
= s REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

52-D2

January 1970

Ellen Randigv

=

Magnetic Tape System

= RC 4000, Basic Software, MTS, File Administration, Magnetic Tape,

User’? s Manual

MTS is a system of procedures to administer labelled files on

magnetic tapes, structured according to ISO Standard. The MIS is an extension

to the input/output administration standard procedures: open close and setpo-

sition in algol 5, for application of magnetic tapes. 27 pages.

—S

lc SYSTEM LIBRARY
DK-2500 VALBY - BUERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

Contents

1. Introduction and References

2. Survey of 1/0 Operations, General Rules for Use of the MTS

3. Openadp

4, Closeadp

5. Positionadp

6. Tapeadp

{e Examples

App 1. Files and Labels

App 2. Error Reactions

O
o
O
n
r
N
w
 =o

12

17

23

1. Introduction

MIS is a system of procedures to administer labelled files on mag-

netic tapes, structured according to

ISO Standard (ISO/TC 97, 181 E) ’Magnetic Tape Labelling and File

Structure for Information Interchange’, June 1967.

This proposed standard is completely identical with

?Proposed USA Standard for Magnetic Tape Labels for Information In-

terchange’, COMM. ACM vol. 10, No. 11, Nov. 1967

and

ECMA Standard: ’Standard for Magnetic Tape Labelling’. Nov. 1967.

The MIS is an extension to the input/output administration standard

procedures: open, close and setposition in algol 5, for application of

magnetic tapes.

The user is supposed to be familiar with the ’Algol 5 Users Manual’ by

Sgren Lauesen.

Files

MTS administers the following file types:

Single - Volume Files

Multi - Volume Files

Multi - File Volume

but not Multi - File Multi - Volumes.

The structure of the files is described in appendix 1.

Labels

A main function of the MTS is the label writing and checking:

Before any operation is executed on a volume the volume label is

checked.

When writing a file MIS writes a header label before the file, forms

the checksum (app. 1) if desired, and counts the number of blocks during

the writing and writes an end-of-file label after the file. If a file is

-2e

spread over more than one volume, an end-of-volume label is written after

every completed volume, and on the next volume the writing of a header

label prefaces continuation,

When reading a file MIS counts the blocks and forms, if desired, the

checksum and checks the required labels, i.e. for every file, the header la-

bel and the end-of-file label, and for every change of volume the end-of-

volume label and the header label.

The structure and contents of the labels are described in appendix 1.

Usual Operations

The operations in the user program are described below. Briefly the

usual operations are:

Declare a zone and a blockproc (stderror may be used),

describe relevant volumes and files by an array,

open the zone by openadp,

position the tapes by positionadp,

operate with I/O operations,

add new tapes by tapeadp,

close the zone by closeadp.

Tapes

Tapes used by MIS must be named, i.e. the first block on the tape mst

be a VOL label (app. 1). Ex. 7.6 (page 16) gives an example of tape naming.

2. Survey of I/O Operations and General Rules for Use of MIS,

Input/Output Operations:

The I/O activities of a user of MIS are classified in 3 sorts of ope-
rations:

1) input as input operations you may use the following algol 5

standard procedures:

a) for record handling: inrec.

b) for character handling: read, readchar, readstring, readall.
2) output as output operations you may use the following algol 5

standard procedures:

a) for record handling: outrec,

b) for character handling: write.

3) output continued being rather special this form of output is

described further in a later appendix.

File Structuring Information to the MTS,

The user mist describe the relevant volumes and files to the MIS, The

description is stored in an real array, here called ident, as follows.

This information is fetched by openadp (see below).

Declaration of Ident:

(real) array ident (1:<max. number of reels> + 15);

—_ Contents of Ident:

At the time of calling openadp the contents of ident must be as fole

lows:

ident(1) = mode of datafiles and labels, where mode is O for odd parity

and 2 for even parity.

ident(2) = max number of reels

ident(3) = actual number of reels

ident(4) = mask for call of the users block procedure. ident(4) corre-

sponds to the give up mask, used by the algol 5 standard

procedure open. In error cases, which are not taken charge of

by the user (by ident (4) and blockproc) an alarm is given

and execution is terminated (app. 2).

-4.

ident(4) = sum of numbers below according to desired call of

blockproe:

1 for: tapemark after datafile is read,

1 shift 1 for: parity error was detected during block trans-

fer.

1 shift 2 for: number of actuel reels of a file is too small.

1 shift 12 for: checksum error in datafile or volume,

1 shift 13 for: user input from labels.

1 shift 14 for: user output to labels,

(see blockproc p.5 and examples p.12)

ident(5) - ident(15): irrelevant.

ident(16) = name of first reel (< 6 characters)

ident(17) = - - second reel

ident(15 + actual number of reels) = name of last reel

possible remainder of ident: irrelevant.

Ex 2.1: For declaration and evaluation of ident, the following values are

read from current input (without any testing): mode, max number of

reels, actual number of reels, mask, names of volumes.

begin integer 13; real r, 8s;

read(in, r, s);

begin array ident(1:15+s) 3 name(1:2);

ident(1):= r; ident(2):= 3;

read(in, ident(3), ident(4)) ;

for i:= 1 step 1 until s do

begin readstring(in, name, 1);

ident(15+1):= name(1)3

end 1;

(here follows call of openadp, inrec, etc.)

Declaration of the Zone

The zone mist be declared as usual in Algol 5, but with a change in

interpretation of the parameter buf:

zone z(buf, sh, blockproc) ;

buf - (integer): length of user buffer area +

length of the identification array ident, in

double words.

sh - (integer): number of shares

blockproc = (procedure with 3 parameters) .

Length of Buffers

The procedure openadp distributes the entire buffer area to

1) MES administration

2) sh shares, each with length in double words:

(buf - length of ident) // sh.

Number of Shares

The usual number of shares is 1, 2 or 3,

Choice of number of shares is discussed in the ’Algol 5 Users Manual’ (6.3.1).

Blockproe

The block procedure of the zone must be declared as usual with 3 pa-

rameters or it may be the algol 5 standard procedure stderror.

Procedure blockproe will be called during input/output in situations

specified by ident(4) (page 3), thus allowing desired user actions.

procedure blockproc(z, 8, b)3

z = (call and return value, zone): the input/output zone

b = (call and return value, integer): number of bytes transferred,

4.e. the latest block transferred is avatlable in 2(1:b/4)

8s - (call and returm value, integer): specifies the actual situation

in the following way:

if s extract 1 = 1: tapemark after datafile is read,

if s shift (-1) extract 1 = 1: parity error in datablock,

if s shift (-2) extract 1 = 1: actual number of reels of a

file is too small;

you can add a name to the list of names of reels

by tapeadp (see below) and continue,
if s shift (-12) extract 1 = 1: checksum error in datafile or vo-

lume 3

if s shift (-13) extract 1 = 1: a required label is just read,
if s shift (-14) extract 1 = 1: a required label is to be written,

in the 3 last cases the actual label is available in z(1:b/4).

Ex 2.2 A block procedure accepting n parity errors and ignoring connec-

ted checksum errors,

At the time of calling openadp, ident(4) must be initiated ident(4):=

1 shift 1+ 1 shift 12:

procedure blproc(z, s, b);

zone 23 integer s, b;

begin

own integer 1; comment counts parity errors;

own boolean ch; comment ch = true for checksum error tolerated;

comment i and ch are initiated O and false;

if s shift (-1) extract 1 = 1 then

begin 1:= 1 + 13 if i >n then goto error 13

ch:= true;

end;

if s shift (-12) extract 1 = 1 then

begin if ch then ch:= false

else goto error 23

end ;

end

260 nadp

Call: openadp(z, ident, checksum) ;

z - (call and return value, zone): I/O zone
ident - (call value, real array): contains relevant information for

file structuring.

checksum - (call value, boolean): true if checksum calculation and
checking is required, checksum is calculated file section

wise (app. 1).

Restrictions:

The zone mist be in one of the following states: after declaration,

after close or after closeadp,

length of zone buffer > length of ident,

ident(1) must be 0 or 2,

ident(2) >= ident(3) >= 1,

ident must be declared from 1 to 15 + value of ident(2).

Function: Openadp fetches relevant information from ident and reserves

the first part of the zone buffer for MIS administration and splits the

remaining part of the buffer into the wanted number of shares. For each

name in ident of a reel which is not mounted openadp writes on the console:

mount <name of reel>, advising the operator without waiting for mounting.

The first reel is connected to the zone.

The state of the zone is set to after openadp = 8,

Use: Openadp is used to initiate the MIS administration of the I/O ope-

rations.

Examples: see 7.1, 7.3 and 7.4,

4, Closeadp

Call: Closeadp(z, action) ;

z - (call and return value, zone): I/O zone

action - (call value, integer): action for actual volume connected

to Zz,

action = 0 for stand by

= 1 for stand by, release

= 2 for rewind, release

3 for unload, release.

Restrictions: The zone mst be in a state different from: after declara-

tion, after close and after closeadp,.

0 <# action <= 3

Function: latest operation is completed, if latest operation was output an

EOF label (app. 1) is written on the tape.

The action specified by 2nd parameter is executed,

The state of the zone is set to after closeadp = 4,

Use: Closeadp is used for completing the MIS administration.

Examples: see 7.1, 7.2, 7.3 and 7.4,

5. Positionadp

Call: positionadp(z, fileno, op);

z = (call and return value, zone): I/O zone.

fileno - (call value, integer):

specifies the number of a datafile, datafiles are numbered:

1, 2, 3, ecec

op = (call value, integer):

specifies the operation:

op = 1 for input

2 for output

3 for output continued,

Restrictions: The zone must be in one of the following states:

after open and positioned, after input, after output or after open

not positioned,

if milti-volume file then fileno mst be 1 else fileno > 0,

1 <= op <= 3,

if op = 3 zone state mist be after open not positioned (op = 3 will

be described in a later appendix).

Function and Effect: Positionadp completes latest operation, and if la-

Use:

test operation was output an EOF label is written on the tape.

The first positionadp after openadp checks the VOL label of the first

volume, if the first volume is not mounted the console message:

mount <name of reel>

is written, and mounting is waited for.

Positionadp starts the positioning to the specified datafile and

provides for completion of the positioning and for the label check-

ing and writing. The state of the zone is set to after positionadp

20,

Positionadp must be used before any I/0 operation on a datafile and

before change to another class or level of 1/o operation (see page 3)

Examples: see 7.1, 7.2, 7.3 and 7.4.

8, Tapeadp

Call: tapeadp(z, name) ;

z = (call and return value, zone): the I/O zone.

name - (call value, real):

contains the name of a reel - 6 characters.

Restrictions: The zone mist be in a state different from:

after declaration, after close and after closeadp,

actual number of reels < max number of reels,

and increases number of actual reels with one.

- 10 -

Function: Appends name to the list of names of volumes connectable to Ly

Note that the list of the names of the reels is initiated by openadp

from ident. At that state the actual number of reels

and it is not changed by tapeadp.

= ident(3) »

The user may update ident himself if he wants to keep account of voe

iumes connected to the zone.

Ex of updating of ident in connection with a call of tapeadp.

begin

array ident();

zone z()3

openadp(z, ident, checksum) ;

-11-

tapeadp(z, name) ;

ident(3) := ident(3) + 13

ident(15 + ident(3)):= name;

Tapeadp makes it possible to deal with a pool of volumes common for

several mitivolume files, assigning them only when necessary.

If ident(4) shift (-2) extract 1 = 1, MEPS will call blockproe (page 5)

when the reels already assigned (at least one) to the file are used up;

when called the block procedure may assign a new reel to that file by

means of tapeadp - and the execution can continue.

Examples see 7.5.

- 12 -

One file consisting of one block is written, as the first file on

tape mt1234:

begin

array ident(1:16) ;

zone z(116, 1, stderror) ;

ident(1):= 03; ident(2):= ident(3):= 1; ident(4):= 0;

ident(16):= real<:mt123:> add 52;

openadp(z, ident, true);

positionadp(z, 1, 2);

outrec(z, 70);

z(1):= oe. § comment filling;

closeadp(z, 2);

end

Picture of the tape:

load tape old content

“YY R block |. [EOF | <Cppipt| vou | aD k| 1 block | | Kx <<
label label data. label

EX 7.2

An empty file is made by outrec(z, 0):

positionadp(z, , 2)3

outree(z, 0);

closeadp(z,) or positionadp(z, ,);

-13-

EX 7.3

File number 1, 2, ..., 5, with max, blocklength = 200 double words,
on tape mtl0 are copied to one file on tape mt20:

begin

boolean eof;

integer fileno, Pp, i3

array ident(1:16) ;

zone 21, z0(216, 2, endproc);
procedure endproc(z, 8, b); zone z; integer s, b;
eof:= true;

ident(1):= 0; ident(2):= ident(3):= ident(4):= 1;
ident(16):= real<:mt10:>; openadp(zi, ident, true);
ident(16):= real<:mt20:>; openadp(z0, ident, true) ;
positionadp(zo, 1, 2);

for fileno:= 1 step 1 until 5 do

begin

positionadp(zi, fileno, 1); eof:= false;
i:= inrec(zi, 0);

Next_block:

inrec(zi, 1); outrec(z0, 1);

for p:= 1 step 1 until 1 do z0(p):= zi(p);

is= inrec(zi, 0);

if -, eof then goto Next _block;

end;

closeadp(zi, 0); closeadp(zo, 0);
end

EX 7.4

mti04 is a one file register tape, with records as follows, sorted
after account number:

1th double w. = length of record (between 4 and 20) (real)
end - = account number -

35rd - = amount -

kth-20th = name and address

- 14.

mt5612 is a one file transaction tape, with records as follows, sor-
ted after account number:

1th double w. = length of record (between 3 and 20) (real)
and - ™ account number -
3rd - = transaction amount -
kth-20th - ™ name and address for new accounts just opened,

The following program updates the register on tape mt103. In the HDR
label the date is written as char. number Te12:

begin

integer i, p3

zone array z1(2, 416, 2, iproc); zone z0(416, 2, oproc) ;
array ident(1:16);

procedure iproc(z, s, b)3 zone z3 integer 8, b;
comment iproc is called when tapemark is read after datafile;
begin b:= 8; 2(2):= greatest no; end;

procedure oproc(z, s, b)3; zone z; integer 8, b3

comment oproc is called just before a label is written, z(1:14) contents
the label;

if 2(1) shift (-16) shift 16 = real<:HDR1:> then z(2):= date;

real procedure date;

comment fetches date by systime and brings it on character forms eee 3

ident(1):= 03 ident(2):= tdent(3):= 1;

ident(4):= 13 ident(16):= real <:mt104:>; openadp(zi(1), ident, true) ;
ident(16):= real <:mt561:> add 50; openadp(zi(2), ident, true);
ident(4):= 1 shift 143; ident(16):= real<:mt103:>; openadp(zo, ident, true);
positionadp(zi(1), 1, 1); positionadp(zi(2), 1, 1);

positionadp(zo, 1, 2);

inrec(zi(1), 2); inrec(zi(2), 2);

-15-

LOOP 1: if zi(1, 2) > 21(2,2) then p:= 2
else if zi(1, 2) = greatest _no then goto FINISH
else p:= 1;

outrec(zo, z1(p, 1))3 z0(1):= 21(p, 1)3 20(2):= zi(p, 2)3

inrec(zi(p), zi(p, 1) -2)3
for 1:= 3 step 1 until z0(1) do zo(i):= 21(1, i+2);

inrec(zi(p), 2);
LOOP 2: if zo(2) = 21(2, 2) then

begin inrec(zi(2), z1i(2, 1) -2);

z0(3):= z0(3) + 21(2, 1);

inrec(zi(2), 2);

goto LOOP 2;

end;

goto LOOP 1;

FINISH: closeadp(zi(1), 2); closeadp(zi(2), 2);

closeadp(zo, 2);

EX 7e5e Writing on max. 4 reels, adding the names of the reels by

tapeadp:

begin

boolean finis; integer p3;

array ident(1:19) 3

zone z(219, 2, blproc);

procedure blproc(z, 8, b)3 zone z3 integer 8, b3

comment blproc is called when the actual number of reels is to small;

begin tapeadp(z, case ident(3) of

(<:mt2:>, <:mt3:>, <:mt4:>)) 3

ident(3):= ident(3) + 13

end blproc}3

- 16 -

ident(1):= ident(3):= 1;

ident(2):= ident(4):= 4;

ident(16):= real<:mt1:>;

openadp(z, ident, true);

finis:= false;

positionadp(z, 1, 2);

for p:= 1, p+tl while -,finis do

begin outrec(z, 10); ... 3 comment filling;

end 3

closeadp}3

end

Ex. 7.6 Tape naming.

The name of the reel shall be written on current input, note that name

mist be a 1 to 6 character textstring of small letters and digits begin-

ning with a letter.

begin

integer val, p, i, Jj3

real array name(1:2);

zone 2(84, 1, stderror) ;

name(1):= name(2):= real<::>;

write(out, <:<10> write name of reel: :>3 setposition(out, 0, 0);

readchar(in, val) ;
for p:# 1, p+tl while val < 10 do

begin name(1):= name(1) shift 8 add val;

readchar(in, val);

end 3

is=pe- 13

for p:= p step 1 until 6 do name(1):= name(1) shift 8;

j:™ 13 open(z, 18, string name(increase(j)), 0);

setposition(z, 0, 0)3 j:= 13

write(z, <:VOL1:>, string name(increase(j)), false, 6-1,

false add 352, 70, false add 94, 4);

close(z, false);

end

-17-

Appendix 1.

Magnetic Tape Labels

Structuring of files and contents of labels according to ’Proposed

USA Standard for Magnetic Tape Labels for Information Interchange’ » COMM.

ACM, Nov. 1967:

The following 4 cases of file structures are to be handled,

-> denotes start of tape,

X means tape mark,

The various labels are specified in detail below the list of cases.

1. Single - Volume File

-> VOL

HDR X

data blocks

x EOF xx

2. Multi - Volume File

-> VOL

HDR xX

data blocks of first volume

end of tape mark

x EOV xx

->.

-> VOL

HDR xX

data blocks of nth and last volume

<x EOF «x

- 18 -

3 Multi - File Volume

-> VOL

HDR x

data blocks of first file.

x EOF x

HDR X

data blocks of mth and last file

xX EOF XX.

4, Volume without Files

=> VOL x

Tapes used by the MIS mst be named, i.e. must start with a VOL label.

Ex of tape naming, see 7.6,

FORMAT AND CONTENTS OF LABELS:

Each label written by MIS is a 84 character block,

label block lengths tolerated by MTS are 80-84 characters.

VOL:

- 19 -

A VOL (volume header) label is required at the beginning of every volume.

field No. contents No. of characters contents checked

by MTS

voL 3 yes

2 1 yes

3 name of 6 yes
volume

4, 5, 6, 7, 8 spaces 69 no

9 1 or space 1 no

10 circumflexes 4 no

A VOL label may be directly followed by one or more label blocks, the

first field of which must be UVL (user volume label). UVL’s are permitted,

but not checked by MTS,

HDR:

A HDR (header) label is required at the beginning of every volume and
at the beginning of every file:

field No. contents No, of characters contents checked

by MTS

HDR 3 yes
2 1 1 yes

3, 4 spaces 23 no

5 file section 4 yes
No.

6 file No. ut yes

7, 8, 9, 10, 11 spaces 19 no

12 000000 no

13, first part 000 no

13, last part

and 14 spaces 17 no

15 circumflexes 4 no

Examples of file section numbers and file numbers may be as follows:

Case

1

2, volume No. 1

File section No.

2, volume No. n

3, file No. 1

3, file No. m

0001

0001

n

0001

0001

File No.

0001

0001

0001

0001

m

Between this HDR label and the following x one or more label blocks, the

first field of which mst be HDR or UHL (user header label), are permit.

ted, but not checked by MTS.

- 21 -

An EGF (end-of-file) label is required at the end of every file.

The format and contents mst agree with the preceeding required HDR label.

field No, contents No, of characters contents checked

by MIS

1 EOF 3 yes

2 1 1 yes

3e11 as preceeding required HDR label

12 No. of data 6 yes
blocks after

preceeding

required HDR

13, first part checksum of 3 yes
data blocks
after preceeding
required HDR

13, last part and spaces 17 no
14

15 circumflexes 4 no

Between this EOF label and the following X one or more label blocks, the

first field of which mst be EOF or UTL (user trailer label) are permit-

ted, but not checked by MIS.

= 22 «

EOV:

An EOV (end-of-volume) label is required at the end of every volume, The
format and contents mist agree with the preceeding required HDR label.

field No, contents No. of characters contents checked

by MES

1 EOV p) yes

2 1 1 yes

5-11 as preceeding required HDR lebel

12 No. of data 6 yes
blocks after

preceeding
required HDR

13, first part checksum of 3 yes
data blocks
after preceeding
required HDR

13, last part and
14 spaces 17 no

15 circumflexes k no

Between this EOV label and the following x one or more label blocks, the

first field of which mst be OV or UTL (user trailer label), are permit-

ted, but not checked by MIS,

- 23 -

Appendix 2.

Error Reactions

In error cases an error message is written on current output and exe-

cution is terminated immediately.

However, in some special cases you may influence whether the execu-

tion shall stop or how to continue by the procedure blockproc (page 5),
Which is called on the basis of identification array (page 3), these ca-
ses are marked with X in the table below,

Format of Error Messages

Contents of an error message is as follows:

MIS , <name of procedure>:

<information>

<reason>

line - number - message from Running System.

Contents of Error Messages and Explanation

1 xX

<reason> <information>

z.state <integer>

paramno <integer>

label 2 7

label 3

label 4

label 5 reel:<name of reel>

t <name of required
label>

label 6 . <filesectionno.>
: <fileno.>
+

label 7
i

label 8 |

label 9 _

reel:<name of reel>

<status> text

error <status>

error 1 <status>

reel:<name of last

reel>

volume <actual

No. of reels>

reel:<name of last

reel>
volume <actual No.

of reels>

- 2k .

explanation

zone state <integer> not allowed

error associated with parameter
No. <integer>

length of required label
Ts not permitted

length of user label is
not permitted

name of required label
Ts not permitted

name of user label
Ts not permitted

filesectionno. not corresponding

to that in label

fileno. not corresponding to

that in label

No. of blocks not corresponding
to that in label

checksum not corresponding to
That In label

standard action in input/output
has given up

hard error in label input/output

actual No. of reels is too small

increasing actual No. of reels by
tapeadp is impossible

<status> is the logical status word, the meaning of which is mentioned in

*Algol 5 Users Manual’ (6.3.3)

- 25 -

ree 1 X If you use checksum writing and checking you may decide what

to do in case of checksum error, Should be applied in case that you want

to influence situations of parity error.

re. 2x It is possible to influence on further execution after parity

error (page 3 and 5)

re. 3X It is possible to increase actual number of reels if max.

number of reels > actual number of reels. (page 5).

