
Raabo.

s REGNECENTRALEN

SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

RCSLNo:
Edition: se ee
Author: Sgren Henckel

Title: recordinput

Part 1

RCSL Statistical Package, Input of data in Records,

Input of control Information, Syntax Check of Input.

Aestract: The boolean procedure recordinput reads one input paper

tape containing a number of records. The records are syntactically checked

and will be delivered on a backing storage for later inspection. Only syn-

tactical errors are detected, whereas semantics has to be checked in a la-

ter scan of the output file. 17 pages.

d

fe system LIBRARY S@eeeeooea C©eeo cee esos eseoaeoneeo@oe@ Ceeoea es ee oeoea eee oe eoee8

DK-2500 VALBY - BUERREGAARDSVEJ 5 » TELEPHONE: (01) 4608 88 - TELEX: 64 64 rcinf dk - CABLES: INFOCENTRALEN

CONTENTS : Page

le Function and purpose 2

2.1. Input/output files \

2.2, Input syntax 5

2.3. Format of output file 6

2.4. Format and explanation of error messages 7

3. Program tape, storage requirements and run time 8

Kt. Method 9

4.2. Program structure 10

be References 12

6.1. User’s example, program 13

6.2. User’s example, input tape 1h

6.3. User’s example, output 14

APPENDIX:

Tele Possible alterations 17

7-2. Program manuscript in ALGOL 5 17

1. FUNCTION AND PURPOSE.

The procedure recordinput attempts to solve the problems concerning

input of control information to the RCSL statistical package and has

been made in order to fulfil the following general rules:

1: It should be possible to divide any input paper tape into a

number of logical records,

2: You may delete any record containing anything.

3: In every possible error situation it should be possible to give

a correct picture (list) of the erroneous record.

4s All not deleted records hes to appear in the output file gene-

rated by the procedure, whereas all erroneous or deleted re-

cords has to be copied on current output mixed with error mes-

sages.

5: The procedure should only check for syntax errors, whereas se-

mantic errors has to be detected in a later scan.

6: The entire data paper tape has to be read by calling the proce-

dure once.

Procedure heading:

external boolean procedure

recordinput(maxchar,maxparam, realtext, realname, descriptor, tailcontent) ;

value maxcher, maxparan, realtext, realname 3

integer maxchar,maxparam, realtext, realname 3

real array descriptor;

integer array tailcontent 3

Call parameters:

integer maxchar = maximum number of non blind characters in one input

record .

(maxchar mst be >= 5)

integer maxparam = maximum number of parameters in an output record

(maxparam mist be >= 1)

integer realtext = maximum number of reals used for storing a text

parameter

integer realname = maximum number of reals used for storing a name

parameter

(vrealtext and reainame must be >= 0)

real array descriptor(1: umber _of descriptors)

each array element must at call contain one descrip-

tor as a short string (e.g. either the entire de-

scriptor or, for long descriptors, exactly the 5

first characters and a nvil character).

integer array tailcontent({-1 tnumber_of_descriptors)

the array elements numbered 1 until number_of_de-

scriptors mst at call contain an integer number

code (1 <= code <= 5) showing what the tail of the

corresponding kind of record is intended to con-

tain. Explanation of the code fs:

code = 1 <*> a number of text parameters (at least one}

eode = 2 <=> exactly one non empty name parameter

code = 3 <=> a number of number parameters

(mixed reals and integers)

code = 4 <=> empty (e.g. only separators)

code = 5 <=> end of input tape (a possible tail is ignored).

integer array elements

taileontent(-1) = number of (different) descriptors

taileontent(O) = number of sepments reserved on backing storage for

output of records (mist be >= 0)

Return perameters:

boolean recordinput true if no troubles with the output file has oc-

cured, otherwise false. .

If the procedure return value is false, none of the call parameters have

been touched, otherwise we have the following return parameters:

real array descriptor(1:2) name (generated by the monitor) on the back-

ing storage file used for output of records.

integer array elements

teilcontent(0) = number of accepted records in the <input file>

tatleontent(1) 2 total number of records read by the procedure

The rest of the call parameters are unaltered.

Check of call parameters:

The procedure checks that the call parameters are reasonable but a

complete check is not performed.

2.1. INPUT/OUTPUT FILES,

In order to facilitate the use of procedure recordinput, the stan-

dard zones in/out (connected to current input/output) has been selected

as input file for data on character level and output file (on character

level) for error messages, whereas the records accepted or generated by

the procedure are placed on a backing storage file with a name generated

by the monitor (and delivered as return parameter).

The format of error messages is A4 vertical with approx. 60 lines

on each page with each line containing maximally 71 characters starting

in position 1.

-5-

Because the usually used printers only have one kind of letters and

the File Processor requires small letters and in order to minimize the

number of error situations, all letters in the <input file> are trens-

formed to small letters. ;

The notion <record> may need further explanation: In order to have

input partitoned in logical parts and to facilitate the preparation of

control information, it is comfortable to let the kind of information be

given if front of the information, and among many possibilities, a ver-

bal description has been prefered. This means that every record begins

with a text showing what the rest of the record is about. An example may

be:

ident: output identification<

where ident shows, that the rest of the record (to the character <) has

to be used as an identification text in output.

2,2, INPUT SYNTAX,

<input file> ::= <ecora>t

<record> t:= <accept record>|<delete record>|<EM record>

accept record> ::= <descriptor><parameter>)<accept>

<delete record> ::= <any string without <terminator> ><delete>

<EM record> ::= <any string without <terminator> >

<terminator> ::= <accept>|<delete>|

<accept> ::= <separator>! < <between records>

<delete> ::= <separator>t > <between records>

 ::= <end of medium character>

<between records> ::= <<separator>|<|>>¥

<separator> ::= ,|3{:[SP|NL|HT|V0|FF |<separator><separator>

<descriptor> ::= <name>

<parameter> ::= <number parameter>|<text parameter>|<name parameter>

<number parameter> ::= <separator><number>

<number> ::= <leading part>\<decimal part>\<exponential part)

<leading part> ::= <sigol<aigito
<Gecimal part> ::= <decimal point><aigit®

<exponential part> ::= <exponent nario<sign>|<aigtt>t

<name parameter> ::= <separator><name>

<name> 2:2 dletter<cletter>|<atet toy

<text parameter> ::= <text start><text>

<text start> ::5 : <separator without <sof

<text> i:= <legal character without <separator> <:> and <temmhator>>

<legal character without <:> and <temninator>>* empty

<legal character> ::= <character in the normal ISO set which is available

on printer without <question mark>>

Further the part of an <accept record> which is not the <descriptor> is

in the following denoted as the tail.

23. FORMAT OF OUTPUT FILE

The output file will contain a number of records consisting of real

elements in the basic format:

If the descriptor is of kind number k and the number of parameters in the

record 1s p, the format of the output record is:

element index content

1 pt2 as real (converted by assignment)

2 kas real (- - -)

3 parameter(1)

4 parameter(2)

pre parameter(p).

The procedure adds three new kinds of descriptors to the kinds gl-

ven in the call:

1: kind of descriptor = number of descriptors + 1

is used for indicating errors in records where the determina-

tion of the kind of descriptor has been impossible. These re-

cords have parameter number:= 03

2: kind of descriptor = number of descriptors + 2

ts used for indicating errors in the tail of a record with

known kind of descriptor.

These records have parameter number := 13 and

parameter(1):= found kind of descriptor;

3: kind of descriptor = number of descriptors + 3

indicates an end of data record (code in tailcontent = 5) or an

<IM record>, This record (exactely one from each successful

call of the procedure) has parameter number := 03

The format of output records containing a number of texts (code in

tailcontent array = 1) needs a special explanation:

These records contain 2 real elements showing (as usual) the total

recordlength and the kind of record, Further they contain a number of

subrecords (exactely one subrecord for each textparameter in the input

record).

If the textparameter occupies 1 reals, the length of the subrecord

is 1+ 1 real elements. In the first of these elements the textlength

(=1) 1s placed as a real, and the rest of the subrecord contains the

textparameter packed with 6 characters in each real element (and a null

character placed after the last textcharacter).

The records are outrec’ed in such a way, that every zone buffer con-

tains an entire number of records.

2.4, FORMAT AND EXPLANATION OF ERROR MESSAGES,

If a record is not deleted (by >), the procedure first tries to de-

termine the kind of descriptor (e.g, kind of record). If this succeeds,

the syntactical check is continued according to general rules and the

number code in the corresponding element of the call parameter tailcon-

tent.

If an error is detected (or if the record has been deleted) the

procedure will produce an error messege supplied with a character pic-

ture of the erroneous (or deleted) record.

The error message format is:

record number<<-d> <error message>

copy of record:<character list of record>

In the <character list of record> the total record will be printed

with these modifications:

(a) the characters NL, FF, HT and VI will in list be replaced by

SP.

(b) the list is made with 71 maximally characters on each line.

The records in <input file> are counted 1,2,3 and so on, and the

error message output is partitioned in pages numbered 1,2,3 and so on

(each page will contain approx. 60 lines = format A‘ vertical, with out-

put starting in printing position number 1).

The 30 different error messages are made in such a way, that I mean

they need no further explanation. An example of an error message can be:

28 10 70 record input syntax errors in data page 3

record murber 34 has some syntax error in a number parameter

copy of record: model 73 [5-<

3. PROGRAM TAPE, STORAGE REQUIREMENTS AND RUNNING TIME,

The procedure recordinput is written in ALGOL 5 as an external boo-

lean procedure (see ref, 1), and is available as algol text on 6 channel

paper tape both in the normal ISO form (with even parity) and in flexo-

writer mode (with odd parity); these tapes mst be loaded by <i tre> and

<i trf> respectively.

All letters in the program text are small letters because the nor-

mally used printers only have one kind of letters.

The structure on RC 4000 does not permit giving exactely times for

compilation and running time, but some general rules can be mentioned:

The compllated external procedure occupies 19 segments on backing

storage, and reading and compilation takes approx. 25 seconds.

-9-

Compilation and running may be done in a normal 10 k bytes process,

but it will be much more comfortable to run the program in a 15 k bytes

process, With maxparam < 126 and maxchar < 1000 it ts possible to rm

the program in a 10 k bytes process whereas maxparam = 250 end maxchar

= 2500 requires approx. 15 k bytes. These sizes are minimal, and it is

possible to cut down ruming time with approx. 50 pet. by using respec-

tively 15 k and 20 k bytes.

Normally the control information is not very large and therefore

the speed of the procedure is not very critical, but as a general rule

you may say, that the procedure reads 1 page of control information in

about 5-15 seconds (real time) dependent on the number of erroneous re-

cords (which has to be copied in the error list).

4.1. METHOD,

The general rule about character list of erroneous records in any

situation (even in case of illegal numbers) combined with the claim on

the possibility of deletion at any time and the claim on unique parti-

tioning of any input tape in logical records are the reasons why input

is performed on character level by means of the integer procedure

class _of input. This procedure reads one character from zone in and pla-

ces it (1f possible) in the boolean array

character(1:maxchar+1) for later inspection. Further this procedure

checks the basic syntax (illegal characters, EM character and long re-

cord).

If the record is an <accept record> the kind of descriptor is de-

termined according to the following rule: if the character string expec-

ted to be the <descriptor> contains more than 5 characters, only the

first 5 characters are used in textmatching for determining the kind of

descriptor, otherwise the total descriptor character string is used

(e.g. the three strings <variables>, <variavzig> and <variab> are all

equivalent with the given descriptor string <varia>).

If the record is terminated by <delete> the procedure gives a dele-

tion message and a character picture of the deleted record.

If the record is not deleted and the determination of the kind of

descriptor has succeded, the conversion of the tail is performed by

scanning the characters stored in the boolean array

character(tailstart:position).

-10-

The number parameters are converted in four parts: <leading part>,

<decimal part>, <exponential part>, and <sign> which later are combined

by the statement

numiber:= (leading part + decimal part) x exponential part Xx signs

This way of conversion causes the following conditions to be true

0 <= abs(leading part) <= 8388599,

0 <= decimal part xX 10 xX number of decimals <= 8388599 and

0 <= abs(exponent) <= 599,

Numbers with syntax as +’-3 are converted correctly whereas 0.071,

0.071 and 0?1 all gives wrong conversion to 10. All other ALGOL 60 mum-

bers are correctly converted.

The name- and text parameters are packed with 6 characters in each

real element. After the last character in each parameter (possibly in the

next real element) is placed a null character in order to facilitate the

later use of these parameters,

4,2, PROGRAM STRUCTURE.

The procedure has been programmed in such a way that alterations

are as easy as possible to make. All variables (except i, j and text)

have names which shows their use.

The two main procedures are

1: integer procedure class of input

2: integer procedure unpack_character.

which are used for character input and conversion respectively.

The procedure error (error_type) is large and rather slow becanse

of the 30 long error texts combined with the character list of the erro-

neous record, and the decision of the further error reactions such as

ereating parameters for possible error records.

The entire procedure body of procedure recordinput consists of one

block containing several local blocks each one containing declarations

of very local quantities.

-W-

After initializing and finding (with check) the date of run, the

call parameters are checked in order to avoid errors not covered by the

control in running system (without index check). Next a backing storage

file, with name generated by the monitor (end delivered as return para-

meter) and size as given in the call parameter tatlcontent(-1) , 18 crea-

ted (1f possible).

Initializing of the alphabet stored in the integer array

table(0:127) 18 done according to the following scheme:

input class contents

0 DEL, NULL

1 eupty

2 Aigits (0, 1, ..., 9)

3 sign (+ -)
4 decimal point (.)

5 exponent mark (*)

6 small and capitel letters (a,.., 8, Apes, 8)

7 empty
8 graphics(= / exclamation mark ’and’)(x _ and *’)

9 illegal characters (the rest) show as <question mark>

10 ‘terminators (<> and EM)

11 normal separators (; , SP NL FF HT and V2)

12 text start (:}

The active part of the procedure is from label action: in line 220

to label finish input: in line 585, This part 1s formed as a case state-

ment controlled by the integer variable state, Each ease refer to a state

within reading or conversion of one record,

Case 1 and 2 is reading (and packing) descriptor and teil respec-

tively.

Case 3, 4, and 5 corresponds to accept-, delete-, and end- (of da-

ta) record respectively,

Case 6 is conversion of the tail and contains 5 subcases correspon-

ding to the 5 possible different number codes in the call parameter

tellcontent. The third subcase (conversion of numbers) is a case
statement containing 8 cases (controlled by the integer variable

-12-

state, which here means state within one number parameter).

Case 7 is outrec of the syntactically correct and converted record.

The records are made in such a way that each zone buffer contains

an entire number of complete records. °

Case 8 is used when a record contains more than maxchar non blind

characters. The list is continued until a <terminator> is met and

the further action is decided.

Case 9 is used in case of error in call paremeters, problems with

ereate entry or by call of the block procedure error_in_doc.

The total action scheme is:

@ state action new state

1 read descriptor 2,3,4,5,8,9

2 read tail 3,4,5,8,9
3 determine descriptor in accept record 6,7

4 list delete record 1

5 end (of data) action 9, -

6 convert. the tail TS

7 outree of (correct) record 1,9

8 list long record 45,7

9 unspecified problems -

5, REFERENCES,

(1) Sgren Leuesen: ALGOL 5. User’s manual

A/S Regnecentralen Copenhagen. July 1969.

(2) Sgren Lauesen: File Processor. User’s manual

A/S Regnecentralen Copenhagen. April 1968

(3) Per Brinch Hansen: Multiprogramming System

A/S Regnecentraien Copenhagen. April 1968.

- 13 =

6.1. USER’S EXAMPLE, PROGRAM,

The following program has been used for control of procedure re-

cordinput:

test program for recordinput of 28 10 70

begin

zone 2(256,2,stderror); integer array t(-1:9);
real array d(1:12); integer i,j,k,m;
message sgh test record input of 28 10 70;
for i:= 9 step -1 until T do
begin

aes case 1 of (5,3,2,3, 3515351, 4)3
a(i):= real (case i of (<tend:>,<:list:>,<:data:>,
<:outpur>,<:model:>,<: comme t>,<:variat>,<zhead:>,<:execu!>))

ends
4(-1):=153 +(0):39; 4(10):=real <:unknown kind:>3
a(11)3= real <:error in known kind:>; 4(12)s=d(1)3
if recordinput(250, 35, 12,2,d,t) then
begin

iss j:= 13 open(z,4,string d(increase(1)),0);
write(out,<:<12> list from area: D,
string d(increase(j))); 03 d(2):= real <:list:>;

news

i:= Inrec(z,2)3 j:= 2(1)-23 if j<O then

B

begin

write(out,
<3<10><10> segment change. rest=:>,<<-d>,i+2)3
inree(z,i); goto new

ends
ism 2(2)3 inree(z,j); m:= mt+13
write(out,<:<10><10>record. number:>,<<-d>,m,
<: of kind nunber:>,i,<: = :>,string d(1),<:<10>:>) ;

case case i of (0,3,4,3,3,2,5,2,1,1,5,6) of
begin

write(out,<:empty record. length =:>,<<-d>, J);
begin

write(out,<:text record. length =:>,<<-@,j); ki= 13
for k= k+1 while k<=j do
write(out,<:<l0>Length =:>,<<dd>,2(k-1),<:::>,
string z(increase(k)},<:::>)

end3
begin

write(out,<:number record, length =:>,<<-d>,j)3
for is= 1 step 1 until j do

write(out,if i mod 6=1 then <:<10>:> else <t:
<< -dddd.dédy-dd>, z(1))

end
begin

3213 write(out,<:mame record. length #:>,<<-d>,j,<i::>,
string 2(increase(i)),<:::>)

end 3

- 4 -

write(out,<:found kind =1>,<<-d,2(1},<: = :>,string d(z(1)))3
begin

write(out,<tend of control file<12>:>); goto finish
end

end case;
goto new;

finish:
end if record input;
close(z, true)~

end program

6.2. USER’S EXAMPLE, INPUT TAPE,

The test run has been performed using this <input file>, punched
on 8 channel paper tape in flexowriter mode:

@ Test date for recordinput of 28 10 70>
data testfile7o<
head +: 1970 experiments (regression of height/age):
stext number 2<¢
Variables 7, 4a<oulput 1 -7 p-ty,,1.036y12<
variab
head
C3: Es<
execution<
erroneous kind of deseriptor (erroneous is illegal)<

10. record shows deletion of hard errors>
execu-tion<
Head experiment number 2< variables 86043780<
head ; 080446/0519 = number code for output identification <

varlables<
execur<
varia 3,7. ‘4 data:versioni<variables 3 7.0
end of testdata for recordinput containing 20 records<

Tas Aya 95<
B:

6.3. USER’S EXAMPLE, OUTPUT.

From this we obtain the following of output:

17:11 70 reeord input syntax errors in data page 1

record number 1, has been deleted in input (by >)
copy of record: test data for recordinput of 28 10 7o>

record number 4 has some syntax error in a number parameter

copy of record: variables 7, 4a<

- 15 -

record number 9 has an illegal kind of descriptor

copy of record: erroneone kind of deseriptor terroneous is illegal)<

record number 10 has been deleted in input (by >)
copy of record: 10, record shows deletion of hard errors>

record number 11 contains an illegal character in the descriptor

copy of record: execu-tion<

record number 12 has no text start (:) before the first text
copy of record: head experiment number 2<

record number 13 has overflow in leading part of a number parameter

copy of record: variables 86043780<

record number 17 has empty digit part in the decimal part of a number
copy of record: varia 3,7.

record number 20 is an end of input record, input finished,

survey from record_input :

total number of records in input was 20

and of these were 12 accepted.

list from area: wrk000015

record mumber 1 of kind number 3 = data
name record. length = 2:testfile70:

record number 2 of kind number 8 = head
text record. length = 13
length = 8:1970 experiments (regression of height/age):
length = 3:text number 2:

record number 3 of kind number 11 = error in known kind
found kind = 7 = varia

record number 4 of kind number 4 = outpu
number record, length = 4

1000.00y =3 -7000.00y -3 1000.00» -7 1036.00y 9

record number 5 of kind number 7 = varia
number record. length = 2

7000.00 =-3 4000.00) -3

record number 6 of kind number 8 = head
text record. length = 12
length 1:

length
length
length

length

length

record number 7 of kind number 9 = execu

empty record. length = 0

record number 8 of kind mmber 10 = unkncwm kind
empty record, length = 0

record number 9 of kind number 10 = unknown kind
empty record, length = 0

record number 10 of kind number 11 = error in know kind
found kind = 8 = head

record nurber 11 of kind number 11 = error in known kind
found kind = 7 = varia

record number 12 of kind number 8 = head
text record. length = 12
length = 9:080446/0519 = number code for output identification :

record number 13 of kind number 7 = varia
number record, length = 0

record number 14 of kind number 9 = execu
empty reecrd, length = 0

record number 15 of kind number 11 = error in known kind
found kind = 7 = varia

" record number 16 of kind number 3 = data
name record, length = 2:versiors:

record number 17 of kind number 7 = varia
number record, length = 3

3000-005 +3 7000.00 -3 4000.00, -3

record number 18 of kind number 12 = end
end of control file

- 16 -

