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t« Function and parsmeters

Let a denote a real symmetric matrix of order n, and let ev(1),

ev(2), «ss , ev{n) denote the eigenvalues for this matrix arranged in

an increasing sequence, that is ev(1) < ev(}) whenever 1 < J.
Let m1 and m? be prescribed integers so that 1 < ml < m2 < n,

The procedure householder calculates the eigenvalues ev(ml),

ev(m1+‘| )s

ees , ev(md) and, if wanted the corresponding eigenvectors,

Procedure head:
householder(n, ml, m2, a, ev, x, epsi);

value n, ml, m2, epsl;

real epsi;

array a, ev, X;

integer ml, m2, n;

Call paremeters:

n H

mi :

the order of the glven matrix;
an integer, 1 < ml <n, denoting the number of the small-
est eigenvalue to be calculated.

: an integer, ml < m2 < n, denoting the mumber of the greatest

eigenvalue to be calculated.

a real array a(imx(n+1)/2);

a mst contain the lower triangular part of the given syme
metric matrix in the following way:

the disgonal element number 1 1is stored in a(ix{1+1}/2)

1 =21, 2, eee 4 11}

the element in the 1’th row and j’th column where j <1 is
stored in a({i-1}xi/2+J).

Call/Return parsmeters:

epsl

at entry epsl is positive or negative.

if epsl is positive the eigenvectors sre calculated. The
absolute value of epsi 1s a quantity affecting the precision
to which the eigenvectors are camputed {See part 2.2);

at exit eps! denotes an upper bound for the error in any of
the calculated eigenvalues,



Return parameters:
ev : a real array ev(mi:m2) containing the calculated eigenvelues.
x : a real array x{mi:m2, 1:n+2); 1f the eigenvectors are cal-
culated, they are stored in x in such a way that x{k,1}, ...
x(k,n) denotes the eigenvector corresponding to ev{k);
(for each k x(k,n+1) = x(k,n+2) = 0; these quantities are

only introduced for ease of programming).

2, Method

The method consists of four parts, tridisgonalisation, celculation of

eigenvalues, celculatlon of elgenvectors, and backtransformation.

2.1, Tridiaggnalisation

A matrix is sald to be on tridisgonal form, if all elements that are
not in the diasgonal or just over or under the diagonal, are zero,
Let A1 be the glven symmetric matrix of order n,

A1 i8 transformed - by n-2 orthogonal transformations - to a matrix
on trisngular form.

Each transformation Pi(i =21, 2, eos , N=2) is of the form
T
P1 =7 - 2wiwi

where T 1s the identity-matrix and wf 1s the row:

Wy = (dy 1s Wy s ese s Wy ongs O eee s O
and L] the corresponding columm.
Let A =P AP 1=1, 2, ¢ss , n=2

1+1 1"1°1

For each 1 the terms wi’1, wi,2’ ere 3 wi,n-i are chosen Iin such a

way that

0 T
1. wi wi =1

20. In A the elements in the rows number n, n=1, see ,

141
n-i+2 are the ssme as in Ai' The row number
n-i+1 1s put on ’trlangular’ form.



Let the elements of Ai be dencted a.i 3 Put
t = Tl - i.

- 2 2
Blgma = ac 1,1 % Bap,a v oeee Y 2y 4o

h, = sigua + Bt sqrt{sigma).

(+ 1s used if at+1,t > 0 else - 1s used,)

It comes out, that w mist be chosen as follows

1,17 ¥1,20 0t 0 Vyg
L7 (at+1,t + sqrt(sigma))/sqrt(2hi).

Vi g T By, p/eatEh) =, 2, e, bl

By introducing

T
Yy (at+1,1’ Btro,22 ¢ 7 Brey -1 Beeq,t

+ sqrt{sigma), O, ee. , O).
one willl obtain

and by Introducing the vectors Pyr and the scalar ki as follows
Py = Ayuy /by
k, =, p,/(2h,)
i 1-1 1

qy =Py - kyuy
a rather simple caleulation will show thet

Appg =By - m - apuy
slnce A1+1 13 symmetric one 13 only calculating the lower triangular
part of the matrix,

The sbove equation 1s used for the calculation of the first 1 rows
(t = n-1) in A,,,» The row number t+1 is on triangular form with the
disgonel element unchanged from Ai and the element
(t+1,t) = a, + sqrt{sigms). The rows number t+1, ... , 1 are ac-

5t
1 AL

cording to 2° - unchanged from 4
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At entry the lower triangular part of the given matrix is stored in
the array a. For each i the srray a is used only to store the lower
triangular part of the first t rows of Ai+1' The other rows are on
triangular form, and the disgonal end subdiagonel elements from these
rows are stored in to arrays ¢ and b.

The row number t+1 of the array a 1s used to store information encugh
tonetermine the transformation Pi' Now, P 4 is determined by the vector
1 and the scalar hi‘ By replacing in the array a the element at+1,t
by Bt b + sqrt(sigma) one obtain tha.; the non-zero elements of the
t+1 row in a are exactly the vector u, e Furthermore from these ele-
ments h 4 can be determined., Recalling that

. h, = sigma ¥ Bt t sqrt(sigma).

u

and denoting by sigmaza.1 the square-sum of the elements in uiT one will

obtaln
2 2 2
sigma, = 2y, . SRTTIL AL TR (a"t+‘l + sqrt(sigma))
2sigma + Ea.tﬂsqrt(sim) = 2h,.

So h; = signa1/2.
For further informetion sbout this part see [4], [6].

2,2, Calculation of elgenvalues

This 1s based on the followlng theorem:

. let Cps wes 5 Cp denote the diagonal element and by, «ev , bn the sub-
diagonel elements of a symmetric triangulator matrix. For each real
mmmber xO let the sequence t1(xﬁ), ta(xﬂ), cee 3 tn(xo) be defined -
if possible - as follows

t1(x0) =c, - X0

2
ti(m) = (ci - XO) - bi/ti_1(x0). i 2y eesy Te
Let h(x0) denote the number of negative ti(xo).

Then h{x0) is equal to the mumber of eigenvalues less than or equal to
X0,

Assume that the eigenvelues are arranged in an {ncreasing sequence and
that the k’th eigenvalue, ev(k), 1s to be calculated. Let x1 and X2 be

. real numbers satisfying x1 < ev(k) < x2, Such numbers exist, e.g. if
norm is denoting the infinity norm of the matrix then x1 = -norm and
x2 = norm will do.



Let x0 = (x1 + x2)/2. |
h{x0) 1s calculated by using the above mentioned formular for ti(xO)

1=1, 2, ¢es 5 Na

A new peair (x1, x2} 1is defined in the following way:

if h(x0) >= k then X1:= x1 and x2:= x0 else x1:= x0, x2:= x2,

For the new pair the procedure 13 repeated, This 1s done as long as

X2 - X1 > 2%p-10x(abs(x1) + abs(x2)) + epsi1 where epsl is a prescribed

quantity.

At the end one puts ev(k}:= (x1+x2)/2.

Since abs(x1) and abs{x2) always are bounded by norm, it follows that
. the error in any eigenvalue is bounded by UXy-10xnorm + epsi. This

mmber l1s calculated and stored in epsl.

When calcutating the k’th eigenvalue, h{x0) is determined for some

x0, The value of h(x0) glves information not only about the k’th

eigenvelue, but in general about the elgenvalues of the matrix, By

introducing an array p(i) satisfying for each 1 p{{1) < ev(i) this in-

formaticn 1s stored as follows:

if p(h(xo) + 1) < x0 then p(h(x0) + 1):= x0;

when calculating the k?th eigenvalue cne 1s at the start putting
x1:= max p{1), =e. , P(k) ; x2:= ev{k+1);

For further information about this part see [2], [5], [6].

. 2.3, Caleculgtion of elgenvectors

The matrix is as m 2,2 a symmetric matrix on triangular form with
dlagonal elements Cys Cpy ese O and subdisgonal elements b2, aen bn’
let ev denote a calculated eigenvalue,

Finding an elgenvector corresponding to ev ia equivalent to solve the

system
(c1 - ev)x.I * DX, = 0
byx, + (c1 - ev)x, + byxs = 0
: (1)
bht¥n-2 * (cn-1 - ev)xn_q tox, =0
. box o+ (cn - ev)xn =0

where (x1, cee xn) denote the wanted eigenvector.




A natural way to sclve this system would consist in putting x =
finding X, from the first equation, x5 from the next and so on, but
83 shown in [4]), = method 1ike this will often - for several reasons
- give hopeless, inaccurate results.
Using a method developed by J.H, Wilkensan ([4)), one is Instead sol-
ving a system derived from (I) by replacing the zeros on the right
side by suitable quantities d1, oo dh‘
These equations are solved by successive elimination of the variables

iz Xy eae 5 X oy but some kind of piveoting is necessary; for each 1,
Xy is illiminated from the equation, which has the numerical largest
coefficient in X, more precisely, at the first step we are considering
the two first equations

(c1 - cv)x1 + by = 4,

byX,y + (c2 - ev)x2 + b5x3 = d,.
The equation which has the numerical largest coefflelent 1s X, iz de-
noted

1

from this equation X, is caleculated and the expressicn inserted In the

other equation. The so obtained equation in Xy and x3 i1s dencted

X+ v2x3 = g’

At the 17th step we are considering the two equations

= g
PiXy t Xy * 7% = d

’
ux, + ViXegr = 43

+ (e -ev)x,,, +b, . x, =4

by 1+1 1+1 7 Piet1e2 T G1aqe
agaln the equation which has the numerical largest coefficient in X,
is dencted
ry
PyXy * Qy¥Xgpq * Ty¥yp * 9
from this equation X, i1s caleculated and the expression inserted in the

other equation.
In this way we cobtain the followlng system:

»y

PyXy + QX + Ty%g = 4

Ptp * Gp%s * TNy = &

Pi-exn-e * qn-2xn- 2xn n—2
»

pn-Txh-1 + qn-1x’n - dh-1

PpXy = 457
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We now assume, that d1, d2, see dn were chosen in such a way, that
d{’, A37s eee s d’’ ere all equal to cne.

This system 1s sclved in the natural way and the obtained vector
normed. (and agein denoted Xip eee s xh). It can be proved ([4]) that
thls vector will usually be = good approximation, at least 1t will
never be hopeless lnaccurate,

A vector with sufficlent sccuracy 1s obtained by solving the above
system once agaln, but replacing the terms d{’, cne 3 d;’ by the coor-
dinates in the first approximeiion Xis ser 5 X0

For further information sbout this part see [3], [4], [6].

. 2.4, Backtrsnsformation

The problem 1s to transform the caleulated eigenvectors (for the tri-
angular matrix) to elgenvectors corresponding to the original matrix,
Recalling that the original matrix was transformed to & matrix on tri-
disgonal form by n-2 orthogonal transformations P1, P2, eee Pn_e, it
easally follows, that 1f =z 1s an elgenvector for the triangular ma-

n-1
trix then
P1P2... Pn—2 201 is an eigenvector for the original matrix,
Putting PiPi"'I veo n-2zn-1 = ‘Z.i

one will obtain Pizi+1 =2y
and the wanted vector Z1s is calculated in n-2 steps, Using the nota-
tion from 2, 1 {tridiagonalisation) one will get

T T
u,u u,u
i1 171
Zy = 2409 --E-i—ziﬂ(because}" =1 - -111—).

The non=-zero elements of u, are stored in the t + 1 row (t = n ~ 1) of
the arrsy = and hi = sigma/2, where sigma denotes the square-sum of the

elements in u, (see 2.1).

Accuracy, Time and Storage Requirements

Accuracy: The accuracy in the elgenvelues depends cn the value of the
call parameter epsi.
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It easily follows from the descripticn of the method part
2.2, that the error in any eigenvalue is bounded by

b x p-1¢ X norm + epsl where norm denctes the Infitity norm
of the triangular matrix,

For further information on this part see 4, Test and Dis-

cussicn,

Time : Thls depends on the wanted accuracy, that is the term epsi,
and first of all on the order n of the matrix equation, Ge-
nerally the execution time will be preporticnel to nxx2,
Using epsi1 = y=10 and denoted by

I : The execution time when all elgenvalues and all eigen-
vectors are calculated
II : The execution time when a1l eigenvalues but no eigen-
vectors are calculated.
III: The execution time when only the greatest eigenvalue and
the corresponding eigenvector are calculated,

the greatest execution times (in sec.) cbtained were as follows: |

Order of
the matrix I 11 111
5 0.32 0.25 0.09
. 10 1.32 0.89 0.28
15 3.22 1.99 0.68
20 6,30 3.63 1.39
25 10.75 5.91 2,46

The following example 1llustrates the connection between the execution
time and the value of epsl, where ail eigenvelues and eigenvectors for
a matrix of order 20 are calculated:

eps] = p=lt =5 -6 =T »=-B %=9 =10
THme = 4,88 5.15 5.l 5. T4 5,94 6,16 6430

Storage requirements: 9 segments of program
‘l. Typografical length : 149 lines



4, Test and Discussion

The procedure has been tested by seversl matrices, essentially the
following four types (denoting by a(1j) the element in the i’th row
snd the j’th column and by n the order of the matrix in question):
Type I : a(i,j) = a{j,1) =n = 1 + 1. This matrix has well-separa.
ted eigenvelues given by
1
2(1-ccs(§é§+ pi)

EV(i) = = 1, 2, see 4 11

Type II : a(1,3) = a(Jj,1i) =1 for a1l 14, jJ.
All elgenvelues are 0 except one which is n
Type III : a(i,)) = a{i,1) =0 for 1 = J else 1.

All elgenvalues are -1 except one which 18 n-1,

Type IV : a(i,j) =0 for 3 < 1-1 and J > 1+1.
a(i,1-1) = a{1,i+1) =1,
a(1,i) = abs(EEl -1) 1=1,2, ,,., n
The matrix has a number of extremely close, but not coinci-
dent elgenvalues,
When all elgenvalues and sll eigenvectors are calculated, a measure
for the error for the whole procedure is obtalned by checking the
1dentity Ax = ev(k)xk for each k.
Finding the largest deviation in any ccordinate and using as testnorm

the mean of these k numbers, the following results are obtained:
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Matrix Value of epsl

=t p=6 p=5 p-10
Type I order 10  3,1p=5 9.0p~T  1.5p=8  3,2y4-9
Type I order 20  1,l4y=5 1.59=6  1.6p=8  3,9,-8

Type 1 order 25 2,0,-l 2.14-6 3,2,-8 2.1,-8
Type II order 10 1,2y-5 33p=T 1989  3.84-10
T.')’Pe II Order 20 3-510"5 T.6n-8 5.110-9 2.0]}“10
Type II order 25 4,5,-5 3.59=T L6p-10  6,4y=10
Type III order 10 1.2yp=5 9.3p=-8 1.45-9 1.75=10
Type III order 20 1,2p-5 6.To=8  6.35-10  4.3,410
Type III order 25 5,4,-6 7+0p-8 1.5p-0 640p=10
lepe IV order 11 2.1]}'5 908]]"‘6 2t1n'7 9-1]‘.!"9
Type IV order 15 6.7y=3 6.89-5  6.09=7 1.Tn=7
Type IV order 21 1.55=2 1.9p=3  6.3p=b  L,1p-6

The jacobl algorithm solves almost the same problem as householder;
The only difference is, that the jJacobl procedure necessarily calcu-
lates all the eigenvelues (and elgenvectors), while it 1s possible
with the householder procedure only to calculate some of the elgenva-
lues (and eigenvectors). Calculating ell eigenvalues and all elgenvec-
tors and using in householder eps] = y-10 a comparison between the two
procedures gave the following results:
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Matrix Testnorm Teatnorm Time Time
for for for for
householder Jjaccbl householder  Jjacobi

Type I order 5 1obye9 0.84-9 0.35 0.27
Type I order 10 342p=9 4.0p=9 1.33 2.02
Type I order 15 2.2,-8 1.0,-8 3.29 6.61
Type I order 20 345p=8 2,2,-8 6.30 14,92
Type I order 25 2.1y=8 3.2y-8 11.12 29.08
Type II order S 7+0y=10 5.0p=10 0.20 0.07
Type II order 10 1465-10 0.1p-10 0.53 0.22
Type II order 15 4,04-10 1.05=10 1.13 0.55
Type II order 20 b.5p-10 1.64-10 1,98 0.97
Type II order 25 Tolip=10 1.24-10 3.46 1.38

Remembering that the matrices of type I have well-separated elgenva-
lues, and that the matrices of type II have all but one elgenvalue
equal to zero, one might draw the following conclusion:

The procedure householder 1s to be preferred in case of matrices with
separated eigenvalues, because of higher speed, or in cases, where on-
ly one or a few eigenvalues are wanted,

The procedure Jacobl is toc be preferred in case of matrices with coln-
cldent elgenvalues.

Example

We consider s symmetric matrix of order n. The term ml denotes the
nurber of the smallest, m? the number of the greatest elgenvalue to be
calculasted. The eigenvectors are calculated only if the term epsi is
positive., Input is the value of the quantities n, ml, m2, epsl and the
lower triangular part of the matrix,




Testprogram

begln
integer n, m1, m2, i, k3
real epsl;

boolean vect;

read(in, n,ml,m2®,eps1); vecti= eps > 0}

begin

array a{1:nx(n+1)/2), x(m1:m2, 1:n+2), ev(mi:m2);
for 1:= 1 step 1 until nx{n+1)/2 do read(in, a(1));
householder(n, mi,m2,a,ev,x,epsl);

write(out, <:Eigenvalues <10><10>:>);

for i:a mj step 1 wntil m2 do

write{out, <<dd>, i, <<

if vect then
begin

write(out, <:<10> Eigenvectors<iOp:>);

for ki= m1 step 1 until m2 do

begin

write{out, <i<10>:>, <<dd>, k, <:<10>:>);
for 1:= 1 step 1 until n éo
~-3ddd,.ddddddddd>, x(k, 1}, <:<10>:>);

write(out, <<
end k;
end vect}
end;

end;

For the matrix of order 5:

using m1 = 3, m2 = 5 and epsl = -8 the complete cutput is:

Eigenvalue

3 4.848950119
b Te &37%1 58
5 22 . 406875316

LN U Y )|

—

NoFE O O

O = O\

XD O F O

T

1
3
b
7

9
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-dddd.ddddddddd>, ev(1l}, <:<10>:>);




sl

Eigenvectors

3

-0.547172796
0.312569920
«0.,618112076
0.115606593
0.455493746

=0,550961958
-0,T09440337
0,340179132
0.083410953
0,265435679

0.245877938
0.302396039
0.453214523
0.577177152
0.,556384584

end

For the matrix of order 10:

using m1 = 1, m2 = 10 and eps] = -x=10 the complete output is:

Elgenvalues

o

= O W ) DN

QW O=1 Own FOifo =

2

0.255679563
0.273786762
0.307978528
0, 366208875
0.465233088
0.643104132
1.000000000
1.873023068

048917339

. 766068656

- W W a1 Oy =) DN WD

- N W F o Oy =] o m D

= N W F oW Oy = =)

= M W F v O Oy OOy

= M W F wWnosaosa MWW owan

B N i S g

= O AWM MM WM MM MM AN WM AN
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6. Algol text

householder = set 9
hougeholder = glgol
external

procedure householder(n,ml,m2,a,ev,x,epsl);
value n,ml,me,epsl;

real epsl;

array a,ev,X;

integer mi,m2,n;

begin

integer 1,3,k,10,30,11,t,10,t1;

real h,s,k1,slgme,st,bt,eps,bl,bll, norm,x1,x2,x0,u,v;
array c(T:nS,r 0:n),p,b,qf?:n+1),m(1:n+2);

boolean vect;



eps:=0; J:mx(n+1)/2;
for 1:=] step 1 until j do eps:meps + abs{a(1));
eps:=(3y-11)xeps/J;
for 1:=1 ptep 1 until n.2 do
begin
timel; tO:mtx{t+1)/2; t1:at0 +t;
sigmai=0;
for ki=t0+1 step 1 until t1 do sigmas=sigma+a(k)xxC;
atima(t1);
b(t+1) :=bt:m if at>0 then-sqrt(sigma) else sqrt{sigma);
if sba{bt)>eps then
begin
h:=msigma~atxbt; a(t1) ;mat-bt;
for Jiwl step 1 untlil t do
begin
comment computation of pij
sim0; o= {J-1)x3/2;
for kiml step 1 until j do s:=s+a{JO+k)xa(t0+k);
for k:mJ+1 step 1 wntil t do s:ms+alkx(k-1)/2+]))xa(t0+k);
a(d) s=s/h;
end J3
k1:20;
coment computation of ki
for j:=1 step 1 until t do k1:=k1+a(t0+3}xq(J);
k1:=k1/2/h;
comment computation of gij
for j:=1 step 1 until t do q{3) :=q{J) -k1xa{t0+});
for j:= 1 step 1 until t do
begin
comment computation of the i+1 matrix;
Jos=(3-1)x3/2;
for ki= step 1 untll j do
a( JO+k) :=a( J0+k} -a(to+]) xa (k) -a({ t0+k)xq(J) ;
end J1;
end abs{bt)>eps;
end 1;
for 1:e1 step 1 until n do cfi):=a(ix(1+1)/2);
b(2):=a(2); b(1):=(n+1):=0;

coument the eigenvalues ev(ml),ev(mi+i}, . . ,ev(m2)
are now calculated;

vect:m{1f epsi<D then false else true};
eps1:=abs{epsi};
normi=0;

for 1:=1 step 1 until n do
begin

h:mabs{b(1) )+abs(c(1))+abs(b{i+1));

1f norm<h then norm:sh;

q(1) :eb(1)>02;

end 13

for 1:=m1 step 1 until m2 do p(1):= -norm;
for k :=m2 step -1 until ml1 do
hegln

comment computation of the k eligenvalue;
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for 1:=am1 step 1 wntil k-1 do if p(1)>p(k) then p(k):= p(i);
x1:mp(k) 3 x2:= ( 1f k<n then ev(k+1) else nomm);
for x0:m fx1+x2)/2 while x2=x1>8Xp-10X{abs(x1)+abs(x2))+eps1 do
begin
h:=0; siml;
for 1:w] step 1 untll n do
begin
s:mc(1) ~x0-(1f s<>Q then q{1)/s else abs{b(1))xu10);
1f 3<0 then hi=h+i;
end 13
1f h>=it then x2:=x0 else x1:=x0;
it p(h+1)<x0 then p(h+1) :=ax0;
end xO3
ev{k) 1=x0;
end k3
eps1:m1/2Xeps1+ixy=-10>00mm;

1f vect then
begin
comment computation of the elgenvectors corresponding
to the calculated eigenvalues)
epst= (3,-11)xnorm;
for k:=m? step -1 until ml1 do
begin
camment the pivotal equatlons are calculated;
u.-c(1)-ev(k§ visb(2) 3
if abs(v)<eps then vi=eps;
for 1:= step 1 until n-1 do
begin
bl:wb(1+1); if abs(bi)}<eps then bi:meps;
bi1:=b(1+2); 1f abs(bii)<eps then billimeps;
1f abs(u)>abs(bi) then
begin
p(1)s=u; q(1) :=v; r(1):=0;

. m{1+1) :mbi/u;
u.-c(1+1)-ev(k)am(i+1)XV, vi=bil}
end
else
begin
pii;:-bi; a{1) :=c(1+1) ~ev(k);
r{1):mbi1; mEi+1):-u/bi;
usmvam(1+1}X(c(1+1)~ev(k)});
vim-m{i+1)Xbi1;
end;
end 13
Enﬂ) :mq(n) :=r(n) :=x(k,n+1) tmx(k, n+2) :=h:=0;
p(n):=1f abs(u)>eps then u else eps;
for i:=n step -1 until 1 do
begin
comment the first spproximatl
2, 1 s 1o 1) (i, 141) (1 )30xLi, 142)) /(1) 3
hemhix(k, 1)>0@;
end;




himggrt(h) ;

for i:=1 step 1 wntil n do x(k,1):=x(k,1)/h;
h:=0;

for 1:mm step -1 until 1 do

begin

oment the s d approximation;
i, 1) s {2k, 1) ~a(1) 30, £+1) o 1)xk, £42)) /p(L) 5
he=htx(k,1)x2;

end;
h:msqrt(h) ;

for i:=1 step 1 until n do x(k,1) :=x(k,1)/h;
end k;

coment the calculated eigenvectors are now transformed
to elgenvectors corresponding to the original matrix;

for k:=m1 step 1 until m? do
begin
for Jimm-2 step -1 until 1 do
begin
tem-J3  t0:=tx{t+1)/2; sigma:=0;
for 1:m] step 1 until t do sigma:=gigma+a(t0+1)xx2;
1f sigma<>0 then
begin
8:=0;
for 1:=1 step 1 untll t do s:=s+a(t0+i)xx(k,1);
Bimu2Xs/sigma;
for 1:=1 step 1 wntil t do
x(k, 1) s=x(k, 1) +sxa(t0+1);
end sigma<>0;
end J;
end k;
end vect;
end}
end;
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