Raabo.



| RCSL NO: | 53 <b>-</b> M1        |
|----------|-----------------------|
| TYPE :   | Algol 5 Procedure     |
| AUTHOR : | N. Schreiner Andersen |
| EDITION: | January 1970 (E)      |

RC 4000 SOFTWARE

MATHEMATICAL PROCEDURE LIBRARY

zerol(x, F, a, b, eps)

## ABSTRACT

The boolean procedure zero1 evaluates a zero of an arbitrary real function. The method is an adaptive method based on regula falsi and bisection.

DK-2500 VALBY · BJERREGAARDSVEJ 5 · PHONE: (01) 46 08 88 · TELEX: 64 64 rcinf dk · CABLES: INFOCENTRALEN

ORMATION DEPARTMENT ........

#### 1. Function and Parameters.

### 1: Function:

The boolean procedure evaluates one zero of the function F(x) within the interval a <= x <= b. The method is based on regula falsi and bisection combined with an adaptive parameter giving the weights of regula falsi and bisection.

Call parameters:

a, b: real value parameters specifying the end points of the interval within which the zero is calculated. This interval is a <= x <= b if a < b, otherwise a <= x <= b.

eps: A real name parameter giving the accuracy with which the zero is determined.

Relative accuracy may be specified by substituting an expression like delta  $\times x$  for eps.

If eps specifies an accuracy that is not obtainable calculations are stopped with the obtainable accuracy.

Return parameters:

x:

a real name parameter being the independent variable in the expression giving F.

On exit the zero determined by zerol.

Need not be initialized.

zero1: The boolean procedure name is set to false if F(a) > 0 and F(b) > 0 or F(a) < 0 and F(b) < 0, otherwise zero1 is true.

Other parameters:

F: a real name parameter specifying the function for which the zero is to be evaluated. F m u s t be supplied as an expression depending on x.

### 2. Method

The procedure calculates for each iteration a new value as a weighted mean between a regula falsi and a bisection value:

 $a \le x \le b$  being the interval in which the zero is to be evaluated, with fa = F(a) > 0 and fb = F(b) < 0, the following algorithm is used:

 $xr = a - fa \times (b - a) / (fb - fa)$ (i.e. x value obtained by regula falsi)

xb = (b + a ) / 2
(i.e. x value obtained by bisection).

The new value of x is now calculated as

 $x = xr + (xb - xr) \times vb$ 

where the weight factor, vb satisfies  $0 \le vb \le 1$ .

And the value of vb is calculated as

vb := if a < xr and xr < b then vb  $\times$  vb / 2 else 1;

i.e. if xr, the x value calculated by regula falsi method, is inside the new interval then regula falsi might be better than the x just calculated and more weight are given to regula falsi in the next iteration (i.e. smaller vb), otherwise the next iteration is pure bisection (vb = 1).

 $f = ag \times F(x)$  is evaluated for the new x value and a new interval (a|b) is determined as:

if f > 0 then begin b := x; fb := f end else begin b := x; fa := f end;

The factor sg is  $f = sg \times F(x)$  is introduced in order to give a simple algorithm inside the iteration loop.

Before starting iteration sg is initialized as

sg := id fa > 0 then 1 else -1;

and all values of F are multiplied by sg, (i.e. fa > 0 and fb < 0).

If the parameters specifying a and b gives b < a then a interchange of these two parameters are made in the start of the program.

However if F(b) and F(a) are both either greater than or less than 0 then the method does not work and the boolean name zerol is set to false indicating that no zero is evaluated, otherwise zerol is true.

# 3. Accuracy and storage requirement.

3.1. The accuracy is determined by the input parameter eps giving the absolute precision of the zero. If however an expression giving eps includes the factor x (the independent variable) then relative precision is automatically used. If an accuracy higher, than the one obtainable in RC 4000, is specified then a result with the highest obtainable precision is delivered.

3.2. Storage requirements:

1 segment + 9 real variables

### 4. Test and discussion.

zerol is tested by use of the 6 functions used in ref. 1 for test of Gier procedures.

Results of this test using testprogram as given in section 7 are:

Textexamples for : external boolean procedure zero1(x,F,a,b,eps)

| F(x)               | a    | b    | eps                    | x                          | iter |
|--------------------|------|------|------------------------|----------------------------|------|
| 5.33+2.6×x         | -9.9 | 2.1  | <b>'-</b> 6            | -2.05' +0                  | 8    |
| $\ln(x/0.7)$       | 0.1  | 2    | <b>'-</b> 8            | 7.00' -1                   | 12   |
| <b>exp(x)-</b> 0.4 | -5   | 1    | x×*-7                  | -9.16' -1                  | 12   |
| sin(x)-sin(1.55)   | -3   | 1.59 | <b>'-</b> 5            | 1.59* +0                   | 11   |
| x∞3 + x            | -0.5 | 2    | <b>'-8+abs(x)×'-</b> 6 | 1 <b>.</b> 93 <b>'-</b> 15 | 9    |
| xXX5               | -1   | 2    | *6                     | 6.96' -7                   | 24   |

x = the zero calculated by zero;iter = the number of references to F

These result may be compared with results from ref. 1 showing that although using a very simple strategy zerol is very fast.

## 5. References.

Bo Munch-Andersen: Zero, Algol procedure, Regnecentralen October 1965, Gier System Library, Order No. 409.

```
6. Algol program
```

```
zerol=set 1
zero1=algol
external
boolean procedure zero1(x,F,a,b,eps);
value a,b; real x,F,a,b,eps;
begin
  real fa, fb, f, vb, sg, v, xr;
   comment 1;
    zero1:= true;
    if a > b then begin f := a; a := b; b := f end;
    х := а;
    f := F;
    sg := if f > 0 then i else -1;
    fa := sgXf;
    if fa = 0 then goto out;
    x := b;
    fo := sgXF;
    if fb = 0 then goto out;
    if fb > 0 then begin zero1 := false; goto out end;
    vb := 1;
next:
    v := b-a;
    x := (b+a)/2;
    if v < 2 \times abs(eps) or v < 1.2_{p}-10 \times abs(x) then goto out;
    comment 2;
    xr := a-fa \times v/(fb-fa);
    x := xr+(x-xr) \times vb;
    f := sg×F;
    if f = 0 then goto out else
    if f > 0 then begin a := x; fa := f end
              else begin b := x; fb := f end;
    comment 3;
    vb := if a < xr and xr < b then vb×vb/2 else 1;
    goto next;
out:
end;
comment
1:
   Reference:
          RC4000 System Library
          Order No. 55-D44
          A/S Regnecentralen, July 1969
          N. Schreiner Andersen
```

## Function:

The boolean procedure evaluates one zero of the function F(x) within the interval a <\* x <=b. The method is based on regula falsi and bisection combined with an adaptive parameter giving the weights of regula falsi and bisection.

Call parameters:

- a,b : real value parameters specifying the end points of the interval within which the zero is calculated. This interval is a <= x <= b if a < b otherwise b <= x <= a.</p>
- eps: A real name parameter giving the accuracy for which the zero is determined.

Relative accuracy is specified through an expression with factor x, i.e.  $x \times_{p}$ -7 gives a relative accuracy of p-7.

If eps specifies an accuracy that is not obtainable within RC4000 calculations are stopped with the obtainable accuracy.

Return parameters:

x: a real name parameter being the independent variable in the expression giving F.

On exit the zero determined by zerol.

zerol: The boolean procedure name is set to false if F(a) > 0 and F(b) > 0 or F(a) < 0 and F(b) < 0, otherwise zerol is true.

Other parameters:

- F: a real name parameter specifying the function for which the zero is to be evaluated. F m u s t be supplied with an expression depending on x.
- 2: In order to avoid that calculations can not stop because of too small eps (below the precision obtainable on RC4000) a security is put in here causing stop on  $v < 1.2_{p}-10 \times abs(x)$ .

3: A new weight, vb is calculated before next iteration;

end zerol;

### 7. Testprogram

```
A/S Regnecentralen
Testprogram for procedure zerol
NSA, 1.09.69.
begin
real procedure F(n);
integer n;
 begin
  i := i + 1;
  F := case n of (5.33+2.6 \times x, \ln(x/0.7), \exp(x)-0.4, \sin(x)-\sin(1.55),
                    x \propto 3 + x, x \propto 5;
 end F;
real x; integer 1;
write(out.<:
Testexamples for : external boolean procedure zerol(x,F,a,b,eps)
:>);
write(out,<:
                                                                   iter
    F(x)
                            ъ
                                   eps
                                                         х
                      8.
:>);
i := 0; zeroi(x, F(1), -9.9, 2.1, w-6);
write(out.<:
                                   љ-6
                     -9.9 2.1
                                                  :>, << -d.dd_{n}+dd>, x, << -dd>, i);
5.33+2.6Xx
i := 0; zero1(x, F(2), 0.1, 2, n-8);
write(out,<:
                                   8-a
                                                                              -dd>,i);
                      0.1 2
                                                  :>,≪
                                                           -d.ddy+dd>, x, <<
\ln(x/0.7)
i := 0; zero1(x,F(3),-5,1,x×x-7);
write(out,<:
exp(x) = 0, \frac{1}{4}
                     -5
                                   x×n-7
                                                  :>,«
                                                           -d.dd<sub>p</sub>+dd>,x,≪
                                                                              -dd>,1);
                          1
1 := 0; zero1(x, F(4), 3, 1.59, x-5);
write(out,<:
                                                           -d.dd<sub>p</sub>+dd>,x,≪
sin(x) - sin(1.55)
                    -3 1.59
                                                  :>,<<
                                                                              -dd>,1);
                                   n=5
i := 0; zero1(x, F(5), -0.5, 2, p-8+abs(x) \times p-6);
write(out,<:
                                   _{n}-8+abs(x)\times_{n}-6:>,<<-d.dd_{n}+dd>,x,<<
                                                                              -dd>, i);
x≫3 + x
                     -0.5 2
i := 0; zero1(x, F(6), -1, 2, p-6);
write(out,<:
                                                           -d.ddn+dd>,x,<<
                                                                              -dd>,1);
                                                  :>,<<
                           2
                                   ю-6
xXX5
                     -1
write(out,<:<10>10>10>
                  = the zero calculated by zero1
             х
             iter = the number of references to F
;>);
end testprogram;
```