
“Koaleo.

c REGNECENTRALEN
SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

SYSTEM RCSL NO: 55-D22

LIBRARY ee
AUTHOR : Peter Kraft

EDITION: June 1969

RC 4000

EDITOR I

~-
=

eeasesses INFORIMATION DEPARTIVIENT eceoccccese coneceseseesees 008068958

DK-2500 VALBY - BJERREGAARDSVEJ 5 - PHONE: (01) 460888 - TELEX: 6464 rcinf dk . CABLES: INFOCENTRALEN

Content page

Introduction

1. Call of the editor and the use of documents

2, Definitions of commands

3. Shorthand for command names

4, Preparation of lines

5. Line counting

6, Definition of delim, position, id-string, and text string

7. Matching with id-string

8. Messages and alarms

Appendix 1, ISG-alphabet

Appendix 2, SLANG-translation of the editor

The conventions for the editor has been designed by Donald Wagner and

the author.

Peter Kraft

A/S Regnecentralen, June

1

iB)

4

15

16

18

21

23

1969

Introduction

The editor is a utility program of the RC ooo system. It is designed

for correcting text documents such as source programs or data files.

The editor can be used both on-line and off-line. In on-line mode

the user is sitting at his console typing commands and receiving typed

messages. In off-line mode the editing is performed as a job in a batch,

whith all the corrections prepared beforehand.

The editing is performed as follows: The user specifies a ’source

document’, i.e. the device or the backing store area where the original

text is to be found, and an ’object document’, i.e. the device or the

packing store area where the finished edited text is to be placed. The

editor, in response to commands from the user, copies lines from the

source document to the object document, modifying the text as it copies.

A pointer keeps track of the number of lines copied to the object docu-

ment,

The user may also give commands which move the pointer backward,

This is performed by copying the remaining part of the source document.

to the object document; turning the object document into the new source

document; assigning a new backing storage area as the object document;

and copying lines until the specified line is reached.

To optimize the back spacing time a@ core store buffer will admit

backspacing of a limited number of lines without activating the above de-

scribed turning mechanism, If the object document is not a work area on

the backing store, backspacing is only allowed for this limited number of

lines.

There are several ways a user may specify a line in the text. He may

specify the first or the last line in the text; or he may specify the

line which is some number of lines before or after the eurrent position

of the pointer; or he may specify the next line in the text after the

pointer which contains a certain string of characters.

-2-

The set of commands includes, beside the command for moving the line

pointer, commands for printing of a number of lines in the vicinity of

the pointer, for deletion and insertion of lines, and for replacing a
—- —_— —wet

text string within a line with another text string. The latter can be

done repeatedly over a number of lines.

Some auxiliary commands make it possible to handle non-printable

characters, and others make typing of commands easier.

The user normally types commands one-per-line, so that he must wait

after each command for a response from the editor. Commands may also be

typed in sequences which the editor stores and executes with no inter+

vention from the user.

After execution of a command sequence the editor can print out the

line at which the pointer currently points as a verification of what was

done. If this becomes inconvenient the user may turn off the verifica-

tion. —

The editor interprets the characters as they are defined by the

ISQ-alphabet. The backspace character and the carriage return character

will cause that the graphical picture of a line does not correspond to a

unique sequence of input characters, The editor compensates for this by

rearranging the characters of a line to a unique representation of its

graphicel picture.

Source text: Object text:

In Boston, the wheater In Boston, the weather

is often better than is seldom worse than

the radio forecast the Welteanschauung.

to us,

o
n

-3-

Console communication: (lines marked with equal sign (=) are typed by the

user).

edit begin

= line 1

is often better than

= replace c often better ¢ seldom worse ¢

is seldom worse than

= line 1

the radio forecast

= delete 1

@ 3 line, end document

= insert ¢

= the Weltanschauung

ac

the Weltanschauung

= line top

In Boston, the weather

= print bottom

In Boston, the weather

is seldom worse than

the Weltanschauung

4 line, end document

| = finish
e edit end

Using a short form for the command names and sequencing the commands

the console commmication would look like:

edit begin

sili, r & often better c seldom worse ¢,

sll, di,ic

= the Weltanschauung

=o,

edit end

Call of the editor and the use of documents}

The editor is executed as a utility program under the file proces=

sor. It 1s called by. the file processor command:

<object document> = edit <parameter list>

or edit <parameter list>

where?

<object document> ::= <catalog name>|<note>

<paremeter> ::* <source document>|<object area size>|

| @ <correction srea size>

<source document> ::* <catalog name>|<note>

o. <integer> <object area size>:

<eorrection area size> ::* c,. <integer>

<parameter List> ::= <empty>|<spaces><parameter>

<parameter list><spaces><parameter>

(Geject document:}

When the object document is described in an empty[hote} a working
me

storage area of size 2 k words is created, and the description of the

area is transferred to the note, If the area is not large enough a new

area 2 k words greater is created and so on until the erea is large

enough. When exit is made from the editor the working storage area is

e@ decreased to the necessary size.

If no object document is specified the object text ends up in the

empty air.

If the initial size of the working storage area of 2k words is not

suitable the user may specify the object area size parameter. This param-

eter gives size in tracks. C\tvack= 11 sequr.= 1024 ova.

When a (working storage area} is used for the object document, back-

spacing is unlimited.

An object document specified in a Eatalog name} can be on any kind of

text output medium. Backspacing will only be alowed for a limited number

of lines.

In the parameter list the user may specify several source documents

either by catalog nemes or by notes, These documents are numbered from

left to right starting with one. Using the source-command {see chapter

2,10), the user change from one of these source documents to another.

Initial current source will be source number one. If no source docu-

ment is specified it will be empty. LEx.: Suv Wang af wat @regraw Ava counsel].

Editing commands:

The editor reads commands from current input and produces messages

on current output. When current input and current output are on the same

e typewriter the editor is said to be in on-line mode with direct communi-

cation between the user and the editor. Otherwise the editor is in off-

line mode.

The main difference between the modes is the reaction to command

errors. In on-line mode editing can continue, while in off-line mode the

editor makes an error return to the file processor.

Device errors are handled by the file processor in the standard way.

Hard errors will thus always cause error return to the file processor.

[Correction area:]

Commands are stored up before they are executed. When the commands

are sequenced they may take up some Space. Also the insert-command by

means of which lines are inserted may require some space, For this rea-

@ son a working backing storage area, of 4k words, is reserved during the

editing. If this area ie not great enough a greater area can be speci-

fied by the correction area size parameter in number of tracks.

. Definition of commands f

The editing is controlled by means of commands, some of which pro-

vide aids for typing of the commands and for checking that the eorrection

has been executed as intended, The rest of the conmands perform the actual

editing.

<auxiliary command> ::=

mark <mark specification>|

verify <yes or no>|

where

Sediting command> ::=

line <position>|

print <position>|

delete <position>]

insert <delim><NL><text string><delim>

replace <delim><id-string><delim><text string><delim|

global <number position>|

<delinp<id-string><delim<text string><delim>|

source <Integer>|

finishes

<oneline conmand> ::=

correct <NL><columnar corrections>

The commands can be stored in a sequence. When this sequence of come

mands is terminated they can be executed in the given order. A syntax er-

ror will cause that no commands of the sequence is executed.

<terminator> t:= <NI>

a |, <NI> <separator> ::

<sequenceable commands> ::=

<euxilary command>|<editing command>

<command sequence> =

<sequenceable conmands><terminator>|

<on-line conmmand><teminator> |

<sequenceable commands><separator><command sequence>

-7T-

Note that the correct command, which is intended only for on-line use,

mist always be the last in a sequence of commands.

For definition of <position>, <number position> <delim>,

<idestring>, and <text string> see page 15

| Auxiliary commands :]

{The auxiliary commands provide aids for the operator during typing

of the commands and for controling the progress of the correction.

2,1. Mark-command:!

Some characters can be selected to have special meanings when they

are used in the commands.

“mark specification> ::*

numeric <simple graphic>|

character <simple graphic>|

line <simple graphic>|

standard |

empty

@ Numeric delimiter mark:

“This mark is used for specifying a character by its numerical code.

It is intended mainly for use when non-graphical characters must be used.

A numerically specified character is an integer between 0 and 127 sure

rounded by the numeric delimiter mark, They are significant only in the

id-strings and in the text strings of the commands and will if used

otherwise cause a syntax error.

Character-replace-mark:

This mark can be used to correct mistyping of one or more characters

, tion of lines).

Line-erase-mark:

This mark is used for erasing the characters already typed on a line.

(See page 11, preparation of lines).

Standard marks:

By the standard option the characters #, g and & are selected as nu=

merical delimiter mark, character replace mark, and line erase mark re-

spectively.

Empty option:

All selected marks are canceled.

Initially mark characters are standard.

Mark command: Typing Content of line:

mark num@) ae Omen Seb < axSP><FF>b

mark char() agecBS><BSPEDEGP>A —abod

mark line) pbeg ~back space. abe

abe

{ 2.2. Verify-comand:}

After execution of a command sequence the value of the line given by

the line pointer can be printed as a message thus verifying the position

in the text.

The user specifies whether he wants verification or not using this

conmand,

<yes or no> ::= yes|no

Initially verification corresponds to: verify yes.

(2.3, Where-command: l

By this command the operator can ask at what line the linepointer is

pointing. The message:

<integer> line.

is printed back.

Executive commands: |
~~

The remaining commands perform the actual corrections of the source

string.

{ 2. Line-conmand:]

‘This command moves the line pointer to the specified position in the

text, The next conmand starts its execution from the beginning of the

thus selected line. The position can specify the top or the bottom of the

text, a line an integer number of lines away, or a line forward in the

text identified by a substring.

i 2.5. Print-command: f

The command facilitates a way to look upon the text under correc-

tion, by printing a selected number of lines as a message.

The lines selected for printing is the line determined by the posi-

tion and the line, given by the line pointer, and ali lines in between.

The line pointer ends up by pointing at the beginning of the last prin-

ted line.

{ 2.6, Delete-command: }

The delete command works almost as the print command, only the

lines are deleted from the text in stead of printed.

After deletion the line pointer points at the beginning of the line

following the last deleted line.

(2.7. Insert-coumand: |

The text string is inserted in the source text at the beginning of

the line given by the line-pointer, The text string can be any number of

lines.

The line pointer ends by pointing at the last inserted dine.

Note: If the last inserted line 1s not terminated with a pins the charac-

ters of the last inserted Line are added directly to the line in the

text following just after the insertion.

kalso ot
tha beg: !
C86).

~10-

(2.8. Replace-command: |

The replace command works only on the current line. The first ap-

pearance of the character sequence specified in the id-string is replaced

by the characters of the text string. The id-string mst be a substring

within the current line. The inserted text can be any number of lines.

The line pointer ends by pointing at the beginning of the line which

contain the last characters of the original line,

([2.9. Giobal-command: |
The conmand is 8 repetitive version of the replace command, It rep-

laces each occurrence of the id-string with the text string in a number

@ of lines, The number position can identify either the top or the bottom

or a line relative to the current line. The replacement is performed on

the identified line, on the current line and on all lines in between. The

pointer ends by pointing at the beginning of the last line worked upon, <— ()

Ly works Jorwavd 6.19).

This command is used where a text has to be composed of parts from

different source documents, The source documents must be specified as pa-

remeters to the call of the editor. Corresponding to the integer in the

source-command a new source document is selected from the parameter list.

h

(2.iie Finis©command:}

The remaining of the source text is copied unto the object document.

@ The object document is terminated and exit is made from the editor,

{ 2.12. Correct-commant

This command is intended for use in on-line mode only,

The current line is printed on the console terminated with a <NI>.

It is then simiated, that this line did not originate from the source

text, but instead was under preparation on the console, The last charac-

ter is not interpreted as a <NL> but ss a <CR> which allows the operator

to continue the preparation, e.g. by making columar corrections to the

line by means of the character replace mark. When the operator types <NI>

the line is copied back to the source text.

The line pointer remains pointing at the beginning of the line.

-ile-

Shorthands for command names

The command names and the names used in the mark and verify com-

mands are identified _by their first letter only. Each name can consist of

any number of letters.

<command neme> ::* <identifying letter>|<command name><letter>

Examples /

line 1 linie

no n nej

{ 4, Preparation of lines |

The editor interprets the characters in accordance with the Iso al-

phabet. In the appendix is given a table specifying the correspondance

between the numeric value and the ISO characters. From the editors point

of view the characters are classified as simple graphic, non-graphic,

skipped, or special.

The need for comparing substrings given in the commands with the

source text in a unique manner makes it convenient to preanalyse both

the command input and the source rt line by line and collect the cha-

racters which occupy the same graphical position.

@ After the characters have been rearranged a simple line can be def-

ined as follows:

<composed graphic> ::= <simple graphic><BS><simple graphic>|

<composed graphic><BS><simple graphic>

<graphic> ::* <simple graphic> l<composed graphic>

<positionel graphic> ::= <graphic>|<SP>

<positional character> ::= <positional graphic>|<non graphic>

<simple line> i:= <NI>||<positional character><simple line>

De

Ce

a.

gf.

&e

-126

The rules for preparation of a line can be given as follows:

The characters are sequenced in the order which the graphical picture

dictates.

<SP> are removed from composed graphics.

In a composed graphic the same simple graphic can be stated only once,

Duplicated characters are removed.

Non graphics cannot be mixed within the composed graphic; they will

instead preceed the graphic.

Superfluous <BS> in the beginning or in the end of a simple line are

removed,

<CR> is treated as backspacing up to the beginning of the line.

In composed graphics containing underline or bar the underline and

then the bar will preceed the remainder of the composition.

h. A simple line is terminated either by <W1> or

Examples? (< symbolizes the <BS> and , <5P>)

graphic picture: begin ai

input sequence: begin, <<cccc pai<Nl>

simple line: Xb <e_<g <i _<n,al<Ni>

graphic picture: bs

input sequence: <Ka<b<|<ba<c<NL>

simple line: |<acha<L>

graphic picture: dp

input sequence: ab< <HI><de

simple line: acd<HT>b<e

-13-

graphic picture: atend b

input sequence: qgend <CR> a: po<Ni>

simple line az_<e_<n <d,b<Ni>

Line erase mark]

The line erase mark is active during preparation of lines input from

‘the conmand document. When a line erase mark is input, all characters col-

lected for the simple line are removed,

Example with line erase mark equal to 8:

input sequence: simple line:

a letter 8 <NI> a letter was <NI>

a letter was <NI>

Character replace mark:]

The character replace mark 1s active during preparation | of line in-

put from the command document.

When the mark is met in the input sequence it replaces the graphic

on its position with a space. Afterwards a new graphic can be given for

that position.

Example with character replace mark equal to ¢

(< symbolizes <BS> and , <SP>).

graphic picture: a Igtter was

input sequence: a let<<g<e, ter was <NI>

simple line: a letter was <NI>

graphic picture: than

input sequence: thanc<<<__<<pce<_<NL>

simple line X<t_<h_<e_<n aD

- 1h -

Internal line representation and iimitation?]

The internal representation of the characters of a line does not

contain the backspace character explicitly but as a mark on the charac-

ter preceeding the back space,

Simple lines are processed in buffers of limited length. Lines lon-

ger than the maximum line length are terminated at the maximum length

without error action, and the following characters will be processed as

being the next simple line. Backspace or carriage return which are input

after the max length has been exceeded may be misleading.

A line which is going to exceed the maxinmum line length while a com-

posed character is inserted will cause the alarm: line too long.

Standard maximm line length corresponds to 126 characters, not

counting backspaces and carriage returns.

[Line counting f

The editor keeps track of the lines counted for the produced object

string. Only lines containing at least one graphic are counted. This

lines prepared on input.

<empty set> ::= <empty>|<SP>|<non graphic>|

e <empty set><empty set>

<proper set> ::= <empty set><graphic> |<graphic><empty set>|

<proper set><proper set>

<empty lines> ::= <empty set><NL>|<empty lines><empty lines>

<proper line> ::3 <proper set><NI>

<line> ::= <proper line>|<empty lines><proper line>

The editor contains a line pointer, which before execution of a

command will point at the beginning of the line to be worked upon. If

the line contains empty lines it will be on the beginning of its first

empty line.

e Note on correct command: If the line to be corrected contains empty

lines they will be removed even if they are printed,

15 =

The lines are counted consecutively, the first line being line num-

ber one. oukpuk

When the last line containing the is to be printed the

will cause printing of the message:

<line number> line, end document,

Examples on line counting: The line number is shown in parenthesis.

Ex: (1) abe <¥L> Ex 2: (1) <i>

(2) <> ~— abe
par <NI> (2) <I>

e (3) <8P><SP><NL> def

abe <NL>

(4) <a>

printing at last line:

4 line, end document 2 line, end document

<delim> ::= <graphic>

e <number position> ::= <empty>|<integer>|top|bottom

<context position> ::= .<delim><id-string><delim

<position> ::= <number position>|<context position>

<idestring> ::= <any string not containing current delim>

<text string> ::= <any string not containing current delim

Freie delinitor:| oo be camposed -

Strings in commands are delimited by a graphic. The value of the de-

limttor is determined by its first occurrence in the context.

- 6-6

Position:

An empty position or the integer zero selects the current line. A

positive integer selects a line the integer number of lines forward in

the text, Similar a negative integer identifies a line the integer number

of lines backward in the text.

The position top selects the first line, 1.e, line 1, and bottom the

line following the last line, i.e. the position before the .

By the context position a line is identified by a substring. The po-

sition determined will be at the beginning of the, identified line.

(last) (yuh. most Side).

Note: In the global command a position can not be specified as a context

r } position, A possible point will be taken as the string delimiter.

If a position can not be found, an alarm is given: position not

found,

Two kinds of strings are distinguished, the id-string which is used

to identify a substring in the source text, and the text string which is

inserted in the source text.

In both kinds of string a character can be specified by its numeric

value.

e (2. Matching with id-string |

The source text is searched forward until a sequence of characters

which matches the id-string is found, The matching adheres to the follow-

ing rules:

A composed graphic matches a composed graphic if they are composed by

the same simple graphics, The matching is independent of the order in

which the simple graphics of the composed graphic originate,

(©) The characters <SP>, <NI> and non-graphic characters are blind for

identification, i.e. they are skipped by the matching procedure when met

in the source atring.

-17 +

(} The <SP>, <NI> and non-graphic characters will when specified in the

id-string take part in the matching.

@ <cB and <BS> should not be specified in the id-string by numeric va~

lues as the source string will never contain this characters explicitly.

Ex 232

id-string source text match

abe abc yes

a be abe no

r) abe abe yes

When an id-string is used to identify a line position it may con-

sist of any number of lines, When the match is found, the position poin-

source text: | commands resulting pointer

|

(1) aaa | lines - a - (4)

(2) abe | Lt, lee

(3) | an (2)

e ab ¢ | lt, le

(4) par |

(5) <> | a- (3)

| 1t, l-be ()<e@!

| lt, leeh- (5) with an alarm

In the replace command and the global command the id-string is used

to identify those characters which have to be replaced, The string which

has to be replaced mst be within one line, t.e. the character <NI> can

be used only in connection with empty lines,

=~ 18 =

Examples:

Command: Before replace: After replace

replace -q-a- par par

replace -qr-ab+ qaqar p ab

replace - ab <i>

== <NL> par

par

replace -p -p- par pqr

replace - q-q- par par

+t

In the last example space after p do match, the second space is

plind for identification and q match, As the blind space is surrounded

by matching characters it is removed as well.

{ 8, Messages and alarms. |

Messages and alarms are printed on current output document. The message:

edit begin

is printed when the editor is loaded successful and prepared for input of

commands ,

Before leaving the editor the message:

edit end,
is printed,

The alarms fall into three groups. G} Initial alarms which are caused du-

ring loading of the editor and after which no editing can be performed,

(@) Alarms concerning communication with peripheral devices, and(3) alarms

caused by erroneous commands.

1. fnitial alarms:]
xXedit end: no core,

The size of core store is not large enough.

- 19

wcedit end: param.

The parameters to the call of the editor are not syntactically cor-

rect,

edit end: connect object.

The object document cannot be connected by the file processor. If a

working area should be created for the document the alarm may indi~

cate that there is no room on the backing store.

xKXedit end: Le

There is no room on the backing store for the work area needed for

intermediate storage of commands.

2. (Alarms concerning communication with periph

r>weedit <command no.> connect source.

The source document can not be connected by the file processer,

Note: When the source-command is used to select a source outside

the sources given in the parameter list, the source document is de-

fined as empty.

xmedit <command no,> work area.

When the object document is assigned to an empty note a work area on

the backing storage is created. The area may be copied into another

area either during backspacing or during extension of the area, The

alarm ’work area’ tells that there is no room for these operations

on the backing store.

>xXedit <command no.> character.

A character with a code greater than 127 has been input either from

the source document or the command document.

Other errors in connection with the transfer of characters end blocks

are handled by the file processer and treated as hard errors.

[3. Alarm caused by erroneous commends j

~xedit <command no,> syntax,

A syntax error in the command format is found. None of the commands

in a command sequence are executed.

edit <command no.> position not found,

A line position cannot be found, or no match with the id-string in

the replace-command can be obtained,

Tf random access to the text is not allowed, i.e. when the object

document is not specified by an empty note, backspacing is only al-

lowed a limited number of lines, The alarm is given when backspa-

cing is attempted beyond this number of lines.

~wKedit <command no.> line too long. |

In preparation of a simple input line both from the source document

and the command document, composed characters may cause that the

maxim line length is exceeded. The input line will be lost.

Appendix: ISO alphabet

- 2 =

The editor handles any 7-bit character as interpreted by the ISO-al-

phabet. The characters are characterised by the editor as follows:

numeric

value

a

A
w

F
w

wm

-
Oo

feack space 8

9
vewhre 19

VW

form Seed 19
cow. ek. 13

4h

15

16

e 17
18

19

20

21

22

23

ou

end mark 25

S
S
B
R
B
R
B

Iso

<NUL>

kind

skipped

nonegraphic

special

non-graphic

numeric

value

32

33

34

35

36

3T

38

39

ho

My

special, blindl2

non-graphic

special

nonegraphic

special

non-graphic

43
uy

45
46

47

48

4g

50

51

52

53

54

5D

56
ST

8
9

60

61

62
63

Isa

<SP>

+
x

oe

O
O
A
D
M

F
W
D

o
m
e

o

kind

pling

simple-graphic

numeric ISO kind numeric Iso kind

value value

64 simple-graphic 96 simple-graphic

65 A - oT a -

66 B - 98 Py) -

67 c - 99 e -

68 D - 100 a -

69 E - 401 e -

70 F - 102 t -

ra) 6 - 103 & -

72 H - 104 h -

e 13 I - 105 i -

14 J - 106 3 -

5 K - 107 k -

76 L - 108 1 -

17 M - 109 m -

78 N - 110 n -

79 a - Wi ° -

80 P - 112 Pp -

81 Q - 113 qa -

62 R - 14 r -

83 8 - 115 8 -

84 T - 116 t -

85 U - WT u -

@ 86 v - 118 v -

87 W - 119 w -

83 x - 120 x -

89 x - 121 y -

90 Z - 122 z -

91 & - 123 cy -

92 g - 12h 6 -

93 R - 125 g -

oh A - 126 - -

95 - - 127 skipped

-23-

Appendix 2, SLANG-transformation of the editor.

The editor is programmed in SLANG. Qn text form it is saved on four rolles

of paper tape in the ISO 7-bit character code,

SLANG-translation shall be performed together with the h-names of the

file processes. During translation of the first tape some parameters for

the editor can be redefined. The parameters have d-names and are used as

follows:

di = 123 3 standard num mark = @

e 42 = 125 3 standard line mark = &
a3 = 124 3 standard char mark = ¢

ai5 = 1 3 mark is standard (1 = true, -1 = false)

first line number in the line number & rT

counting.

a4 = 128 $ max line length in bytes,

a5 = 100 ; max line back up.

tee

on

a7 = 8 3 initial object work area (no of tracks)

a8 2 83 increment object work area (no of tracks)

a9 = 8

w

correction work area {no of tracks) on

