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saat ABSTRACT: 

The boolean procedure solvesym solves a set of n linear algebraic 

equations with symmetrical coefficient matrix. Only the lower half of the 

matrix has to be supplied. The procedure value will indicate whether the 

matrix is singular or not. 
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boolean procedure solvesym(n, m, A, X)3 

1. Function and parameters. 

The procedure solves the generalized linear algebraic equation 

MXX=B 

where M is a symmetrical n Xn matrix of coefficients, B is a givenn xm 

matrix and X is the unknown n X m matrix. 

In this procedure X and B are stored in the same array X, B on entry 

and X at return. 

The lower half of M(iin, tin) is stored in an array A such that 

M(s, r) = Mr, 8) = A(rx(r-1)//2 + 8). s<er, 

If Mis singular then the procedure will come out with the value 

false. For each degree of degeneration one of the diagonal elements in 

M, say A(sx(st1)//2), is zero, and the corresponding elements of X, 

X(s, k), k #1, 2, ooo, my must be zero or very small if the given equa- 

tion Mx X = B has a solution, 

Procedure heading: 

poolean procedure solvesym(n, m, A, X)3 

value n, m3 

integer n, m3 

array A, X3 

Call parameters: 

integer n The number of equations. 

integer m the number of right sides. 

real array A(i:m<(nt+1)//2) the lower half of the coefficient matrix 

Mr, s) = M(s, r) = A(rx(r-1)//2 + 8), 3 <=r. 

Call and Return parameter: 

real array X(1:n, 1:m) is the right sides at call and the solutions at 

return. 

Return parameter: 

boolean solvesym. false if A is singular, true if A is nonsingular, 



2. Mathematical method. 

The method is the usual Gauss reduction with diagonal pivoting, The 

pivoting criterion is the following: 

In each step a new pivot index r is selected among the not used in- 

dices so that 

abs Mr, r) / max abs Mr, s) 

attains its maximum; and the reduction is carried out in the usual way 

py making the r’th colum = 0 under the diagonal. However, if all pos- 

sible diagonal elements are zero this can not be done, In that case an 

index r is found so that 

max abs M(r, 8) 

s¢r 

attains its minimm. 

If this minima is zero then the whole row is zero and the matrix is 

singular. In this case the procedure value is set to false and the corre« 

sponding r is set to ’has been pivot element’, and the search for another 

yr is continued. However, if the minimm is > 0 then row k is replaced by 

(row k) + (row r) x M(x, r) for all k which have not been pivot index, 

This will make at least one diagonal element #0 and the pivot index may 

‘be selected as above, The process can now go on until there are zeros un- 

der the whole diagonal of M and the solution obtained by simple backward 

elimination. 

If M is singular some of the diagonel elements Mr, r) are zero, Du- 

ving the backward reduction the division by such a diagonal element is 

skipped. Moreover, the corresponding elements in the r’th row of X(x, k) 

= B(r, k) will have to be zero (or very small compared to the original 

values) in case the given equation has a solution. 

3. Accuracy, time and storage Requirement. 

Accuracy. 

In practice the relative error measured as | |Axx - B|[/|[X|| has 

been found to be about y-10. This is not an errorbound, the errorbound 

has been discussed in detail in literature see e.g. Forsythe og Moler. 

(rez).



Time, 

For m= 1 the time is .2nt1)G ms 

Storage requirement. 

The procedure is 4 segments long on backing-store. It uses 70 + 3.5 X 

n words in stack. 

Typographical length: 103 lines, 4 segments, 

4, Test and discussion 

trix 

The procedure is intended for use in such cases where the total ma- 

M is too big for the available store. A program using decompose and 

solve will be faster than a program using solve_sym, even if the program 

e must generate the matrix M from the half matrix A, 

The procedure has been tested by some equations with coefficients 

chosen at random and by e representative set of singular equations. 

The following program will read n, m, A, B, solve the linear alge- 

praic equation A x X = B and write out the X: 

Input, solution and output of a symmetrical set of linear algebraic equa- 

tions 

begin integer n, m, i, Jj, k, 13 boolean s3 

read(in, n, m)3 

, begin array A(i:(nx(n+1}) shift (-1)), Blitn, 1:m); 

read (in, A, B); 

@ st" -, solvesym(n, m, A, B); 

if s then write(out, <:<i0> A is singular:>) ; 

write(out, <:<10>:>)3 

for i:= 1 step 5 until m do 

begin 

i= if ith <m then i + 4 else m 

for k:= 1 step 1 mtil j do write(out, << dda>, k)3 

for ks= 1 step 1 until n do 

begin 

write(out, <:<10>:>, <<ddd>, k, if s then (if A((kx(k+1)) shift (-1))=0_ 

then <:X_i> else <:_ :>) else <:__:>); 

for 1 := 1 step 1 until j do 

write(out, <<_-d,ddadddy-dd>, B(k, 1)) 

end k3 

write(out, <:<12><10>:>) 
end i 

end A 

end prorram:



5. Reference 

George Forsythe and Cleve B. Moler: Computer Solution of Linear 

Algebraic Systems, Prentice-Hall, Inc. (1967). 

6. Procedure text. 

solvesym = set 4 

solvesym = algol 

external 

poolean procedure solve_syn(n,m,A, XxX); 

message solve sym, version 18 11 69, RCSL 53-M6; 

value n,m; integer n,m3 array A,X; 

begin integer 1,J,k,r,8,t; 

real ai,ak,ar,mi; 

array M(1:n); integer array R(1:n); boolean array B(1:n);3 

j:s03 solve_sym:=true; 

for 1:2 1 step 1 until n do 

begin 

mis=0; 

for k:#i-1 step -1 wntil 1 do 

begin 

if abs A(ktj)> mi then mi:eabs A(ktJ) 3 

if abs A(k+j)>M(k) then M(k):=abs A(k+j) 

end k; 

M(1):emi; B(i):strue; j:ejti; 

end 13 

s3=13 

for t:= 1 step 1 wmtil n do 

begin 

missaksm-1; 

for i:= 1 step 1 until n do if B(i) then



begin 

ai:mabs A((ix(i+1))shitt(-1)); 

if M(i)>0 then 

begin 

if mixM(i)<ai then 

begin 

Af ai<O0 then 

begin 

miseai/M(i)3 sis 

end else if M(i)xak<) then 

begin 

s=1/M(1)3 stat 

end 

end 

end (1) > 0 else 

begin 

R(t):=i; B(1}:=false; t:att1; 

if ai=O0 then solve_sym t= false 

end M(1)<o 

end i; 

if B(s) then 

begin 

ri=(sx(s-1))shift(-1); arz= A(r+s); 

Af arsO then begin ar:=-13 t:=t-1 end else R(t):=s; 

B(s):= false; 

for i:= 1 step 1 until n do if B(i) then 

begin 

gs=(ix(i-1)) shitt(-1) 5 

ai:sA(if i<s then r+i else jts)/ar; mi:=-13 

for ki= 1 step -1 until 1 do if B(k) then 

begin 

tm AC §+k) sA( J+) 

-aixA(if k<s then rtk else (kx(k-1))shift(-1)+s) 3 

if abs ak>mi then 

begin 

if isk then goto L113 

mi:sabs ak 

ends 

if abs akoM(k) then M(k):=abs ak; 

Li: end k; 

M(1) semi; 
for ki=1 step 1 until m do X(4,k):=X(1,k)-atxX(s,k) 

end 13



if A(r+s)=0 then 

begin 

mira03 

for kis! step 1 until n do if B(k) then 

begin 

akimabs A(if k<s then rtk else (kx(k-1))shift(-1)+s) ; 

if akomi then mi:=ak; 

4f ak>M(k) then M(k):=ak; 

end k3 

B(s):= true 

end A(r+s)*0 

end B(s)3 

end t3 

for t:2 n step -1 until 1 do 

begin 

sr=R(t)3 ri=(sx(s-1)) shift(-1) 3 

for 1 := t+1 step 1 until n do 

begin 

giaR(1)3 alzsA(if j<s then rtj else (3jx(J-1))shitt(-1)+s) 3 

for k:=1 step 1 until m do X(s,k):= X(s,k)-aixx(j,k) 

end 13 

ai:= A(r+s}; 

if al< 0 then for ki= 1 step 1 until m do X(s,k):=X(s,k)/at 

end t 

end solve syn; 

conment 

Call parameters: 

integer n the number of equations. 

integer m the number of right sides. 

real array A(1:m<(nt1)//2) the lower half of the coefficient matrix. 

M(r, 8) = M(s, r) = A(rx(r-1)//2 + 8) 

Cali and Return parameter: 

real array X(isn, 13m) is the right sides at call and the solutions at 

return. 

Return parameter: 

boolean solvesym. false is Ais singular, true if A is nonsingular; 


