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1. Function and parameters 

let F denote a real, twice differentiabel function in n variables, 

and suppose that the first order derivatives of F are given analyti- 

eally (that is, as expressions depending upon the n variables). 

Suppose that in a given area the function is bounded below and has a 

minim, From a reasonable good starting point the procedure finds 

this minimum by finding a point at which all the first order deriva- 

tives are zero (that is, smaller than a prescribed quantity). 

Procedure head: 

minimm(n, i, x, F, delta, eps, point); 

value n} 

integer 1, n3 

real eps, F, deltas 

array x, point; 

Call parameters: 

ns the number of variables for the given function, 

Call/Return parameters: 

point: 

eps: 

a real array point(1:n); 

at entry point containes the starting point for the 

procedure $ 

at exit point containes the coordinates of the point 

at which the minimum is obtained; 

a real quantity affecting the precision to which the 

minimm is calculated. Consider the norm of the vector 

consisting of the first order derivatives, If this 

norm is smaller than eps, then the procedure will stop; 

at exit eps containes the norm of the vector described 

above. 

Return parameters: 

minim: the value of the obtained minimums 
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Other parameters: 

F: a real procedure denoting the given function. In a pro- 

gram in which the procedure minimm is called, F must 

be declared in the following way: 

real procedure F(x); 

array X}3 

Fs= the given expression; 

delta: a real procedure delta(i, x) denoting for each 1 the 

partiel derivative of F with respect to the variable 

x(1); 
In a program in which the procedure minimum is called, 

delta mist be declared in the following way: 

real procedure delta( i, x)3 

integer 13 

array X3 

delta:= case 1 of (..., ...; » ceeds 

In the parenthesis there mist be n expressions, where 

the i-th expression denotes the partie] derivative of F 

with respect to the variable x( i); 

2. The method 

Let F denote a function in n variables, and let x denote the n-dimen- 

sional point with coordinates (x(1), x(2), ... , x(n)). F is said to 

have a minimm at a point x0, if there exist a small area including 

x0, in which the value of F at each point is greater than F(x0). 

Most of the various methods for finding a minimum for a function in 

variables has one idea in commen: They are all iterative processes 

based upon 4 roul, which for each point specifies a certain direction 

in which the next point of the process is to be found, and for each 

such direction specifies how to find the next point. Now, suppose that 
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the function is differentiabel. By the gradient of F at the point x - 

denoted gradient (x) - we understand the n-dimensional vector, which 

as the i-th coordinate has the partiel derivative of F with respect 

to x(i) at the point x. 

The method used in the following program is essentially based upon to 

papers of A.A, Goldstein ({2), (3)). We suppose, that the fimetion is 

twice differentiabel and that the gradient is egtven analytically, It 

is well known, that the gradient will vanish at a minimumpoint. 

Let the points of the iterative process be denoted x1, x2, X3, es. xk, 

eee, where Xi is given by the input array point. 

For each k fi(xk) denotes the n-dimensional vector which terminates 

e the new direction. 

We choose fi(x1) = gradient (x1). 

For each k the number n({k) is defined as: 

h(k) = r X norm(n, fi(xk)). 

r is calevlated at the beginning of the program in such a way that 

h(1) < 1/5. 

norm is denoting the ordinary n-dimensional Evklidian norm, 

Then the algorithm, at each point xk, consists of the following two 

steps: 

1, DIRECTION: 

We compute ann Xn matrix, which is an approximation to the matrix 

consisting of the second order derivatives of F, 

 } For each j let F(j) denote the vector, which has the j-th coordinate 

equal to 1 and the others equal to zero. 

We then compute the matrix Q(xk) which has the j-th column equal to 

(gradient(xk + h(k) x F(§)) - gradient(xk}/nh(k). 

If the matrix Q(xk} is singular (it is has no inverse) then 

we define the new direction fi(xk) by 

fi(xk) = gradient(xk). 

Suppose now, that Q(xk) has an inverse, which we denote P(xk). 

Tr (eradient(xk), P(xk) x gradient(xk}) > 0 

(where ( , +) denotes the ordinary innerproduet) then we define 

fi(xk) by 

@ fi(xk) = P(xk) x gradient(xk).



If (gradient(xk), P(xk) x gradient (xk)) <0 

then we define fi(xk) by 

fi(xk) = gradient(xk). 

2. KONSTANT: 

The next point in the process is now obtained on the form 

xk = gk X fi(xk) 

where gk is a constant calculated as follows: 

Let product = (gradient(xk), f1(xk)). 

Let f1 = F(xk). 

let f2 = F(xk - gk x fi{xk)). 

Then gk is calevlated such that 

f2<f1 and (f1 - £2) < ek x product. 

It can be proved, by using the Taylor forma, that such a gk always 

exists, and that xk calcvlated in this way will converge to a minimm- 

point for F.((2), (3)). From a numerical point of view however, gk 

might fail to exist, and in this case the procedure will stop. 

3. Accuracy, Time and Storage Requirements 

Accuracy: As measure of accuracy we use the norm of the gradient. If 

the procedure succeeds, then at the end this norm is smaller 

than the call parameter eps. 

Time: This depends on the wanted accuracy and first of all on the 

problem in question, so it is not possible to give general 

rules for this, (See 4, Test and Discussion). 

Storage requirements: 10 segments of program 

Typographical length: 248 lines. 

4, Test and Discussion 

The procedure have been tested on several funetiones among which we 

describe the two most difficult problems: 



1. Minimising the function in two variables 

FP = 100 x (x(2) - x{1)~@) xx 24+ (1 - x{1)) m2 

2, Finding a solution to the following three non-linear equations: 

sin(x(1)xx2) + exp(x(2)) x x(3) - 4 =0 

x(i) + x(2) + x(3) - 3 =0 

x(1) + x(2)xxe + x(3)>%3 - 14 = 0 

This is done by minimising the square-sum of the three equations. 

First we consider the problem 1: 

The function F has minimum at the point (1, 1) with functionvalue 0. 

Starting at the point x(1) = -1.2 and x(2) = 1 and using different 

values of the term eps, the following results were obtained: 

Value of eps 

uh p6 a8 710 

Minimum 04999999592 0.999999592 4.000000000 7 .000000000 
04999999183 0999999185 4.000000000 1.000000000 

Fe.-value 0,000000000 0.000000000 0.000000000 0000000000 

Gr.-norm 7-3-5 4 2Qu-7 519-8 147-10 

Ex.-time 0.76 0.73 0.75 0.75 

(the execution time is in seconds). 

It follows, that the procedure succeeds in all 4 situations, and that 

smaller values of eps does not affect the execution time. This last ob- 

servation however can not be stated in general, (see below umder problem 

2). 

Using eps = »-8 and using different starting points the following resulta 

were obtained: 
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Starting» -1.200000000 0000000000 -0,.500000000 2,000000000 
point 1000000000 1000000000 -0, 500000000 0250000000 

Execution- 
time 0.75 0.49 0.71 0,80 

In all 4 situations the minimum was obtained at the point: 

7..000000000 
7.000000000 

with the functionvalue 0.000000000 and gradient norm 5.1»-8. 

Again the procedure succeeds in all 4 situations. 

Next, consider the problem 2 in three variables. Starting at the point 

x(1) = oO; x(2) = 0, x(3) = 2.5 and using different values of the term 

eps, the following results were obtained: 

Value of eps 

oo w6 »-8 no 10 

Minimum 0.097831561 0097830233 0.097830224 0.097830224 
06512917627 0.512919004 0.512919014 0,512919014 
26389250732 2,389250762 2.389250762 2,389250762 

Fe,-value  0,000000000 0.000000000 0000000000 0000000000 

Gr.-nom 5 8y-5 39-7 3.2-8 3e2y-8 

Ex. -time 1496 2.55 3.81 3.97 

It follows, that the procedure succeeds in the first three situations, 

but that it is not possible to make the gradient norm smaller than 

3.2y-8, so in this sense the procedure does not succeed in the last si- 

tuation. In this case smaller values of eps gives greater execution 

time, even if the obtained minimumpoints are practically the same in the 

last three cases, 

Using eps = y-8 and using different starting points the following results 

were obtained: 

Starting- 0.000000000 0000000000 0500000000 7000000000 

point 0,000000000 0.000000000 4.000000000 + .000000000 

2500000000 1..000000000 2,000000000 14060000000 

Execution- 
time 3.81 1.97 3.09 2.k5 



In all 4 situations the minimum was obtained at the point: 

0.097830223 
06512919014 
2,389250762 

with the functionvalue 0,000000000 and gradient norm 3.2,-8 

It follows, that the procedure succeeds in al1 4 situations. 

Example 

Consider the function 

F = 100 x (x(2) - x(1)~e) x 2+ (1 - x(1)) x 2 

Starting at the point x(1) = -1,2 ana x(2) =1 the following program 

might be used to find the minimm of F: 

Tesatprogran 

begin 

integer 1, j3 

real a, eps; 

array x, point(1:2); 

real procedure F(x} 3 

array X$ 

Fre 100 x (x(2) - x(1)xe) xx 24+ (1 - x(1)) ~~ 23 

real procedure delta(i, x); 

integer 13 

array X3 

delta:= case 1 of (-"00xx(1) x (x(2) - x(1)0@) - 2 x (1 ~ x(1)), 
200 x (x(2) - x(1)xxe2)); 

point(1):= -1,.2; point(2):= 1; eps 

ars minimum(2, i, x, F(x), delta(i, x), eps, point); 

write(out, <:Minimum obtained at the point <10>:>); 

for j:= 1 step 1 util 2 do 

weite(out, <!<l0>:>, <<-dddd,ddddadddd>, point(j)); 

write(out, <:<10><10> Minimumvalue =!>,<<-dddd.addddadda>, 

write(out, <:<10><10> Gradient norm=:>, <<-d.dy-dd>, eps) 3 

ends 



This will give the following output: 

Minimm obtained at the point 

1000000000 

7 2000000000 

Minimmvalue = 0,000000000 

Gradient norm = 1,0? -8 

end 

In the program we use a boolean procedure inverse to find the inverse 

(if 2t exist) of an n Xn matrix. 

The procedure is based upon Simpel Gaussian illimtnation and is only 

introduced in order to make the program complete. One could use any 

other procedure of this sort, for ex, decompose-solve from RC mathe- 

matical procedure library. 

Since a minimum of the function F is a maximum of the function -F, 

the procedure will of course be able to find maximm as well as mini- 

mm. 

5. References 

(1) D. Fletcher and M.J.D. Powell: 

A rapidly convergent descent method for minimisation, 

Comput. Journal 6 p. 163-168 (1963) 

(2) A.A. Goldstein: On steepest descent. 

Journal Siam Control Vol. 3 No 1 p 147-151 (1965) 

(3) A.A. Goldstein and J.F. Puce: 

An effective algorithm for minimisation 

Numerische Mathematik 10 p. 184-189 (1967) 

(4) E. Isaacson and H.B. Keller: 

Analyses of numerical Methods 

John Wiley and Sons, Inc. (1966) 



6. Algol text 

minimum = set 10 

minimm = algol 

external 

real procedure minimum(n,i,x,F, delta, eps, point) ; 

value n3 

integer i,n3 

real eps,F,delta; 

array x,point; 

begin 

integer j3 

real h,g,g1,ganma,r, fl, f2,f5,product,k,s3 

array psi,y,z,b(1:n),p,q(1:n, 1:n) 5 

real procedure norm(n,a) 3 

value n3 

integer n3 

array &3 

begin 

comment this is the ordinary norm in the n-dimensional Buklidian 

space; 

real h3 

hisO3for i:=1 step 1 until n do hishta(i)«<2; 

nomm:=sqrt(h) $ 

ends 

real procedure innerproduct(n, a,b) ; 

value n3 

integer n3; 

array a,b3 

begin 

comment this is the ordinary innerproduct in the n-dimensional 
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Euklidian space; 

real h3 

hi=03 for ita? step 1 until n do hi=hta(i)xb(4)3 

innerproduct: sh; 

ends 

procedure equai(n,a,b) 3 

value n3 

integer n3 

@ array a,b3 

begin 

comment the procedure identifies two arrays; 

for i:s1 step 1 until n do b(1):=a(1); 

ends 

boolean procedure inverse(n,a,b) 3 

value n3 

integer n; 

array a,b; 

comment the procedure finds the inverse ( if it exists ) of the 

 ] natrix a by Gaussian illimination.If the inverse exist,it is 

stored in b.If the inverse does not exist,inverse is false; 

begin 

integer 1,j,k,m,pivotmr; 

real pivot,s; 

| array c(1:n,i:n},x(1in),d(1:n) 5 

inverse: =true3 

for m:=1 step 1 until n do 

begin 

comment for each m one is solving the linear system,which on the 

wright side has the m-th colum in the unit-matrix,and on the left 

e@ side the given matix as coefficientmatrix and the m-th colwm in 

the wanted inverse as unknown;
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for j:=1 step 1 until n do 

for i:=1 step 1 until n do c{i,j):=a(4,J)3 

for i:s1 step 1 until n do a(i):=(if i=m then 1 else 0); 

for k:=1 step 1 until n-1 do 

begin 

comment among the last n-k+1 equations one is finding the equation, 

| which has the numerical largest coefficient in x(k); 

pivot:=0; pivotnr:=03 

| for i:3k step 1 until n do if abs(e(1,k})>ptvot then 

| pegin pivot:=c(i,k)s pivotmr:=i; end; 

if pivot=0 then begin inverse:=false; goto ENDs;end; 

e@ comment if pivot=0 then the given matrix has determinant 0 and 

consequently no inverse; 

if pivotnrex then 

begin 

comment equation number k is replaced by equation number pivotnr 

and vica versa; 

s:=sd(k)3 d(k):=4(pivotnr) 3 a(pivotnr):=s; 

for ji=k step 1 until n do 

begin 

x(3) 250(k, 3) 3 o(k, j) :=0(pivotnr, J); ¢(pivotnr, §) :=x(J) 5 
end; 

end if pivotnrek; 

for i:sk+1 step 1 until n do 

e begin 

comment x(k) is caleulated from the k-th equation,and the 

expression inserted in the following n-k equations; 

A(4) s=d(1)-a(k) xc(1,«) /e(k,k) 5 

for j:sk+1 step 1 until n do 

e(4,5) 25 (4, 3)-c(4,k)xe(k, J) /o(k,k) 3 

end; 

end k3 

if e(n,n)=0 then begin inverse:=false; goto ENDsend else 

x(n) :sd(n)/e(n,n) 5 

for i:=sn-1 step -1 until 1 do 

begin 

| e comment for each i x(i) is calculated from the equation 

| o(i,i)xx(i) + c(4,i+1)>o(it1) +... te(i,n)xx(j) = a(a),
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where x(i+1},. . . x(n) are known; 

st=03 for ji=n step -1 until i+1 do sz=s+c(i,j)xx(J)3 

x(1):=(a(1)-s) /e(1,1)3 

end; 

for i:=1 step 1 until n do b(i,m):=x(4); 

end m 

END: end3 

procedure search(n,g,y,psi, £2) $ 

value n,g3 

integer n3 

real g,f23 

array y,psi3 

begin 

comment the procedure finds the value of the function to be 

minimised, that is k,at the point obtained from y by going the 

distance g in the direction -psi; 

for i] step 1 umtil n do x(1}:=y(1)-expsi(i); 

f2:sOxFs 

end; 

equal{n, point, x) sequal(n,x,y)3 kis13 

for i:=1 step 1 until n do psi(1):=sdelta; 

comment psi is the gradient of F at the starting point; 

equal(n, psi,b); h:=product:=norm(n, psi) 

if h<1 then r:=1/5 else r1=1/(5h)3 

KONSTANT: 

$ comment at each step of the iterativ process the procedure will 

goto KONSTANT and run through the foliowing.A point y and a 

direction psi is siven,and the problem is to find a konstant ¢ 

such that the point y-gxpsi can be used as the next point; 

hismorm(n,psi); equal(n,y,x)3 

Lf h/product<1/10- then
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begin 

comment psi is too small relativ to the gradient which implies, 

that the greatest possible progress is too small.We therefore 

eonsider the function kXf,where k is defined below; 

k3=(h/product)x<(1/n) 3 

for is=1 step 1 until n do psi(1):=(1/k)»omxpsi(i); 

for i:=1 step 1 until n do b(1):=kxdelta; 

hs=norm(n, psi) 3 

if h<1 then ri=1/5 else rz=1/(5xh)3 

end; 

hesrxhy Pi akxF 3 

e comment h is used below as the small quantity in the approximation 

of the second order derivatives of F,r is introduced in order to 

insure, that this quantity is not too big «+t the beginning; 

product :=innerproduct(n,b, pst} $ 

ets gir=0; 

| search(n,1,y, psi, £2) 3 

if £1-£2>=1/4xproduct then 

begin 

f1:=f2; equal(n,x,y)3 goto DIRECTION; 

end3 

comment in this case we use g=1/4 and the next point is 

therefore obtained as y-1/4xpsi3 

st=( if s<] then »-10 else 1/sXp-10 )3 

e for gt=g/2 while f1<=f2 do 

begin 

search(n,¢,y, psi, £2) 3 

if e<s then begin equal(n,y,x); goto END; end; 

ends 

comment if g is smaller than s (see the definition of this term) 

then the next point of the process will be practically equal to 

the present,and we must therefore conclude, that the procedure is 

unable to make further progress; 

gi=@xg3 equal(n,x,z) 3 

if (£1-f2)<gxproduct then goto SECOND else 

begin 

e@ comment in this case the functionvalue at y-gxpsi is smaller 

than f1,but the condition fil-fe<exproduct is not satisfied and
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therefore g is too small; 

81:83 gisexXe3 

FIRST; 

er=(elte) /23 
search(n, gy, psi, £2); 

if £1<f2 then goto FIRST else 

begin 

if (f1-f2)<exproduct then 

begin equal(n,x,y)3 f1:=f23 goto DIRECTION; end else 

begin gi=2Xg-g13 gl3(etg1) /23 goto FIRST; end; 

end; 

end; 

SECOND: 

3 comment in this case the functionvalue at y-gXpsi is smaller than 

f1 and the condition fi-fe<exproduct is satisfied.We therefore 

look for a smaller g for which this condition is satisfied and 

with a smaller functionvalue than before; 

g:=(gite)/2; search(n,g,y,psi,f3) 3 
if facef5 then 

begin equal(n,z,x) sequal(n,x,y); £1:=f£23 goto DIRECTION; 

end else 

begin 

if (£1-23)<exproduct then 

pegin f2:=f3; equal(n,x,z)3 goto SECOND;end 

else goto THIRD; 

end; 

THIRD: 

3 comment in this case the functionvalue is smaller than before, 

but the condition mentioned before is not satisfied,so g is 

too small; 

gisixgegls gli=(etet)/23 er=(etel) /25 
search(n,g,y, psi, £3) 3 

if (f1-£3)>sexproduct then goto THIRD else 

begin 

if f5>=f1 then goto THIRD else 

begin equal(n, x,y)3 f1:=f33 goto DIRECTION; end; 

end;
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DIRECTION: 

3 comment at each step of the iterativ process the procedure will 

goto DIRECTION and run through the following.A point x is given 

and the problem is tc determine the direction in which the next 

point is to be found; 

for i:=1 step 1 until n do n(i kxdelta; 

product :=norn(n,b) 5 

if product<kxeps or product<y-10 then goto END; 

comment if product<kxeps then the wanted accuracy is obtained. 

if product<,-10 then in most situations it will be meaningless 

to look for further progress}; 

for ji=1 step 1 until n do 

begin 

comment an approximation to the matrix consisting of the second 

order derivatives of kxXF is calculated and the result stored in q3 

for i:s1 step 1 until n do x(i}:=(if i=j then y(i)+h else y(i))3 

for i:s1 step 1 mtil n do p(i,1):=kxdelta; 

for i:=1 step 1 until n do q(i,j):=(p(4,1)-b(4)) /ns 

end j3 

if -,inverse(n,q,p) then goto STEEPEST else 

begin 

comment if the inverse of q exist,then the vector psi is 

obtained by multiplying the inverse matrix with the gradient; 

for i:=1 step 7 until n do 

begin 

psi(i):=03 for ji=1 step 1 until n do 

psi(i):=psi(i)+p(4, 3) xo(3) s 
ends 

end; 

if innerproduct(n,psi,b)<=0 then goto STEEPEST else 

goto KONSTANT; 

comment if innerproduct(n, psi, b) <0 then we can not be sure to 

find a point with smaller functionvalue in the direction pai, 

and therefore psi can not be used.If the innerproduct is >0 

then psi is the new direction; 

STEEPEST: 

equal(n,b,psi) ; goto KONSTANT;
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comment the gradient is used as the new direction; 

END: 

coument the present value of the relevant quantities are stored 3 

in the return parameters $ 

step 1 until n do b(i):=delta; 

minimm:=F3 eps:=norm(n,>) ; 

for i:=1 step 71 until n do point(i):=x(i); 

ends 

end3 


