponding to
the order: temp, login, user, project).

Seope specification:
The concept of scope of a catalog entry is explained in the BOSS2 User

Manual ch. 4.1.
A device name in the scope specification means that the catalog entry
should be permanented into the auxiliary catalog on the device mentioned
and thereby occupy permanent claims on the device mentioned, but not in
the main catalog.
This is meaningful for the scopes user and project only and the entry
should be either a non-area entry or an area entry where the data area
is situated on the specified bs device.

2 SCOPE @
(RCSL 31-D331)

Storage requirements:
2045 bytes plus space for FP,

Error messages:
*e*eScope call

Left hand side in the call. The program is terminated without further
actions.

**xscope <scope spec> illegal scope
The scope specification is illegal.

***¥SCcOpe <scOpe spec> bs device unknown

The bs device specified in the scope specification is not on the com-
puter.

In all cases above the program terminates without changing the scope of
any catalog entry.

*x**ScOpe param <parameter>

Parameter error in the call. The rest of the name list is skipped.
***ScOpe <Scope spec> <name> unknown

No entry with the given name was found. 1).
***¥SCOpe <scope spec> <name> protected

The job was not allowed to change the scope of the entry found. 1).
***scope <Scope Spec> <name> entry in use

Another job was using the entry and hence the scope could not be

changed. 1). ,

***Scope <ScOpe Spec> <name> no resources

The resources of the job did not allow the change of the entry scope 1).
***ScOpe <Scope spec> <name> change bs device impossible

The entry could not be permanented into the specified auxiliary ca-
talog. 1).

***ScOpe <ScOope Spec> <name> catalog error

catalog error, monitor error or hardware error.

1) The program continues with the next name in the name list.

SEARCH
(RCSL 31-D21)

SEARCH

Finds and lists all catalog entries with a given scope.

Example:

By the FP command
search user

one gets a list on current output of all catalog entries which have
scope user under the actual job.
By the FP command

search own
one gets all entries with scope temp, login, user or project listed on

current output.

Call: .

{<out file> =} search <s> <scope spec>

4
<scope spec> ::= <scope> {. <device name>}

temp

Login

user
<scope> ::=

project

system
own

<device name> ::= <name of drum or dise kit>

Function:

The catalog is scanned and all catalog entries with the specified scope
are listed, If an <out file> is present it is used for the output - widely ftom
otherwise current output is used. Atria ‘ed thy pels

Seope specification:

The Scope concept 1s explained in the BOSS2 User Manual, chapter 4.1
The scope own means belonging to the project and available for the

2 SEARCH
(RCSL 31-D241)

job i.e. all of temp, login, user or project (cf. the example above).
If a device is specified, only area entries where the data area is on
this device and non-area entries which are in the auxillary catalog
on the device are listed.

Output format:
hach entry round is listed exactly as described under the program LOOKUP.

Storage requirements:

2500 bytes plus space for FP.

Error messages:
***search connect <outfile>

The output file could not be connected - current output is used in-
stead.

**x*search param <parameter>

Parameter error in the call. No entries listed.
***search <scope spec> no entries found

No entries with the specified scope (and specified device) was found.
***search <scope spec> illegal scope

Incorrect scope specification. No entries listed.

aps... pwd

SET 1
(RCSL 31-D428)

SET

Creates a new catalog entry with scope temp or changes an already
existing entry (with scope temp) according to the parameters.

Example:
An area entry named 'pip' with an area size of 20 segments on the bs

device 'dise3' and with date now, is created by the FP command:
pip=set 20 disc

(Actually the area may get a slightly larger size because the size is
always a multiple of the slice length on the device, cf. ref. 3).
A non-area entry 'file7' which may serve as file descriptor for file 7

on the magtape with name 'mt314711' is created by the FP command

file7=set mto mt314711 0 7
An area named ‘image’ on disc (intended for core store dump) is created

@ by the FP command
imagesset 40 10 0 0 7.0

(The parameters 0 0 O 7.0 may be omitted as BOSS will automatically
set contents 7 when the dump is made).

Call:
Zresult name> = set {<s> <kind> [<s> <kit/doc name> {<s> <free param>

{<s> <file> {<s> <bjock>{<s> <contry>
{<s> <length>}, 32h 3 4 4d

o “oe

<integer>
<kind> ::3= <integeri> . <integer2>

<mode kind abbreviation>

<name>

<kit/doc name> ::= { 0
1

<integer>
<free param> ?::= <integeri> . <integer2>

) d. <isodate>
d. <isodate> . <clock>

<isodate> :3= yynmdd
fe) O is interpreted as now

<clock> 235 9 <hhmm

<file>
<block> 235 <integer>
<contry> <integerl> . <integer2>

<length>

Function:

The parameters are interpreted as described below yielding the wanted

entry tail. Next, creation of the catalog entry <result name> with this

2 SET
(RCSL 31-D428)

tail is attempted. If the result is I entry already exists! (cf. ref. 2

and 3) the existing entry is changed to get the entry tail wanted.

Each element in the entry tail except <kit/doc name> is a 24 bits word.

1. <integer> : The integer is placed in the tail

2, <integerI> . <integer2> : Is interpreted as two bytes i.e. as the

binary number <integer1> shift 12 + <integer2>

3. <mode kind abbreviation> : Only relevant for <kind>. The table of mode

kind abbreviations is scanned and the value found is used.
4, <name> : Only relevant for <kit/doc name>. The name is

Placed in the tail.

If the parameter list does not specify all of the tail, the rest is set

to zero.

When an area entry is created, the bs device is determined by <kit/doc name>:

If <kit/doc name> is 0, the area is - if possible - created on a drum, other-

wise on a disc.

If. <kit/doc name> is 1, the area is - if possible - created on a disc, other-

Wise on a drum.

If <kit/doe name> is a name, the area is created on the bs device with this

name.

Storage requirements:

1550 bytes plus space for FP.

Error messages:

*e¥set call
No left hand side in the call.

*x*set param <parameter>

Parameter error in the call.
***set <result name> change kind impossible

Change of an area entry to a non-area entry or vice versa was attempted.

¥¥¥set <result name> change bs device impossible

A change of <kit/doc name> on an area entry was attempted.

*e¥set <resultname> bs device unknown
The bs device specified was not on the computer.

*xxset <result name> no resources

The resources of the job did not allow the wanted creation of a cata-

log entry.

xx*set <result name> entry in use
The entry could not be changed because another job was using it.

If any error message appears, no entry is created or changed.

SEIMT 1
(RCSL 31-D429)

SETMT

Creates catalog entries of scope temp describing files on magnetic tape

according to the parameters.

Examples:

The FP-command
pap=setmt mtO04711.3

creates the same catalog entries as the FP-commands:

papl=set mto mt004711 4.0 1
pap2=set mto mt00#711 d.o 2
pap3=set mto mt0o0#711 4.0 3

If t is a name of a file on this magtape, e.g.
t=set mto mt0ok711

the same result is obtained by
pap=setmt t.3

The FP-command:
f=set nrz mt004711 0 2
f=setmt 7.3.5

creates the same catalog entries as the FP-commands:
f3=set nrz mtOO4711 d.0 5
fheset nrz mt004711 d.0 6
f5=set nrz mt004711 d.O 7

Call:
<result name> = setmt <mtname>. <upper integer>

<lower integer>.<upper integer>
If no <lower integer> is specified, it is set to 1.

Function:
Entries describing files on the magnetic tape <mtname> are created with
names <resultname> followed by <lower integer> to <upper integer>. If
a temporary entry already exists, it is first removed.
The mtname is looked up in the catalog. If an entry describing a magnetic
tape file (kind=1 8) is found, the document name and the modekind of this

entry is used and the files will be addressed relative to the file number.

Otherwise the name specified is used.

Storage Requirements:
512 bytes plus space for FP.

Error Messages:
*** setmt call

No left hand side or left hand side of more than 9 characters

x Setmt param
Parameter error in the call, e.g. an integer greater than 99

*** setmt <resultname> no resources

The resources of the job did not allow creation of the catalog entry

x setmt <resultname> catalog error
Error in catalog, monitor or hardware

In case of any error message the program terminates.

This page is

intentionally left blank!

SKIP 1
(RCSL 31-D276)

SKIP

Bypasses parts of current input as specified in the parameter list.

Example:
(test2=edit text

skip e)
1./error/,r/er/err/
12,r/sory/sorry/
ft

2

In case of an error during editing the remaining edit commands will be
skipped, i.e. when skip is called the input position in current input
is forwarded to just after the second 2 character.

Call:

skip { <s> <iso value>.<appearances>
<s> <lines> ™

<s> <small letter>
4

<lines> i= <integer>

. - 4 <integer> so 235 <180 value> <small eters [
<appearances> ::= <integer>

Function:

The program interpretes one parameter at a time and skips current
input as follows:

<lines> This number of graphical lines are skipped.

<iso value>.<appearances>
Skips until the specified number of appearances of
the iso character are bypassed.

2 SKIP
(RCSL 31-D276)

<small letter>

Skips up to and inclusive this letter.

Storage Requirements:

1024 bytes plus space for FP,

Error Messages:

*xskip call
An output file has been specified in the call. This is ignored.

***skip param <illegal parameter>
Illegal parameter syntax. The parameter is ignored.

**x*skip end medium
Current input is exhausted. The program is terminated. Notice:
current input is not unstacked.

SUSPEND - 1
(RCSL 31-D277)

SUSPEND

Sends a suspend message to the parent (the operating system) asking for
suspension of the specified magnetic tape reel. This is relevant for

worktapes only. The station is now available for mounting of another

tape reel but the suspended worktape is still reserved for the job until
it terminates or releases the tape reel. Each suspend operation uses a
suspend buffer. (cf. the BOSS2 User Manual, ch. 6.1).

Example:

A -worktape has been mounted by the FP-commands
workfile=set mto 0 0 1
mount workfile

The job has produced some output on lworkfile’ but needs now the station
for another purpose. The worktape is therefore suspended by the FP-command

suspend workfile

When the name 'workfile’ is referred to later in the job, the worktape
is demanded. In the meantime no other job is allowed to use the tape.

Call:

suspend <s> <name>

Function:
XK suspend message is sent to the parent. The name in the message is

found as follows: The name is looked up in the catalog. If an entry
describing a magnetic tape file (kind=18) is found and if this entry
is not protected (e.g. not of scope system) the document name in the
entry is used. Otherwise the name specified is used.

Storage Requirements:
1530 bytes plus space for FP,

Error Messages:

***suspend call
Left hand side in the call of the program.

***suspend <parameter list> parameter error
Parameter error in the call of the program.

***suspend <name> tape name missing

The entry specified has a zero document name.

In case of any error no suspend message is sent.

This page is
intentionally left blank!

TIMER 1
(RCSL 31-D278)

TIMER

Sends a timer message to the parent (the operating system) demanding a
provoked interrupt after a certain time.

Example:
The FP-call

timer 30 2
will provoke an interrupt after 30 seconds.

Call:

timer <s> <run time> <s> <break time>
where <run time> and <break time> are integers, denoting time in seconds.

Function:
A timer message containing the two integers is sent to the parent.
If BOSS is the parent <rum time> will be the number of words to the
interrupt, <break time> the number of seconds allowed the job to respond
to the interrupt. ,

Storage Requirements:
1550 bytes plus space for FP,

Error Messages:
**¥etimer call

Left hand side in the call of timer.

***timer <parameter list> parameter error
Parameter error in the call of timer.

In case of any error no timer message is sent.

This page is
intentionally left blank!

TRANSLATED 1

@ (RCSL 31-D302)

‘TRANSLATED

The program prints the date of translation which is found in all algol/
fortran programs

Example:
The call:

translated onefile twofile

may produce the following output:

. onefile translated by algol 11.12.73 12.40
twofile fortran 20.09.72 11.09

Call:

@ ° translated { <name>}
f+)

Function:

If <name> describes a program, the file is connected and the program
searches for the date, which will be output.

Storage Requirements

2048 bytes plus space for FP.

Error messages:

*¥xtranslated call
Left hand side in the program call.

*x**translated param <parameter>

Parameter error in the program call.
@ ***¥translated <name> not found

The parameter was not found in the catalog
*¥*translated <name> not program

The catalog entry <name> does not describe a program (i.e. contents is

not 2) or it does not describe on area or the first word is not 4 which

is the case for all algol and fortran programs.

xx¥translated <name> error

Tne file <name> could not be connected.

x*¥translated <name> date not found

The program did not succeed to find a date.

This page is
intentionally left blank!

RETURN LETTER

Title: SYSTEM 3 UTILITY PROGRAMS RCSL No.: 31-D590

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you 42
-1

1
2
8
8

Seen e ee ee eee Do not tear - Fold here and staple

§ REGNECENTRALEN
- at 1979

Information Department

Lautrupbjerg 1

DK-2750 Ballerup

Denmark

cece ree ere ee oe ee ee ee

Affix

postage

here

