RCSL No: 31-D639
Edition: March 1983

Author: Niels Mpller Jgrgensen
Lars Otto Kjzr Nielsen
Flemming Biggas

Title:

Terminal Access Module (TEM) (3rd Edition) _
User's Guide/Reference Manual/Installation Guide

$REGNECENTRALEN

: af. 1979

RCSL No 42-1 2184

Keywords:

RC8000, RC4000, monitor, terminal access, multiplexing, spooling.

Abstract:

TEM is a service module, which on behalf of applications supports

accessing of terminals.

This manual contains infoiznation of interest for the application
programmer, the operator and the system staff.

(46 printed pages)

ACSL No 42-1 2164

Copyright © 1983, A/S Regnecentralen af 1979
RC Computer A/S
Printed by A/S Regnecentralen af 1979, Copenhagen

Users of this manual are cautioned that the specifications contai-
ned herein are subject to change by RC at any time without prior no-
tice. RC is not responsible for typographical or arithmetic errors
which may appear in this manual and shail not be responsible for
any damages caused by reliance on any of the materiais presented.

FOREWORD

First edition: RCSL No 31-D481.

Second edition: RCSL No 31-D513.

The manual describes revision 2 of the terminal access module
TEM.

No differences in functions and formats have been made, but new

facilities have been implemented. The extensions concern mainly
interface functions to the format 8000 system.

The TEM system has been designed and implemented by the authors.
This manual replaces the description of revision 1, January 1978.

Niels Mpller Jgrgensen
A/S REGNECENTRALEN, October 1978

Third edition: RCSL No 31-D689.
The manual describes revision 3 of the terminal access module
TEM.

TEM has been extended with new facilities for format 8000 device
control messages implemented in IBM 3270 Terminal Handler version
2 and entering of passwords in nondisplay mode as implemented in
Basis system (SWB001/1 release 4.2 and SW8001/2 release 1).

The changes are indicated by correction lines in left margin.

This manual replaces the description of revision 2 (RCSL No
31-D513).

Flemming Biggas
A/S REGNECENTRALEN af 1979, March 1933

iii

TABLE OF CONTENTS PAGE

]t INTK)DUCI‘ION L R R R R R R A I B R)]

2. REFERENCE MANUAL t:iovteevvsasanosssnsnsnsssnsasansnnsssa
2.1 Some TEM CONCEPES sevevosreavns e teseessaeesareanns
2.1.1 Terminal Pools and Terminal Links
2.1.2 Names of POOlS .v.vevnvsnn cereresrenann Ceeas
2.1.3 Types and Names of Terminal Links «...v.eeus
2.1.4 Blocks and Transactions cevecsisens
2.1.5 MultipleXing .s.vevevecrecanncancansas vereenn
2.1.6 Spooling cisarreneertanan O

2.2 TEM OpErations «eeeeseeeessssoosssssonssssssassonns
2.2.7 Control Operations «vevesessseeseres PR
2.2.7.7 Create POOL .sv.eevransroneransnasas

2.2.1.2 Remove POOL +siveesrearscnssnnsvanss

2.2.1.3 Lookup POOL evvveevnanes Cereennn .

2.2.7.4 Create LinK seeevveerrorreansnoanns

2.2.1.5 Remove Link +eeeevrevesnanas Ceeaeaas 1

2.2.1.6 Lookup LinK sevvevsvrasnsrnennsneas 11

2.2.1.7 Lookup Terminal ...cecvsvecevasases 12

2.2.2 Input/Output Operations .e.eeveseeeeeeeaanss 12
2.2.2.7 SENSE vrvurnverrannnsansssarnsranns 13

2.2.2.2 Sense Ready +sieesvsrresenesnessanes 14

2.2.2.3 Format 8000 Device Control 14

2.2.2.4 INPUL sevinesssvrsssnnssnssenssssaas 15

2.2.2.5 OUtpUL cevvviinianniianrniennnanses 17

2.2.2.6 Simulate INPUE «.ovevreenneacecnnass 18

2.2.2.7 Start Input eeeseeennnes R ... 18

~} ~1 O owm o e W RN DN

(4 0]

3. OPERATING GUIDE e:ivecncevosoovsscscsnnsaneasens tesssssasan 20
3.1 The StArt=Up «eeceeereesesccsescssscnsasassassaanss 20
3.2 Closing the System «..vvveeerrereoteacessssncnnnnses 22
3.3 How to Handle Error Situations Cereeneaeann 22

4, SYSTEM GENERATION vveevesocnnnaonss ssresanans Cesessaensae 24
4.J Installation .veeieevevncncanonnans Ceresan s ve. 24
4.2 Resource Dem@ndS +eeveessnsssvesnsssasssas Ceesaeeraas 28

iv

TARLE OF CONTENMTS (continued) PAGE
4.2,1 When Installingcveevane e eareaa e 28
4.2.2 When Running crarreansaareasras ceees 28

APPENDICES:

A. REFERENCES tvceveuvrnncnnennarennns e 31

B. PROGRAMEXAMPLES +.euveuvennns e ceeiieese 32

INTRODUCTION

This manual contains information about the service module TEM.

Relevant information may be found by people, who are going to

use, install, generate or work as operators for TEM.

The purpose of TEM is to support access of terminals. TEM aims

specifically at multiplexing of terminal input and cutput to and
from an application. In addition TEM offers spooling of data in
order to smooth speed differences between an application program

and (slow) external devices.

The facilities of TEM will make programming of on-line systems
easier, because TEM allows an application written in a higher
programming language to access a number of terminals through one
stream by means of the standard input/output system included in
the language. Besides TEM operates the devices in parallel with
the application processing transactions, which will ensure a
higher degree of service to the terminals and a better utiliza-
tion of hardware, than if the accessing was performed by the

application itself.
This manual contains the following information:

Chapter 2 describes the functions of TEM. The formats of the in-
formation exchanged between TEM and an application program are
also specified.

Chapter 3 describes the start up procedures and how to operate
TEM in the day to day running.

Chapter 4 is a guide in system generation. In this chapter the

procedures concerning installation and trimming of TEM is de-
scribed.

When an application program wants to access a set of devices via
TEM, it asks TEM to define a terminal pool. For every device the
application wants to use, a terminal link must be created between
the pool and the external process corresponding to the device.
Accessing of devices is performed by TEM on request from the
application. The mode of operation is partly defined in the link
creation phase and partly by explicit input/output commands to a

The name of a pool must obey the naming rules defined in the
monitor, ref. [3]. These rules state that a name is a textstring
consisting of 12 ISO characters beginning with a small letter
followed by at most 10 small letters or digits, terminated by

2. REFERENCE MANUAL
2.1 Same TEM Concepts
2.1.1 Terminal Pools and Terminal Links
pseudo process corresponding to the pool.
2.1, Names of Pools
NULL characters.
2.1. Types and Names of Terminal Links

When a link from a pool to a device is created, the corresponding
external process must be specified. The process kind may be of
any type, but in the present version of TEM only the following

access protocols are supported:

1) TTY compatible processes.
For this protocol TEM offers two access modes:
a) link type = 0

TTY malti~terminal.

TEM offers spooling and multiplexing facilities.

2.
®
2.1
2.1.1
o
2.1.2

2.1.3
®

2.1.4

b) link type = 2
TTY single terminal.
Only spooling facilities.

2) Format 8000 termin and termout processes ref. [5]
link type = 4
Multiplexing and spooling is supported.

A link is identified by a name (local id), consisting of 24 bits

(3 bytes). This name is defined by the application, and must be
unambiguous within the pool.

Blocks and Transactions

a) Type = 0 (TTY multi-terminal)
1 transaction = 1 block

local id data
- —

3 bytes

b) Type = 2 (TTY single terminal)
1 transaction = 1 block

data

¢) Type = 4 (termin and termout processes)

1 transaction = n blocks n >=1
Cu DEV DATA | ... DATA ETX
N
1 byte 1 byte 1 byte

ref. [4]

2.1.

Multiplexing

TEM is able to handle a number of external processes for a mnamber
of applications (internal processes). An external process may not
be included in more than one pool at a time. When an application
sends ocutput to a pool, the link is addressed as part of the
transaction. Depending on the linktype the address information is
stripped off or altered before the transaction is sent to the
device. Correspondingly address information is added to input
before data is delivered to the application.

users APPL 1 APPL, 2

pocls tpooll tpool2 tpooll

links t1 t2 t1

termi-
nals

Figure 1: A TEM Configuration.

LAl

2.1.

Ln

2.1.6

Spooling 2.1.6

2.2

In order to equalize differences in speed between the user pro-
cess and the relative slow devices, TEM provides spooling of
input and cutput. This spooling is done partly in primary store
and partly on backing store. Lvery link and pool has its own
spool queue with a maximal size which 1s defined when TEM is
installed.

The queues contain operations not yet performed. The link (queue)

accancdates input/ocutput operations and cutput data, and the pool
(queue) accomodates answers to input operations and input data.

TEM Operations ' "2.2

2.2.1

An application uses TEM by calling the operations listed in the
next subsections. This is done by means of the send message/wait

answer procedures of the monitor, ref. [1].
The operations are divided in the two groups:

1) Control operations.
2) Input/output cperations.

The conventions for input and output operations follow the stan-

dards defined in the monitor, ref. [1], while the control oper-
ations are designed especially for TEM.

Control Operations 2.2

Operations concerning pools are activated by sending a message to
TEM while link operations are sent to a pseudo process with the
same name as the corresponding pool. This pool is made by TEM
when the pool is created.

The first word of the answer from a control operation contains a
status mask, indicating the result of the cperation. The status

word is only defined when the result of the answer is normal (WO

= 1). Dummy answers are delivered in the following situation: .

Result = 3

unintelligible message

Interpretation of the status bits is defined below:

bit

meaning

13

pool exists or pseudoprocess does not exist and can-

not bhe created

14

link exists

15

pool does not exist

16

link does not exist

17

no free pool

18

no free link

19

terminal in existing link

20

terminal not in existing link

21

terminal unknown

22

23

2.2.1.1 Create Pcol

message 20 0
+ 2:
+4
+ 6
+ 8
: NAME
+14

2.2.13

receiver TEM

The operation creates a terminal pool with the sending process as

exclusive usar. A pseudoprocess with the name specified in mes-
sage (8:15) is created. It is legal to define TEM as the pool. In

this case no pseudoprocess is created, but TEM itself will act as

receiver of messages concerning the pool.

N.B. In connection with the creation TEM sends a message with
operation code (halfword 0) equal to -2. Answer on this mes-
sage will cause the same actions as a call of the operation

remove pool.

Possible status bits: 13, 17.

2.2.1.2 Remove Pool 2.2.1.2

message : 92 0 receiver TEM
e

+ 2:
+ 4
+ 6
+ 8
_ : NAME
+14

The operation removes the terminal pool.

Possible status bits: 15.

2.2.1.3 Lockup Pool 2.2.1.3

message : 94 0 receiver TEM
' + 2z —

+ 4

+ 6

+ 8

: : NAME

+14

If the sender is user of the pool the answer contains:

answer H status .

+ 2:
+ 4
+ 6
+ 8
+10 block full

+12 halfword free
+14

'block full' is the number of input blocks spooled for the pool,
i.e. the number of blocks read by TEM, ut not delivered to the
user yet. 'halfword free' is the number of halfwords left for

further input spooling. : Q
' . 2.2.1.

Possible status bits: 15.

2.2.1.4 Create Link 2.2.1.4
message 100 type receiver terminal
+ 2: local id. 3 pPOOL
+ 4: ext. proc.
descr. adr.
6: pufs timer
+ 8: mask subst. 'l'

The operation includes a new terminal in a terminal pool. The lo-
cal name of the link is stated in message (2:3). The terminal is

identified by the process description address (message (4:5)).

'bufs’' (message (6)) is the maximal number of spooled indata
transactions. When the user asks for input, a number of input
operations are initiated on all links with fewer input transac-
tions spooled than defined by 'bufs’. If the link represents a
"termin' (format 8000) process the value is recommended to be:

<no of terminals> * 8.

'timers' (message (7)) states the maximum nurber of timer pe-—
riods, which may pass before the application is answered. I.e.
the user may extend the timerperiod for the device n times rela-
tive to standard, by setting message (7) to n-1.

'mask’ and ‘subst' are used in comnection with format 8000 links
only. Explanation is given below.

Input and acutput operations are queued for the link and executed

in order of arrival.

Depending on the link type input and output are handled as de-

scribed in the following:

1) Type = 0 ' (TTY multiterminal)

a) Cutput.
A transaction matches the link if the first 3 bytes (24
bits) of the transaction equals the local identification of
the link.

Before the transaction is sent to the device, the address
information is stripped off.

b) Input.
The input transaction sent to the user is the local iden-
tification (3 bytes) concatenated with the block received
from the device. If the data is not terminated with the ISO
character NL. (value = 10), 3 bytes are inserted at the end
of the transaction: NL NUL NUL.

2) Type = 2 (TTY single terminal)
Input and ocutput are spooled in TEM and routed between the

user and the external process representing the device
without modification of data.

10

3) Type = 4 (format 8000 termin and
termout) .
a) OQutput.
A transaction matches the link if:
(extend CU) and mask = subst and mask

Before the transaction is sent to the device the CU byte is
changed:
CU:= CU and { -, mask)

b) Input.
The CU-byte is modified, before the transaction is sent to
the user:
CU:= CU or (mask and subst) extract 8. .

One should notice, that while the length of CU is 8 bits,
mask and subst are 12 bits, and when searching for the link
in connection with cutput operations, 12 bits are compared,
as CU is extended with 4 bits equal to O.

The purpose of this is the following:

If a pair of links (termin, termout) is connected to the

same pool, the value of CU received by the application from

the input link cught to ke returned unchanged on the ocutput

link. I.e. that mask (4:11) and subst (4:11) for these

links should be equal. : .

To ensure that the ocutput operations are really sent on to
the ocutput link, one must in the call of the create link
operation for the termin process put (mask (0:3 and subst
(0:3)) <> 0 and for the termout process put (mask (0:3) and
subst (0:3)) = 0.

For the termout link 'bufs' mus: be equal to 0, while typi-
cally the termin link should ke multibuffered.

It is the responsibility of the user to ensure that the addres-
sing of cutput is unambiguous. This should be noticed particu-
larly if links of different types are connected to the same

pool.

2.2.1.5

11

Possible status bits: 14, 15, 18, 19, 21.

Remove Link

2.2.1.

an

message :

+ 2:

102 0/1 receiver terminal

localid

pool

The operation removes a terminal link from a pool. The removal
may be performed soft or hard, i.e. activities in progress may be

terminated or suspended before the removal. In the first case

message (1) must equal O, in the second 1. The answer on a soft

removal is given when the operation is initiated and tells thus
nothing about the termination of the last activity on the link.

Possible status bits: 15, 16.

Lookup Link

message :

+ 2:

104

localid

0 receiver terminalpool
LT——

If the link is known the answer will be:

+ 2:
+ 4z
+ 6:
+ 8:
+10:
+12:

status = 0

localid

term.proc.descr.adr.

bufs

timers

pool

blocks full

halfwords free

2.2.1.5

2.2.1.6

12

Message (2:7) contains the same information as the corresponding

fields in the create link message. .

Message (8:9) is the process description address of the pseudo

process corresponding to the pool.

Message (10:11) contains the number of operations in queue for
the link. I.e. the number of input and cutput operations sent to
the link, but not yet executed.

Message (12:13) tells whether the pool queue to the link is full

or not. If the value is 0 further input/output cperations will ke

delayed until some of the activities in progress to the device

has been completed. ‘l'

Possible status bits: 15, 16.

2.2.1.7 Loockup Terminal 2.2.1.7
message 100 0 receiver TEM
+ 2: 5
+ 4: term.proc.descr.adr.
Answer as for lookup link.
Possible status bits: 16, 19, 21.
If bit 19=1, the terminal is in a link, but the corresponding
pool is created by another user.
2.2.2 Input/Output Operations : 2.2.2

The input/output operations of TEM are similar to the operations
known from the external processes in the monitor ref. [1], ref. .
[5], ref. [6].

13
. The following functions have been implemented:

1) Sense.
2) Sense ready.
3) Format 8000 device control.

4) Input.
5) OCuatput.

This means that an application may use the basic I/O-system of
the file processor or the high level languages.

In addition a few operations to control the muiltiplexing and
spooling in TEM is introduced:

1) Simulate input.
2) Start input.

The formats for answers are as defined in ref. [1] for external

processes.

TEM generates dummy results (WO <> 1) in the following situ-

ations:
2: Application not user of the pool.

3: Message unintelligible.
. 4: Link not known in pool.

2.2.2.1 Sense

message 0 0 receiver terminal pool
+ 2:
+ 4:

2.2.2.1

2.2.2.2

answer
+ 2:
+ 4=

Sense Ready

2.2.2.3

message

answer i
+ 2:
+ 4:

14

0 2 receiver terminal pool
—
status
0
0

First input operations are initiated as described in 2.2.1.4.

Then an answer from an external process is waited for. If data is

ready the sense ready operation is answered with status = 0. Else

the operation is returned with the answer delivered by the exter-

nal process.

Format 8000 Device Control

message

+ o+ o+
oA

2 operation

modifier

physical address

\ logical address

local-id *)

\
(e s C,fém—v: { ta ot e.f’t"f’

el

2.2.2.2

2.2.2.3

2.2.2.4

answer :
+ 2:
+ 4:
+ 63

*) The two byte device
i.e. LOCAL-ID:

15

status

result

physical address

logical address

address used in communication with TEM,

0 | cu | DEVICE

The message is forwarded to the termout process indicated by

local-id and the answer is returned unchanged by TEM, ref. [6].

The message must be sent on an cutputlink.

Input

message

+ 2:
+ 4z

]
-

-

+14:

answer :
+ 2:
+ 4z
+14:

First input operations

3 mode

first adr.

last adr.

status

halfwords

no. of chars.

receiver terminal pool

— >

are initiated as described in 2.2.1.4. Se-
condly an answer fram some external process in the pool is waited

for. The answer including the indata delivered is returned to the
user, perhaps modified with address information.

Because input may be initiated asynchronous with the input mes-

sage fraom the user, some comments may be necessary.

2.2.2.4

16

The mode field in the first input operation defines the input

mode in the whole lifetime of the pool. Correspondingly, the in- .
data uffer that the application makes available, may be too

small for the block received from an external process. Normally

TEM delivers data with the original blocking, but in this case

indata is divided into smaller portions.

The first time the indata stream runs empty after a sense ready
operation has been called, the input operation is answered imme-
diately with zero answer. This means that the user may chose
freely between two different input protocols, namely the tradi-
tional protocol and the sense ready protécol.

Traditional protocol: .

input

Eanswer input (data)

Sense ready protocol:

sense ready

ﬁ__)——
| _<answer sense ready (timer status)

and when data occurs: .

answer sense ready

—€

input

answer input (data)

€

and when there is not more data:

¢ ANSWer input (nurber of bytes = 0)

2.2.2.5

17

Qutput
message : 5 |[mode receiver terminal pool
+ 2: first adr. >
+ 4: last adr.
+14:
answer : status = 0
2: halfwords
4s no. of chars.

If the link exists, the result of the operation will be normal

and status = 0. As the operation is taken over by TEM asynchron-
ous with the working of the device, hard errors are not reported

to the application.

In type 0 and type 2 links the mode field of the output operation
is used to signal whether the next input operation should e in

non- display mode (e.g. entering of password information):

if mode shift (-3) extract 1 = 1 then
begin
mode := mode-8;
non display mode := true;
end
else non display mode := false;

The spooling facilities of TEM means that the pool will act as a
(very) fast device. Only if the spool queue is full, the answer
will be delayed by the working of the device.

The largest blocksize accepted by TEM is 450 halfwords. This
number is independent of the trimming of TEM.

2.2.2.5

2.2.2.6

Simulate Input

2.2.2.7

message
+ 2:
+ 43

+14:

answer :
+ 2:

+ 4z

18

9 mode

first adr.

last adr.

status = 0

halfwords

no. of chars.

2.2.2.6

receiver terminalpcol
D

This operation is defined for links of type 0 only. The link ad-
dressed in the data area referenced by message (2:3) and message

(4:5) is removed and created again. The data area specified will .
be handled by TEM in the same way as indata from the device. I.e.

it will be delivered as data to the user process in a later input

operation.

Start Input

message
+ 2:

+14:

Independent of the

110 mode
local id
bufs

status =0

0

0

normal input
on the link are initiated.

2.2.2.7

receiver terminal pool
—_—

spooling 'bufs' input operations

19

The automatic activation of input operations as defined in the
creation of the link is not resumed before the number of out-
standing transactions becomes less than standard.

20

OPERATING GUIDE 3.)

The operator's tasks in the day to day running of TEM comprise

3. How to handle error situations.

In the following the cperating system 's' is implied. If ancther

operating system is used, commands and messages may be different.

3 -
the following:
1. The start up.
2. Closing down.
3.1

The Start-Up 3.1

During start-up the system calculates the optimal set of re-
sources. If TEM is started with more or less resources than ne-
cessary, the optimal value is displayed as a parent message. If

resources are missing the message is marked with '***' and the
run is terminated at once.

The name of the program to be loaded is 'btem'. Formulas for

computing the resource claims are given in subsection 4.4.2.

Example 1:

Output from the computer in this and the following examples are

written with capital letters, while input from the operator is .
indicated by small letter.

ATT s

new tem size 10000 buf 30 area 4

READY

ATT s

prog btem base -8388607 8388605 run

READY

MESSAGE TEM VERSION: 830401 O

MESSAGE TEM SIZE 9320

MESSAGE TEM *** AREA 5)

MESSAGE TEM BUF 20 _ "'.

PAUSE TEM *** INIT TROUBLES

21

ATT s

remove area © buf 20 run

READY
MESSAGE TEM VERSION: 830401 O
MESSAGE TEM SIZE 9320

MESSAGE TEM STARTED

TEM is started with too few area processes. Therefore the run is
terminated. The optimal values of coresize, area processes and
message buffers are displayed. Then the TEM process is removed
and started again with a reasonably set of resources, but the
coresize is still larger than necessary.

Syntax of a start up message:

message *kx

tem <message text>
pause <sp> <sp> <sp>

List of start up message texts

version:<i> <i> the date of the TEM release and the
date of options are displayed.

size <i> optimal value of coresize.

area <i> optimal value of area processes.

buf <i> optimal value of message buffers.

<name of area> <i> too few resources for creating work
areas.

started tem is running.

init troubles resources missing, execution terminated.

22

3.2 Closing the System 3.2 .

There exists no close command in TEM. Closing down after a normal

run is done by simply removing the process as seen below:
ATT s

proc tem remove
READY

3.3 How to Handle Error Situations 3.3

During the run the system may break down in one of the following
ways: .

1. A program error may cause the system to break down, and the
following error message will be printed on the terminal

from where the system was started:
PAUSE TEM *%% FAULT

2. The system dies without printing a message. Then the pro-
cess ought to be 'breaked' in order to have the last por-

tion of testoutput generated, written on the testarea:

ATT s .

proc tem break
READY

3. A hard error in a work area mekes continued running impos-—
sible and the system stops after printing the message:
PAUSE TEM STATUS <status word> <area>

In all error situations one should, if the system has been trim-
med with 'testoutput' move this from the test area TEMIEST to a
work area, from which the TRACE-program can print it for further
analyses.

23

The TRACE program is automatically generated by the installation
of the system. The program is called as follows:

trace <testarea> . <segments>

<testarea> is the name of the area, from which the testoutput is
to be printed (the work area the testoutput has been moved to, or
the test area itself).

<segments> are the maximum nurber of segments to be analyzed.
TRACE always finds the latest generated segments, and counts the
nuber of segments backwards from there. <segments> are automati-
cally cut to the size of the area, if something larger has been
specified.

Example 2:
An s-run; testoutput is printed before a restart.

ATT s

proc tem remove new tem run

READY

c 1p

trace temtest.10000 (everything is printed)
oc

ATT s

proc tem remove

- (a new start-up)

Example 3:
A BOSS-run; the testoutput has been moved to the area TESTCOPY.

10 o pip

20 trace testcopy.10000 (everything is printed)
30 o c

40 convert pip

50 finis

go

24

4, SYSTEM GENERATION

4.1 Installation

TEM may be installed cn the RC4000 and the RC8000 series compu-
ters. Before installation check that the version of

a) your monitor is > 5.0

b) your algolcompiler is ALGOL7 or newer.

In order to ensure a high degree of flexibility and a good util-

ization of hardware, the system staff may adapt the system.

Before the system is trimmed one has to consider the following

quantities:

"optionsg"

lltl,lcountll

!lph ~OUTN t n

"phspoolsegm"

"thspoolsegm"

At start up a constant showing the date of the TEM
system will be listed together with this constant.
At each trimming the constant should be changed to
show the date of the trimming (e.g. 830415). The
standard value is 0 indicating that standard op-

tions are used.

The maximal number of terminals and format 8000
links running under TEM at the same time.

The maximal number of terminal pools.

Number of spoolsegments per terminal pool. I.e.
the maximal sizle of the queue used to spool input
to the pool (used by answers to input operations
and input data).

Number of spoolsegment per terminal link. I.e. the
maximal size of the queue used to spool operations
to a terminal (used by input/output operations and
output data).

25

"thbufsize" Number of spoolbuffers in core (segment buffers).
If this trim parameter is made larger, the number
of transports to and from backing storage in con-
nection with spooling of data between the appli-
cations and the terminals will decrease. The ex-—
pense will be 512 halfwords in primary store pr.
buffer.

"testsegments" The number of testoutput segments. If this munber
is zero no testoutput is generated. Performance is
hicher if testoutput is suspended, but the possi-
bilities for discovering system errors will be
minimal. If TEM is running together with systems
also producing testoutput (e.g. S0S) the need for
testoutput will be less and the generation of

testoutput may be stopped.
Please oObserve that:

a) input/output operations and output data are accomodated in
'thspoolsegn',

b) answers to input, sense and sense ready operations and in-

put data are accomodated in ' chspoosegn' .

In installation servicing format 8000 terminals one should con-
sider that:

a) the time any CU will wait to deliver an input block is

approx. 1 5 seconds '

b) a screen image may consist of more blocks (1 block =
approx. 258 bytes, 1 image = 2000 bytes or more),

c) input blocks from the CU may be delayed if the IBM 3270
terminal handler is short of free input buffers,

d) input wuffers in the IBM 3270 terminal handler are released
when honouring input operations from e.g. TEM.

26
As a consequence it is recommended to:

a) accomodate enough space in the spool queue to honour input
requests from all terminals serviced by a pool at any time
(phspoolsegm = 3*(no of terminals); approx.),

b) prepare the application to utilize the spoolihg capacities
of TEM by assigning an appropriate value to the parameter
'bufs' ih the call of the 'create link' message to TEM
(bufs = (no of terminals serviced by this link)*8 approx).

The system trimming is done by means of the file temtrim (see
appendix C), which contains a set of standard variables plus

coments for generating the trimmed version of the program.

Installation may be done after the files have been 'loaded to
disc' or direct from tape.

a) Installation from tape.

If the system tape is called mtswB8100, the installation is
performed as shown below:

temdoc = set 1 <discname> ; default = disc
mipshelp = set mto mtsw8100 0 2

i mipshelp

i temhelp

xtrim = edit temtrim

EDIT COMMANDS

b) Installation from diskette.

If the system diskettes are called S18100 and S28100 the

c)

27
installation is performed as shown below:
"fdload S18100.1"
fdload itself will ask for mounting of the continuation
volume.
When the files have been loaded, use the fp command:

'i mipshelp'

You may now proceed with paragraph c¢), installation from

bécking storage.

Installation from backing storage.

temdoc = set 1 <discname> ; default = disc
i temhelp

xtrim = edit temtrim

EDIT COMMANDS

i xtrim
Example 4:

The installation is done from the tape mtsw8100, and the trim

parameters 'thcount' and 'testsegments' are changed to 10 and

0 respectively.

temdoc = set 1 disc 2

i

i

mipshelp = set mto mtsw8100 0 2

mipshelp
temhelp

xtrim = edit temtrim

1./thcount/, r/15/10/,
1./testsegments/, r(42/0/,

b
i

(10 active terminals)
(suspend testoutput)

xtrim

28 -

4,2 Rescurce Demands 4.2

4.2.1 When Installing 4.2.7

The process used for installation may run with standard resources

except that:
a) Coresize must be >= 50000 halfwords, 60000 reascnable.

b) User scope mist equal system scope (-8388607: 8388605). If
this is not the case, the scope of the files btem and trace
must be changed by hand to system scope after the installa-
tion.

c) At the first installation, permanent backing storage re-

sources must be available for the above mentioned files.

4,2.2 When Running 4.2.2

In the go through below the resource demands of TEM when running
are listed. As it may be seen from the formulas the demands vary
much depending on the TEM trimming.

Primary store (halfwords):

Standard consumption approx: 6800

Terminal pool descriptions: phcount * 74 .
Terminal link descriptions theount (108 + termbufsize)

Spcolbuffer spoolbus * 516

Test buffer (optional) 1024

Message tuffers:

Constant consumption 2
pool consumption phcount x 2
Link consumption thcount

Area processes:
Constant oconsumption 2
Pool consumption phcount _ .

29

Backing storage segments:

Testarea testsegments

Spcol area phcount * (phspool segm +1) +
thcount * (thspool segm +1)

Example 5:
If the trim parameters of TEM are set 10

options:= 830401,
thcount.:= 10,
phcount.:= 4,
termbufsize:= 104,
phspoolsegn:= 8,
‘ thspoolsegm:=" 8,
spoolbus:= 2,
testsegments:= 42,

the resource demands will he

Primary store: 10212
’ Message buffers: 20
Area processes: 6

Backing storage segments: 168

30

(1]

(2]

[4]

RCSL No 31-D476:
Monitor Part 1, System Design

RCSL: No 31-D300:
Monitor 3

RCSL No 31-D477:
RC8000 Monitor, Part 2, Reference Manual

RCSL No 52-AA640:
Format 8000 - A transaction Oriented System General
Description. Revision a

RCSL No 31-D693:
IBM 3270 Terminal Handler

User's Guide N

=

~

32

PROGRAM EXAMPLES B.

The examples in this appendix illustrate how the facilities of
TEM are used by an application program written in ALGOL.

Example 6: is a set of procedures, which makes it simple to call
the control operations of TEM.

Example 7: is a program commnicating with a number of terminals.

The terminals are defined at start up. A transaction is read from

a terminal. The indata is processed and an answer is printed. As

the example should illustrate the use of TEM only, the processing

of a transaction is very simple: The number of lines received

from the terminal is counted, and the input line will be echoed .
on the terminal.

Example 8: is also a multiterminal program. But in this case the

terminals are logged in and logged cut dynamically. A terminal is

logged in when the attention button on the keyboard is pressed,

and logged ocut, after an '*' has been written on the terminal.

The example illustrates the use of the sense ready operation. The

program handles transactions as in example 7. But when the indata

stream runs empty the reading is interrupted by the block pro-

cedure. Processing is continued in the main loop of the program.

This loop treats events from the monitor. In this simple example

only two kinds of events are of interest: attention messages (log '

in) and answer on a sense ready operation.

Example 9: is a utility program, which creates terminal pools and
terminal links. Such a program may be of interest, e.g. when an
application, where the program has commnicated with the external
processes itself, is re-layed to use TEM to interface the de-
vices. The utility program is called so that the pools and the
links exist when the application program is started.

Example 7:

34

35

le 8:

(to be continued)

(continued)

36

37

Example 9:

Example 10:

38

RETURN LETTER

Terminal Access Module (TEM)
Title: User's Guide/Reference Manual/ RCSL No.: 31-D689
Installation Guide

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-

prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: ' Title:

Company:

- Address:

Date:

42-i 1288

Thank you

................. Do not tear - Fold hereand staple
[Affix ,]
postage |
here ;
|
S REGNECENTRALEN
: af 1979

Information Department
Lautrupbjerg 1

DK-2750 Ballerup
Denmark

33

S,

. Example 6:

INTEGER PROCEDURE CREATEPOOL(Z):
IUNE I7
BEGIN
INTEWFR I;
INTEGEN ARFRAY ZLIACI320),S5Ta(1312);
ZOnF ZTEM(I,1.STOERNON);
OPENLZTEM U ,<sTFMIa, 1) 2
GETIONES(Z,21A)7
GETSHAWES(ITEm,S[A,1)3
SIA(&) =Gl SHIFT 12;
FOR =0 STEP 1 UNTIL 3 b0 SIACH+I)1=2TA(2+1);
SETSHARESCITEmMSIALT2:
mONLIORCTO,ZTEMST,51A);
CREATEPOOL:=IF MONTTOR(IN,2ZTEM,1,814) <> 1 THEN =1 ELSE S1A(1):
CLUSECZTEM,TRUED S
€4l CHREATEFOOL;

IHTEGEw® PRUCEDUXE REMQVEFOOQLC(Z):

IOmnE Z:

BEGIN
INTEGER I}
INTEGER ARRAY ZIACYI:20),SIA(%:12);
IONE ZTFMU1,1,STOERROND;
CPENCITEM U CiTEMID 1))
GETZUNEB(Z.21R)}
GETSHAWEGCITEM,SLALT):

STAC4) 292 SHIFT 127
FOR L1:=0 STEP 1 UNTIL 3 00 SIA(R+T)z=ZTa(2+41)}

SETSHARESIZTE~,S1A,1);
“OKTTOR(1e,2TEM,1,514);
KEMOVEFOUQLI=LF MUNITORCIN,ZTEY.1,514) <> 1 THEN =1 ELSE SIA(127
CLASECITE#,TRUF)};
E'iv REAOVEPOOL

IMTEGER PRUCEDUNE CREATELINK(Z,TYPE,LD,PROCREF,BUFS,TIMERS,
mASK S SUEST):
InhE 23
ISTEGER TYPE,IDSPFOCREFBUFa TIrERS,HASK,SURST]
HEGIH
INTEQER T35
INTEGER ARRAY ZTA(T1:2U),51A01212);
LUNG ARRAY AKRN(132);
LONE ZTEMLU1,1,STDENROR) S
BGETZUHECTAZTIN);
ARn (1) :elTAle); ARu(1)isAwR(1} ShIFT 24 AOD ZIAC3)G
ARR(2) =l JACL)] hww(2)s3ARRLe) SHIFT 24 ADD ZIACS)S
Tred s
UPFHLZTEM U rSTRIAG AN (INCREASE(L)D AUD;
GETSHARES(ZTEM,SIAL1);
STACL)z=1UL SATFT 12 ALD TYPES
sTA(Y)i=l0;
SIA(H) 1=PWOCFEF;
SIACT)s=uUES SHIFT 12 AOL TImEKSS
STACB)t= =mASK SHIFT 12 ADD SudST;}
SETSHARES(ITEM,S51ax1);
PONITORC1G,2TEm,1,510);
CREATELINK I=IF mONITORCIB,2ZTEM,1-51A) <> 1 THEN =1 ELSE SIA(1);

CLOSECITEm, TRUED ;
En0 CREATELINKS

INTEGER PROCFOURE REMOVELINK(Z IO,IMMEDIATE):

Inng 27

INTEGEN D}

BOOLEAN LImMEDIATE;

REGIN

INTEGER I:
INTEGER ARRAY ZIA(1:20),51A(1:12);

- LUNG ARWAY ANR(1:2)}
‘ IOME ITEM(1,71,STOERROR)
GETIOHES(Z,21A):
ARR(T)s=2IAC2)7 AMRCI):mARRCY) SHIPT 24 ADD ZIA(3):
ARNC2Y:=ilACL); ARR(2)ImARRLZ2) SnIFT 2& ADD IIA(S5);
1:=9;
OQPEN(ITEM,U,STRING ARP(INCREASE(]))00
5 GETSHAREG(ZTEM,51A,1);
SIAC4):=m102 SHIFT 12 +(1F IMMEDIATE THEHM 1 ELSE u);
SIA(S)i=]0:
SETSHAREG(ITEM,SIA,1)3
MONITOR(16,ZTEM,Y,5TA)}
: REMOVELINKISIF MONITORCI18,ITEMH1,S1A) <> 1 THENM =1 ELSE SIAC1)}

END REMOVELINKZ

INTEGFR PROCEOURF TERMINALID(TERMINALNUMHER)]

INTEGER TERMINALNUMRER)

TENMINALID g m{(TERMINALNUMBER/ /10 + &B) SHIFT & ADD
(TERRINALNUMBER MOD 10) + &A) SWIFT & ADD 32}

34

Example 7:

wuww TTEMTEST wuw

A TESTPRUGRAM FOR STMPEL TESTING OF THE TEM SYSTEM

PROLRAM CALLS:

TEMTEST TERM CTERMINALNAME=1> KTEXMINALNAME=2>, ... <TERMINALNAME=H>

THE PROGRAM ACTS LIke THIS:

CAEATE TERmINAL POOL
CREATE LINKS 10 ALL TERMIMALS SPECIFIEO IN PROGRAM CALL

LoaP

HEAD AN INPUT LTNE FROM A COMNECTED TERMINAL
(THIS THPUT LINE STARTS WITH A TERMINAL MIMRER)

INCREASF LINECOUNT(TERMINAL NUMRER)
WHlTE TERMINAL TOENTIFICATIONM

wWITE TEWMIHAL MUMdER

WwHITE LINE COUNT :

wRITE COMTENT OF IwPUT LINE

60TO LOOP

W e e N We N NS W e R R WE e WE R N e R e R Re

BEGIN
ZONE 2(26,1,STOENNON)

INTEGER I ,ACIIVETERRINALS MAXTERMINALS »CURNTERMINAL JHESULT,TEAMINALREF;

REAL ARRAY 4RR(1:2):

. ALGAL COPYL1: <+ COPY TE™ PROCELURES #*>

<* CREATE TERMIWAL PONL #3

QPEN(Zs8,<:TEME> 1) 2
CREATFPOQL(Z):
MAXTERMINALS;mACTIVETERMINALS 1 mi;

< COMMECT ALL TERMINALS SPECTFTIED [m PROGRAM CALL

BEGIN
INTERER 42
INTEGER ARRAY 1A(1:1u);
IONE DUMPEY(1,1.STOERQUN);
1im2;

FOR 1:=] WHILE SYSTE4{4,I.Ake} = ¥ SHIFT 12 + 10 DO

dBEuln
MAXTERMINALS:="AATERMINALS+T;

dr=1;

OPEN(OU4MY L1, STRING ARRCINCREASELI)DL0);

TERAIMALREF:2MONITOR(LeDUmMY 2, [AY S
RESULT:sCReEATELINK(Z,

x>

UaTERAINALTD(WAXTERMINALS) » TERMINALREF1,0,0,0);

TF RESUMIT <> U THEN

WRITE(UUT <2< 1O>CREATELINR (32 0<<DD»TERMINALRFF,<2) = 3>,RESULT) ELSE

ACTIVFTERMINALS;=ACTIVETERMENALS+S

I;=f+1;
CLOSECDUNAY,TRUE) }
END;
EnD
. IF ACTIVETERMINALS < 1 THFN GOTO STOK;

BEGIN
INTEGFR 1,07

INTEGER ARRAY LINERUF(TSIUU) S LINECUUNT(TIMAXTERMINALS) S
FOR Lz=1 STEP 1 UNTIL MAATEWMINALS DO LINECOUNT(L)}:=0;

< READ A LTIWE anD OISPLAY LT OM COWRESPONDING TERMINAL >

LOuP:
READ(Z,CURRTERMINAL)

I:=1:

FOR L:is] wHILE READCHAR(Z,LINESUFCI)) <> 8 DO lz=l+1;

SETPOSITIONCZ,0,N)3

LINECOUNT(CURRTENMINAL)Y t®L INECUUMT(CURRTERMINAL)Y+1]

WHITE(Z,<<ID>,CURRTERMINAL,<I TERM = 2>,<<20>,CURRTERMINAL,
€3 LINE & 13,<<D0D>, LINECOUNTICURRTERMINAL) ,<2 2

FOR J:e1 STEP 1 uUNTIL 1 DO QUTCHARCZ,LINEBUF(J))}

LF LIMEBUFI1) = &2 THEN

BEulN < A STAR IN FIRST PUSITION MEANS LOGOUT

WRITE(Z,<:TERMINAL LOGGED OUTCIUD23);
SETPOSITIONCI W, UD}

MEMOVELIMK (2 TEHMINALIO(CURRTERMINALY »FALSEY S

ACTIVETERMIMALS!SACTIVETERMINALS=1;
END;

SETPOSITION(L,U L)
IF ACTIVETERMINALS > O THEN G0TO LOOP;
END;

sToP:
REMOVEPOOL(Z)

>

1>)

H

%

e

35

Example 8:

xww TEM SENSE FEADY TEST www

A TESTPROGKAM FOR SIMPEL TESTIMG OF THE TEM SYSTEM

PRUGHAmM CALLS
CPROGHAANANED

V4t PROGKAF ACTS LIKE IH1S:

CREATF TERmMINAL POOL
LOOP
WALT ATTENTION OR INPUT WEADY
IF ATT THFN LOGIN GOTO LOOF
WFAD LINME FROM TERMINAL
whlTE TFemlMAL SUMAER AND LINE MUMAER
ECHO INDATA
IF FIRSY CrAR = = THEN LOGOUT
GUTD LOOP

e M e Na Wa Na e % N N4 R Ne

HEGIN
TATEGER mAXTEMAINALS;

ALLOL COPY,1; <* COPY TEM PROCEDURES w>

MAXTERMInALS:= 1U;

LY £
HOULEAN AQKRAY PASSIVETFRM{1:mMAXTERFINALS) S
INTEGER AWRAY LINEBUF(1:100) LINECOUNTCI tMAXTERMINALS)
ZONE ZIM(26,1,E4DOFDATA) Z0UTC26,1,STNERROR) »
SENSEMEADY, ZHELP(1,1,S5TDERKOK)}
INTEGER 1,0 ACTIVETERMINALS,CURRTERMINALARESULT,
TER®ILALWEF,BUFFERDASE;
BOOLFAN POCLSENSENZ
THTEGER ARWAY 1ACY1:24)7

PROCEUURE ENUDOFDATAC(Z,S$,8);
Ione 27
INTEWER S, B7
BEGIN
LF B=0 AMD S%2 THEN
GOTO LENTHRALWALITS
[L1'H

< CREATE TERMINAL POOL >

OPEN(ZIN,Bs<ITEMID>,2)}

UPEN(ZOUT B <3TEMI>,U);

CREATEPOUL(ZOUT);

OPENCIHELP,U,<212,0);

OPEN(SENSEREADY D, <I1TEME>,0)}

GETSHARFO(SENSEREADY,IA,1)2

LAl U SHIFY 12 + 2} <» PrEPARE SENSE READY OPERATION 2>
SETSHAREG (SENSEREADY,TA,1);

ACTIVETERMINALS:w U7

BUFFERBASEz= N}

POOLSENSED:= FALSE;

FOR I:® 1 STEP 1 UNTIL MAXTERMINALS DO PASSIVETERM(I):= TRUE;

(to be continued)

36

(continued)

CEMTRALWATT:
TF ACYIVETENMINALS>U AND =,POOLSENSED THEN
BEGIN
MunITORL16) SENDMESSAGEI(SENSEREAQY,1,10);
FPRULSENSEDE® TRUES

[LTH

1:= HUFFLRRASF;

KESULT:= ®uNLTOR(24) JALTEVENT S(ZHELP,T,LA);

1F- WESULT=u THEM
FEOLN <x (ATTENTION) MESSAGE ARRIVED =3
LF LAC1)<>0 THEM
HELIN
BUFFerNASEI= I3
RUTO CEhTHALWALITS
Enid i
HUNITORP(26)GET EVENTI(IHELF,I,IN):
ITAL{Y):= 1;
AUNTTORCZ2Z) SEND ANSWERI(ZRELP,I-TA);
TEAMIMALKEF?® MUNIIONC4) GET OESCRTIPTIUNICIWELP.O,IN);
FNd J:=x mAZTER™InALS STEP =1 UNTIL 1 DO
1F PASSIVETEN={]) THEM CURRTcRMIhALI= I} <x FIND FREE TERMINAL MO x>
RESU ToCREATELINK (ZOUT UL TERMINMALTD(CURRTERMINAL) TERMINALREF
1,2047,050);
1F WESULT<>U THEN
BEGTY
WRITE(OUT<s<TUDCREATELINK(:2,<<00>,TERMINALREF,<3) = 13,
RESULT,<221ud2>);
SFTRPOSITIONCOUT 0,002
Erp
ELSE
AEGIM
wERITE(ZOUT A <<T0>,CURRTERY ThAL,FALSE ADD 32,1,
CiTERMTNAL LOGGEE IN<TUDID);
SeTFASITIONCZIOUT D 0D}
ACTIVETERmINALSI® ACTLVETEmmINALS+Y;
PASSIVETEwM{CURRTERMINAL)I= FALSES
LINECOLMTC(CURRTERMINAL) 3= v
EnND;
GOV CFHIRALWALTZ
ENv
(1% 73
eEGIN <* ANSWwER { SENSE RFADY)} a>
MUNTTORCISIWATT AMSWENS(SEMSERFADY,1,14);
POULSENSEDI= FALSE?

RFPEAT
WEADCZLIwsCURRTERATINAL)S <* END OF DATA HAMDLED HY SBLOCKPROCEDURE »>
I:= 1;
FOr Ts2 I wHlLE READCHARCZINSLINERUF(I)) <28 00 [:= [+1;
SETPOSITIUNMCZIN,U,0);
LIMECOULTC(CHRRTERMINAL) 3= LINECOUNT(CURRTERMINALY+1]
wRITHE(IOUT ,<<ZU>sCUNRTENMINALSFALSE ADD 32,1,
€3 TEWM 3 :3,CUNKTERMINAL,
<2 LINE % 23>,<<DOD>,LINECOUNTCCURRTERMINAL) <22 323
FOR J3= 1 STEP 1 UNTIL [00 QUTCHAR(ZOUT,LINEBUFLI)):
IF LINERUFCT) = 42 THEN
DEGIN <* A STAR IN FINST PUSITION MEANS LOGOUT *>
WHRITECZOUT<:TERMINAL LOLGED QUT<K10>:>);
SETPOSITIONCZOUTLULC)}
HEMOVEL INK CZOUT»TERMINALID(CURRTENMINALY »FALSED
ACTIVETERMINALS:® ACTIVETERMINALS=1;
PASSIVETERM(CURRTERMINALY3® TRUE;
END
ELSE SETPOSITIONCIOLT,0,0)3
UNTIL ACTIVETEMMINALS=U;
END
REMOVFPUQULLZONT)
CLUSECZINSTRUEY? CLOSECZUUT,TRUED:
END;
END

sanaaamewas TEM TEST CNEATE POOL AND CREATE LINK wkxsxewwammaw

PRUGRAM CALL:

CPROGRAMNAMED CPOOLNAMEX(CTYPED . <LOCIDD,CPROCESS NAMED <BUFS>.
CTIMERSD ,CMASKD ,<S0B5TD>) Q=>N

CPOOLNAMED p<LOCLD> p<PROCESS NAMED1:® <TEXTY

CTYPE> s CHUFSY)< TIMERS> s CMASKD y<SUBST> 1w <INTEGEKY

THE PROGRAM CREATES A TEKMINAL WITH THE NAME <POOLNAME>, FOR EVERY
SET OF LINR PARAMETERS A ITEWMINAL LINK IS5 CHEAVED

BEGIN

ALGOL COPY,1i <= CUPY TtM CONTWOL PRUCEDUWES >

INTEGER I, Jsr WESULT,

TYPE, LUCIO, TERMINALREF, BUFS,TIMERS, MASK, SUBSI;

INTEGER AnmaY TA(1:2U)7
REAL ARRAY ARW(122);
ZONE 1, OUMMY(1,1,5TDERRON);

1F SYSTEMC4s 1 Anund<>h SHIFT 12410 THEN SYSTEM(9,1,<:PARAMID)]

I:a 1;

OPENIZ 8 5TRINGOAMMILNCREASECTI) Y oud i
RESULT:® ChEATFPOUL(2)}

IF RESULTS>) THEN SYSTEM(9,RESULT,<ICRPOOL:>);

OPEN(DUMMY , (I,<322,U);

It= U}

REPEAT <w GET DuMMY MESSAGE FROM TEM 2>
RESULTI® MONITONCZ4) WAIT EVENTI(DUMMY,I1,IA);
IF RESULT=U THEM
REGIN

IF IAC1) » =2 SHIFT 12 THEN
BEGIN
MONITOK(20) GET EVENT:(DUMMY,[,IA)};
l:s u;
EnD:
EnDi;
UNTIL I=y;
CLOSE(DUMMY , Twire)

1: 1;
FOR It= J+41 WHILE SYSTEMChsI/ARRIBE SHIFT 12+4 00
GEGIN

TYPE:m aki(1);

Iim 1+%;

IF SYSTEMU4 T, ARub€>8 SHIF] 12410 THEN SYSTEM(Y, 1, <:PARAMI>);

LOCIu:™ ARNET) SALFT (=24) EXTRACT 24)
1:a]1+1;

IF SYSTEM(Ls1,ARRICOE SHIFT 12 +10 THEN SYSTEM(Y,[.<:PARAMID);

Ji= 1;

OPENCOUMMY s 3 T itiu CARRIINCREASE(S) DU
TERMINALNEF:® MONITONRCL,OUMMY U 1A);
CLOSE(DUMMY ,TRUE);

Ii=z 1+1;

I1F SYSTEM(4 1 AMRICOIE SHIFT 1244 THEN SYSTEM(Y,1,<:PARAMID}}

BUFS:® Auk(1);
Tis 1413

IF SUYSTEMC4 L ARM)IC> 8 SHIFT 12+4 THEN SYSTEM (Y, 1,<:PANAMED)]

TIMERS:®s anuil);
Lim Je1;

1F SYSTEM(4,1,ARRIC> B SHIFT 1244 THEN SYSTEMIV, I, <IPARAM}D)]

MASK:® Axn(1);
Ti= 1+1;

IF SYSTEMC&, T ANN)I€>d SHIFT 12¢4 THEN SYSTEM(9, [, <iPARAMID);

SuBST:=s ARR(1);

RESULT =2 CHEATELINKCZoTYPESLUCID, TERMINALKEF BUFS TIAERSMASK,SUBST) S

TF RESULTCOU THEN SYSTEM(P,RESULTY,C3CRLLNEZD) S
13 1'H

IF SYSTEMC& LoAnn)<oU THEN SYSTEM{4s1,CIrHANAMED);
CLORE(Z,TRUE)

Y4F

38

Example 10:

ek TEMTRIM #wxw

CONTAINS OPTIONS FOR TRIMMING TENM SYSTEM
AND COMMANDS FOR AUTOMATIC SYSTEM™ GENERATION FROM THE TEM SYSTEM TAPE

LU T T T

MESSAGE TEM RELEASE 2.0

TEMOUMMYQUTSSET 1

XTEM = EVIT TTEM s EDIT OFTIONS INTO THE PROGRAM TEXT
Lo/30DY OF INLT/,
La/==sTRIMSTART/,
Da/=2=THIMFINLS/»,

I/

! DATE UF UPTILIONMS ! OPTIUNS H Ur
! NUMBER OF ACTIVE TERMINALS ! THCOUNT 1= 15,
! NUMAER uF ACTIVF TERMIAAL GROUFPS ! PHCOUNT = S
! NUMHER OFf SPOOL SEGMENTS FOR EACH TERMINAL GRQUP ! PHSPOOLSEG™ 1= 10,
! NUMRER OF SPOOL SEGMENTS FOR EACH TEKmIMAL ! THSPOQLSEG™ = 10,
! SIZE OF TErMIMAL RUFFER IN CORE (HALF WORDS) ! TERMBUFSIZE = 104,
! NUMHER OF SPOOL SFGMENT BUFFERS IN CURE ! SPOOLSUFS HE 2
! SIZE OF TESTOuTPUT AREA (SEGMENTS) ! TESTSEGMNTS = 42,

/e
F

0O TEMDUMMYOUT
MODE 1.0
LOOKuP TEMDOC
IF Ok NO

mOJE 1.YFS

0 c

IF 1.Yes
TEMDOC = SET 1

IF <VTEmDUC> NOT PRESENT

THEN CKEATE IT PREFERRARLY UM DISC

s

RCMIOL = ALGOL TRCAOL

s

BTEM = ENTHY 20 TEMOUC

BTEM = RCHOL XTEWm TRANSLATE TPIMMED PRUOGRAM TEXT

TRACE = ENTRY 40 TEMOOC

TRACE = ALGOL TTrACE GENERATE PROGRAM FOR AMALYSING TESTOUTPUT

LT

SCNPE USER BTEM TRACE
- 0 TEMDUMMYOUT

CLEAWN TEMP ATEM HCHMOL TEMTRIM TRCMGL TTEM TTRACE TTEMTEST TEMLOAD TEMSAVE.
TeEmLIST

0cC
CLEAN TEmP TEMDUMMYOUT

