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ABSTRACT 

The procedure decompose performs a triangular decomposition of 

an arbitrary non-singular matrix. One set of equations can then 

be solved by the procedure solve. 
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i. Function and Parameters. 

1.1 Decompose: 

r Decompose calculates upper and lower triangular matrices u and i 

such that lxusa, where a is a given mm square matrix. With the 

additional requirement u(i,1)=1, the decomposition 1s unique 

if a is non-singular. In order to ensure numerical stability, 

row-exchanges are performed (explicitly) and information about 

these exchanges is stored for further use in subsequent procedures 

handling the decomposed matrix. 

Implied procedure head: 

boolean procedure decompose(a,p,mode} ; 
value mode}; . 

r array 83 

integer array p; 

integer mode; 

Call parameter: 

mode : (integer or real), This parameter governs the 

precision in the calculation of the inner-products 

in the algorithm: 

mode=0 : The inner-products are calculated in normal 

floating point mode. 

mode=1 : The inner-products are calculated by means 

of intermediate variables of 45 bits mantis- 

sa and 24 bits exponent, 

Call and Return Parameter: 

a : (real array or zone record with nxn elements). Con- 

tains at entry the square matrix to be decomposed. On 

exit, each element of a is replaced by the correspond- 

ing element of u or 1, (The diagonal of u is not stored), 

| In case of a one-dimensional array or a record, the 

elements of a must be stored row-wise, 

Return Parameters: 

e decompose : (boolean). True if the matrix a is non-singular, 

otherwise false, 

Pp $ (integer array with n elements). Contains information 

about the row-exchanges, (see section 2,Method). 



1.2 Solve: 

Solve calculates the solution-vector x to the system of equations 

axcxesb, where a is a mh square matrix, decomposed by a previous call 

of decompose, and where b is a column vector containing the given 

righthand side. Thus, the solution of several systems of equations 

with the same matrix of coefficients requires one call of decompose 

followed by a number of calls of solve, 

Implied procedure head: 

procedure solve(a,p,mode,») 
value mode; 

array a,b; 
integer array p; 

integer mode; 

Call Parameters: 

mode : (real or integer). cf. decompose. 

a : (real array or zone record with mm elements). Con- 

tains the decomposed coefficient-matrix as produced 

by decompose. 

Pp : (integer array with n elements). Contains informa- 

tion on the rowexchanges of the matrices held in a. 

Call and Return Parameter: 

b : (real array or zone record with n elements). Con- 

tains on entry the given right-hand side, On exit, 

the corresponding solutions are stored in b. 

1.3 Parameter-check. 

In case of wrong parameters the run is terminated with an error 

message on current output consisting of the procedure name (decomp 

or solve) and a number, indicating the wrong parameter as follows: 

1: The number of elements of a is different from nee (n being the 

number of elements of p). 

2: Wrong content of p (solve only}. Indicates an impossible row- 

exchange or an attempt to solve a singular system of equations. 

3: mode<D or mode>1. 

ls The number of elements of b is different from n (solve only).



2, Method, 

Decompose produces the triangular matrices 1 and u in n steps, 

in the keth of which the k-th colum of 1 and the k-th row of u 

(0 <= k <= n-1) are calculated by 
kel 

(2.1) ls a(j,k):=a(J,k)-sum a(j,i)xa(i,k) 3 Jsak,k+1,.0,n~1 
1=0 
kei 

(2.2) us a(k,3) raCa(k, J) -sum a(i,j)xa(k,i))/a(k,k) 3 Jrsk+1,k+2,+00,n-1 

During the calculation of the elements of 1, the k-th pivotal index, piv, 

is found using the criterion 

abs a(j,k)/2xex(j) = maximum with respect to j 

where ex(j) is the Initial maximum exponent of the numbers constituting 

the j-th row. 

This pivotal strategy is chosen on two counts: It is simple, and none is 

known to be universally better (cf. [1]). 

If all elements of the colum of 1 turns out to be (exactly) zero, p(1) 

is set equal to 2048, and the procedure exits with the value false. 

Otherwise, p(k) is set to the pivotal index, piv, and if piv is greater 

than k, ex(piv) is set to ex(k) and the k-th and the piv-th row of a are 

exchanged before the elements of u are calculated, 

Solve proceeds in two steps: First, the equations 

Ly=b 

is solved for y, exchanging the elements of b as described by p, after 

which the final solution x is found by solving 

weey 

Here, b is successively replaced by y and x. The formmlae used are analogous 

to those of (2.1)-(2.2): 
ke 

(2,3) ls bk) :=(b() -sum b(t) aCe, 1)) /aCie k) 3 k290,1,s00,n-1 
1=0 
“1 

(2.4) ui wi) :b(ie) -aum b(1)xa(k, 4) 3 Kimme2,ne3,00,1,0 
iak+} 

During the first step, it is checked that n > p(k) >= k. If this check 

fails, the run is terminated as described in section 1.
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ti] If the value of the parameter mode is 1, the inner-products of (2.1)-(2.4), 

4.e. expressions of the form 

-(sum r(i)xs(4)+r(k)x(-1)) 

are calculated by retaining 45 bits of each product and adding this to 

a sum of 45 significant bits. (The exponent is kept in 24 pits). 

Thus, instead of the rounding errors in each multiplication and addition, 

introduced by the normal floating-point operations, an error is introduced 

only in the finsl rounding of the sum to a floating-point number. However, 

it should be noted that only to a certain extent this procedure can cope 

with a severe cancellation of significant bits that may arise when a 

product is added to the sum, 

The following peculiarities, due to the fact that the procedures are 

written in the assembler language SLANG 3, should be mentioned: 

a) The error message constituents lin.eq.i and lin.eq.2 occur in 

these messages instead of ext<line number>. The possibilities are: 

lin.eq.1 : Overflow/underflow in caleulations outside the inner- 

product procedure. 

lin.eq.2 : a) Overflow/underfiow in the inner-product procedure. 

(If mode#1, this can happen only in the final rounding 

to a floating-point number). 

b) The parameter errors as described in section 1.3 

Some examples are shown in section 4, 

b) The formal parameter p contains as explained the pivotal indices; 

however, the k-th index is not found in p(k) (1.e. the word number 

k of p), but in the k-th byte of p. A possible wey of unpacking 

these indices is shown in the program in section 4, 

The remaining bytes of p are used for the exponents ex(k). 

c) As stated implicitly in section 1, the index bounds and the 

e mumber of indices of the actual array-parameters are irrelevant. 

Qniy the number of elements in the declaration is taken into 

consideration. 



3. Accuracy, Time and Storage Requirements. 

Accuracy: Depends on the problem and on the choice of the 

parameter mode. 

The table below shows the median-error (in units of y~10} 

of 11 sets of equations, consisting of equally distributed 

random numbers {-»20|,20). The error is expressed as the 

residual norm relative to the norm of the right-hand side. 

{The Euclidian norm is used). 

order error error 

mode=0 mode=1 

10 2.6 1.9 
20 3.9 2.3 
40 Te Leo 
ho 9.5 5.0 

50 eT 8.3 
60 21 7.6 
70 33 8.7 

Time: Based on recorded solution-times for the systems mentioned 

above, the following execution-times in msec., expressed 

as functions of the order, holds within +10 pet, for orders 

between 50 and 100: 

modes mode=1 

decompose 0.02x(14+10/n) xoxd 0.08x(1+45/n) xxx3 

solve 0,07xDOe 0.3xno2 

Storage Requirements: 2 segments of program 

© variables, 

4, Test and Discussion. 

As may be expected, the results obtained for mode=1 are significantly 

better than those for mode=O only if n is sufficiently large. On the 

other hand, if the system is 1ll-conditioned, the results can be widely 

different even for small n, As an example, the system 

10 7 8 7 32 

7565 23 
a: 8 610 9 bs 33 

7:5 910 3 
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the exact solution of which is (1,1,1,1), ylelds the results: 

@ modes: 

decomposed matrix: 

7.0000000000y © 7.1428571432y -1 8.5714285716y -1 741420571432, 
8.0000000000, 0 2,8571428570_ -1 1.1000000002, 1 141500000002» 
740000000000, 0 0,0000000000, © 3.0000000001y 0 1.6666666667, 

10000000000, 1 =1.4285714296, -1 1.0000000014, 0 =1.6666666791» 

piv ex solutions 
1 4 1,0000000459y 0 
2 4 9499999924565 -1 
3 & 4,0000000186, 0 
3 4 99999998884, -1 

mode=1: 

decomposed matrix: 

®@ 740000000000n 0 7214285714329 -1 8.571K285716y -1 7. 1428571452y 

8.0000000000y 0 2,8571428570y -1 1.1000000002y 1 1,.1500000002y 
70000000000p 0 =2.9103830457p-11 3.0000000006y 0 1.6666666665» 
10000000000 1 -1.4285714290y -1 1.0000000009» 0 ~1.6666666733y 

piv ex solutions 
1 4 1,0000000082y 0 

2 4 9,99999986My =1 
3 4 1,0000000034, 0 
3 4 9,9999999800y -1 

The Euclidian error-norm is 9.1n-8, 1.6,-8 respectively. 

The following program was used 

lin.eq. test parameter error etc. 
begin integer d1,d2,43,a4,mode 
underflows: 5-13 

e read(in,di,d2,43,d4,mode) 3 
begin array alia), p(d2:d3); 

integer array p(1:d4), piv(1:2xdk) ; 
integer 1,Jj,k3 
read(in, a,b) 3 
if -,decompose(a,p,mode) then write(out,<:<1l0>sing:>) ; 
write(out,<:<10>decomposed matrixt:>); 
k:913 
for i:=1 step 1 until d4 do 
begin write(out,<:<10>:>} 5 

for j:#1 step 1 until d4 do 
pegin write(out,<< «d.dddddddddd,y-dd>, a(k)) 

kowk+1 
end; 

Je=p()3 
piv( 2xie1):=8j shift (-12) extract 12; 
piv(2xi)}:=j extract 12; 

end; 
solvele, Pymode,®) + 

e write(out,<:<10><10> piv ex  solutions:>); 
for i:=1 step 1 until a4 do 
write(out,<:<10>:>,<< ddddd>, piv(1), piv(i+dh), 

<< od, ddddddddddy-dd>, b(1+d2-1)) 
end block 

end 



This program produces the error-messages shown below when the input is 

e 4,1, 2, 2, 0, a, 1, 1, 

where a means the four elements of a 2 matrix: 

I) a: 1, 2, 1, 2 

Bolve 2 lin, eq. 2 

called from line 21-22 

II) az phOO, y=400, p400, »-400 

real lin. eq. 1 
called from line 6-8 

TIE) a: 1, 8615, 0.5, ~8y615 

real lin. eq. 1 
called from line 21-22 

TV) a: 1, 12,615, 0.5, -12)615 

real lin, eq. 2 
called from line 6-8 
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6. Algorithms, 

Since the procedures are written in SLANG, the algorithms will 

not be given, 


