Raabe.

e REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

53-57
October 1970
Sgren Henckel

recordinput
Part 1

T RCSL Statistical Package, Input of data in Records,
Input of control Information, Syntax Check of Input.

The boolean procedure recordinput reads one input paper
tape containing a number of records. The records are syntactically checked
and will be delivered on a backing storage for later inspection. Only syn-
tactical errors are detected, whereas semantics has to be checked in a la-

ter scan of the output file. 17 pages.

'E SYSTEM LIBRARY

DK-2500 VALBY - BJERREGAARDSVEJ 5 @ TELEPHONE: (01) 46 08 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

CONTENTS:

1.

2.1,
2.2,
2.3,
2.k,
3.

hote
L2,
Se

6ate
6.2,
6.3,

Tels
Te2e

Funetion and purpose

Input/output files

Input syntax

Format of ocutput file

Format and explanation of error messages
Program tape, storage requirements end run time
Method

Program structure

References

User’s example, program

User’s example, input tape

User’s example, output

APPENDIX:

Possible alterations
Program manuscript in ALGOL 5

Page

Q-1 ™ D

12
13
14
1L

¥
17

1., FUNCTION AND PURPOSE.

The procedure recordinput attempts to solve the problems concerning
input of control information to the RCSL statistical package and has
been made in order ito fulfil ithe following general rules:

1: It should be possible to divide any input paper tape into a
number of loglesl records,

2: You may delete any record contalning anything.

3¢ In every possible error situation it should be possible to give

s correct picture {1ist) of the erronecus record.

b: A1 not deleted records hes to appear in the output file gene-
rated by the procedure, whereas all erronecus or deleted re-
cords has to be copied on current ocutput mixed with error mes-

sages.

5% The procedure should only check for syntax errors, whereas se-

mantlie errors has to be detected in a later scan.

6: The entire data paper tape has to be read by calling the proce-

dure once,
Procedure heading:

external boolean procedure
recordinput(maxchar,maxparam,realtext,realname,descriptor,tailcontent);

value maxchar,maxparam, real text, realname ;
Integer maxchar, maxparanm, realtext, realname;
real array descriptor;

integer array tallcontent;

Call Parameters:

Integer maxchar = maximm number of non blind characters in one Input
record ’
(maxchar must be >= 5)

Integer maxparem = maximm number of parameters in an ountput record

{maxparam mst be >= 1)

Integer realtext = maximm number of resls used for storing a text
parameter
integer reelname = maximm nunber of reals used for storing a name
. parameter
(realtext and reainame must be >= 0)

real array descriptor(1:number_pf_ﬁescriptors)
each array element must at call contain one descrip-
tor as a short string (e.g. either the entire de-
scriptor or, for long descriptors, exactly the S

- first characters and a null character).

integer sxrray tailcontent(-]:nunber;pf;ﬁescriptors)
the array elements numbered 1 until nunber of de-
scriptors mst at call contain an integer number
. code (1 <= code <= 5) showing what the tall of the
corresponding kind of record is intended to con-
tain, Explanaticn of the code is:
code = 1 <=> g number of text parameters (at least one)

code = 2 <=> exactly one non empty name parameter

code = 3 <=> a nunber of number parameters
(mixed reals and integers)
code = 4 <=> empty {e.g. only separators)
code = 5 <=> end of input tape (= possible taill 1s ignored).

Integer array elements
taileontent{-1) = number of (different) descriptors

tailcontent{0) = number of segments reserved on backing storage for

output of records {must be >= Q)

Return parameters:

boolesn recordinput +true 1f no troubles with the output file has oc-
cured, otherwise false. '

If the procedure return value is false, none of the call parameters have

been touched, otherwigse we have the following return parameters:

real array deseriptor{1:2) name (genersted by the monitor) on the back-
ing storage file used for ocutput of records.

integer arrsy elements

tailcontent(O) = number of accepted records in the <input file>
tatleontent{1) = total number of records read by the procedure

The rest of the cell parameters are unaltered.

Check of call parameters:

The procedure checks that the call parsmeters are reasonsble but a

complete check is not performed.

2.1. INPUT/OUTPUT FILES,

In order to facilitate the use of procedure recordinput, the stan-
dard zones in/out (connected to current input/output) has been selected
as input file for data on character level and cutput file {on character
level} for error messages, whereas the records accepted or generated by
the procedure are placed on a backing storage flle with a name generated

by the monitor (and delivered as return parameter).

The format of error messages is AW vertical with approx. 60 lines
on each pege with each line containing meximally 71 characters starting
in position 1.

-5 -

Because the usually used printers only have one kind of letters and
the File Procesgor requires small letters and in order to minimize the
mmber of error situations, all letters in the <input file> are trans-
formed to small letters, .

The notion <record> msy need further explanaticnt In order to have
input partitoned in logical parts end to facllitgte the preparation of
control information, 1t is comfortable to let the kind of information be
glven 1f front of the information, and among many pessibilities, a ver-
bal description has been prefered. This means that every record begins
with a text showing what the rest of the record is about. An example mey
be:

1dent: output identification<
where ident shows, that the rest of the record (to the character <) has
to be used as an identification text In output.

2,2, INPUT SYNTAX,

<input file> 3= Q*ecord>).r

<record> ::= <accept record>|<delete record>|<EM record>
<accept record> :1:i= <descriptor><parameter>>lo(<accept>

<delete record> ::= <any atring without <terminator> ><delete>
<EM record> ::= <any string without <terminator> >
<terminator> ::= <accept>|<delete>|

<aecept> :i= <separator>! <« <between records>

<delete> ::= <separator>% > <between records>

 t:= <end of medium character>

<between records> ::= <<separs.tor>|<f>>§

<separator> ii= ,|;|:|SP|NL|HT|VT'|FF [<separators<separator>
<descriptor> :i= <name>

<parsmeter> ::= <number parameter>|<text parsmeter>|<neme parsmeter>

<mmber parameter’ ::= <separator><itnumber>
<number> ::= <leading pa.r't.>1<decimal parbé<exponential par‘bé

<leading part> i1:= <s.fl.g;n>(1)<gig:i.‘t:>§)I<

<decimal part> ::= <decimal pointxdigit))f
<exponentlel part> ::= <exponent mark><sign>é<digit>’.ll(
<hame parameters ::= <separator><name>

<hame>> ::i= <1etter><K1etter>|<ﬁigit>>§

<text parameter> ::= <text starto<text>

<text start> ::= : <separator without <:>>§

<bext> ii= <degal character without <separator> <:> and <termlihator>>
<legal character without <i> and <termina$or>>§fempty

<legal character> i:= <character in the normal IS0 set which is available

on printer without <question mark>>

Further the part of an <accept record> which is not the <descriptor> is
in the following denoted as the tail.

2.%. FORMAT OF OUTPUT FILE

The output file will contain a number of records consisting of real
elements in the basic format:

If the descriptor is of kind number k and the number of parameters in the
record 1s p, the format of the output record is:

element index - content
1 p+2 as real {converted by assignment)
2 k as real (- - -)
3 parameter(1)
b parameter(2)
P2 parameter{p).

The procedure adds three new kinds of descriptors toc the kinds gl-
ven in the call:

1: kind of descriptor = nunber of descriptors + 1}
is used for iIndicating errors in records where the determina-
tion of the kind of descriptor has been impossible., These re-
cords have parameter number:= 0O}

2: kind of descriptor = number of descriptors + 2
is used for indicating errors in the taill of a record with
xnown kind of deseriptor. '
These records have parameter number t= 1; and

parameter(1):= found kind of descriptor;

3: kind of descriptor = number of descriptors + 3
indicates an end of data record (code in tailcontent = 5} or an
<EM record>. This record {exactely one from each successful

call of the procedure) has parsmeter number i= 0j

The format of output records containing a number of texts (code in
tailcontent array = 1) needs a specisl explanation:

These records contain 2 real elements showing {as nsual) the total
recordlength and the kind of record. Further they contain & number of
subrecords (exactely one subrecord for each textparameter in the input
record).

If the textparameter occupies 1 reals, the length of the subrecord
i3 1 + | reel elements, In the first of these elements the textlength
(=1) 1s placed as = real, and the rest of the subrecord contains the
textparameter packed with 6 characters In each real element {and a null
charscter placed after the last textcharacter).

The records are outrec’ed in such a way, that every zone buffer con-
tains an entlre number of records.

2.4, FORMAT AND EXPLANATION OF ERROR MESSAGES,

If a record is not deleted (by >}, the procedure first tries to de-
termine the kind of descriptor (e.g. kind of record). If this succeeds,
the syntactical check i1s continued according to genersl rules and the
nurber code In the corresponding element of the call parameter tailcon-
tent,

If an error is detected {or if the record has been deleted) the
procedure will produce an error message supplied with a charaeter pie-
ture of the erroneous (or deleted) record.

The error message formai is:

record number<<-d> <error messgge>
copy of record:<character 1llst of record>

In the <character list of record> the total record will be printed

with these modifications:
(2) the characters NL, FF, HT and VT will in 1list be replaced by
> ¥

Se.
(b) the 1ist is made with 71 maximelly characters on each line.

The records in <input file> are counted 1,2,3 and so on, and the
error message output is partitioned in pages numbered 1,2,3 and 80 on
(each pasge will contain approx. 60 lines = format AW vertical, with out-

put starting in printing position number 1).

The 30 different error messages are made in such a way, that I mean

they need no further explanstlon., An exsmple of an error message can be:
28 10 70 record input syntax errors in dats page 3

record nurber 34 has scme syntax error in a number parameter
copy of record: model 73 TH—

3, PROGRAM TAPE, STORAGE REQUIREMENTS AND RUNNING TIME.

The procedure recordinput is writien in ATGOL 5 as an external boo-
iean procedure (see ref, 1)}, and is available as algol text on 8 channel
paper tape both In the normal IS0 form (with even parity) and in flexo-
writer mode {with odd parity); these tapes must be loaded by <I tre> and
<1 trf> respectively.

All letters in the program text are small letters hecause the nora-
mally used printers only have one kind of letters.

The structure on RC 4000 does not permit glving exactely times for

compilation and running time, but some genersl rules can be mentioned:

The compllated externsl procedure occuples 19 segments on backing
storage, and reading and compilation tekes epprox. 25 seconds,

-9 -

-Compllation and rurming may be done In 2 normal 10 k bytes process,
but it will be much more comfortable to run the program in a 15 k bytes
process, With maxparam < 126 and maxchar < 1000 it 1s possible to run
the program in a 10 k bytes process whereas maxparam = 250 and'maxchar
= 2500 requires approx. 15 k bytes. These sizes are minimal, and it is
possible to cut down running time with approx. 50 pet. by using respec-
tively 15 k and 20 k bytes.

Normally the conirol information is not very large and therefore
the speed of the procedure is not very critieal, but as a general rule
you may say, that the procedure reads 1 page of control information in
about 5-15 seconds (real time) dependent on the number of erronecus re-
cords (which has to be copled in the error list).

L.1. METHOD.

The general rule sbout character 1ist of erronecus records in any
sitvation (even in case of illegal numbers) combined with the claim on
the possibility of deletion at any time and the claim on unique parti-
tioning of any Input tape in loglcal records are the reasons why input
is performed on character level by means of the integer procedure
class_pf;;nput. This procedure reads one character from zone in and pla-
ces 1t (1if possible) in the boolean array
character(1:maxchar+1) for later inspection. Further this procedure
checks the basic syntex (1llegal characters, EM character and long re-
cord) .

If the record is an <accept record> the kind of descriptor is de-
termined according to the following rule: if the character string expec-
ted to be the <descriptor> contains more than 5 charscters, only the
first 5 characters are used in textmatching for determining the kind of
descriptor, otherwise the total descriptor character string is used
(e.g. the three strings <variables>, <variavzig> and <varizh> are all
equivalent with the given descriptor string <veria>).

If the record is terminated by <delete> the procedure gives a dele-
tion message and a character picture of the deleted record.

If the record is not deleted and the determination of the kind of
descriptor has succeded, the conversion of the tall is performed by
scanning the characters stored in the boolean array

character(tailstart:position).

. =10 =

The number parsmeters are converted in four parts: <leading part>,
<decimal part>, <exponentisl part>, and <sign> which later are combined
by the statement ’
mmbers= (leading pert + decimal part) X exponentisl part X sign}

This way of conversion causes the following conditions to be true
0 <= abs(leading part) <= 8388599,

0 <= decimal part X 10 XX number of decimals <= 8388599 and

0 <= abs(exponent) <= 599,

Numbers with syntex as +’-3 are converted correctly whereas 0.0°1,
0.071 and 0’1 all gives wrong conversion to 10. All other ALGOL 60 num-

bers are correctly converted,

The name- and text parameters are packed with 6 characters in each
real element. After the last character in each parameter (possibly in the
next real element) is placed a null character in order to facilitate the

later use of these parameters,

4,2, PROGRAM STRUCTURE.

The procedure has been programmed In such a way that alterations
are as easy as possible to make., All variables (except i, J and text)
have names which shows their use,

The two main procedures are

1: integer procedure class_pf;;nput

2: 1Integer procedure unpack character.
which are used for character input and conversion respectively.

The procedure error (error type) 1s large and rather slow becanse
of the 30 long error texts combined with the charscter list of the erro-
neous record, and the decision of the further error reactions such as

creating parameters for possible error records.

The entire procedure body of procedure recordinput consists of one

block containing several loecal blocks each one containirg declarations
of very local quantities,

-1 -

. After Initlallzing and finding (with check) the date of run, the
call parameters are checked in order to avoid errors not covered by the
control in running system (without index check). Next a backing storage
file, with name generated by the monitor (end delivered as return para-
meter) and size as given in the call parsmeter tailcontent(-1), is crea-

ted (if possible).

Initlalizing of the alphabet stored in the integer array
table(02127) 1s done according to the following scheme:

input class

M DO - v = O

—
o

11
12

contents

DEL, NULL

empty

digits (O, 1, vee 5, 9)

sign (+ =)

decimal point {.)

exponent mark (’)

small and capitel letters (a,.., 8, A,e., 1)
empty

graphics{= / exclemstion mark ’and’)(X _ and *?)
11legal characters (the rest) shown as <question mark>
terminators (< > and EM)

normsl separstors (3 , SP NL FF HT end VT)

text start (:)

The active part of the procedure is Pfrom label setion: in line 220
to label finish_;nput: in line 585, This part is formed as = case state-
ment controlled by the integer variasble state. Each case refer to a state .
within reading or conversion of one record,

Case 1 end 2 is reading (and packing) descriptor and tell respec-

tively,

Cese 3, 4, and 5 corresponds to accept-, delete-, and end- {of da-

ta) record respectively,

Case 6 is conversion of the tail and contains S subcases correspon-
ding to the 5 possible different number codes in the call parsmeter
tallcontent. The third subcase (econversion of numbers) is s case
statement containing 8 cases (controlled by the Integer varisble

-12-

state, which here means state within one number parameter).,

Case 7 1s outrec of the syntactically correct and converted record.
The records ere made in such a way thet each zone buffer contains
en entire number of complete records, ’

Case 8 is used when a record contains more than maxchar non blind
characters. The 1ist 1s continued until a <terminator> is met and
the further action i1s decided.

Case 9 is used iIn case of error in call paremeters, problems with
create entry or by cell of the block procedure error_1n doc,

The total asction scheme is:

. state action new state
1 read descriptor 2,3,4,5,8,9
2 read tail 3,4,5,8,9
3 determine descriptor in accept record 6,7
b 1ist delete record 1
5 end (of data) action 9, -
6 convert the tail 7,5
7 outree of (correct) record 1, 9
8 list long record 4,5,7
9 unspecified problems -

5.

REFERENCES.

(1)

(2)

(3)

Sgren Lauesen: ALGOL 5. User’s manual
A/S Regnecentralen Copenhagen. July 1969.

Sgren Lauesen: File Processor. User’s manual
A/S Regnecentralen Copenhagen, April 1968

Per Brinch Hansen: Multiprogramming System
A/S Regnecentralen Copenhagen. April 1968,

- 13 -

6.1, USER’S EXAMPLE, PROGRAM.,

The following program has been used for control of procedure re-

cordinput:

test program for recordinput of 28 10 70

begin
zone z(256,2,stderror); integer array t(-1:9);
real array d(1:12); integer 1,j,k,m;
message sSgh test record input of 28 10 70;
for 1t= 9 step -1 until T do
begin
tEi;F' case 1 of (5,3:2s3s5:13531:1")5
d(1) ¢= real (case i of (‘<:end:>,<:list:>,<:data:),
<:outpu:>,<:model:>,<:comme :>,<:variai>,<:head:>,<iexecu:>))
end}
t§-1):=‘15; t(0) :=9; a(10) s=real <:unknown kind:>
d(11) 3= real <ierror in known kind:>; d4(12):=a(1)
if recordinput(250,35,12,2,d4,%) then

-
3
L
F)

begin
i1:= j:= 1; open(z,4,string d(increase(1}),0);
write(out,<:<12> list from area: 1>,

string d{increase(j})}; m:= 03 a(2):= reel <:listi>;
news
1:= inrec(z,2); Je= z2(1}=23 if j<O then

begin
wrlte(out,
<1010 segment change. rest=:>,<<-d>,1+2);
inrec(z,1); goto new

endj;

1sm 352); inree(z,j); m:=mi13
write(out,<:<10><10>record number >, <<~d>,m,
<: of kind number:>,i,<: = :>,string d[15,<:<1o>:>);

case case i of (0,3,4,3,3,2,3,2,1,1,5,6) of
begln
write(out,<:empty record. length =:>,<<-d>,3);
begin
write(out,<:text record. length =:>,<<-&>,3}; ki= 13
for ki= kt+1 while k<=j do
write(out,<:<10>length =:>,<<dd>,z(k-1),<:::>,
string z(increase(k)),<s::>)
end}
begin
write(out,<:number record. length =:>,<<-d>,J);
for 1:i= 1 step 1 until j do
write(out,if i mod 6=1 then <:<10>:> else <::i>,
<< ~dddd.déy-dd>,z(1))
end;
begin
i= 13 write(out,<:name record. length =:>,<<-d>,J,<:1:>,
string z(increase(i)),<:::>)
end;

- 14 -

write(out,<:found kind =:>,<<=d>,2z(1},<: = >,string d(z(1)});
begin
write{out,<tend of control file<12>:>}; goto finish
end
end case;
goto new;
finish:
end 1f record input;
close(z,true)”
end program

6.2, USER’S EXAMPLE, INPUT TAPE,

The test run hes been performed using this <input file>, punched
on 8 channel paper tape in flexowriter mode:

. Test date for recordinput of 28 10 70>

date testfileTO<

head ¢ 1970 experiments (regression of height/ege):

stext number 2<

Varisbles 7, Ua<ouTput 1 =7 p=b,,,1.036,15<

varisb ,7,, b,,,;<

head:,as ;B:

CiiEi<

executlion<

erroneous kind of descriptor (erroneous 1z 1llegal)<

10. record shows deletlon of hard errors>

execu=tion<

Head experiment number 2< varisbles 86043780«

head s 0B0446/0519 = mumber code for output identification <
vaxrlables< :

execu:<

varia 3,7. U< datasversiond<varisbles 3 7.0 U<

end of testdata for recordinput containing 20 records<

6.3, USER’S EXAMPLE, OUTPUT,

From this we obtaln the follow_ing of output:

17T 11 70 record input syntax errors in dsata page 1

record number 1 has been deleted in input {by >)
copy of record: test data for recordinput of 28 10 70>

record number 4 has some syntax error in a number parameter
copy of record: variables 7, UYa<

- i5 -

record number 9 has an lllegal kind of descriptor
copy of record: erronecus kind of descriptor ?erroneous 1s 1llegal)<

record number 10 has been deleted in input (by >)
copy of record: 10. record shows deletion of hard errors>

record number 11 containsg an 1llegal ckaracter in the descriptor
copy of record: execu-tion<

record number 12 has no text start {:) before the first text
copy of record: head experiment number 2<

recerd number 13 has overflow in leading part of a mmber parsmeter
copy of record: variables 86043780«

record number 17 has empbty ddgit part in the decimal part of a number
copy of record: varia 3,7. K

record number 20 1s an end of input record. Input finished,

survey from record;;nput:

total number of records in input was 20
and of these were 12 accepted,

liat from srea: wrk000015

record mumber 1 of kind number 3 = data
name record. length = 2:testfileT0:

record number 2 of kind maber 8 = head

text record. length = 13

length = 8:1970 experiments (regression of height/age):
length = 3:text number 2:

reccord nmumber 2 of kind number 11 = error In known kind
foumd kind = 7 = varisa

record mmber 4 of kind number ¥ = outpu
nunber record, length = &4
1000.,00y =3 ~7000.00y -3 1000.00p -7 1036,00, 9

record munber 5 of kind number 7 = varia

mmber record. length = 2
7000.00y =3 L000,00y -3

record number 6 of kind number 8
text record. length = 12

length = {:a:

length
Length
length
length
length

nwnmnmnwn
-— ot k3 el
v B ¢ O

4 44 dw Bs

record mmber 7 of kind muber 9 =
empty record. length = 0

record number 8 of kind mumber 10
-empty record, length = 0

record number 9 of kind nurber 10
empty record, length = O

record number 10 of kind number 11
found kind = 8 = head

record nmaber 11 of kind number 11
found kind = 7 = varia

h

ead

execu

unkncwn kind

unknown kind

= error in known kind

error in known kind

record number 12 of kind number 8 = hezd

text record. length = 12

length = 9:080L46/0519 = number code for output identification

record mmber 13 of kind number 7 = varia

mmber record. length = 0

record number 14 of kind number 9 = execu

empty reccrd, length =0

record number 15 of kind number 11 = error In known kind

found kind = 7 = varia

record number 16 of kind number 3 =
name record, length = 2iversions:

record number 17 of kind number 7
nunber record, length = 3
3000.00y ~3 7T000,00y4 =3 L4000,00

record number 18 of kind number 12
end of control file

data

varia

-3

end

- 16 -

