
Roaloe 3

8 REGNECENTRALEN
SCANDINAVIAN. INFORMATION PROCESSING SYSTEMS

SYSTEM PSL No: 55-45
LIBRARY TYPE : Algol 5 procedure

AUTHOR : P. Mondrup

EDITION: November 1969 (E)

RC 4000 SOFTWARE

MATHEMATICAL PROCEDURE LIBRARY

invertsym

ABSTRACT

This boolean procedure inverts a symmetrical matrix. Only the lower

half of the matrix has to be stored. The procedure will give a result

even if the matrix is singular.

INFORMATION DEPARTMENT COOSCHSCOCHOHAOSHSHSHHECHOSHOEHHHHHE HEHEHE HBE

BJERREGAARDSVEd 5 - PHONE: (01) 460888 - TELEX: 6464 rcinf dk - CABLES: INFOCENTRALEN DK-2500 VALBY -

-1-

Doolean procedure invertsym(n, A);

1. Function and parameters.

poolean procedure invertsym(n, A);

value n integer n; array A;

Function

The procedure inverts a symmetrical n X n matrix M(1sn, 1:n) of

which the lower part is stored as a one-dimensional array A(1:mx(n+1)//2)

80 that

Mr, s) = M(s, r) = A(rx(r-1)//2 +s) for 1<s<r<n

Qn return the inverse of M is found stored in A and the procedure is gi-

ven the value true. This is only in case the call of the procedure has

been a success. If it is a failure (1.e. if M is singular) the procedure

has the value false, but even in this case the result M’ found in A is

with meaning, since M’ will have the property that MW x B is a solution

of the matrix equation M X X = B whenever this equation has a solution.

Moreover, the degenerate elements may be found as those diagonal ele-

ments for which the corresponding rows and columms are identically zero.

Parameters

call parameter:

n integer. The order of M

cali and return parameter:

AC1snx(nt1)//2) array. Must on entry contain the lower half of M,

: so that M(r, s) = M(s, r) = A(rx(r+1)//2+5).

At return A will contain the inverse of M

stored in the same way

return paremeter:

invertsyn boolean procedure. It is false if M is singular

else true.

2. Mathematical Method.

The method is by Gauss-Jordan elimination using pivoting n times, In

each step there are 3 cases,

Case 1: There is an index r, which has not been used as pivot index in an

earlier step and for which the diagonal element M(r, r) is #0. Let E be

the set of all such indices, A new pivot index is selected from E in the

following way: For each r in E the quantity

m(r)} = max abs Mr, s)/abs M(r, r) ring

(maximum over 3 in E, s # r)

is computed, and the pivot index r is chosen arbitrarily among those in-

dices which make m(r) attain its minimm, A pivoting is carried out with

M(r, r) as pivot element, and in a boolean array B(1:n) the r’th element

is set to false to indicate that this index cannot be used in later steps.

The pivoting means that the elements M(i, k) are replaced by

M4, k) - Mi, r)xM(r, 1)/M(r, vr) fori #rAk ter

M(r, k)/M(r, x) fori¢#rAker

- M(i, r)/M(r, r) forisrAk#¢r

1/M(r, r) forisrAkes=r

The result of this transformation is not a symmetrical matrix but

Mr, s) = -M(s, r) if r has been pivot index, and s has not

(1.e. B(r) = false, B(s) = true)

M(s, r) in all other cases.

Only the lower part of M is stored in A, since the upper part may be

reestablished by means of B.

Case 2: M(r, r) =0 for sil r not used as pivot indices before, but there

are elements M(r, s) +0 outside the diagonal (i.e. for r #s) for some r

and s not used as pivot indices before. In this case two new pivot indices

r and s have to be chosen, First s is chosen arbitrarily among such pos-

sible indices, Next to choose r, let E be the set of the indices r ks

not used before as pivot indices and for which M(r, s) #0, For each r in

E the quentity

m(r) = max abs M(r, k)/abs M(r, 5)

where k runs over all indices # r and *#s not used as pivot indices. Now

r is chosen such that m(r) atteine ite minimum (which possibly is zero}.

In the boolean array B the r’th and s’th element are set to false to in-

dicate that these indices may not be used in the following steps. Now a

pivoting is carried out with M(r, s) and M(s, r) as pivot elements, This

means that the matrix elements M(i, k) are replaced by

-36

M1, k)-M(4, r)>@(s, k)/M(r, s)-M(1, s)xM(r, k)/M(r, 8) for t4rAttaAktr/kts

M1, r)/M{r, s) for i¢rAkas

-M(r, k)/M(r, 8) for iss\kér

M(i1, s)/M(r, s) for ksrAi¢s

-M(s, k)/M(r, s) for L=rAk$s

1/M(r, r) for i=r/k=s

As in case 1 the result is not a symmetrical matrix, but the upper part

may be reestablished in the same manner from the lower part.

Case 3: There are no matrix elements Mr, s) #0, where r and s have not

been pivot indices. In this case the submatrix of M obtained by taking

only the indices not used as pivot indices 1s identical zero, This means

that M is singular. The value of the procedure is then set to false and

the remaining rows and colums are set to zero, so that the result deliv-

ered in A may have the property mentioned in the section above.

If it is possible to do the pivoting n times without ever entering

ease 3 then M is nonsingular. So the value of the procedure is set to

true, and the result of the algorithm delivered in A is the inverse of

uM

3, Accuracy, time and storage requirement

Accuracy

In practice the relative error measured as ||AxX - B]|///X/| has

been found to be about y-10. This is not an exact error bound. Theoreti-

cal error bounds are discussed in detail in literature, see e.g. Forsythe

and Moler (ref).

Time: .14x(n+1)23 mS

Storage requirement

Program length: 6 segments

variables: 23 + 2.5m words in stack.

Typographical Length: 145 lines, 6 segments.

4, Test and discussion

The procedure is intended for use in such cases where the total ma-

trix M is too big for the available store. A program using decompose and

solve will be faster than a program using invert_sym even if the program

mist generate the matrix M from the half matrix A.

The procedure has been tested by some random matrices and by a re-

presentative set of singular matrices.

The following program will read n, A and write out the inverse of A:

Program to read a symmetrical matrix and output its inverse.

pegin integer n, i, j, k, 13

read(in, n);

begin array A(1:(nx(nt+1)) shift (-1));

vead(in, A);

if -, invertsym(n, A) then write(out, <:<10> A is singuler:>);

write(out, <:<i0>:>) 3

for is 1 step 5 until n do

begin

gm ifit+4<n then i+ 4 else n;

for ki= i step 1 until j do write(out, << ddd>, k)3

for kt= 1 step 1 until n do

begin

write(out, <:<10>i>, <<dad>, k);

jim if ith <k then 1+ 4 else k;

for 1:= i step 1 until j do

write(out, <<_-d,ddadddy-ad>, A((kx(k-1)) shift (-1) + 1));

end k3

write(out, <:<12><10>:>)

end i

end A

end program;

5. Reference

Georg Forsythe and Cleve B. Moler: Computer solution of Linear Algebraic

Systems, Prentice-Hall, Inc. (1967).

6, Algorithn

invertsym = set 6

invertsym = algol

external

poolean procedure invert_sym(n, A) 3

message invert sym, 13 11 69, RCSL 53-M5;

value nj integer n3 array A3

begin integer i,J,k,r,5,t,r1,61,D3

real m, aj,sk,ar,aj1,mp3

boolean bj,mf;

array M(1in); boolean array B(1:n) 3

isa03

for p:* 1 step 1 until n do

begin

m:=03

for k:=p-1 step -1 until 1 do

begin

4f abs A(it+k)> m then m:= abs A(i+k);

if abs A(itk)>M(k) then M(k):=abe A(i+k)

end k3

Mtp):= m3 B(p):= trues 1:=i+p

end p53"
tims mpis13 mf:strue;

for jim step -1 until 1 do

begin

if mf then

begin

if abs A(i)>M(j)xmp then

begin

if M(j)=0 then mf:=false else mp:sabs A(1)/M(J) 3 ps=J

end abs A(1)>M(4)omp

end mf;

M(j)im03 0 drst-j

end J

next_pivot:

simp; r:a(sx(s-1))shirt(-1);

if mp>o | -,mf then

begin comment this is the normal case where

there has been found a pivot-element

in the diagonal;

B(s):=falses; t:=t-13 ar:aA(rts):=1/A(r+s)3; mpi=-13 mf:strue;

for j:m step -1 until 1 do if j<s then

begin

tea(4x(§-1) shift(-1)3 bg:sB(J); ms=M(J);
aj:sif s<j then A(ita)xar else

(if bj then ar else -ar)xA(r+j);

for k:= 1 step 1 until j do if k<>s then

begin

ak:=A(k+1) :=A(k+i)-(1f k<s then A(k+r)xaj else

(if B(k) then aj else -aj)xa((kx(k-1})shirt(-1)+s));

if bj then begin if mf then begin if k<j then

begin

if abs ak>M(k) then M(k):= abs ak;

if abs ak>m then begin if B(k) then m:=abs ak end;

end end end bj

end k;

if s<j then A(its):maj else A(r+j):=if bj then -aj else aj;

if bj then

begin

if mf then

begin

if abs ak>m<mp then

begin

if ms0 then mf:=false else mp:=abs ak/m; p:=J

end abs ak>mxiup

end mf;

M(j) 50

end bj

end J3
goto next_pivot

end mp>o | -,mf3
if mp=0 then

begin comment this is the exceptional case where

all diagonal-elements are zero;

B(s):=false; m:=03

for ji=s-1 step -1 until 1 do if B(j) then

begin

ia(5x(j-1)) shitt(-1)3 ak:503

for ki= s-1 step <1 until 1 do if B(k) then

begin

if abs ACIP k<j then kti else j+(kx(k-1))shift(-1))>ek then

akimabs A(if k<j then k+i else j+(kx(k-1))shift(-1))

end k5

if abs A(r+j)>mek then

begin

8138J3
if ak=0 then goto L3

misabs A(r+j)/ak

end

end j3

tiste23 r1:=(s1x(s1-1))shift(-1) 5

artwA(r+s1):=1/A(r+a1)3 B(s1):=falses mp:s-13 mf:=true;

for jim step -1 until 1 do if joaAjosi then

begin

ir=(gx(J-1))shift(-1) 5 bjssB(J) 3 mi=M(J)3

ajielf s<j then A(its)xar else

(12 bj then ar else -ar)xA(r+5)3

ajiself s1<j then A(ital)xar else

(if bj then ar else -ar)xA(ri+J) 3

for k:=] step 1 util j do if kos A ks1 then

begin

ak:sA(1+k) :=A(itk)-(1f k<s then A(r+k)xaj1 else

(if B(k) then aj1 else -aj1)xA((kx(k-1))shirt(-1)+s))

-(4f k<s1 then A(ri+k)xaj else

(if B(k) then aj else -aj)xA((kx(k-1))shift(-1})+31))3

if bj then begin if mf then begin if k<j then

begin

if abs ak>m then begin if B(k) then m:aabs ak end3

if abs akoM(k) then M(k):= abs ak

end end end bj

end k3

if e<j then A(i+s):2aj1 else

A(r+j):=i1f bj then -aj1 else aj13

if s1<j then A(its1):=aj else

A(ri+j):=1f bj then -aj else aj;

if bj then

begin

if mf then

begin

if abs ak>wanp then begin

if m=O then mfi=false else mp:=abs ak/mj p:j

end abs ak>mp

end mf;

M(3) :=0

end bj

end J3

goto next_pivot

end m=0;

invert sym:= t=O;

if t<O then

begin :

1:50;

for ji:=1 step 1 until n do

begin

for ki=1 step 1 until j do if B(j) | B(k) then A(i+k):=03

aLisitg

end J

end to

end invert_sym;

comment

Parameters

call parameter:

n- integer. The order of M

call and return parameter:

A(1snx(n+1)//2) array. Must on entry contain the lower half of M,

so that Mr, s) = M(s, r) = A(rx(r+1)//2+8).

At return A will contain the inverse of M

e stored in the same way

return parameter:

invertsym boolean procedure, It is false if Mis singular

else true;

