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ABSTRACT 

This boolean procedure inverts a symmetrical matrix. Only the lower 

half of the matrix has to be stored. The procedure will give a result 

even if the matrix is singular. 
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Doolean procedure invertsym(n, A); 

1. Function and parameters. 

poolean procedure invertsym(n, A); 

value n integer n; array A; 

Function 

The procedure inverts a symmetrical n X n matrix M(1sn, 1:n) of 

which the lower part is stored as a one-dimensional array A(1:mx(n+1)//2) 

80 that 

Mr, s) = M(s, r) = A(rx(r-1)//2 +s) for 1<s<r<n 

Qn return the inverse of M is found stored in A and the procedure is gi- 

ven the value true. This is only in case the call of the procedure has 

been a success. If it is a failure (1.e. if M is singular) the procedure 

has the value false, but even in this case the result M’ found in A is 

with meaning, since M’ will have the property that MW x B is a solution 

of the matrix equation M X X = B whenever this equation has a solution. 

Moreover, the degenerate elements may be found as those diagonal ele- 

ments for which the corresponding rows and columms are identically zero. 

Parameters 

call parameter: 

n integer. The order of M 

cali and return parameter: 

AC1snx(nt1)//2) array. Must on entry contain the lower half of M, 

: so that M(r, s) = M(s, r) = A(rx(r+1)//2+5). 

At return A will contain the inverse of M 

stored in the same way 

return paremeter: 

invertsyn boolean procedure. It is false if M is singular 

else true. 



2. Mathematical Method. 

The method is by Gauss-Jordan elimination using pivoting n times, In 

each step there are 3 cases, 

Case 1: There is an index r, which has not been used as pivot index in an 

earlier step and for which the diagonal element M(r, r) is #0. Let E be 

the set of all such indices, A new pivot index is selected from E in the 

following way: For each r in E the quantity 

m(r)} = max abs Mr, s)/abs M(r, r) ring 

(maximum over 3 in E, s # r) 

is computed, and the pivot index r is chosen arbitrarily among those in- 

dices which make m(r) attain its minimm, A pivoting is carried out with 

M(r, r) as pivot element, and in a boolean array B(1:n) the r’th element 

is set to false to indicate that this index cannot be used in later steps. 

The pivoting means that the elements M(i, k) are replaced by 

M4, k) - Mi, r)xM(r, 1)/M(r, vr) fori #rAk ter 

M(r, k)/M(r, x) fori¢#rAker 

- M(i, r)/M(r, r) forisrAk#¢r 

1/M(r, r) forisrAkes=r 

The result of this transformation is not a symmetrical matrix but 

Mr, s) = -M(s, r) if r has been pivot index, and s has not 

(1.e. B(r) = false, B(s) = true) 

M(s, r) in all other cases. 

Only the lower part of M is stored in A, since the upper part may be 

reestablished by means of B. 

Case 2: M(r, r) =0 for sil r not used as pivot indices before, but there 

are elements M(r, s) +0 outside the diagonal (i.e. for r #s) for some r 

and s not used as pivot indices before. In this case two new pivot indices 

r and s have to be chosen, First s is chosen arbitrarily among such pos- 

sible indices, Next to choose r, let E be the set of the indices r ks 

not used before as pivot indices and for which M(r, s) #0, For each r in 

E the quentity 

m(r) = max abs M(r, k)/abs M(r, 5) 

where k runs over all indices # r and *#s not used as pivot indices. Now 

r is chosen such that m(r) atteine ite minimum (which possibly is zero}. 

In the boolean array B the r’th and s’th element are set to false to in- 

dicate that these indices may not be used in the following steps. Now a 

pivoting is carried out with M(r, s) and M(s, r) as pivot elements, This 

means that the matrix elements M(i, k) are replaced by 
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M1, k)-M(4, r)>@(s, k)/M(r, s)-M(1, s)xM(r, k)/M(r, 8) for t4rAttaAktr/kts 

M1, r)/M{r, s) for i¢rAkas 

-M(r, k)/M(r, 8) for iss\kér 

M(i1, s)/M(r, s) for ksrAi¢s 

-M(s, k)/M(r, s) for L=rAk$s 

1/M(r, r) for i=r/k=s 

As in case 1 the result is not a symmetrical matrix, but the upper part 

may be reestablished in the same manner from the lower part. 

Case 3: There are no matrix elements Mr, s) #0, where r and s have not 

been pivot indices. In this case the submatrix of M obtained by taking 

only the indices not used as pivot indices 1s identical zero, This means 

that M is singular. The value of the procedure is then set to false and 

the remaining rows and colums are set to zero, so that the result deliv- 

ered in A may have the property mentioned in the section above. 

If it is possible to do the pivoting n times without ever entering 

ease 3 then M is nonsingular. So the value of the procedure is set to 

true, and the result of the algorithm delivered in A is the inverse of 

uM 

3, Accuracy, time and storage requirement 

Accuracy 

In practice the relative error measured as ||AxX - B]|///X/| has 

been found to be about y-10. This is not an exact error bound. Theoreti- 

cal error bounds are discussed in detail in literature, see e.g. Forsythe 

and Moler (ref). 

Time: .14x(n+1)23 mS 

Storage requirement 

Program length: 6 segments 

variables: 23 + 2.5m words in stack. 

Typographical Length: 145 lines, 6 segments.



4, Test and discussion 

The procedure is intended for use in such cases where the total ma- 

trix M is too big for the available store. A program using decompose and 

solve will be faster than a program using invert_sym even if the program 

mist generate the matrix M from the half matrix A. 

The procedure has been tested by some random matrices and by a re- 

presentative set of singular matrices. 

The following program will read n, A and write out the inverse of A: 

Program to read a symmetrical matrix and output its inverse. 

pegin integer n, i, j, k, 13 

read(in, n); 

begin array A(1:(nx(nt+1)) shift (-1)); 

vead(in, A); 

if -, invertsym(n, A) then write(out, <:<10> A is singuler:>); 

write(out, <:<i0>:>) 3 

for is 1 step 5 until n do 

begin 

gm ifit+4<n then i+ 4 else n; 

for ki= i step 1 until j do write(out, << ddd>, k)3 

for kt= 1 step 1 until n do 

begin 

write(out, <:<10>i>, <<dad>, k); 

jim if ith <k then 1+ 4 else k; 

for 1:= i step 1 until j do 

write(out, <<_-d,ddadddy-ad>, A((kx(k-1)) shift (-1) + 1)); 

end k3 

write(out, <:<12><10>:>) 

end i 

end A 

end program;



5. Reference 

Georg Forsythe and Cleve B. Moler: Computer solution of Linear Algebraic 

Systems, Prentice-Hall, Inc. (1967). 

6, Algorithn 

invertsym = set 6 

invertsym = algol 

external 

poolean procedure invert_sym(n, A) 3 

message invert sym, 13 11 69, RCSL 53-M5; 

value nj integer n3 array A3 

begin integer i,J,k,r,5,t,r1,61,D3 

real m, aj,sk,ar,aj1,mp3 

boolean bj,mf; 

array M(1in); boolean array B(1:n) 3 

isa03 

for p:* 1 step 1 until n do 

begin 

m:=03 

for k:=p-1 step -1 until 1 do 

begin 

4f abs A(it+k)> m then m:= abs A(i+k); 

if abs A(itk)>M(k) then M(k):=abe A(i+k) 

end k3 

Mtp):= m3 B(p):= trues 1:=i+p 

end p53" 
tims mpis13 mf:strue; 

for jim step -1 until 1 do 

begin 

if mf then 

begin



if abs A(i)>M(j)xmp then 

begin 

if M(j)=0 then mf:=false else mp:sabs A(1)/M(J) 3 ps=J 

end abs A(1)>M(4)omp 

end mf; 

M(j)im03 0 drst-j 

end J 

next_pivot: 

simp; r:a(sx(s-1))shirt(-1); 

if mp>o | -,mf then 

begin comment this is the normal case where 

there has been found a pivot-element 

in the diagonal; 

B(s):=falses; t:=t-13 ar:aA(rts):=1/A(r+s)3; mpi=-13 mf:strue; 

for j:m step -1 until 1 do if j<s then 

begin 

tea(4x(§-1) shift(-1)3 bg:sB( J); ms=M(J); 
aj:sif s<j then A(ita)xar else 

(if bj then ar else -ar)xA(r+j); 

for k:= 1 step 1 until j do if k<>s then 

begin 

ak:=A(k+1) :=A(k+i)-(1f k<s then A(k+r)xaj else 

(if B(k) then aj else -aj)xa((kx(k-1})shirt(-1)+s)); 

if bj then begin if mf then begin if k<j then 

begin 

if abs ak>M(k) then M(k):= abs ak; 

if abs ak>m then begin if B(k) then m:=abs ak end; 

end end end bj 

end k; 

if s<j then A(its):maj else A(r+j):=if bj then -aj else aj; 

if bj then 

begin 

if mf then 

begin 

if abs ak>m<mp then 

begin



if ms0 then mf:=false else mp:=abs ak/m; p:=J 

end abs ak>mxiup 

end mf; 

M(j) 50 

end bj 

end J3 
goto next_pivot 

end mp>o | -,mf3 
if mp=0 then 

begin comment this is the exceptional case where 

all diagonal-elements are zero; 

B(s):=false; m:=03 

for ji=s-1 step -1 until 1 do if B(j) then 

begin 

ia(5x(j-1)) shitt(-1)3 ak:503 

for ki= s-1 step <1 until 1 do if B(k) then 

begin 

if abs ACIP k<j then kti else j+(kx(k-1))shift(-1))>ek then 

akimabs A(if k<j then k+i else j+(kx(k-1))shift(-1)) 

end k5 

if abs A(r+j)>mek then 

begin 

8138J3 
if ak=0 then goto L3 

misabs A(r+j)/ak 

end 

end j3 

tiste23 r1:=(s1x(s1-1))shift(-1) 5 

artwA(r+s1):=1/A(r+a1)3 B(s1):=falses mp:s-13 mf:=true; 

for jim step -1 until 1 do if joaAjosi then 

begin 

ir=(gx(J-1))shift(-1) 5 bjssB(J) 3 mi=M(J)3 

ajielf s<j then A(its)xar else 

(12 bj then ar else -ar)xA(r+5)3 

ajiself s1<j then A(ital)xar else 

(if bj then ar else -ar)xA(ri+J) 3



for k:=] step 1 util j do if kos A ks1 then 

begin 

ak:sA(1+k) :=A(itk)-(1f k<s then A(r+k)xaj1 else 

(if B(k) then aj1 else -aj1)xA((kx(k-1))shirt(-1)+s)) 

-(4f k<s1 then A(ri+k)xaj else 

(if B(k) then aj else -aj)xA((kx(k-1))shift(-1})+31))3 

if bj then begin if mf then begin if k<j then 

begin 

if abs ak>m then begin if B(k) then m:aabs ak end3 

if abs akoM(k) then M(k):= abs ak 

end end end bj 

end k3 

if e<j then A(i+s):2aj1 else 

A(r+j):=i1f bj then -aj1 else aj13 

if s1<j then A(its1):=aj else 

A(ri+j):=1f bj then -aj else aj; 

if bj then 

begin 

if mf then 

begin 

if abs ak>wanp then begin 

if m=O then mfi=false else mp:=abs ak/mj p:j 

end abs ak>mp 

end mf; 

M( 3) :=0 

end bj 

end J3 

goto next_pivot 

end m=0; 

invert sym:= t=O; 

if t<O then 

begin : 

1:50; 

for ji:=1 step 1 until n do 

begin 

for ki=1 step 1 until j do if B(j) | B(k) then A(i+k):=03 

aLisitg 

end J 

end to 

end invert_sym;



comment 

Parameters 

call parameter: 

n- integer. The order of M 

call and return parameter: 

A(1snx(n+1)//2) array. Must on entry contain the lower half of M, 

so that Mr, s) = M(s, r) = A(rx(r+1)//2+8). 

At return A will contain the inverse of M 

e stored in the same way 

return parameter: 

invertsym boolean procedure, It is false if Mis singular 

else true; 


