
- Introduction to

Boss 2

~ AOC /8B0COQ

Introduction to Boss 2

Edition 0

A/S REGNECENTRALEN July 1976

Documentation Department RCSL 42-i 0372

Author: Rune Einersen

Text Editor: Ejvind Johansson

KEY WORDS: RC 4000, RC 8000, Basic Software, Boss 2, an introduction to.

ABSTRACT: A description of the operating system Boss 2 as seen from the pro-

grammer's point of view. The main goals of Boss 2 are to ensure a

fast and reliable execution of off-line jobs (batch), while ot the

same time serving many terminals in restricted or full time sharing

mode.

Basic information needed to run simple jobs on the system is given.

Users of this manual are cautioned that the specifications
contained herein are subject to change by RC at any time
without prior notice. RC is not responsible for typographi-
cat or arithmetic errors which may appear in this manval
and shall not be responsible for any damages caused by
reliance on any of the materials presented,

Copyright © A/S Regnecentralen, 1976

Printed by A/S Regnecentralen, Copenhagen

Table of Contents

INTRODUCTION

1 EXAMPLES OF JOB FILES

1.1 Simple Translation and Execution

1.2 Listings During Execution

1.3 Several Translations and Executions

1.4 Text Files on Backing Store

1.5 Off-Line File Editing

1.6 File Manipulation

PAPER TAPE JOBS N

3 CARD JOBS

4 ON-LINE JOBS

4,1 Correction of Typing Errors

4,2 Get, Save, List, Verify, Lookup

5 USER CATALOG

6 JOB SCHEDULING

7 INTERNAL JOB

8 FILES ON MAGNETIC TAPE

page

oO

o
v
o
v

o
n

w
oO

15

16

18

20

20

23

24

25

27

Introduction

The main purpose of Boss is to run jobs. First, we will! briefly explain the

three main ways in which jobs may be executed: as off-line, on-line, or

internal jobs. In all cases, the actions to be taken during the execution are

specified by the user in the so-called job file. In Chapter 1 we present typi-

cal examples of job files, and in Chapters 2 through 4 we give a more de-

tailed description of the various ways in which jobs may be executed.

The jok: file of an off-line job is either a paper tape (a tape job) or a deck

of cards (a card job). It is the operator who determines when the job files

are to be loaded into the computer ond enrolled for execution.

An on-line job is composed by a user working from an on-line terminal, He

has one or more job files stored on disc. He may edit a file, list it, save it

for the next run, select another file, and so on. When he wants a job to be

executed, he enrolls the corresponding job file.

For the sake of completeness, we mention that the job file of an interna! job

is on disc, and that the internal job is enrolled by the new job-command or

by a job running already (see Chapter 7).

41

Examples of Job Files

In this chapter we will present some typical job files. In Chapters 2, 3, and

4 we will show how a job file is executed as, alternatively, an off-line or

an on-line job - but the job file itself may be the same in both cases.

The following examples are intended as a first aid for users familiar with

some other computer system. Details are given in the Boss 2 User's Manual.

Simple Translation and Execution

In this first example we show the job file needed to translate and execute an

Algol program. Annotations are given in the right-hand column,

job btj 308 } Job specification (read by Boss)

p =algol } Call of translator (read by FP)

begin real a,b;

read(in,a,b); Algo! source program (read by algo!)

write(out,a**b);

end

p } Call of object program (read by FP)

2 10 } Data for program (read by p)

finis } End job (read by FP)

The first line is the so-called job specification. It is the only part of the job

file which is interpreted by Boss, and it specifies the user name (btj) and the

project number to be accounted for the run (308), Boss checks against the

user catalog to see that btj is allowed to use project number 308. In this ex-

ample the job specification is very simple, but if the job needed special re-

sources this would have to be stated in the job specification.

The remainder of the job file is read and interpreted by various programs in

turn as the job runs. Boss assures that the first program to read and inter-

pret from the job file is the control program FP (File Processor).

1.2

FP reads the command 'p = algol' and as a consequence calls in the Algo!

translator. The Algol translator goes on reading the succeeding Algol pro-

gram, translates it into an object program, and stores this as a file, p.

Control is then returned to FP, which reads the command 'p' and as a con-

sequence calls in the program in p. Now, our Algol program (alias p) reads

the two numbers (2 and 10). p also returns control to FP, which reads the

command 'finis' and tells Boss that the job is done.

The result of the entire run appears as follows (again with annotations to the

right):

begin
algol end 16 Output from the Algo! translator

10,2400'2 Output from the object program.
end 16 The apostrophe signals the tens-

exponent.

. A Output
end job btj0 4sec log ms date 1975.08.21 12.23.30 from Boss

The last line shows that the job ran 4 seconds, the operator was ms, the job

was terminated on the date and at the time specified, and in the normal way.

The output shown above is called the primary output, to distinguish it from

other output like the output file p from the Algol compiler, Translation and

execution in Fortran and assembly language (Slang) may be done along the

same lines.

Listings During Execution

When the Algol translator detects an error, it identifies the bad spot in the

source text by means of a line number (and an operand number within the

line). The user will therefore find it helpful to have a listing of the program

provided with the exact line numbers. This is obtained by replacing 'p =

algol’ with ‘p =algol fist. yes’.

It is possible to roughly keep track of the job flow by letting FP print every

command just before performing them. This is accomplished by inserting the

line 'mode list.yes' after the job specification.

1.3

With the above two changes the output from the job will now appear like

this:

*p=algol list. yes

1 begin real a,b;

2

3

4 end

algol end 16
* Pp

10,2400'2

end 16

*finis

read(in,a,b);

write(out,a**b);

end job btj0 4sec log ms date 1975.08.21 12.26.40

Several Translations and Executions

Assume that you want to translate two programs and execute the first one,

then the second one, and finally the first one again, In that case you might

use the following job file:

job btj 308

prog] = algol

begin ...

end

prog2 = algol

begin ...

end

progl

<data for progl>

prog2

<data for prog2>

prog]

<data for progi>

finis

} Job specification

Translate first program and store it as
the file prog!

Translate second program and store it
as the file prog2

Execute progl

} Execute prog2

} Execute prog] again

} End job

In this example we have also shown that longer file names may be used (like

prog] and prog2). In general, a file name consists of one small letter fol-

lowed by a maximum of 10 smali letters or digits.

Text Files on Backing Store

The user may store texts on the backing store, provided that the necessary

backing store resources are available. Such texts may be loaded from cards

or paper tape to the backing store, as explained in Chapters 2 and 3. Now,

let us assume that the file tex3 contains:

p = algol

begin real a,b;

read (in,a,b);

write(out,a**b);

end

P

2 10

Then we may let FP and Algol read and execute this file by means of the fol-

lowing job:

job btj 308

i tex3

finis

The command 'i tex3' instructs FP to continue reading from the file tex3 in

the usual way, Thus, the program is translated and executed just as in Sec~

tion 1,1. When FP encounters the end of tex3, it returns to reading from the

job file, and then the command 'finis' terminates the job as usual.

We use the term current input for the file from which FP reads for the moment.

The effect of 'i tex3' is then that FP selects tex3 as current input. The selec-

tion of a new current input file may be carried on for several levels (recursive

ly), for instance, if tex3 above contained a command like ‘i tex4*.

The effect of Example 1.1 may also be achieved by means of the file tex5:

15

p = algol

begin ...

end

and the following job file containing the actual data:

job bt] 308
i texS

Pp

210

finis

Off-Line File Editing

A text file on the backing store may be edited and corrected in an on-line

mode by Boss, or in an off-line mode by means of the program 'edit'. When

working from an on-line terminal, it is usually simpler to correct the file by

using Boss's on-line commands (see Chapter 4), but it is also possible to en-

roll a job that performs the task by means of the program 'edit’.

We are now going to show a job which transforms the previous file tex3 into

a new version in newt. The changes are put in bubbles.

The new version is chosen to illustrate the editing and does not represent a

useful file: The Algol program will loop endlessly trying to read beyond the

last data set (2 3), because the object program - contrary to FP and the

translator - does not stop automatically at the file end,

tex3: newt:

p =algol p =algol

begin real a,b; begin real a,b;

read(in,a,b); (ep:) read(in, a,b);

write(out,a**b); write(out,a**b);

p end

2 10 p

a
a
,

a

1

The following job performs the editing task, and translates and executes newt.

It contains the command 'newt = edit tex3', which calls the edit program.

Edit will copy the text in tex3 into newt, changing it at the same time ac-

cording to the succeeding edit commands.

job bt} 308
newt = edit tex3 } Call of the edit program with tex3 as source

and newt as object file.

This first edit command (marks empty) defines
me } all characters to have their normal meaning.

The command should be used as a standard.

Copy from tex3 to newt until the line con-
1./algol/ } taining the pattern 'algol' is met.

/ol/ol list.yes/ In this line, replace the pattern 'ol' by
ol list. yes’.

|./read/ } Copy on until the line with 'read’.

Replace the four first spaces by 'rep:". Only
/ /rep:/ the first occurrence of the pattern will be re-

placed, so possible blanks after the semi-
colon will do no harm.

|./end/ } Copy on until the line with ‘end’.

i/ Insert 'goto rep' before the line with 'end'.
Strictly speaking, all the characters in the
bubble (including the terminating new line
character) are inserted,

Copy on until the line with '2 10°, It does

goto rep,

i

1./2 10/ } not matter if tex3 contains more than one
space between the numbers.

d } Delete the line.

i/
12

Insert these two new lines. 23
/

Copy on to the end of tex3, and return
f) from the edit program to FP

i newt } Select newt as current input as in 1.4.

Finis } End job.

This example contains the basic edit commands written in the so-called veri-

fication mode, in which the lines changed are printed out for verification.

If you terminated an edit command by a comma (possibly followed by a new

line) instead of by a new line alone, no verification would be printed for

that correction. For instance you could write:

12

newt = edit tex3
This command should always be

m *
e } followed by new line alone.

l./algol/, r/ol/ol list. yes/,

\.fread/, r/ — /rep:/

Here you would get a verification of the line with 'read', because no comma

is present after the last edit command.

As you can imagine, the edit program will have trouble with inserting text

with slashes, because the slash is taken for the ‘end pattern’ character in the

example above. In such cases, you can simply use some other character for

the slash in the 'r'=command or the 'l.'-command. For example, replacing

ta**b! by ‘a/b! may look like this:

r-a**b-a/b-

where minus is the 'end pattern’ character.

Another command, which uses line counting instead of pattern searching, is

often useful: In order to copy one line, use the command ‘11'. Two lines are

copied by 'I2', and so on. All lines until the bottom (end) of the file are

copied by 'I b'. Blank lines are not included (counted) in the number of lines

specified. For instance, the example above might be rewritten to this:

newt = edit tex3

me

\./algol/, r/ol/ol list. yes/,

12, / /rep:/,

12, i7

goto rep;

/,
13, d, i/
12

23

/,f

1.6

13

In the same way, the command 'dl' will delete the current line and the

next line, 'd2' will delete a total of three lines, and so on, The command

'd./pattern/" will delete all lines up to and including the first line contain-

ing ‘pattern', The command ‘d b' will delete to the bottom (end) of the

source file.

Finally, it is worth mentioning a command which is useful when larger por-

tions of the text are to be moved around: The command 's1' will interrupt the

present copying and continue again from the beginning of the source text

(tex3 above). The object text (newt above) will continue to grow. As an

example consider the contents of file t:

begin part a

end part a

begin part b

end part b

In order to exchange parts a and b, we can proceed like this:

nt = edit t

d./end part o/, | b, } Delete part a, copy part b.

sl, } Start from top again.

|./begin part b/, db, } Copy part a, delete part b.

f

File Manipulation

A command like 'newt = edit tex3' creates a new file (newt) on the disc,

unless you had a file of that name already. Such a new file is temporary,

which means that it is cancelled as soon as your job terminates. In order to

save it for later jobs, make it a permanent user file by means of this command:

scope user newt

This is not always possible, because Boss consults the user catalog to see if

your project has resources available for the purpose.

The scope command may be used in a job (as an FP-command), and it may

also be called directly from an on-line terminal (see Chapter 4).

Object files from translations will generally be placed on the drum, and then

it is impossible to save them for later jobs. However, you may move them to

the dise in this way:

p = algol

begin ...

end

ps = move p

scope user ps

In order to list a text file like tex3 on the printer, use the command 'convert

tex3'. Again, this command is available as an FP-command and as an on-line

terminal command (see Chapter 4).

In order fo get an index of all your present files, use the FP-command ‘search

own'.

In order to see whether you have a file named tex3, use the command ‘lookup

tex3' (FP=command or on-line, see Chapter 4).

In order to cancel the temporary file tex3, use the command 'clear temp tex3'

(FP-command or on-line). A permanent user file is likewise cancelled by

means of ‘clear user tex3'.

Paper Tape Jobs

In case you want to submit a paper tape job, you simply punch the job file on

paper tape and mark it clearly, like this:

As two different punch codes are in use, you have to specify the actual one

clearly on the tape. The codes are 'tre' (which is the [SO-code with even

parity) and 'trf? (which is the flexowriter code with odd parity).

The paper tape - together with possible data tapes - is forwarded to the com-

puter room, where an operator at a suitable moment loads the job. The pri-

mary output appears on a printer and may be collected later.

If you have data tapes for the job (i.e., paper tapes which should be loaded

during execution of the job), you have to ask Boss to load these tapes to the

backing store. In case you have a data tape in 1SO-code (tre) and one in

flexo-code (trf), the job specification may look like this:

job bt] 308 load tre tex2 load trf pap

The data tapes must be marked carefully os number | and number 2, with file

names tex2 and pap, so that the operator can load them in the proper sequence.

During the run the two tapes will be accessible as files 'tex2’ and ‘pap'. The

coding of both files is now done in ISO-code, which is used as a standard

within the system, The two files will be cancelled after the run, unless you

make them permanent by means of the scope command (see Section 1.6}.

Card Jobs

In case you want to submit a card job, you prepare a card deck consisting of

a so-called job separation card followed by the job file (punched with one

line toa card), The job separation card looks like this:

---job

where '---job’ is in columns 1 through 6. Job file and job separation card

must always be punched in EBCDIC code. The job separation card should be

in a distinctive colour.

The job is now forwarded to the computer room, where an operator at a suit-

able moment stacks it with other card jobs and loads it, The job separation

card ensures that Boss can separate the preceding job from yours, and its dis-

tinctive colour ensures that the operator also can. The primary output from

the job appears on a printer and may be collected later.

If you want to have cards loaded to the backing store (possibly with other

punch codes), this must be stated in the job specification, Assume, for in-

stance, that you have a card file in EBCDIC code (crc below) and one to be

loaded in binary (crb below). Binary means that all 12*80 bits of the card

are to be stored - contrary to the normal way where each column is converted

into a seven-bit character. Then the job specification should be:

job btj 308 load ere tex2 load crb binfile

The card files in question are now stacked after the job file, each of them

preceded by a so-called file separation card, containing

---file

in columns 1 to 7,

During the run, the two files will be accessible as the backing store files

"tex2' and ‘binfile’. The files will be cancelled after the run, unless you

make them permanent by means of the scope command (see Section 1.6).

The entire card deck for the job will now look like this:

---job

job bt] 308 load crc tex2 load erb binfile

<remainder of job file>

---file

<the file in EBCDIC code>

---file

<the file in binary>

17

On-Line Jobs

We are now going to demonstrate how the example of Section 1.1 may be run

from an on-line terminal, The Boss 2 User's Manual tells more about terminals

and their operation; here it suffices to know that a terminal can transmit an

attention signal when we want the attention of the operating system.

Below we indicate by a that we have pushed the attention button and by ->

that we type in a line terminated by a new line character.

Assuming that the terminal is connected to RC 4000 and that Boss is in the

computer, the conversation may look like this:

a att -> boss

type user name and project number

-> btj 308

in: 1975.08.21 15.46

-> 10 p =algol

-> 20 begin real a, b;

-> 30 write(out,a**b);

-> 40 end

~> 50 p

->602 10

-> 1000 finis

=> 25 read(in,a,b);

~> go

finis btjO at 15 52

begin

algol end 16

10,2400'2

end 16

Activate Boss. This is the
login procedure. Boss ac-
knowledges the login by re~
turning the time. We are
now connected to an empty
job file.

Here we compose the job
file. Each line of the file
is preceded by an identifi-
cation number.

At this point, the file is
} incomplete.

} Here we correct it by in-
serting a line.

rolls the job. Boss returns
} This on-line command en-

the estimated finishing time.

}oupa from the algol translator.

joven from the object program.

Output
end job btj 4sec log ms date 1975.08.21 15.51.00 } from Boss

19

The system is now ready for new corrections to the job file and new runs. For

instance, we could replace line 60 by three lines in order to get more results:

-> 55 3 10

-> 60 p

~>65 5 10

~> go

When we want to terminate the session, we type ‘logout’.

The job file we have composed above does not include a job specification,

which would be unnecessary since the information is available to Boss from the

login procedure. But if we want to use special resources in the job, we may

extend the job file with a job specification and enroll the job by means of the

‘run' command:

=> 1 job btj 308 load trf tex2

“> run

(This example presupposes that the operator has a paper tape for use.)

When we have enrolled a job, we cannot just go on typing new commands un-

til the run is over (we use the phrase that the terminal is passive during the

run). If we want to tell Boss something in this case, we must push the attention

button, after which Boss reads one command and returns to the passive state.

For instance, we can ask for immediate termination of the job in this way:

a >>

~> kill

We can also get list of the jobs waiting for execution if we type ‘display!

instead of 'kill'. However, we cannot change the job file or enroll mew jobs

while the terminal is passive.

20

4.1 Correction of Typing Errors

On all terminals, two keys are reserved for the purpose of character cancel-

lation and line cancellation, On most terminals, the characters are amper-

sand (&) and percent (%). Thus, in order to cancel the latest character typed,

type &. In order to cancel several of the latest characters (in the current line

only), type & the corresponding number of times. In order to cancel the en-

tire line, type %.

If you do not type anything for a certain period (time out period, installation

dependent), Boss will get the portion typed in and will continue reading a

new portion, This time out is clearly audible on most terminals. However,

line cancellation and character cancellation works only within a portion at

present. This may cause you correction trouble in installations with a short

time out period.

In all cases ~ even after time out periods - an attention signal will cancel

the current line.

Get, Save, List, Verify, Lookup

When we have composed a job file, we can store it on the backing store for

later use. For instance, it will be saved with the name pr3 when we type this

line:

save pr3

A file saved in this way disappears when we ‘log out', unless we make it per-

manent, for instance by typing

scope user pr3

This is not always possible, because Boss consults the user catalog to see if

the project has resources left for the purpose.

In order to get the file tex4 from the backing store into the job file, type

get tex4

21

This will also cause the lines of the file to be identified by their numbers:

10, 20, ... It is now possible to modify the job file by typing line number

and line contents, just as above.

In order to get an empty job file, type

clear

In order to list the current job file, type

list

or list 140

or list 140 200

The second command lists from line 140 on. The last command lists from line

140 to line 200. The listing may always be terminated by a push on the at-

tention key.

In order to verify a correction made or a line in the job file, type

verify

or verify 40

or verify 40 3

The first command lists the line last used, e.g., edited or typed in. The sec-

ond command lists line 40 and the third command lists 3 lines starting with

line 40.

Suppose we have a permanent file named 'prog' on the backing storage, which

another user in our project wants to utilize. First we want to check that this

file exists, and we type

lookup prog

or lookup user prog

and we get the answer:

prog=set 36 disc 1975.82] 16.15 0 0 0; user

; 336 46 3 100 199

provided no login file with the name 'prog' exists.

In order to make the file visible to all the users in our project we type

scope project prog

22

and in order to check what has happened to the file we type

lookup prog

or lockup project prog

to which we get the answer

prog=set 36 disc 1975,821 16.15 0 0 0; project

+ 336 46 3 100 199

If we this time had typed the command

lookup user prog

we would have got the answer

file does not exist

The output from our latest job is always stored in a file named primout. In

most cases this is not interesting, but if the job was 'killed' while producing

a lot of output on the terminal, primout usually contains the entire output

file, because the terminal works much slower than the job execution process.

By means of ‘get! and 'list' we may then pick out parts of the output for closer

examination.

23

User Catalog

As mentioned in the preceding chapters, Boss checks the user catalog to see

if the user is allowed to run with the project number he specifies. However,

the user catalog may contain a lot more information, for instance, which re-

sources his job will need as a standard, and which resources his job may re-

quest at most,

In order to be allowed to use Boss, you will normally have to fill in a form,

so that the computer department can enter you into the user catalog.

24

Job Scheduling

All the jobs enrolled at a given moment are in one stage or another of their

execution. Most jobs will! spend some time in waiting for resources (core

store, tape stations, etc.). As a general rule, a job will have to wait longer

the more resources and the more run time it demands. In the simple examples

presented above, we did not specify the estimated run time, because it was

assumed to be standard, but if a short turn-around time is desired, an accurate

time specification may be important.

A job with short run time and a modest demand of resources will be able to

bypass a large job, even if the large job has begun execution in the core

store. On the other hand, small jobs may be delayed by other small jobs. e

However, large jobs cannot be delayed indefinitely, not even by a steady

stream of small jobs.

From a terminal it is always possible to get a list of the jobs enrolled at the

present moment by means of the display-command, This list will contain

Boss's latest estimate of the finishing times.

Nl

25

Internal Job

It is possible to enrol! a job for off-line execution, either from a terminal by

means of an on-line command, or from another job by means of an FP-command

like this:

newjob file7

Here, file7 must be a permanent file holding the job file of the new job. The

new job specification will normally look like this:

job bt 1 308

A job index (1) is added between the user name and the project number in

order for Boss to be able to tell the new job from the old job, which carried

the job specification ‘job btj 308' with an implicit job index of 0.

As an example, let us assume that we work from a terminal and want to exe-

cute a long job while we use the terminal for something else. First, we gen-~

erate the job file of the long job as a permanent file named ‘long’, and then

we enroll it as an off-line job by means of the newjob-command, for instance

in this way:

10 job btj 1 308
20 p =algol

30...

save long

scope user long

newjob long

It may happen that the newjob-command is rejected by Boss because the job

queue is completely filled up already. We will then have to try again later,

or run the job as an on-line job instead,

Notice, that the primary output from the long job will appear on printer. If

we want to see some output on the terminal, we may let the long job switch

to producing output in a permanent file 'longout' by means of this contents

of ‘long':

job bt] 1 308
o longout

scope user longout

p =algol

oc

finis

When the job is completed, we may list the output on the terminal in this

way:

get longout

list

We may check from time to time whether the job is completed by means of

this on-line command:

display btj]

The parameter btjl identifies the job with user name btj and job index 1.

When display prints 'no such job’, the job is completed.

From an off-line job it is also possible to make an internal job as a so-called

replace job, in which case the termination of the old job leaves the new job

in its place.

27

Files on Magnetic Tape

Often the backing storage is too small to hold all user's files, but may still

be large enough to hold all files for running jobs and users logged in at a ter-

minal. In such cases, the users should store their files on magnetic tape,

load them from the tape to the dise at the beginning of a session, and save

them on the tape after the session (if they have been changed).

In order to avoid the superfluous saving of scratch files produced during the

job, the convention is adopted that only login files are saved on the tape in

the normal case. Files produced by means of the on-line command 'save' will

have login scope; files created inside a job may be given login scope by

means of the scope command, i.e., ‘scope login filel'.

Assume that you have had permission from the computer department to use the

magnetic tape mt285032. Then the FP-command

save m#285032. 1. label .btj

will ask the operator for the tape. The tape is given a user label ‘btj', and

all login files of the user are saved on file 1 of the tape. The program prints

a log of the label and the files saved.

In a later fob you may use the FP-command

load m#285032.1

to reestablish the files. The next version of the files must be saved on file 2

(the next again on file 3, and so on) by means of this FP-command:

save mt285032.2

You should only use the parameter 'label.btj' the first time you save on the

tape.

In jobs using magnetic tapes, the job specification should state the number of

tape stations needed:

job btj 308 stations 1

READER'S COMMENTS Introduction to Boss 2

RCSL 42-i 0372

A/S Regnecentralen maintains a continuous effort to improve the quality and

usefulness of its publications. To do this effectively we need user feedback

- your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization,

usability, and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments ?

Please state your position:

Name: Organization:

Address: Department:

Date:

Thank you!

Affix
postage
here

A/S REGNECENTRALEN

Marketing Department

Falkoner Allé 1

2000 Copenhagen F

Denmark

r 8s REGNECENTRALEN

HEADQUARTERS: FALKONER ALLE 1; DK-2000 COPENHAGEN F : DENMARK

Phone: (01)10 5366 : Telex: 16282 rc hq dk : Cables: regnecentralen

INTERNATIONAL

EASTERN EUROPE
A/S REGNECENTRALEN
Glostrup, Denmark, (02) 96 53 66

SUBSIDIARIES

AUSTRIA
RC — SCANIPS COMPUTER
HANDELSGESELLSCHAFT mbH
Vienna, (0222) 36 21 41

FINLAND
OY RC —- SCANIPS AB
Helsinki, (90) 31 64 00

HOLLAND
REGNECENTRALEN (NEDERLAND) B.V.
Rotterdam, (010) 21 62 44

NORWAY
A/S RC — SCANIPS
Oslo, (02) 35 75 80

SWEDEN
RC — SCANIPS AB
Stockholm, (08) 34 91 55

SWITZERLAND
RC — SCANIPS (SCHWEIZ) AG
Basel, (061) 22 90 71

UNITED KINGDOM
REGNECENTRALEN LTD.
London, (01) 439 9346

WEST GERMANY
RC — GIER ELECTRONICS G.m.b.H.
Hannover, (0511) 6 79 71

REPRESENTATIVES

FRANCE
SORED S.a.r..
Nanterre, (1) 204 2800

HUNGARY
HUNGAGENT AG
Budapest, 88 61 80

TECHNICAL ADVISORY
REPRESENTATIVES

POLAND
ZETO
Wroclaw, 45 431

RUMANIA
L.E.R.U.C.
Bucharest, 33 21 57

HUNGARY
NOTO-OSZV
Budapest, 66 84 11

