
Raabe.

§ REGNECENTRALEN
SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

SYSTEM
LIBRARY RCSL NO: 55-D60

TYPE : Algol 5 Procedures

AUTHOR : Peter Fleron

EDITION: November 1969 (E)

RC 4000 SOFTWARE

MATHEMATICAL PROCEDURE LIBRARY

decompose

solve

ABSTRACT

The procedure decompose performs a triangular decomposition of

an arbitrary non-singular matrix. One set of equations can then

be solved by the procedure solve.

INFORMATION DEPARTMENT eeccecceccce ceocsceecesesees ees eeeeee

TELEX: 6464 rcinf dk - CABLES: INFOCENTRALEN DK-2500 VALBY - BJUERREGAARDSVEJ 5 - PHONE: (01) 460888 -

-te-

i. Function and Parameters.

1.1 Decompose:

r Decompose calculates upper and lower triangular matrices u and i

such that lxusa, where a is a given mm square matrix. With the

additional requirement u(i,1)=1, the decomposition 1s unique

if a is non-singular. In order to ensure numerical stability,

row-exchanges are performed (explicitly) and information about

these exchanges is stored for further use in subsequent procedures

handling the decomposed matrix.

Implied procedure head:

boolean procedure decompose(a,p,mode} ;
value mode}; .

r array 83

integer array p;

integer mode;

Call parameter:

mode : (integer or real), This parameter governs the

precision in the calculation of the inner-products

in the algorithm:

mode=0 : The inner-products are calculated in normal

floating point mode.

mode=1 : The inner-products are calculated by means

of intermediate variables of 45 bits mantis-

sa and 24 bits exponent,

Call and Return Parameter:

a : (real array or zone record with nxn elements). Con-

tains at entry the square matrix to be decomposed. On

exit, each element of a is replaced by the correspond-

ing element of u or 1, (The diagonal of u is not stored),

| In case of a one-dimensional array or a record, the

elements of a must be stored row-wise,

Return Parameters:

e decompose : (boolean). True if the matrix a is non-singular,

otherwise false,

Pp $ (integer array with n elements). Contains information

about the row-exchanges, (see section 2,Method).

1.2 Solve:

Solve calculates the solution-vector x to the system of equations

axcxesb, where a is a mh square matrix, decomposed by a previous call

of decompose, and where b is a column vector containing the given

righthand side. Thus, the solution of several systems of equations

with the same matrix of coefficients requires one call of decompose

followed by a number of calls of solve,

Implied procedure head:

procedure solve(a,p,mode,»)
value mode;

array a,b;
integer array p;

integer mode;

Call Parameters:

mode : (real or integer). cf. decompose.

a : (real array or zone record with mm elements). Con-

tains the decomposed coefficient-matrix as produced

by decompose.

Pp : (integer array with n elements). Contains informa-

tion on the rowexchanges of the matrices held in a.

Call and Return Parameter:

b : (real array or zone record with n elements). Con-

tains on entry the given right-hand side, On exit,

the corresponding solutions are stored in b.

1.3 Parameter-check.

In case of wrong parameters the run is terminated with an error

message on current output consisting of the procedure name (decomp

or solve) and a number, indicating the wrong parameter as follows:

1: The number of elements of a is different from nee (n being the

number of elements of p).

2: Wrong content of p (solve only}. Indicates an impossible row-

exchange or an attempt to solve a singular system of equations.

3: mode<D or mode>1.

ls The number of elements of b is different from n (solve only).

2, Method,

Decompose produces the triangular matrices 1 and u in n steps,

in the keth of which the k-th colum of 1 and the k-th row of u

(0 <= k <= n-1) are calculated by
kel

(2.1) ls a(j,k):=a(J,k)-sum a(j,i)xa(i,k) 3 Jsak,k+1,.0,n~1
1=0
kei

(2.2) us a(k,3) raCa(k, J) -sum a(i,j)xa(k,i))/a(k,k) 3 Jrsk+1,k+2,+00,n-1

During the calculation of the elements of 1, the k-th pivotal index, piv,

is found using the criterion

abs a(j,k)/2xex(j) = maximum with respect to j

where ex(j) is the Initial maximum exponent of the numbers constituting

the j-th row.

This pivotal strategy is chosen on two counts: It is simple, and none is

known to be universally better (cf. [1]).

If all elements of the colum of 1 turns out to be (exactly) zero, p(1)

is set equal to 2048, and the procedure exits with the value false.

Otherwise, p(k) is set to the pivotal index, piv, and if piv is greater

than k, ex(piv) is set to ex(k) and the k-th and the piv-th row of a are

exchanged before the elements of u are calculated,

Solve proceeds in two steps: First, the equations

Ly=b

is solved for y, exchanging the elements of b as described by p, after

which the final solution x is found by solving

weey

Here, b is successively replaced by y and x. The formmlae used are analogous

to those of (2.1)-(2.2):
ke

(2,3) ls bk) :=(b() -sum b(t) aCe, 1)) /aCie k) 3 k290,1,s00,n-1
1=0
“1

(2.4) ui wi) :b(ie) -aum b(1)xa(k, 4) 3 Kimme2,ne3,00,1,0
iak+}

During the first step, it is checked that n > p(k) >= k. If this check

fails, the run is terminated as described in section 1.

~4-

ti] If the value of the parameter mode is 1, the inner-products of (2.1)-(2.4),

4.e. expressions of the form

-(sum r(i)xs(4)+r(k)x(-1))

are calculated by retaining 45 bits of each product and adding this to

a sum of 45 significant bits. (The exponent is kept in 24 pits).

Thus, instead of the rounding errors in each multiplication and addition,

introduced by the normal floating-point operations, an error is introduced

only in the finsl rounding of the sum to a floating-point number. However,

it should be noted that only to a certain extent this procedure can cope

with a severe cancellation of significant bits that may arise when a

product is added to the sum,

The following peculiarities, due to the fact that the procedures are

written in the assembler language SLANG 3, should be mentioned:

a) The error message constituents lin.eq.i and lin.eq.2 occur in

these messages instead of ext<line number>. The possibilities are:

lin.eq.1 : Overflow/underflow in caleulations outside the inner-

product procedure.

lin.eq.2 : a) Overflow/underfiow in the inner-product procedure.

(If mode#1, this can happen only in the final rounding

to a floating-point number).

b) The parameter errors as described in section 1.3

Some examples are shown in section 4,

b) The formal parameter p contains as explained the pivotal indices;

however, the k-th index is not found in p(k) (1.e. the word number

k of p), but in the k-th byte of p. A possible wey of unpacking

these indices is shown in the program in section 4,

The remaining bytes of p are used for the exponents ex(k).

c) As stated implicitly in section 1, the index bounds and the

e mumber of indices of the actual array-parameters are irrelevant.

Qniy the number of elements in the declaration is taken into

consideration.

3. Accuracy, Time and Storage Requirements.

Accuracy: Depends on the problem and on the choice of the

parameter mode.

The table below shows the median-error (in units of y~10}

of 11 sets of equations, consisting of equally distributed

random numbers {-»20|,20). The error is expressed as the

residual norm relative to the norm of the right-hand side.

{The Euclidian norm is used).

order error error

mode=0 mode=1

10 2.6 1.9
20 3.9 2.3
40 Te Leo
ho 9.5 5.0

50 eT 8.3
60 21 7.6
70 33 8.7

Time: Based on recorded solution-times for the systems mentioned

above, the following execution-times in msec., expressed

as functions of the order, holds within +10 pet, for orders

between 50 and 100:

modes mode=1

decompose 0.02x(14+10/n) xoxd 0.08x(1+45/n) xxx3

solve 0,07xDOe 0.3xno2

Storage Requirements: 2 segments of program

© variables,

4, Test and Discussion.

As may be expected, the results obtained for mode=1 are significantly

better than those for mode=O only if n is sufficiently large. On the

other hand, if the system is 1ll-conditioned, the results can be widely

different even for small n, As an example, the system

10 7 8 7 32

7565 23
a: 8 610 9 bs 33

7:5 910 3

-6-

the exact solution of which is (1,1,1,1), ylelds the results:

@ modes:

decomposed matrix:

7.0000000000y © 7.1428571432y -1 8.5714285716y -1 741420571432,
8.0000000000, 0 2,8571428570_ -1 1.1000000002, 1 141500000002»
740000000000, 0 0,0000000000, © 3.0000000001y 0 1.6666666667,

10000000000, 1 =1.4285714296, -1 1.0000000014, 0 =1.6666666791»

piv ex solutions
1 4 1,0000000459y 0
2 4 9499999924565 -1
3 & 4,0000000186, 0
3 4 99999998884, -1

mode=1:

decomposed matrix:

®@ 740000000000n 0 7214285714329 -1 8.571K285716y -1 7. 1428571452y

8.0000000000y 0 2,8571428570y -1 1.1000000002y 1 1,.1500000002y
70000000000p 0 =2.9103830457p-11 3.0000000006y 0 1.6666666665»
10000000000 1 -1.4285714290y -1 1.0000000009» 0 ~1.6666666733y

piv ex solutions
1 4 1,0000000082y 0

2 4 9,99999986My =1
3 4 1,0000000034, 0
3 4 9,9999999800y -1

The Euclidian error-norm is 9.1n-8, 1.6,-8 respectively.

The following program was used

lin.eq. test parameter error etc.
begin integer d1,d2,43,a4,mode
underflows: 5-13

e read(in,di,d2,43,d4,mode) 3
begin array alia), p(d2:d3);

integer array p(1:d4), piv(1:2xdk) ;
integer 1,Jj,k3
read(in, a,b) 3
if -,decompose(a,p,mode) then write(out,<:<1l0>sing:>) ;
write(out,<:<10>decomposed matrixt:>);
k:913
for i:=1 step 1 until d4 do
begin write(out,<:<10>:>} 5

for j:#1 step 1 until d4 do
pegin write(out,<< «d.dddddddddd,y-dd>, a(k))

kowk+1
end;

Je=p()3
piv(2xie1):=8j shift (-12) extract 12;
piv(2xi)}:=j extract 12;

end;
solvele, Pymode,®) +

e write(out,<:<10><10> piv ex solutions:>);
for i:=1 step 1 until a4 do
write(out,<:<10>:>,<< ddddd>, piv(1), piv(i+dh),

<< od, ddddddddddy-dd>, b(1+d2-1))
end block

end

This program produces the error-messages shown below when the input is

e 4,1, 2, 2, 0, a, 1, 1,

where a means the four elements of a 2 matrix:

I) a: 1, 2, 1, 2

Bolve 2 lin, eq. 2

called from line 21-22

II) az phOO, y=400, p400, »-400

real lin. eq. 1
called from line 6-8

TIE) a: 1, 8615, 0.5, ~8y615

real lin. eq. 1
called from line 21-22

TV) a: 1, 12,615, 0.5, -12)615

real lin, eq. 2
called from line 6-8

5S. References

(1] Forsythe, G and Moler, C.B.: Computer Solution of Linear Algebraic

Systems, Prentice-Hall. 1967.

6. Algorithms,

Since the procedures are written in SLANG, the algorithms will

not be given,

