
RCSL: 51-VB527

Author: M. Strange

Edited: September 1969

INTERRUPT UNIT FOR

THE RC 4000 COMPUTER

A/S REGNECENTRALEN | oe
Falkoneralle 1

2000 Copenhagen F

1. INTRODUCTION
2 ce nth Ot ee GO RG ee GO ee ne coe tn ee ee

The program interrupt system permits an automatic switching from the current

sequence of instructions to another sequence in immediate response to speci-

fic internal or external events.

The interrupt system is realized by the Interrupt Unit and a microprogram

routine. The following program instructions have special relation to the in-

terrupt system. .

Clear Interrupt Register (Ic)

Store Interrupt Register (Is)

Load Mask Register (ML)

Store Mask Register (ms)

Jump with Interrupt Fnabled (JE)

Jump with Interrupt Disabled (JD)

The effect of these instructions is described in the RC 4000 Reference

Manual.

The interrupt system performs the following functions: (1) Collection of in-

terrupt signals, (2) Interrogation of interrupt signals, (3) Selection among

competitive interrupt requests, (4) Saving of return information, and

(5) Branching to the interrupt program.

The RC 4000 can collect up to 24 interrupt signals in the interrupt regis-

ter, IR(0:23). The monitor has selective control over these interrupt lines

by means of the mask register, IM(0:23). For each of the 24 interrupt lines

a mask register bit defines whether an interrupt request will be honoured

(mask bit = 1) or ignored (mask bit = 0).

The signal ITR Request is generated if IR(n) A IM(n) = 1 for any n. The ITR

Request signal is interrogated once in every instruction cycle. In case of

interrupt, the contents of the instruction counter (IC) will be stored in

storage word 10, before branching to an address kept in storage word 12.

VB527

The problem of simultaneous interrupt signals is solved by means of a prio-

rity logic, which selects the left-most signal first. The interrupt signals

are numbered from 0 to 23 after their position in the register. The inter-

rupt number (ITRno) is stored in storage word 8 as a word address, i.e. with

the unit position in bit 22 and with bit 23 equal to zero. The interruption

program uses this interrupt number to branch to a specific service routine.

When the interrupt number has been transferred to SB, the interrupt bit in

question is reset.

Only the instruction counter is stored as return information about. the in-

terrupted program. The interruption program is responsible for saving and

restoring the contents of the W registers and the EX register.

The entire interruption system can be disabled for short intervals when an

interruption would be awkward (e.g. while a previous interrupt is being pro-

. cessed). The disabling and enabling is performed by the privileged instruc-

tions Jump with Interrupt Disabled (JD) and Jump with Interrupt Enabled (JE).

When the system is disabled, interrupt signals are still collected in the IR

register but not interrogated. The system is automatically disabled when the

interruption routine in the microprogrem is entered. It is enabled again

when the first JE instruction is executed, that is when the necessary inter-

rupt administration has been finished.

It is possible to cancel an interrupt signal before it will give rise to

program interruption. This can be done by resetting the interrupt bit in

question during execution of the instruction Clear Interrupt Register (IC).

The interrupt signals can be classified according to priority as follows:

IR(0) Instruction Exception

TR(1) Integer Overflow

IR(2) Floating-Point Overflow

IR(3:23) External Interruption

A description of the above-mentioned interrupt situations can be found in

the RC 4000 Reference Manual.

VB527

2 PROGRAM DESCRIPTION
0 om Cee ee cant ne me OE an OOD NE OI OO SOD COR Se Sat SND wee

This section describes the complete 24-bit version of the interrupt system.

begin

register IB(0:23), IR(0:23), IM(0:23);

comment The priority logic is realized by a combinational network, based

upon a division of the 24 bits into 6 groups each of 4 bits, identifi-

ed as Group(0), Group(2), ..., Group(5). The selected group is called

GrSl;

comb net RM(0:23) = IR(0:23) a 1conIM(1:23);

comb net Group(0:0) = or RM(0:3),

Group(1:1) = or RM(4:7),

Group(2:2) = or RM(8:11),

Group(3:3) = or RM(12:15),

Group(4:4) = or RM(16:19),

Group(5:5) = or RM(20:23),

GrSl1(0:0) = Group(0),

GrS1(1:1) = -,Group(0) A Group(1),

GrS1(2:2) = -,Group(0) a -,Group(1) A Group(2),

GrSl1(3:3) = -,Group(0) a -,Group(1) A -,Group(2) A Group(3),

GrS1(4:4) = -,Group(0) a -,Group(1) a -,Group(2) a - ,Group(3)

a Group(4) ,

GrSl(5:5) = -,Group(0) ~ -,Group(1) a -,Group(2) a - ,Group(3)

| A ~,Group(4) A Group(5);

VB527

comment The interrupt number ITRno is then decoded in accordance with the

following tables:
(
0
%
:

QT
)OUBLI

¢ 6 6
1
1

0

0

1

1

0

0

0

0

0

0

d
n
o
z
y

pe
yoo

Teg

GrS1(5)

Grs1(4)

Grs1(3)

GrS1(2)

GrSi(1)

GrS1(0)

(G
)
d
n
o
z
p

(4
)dnoarp

(
¢
)
d
n
o
z
p

(z
)dnozp

(tT)dnozp

(0
)dnozp

1
¢
6
6
d
6

Bit number in group:

V
-

N

N

-

N

P
O

7
O

HF
O

o =
a
e

ei

-

M
r
j
i
o
n
n
d

Oo
So

S
C

~
e

~
~

N
i
O

oO
xn

O
O

~
~

~
~

A
l
o

Oo
oO

xa
SOS

—

o
n

o
O
;
}
o

oO
oO

O

x

—

VB527

comb net

ITRn0(18:18) = or Grsi(4,5),

ITRn0(19:19) = or GrsSl(2,3),

ITRno(20:20) = or GrS1(1,3,5), .

ITRno(21:21) = GrSi1(0) ~ RM(0,1) = 0 v Grsi(1) a RM(4,5) = 0

v GrSi(2) a RM(8,9) = 0 v GrSl(3) A RM(12,13) = 0

v Grsi(4) A BM(16,17) = 0 v GrSl(5) A RM(20,21) = 0,

ITRno(22:22) = GrS1(0) A -,RM(O) a (RM(1) v -,RM(2))

v GrS1(1) A -,RM(4) A (RM(5) v -,RM(6))

v GrSl(2) a -,RM(8) a (RM(9) v -,RM(10))

v GrSl(3) A -,RM(12) A (RM(13) v -,RM(14))

r v GrSi(4) A -,RM(16) A (RM(17) v -,RM(18))

v GrSi(5) A -,RM(20) A (RM(21) v -,RM(22));

comment The signal NOinGr (Number in group) denotes the bit number in the

selected group. NOinGr and GrSl determine which IR bit is to be reset;

comb net

NOinGr(0:3) = ITRno(21,22) = bOO con ITRno(21,22) = bO1

con ITRno(21,22) = b10 con ITRno(21,22) = b11;

comment ITR Request is used (together with ITR Fnable) as a jump condition

for the microprograms

comb net ITR Request(0:0) = or Group(0:5);

ends

VB527T

