Roalbo .
4 REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

53-M18
December 1970

Helge Elbrgnd Jensen

minimum

RC 4000, Software, minimum, calculation of extrema,
Algol procedure, ISO Tape
The procedure, minimum, calculates extrema of a diffe-

rentiable function in n variables. 17 pages.

S—

'E SYSTEM LIBRARY

DK-2500 VALBY - BJERREGAARDSVEJ 5 - TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

1. Function and parameters

Let F denote a real, twice differentiabel function in n variables,

and suppose that the first order derivatives of F are given analyti-

cally (that is, as expressions depending upon the n variables).

Suppose that in a given area the funection is bounded below and has a

minimm, From a reasonable good starting point the procedure finds

this minimum by finding a point at which all the first order deriva-

tives are zero (that is, smaller than a prescribed quantity).

Preocedure head:
minimm(n, 1, x, F, delta, eps, point);

value n;

Integer 1, n;

real eps, F, delta;

array x, polnt;

Call parameters:

n:

the number of variables for the given funection,

Call/Return parameters:

point:

eps$

a real array point(1:n);

at entry point coniaines the starting point for the
procedure}

at exit point containes the coordinates cof the point
at which the minipum is obtained;

a real quantity affecting the precision to which the
minimum iz caleulated. Consider the norm of the vector
consisting of the first order derivatives. If this
norm 1s smaller than eps, then the procedure will stop;
at exit eps contalnes the norm of the vector descrihed

above,.

Return parameters:

minimmm:

the value of the cobtained minimmum;

Other parameters:

Fi a real procedure denoting the given function. In a pro-
gram in which the procedure minimum is called, F must
be declared in the following ways

real procedure F(x);
array X;
Fi= the given expression;

delta: a real procedure delta(i, x) denoting for each 1 the
partiel derivative of F with respect to the variable
x(1) ;
In a2 program in which the procedure minimum is called,
delta muist be declared in the following way:

regl. procedure delta(i, x);
integer 1;
array X;

delta:= case 1 of (..., seuy » oa.);
In the parenthesis there must be n expressions, where

the i-th expression denctes the partiel derivative of F
with respect to the variable x{i);

2. The methecd

Let F dencte a function in n varisbles, and let x denote the n-dimen-
sional point with coordinates (x{1), x(2), ... , x(n)). F is said to
have a minimm at a point x0, if there exist a small area including
x0, in which the value of F at each point is greater than F(x0).

Most of the various methods for finding a minimm for a function i n
variables has one ldea in commen: They are all iterative processes
based upon a roul, which for each point specifies a certain direction
in which the next point of the process is to be found, and for each

such direction specifies how to find the next peint. Now, suppose that

-3 .

the function is differentishel., By the gradient of F al the point x -

denoted gradient (x) - we understand the n-dimensional vector, which

as the i~th coordinate has the partiel derivative of F with respect

to x(1) at the point x.

The method used in the followlng program Is essentially based upon to

papers of A.A, Goldstein ({2), (3)). We suppose, that the funetion is

twice differentiabel and that the gradient is given analytically., It

is well known, that the gradient will vanish at a minimwmpoint.

Let the points of the iterative process be denoted x1, x2, %3, ... ¥k,

eeey Where x1 is given by the input array point.

For each k fi(xk) denotes the n-dimensional vector which terminates
. the new direction.

We choose £1(x1) = gradient (x1).

For each k the number h(k) is defined as:

h(k} = r X norm(n, Fi(xk)).

r is calculated at the beginning of the program in such a way that

n(1) < 1/5.

norm is dencting the ordinary n-dimensional Euklidian norm.

Then the algorithm, at each point xk, consists of the following two

steps:

1. DIRECTICN:
We compute an n X n matrix, which is an approximation to the matrix
consisting of the second order derivatives of F,
. For each j let F(3) dencte the vector, which has the j-th coordinate
equal to 1 and the cthers equal to zero,
We then compute the matrix Q(xk)} which has the j-th column equal to
(gradient{xk + h(k) x F(J)) - gradient{xk}/h(k).

If the matrix Q{xk) is singular (it is has no Inverse) then
we define the new direction £1(xk) by
Fi(xk) = gradient(xk).

Suppose now, that Q{xk) has an inverse, which we denote P{xk).
If (eradient(xk), P(xk) X gradient(xk)) > 0
(where { ,) denotes the ordinary innerproduct) then we define
£1(xk) by
. fi{xk) = P(xk) X gradient(xk).

If (gradient(xk), P(xk) x gradient (xk)) <0
then we define fi(xk) by
fi(xk) = gradient(xk).

2. KSTANT:
The next point in the process is now obtained on the form
xk = gk X fi{xk)
where gk 1s a constant caleculsted as follows:
Let product = (gradient{xk), fi(xk)).
Let £1 = F(xk).
Let f2 = F(xk - gk x fi{xk)).
Then gk is caleulated such that
f2 < £f1 and (f1 - f2) < gk X product.

It can be proved, by using the Taylor formula, that such a gk always
exists, and that xk calculated in this way will converge to a minimm-
point for F.{(2), (3)). From a numerical point of view however, gk
might fail Yo exist, and in this case the procedure will stop.

2. Accuracy, Time and Storage Requirements

Aepcuracy: As measure of accuracy we use the norm of the gradient. If
the procedure succeeds, then at the end this norm is smaller

than the ¢all parameter eps.
Time: This depends on the wanted accuracy and first of all on the

Problem in question, so it is not possible to give general
rules for this, (See 4, Test and Discussicn).

Storage requirements: 10 segments of program
Typographical length: 248 lines.,

Lk, Test and Discussion

The procedure have been tested on seversl functiones smong which we

describe the two most diffiecult problems:

1. Minimising the function in two variables
F =100 x (x(2) - x(1)x) xx 2 + {1 - x{1)) xx 2

2. Finding a solution to the following three non-linear equations:
sin{x{1)xx2} + exp(x(2)) x x(3} - 4 =0
x(1) + x(2) + x(3) - 3=0
x(1) + x(2)xx2 + x(3)x3 - 14 =0

This is done by minimising the square-sum of the three equations,

First we consider the problem 1:
The function F has minimm at the point (1, 1) with functionvalue O.

Starting at the point x(1) = -1.2 and x(2) = 1 and using different
values of the term eps, the following results were obtalned:

Valpe of eps
o=l o6 -8 =10
Mininmim 0.999999592 0.99999959= 1.000000000 1.000000000
04999999183 0.999999183 1.000000000 1.000000000
Fc,=value 0,000000000 0.000000000 0.000000000 0.000000000
Gr,-norm Tedp=5 b,op-7 5.1 10-5 1.Tp~10
Ex,=time 0,76 0.73 0.75 0.75

(the execution time is in seconds).
It follows, that the procedure succeeds in all L4 situations, and that
smeller values of eps does not affect the execution time, This last ob-

servation however csn not be stated in general, (see below under problem

2).

Using eps = -8 and using different starting points the following results
were obtained:

Starting- -1.200000000
point 1000000000

Execution-
time 0.75

0,0000CQ000
1000000000

0.49

-0, 500000000
-0, 500000000

0.7

In all 4 situations the minimum was obtalned at the point:

1000000000
14000000000

with the functionvalue 0.000000000 and gradient norm 5.1,-8.

Agaln the procedure succeeds in all 4 situations.

-6 -

2,000000000
0250000000

0.80

Next, consider the problem 2 in three variables, Starting at the point
x(1) = 0, x(2) = 0, x(3) = 2.5 and using different values of the temm
eps, the following results were obtalned:

Value of eps
o=l =0
Minimm 0.097831561 0.097830233
0.512917627 0,512919004
2.3892507%2 2,389250762
Fe.-value 0.000000000 0.000000000
Gr.-nom 5.8p-5 2.9=T
ExX.=-time 1496 2455

-8
0.097830224
0.51291901k
2.389250762
0.000000000
3,258

3.81

0-10
0.097830224
0,51291501L
2.389250762
0.000000000
3 2p-8

397

It fcllows, that the procedure succeeds in the first three situatioms,
but that 1t is not possible to make the gradient norm smaller than
3.2;=-8, 50 in this sense the procedure does not succeed in the last si-
tuation. In this case smaller values of eps glves greater execution
time, even if the obtained minimumpoints are practically the same In the

last three cases,

Using eps = -8 and using different starting points the following resultis

were ¢obtained:

Starting- 0.000000000
point 0.000000000
2 , 500000000

Execution=-

time 3,81

0.,000000000
(.000000000
1.000000000

1.97

0, 500000000

1.000000000
2,000000000

3.09

1000000000
1000000000
1000000000

245

In 2ll 4 situations the minimm was obtained at the point:
0.097830223
0.512919014
2,389250762

with the functionvelue 0.000000000 and gradient norm 3.2,-8
It follows, that the procedure succeeds in all 4 situations.

Example

Consider the function

F =100 X {x(2) - x{1)oe) xx 2 + {1 - (1)) xx 2

Teatprogram

begin

integer 1, Jj;
real a, eps;

arrey x, point(1:2);

real procedure F(x};

array X3
Fi= 100 % (x(2) - x(1)x2) xx 2 + (1 - x{(1)) xx 2;

real procedure delta{i, x);
integer 1;

array X;

Starting at the point x{1) = -1.2 and x(2) = 1 the following program
might be used tc find the minimim of Fi

deltai= case 1 of (=k0Oxx(1} x (x(2) - x(1)x<2) - 2 x (1 ~ x(1)),

200 x (x(2) - x(1)xx2));

point{1):= -1.2; point(2):= 1; eps 1= ,-8;

as= minimun(2, i, x, F(x), delta(i, x), eps, point};
write(out, <:Minimum obtained at the point <10>:>);

for ji=1 step 1 until 2 do

write{out, <i<10>1>, <<-dddd.ddddddddd>, point(j});

vrite(out, <:<10><10> Minimmvalue =:>,<<-dddd,.ddddddddd>, a);
write(out, <:<10><10> Gradient norm=:>, <<~-d.dyp-dd>, eps);
end;

This will give the following ocutput:

Minimm obtaelned at the point
1.000000000
1000000000

Minimmvalue = Q,000000000
Gradient norm = 1,07 =8

end

5e

In the program we use a boolean procedure inverse to find the inverse
(if 1t exist) of an n X n matrix.

The procedure 1s based upon Simpel Gaussian illimination end is oniy
Introduced in order to make the program complete, One could use any
other procedure of this sort, for ex, decompose-solve from RC mathe-

matical procedure library.

Since a minifmum of the function F 1s a maxfmum of the function -F,
the procedure will of course be able to £ind maximum ss well as mini-

M,

References

(1) D. Fletcher and M.J.D. Powell:
A rapldly convergent descent method for minimisation.
Comput, Journal 6 p. 163-168 (1963)

(2) A.A. Goldstein: On steepest descent.
Journal Sism Control Vol., 3 No t p 147-151 (1965)

(3) A.A. Goldstein and J.F. Puce:
An effective algorithm for minimisation
Numerische Mathematik 10 p. 184-189 (1967)

(4) B, Isascson and H.B. Keller:
Analyses of numerical Methods
John Wiley and Sons, Inc, (1966)

6. Algol text

minimm = set 10
mininmm = algol
external

real procedure minimmm(n,i,x,F,delta,eps,point);
value nj;

integer 1,n;

real eps,F,delta;

array x,peint;

begin
integer j;
real h,g,gl,gamma,r,f1,f2,5,product,k,s;
array psi,y,z,b(1:n),p,q(1:n,1:n);

real procedure norm(n,a);
vaelue nj
integer nj;
array a3
begin
comment thils is the ordinsry norm in the n-dimensional Buklidian
space}
real hj;
h:=0jfor i:=1 step 1 until n do h:=h+a{i)xx2;
norm:=sqrt{h);

end;

real procedure imnerproduct{n,a,b);
value n3
integer n;
array a,bs
begin
comment this is the ordinary immerproduct in the n-dimensional

- 10 -

Euklldian space;

real h;}
h:=0; for i:al step 1 wntil n do hi=h+a(i)xb(1);
‘ Immerproducti=h;

end

procedure equai(n,a,b);
value nj
integer nj
. array a,b;
beglin
comment the procedure identifies two arrays;
for i:=1 step 1 until n do b(i):=a(1);

end}

boolean procedure inverse{n,a,b);
value nj
integer nj
array a,b}
comment the procedure finds the inverse { if it exists) of the
. matrix a by Gaussian 1lliminstion,If the inverse exlst,it is
gstored in b,If the inverse does not exist,inverse 1s false;
begin
integer 1,j,k,m,pivotnr;
real pivot,s;
i array c(1:n,1:n},x(1:m),d(1:n);

inverse:=true;
for m:=1 step 1 until n do
begin
comment for each m one is solving the linear system,which on the
wright side has the m-th colum in the unit-matrix,and on the left
. gide the given matix as coefflcientmatrix and the m-th columm in

the wanted inverse as unknownj

- 11 =

for j:=1 step 1 until n do
for i:=1 step 1 until n do c{i,J):=a(1,3);
for i:=1 step 1 until n do d(i):=(if i=m then 1 else 0)3
for k:=1 step 1 until n-1 do
begin
comment among the last n-k+1 equations one 1s finding the equation,
which has the numerical largest coefficient in x(k);
pivot:=0; pivotnr:=0;
for 1:=k step 1 until n do if sbs(c{i,k))>pivot then
begin pivoti=e(i,k)s pivotnri=i; end;
if pivot=0 then begin inverse:=false; goto ENDjend;
commuent if pivot=0 then the given matrix has determinant 0 and
consequently no inverse;
if pilvotnr<>k then
begin
comment equation number k is replaced by equation number pivotnr
and vica versa;
s1=d(k); d{k):=d{pivotnr); d(pivotnr):=s;
Tor ji=k step 1 until n do
begin
x(J) 1=e(k,)5 c(k,J) ise(pivotnr, 3); c(pivotnr, 3) :=x(J);
end;
end 1f pilvotnr<k;
for 1:=k+1 step 1 until n do
begin
comment x{k) 1s calculated from the k-th equation,and the
expression inserted in the following n-k eguations;
a(1) :=d(i)-a(k)xc(i,x)/c(x,k) ;
for ji=k+1 step 1 until n do
e(1,3) = e(1,) -e(1,k)xe(k, J) fo(k,k) ;

end;
end k;
if ¢(n,n)=0 then begin inverse:=false; goto ENDjend else
x(n) :=d{n) /e(n,n) ;
for i:=n-1 step =1 until 1 do
begin

comment for each i x{i) is calculated from the equation
e(i,i)xx(1) + c{d,it1)oxx(i+1) + . . . +c(i,n)xx(j) = a(i),

- 12 -

. Wwhere x(i+1),. . « x(n) are known;
s1=03 for ji:=n step -1 wntil i+i do si=s+c(i, j)xx(J);
x(1):=(a(i)-s)/e(1,1);

end

for i:=1 step 1 until n do b{i,m):=x(i);

end mj

END: endj;

procedure search(n,g,y,psi,f2);
value n,g}
integer nj;
real g,f2;
array y,psi;
begin
comment the procedure finds the value of the function to be
minimised, that 1s k&F,at the peint obtalned from y by going the
distance g in the direction -psij;
for i:=1 step 1 until n do x{1}:=y{1)-gxpsi(i);
£21=kXF3

end;

equal{n, point,x) jequal(n,x,y); k:=1;

for i:=1 step 1 until n do psi(i):=delta;

comuent psi is the gradient of F at the starting point;
equal{n,psi,b); hi=product:=norm(n,psi);

1f h<1 then r:=1/5 else r:i=1/(5);

KONSTANT :

3 comment at each step of the lterativ process the procedure will
goto KONSTANT and run through the foliowing.A point y and a
direction psi is given,and the problem is to find a konstant gz
such that the point y-gXpsi can be used as the next point;
hi=morm(n,psi); equal(n,y,x);
1f h/product<1/10- then

bezin

comment psi is too small relativ to the gradient which implies,
that the greatest possible progress is too small.We therefore
consider the function XF,where k is defined below;
:=(h/product)xx{1/n) ;
for 1i=1 step 1 until n do psi(i):=(1/k)>onxpsi(i);
for 1:=1 step 1 until n do b{1):=skxdelta;
h:=norm(n,psi);
if b<1 then r:=1/5 else ri=1/{5xh);
end;
hi=rxh; 1:=<F;
comment h is used below as the small quantity in the approximation
of the second order derivatives of F,r is introduced in order to
insure,that this guantity is not too big i the beginning;
product : =innerproduct(n,b,psi);
gi=l; gli=0;
search(n,1,y,psi, £2);
if £1-£2>=1/4xproduct then
begin
£1:=f2; equal(n,x,y); goto DIRECTION;
end ;
comment in this case we use g=1/4 and the next point is
therefore obtained as y-1/Uxpsi;
s:=(1if s<l then p-10 else 1/sxp-10);
for gi=g/2 while £1<=f2 do
begin
search(n,g,y,psi, f2);
if g<s then begin equal(n,y,x); goto END; end;
end;
comment if g is smaller than s (see the definition of this term)
then the next point of the process will be practically equal to
the present,and we must therefore conclude,that the procedure 1s
unable to meke further progress;
gr=tXg; equal(n,x,z);
if (f1-f2)<gxproduct then coto SECOND else
begin
comrient in this case the functionvalue at y-gxpsi is smaller
than f1,but the condition fi-f2<gxproduct is not satisfied and

- 13 -

- 1k -

~ therefore g is too small;

gli=g: gi=2Xg;

FIRST:

g:=(g1+g) /2;

search(n, g,y,psi,f2);

if f1<f2 then goto FIRST else

begin
if (£1-12)<gxproduct then
begin equal(n,x,y}s; £1:=f2; goto DIRECTION; end else
begin gi=2Xg-gl; gl:=(g+g1)/2; gote FIRST; end;
end;

end;

SECOND:
3 comment in this case the functionvalue at y-gxXpsi 1s smaller than
f1 and the condition f1-f2<egXproduct 1s satisfied.We therefore
lock for a smaller g for which this condition is satisfied and
with a smaller functionvelue than before;
gi=(gl+g) /2; search{n,g,y,psi,f3);
if £2<=f3 then
begin equal(n,z,x);equﬁl(n,x,y); T1:=f2; goto DIRECTION;
end else
begin
if (£1-£3)<egXproduct then
begin f2:1=f3; equal(n,x,z); zotc SECOND;end
else goto THIRD;

endj;

THIRD:
3 comment in this case the functionvaluve is smaller than before,
but the condition mentioned before is not satisfied,soc g is
too small;
g:=2xg-g1; g1:=(g+g1)/2; gi=(a+21)/2;
search(n,g,y,psi, £3);
if {f1-f3)>=gxproduct then goto THIRD else
begin
if £3>=1 then gotc THIRD else
begin equal(n,x,y)s f1:=f3; soto DIRECTION; end;
end;

- 15 -

DIRECTION:

3 comment at each step of the iterativ process the procedure will
goto DIRECTION and run through the following.A point x is given
and the problem is tc determine the direction in which the next
point is to be found:
for i:=1 step 1 until n do b(i):=kxdelta;
product :=norm(n,b) ;
if product<kXeps or profuct<y-10 then goto END;
commient if product<kxeps then the wanted accuracy is obtained.
if product<y-10 then in most situations it will be meaningless
to lock for further progress;
for j:=1 step 1 until n do
begin

comment an approximation to the matrix consisting of the second

order derivatives of KXF is caleculated and the result stored in gj

for i:=1 step 1 until n do x(1}:=(if 1= then y(i)+h else y{(i))};
for i:=1 step t until n do p(i,1):=kxdelta;
for i:=1 step 1 until n do q(i,) :=(p(1,1)-b(1))/h;
end i
1f -,inverse(n,q,p) then goto STEEPEST else
begin
comment if the inverse of g exist,then the vector psi is
obtained by multiplying the inverse matrix with the gradlent}
for i:=1 step 1 wmtil n do
begin
psi(i) =03 for j:=1 step 1 until n do
psi(i) s=psi(1)+p(1, 3)%0(J)
end;
end;
if immerproduct(n,psi,b)<=0 then goto STEEPEST else
zoto KONSTANT;
comment if innerproduct(n,psi,b)<=3 then we can not be sure Lo
find a point with smaller functionvalue in the direction poi,
and therefore psi can not te used,If the Innerproduct iz >0

‘then psi is the new directiion;

STEEPEST
equal(n,b,psi); goto KONSTANT;

- 16 -

comment the gradient is used as the new direction;

END:
comment the present value of the relevant quantities are stored

>
in the return parameters;

for i:=1 step 1 wntil n do b(i):=delta;
minimm:=F; eps:=norm(n,b);

for 1:=1 step 1 until n do point{i):=x(i);
end;

ends

