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t. Function and parameters 

Let a denote a real symmetric matrix of order n, and let ev(1), 

ev(2), ... , ev(n) denote the eigenvalues for this matrix arranged in 

an increasing sequence, that is ev(1) < ev(j) whenever 1 < J. 

Let ml and m2 be prescribed integers so that 1 <ml < m<n. 

The procedure householder calculates the eigenvalues ev(m1}, 

ev(mit1), ae , ev(m2) and, if wanted the corresponding eigenvectors, 

Procedure head: 

householder(n, m1, m2, a, ev, x, epsi)3 

value n, ml, m2, epsi3 

real eps13 

array @, eV, X} 

integer ml, m2, nj; 

Call parameters: 

n 3 

mi : 

me 3 

the order of the given matrix; 

an integer, 1 < mi < n, denoting the number of the small- 

est eigenvalue to be calculated. 

an integer, ml < m2 <n, denoting the number of the greatest 

eigenvalue to be calculated. 

a real array a(i:nx(n+1)/2)3 

a mst contain the lower triangular part of the given sym- 

metric matrix in the following way: 

the diagonal element number 1 is stored in a(ix(1+1)/2) 

121, 2, eee » 13 

the element in the 1’th row and j*th columm where j <1 is 

stored in a((1-1)xi/2+4). 

Cali/Return parameters: 

epsl : at entry eps1 is positive or negative. 

if eps! is positive the eigenvectors are calculated. The 

absolute value of epsi is a quantity affecting the precision 

to which the eigenvectors are computed (See part 2.2) 3 

at exit eps1 denotes an upper bound for the error in any of 

the calculated eigenvalues.



Return parameters: 

ev : a real array ev(mi:m2) containing the calculated eigenvalues. 

x : a real array x(mi:m2, 1:n+2); 1f the eigenvectors are cal- 

culated, they are stored in x in such a way that x(k,1), ».. 

x(k,n) denotes the eigenvector corresponding to ev(k); 

(for each k x(k,n+1) = x(k,n+2) = 0; these quantities are 

only introduced for ease of programming) . 

2, Method 

e The method consists of four parts, tridiagonalisation, calculation of 

eigenvalues, calculation of eigenvectors, and backtransformation. 

2.1. Tridtagonalisation 

A matrix is said to be on tridiagonal form, if all elements that are 

not in the diagonal or just over or under the diagonal, are zero. 

Let A pe the given symmetric matrix of order n. 

A is transformed - by n-2 orthogonal trensformations - to a matrix 

on triangular form. 

Each transformation P,(1 = 1, 2, os , n-2) 1s of the form 

T 
Py =sI- aw yHy 

e where I is the identity-matrix and 4 is the row: 

T > (wy 4s Wyor sees Ma pits 0, see» Oe 

and wy the corresponding colwm,. 

Let A,., = P,A,P. 11, 2, eon y ne2 
i+1 mri 

For each i the terms “We 4,2 eons “4 net are chosen in such a 

way that 

°, wy a1 

2°, In A. the elements in the rows number n, n-1, eee + 

n-i+2 are the seme as in Aye The row number 

n-i+1 is put on triangular’ form, 

+1



Let the elements of Ay be denoted a 3 Put 

ten- i. 

_ 2 2 2 
stoma = 944,17 Ste2 ttt Start 
h, = sigma + Beat yt sqrt(sigma). 

{+ is used if dt > 0 else - ts used.) 

It comes out, that Ya Wy 29 een y Yat mist be chosen as follows 

yt 7 (ae41,¢ + sqrt( sigma) )/sqrt(2h,). 

Ya Bei, g/Sartl2ny) J 1, 2, soe y tele 

By introducing 

w= (a 1 tT, 1? Beazor ot 2 Beer ter? B41, t 

+ sqrt(sigma), 0, se. , 0). 

one will obtain 

Py ai - 

and by introducing the vectors Pye and the scalar ky as follows 

Pym Ayay/ny 

k, = up, /(2h,) 1 i “L i 

Ty = Py Kyuy 
a rather simple calculation will show that 

fo TAL = Qa 
since Aaa is symmetric one is only calculating the lower triangular 

part of the matrix. 

The above equation is used for the calculation of the first t rows 

(t = nei) in Angas The row number t+1 is on triangular form with the 

diagonal element unchanged from Ay and the element 

(t+1,%) = a, + sqrt(sigma), The rows number t+1, .-. , n are ace 
talst = 

cording to 2 - unchanged from Aye
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At entry the lower triangular part of the given matrix is stored in 

the array a. For each i the array a is used only to store the lower 

triangular part of the first t rows of Raye The other rows are on 

triangular form, and the diagonal and subdiagonal elements fram these 

rows are stored in to arrays c and b. 

The row number t+] of the array a is used to store information enough 

to determine the transformation Pye Now, P ‘1 is determined by the vector 

" and the scalar hye By replacing in the array a the element ett 

by Beet + sqrt(sigma) one obtain that the non-zero elements of the 

t+1 row in a are exactly the vector Wyre Furthermore from these ele- 

ments h. 4 can be determined, Recalling that 

r h, = sigm + Beets t sqrt(sigma). 

u, 

and denoting by sigma, the square-sum of the elements in uy one will 

obtain 

2 2 2 

stoma, = 2eyy tote * tated * (a44, £ sart(sieme))" = 

asigna + 2a,,,8art( sigma) = 2h. 

Soh, = signa, /2. 

For further information about this part see [4], [6]. 

2.2, Calculation of elgenvalues 

This is based on the following theorem: 

@ let Cyy wees Sy denote the diagonal element and bo, ««+ » by the sub- 

diagonal elements of a symmetric triangulator matrix. For each real 

number x0 let the sequence t, (x0), ty(x0), sees t,,(x0) pe defined - 

if possible - as follows 

t, (x0) = a x0 

2 
+, (00) = (ce, - 20) - by /ty_, (20). 12, cee, Te 

Let h(x0) denote the number of negative t,(x0). 

Then h(x0) 1s equal to the number of eigenvalues less than or equal to 

x0. 

Assume thet the eigenvalues are arranged in an increasing sequence and 

that the k’th eigenvalue, ev(x), 1s to be calculated. Let x1 and x2 be 

e@ real numbers satisfying x1 < ev(k) < x2, Such numbers exist, eB if 

nom is denoting the infinity norm of the matrix then x1 = -norm and 

x2 = norm will do.



Let x0 = (x1 + x2)/2. 

h(x0) is calculated by using the above mentioned formar for +, (x0) 

La 1, 2, eee » Ne 

A new pair (x1, x2) is defined in the following way: 

if h(x0) >= k then x1:= x1 and x2:= x0 else x1l:= x0, x2i= x2, 

For the new pair the procedure is repeated. This is done as long as 

x2 = X1 > 2X%y-10x(abs(x1) + abs(x2)) + eps1 where eps] is a prescribed 

quantity. 

At the end one puts ev(k):= (xi+x2)/2. 

Since abs(x1)} and abs(x2) always are bounded by norm, it follows that 

the error in any eigenvalue is bounded by 4x,-10xnorm + eps1. This 

number is calculated and stored in eps1. 

When calculating the k’th eigenvalue, h(x0) is determined for some 

x0. The value of h{x0) gives information not only about the k’th 

eigenvalue, but in general about the eigenvalues of the matrix, By 

introducing an array p(i) satisfying for each 1 p(i) < ev(i) this in- 

formation is stored as follows: 

if p(n(x)) + 1) < x0 then p(h(x0) + 1):= x0; 

when calculating the k’th eigenvalue one is at the start putting 

xi: max p(1), e+e , p(k) 3 x22= ev{k+1)3 

For further information about this part see [2], [5], [6]. 

2.3. Calculation of elgenvectors 

The matrix is as m 2,2 a symmetric matrix on triangular form with 

diagonal elements Cys Cop vee OL and subdiagonal elements Vos aoe bye 

Let ev denote a calculated eigenvalue. 

Finding an eigenvector corresponding to ev ia equivalent to solve the 

system 

(c, - ev) x, + box #0 

bpx, + (c, - ev) x» + b3x, #0 

: (1) 

Py_y%n-2 + (cay - ev) x,y + bx =0 

Dnt + (c, - ev) x, a 0 

where (x,, ene x,) denote the wanted eigenvector. 
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A natural way to solve this system would consist in putting x," 1 

finding X from the first equation, X3 from the next and so on$ but, 

as shown in [4], « method iike this will often - for several reasons 

- give hopeless, inaccurate results. 

Using a method developed by J.H. Wilkensan ([4)), one is instead sol- 

ving a system derived from (I) by replacing the zeros on the right 

side by suitable quantities as eee y a. 

These equations are solved by successive elimination of the variables 

Xyr Xe cee s ev but some kind of pivoting is necessary; for each i, 

Xx, is illimineted from the equation, which has the numerical largest 

coefficient in X,3 more precisely, at the first step we are considering 

the two first equations 

(c, - ov) x, + Boxy = dy 

box + (oy - ev) Xp + bax, = dy. 

The equetion which has the numerical largest coefficient is x, is de- 

noted 

PAX + Xe + TyA%z 7 dy? 
from this equation x is calculated and the expression inserted in the 

other equation. The so obtained equation in Xp and Xs is denoted 

UpXyt Vos a 

At the i’th step we are considering the two equations 

, ux, + VyXe41 7 day 
LL 

Date t Cay OMe t Pea rMaee 7 Stas 
again the equation which has the numerical largest coefficient in X, 

is denoted 

a 
Pa%q * U%t4q * TX yo * OY 

from this equation Xy is calculated and the expression inserted in the 

other equation. 

In this way we obtain the following system: 

Lad 

PyXy + AyXp + Ty% = AY 

PoXp + Op%q + Tomy = dy” 

=a 
Py_o*2 * In -2* net +h are 

” 
Paar et * Men 7 Sy 

Pa%, * Of’ 
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We now assume, that as ay, eee ys 4a, were chosen in such a way, that 

ai’, 43’, eee , 4? are all equal to one, 

This system is solved in the natural way and the obtained vector 

normed, (and again denoted Xp eee Xe It can be proved ([4]) that 

this vector will usually be a good approximation, at least it will 

never be hopeless inaccurate, 

A vector with sufficient accuracy is cbtained by solving the above 

system once again, but replacing the terms a’, eee a? by the coor- 

dinates in the first approximation Xs tony Xye 

For further information sbout this part see [3], [4], [6]. 

e@ 2.4, Backtransformation 

The problem is to transform the calculated eigenvectors (for the tri- 

anguler matrix) to eigenvectors corresponding to the original matrix, 

Recelling that the original matrix was transformed to a matrix on tri- 

diagonal form by n-2 orthogonal transformations Pye Pos eee y Peo it 

easily follows, that if z is an eigenvector for the triangular ma- 
ne1 

trix then 

PyPosee Pie 21 is an eigenvector for the original matrix. 

Putting PsP cee Plotne 24 

one will obtain Pasay aZy 

and the wanted vector Zs is calculated in n-2 steps, Using the nota. 

tion from 2, 1 (tridiagonalisation) one will get 

uw uu? 
it ivi 

By BBs o 7 244, (because Pate =~ ). 

The non-zero elements of u, are stored in the t + 1 row (t =n ~ i) of 

the array a and hy = sigma/2, where sigma denotes the square-sum of the 

elements in u, (see 2.1). 

Accuracy, Time and Storage Requirements 

Accuracy: The accuracy in the eigenvalues depends on the value of the 

call parameter epsi.
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It easily follows from the description of the method part 

2.2, that the error in any eigenvalue is bounded by 

ow y-10 X norm + eps] where norm denotes the infitity norm 

of the triangular matrix. 

For further information on this part see 4, Test and Dis- 

cussion, 

Time : This depends on the wanted accuracy, that is the term epsi, 

and first of all on the order n of the matrix equation. Ge- 

nerally the execution time will be proportional to no, 

Using eps! * y-10 and denoted by 

I: The execution time when all eigenvalues and all eigen- 

vectors are calculated 

II : The execution time when all eigenvalues but no eigen- 

vectors are calculated. 

III: The execution time when only the greatest eigenvalue and 

the corresponding eigenvector are calculated. 

the greatest execution times (in sec.) obtained were as follows: 

Order of 

the matrix I II III 
5 0432 0.25 0.09 

; . 10 1.32 0.89 0.28 

15 3.22 1.99 0.68 
20 6,30 3.63 1439 

25 10.75 5.91 2.46 

The following example illustrates the connection between the execution 

time and the value of eps!, where all eigenvalues and eigenvectors for 

a matrix of order 20 are calculated: 

eps] = pot wd Pa x7 »8 uD 2710 

Time = 4.68 5.1554 5.74 5.9K 6.16 = 6,30 

Storage requirements: 9 segments of program 

® Typografical length : 149 lines 



4, Test and Discussion 

The procedure has been tested by several matrices, essentially the 

following four types (denoting by a(1j) the element in the i’th row 

and the j’th column and by n the order of the matrix in question): 

Type I: 

Type IIT : 

Type III : 

Type IV : 

a(i,j) = a(j,1) #n- 4+ 1. This matrix has well-separa- 

ted eigenvalues given by 

1 
ev(1) ?_———rT t= 1, 2, we yn 

a(1-cos (sey pi} 

a(i,j) = a(j,1) = 1 for all i, J. 
All eigenvelues are 0 except one which isn 

a(t,j) = a(3,1) = 0 for 1 = 4 else 1. 

All eigenvalues are -1 except one which is n-1. 

a(i,j) 20 for j <i-1 and j > i+1, 

a(i,i-1) = a{i,i+1) = 1, 

a(i,i) = abs(Sge - 1) 121, 2, 0.0, nm 
The matrix has a number of extremely close, but not coinci- 

dent eigenvalues. 

When all eigenvalues and all eigenvectors are calculated, a measure 

for the error for the whole procedure is obtained by checking the 

identity Ax, = ev(k)x, for each k. 

Finding the largest deviation in any coordinate and using as testnorm 

the mean of these k numbers, the following results are obtained: 



#2 10 = 

Matrix Value of eps1 

vot n-6 a) n-10 
Type I order 10 Belped 9.0n-7 1.5y-8 362-9 
Type Iorder 20) 1ehye5 15-6 166 ye8 3. ye 
Type I order 25 2Oy-h 2e1y-6 3, 2Qy-8 2.1y-8 

Type II order 10 1.2y-5 3.3n-7 Ve9u-9 3.8y-10 

Type II order 20 3.5y<5 7 6y-8 3.199 2400-10 
Type II order 25) U.Sy-5 3.5ne7 46-10 6 y= 10 

Type III order 10 1.2y-5 943-8 Toby 1.7y=10 
Type III order 20 1.2y=5 6.7y-8 663-10 4B peI0 
Type III order 25 5,4y-6 7 0py-8 1.509 6.05210 

Type IV order 11 21-3 9 By~6 2.1p-7 Del yd 
Type IV order 15 6.7 y=3 6.8y-5 6.0n-7 14 TT 
Type IV order 21 1.5y-2 169093 6 Bye Wy 

The jacobi algorithm solves almost the same problem as householder; 

The only difference is, that the jaccbhi procedure necessarily caleu- 

lates all the eigenvalues (and eigenvectors), while it is possible 

with the householder procedure only to calculate some of the eigenva- 

lues (and eigenvectors). Calculating all eigenvalues and all eigenvec- 

tors and using in householder eps] = y-10 a comparison between the two 

procedures gave the following results: 



=e T1- 

Matrix Testnorm Testnorm Time Time 

for for for for 

householder Jacobi householder jacobi 

Type I order 5 TalyeD 0.8 y-9 0.35 0.27 

Type I order 10 3.2y-9 4On-9 1.33 2.02 

Type I order 15 2624-8 1.0y-8 3.29 6.61 

Type I order 20 365-8 2.2548 6.30 14.92 

Type I order 25 2Qe1y-8 3.248 11,12 29.08 

Type II order 5 T0y=10 5.0p-10 0.20 0.07 

e Type II order 10 1.6y-10 0. 1-10 0.53 0.22 

Type II order 15 40-10 1,0p-10 1.13 0.55 
Type II order 20 45-10 166 "10 1.98 0.97 

Type II order 25 Toln=10 1.2y-10 346 1.38 

Remembering that the matrices of type I have well-separated eigenva- 

lues, and that the matrices of type II have all but one eigenvalue 

equal to zero, one might draw the following conclusion: 

The procedure householder is to be preferred in case of matrices with 

separated eigenvalues, because of higher speed, or in cases, where on- 

ly one or a few eigenvalues are wanted. 

The procedure jacobi is to be preferred in case of matrices with coin- 

r cident eigenvalues. 

Example 

We consider a symmetric matrix of order n. The term mi denotes the 

number of the smallest, m2 the number of the greatest eigenvalue to be 

calculated. The eigenvectors are calculated only if the term epsi is 

positive. Input is the value of the quantities n, ml, m2, eps1 and the 

lower triangular part of the matrix, 
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Testprogram 

begin 

integer n, ml, m2, i, k3 

real epsl3 

boolean vect; 

read(in, n,m1,m2,epsi)3 vect:* eps > 03 

begin 

array a(1inx(n+1)/2), x(ml:m2, i:nt2), ev(mi:m2); 

for i:= 1 step 1 until nx(n+1)/2 do read(in, a(1)); 

householder(n, m1,m2,a,ev,x,eps1) 3 

write(out, <:Eigenvalues <10><10>:>) ; 

for i:= mi step 1 until m2 do 

write(out, <<dd>, i, << ~dddd.ddddddddd>, ev(t), <:<10>:>)3 

if vect then 

begin 

write(out, <:<10> Eigenvectors<10>:>) 5 

for k:= m1 step 1 until m2 do 

begin 

write(out, <:<l0>i>, <<dd>, k, <:<10>:>) ; 

for i:= 1 step 1 until n do 

write(out, << -dddd,dddddddda>, x(k, 1), <:<10>:>)3 

end k3 

end vect; 

end; 

end; 

For the matrix of order 5: 5 4 53 2 1 

4 6 0 4 3 

3 0 7 6 5 

24h 6 8 7 

1 3 5 7 9 

using ml = 3, m2 = 5 and epsl = y-8 the complete output is: 

Eigenvalue 

3 4848950119 
4 Te pizren 58 
5 22406875316 



Eigenvectors 

3 
06547172796 
02312569920 

+0,618112076 
06115606593 
0.45 5U937K6 

=04550961958 
-0,709440337 
0340179132 
0083410953 
0265435679 

0245877938 
04302396039 
04453214523 
O.57TI7T1152 
0,556384584 

end 

fo For the matrix of order 10: 
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using ml = 1, m2 = 10 and eps] = -p-10 the complete output iss 

Eigenvalues 

0255679563 
0.273786 762 
0307978528 
0366208875 
0.465233088 
0,643104132 
1000000000 
1873023068 
Nera eee 
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e 6, Algol text 

householder = set 9 
hougeholder = algol 
external 

procedure householder(n,m1,m2,a,ev,x,eps1) 3 
value n,m1,m2,eps13 
real eps1; 
array 4,€V,X3 
integer m1,m2,n3 

begin 
integer 1,j,k,10,0,11,t,t0,t13 
real h,s,k1,signa, at, bt, eps, bi, b11, norm, x1,x2,x0,U, V3 
array c(t:n),r Ore) ypsbeatlantt) ome) sn+2) § 

e boolean vect;



eps:03 Jz:mmx(n+1) /2; 
for i:=1 step 1 until j do eps:meps + abs(a(i)); 
eps:=(3y-11)xeps/J5 
for i:=1 step 1 until ne2 do 
begin 

timeds tOsmtx(t+1)/23 tlsatO +t; 
sigma:=0 3 
for ki=t0+1 step 1 until t1 do sigma:=sigma+a(k)»x2; 
atiwa(ti) 3 
b(t+1):=bt:= if at>O then-sqrt(sigma) else sqrt(sigma); 
if aba(b>t)>eps then 
begin 

himsigma-atXbt; a(t!) :=at-bt; 
for jis1 step 1 until t do 

begin 
comment computation of pis; 

simOs JOsm (§-1)%j/23 
for k:e1 step 1 until j do s:msta{jO+k)xa(t0+k) ; 
for kimj+1 step 1 until t do s:msta(kx(k-1) /2+j)xa(tO+k) 3 
a(3) :=8/h3 

end Jj3 
k1:903 
comment computation of ki; 

for j:31 step 1 until t do k1:=kita(to+j)xa( J); 
Kt eak1 /2/h3 
comment computation of gis 
for j:=1 step 1 util t do a(J):=q(4)-k1xa(t0+J) 3 
for j:= 1 step 1 until t do 
begin 
comment computation of the 1+1 matrix; 

JOsm( 5-1) x3/25 
for k:=1 step 1 until j 

a( Jork) + wal sore) (043) 4%) -0( 204K) x94) 3 
end Jj 

end abs(bt)>eps; 
end 1; 
for its] step 1 until n do c(i):=a(ix(i+1)/2); 
p(2):2a(2)3  b(1):=(nt1) 2503 

comment the eigenvalues ev(m1),ev(mitt), . . ,ev(m2) 
are now calculated; 

vectsm(if epsl<D then false else true); 
eps sebs(epst) 3 

for deat step 1 until n do 

egin 
“prmaba(b(1))4abe(e(4)) +abaCb(1+1)) 3 
if norm<h then norm:sh; 

a(t) :=b(i)>0@5 
end 1; 

for itsml step 1 until m2 do p(i):= -nom; 
for k :=m2 step -1 until m1 do 

begin 
comment computation of the k eigenvalue; 

- 15 -
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for i:am1 step 1 until k-1 do if p(1)>p(k) then p(k):= p(i); 
xisap(k)3 x@:= ( if ken then ev(k+1) else norm); 
for xO:m m(xi4x2) /2 while x2-x1>2X%y-10x(abs(x1)+abs(x2))+eps1 do 
begin 

hess ssl; 
for i:=1 step 1 until n do 
begin 
simc(1)-x0-(1f s0 then q(t)/s else abs(b(1))xp10) 5 
if sO then hisht1; 

end 13 
if ho=k then x2:=x0 else x1:=x0; 

if p(ht1)<x0 then p(h+1) s=x03 
end x03 

ev(k) :=x03 
end k3 

eps1:*1/2xeps1+4x,-10%o0mn 

if vect then 
begin 
comment computation of the elgenvectors corresponding 
to the calculated eigenvalues; 

eps: (3y-11)>»morm; 
for k:am2 step -1 until ml do 
begin 
comment the pivotal equations are calculated; 
Grne(1) -ev(l0) 5 visb(2) 3 
if abs(v)<eps then v:seps3 
for is=1 step 1 until n-1 do 
begin 
pissb(it1)3 if abs(bi)<eps then bi:=eps; 
pitsab(i+2); if poatoit)<epe then bil:=eps; 
if abs(u)>abs(bi) then 
begin 

p(1)ssus a(t) savz r(1) 2-03 
e iti) :=bi/u; 

urmc(it1) -ev(ie) -m(1+1)xv3 vi=bi1; 
end 
else 
begin 

p(t) sbi; a(t) :=c(i+1)-ev(k) 3 
r(1):=b11; nfde1): ssu/bi; 
ut=vem(i+1)x(e(1+1)-ev(k))3 
vemem(i+1)Xbi13 

end; 
end 13 

aft) rmq(n) :ar(n) s9x(kynt1) tex(k,nt2) 2h i905 
p(n):=1f abs(u)>eps then u else eps; 
for i:m step -1 until 1 do 
begin 

comment the first approximati 

sllepd) te Toad) aC, 141) me (t) dk 142) )/pC4) 5 
heshtx(k, 1)>0@3 

ends 



himsqrt(h) 5 
for its? step 1 until n do x(k,1):=x(k,1)/h3 
hiaO3 
for itm step -1 until 1 do 
begin 
comment the second approximati 

x(k, 1) :=(x(k, 1) waa) xrCley +1) F(t) ve, 1+2))/p(1) 5 
hishtx(k,1)@; 

end; 
hi ssart(h) 5 
for i:=1 step 1 wmtil n do x(k,1):=x(k,1)/n; 

end k3 

comment the calculated eigenvectors are now transformed 

to eigenvectors corresponding to the original matrix; 

for k:=m1 step 1 until m2 do 

begin 
for jsmn-2 step -1 until 1 do 
begin 
tim-j3 tor=tx(t+1)/23 sigma=03 
for i:a1 step 1 until t do sigma:=sigmata(t0+1)~©@; 
if sigma0 then 
begin 
s3a03 
for 1:31 step 1 util t do s:=sta(t0+i)xx(k,1); 
s:m2xs/sigma; 
for i:=1 step i mtil t do 

x(k, 1) s=x(k, 1) +sxa(to+t) 3 
end sigmac0; 

end j3 

end k 3 

end vect; 

ends 
ends 
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