
“Raabe.

8 REGNECENTRALEN
SCANDINAVIAN. INFORMATION PROCESSING SYSTEMS

SYSTEM
LIBRARY RCSL NO: 53-M6

TYPE : Algol 5 procedure

AUTHOR : P. Mondrup

EDITION: November 1969 (E)

RC 4000 SOFTWARE

MATHEMATICAL PROCEDURE LIBRARY

solvesym

saat ABSTRACT:

The boolean procedure solvesym solves a set of n linear algebraic

equations with symmetrical coefficient matrix. Only the lower half of the

matrix has to be supplied. The procedure value will indicate whether the

matrix is singular or not.

zs (Fs

(re?)
eccccecee WY INFORMATION DEPARTIMENT eccoccccccce ceccevccccccecsseesesees

DK-2500 VALBY - BJERREGAARDSVEJ 5 - PHONE: (01) 460888 - TELEX: 6464 rcinf dk - CABLES: INFOCENTRALEN

-1

boolean procedure solvesym(n, m, A, X)3

1. Function and parameters.

The procedure solves the generalized linear algebraic equation

MXX=B

where M is a symmetrical n Xn matrix of coefficients, B is a givenn xm

matrix and X is the unknown n X m matrix.

In this procedure X and B are stored in the same array X, B on entry

and X at return.

The lower half of M(iin, tin) is stored in an array A such that

M(s, r) = Mr, 8) = A(rx(r-1)//2 + 8). s<er,

If Mis singular then the procedure will come out with the value

false. For each degree of degeneration one of the diagonal elements in

M, say A(sx(st1)//2), is zero, and the corresponding elements of X,

X(s, k), k #1, 2, ooo, my must be zero or very small if the given equa-

tion Mx X = B has a solution,

Procedure heading:

poolean procedure solvesym(n, m, A, X)3

value n, m3

integer n, m3

array A, X3

Call parameters:

integer n The number of equations.

integer m the number of right sides.

real array A(i:m<(nt+1)//2) the lower half of the coefficient matrix

Mr, s) = M(s, r) = A(rx(r-1)//2 + 8), 3 <=r.

Call and Return parameter:

real array X(1:n, 1:m) is the right sides at call and the solutions at

return.

Return parameter:

boolean solvesym. false if A is singular, true if A is nonsingular,

2. Mathematical method.

The method is the usual Gauss reduction with diagonal pivoting, The

pivoting criterion is the following:

In each step a new pivot index r is selected among the not used in-

dices so that

abs Mr, r) / max abs Mr, s)

attains its maximum; and the reduction is carried out in the usual way

py making the r’th colum = 0 under the diagonal. However, if all pos-

sible diagonal elements are zero this can not be done, In that case an

index r is found so that

max abs M(r, 8)

s¢r

attains its minimm.

If this minima is zero then the whole row is zero and the matrix is

singular. In this case the procedure value is set to false and the corre«

sponding r is set to ’has been pivot element’, and the search for another

yr is continued. However, if the minimm is > 0 then row k is replaced by

(row k) + (row r) x M(x, r) for all k which have not been pivot index,

This will make at least one diagonal element #0 and the pivot index may

‘be selected as above, The process can now go on until there are zeros un-

der the whole diagonal of M and the solution obtained by simple backward

elimination.

If M is singular some of the diagonel elements Mr, r) are zero, Du-

ving the backward reduction the division by such a diagonal element is

skipped. Moreover, the corresponding elements in the r’th row of X(x, k)

= B(r, k) will have to be zero (or very small compared to the original

values) in case the given equation has a solution.

3. Accuracy, time and storage Requirement.

Accuracy.

In practice the relative error measured as | |Axx - B|[/|[X|| has

been found to be about y-10. This is not an errorbound, the errorbound

has been discussed in detail in literature see e.g. Forsythe og Moler.

(rez).

Time,

For m= 1 the time is .2nt1)G ms

Storage requirement.

The procedure is 4 segments long on backing-store. It uses 70 + 3.5 X

n words in stack.

Typographical length: 103 lines, 4 segments,

4, Test and discussion

trix

The procedure is intended for use in such cases where the total ma-

M is too big for the available store. A program using decompose and

solve will be faster than a program using solve_sym, even if the program

e must generate the matrix M from the half matrix A,

The procedure has been tested by some equations with coefficients

chosen at random and by e representative set of singular equations.

The following program will read n, m, A, B, solve the linear alge-

praic equation A x X = B and write out the X:

Input, solution and output of a symmetrical set of linear algebraic equa-

tions

begin integer n, m, i, Jj, k, 13 boolean s3

read(in, n, m)3

, begin array A(i:(nx(n+1}) shift (-1)), Blitn, 1:m);

read (in, A, B);

@ st" -, solvesym(n, m, A, B);

if s then write(out, <:<i0> A is singular:>) ;

write(out, <:<10>:>)3

for i:= 1 step 5 until m do

begin

i= if ith <m then i + 4 else m

for k:= 1 step 1 mtil j do write(out, << dda>, k)3

for ks= 1 step 1 until n do

begin

write(out, <:<10>:>, <<ddd>, k, if s then (if A((kx(k+1)) shift (-1))=0_

then <:X_i> else <:_ :>) else <:__:>);

for 1 := 1 step 1 until j do

write(out, <<_-d,ddadddy-dd>, B(k, 1))

end k3

write(out, <:<12><10>:>)
end i

end A

end prorram:

5. Reference

George Forsythe and Cleve B. Moler: Computer Solution of Linear

Algebraic Systems, Prentice-Hall, Inc. (1967).

6. Procedure text.

solvesym = set 4

solvesym = algol

external

poolean procedure solve_syn(n,m,A, XxX);

message solve sym, version 18 11 69, RCSL 53-M6;

value n,m; integer n,m3 array A,X;

begin integer 1,J,k,r,8,t;

real ai,ak,ar,mi;

array M(1:n); integer array R(1:n); boolean array B(1:n);3

j:s03 solve_sym:=true;

for 1:2 1 step 1 until n do

begin

mis=0;

for k:#i-1 step -1 wntil 1 do

begin

if abs A(ktj)> mi then mi:eabs A(ktJ) 3

if abs A(k+j)>M(k) then M(k):=abs A(k+j)

end k;

M(1):emi; B(i):strue; j:ejti;

end 13

s3=13

for t:= 1 step 1 wmtil n do

begin

missaksm-1;

for i:= 1 step 1 until n do if B(i) then

begin

ai:mabs A((ix(i+1))shitt(-1));

if M(i)>0 then

begin

if mixM(i)<ai then

begin

Af ai<O0 then

begin

miseai/M(i)3 sis

end else if M(i)xak<) then

begin

s=1/M(1)3 stat

end

end

end (1) > 0 else

begin

R(t):=i; B(1}:=false; t:att1;

if ai=O0 then solve_sym t= false

end M(1)<o

end i;

if B(s) then

begin

ri=(sx(s-1))shift(-1); arz= A(r+s);

Af arsO then begin ar:=-13 t:=t-1 end else R(t):=s;

B(s):= false;

for i:= 1 step 1 until n do if B(i) then

begin

gs=(ix(i-1)) shitt(-1) 5

ai:sA(if i<s then r+i else jts)/ar; mi:=-13

for ki= 1 step -1 until 1 do if B(k) then

begin

tm AC §+k) sA(J+)

-aixA(if k<s then rtk else (kx(k-1))shift(-1)+s) 3

if abs ak>mi then

begin

if isk then goto L113

mi:sabs ak

ends

if abs akoM(k) then M(k):=abs ak;

Li: end k;

M(1) semi;
for ki=1 step 1 until m do X(4,k):=X(1,k)-atxX(s,k)

end 13

if A(r+s)=0 then

begin

mira03

for kis! step 1 until n do if B(k) then

begin

akimabs A(if k<s then rtk else (kx(k-1))shift(-1)+s) ;

if akomi then mi:=ak;

4f ak>M(k) then M(k):=ak;

end k3

B(s):= true

end A(r+s)*0

end B(s)3

end t3

for t:2 n step -1 until 1 do

begin

sr=R(t)3 ri=(sx(s-1)) shift(-1) 3

for 1 := t+1 step 1 until n do

begin

giaR(1)3 alzsA(if j<s then rtj else (3jx(J-1))shitt(-1)+s) 3

for k:=1 step 1 until m do X(s,k):= X(s,k)-aixx(j,k)

end 13

ai:= A(r+s};

if al< 0 then for ki= 1 step 1 until m do X(s,k):=X(s,k)/at

end t

end solve syn;

conment

Call parameters:

integer n the number of equations.

integer m the number of right sides.

real array A(1:m<(nt1)//2) the lower half of the coefficient matrix.

M(r, 8) = M(s, r) = A(rx(r-1)//2 + 8)

Cali and Return parameter:

real array X(isn, 13m) is the right sides at call and the solutions at

return.

Return parameter:

boolean solvesym. false is Ais singular, true if A is nonsingular;

