
Reference Manual

for the Programming Language

Real-Time Pascal

PN: 99110141

RC Computer _

Keywords:
Systems programming language, real-time, parallel processes, data
communication network

Abstract:

This manual contains the third revised definition of the programming
language Real-Time Pascal. The definition is implementation inde-
pendent. The Real-Time Pascal programming language is a high level
Pascal-like language, designed to express algorithms and their imple-
mentation as parallel cooperating processes, executing on a network
of processing components. .

Date:

March 1989

Copyright © 1988, Regnecentralen a-s/RC Computer a:s
Printed by Regnecentralen a-s, Copenhagen

Users of this manual are cautioned that the specifications contained herein are sub-
ject to change by RC at any time without prior notice. RC is not responsible for typo-
graphical or arithmetic errors which may appear in this manual and shall not be re- >
sponsible for any damages caused by reliance on any of the materials presented.

TABLE OF CONTENTS Page

1. INTRODUCTION 1
1.1 Goals 1
1.2 Main Features 2

1.2.1 Processes 2
1.2.2 Data Typing 3
1.2.3 Data Access 4
1.2.4 Distributed Systems 7
1.2.5 Faults 7
1.2.6 Extensibility 7

1.3 Syntax Diagrams 8
1.4 Organization of this Manual 9

2. LEXICAL ELEMENTS 11
2.1 Names 11
2.2 Character Literals 12
2.3 Character Strings 12
2.4 Numbers 12
2.5 Language Symbols 12

2.5.1 Keywords 13
2.5.2 Special Symbols 13

2.6 Comments 13
2.7 Non-printing Characters 14

3. TYPES AND OBJECTS 15
3.1 Specification of Types 16
3.2 Declaration of Types 17
3.3 Parameterized Types 19
3.4 Ordinal Types 21

3.4.1 The Type Boolean 22
3.4.2 The Type Char 22
3.4.3 The Type Integer 23
3.4.4 Enumeration Types 24
3.4.5 Subrange Types 24

3.5 Set Types 25
3.6 Pointer Types 27
3.7 Shielded Types 29
3.8 Structured Types 35

3.8.1 Array Types 36
3.8.2 Record Types 37
3.8.3 Notation for Values of Structured Types 38
3.8.4 String Types 39

3.9 Type Compatibility 40
3.10 Object Layout 41
3.11 Object Declarations 44

3.11.1 Constant Declarations 44
3.11.2 Variable Declarations 45

3.12 Notation for Objects and Values 47

Table of Contents

4. EXPRESSIONS
4.1 Evaluation of Expressions
4.2 Function Call
4.3 Constant Expressions

5. STATEMENTS
5.1 Compound Statement
5.2 Data Transfer Statements

5.2.1 Assignment Statement
5.2.2 Exchange Statement

5.3 If Statement
5.4 Case Statement
5.9 Repetitive Statements

5.5.1 For Statement
5.5.2 Loop Statement
5.5.3 While Statement
5.5.4 Repeat Statement

6 Procedure Call
7 Jump Statements

7.1 Exitloop Statement
7.2 Continueloop Statement
7.3 Exit Statement
7.4 Goto and Labelled Statement

5.
5.

5.
5.
5.
5.
With Statement 5.8

5.9 Lock Statement
5.10 Region Statement

6. PROGRAMS AND ROUTINES
6.1 Parameters

6.2 Incarnations of Blocks

6.2.1 The Declaration Part
6.2.2 Forward and External Blocks
6.2.3 The Action Part

7. FAULT HANDLING
7.1 Default Exception Procedure
7.2 Programmer-defined Exception Procedure

8. NAMING ENVIRONMENTS
8.1 Visibility Rules
8.2 Contexts and Predefined Names

9. PROCESS CONTROL AND INTER-COMMUNICATION
9.1 Process Control

9.2 Mailbox Communication
9.2.1 Mailbox States
9.2.2 Communication and Synchronization Primitives

10. MESSAGE MANIPULATION
10.1 Message Stacks
10.2 Message Chains

49
50
53
54

55
55

57
57
58
59

60
61
62
62
63
63
63
64
65
65
66
68
70

71
73
75
76
78
80

81
81
81

83
83
85

87
87
91
92
92

95
95
96

Table of Contents

11. IMC FUNCTIONS 99
11.1 Ports 101
11.2 Connections 102

11.2.1 Connection Administration 103
11.2.2 Connection-based Data Transfer 105

11.3 IMC Message Attribute Decoding 107
11.4 Miscellaneous Routines 108

12. COMPILER DIRECTIVES 109

A. REFERENCES 113

B. SYNTAX DIAGRAMS 115

C. PREDEFINED ENTITIES 133
C.1 Routines, Types, and Constants 133
C.2 Language Intrinsic Types 136
C.3 Language Intrinsic Pseudo-function 136

D. INDICES 137
D.1 Survey of Figures 137
D.2 Catchword Index 137

Table of Contents

RTP Reference Manual 1

1, INTRODUCTION

1.1 Goals

The principal goal of Real-Time Pascal is to be a programming tool
particularly well-suited in situations characterized by the following
two requirements:

- the software must provide rapid response to external events ("real-
time"),

' - programmers wish to utilize the organization of software into paral-
lel cooperating processes as a fundamental structuring tool.

The major use of Real-Time Pascal has been, and is foreseen to re-
main, in the basic software of distributed processing systems and data
communication network nodes:

- terminal emulation,
- layered protocol handling,
- local area networking services.

In these kinds of situations the two above-mentioned requirements are
inherently present.

The programming of end-user applications, and in particular: program-
ming by the end user, are not goals of Real-Time Pascal. High level
run-time support functions, such as a general high level input/output
system, are not included in the language. However,: provided suitable
tools are furnished along with support for the language itself, it may
prove to be well suited for applications programming as well as sy-
stems programming.

Although Real-Time Pascal aims at low level programming it is very
much a high level language. This is true in terms of syntax, in terms
of programming facilities, and in particular in terms of the amount of
consistency enforcement which is embodied in the language.

Real-Time Pacal has not been designed specifically for any particular
machine. However, the feasibility and usefulness of -an implementation
on the Intel iAPXn86 processor series and RC3502 have been absolute
requirements.

INTRODUCTION 1.1 Goals

2 RTP Reference Manual

1.2 Main Features

In many respects Real-Time Pascal is, as one might anticipate, similar
to standard Pascal /Pascal, ISO Pascal/. The major difference is that
‘Real-Time Pascal includes facilities for starting and controlling multi-
ple processes as well as for the orderly synchronization and inter-
communication between such processes. Features which are basic to
Real-Time Pascal but well-known from standard Pascal are not discus-
sed in this section.

1.2.1 Processes

As in standard Pascal, a Real-Time Pascal program consists of decla-
rations and definitions of data to be manipulated, and a description of
actions to perform the desired manipulations. The execution of a Re-
al-Time Pascal program is called a process. A process is said to be an
incarnation of the program which is executed.

Real-Time Pascal is intended for compilation. The major ingredient of
an implementation is the compiler which will transform source pro-
grams into object code, executable on some target machine. Through-
out this document reference is made to compiletime, the time when a
source text is being manipulated by a compiler, and run-time, the ti-
me when a dynamic system consisting of a number of cooperating pro-
cesses is operative.

In addition to declarations of data and descriptions of actions a pro-
gram (and this is where Real-Time Pascal departs from standard
Pascal) may contain sub-programs, and a process may create, start
and control incarnations of sub-programs of the program of which it
is itself an incarnation. Sub-programs may be nested to any depth. In
other words a number of Real-Time Pascal programs may constitute a
program tree. The encloser relation between a program and a sub-pro-
gram is carried directly over to the parent relation that exists be-
tween a process and a child process which it has created. Thus the
dynamic set of active processes will exhibit a control structure re-
flecting the nested structure of the program tree.

An essential feature of Real-Time Pascal is that a number of special
types and operations on variables of these types are directly tailored
to perform synchronization and exchange of access to shared data be-
tween processes in a well-defined and secure fashion. In particular
one important invariant is maintained a priori (i.e. without the pro-
grammer needing to worry about it): to every message there exists at
any given time precisely one reference, allowing at most one process
to access the message. Exchange of access to a message is achieved
by passing the message via a mailbox.

The operations for process synchronization and message passing are
available in Real-Time Pascal as predefined routines. This implies that
an implementation of Real-Time Pascal will involve the construction
of either:

1.2.1 Processes INTRODUCTION

RTP Reference Manual 3

- a software nucleus, i.e. a small operating system, which performs
the message passing and process synchronization and scheduling
functions, typically in a highly dedicated manner, or

- a run-time system providing a bridge to a general operating system
which lends itself to supporting the type of process synchronization
and inter-communication functions defined as part of Real-Time
Pascal.

An operating system to be used for the latter kind of implementation
‘must support the execution of multiple processes either in true paral-
lel on a transparent multiprocessor system or in pseudo-parallel on a

- single processor. The operating system must perform process schedu-
ling; it must also support the exchange of messages via mailboxes. In
general it is necessary to critically evaluate a given operating system
before it is used as a foundation for an implementation of Real-Time
Pascal.

When a suitable general operating system is used to perform the Real-
Time Pascal functions of process synchronization and message passing,
the ability is opened up for Real-Time Pascal processes to cooperate
with processes written in other, typically low-level, languages suppor-
ted under that operating system. In order to make this possibility
practically useful, the data formats and operating system calling se-
quences used by the Real-Time Pascal compiler in question must be
well-documented.

One area in which the use of other languages in conjunction with Re-
al-Time Pascal is particularly important is the direct interaction with
peripheral devices and the processing of interrupts.’ So-called driver
processes which perform tasks of these types will always be machine
dependent and may, most often, be programmed in assembler or PL/M-
type languages. Consequently no input/output instructions or interrupt
syncrhonization functions have been incorporated into Real-Time
Pascal. It is a simple matter, however, to extend a particular imple-
mentation with these functions, as is done in the implementation for
RC3502.

1.2.2 Data Typing

Like standard Pascal, Real-Time Pascal is a strongly typed language.
Types, in the abstract, provide important assistance to structured pro-
grammer thinking, and the enforcement of strong typing is a useful
tool in the detection of many kinds of errors. A particular class of
types, the so-called descriptive types, on the other hand, may be used
in a very concrete fashion to describe the precise interpretation of
bit-strings in the memory of the machine executing a Real-Time
Pascal program. This feature is particularly useful when the precise
representation of data is prescribed as part of the external specifica-
tions of a software project, e.g. a standard protocol for some aspect
of a data communication function.

Another feature which stands apart from the classoom style of stan-
dard Pascal is that Real-Time Pascal allows the definition of families

INTRODUCTION 1.2.2 Data Typing

4 RTP Reference Manual

of conformant types, differing only in the values of type parameters
which may determine e.g. the length of an array, but having the same
structure. Types are also allowed to be dynamic, e.g. by having para-
meters which cannot be evaluated at compile-time. Both of these fea-
tures support the construction of dynamically configurable software.

1.2.3 Data Access

The data items manipulated by a process may be allocated as private
to the process, or they may be allocated as shared, implying that ac-
cess to the data may be shared among several processes, as described
above.

The handling of variables is based on the concepts of objects and ty-
pes which are described in chapter 3. A private variable may be de-
clared, in which case allocation and deallocation of memory for the
variable is performed automatically in a stack according to the well-
known discipline for block structured languages. A declared variable is
accessed directly by name. A private variable may also be allocated
dynamically in the so-called heap by an invocation of the predefined
routine new. In this case the variable must be accessed through a po-
inter.

Each process has its own stack and heap, which are thus well-suited
for private variables. However, a variable in the stack may be decla-
red as shared, implying that it can only be accessed in a so-called
tegion. A shared variable can be made accessible to a child process
aS a process parameter.

A variable is said to be owned by the process in whose stack or heap
it is allocated. A variable may become known to processes other than
the owner by being passed as a process parameter.

Messages are allocated neither in the stack nor in the heap of a pro-
cess, but separate from both of these. Messages are organized in po-
ols. A pool may contain a number of messages of equal size.

A message is not in itself a variable, but like an object it may occu-
Py a number of consecutive bytes of memory, called the message buf-
fer. A message buffer may be treated as a variable by superimposing
a type onto it in a lock statement.

Messages are accessed through variables of the predefined type refe-
rence. A number of operations involving messages are available as
predefined routines taking references as parameters. In particular it is
possible to build message stacks (not to be confused with process
stacks) and message chains.

Associated with a message is a set of attributes, one of which is the
buffer size, i.e. the number of bytes the buffer occupies. The values
of some of the attributes are accessible, and some may also be modi-
fied. A message with a buffer of size 0, called an empty message,
may be used meaningfully in connection with message stacks, and/or
for simple synchronization purposes. An empty message has a full set

1.2.3 Data Access INTRODUCTION

RTP Reference Manual 5

of attributes. Fig. 1 gives a sketch of how memory might be organi-
zed in an implementation of Real-Time Pascal. Clearly an architecture
supporting segmentation will be helpful.

INTRODUCTION 1.2.3 Data Access

6 RTP Reference Manual

messages

Y stack

{ heap

code of program A

stack and heap
of process A @

stack and heap
code of program B of process Bl

stack and heap
of process B2

Fig. 1.1. Example of memory organization.

1.2.3 Data Access INTRODUCTION

RTP Reference Manual 7

1.2.4 Distributed Systems

A principal area of intended use of Real-Time Pascal is the construc-
tion of distributed systems according to the general architectural
principles described in /DSA/.

A resident module, in the sense of /DSA/, may consist of a number
of cooperating Real-Time Pascal processes. Intercommunication at the
so-called level i, may then take place using the Real-Time Pascal fa-
cilities for inter-process communication. —

To support inter-module communication (at the so-called level d) the
predefined type port, representing the concept of port as described in
/DSA/ has been included in the language along with a set of predefi-
ned routines to perform inter-module communication (IMC) functions
/DSA-IMC/.

Implementations may exist which support only a limited set of IMC
functions or none at all.

1.2.5 Faults

The term fault is used throughout the following chapters to refer to
violations of semantic rules which cannot be completely enforced at
compile-time, i.e. violations which can in some cases only be detected
when a program is executed.

The language allows partly programmer-defined handling of faults. By
default the occurrence of a fault will cause the output of suitable
diagnostic information.

1.2.6 Extensibility

The general representation of built-in functions of the language is
that of predefined routines working on parameters of predefined, and
often shielded, types.

When a desire for extensions to the defined language arises, it will
be both natural and usually also easy to define such extensions in
terms of one or more types and. routines operating on parameters of
these types. For example, a general high-level input/output system
may be implemented in this way.

The distinction between built-in functions and such extensions will not
appear very sharp at all, nor is it intended to. The only missing fea-
ture will be compiler supported protection of types one might wish to
shield. Supporting a larger number of shielded types, however, requi-
res very little in the way of compiler modification, and thus a future
evolution of the language, e.g. toward supporting application program-
ming, is at least feasible.

INTRODUCTION 1.2.6 Extensibility

8 RTP Reference Manual

1.3 Syntax Diagrams

Each syntax category of the context-free syntax of Real-Time Pascal
is defined by a syntax diagram. A syntax diagram consists of:
- the name of the defined syntax category followed by a colon,

arrows, which may include branching,
indications of occurrences of syntax categories, with the category
names written in lower-case letters,
language symbols written in upper-case letters (if text).

Example:

type declaration:

°-<
¢

—— > TYPE -~—— single type declaration —— @

single type declaration:

>forward-type_name 1 >

Lo type_name | =-——>common type specification

parameterized type

name:

—y letter > > t

— letter —

— digit —

ey

A source text or substring of a source text is a syntactically correct
occurrence of a syntax category if it can be obtained by traversing
the diagram defining that category, following the arrows. When an in-
dication of an occurrence of a syntax category is encountered (must
be entered through an arrow), the traversal rule is applied recursive-
ly. The result of a traversal of a diagram is the sequence of lexical
elements which have ultimately been encountered.

1.3 Syntax Diagrams INTRODUCTION

RTP Reference Manual 9

The names of syntax categories are used frequently in the descrip-
tions of the semantics of language constructs to refer to particular
occurrences of syntax categories. To make it clear that a sequence of
words in the text is indeed a reference to such an occurrence it may
be enclosed in single quotes.

Prefixes terminated by underscores are also used in names of syntax
categories to make it easier to refer to a particular occurrence of a ~
syntax category. They have no significance in the context-free syntax. 7
For example 'bound-type_name' and 'parameterized-type_name' -are - -
syntactically equivalent and both defined by the diagram for 'name'.
Hyphens and spaces are used exclusively as reading aids.

A prefix which occurs in several syntax diagrams may be understood
as an indication of a context-sensitive syntax rule. Such rules, how-
ever, are all explained in the text describing the semantics of the re-
levant constructs.

A complete set of syntax diagrams is collected in appendix B. The
page number on which a diagram is shown may be found by means of
the catchword index, appendix D.2, since the category name appears
here followed by a :.

1.4 Organization of this Manual

A rigorous definition of the Real-Time Pascal programming language is
given in the following chapters. Each chapter is divided into sections,
each dealing with a particular aspect of the language. The contents
of a section are in general as follows:

introductory remarks,
- Syntax diagrams (some sections contain no diagrams),

description in natural language of the semantics of the particular
part of the language,
optional notes, where specific consequences of the syntax or seman-
tics may be pointed out,

- examples.

The notes and examples do not constitute part of the definition of
the language.

INTRODUCTION 1.4 Organization of this Manual

10 RTP Reference Manual

RTP Reference Manual ll

2, LEXICAL ELEMENTS

A Real-Time Pascal source program is a string of characters which
can be (uniquely) parsed as consisting of a sequence of Suitably sepa-
rated lexical elements. Separators are comments and nonprinting sym-
bols. There are five categories of lexical elements:

~ names,
character literals,

- character strings,
- numbers, and
~- language symbols.

Of these only names are defined in terms of syntax diagrams; the
others are verbally described. All language symbols, some of which are
keywords similar to names, as well as some additional names, are pre-
defined as part of the language. The remaining lexical elements are
programmer-specified.

No separator may occur within a single lexical element. At least one
separator must appear between any pair of consecutive lexical ele-
ments whenever this is necessary to provide unique delimitation.

An alphabetic character, a through z, is an occurrence of the
category 'letter' which is referred to in the following. No destinction
is made between the upper and lower case forms of the same letter,
except in character literals or character strings.

2.1 Names

All declared entities, whether programs, routines, types, variables or
merely constants, have a name.

name:

—jT letter > >

> -—> letter —

-— digit ——

All characters in a name are significant. However, names used in con-
junction with external linking may be abbreviated in an implementa-
tion/iistallation dependent fashion.

LEXICAL ELEMENTS 2.1 Names

12 RTP Reference Manual

The keywords (cf. subsection 2.5.1) satisfy the syntax for 'name', but
are explicitly excluded from the category. In addition a number of
routines, types and constants exist (cf. Appendix C) with predefined
names, i.e. these names can be redefined.

Examples:

step usage count process 117 Very_Long Identifier_Name

2.2 Character Literals

Character literals denote characters, which are values of the predefi-
ned type char. They are described in subsection 3.4.2.

2.3 Character Strings

Character strings denote values of string types. They are described in
subsection 3.8.4.

2.4 Numbers

A number is a sequence of digits, possibly prefixed by a radix specifi-
cation. A digit is a decimal digit, 0 through 9, or one of the letters
A through F. A radix specification is the character with ordinal value
35 (in this manual shown as #) followed by one of the following let-
ters: B, O, D, or H.

Numbers without a radix prefix are integer numbers in standard deci-
mal notation; they denote values of the predefined type integer, cf.
subsection 3.4.3.

Numbers prefixed with a radix specification are interpreted as fol-
lows:

#B binary, digits must be 0,1
#O octal, digits must be 0..7
#D decimal, digits must be 0..9
#H hexadecimal, digits must be 0..9, A..F

Examples:

#B1010
#0777 = #HCAFE #D255 #D7913 -- four integers

2.5 Language Symbols

The predefined language symbols fall in two classes: keywords and
special symbols.

2.5 Language Symbols LEXICAL ELEMENTS

RTP Reference Manual 13

2.5.1 Keywords

Keywords are reserved names, i.e. it is illegal to use them as names
in declarations. Throughout this document some keywords are rendered
in small letters and some in capitals, merely as a matter of style.
The keywords are:

AND END IN PROCEDURE typesize
ARRAY ENDLOOP INSPECT PROGRAM UNTIL
AS EXIT LOCKBUF RECORD VAR
BEGIN EXITLOOP LOCKDATA REGION varsize
CASE EXTERNAL LOOP REPEAT WHILE
CONST FOR MOD SET WITH
CONTINUELOOP FORWARD NOT SHARED XOR
DIV FUNCTION OF SHIFT
DO getswitch OR THEN
DOWNTO GOTO OTHERWISE TO
ELSE IF PACKED TYPE

2.5.2 Special Symbols

The special symbols are special graphic symbols or short sequences of
such symbols. The following special symbols are defined as part of the
language:

+ - * € > Oo <& do () & 2.) (2)

(* *) <* *» “= ' "

2.6 Comments

Comments may be inserted in a source program in three forms:

1. (* comment *)
All characters between the delimiters (* and *) are part of the
comment, including any non-printing characters.

2. <* comment *>
All characters between the delimiters <* and *> are part of the
comment, including any non-printing characters.

3. -- comment end-of-line
All characters from the delimiter -- up to the first occurrence of
a carriage return, line feed, or form feed character are part of
the comment.

Examples:

<* this is (* ... *) one comment *>

LEXICAL ELEMENTS 2.6 Comments

14 RTP Reference Manual

(* this is -- another
comment *)

-- a third comment

2.7 Non-printing Characters

Non-printing characters which are not part of a comment are se-
parators on their own. Any Real-Time Pascal compiler should allow
space, tabulation, line and form feed, and carriage return characters.

2.7 Non-printing Characters LEXICAL ELEMENTS

RTP Reference Manual 15

3, TYPES AND OBJECTS
An object is a data entity, manifest during the execution of a pro-
gram as occupying some amount of memory. With one exception (irre-
gular sub-objects of objects of a descriptive type, cf. section 3.10) an
object always occupies an integral number of successive bytes of me-
mory. The number of bytes is called the size of the object and the
address of the lowest addressed byte is called the address of the
object. The value of an object is at any given time represented by
‘the bit pattern present in the part of memory occupied by the object.
An object may be a declared, and thus named, constant, variable, or.
parameter, or it may be a temporary anonymous object which exists
only during the evaluation of some expression or the execution of
certain kinds of statements.

Every object has a type. A type comprises a set of values which may
be assumed by objects of the type. A number of predefined types ex-
ist as part of the language and additional types may be defined in
type declarations. In particular it is possible to define structured ty-
pes. Objects of structured types are composed of sub-objects of other
(simpler) types. All objects of a type have the same size, called the
Size of the type.

Associated with a type is a set of operations applicable to values of
the type. In the case of a structured type some of the operations
provide access to the sub-objects of objects of the type.

An important relation between types is compatibility which plays a
key role in determining when the assignment, explicit or by parameter
passing, of a value to an object of some type is legal.

The structural aspects of a type are always obtainable from (the text
of) the definition. However, the size of a type may be given by
expressions which in general can only be evaluated at run-time. A ty-
pe is said to be established when all expressions in the definition are
evaluated and the actual layout of objects of the type and thus also
the representation of values of the type, are determined. A type in
whose definition all expressions are constant expressions and which
can therefore be established at compile-time, is called a static type.

All types, whether explicitly specified or implicitly given by the con-
text, are classified as:

- ordinal types,

- set types,

- pointer types,
- shielded types, or

structured types.

Each class of types is described in a separate section of this chapter.

The language includes no real number types. It is a simple matter to
extend the language or an implementation with a c’ass containing one
or more real types.

3. TYPES AND OBJECTS

16 RTP Reference Manual

Pointer types and shielded types are called protected types. The same
is true of certain structured types, cf. section 3.8. Protected types
cannot be used in conjunction with retyping (type conversion) in with
or lock statements.

3.1 Specification of Types

Type specifications, which include type definitions, are used in type
declarations, in object declarations, in with and lock statements, and.
in the formal parameter lists of routine and program headings and of
declarations of parameterized types. The form of type specification is
called a common type specification. This form covers all types with
no unbound parameters.

common type specification:

>type definition 1 >

——>parameterized type binding —>defined type

An augmented form of type specification is used in formal parameter
lists of routines and programs where unbound parameterized types are
allowed.

formal type specification:

—T type definition

-——— defined type

> parameterized-type_ name —

A type definition is the ultimate definition of any type which is not
predefined.

type definition:

—T— ordinal-type definition

[> pointer-type definition

—————rset-type definition

——rstructured-type definition —

3.1 Specification of Types TYPES AND OBJECTS

RTP Reference Manual 17

The form 'defined type' may be used in the specification of a type
as either predefined or defined, bound, and named.

defined type:

—;— predefined ordinal type -—7—

[> shielded type

—————> bound-type_name

‘The missing details in the above description are given in the following
sections:

syntactic category section number
bound-type_name 3

r parameterized-type_name 3
parameterized-type binding 3
ordinal-type definition 3.
predifined ordinal type 3.

3
3
3
3

set-type definition
pointer-type definition
shielded type

structured-type definition

Note:
Of the five classes of types shielded types can only be predefined.

3.2 Declaration of Types

Types may be named and defined in type declarations:

r type declaration:

°<
2

—— TYPE “> single type declaration ——

single type declaration:

> forward-type_name i >

Lee a =-——>common type specification

parameterized type

TYPES AND OBJECTS 3.2 Declaration of Types

18 RTP Reference Manual

parameterized type:

——parameterized-type name —>formal type parameters ——~

formal type parameters:

é<
ef

—(>type-parameter_name —~— >: —>common type specification ——) —>

The rules for defining types allow several types of use of (forward,
bound, or parameterized) type names in 'defining type specifications’.
However, no type name may be used on the right hand side of a 'sin-
gle type declaration’ until it has been introduced in a preceding
declaration. In particular no type name may be used in its own 'defi-
ning type specification’. An exception to this rule is pointer types to
the type itself.

A 'forward-type name' may only be used in the definition of pointer
types and for every ‘forward type_name' occurring in a 'type
declaration’, the same name must be given a definition (bound or
parameterized) later within the declaration part of the same block.

These rules exclude recursion in the definition of structured types,
but allow objects of a structured type to contain pointers to objects
of the same type and also allow mutual pointers between several
structured types.

A single type declaration without parameters associates the 'bound-ty-
pe_name' with the type specified on the right hand side, called the
defining type. That is, when the "bound-type_name' is itself used as a
type specification, e.g. in the declaration of an object, the type thus
specified inherits the value set, the representation of values, the
object layout, the applicable operations and the classification of the
defining type. However, the type specified by the 'bound-type_name'
is not compatible with the defining type. An exception to the latter
tule occurs when the defining type is a set type (cf. 3.9). The defi-
ning type is established when the type declaration is elaborated (cf.
chapter 6).

A parameterized ‘single type declaration’ introduces the 'parameteri-
zed-type_name' as denoting a family of mutually conformant types.
The 'formal type parameters’, i.e. the "type-parameter_names' may be
used on the right hand side of the declaration. The types specified
for formal type parameters must be ordinal types. Specification of a
particular type in a parameterized family of types is described in the

3.2 Declaration of Types TYPES AND OBJECTS

RTP Reference Manual 19

next section. No type is established when a parameterized type
declaration is elaborated.

A typesize call is similar in form to a function call, but the “para-
meter" is the name of a type. The construct allows the size of a ty-
pe to be used in computations.

typesize call:

> TYPESIZE -—> (—>bound-type_name —>) ——>

The "bound-type_name' must be the name of a bound (not parameteri-
zed) type. The value of a typesize call is the size (number of bytes)
of the named type as computed when the type was established. The
type of a typesize call is integer.

Example:

TYPE .
ptr_type; -- forward announcement
bound_typ= ARRAY (1..10) OF integer;
rec_type= RECORD -- Note:

fl: bound_typ; -- type of fl not compatible
f2: ARRAY(1..10) OF integer -- with type of f2
£3: ptr_type; -- one way of recursive def
f4: { rec_type; -- another recursive def.

END(*RECORD*);
ptr_type= frec_type;
mask_type= PACKED ARRAY(1..typesize(bound_typ)) OF boolean

3.3 Parameterized Types

A family of parameterized types may be defined in a type declaration
(see the preceding section). A particular type in such a family, called
a bound parameterized type, is obtained by binding values to the for-
mal type parameters.

parameterized type binding:

~—>parameterized-type_ name — (— actual type parameters —) ——>

TYPES AND OBJECTS 3.3 Parameterized Types

20 RTP Reference Manual

actual type parameters:

é
2%

_—— expression —*—

The 'parameterized-type_name' must occur in a preceding parameteri-
zed type declaration, i.e. it must denote a type family. The number
of formal parameters in this declaration must equal the number of
‘actual type parameters', and each actual parameter must be as-
signable to the type of the corresponding formal parameter.

The type specified by a 'parameterized type binding' is established —
according to the right hand side of the parameterized type declara-
tion, i.e. the defining type specification, after all occurrences of the
formal type parameters have been replaced with the values of the
corresponding actual parameters. The properties of the defining type
are inherited in the same fashion as in the case of a 'bound-type_na-
me', cf. the preceding section.

The actual parameter values used to establish a bound parameterized
type are attached to objects of the type. The parameter values are
accessible whenever the object to which they are attached is visible.

selected type parameter:

—— object denotation —! —type-parameter_name ——>

The type of the denoted object must be a bound parameterized type.
The 'type-parameter_name' must occur among the 'formal type para-
meters' of this type. The type of a 'selected type parameter' is the
(ordinal) type specified for the 'type-parameter_name' and its value
is the value of the corresponding actual parameter as evaluated when
the object type was established.

Example:
TYPE

column(rows: 1..100)= ARRAY(1l..rows) OF integer;
matrix(rows: 1..100)= ARRAY(1..rows) OF column(rows);
matrix_10= matrix(10);

PROCEDURE invert(a:matrix);
VAR

local_copy: matrix(a!rows);

FOR i:=1 TO alrows DO

3.3 Parameterized Types TYPES AND OBJECTS

RTP Reference Manual 21

3.4 Ordinal Types

Ordinal types are abstract types. For any ordinal type there exists a
one-to-one mapping from the set of values of the type onto a finite
interval of the integral numbers, yielding the ordinal value correspon-
ding to each value of the type. It follows that the value set of an
ordinal type is ordered by ordinal value and that every such value set
has a first and a last element. By the ordering, every value, except
the last one, has a successor and every value, except the first one,

‘has a predecessor. Similarly, the relations greater than and smaller
than are defined for pairs of values by the ordering.

The relational operators which produce results of the predefined type
boolean apply to pairs of operands of any ordinal type. i.e. the two
operands must be of the same ordinal type. Let oleft and oright
denote the ordinal values of left and right operand, respectively. The
relational operators are then defined in the following table:

operator result

= true if oleft equals oright, otherwise false
> false if oleft equals oright, otherwise true
> true if oleft is greater than oright, otherwise false
<= false if oleft is greater than oright, otherwise true
< true if oleft is smaller than oright, otherwise false
>= false if oleft is smaller than oright, otherwise true

For every ordinal type otype, there exist three predefined functions
as described below:

FUNCTION succ(v: otype): otype

The result of a call of succ is the successor of the value of the
parameter v, except if this value is the last one, in which case the
call causes a fault.

FUNCTION pred(v: otype): otype

The result of a call of pred is the predecessor of the value of the
parameter v, except if this value is the first one, in which case the
call causes a fault.

‘FUNCTION ord(v: otype): integer

The result of a call of ord is the ordinal value corresponding to the
value of the parameter v.

There are four predefined ordinal types and two ways to define new
ordinal types. These are described in detail in the following subsec-
tions.

TYPES AND OBJECTS 3.4 Ordinal Types

22 RTP Reference Manual

predefined ordinal type:

—T— boolean —;—>

>char

-— integer —

——— double ——

ordinal-type definition:

—;— enumeration-type definition —;—

—————ysubrange definition

3.4.1 The Type Boolean

The type boolean has two values which correspond to truth values and
are denoted by the predefined value names false and true. The ordinal
values are: ord(false)=0 and ord(true)=1.

AND and OR are two dyadic operators which take boolean operands
and produce a boolean result. NOT is a monadic_ operator
which takes a boolean operand and produces a boolean result. The
results produced by these operators are in accordance with standard
logical truth tables for conjunction, disjunction and _ negation,
respectively. In addition the dyadic operator XOR is provided for bo-
olean operands. Its result, which is also boolean, is defined by the
formula

bl XOR b2=(bl AND NOT b2) OR (NOT bl AND b2).

3.4.2 The Type Char

‘The values of type char are characters belonging to a character set
derived from ISO-646 /ISO Char.Set/, i.e. an ASCII-like character
code set.

The ordinal values of the type char span the interval 0..255. The non-
graphic characters, with the ordinal values 0..32 and 127, are denoted
by the predefined value names NUL, SOH, STX, ETX, EOT, ENQ,
ACK, BEL, BS, HT, LF, VT, FF, CR, SO, SI, DLE, DCl, DC2, DC3,
DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US, SP, and
DEL. The characters with ordinal values in the range 32..126 are
graphic characters and are denoted by character literals, i.e. the
graphic symbol (letter, digit etc.) in question, betv’een single quotes.
The set of available graphic characters and the corresponding ordinal

3.4.2 The Type Char TYPES AND OBJECTS

RTP Reference Manual 23

values is implementation and/or installation dependent. No notation
exists for characters with ordinal values in the range 128..255.

The graphic character symbols supported by an implementation/instal-
lation may also be used in character strings (cf. subsection 3.8.4).

There exists a predefined function which yields a character result:

FUNCTION chr(n: byte): char

The result of a call of chr is the character whose ordinal value equ-
als the value of the parameter n.

Example:

CONST single _quote=""';
TYPE small letter="a'..'z'

3.4.3 The Type Integer

The values of type integer are integral numbers. The ordinal value of
such a number is the number itself. The range of the type integer,
i.e. the interval spanned by its values is implementation dependent. As
a natural extension of the language, double length integers, may be
supported by an implementation, as a type named double, with the
Same operations as for the type integer. Positive integer values are
denoted by integer numbers, cf. section 2.4.

There are ten dyadic operators which take integer operands and pro-
duce integer results:

operator description
+ addition
- subtraction
* multiplication
DIV integer division (quotient truncated toward zero)
MOD remainder of integer division, i.e.

a MOD b = a-b*(a DIV b)
AND bitwise logical and
OR bitwise logical or
XOR bitwise exclusive or
NOT bitwise negation (one's complement)
“SHIFT ‘bitwise logical shift toward more significant positions

+ and - may also be used as monadic operators, implying an implicit
left operand with value 0. When the result produced by an arithmetic.
operation falls outside the range of integer values supported by the
implementation a fault occurs.

The result of the predefined function abs:

FUNCTION abs(n: integer): 0..maxint

TYPES AND OBJECTS 3.4.3 The Type Integer

24 RTP Reference Manual

is the absolute value of the parameter value. If this value falls outsi-
de the supported range the call causes a fault.

There are predefined procedures to increment and decrement variables
of integer type (by 1 modulo 2”):

PROCEDURE inc(VAR v: integer)
PROCEDURE dec(VAR v: integer)

The predefined value names maxint and minint denote the largest and
the smallest integer value, respectively, supported by the implementa-
tion.

3.4.4 Enumeration Types

An enumeration type is defined by explicitly naming its values:

enumeration-type definition:

<
<

— (>scalar_ name >, -7—>scalar_name >)—_-

>? >?

The names, at least two, given in the definition are used to denote
the values of the type thus defined. Consider an enumeration type
defined as (p> C1, o-, €.). This type has precisely n+1 distinct values
with ordinal valles in "the interval 0..n. The ordinal value cor-
responding to e; is i, for i=0, 1, ..., n.

Example:
TYPE colours= (red, blue, green, yellow, pink)

3.4.5 Subrange Types

A subrange specifies a type compatible with an existing type, but
with a constrained range of values:

subrange definition:

-—— > lower-bound_expression —>..—>upper-bound_expression —>

The lower and upper bound expressions must be of the same ordinal
type, called the base type of the defined subrange type. The bounds
are evaluated when the subrange type is established.

If the value of ord(upper bound)-ord(lower bound)+1 is greater than
zero this is the number of elements in the value set of the subrange,
otherwise the subrange is empty.

3.4.5 Subrange Types TYPES AND OBJECTS

RTP Reference Manual 25

The same set of operators and predefined functions apply to values of
the subrange type as to values of the base type, but objects of the
subrange type are constrained to assume values in the range between
the lower and upper bound values (inclusively).

There is one predefined subrange type, viz. byte, defined as:

byte= 0..255

' There are predefined procedures to increment and decrement variables
of byte type (by 1 modulo 256):

PROCEDURE inc(VAR v: byte)
PROCEDURE dec(VAR v: byte)

Note:

A subrange definition is the only place where an expression can occur
in a type definition. Thus all dynamic types are built from subranges.
Conversely, if all expressions in the subrange definitions of a type de-
finition are constant expressions, then the defined type is static.

Example:

TYPE
pos _int= 0..maxint;
neg int= minint..-1;
codes= (nocode, ..., dummy _last_code);
conv_table= ARRAY(succ(nocode)..pred(dummy_last_code))

OF codes
¢

3.5 Set Types

The set of values of a set type is the power set of the set of values
of some ordinal type, called the element type of the set type. The
available operators for sets correspond to the standard operators of
mathematical set theory.

set-type definition:

-—— > SET —>OF —>common type specification ——>

The common type specification specifies the element type which must
be an ordinal type.

Values of set types are denoted by lists of set elements.

TYPES AND OBJECTS 3.5 Set Types

26 RTP Reference Manual

set denotation:

—(. >)—- YY

é
2

>element_expression |

“element interval

element interval:

——>lower_expression —>..—>upper_expression ——>

All expressions occurring in a ‘set denotation' must be of the same
ordinal type. The type of the 'set denotation' is a set type whose
element type is the type of the expressions.

The value of a ‘set denotation' is evaluated by evaluating all the
expressions. Their values determine the members of the set value.
When an ‘element interval' occurs all values in the closed interval
from the value of 'lower_expression' to the value of ‘upper_expres-
sion' are members. If the value of ‘lower-expression' is greater than
the value of 'upper-expression' the interval is empty.

When no expressions are present in a 'set denotation',-i.e. (..), the
value is the empty set. The empty set may occur whereever an
operator of a set type is required. Occurring as an expression on its
own, the empty set is assignable to any set type.

The operators applicable to values of set types are described in the
following table, where st means some set type, et means the element
type of st, lop means left operand, and rop means right operand.
Notice that multiple occurrences of st in any one line of the table
refer to compatible set types.

3.5 Set Types TYPES AND OBJECTS

RTP Reference Manual 27

ope- type of type of type of
rator lop rop result result

+ st st st lop U rop
* st st st lop () rop
- st st st lop \ rop
IN et st boolean true if lop €rop,

false otherwise
<= st st boolean true if lop c rop

false otherwise
>= st st boolean true if rop c lop,

false otherwise
= st st boolean true if lop ¢ rop

and rop ¢ lop,
false otherwise

<> st st boolean NOT lop=rop

Note:
There is no operator to test for strong set inclusion.

Examples:

digits= (. '0'..'9' -)
letters= (. 'a'..'z', 'A'..'Z" .)

3.6 Pointer Types

The values of a pointer type are NIL (no pointer) and pointers to he-
ap-allocated variables of a specified type, called the base type of the
pointer type. A pointer may be used to access the variable it points
to.

pointer-type definition:

—)|—common type specification —

The common type specification specifies the base type of the defined
pointer type. The initial value of a pointer variable is NIL, i.e. it do-
es not point to any variable.

A variable accessed through a pointer is called a designated variable.

designated variable:

——pointer_object denotation —{ —>

The type of the denoted object must be a pointer t:pe. The type of
the designated variable is the base type of this pointer type. If the

TYPES AND OBJECTS 3.6 Pointer Types

28 RTP Reference Manual

value of the denoted pointer object is NIL a fault occurs when an at-
tempt is made to access the designated variable.

The comparison operators = and <> may be applied to pairs of
operands of compatible pointer types. The result produced by the =
operator is true if both pointers designate the same object, or if both
have value NIL. Otherwise it is false. The result produced by the <>
operator is the negation of the result of =.

There is a predefined function to test whether a pointer, of any poin-
ter type ptrtype, is NIL.

FUNCTION nil(ptr: ptrtype): boolean.

The result of a call of nil is true if the value of the parameter is
NIL and false otherwise.

A variable is allocated on the heap and a pointer to it assigned to a
pointer variable by a call of the predefined procedure new, where the
parameter type ptrtype may be any pointer type.

PROCEDURE new(VAR ptr: ptrtype)
A call of new causes memory for a variable of the base type of the
type of the parameter ptr to be allocated on the heap of the calling
process. If an initial value is defined for the variable or any com-
ponents of it, the initialization takes place immediately after alloca-
tion. The value of the parameter becomes a pointer to the allocated
variable. If the claimed amount of memory is not available, the poin-
ter becomes NIL after the call of new.

Example:

TYPE
comp; -- forward declaration
comp1_type=
RECORD

number: integer;
comp chain: comp

END(*RECORD*);
comp_type= ARRAY(x..y) OF fcomp1_type;
comp= {comp_type;

VAR
structure_start: comp;

new(structure_start);
new(structure_start{(x));

new(structure_start{(x){.comp_chain)

3.6 Pointer Types TYPES AND OBJECTS

RTP Reference Manual 29

3.7 Shielded Types

Shielded types are used in conjunction with control of offspring pro-
cesses and with inter-process and inter-module communication. In or-
der that the integrity of messages and of the data structures needed
to administer multiple cooperating processes be preserved it is only
possible to manipulate objects of shielded types by means of prede-
fined routines. Accordingly, details of the representation of these ty-
pes are not part of the reference definition of the language. Only

- predefined shielded types exist, seven in all.

shielded type:

—-— mailbox ———_, >

> reference

>pool

> process

>port

>chain

——yexternal program type —

Constants of shielded types do not exist. Variables of shielded types,
except reference, can only be declared at the outer block level of a
program, cf. subsection 6.2.1.

An object of type process may be used to control a child process, i.e.
an incarnation of a sub-program. The value of a process object is
either NIL or a reference to a child process, the initial value being
NIL. Process objects may be manipulated by the predefined routines
create, start, resume, stop and remove, as described in chapter 9.

The predefined function nil may be used to test whether a process
‘variable has value NIL.

FUNCTION nil(VAR pr: process): boolean

The result of a call of nil is true if the value of the parameter pr is
NIL, and false otherwise.

An object of type mailbox may be used to transfer access to a mes-
sage stack from one process to another, using the predefined routines
signal, wait and return, as described in chapter 9. The initial state of
a mailbox is passive.

TYPES AND OBJECTS 3.7 Shielded Types

30 RTP Reference Manual

Objects of type external program are described in subsection 6.2.2.
The initial state of an external program is unlinked.

An object of type port may be used in conjunction with intermodule
communication as described in chapter 11. The initial state of a port
is closed.

Messages are allocated using pools and accessed by means of objects
of type reference. The value of a reference is either NIL (the initial
value) or a reference to a message stack, called the designated stack.
The top message of the designated stack is called the designated mes-
Sage. Message stacks, and the predefined procedures push and pop
working on them, are described in detail in chapter 10.

The predefined function nil may be used to test whether a reference
is NIL.

FUNCTION nil(VAR ref: reference): boolean

The result of a call of nil is true if the value of ref is NIL, and
false otherwise.

Every message has fourteen attributes which are present even if the
message is empty:

- home pool: the pool to which the message belongs,
- return address: mailbox to which the message may be returned,
- ul, u2, u3, u4: objects of type byte which may be read and writ-

ten,
- size of the buffer, i.e. number of bytes,
- offset, top, byte count: objects of type 0..maxint which may be re-

ad and written; they describe the data area of the message buffer,
see below,

- event kind: indicates how and why the message was placed in the
mailbox from which it has last been received or that the message
was removed from a pool; see details under the predefined function
eventkind below,

- connection index, credit count, reason: used in conjunction with
IMC functions, cf. chapter 11.

é

‘The values of the message attributes offset and top define an area
within the buffer, called the data area, which comprises the (byte)
locations from offset through top-1 relative to the beginning of the
buffer.

buffer

data area

t
offset top

3.7 Shielded Types TYPES AND OBJECTS

RTP Reference Manual 31

The byte count attribute is used to indicate the size of a data unit
which is located from the beginning of the data area, but which does
not necessarily occupy the whole data area.

' In order for the data area description to be consistent, offset must
be less than or equal to top, which in turn must be less than or equ-
al to the size of the buffer. In particular, if the message is empty,
all three attributes must be zero.

In a message stack the topmost buffer attributes (size, offset, ...)

will refer to the buffer of the topmost non-empty message, cf. sec--. _
tion 10.1.

The concept of data area is used in conjunction with the IMC func-
tions, cf. chapter 11, and is also intended as a basis for the
establishment of practical conventions for the use of the language.

A pool is the home of a set of messages. Initially the set is empty.
All messages belonging to the pool have the same size, and all are al-
located from the same kind of memory. The set may grow by calls of
allocpool/allocmempool, or shrink by calls of releasepool. At any point
in time some subset of the set of messages which belong to a pool
will be held in the pool, while the remaining part will be outside the
pool, in use. By a call of alloc a message may be taken from the
pool so it can be used (via a reference), and it may be put back in
the pool by a call of release.

Whenever the set of messages belonging to a pool is empty, the mes-
sage buffer size or/and memory kind attributes of the pool may be
set or changed by a call of allocpool or allocmempool:. -

FUNCTION allocpool(VAR p: pool; no_of_messages: 0..maxint;
bufsize: 0..maxint): 0..maxint

FUNCTION allocmempool(VAR p: pool; no_of_messages,
bufsize: 0..maxint; mem: mem_type): 0..maxint

The value of bufsize determines the buffer size of the messages
which may belong to the pool p, and the value of mem determines the
kind of memory to be used for these messages. The type of mem is
the implementation dependent predefined enumeration type mem_ type

_ which is intended to reflect the various kinds of RAM used in
multiprocessor systems which may include intelligent controllers with
their own RAM resources.

If, at the time of call, the set of messages belonging to the pool p is
non-empty, the values of the parameter bufsize and mem have no ef-
fect.

Subsequent to the possible setting of pool attributes as described
above, an attempt is made to allocate memory for as many messages
as indicated by the value of no of_messages. These messages are sub-
sequently placed in the pool p which is their home pool, ready to be
taken out by calls of alloc (see below). If sufficient memory is not
available the number of messages acquired may be smaller than re-

TYPES AND OBJECTS 3.7 Shielded Types

32 RTP Reference Manual

quested. The actual number of messages is returned as the result of
the function call.

Memory occupied by messages held in a pool may be deallocated by a
call of releasepool. Depending on the implementation it may then be
possible to reuse this memory for other purposes: program memory,
stack, heap, or other pools.

FUNCTION releasepool(VAR p: pool;
no_of_messages: 1..maxint): 0..maxint

The number of messages indicated by the value of no_of_messages are
deallocated from the pool p and become free memory. If the
requested number of messages is not present in the pool fewer messa-
ges may be deallocated. The actual number of deallocated messages is
returned as the result of the function call.

A message is taken out from a pool by a call of the predefined pro-
cedure alloc:

PROCEDURE alloc(VAR r: reference; VAR p: pool; VAR ra: mailbox)

At the time of call the value of the parameter r must be NIL, other-
wise a fault occurs. If the pool p is empty, i.e. all messages have
been removed, the calling process will wait until a message becomes
available. This occurs when a message is put back to the pool by
another process (call of release, see below), or when additional me-
mory is allocated for the pool (call of allocpool/allocmempool, see
above). When several processes attempt to take out messages from an
empty pool waiting takes place in a FIFO queue. -

When a message becomes available it is removed from the pool, its
return address becomes the mailbox indicated by the parameter ra,
and r will designate a message stack consisting only of the removed
message.

When a message has just been removed from its home pool its data
area will be the whole buffer, i.e. offset=zero and top=size of the
buffer. The attributes ul, u2, u3, u4 and byte count will all be zero.
The value of the event kind attribute will be not_event, indicating
the message does not represent a system event.

It is possible to specify a maximum time which a process is willing to
wait for a message. This can be done by calling allocdelay instead of
alloc, cf. subsection 9.2.2.

A message is put back in its home pool by a call of the predefined
procedure release:

PROCEDRUE release(VAR r: reference)

At the time of call the parameter must not be locked (cf. section
5.9), and its value must not »e NIL, nor may the designated message
stack contain more than one message; otherwise a fault occurs. The

3.7 Shielded Types TYPES AND OBJECTS

RTP Reference Manual 33

message is put back in its home pool, and the value of r becomes
NIL.

It can be tested whether a message belongs to a particular pool.

FUNCTION hometest(VAR ref: reference; VAR p: pool): boolean

The value of ref must not be NIL when hometest is called. If it is, a
fault occurs. The result of a call of hometest is true if p is the ho-

~me pool of the message designated by ref, otherwise it- is.false.

The event kind attribute of a message may be read in order to
determine the kind of event which the message represents.

FUNCTION eventkind(VAR r: reference): event_type

If eventkind is called with a parameter with value NIL a fault oc-
curs, otherwise the result is the value of the event kind attribute of
the designated message. The result type is the predefined enumeration
type

event_type= (not_event, message event, answer_event,
process_removed, port_closed, disconnected, ?, ?,
local_connect, remote_connect, reset_indication,
reset_completion, credit, data_sent, data_arrived,
data_overrun, ?, dummy Icnct, dummy rcnct,
dummy rindic, dummy_rcmpl, dummy _credit,
dummy sent, dummy _arrived).

The value not_event indicates the message has been obtained from a
pool or its event kind has been reset. The value message_event indi-
cates the message has been signalled from a process, cf. subsection
9.2.2. The value answer_event indicates the message has been
returned by a process, cf. subsection 9.2.2. The value process_removed
indicates the message has been returned from a process which was
removed, cf. section 9.1. The remaining values indicate IMC events,
cf. chapter 11.

The only way a process can modify the event kind attribute of a
message while retaining access is by resetting it.

-‘"PROCEDURE resetevent(VAR r: reference)

If resetevent is called with a parameter with value NIL a fault oc-
curs, otherwise the value of the event kind attribute of the
designated message becomes not_event.

TYPES AND OBJECTS 3.7 Shielded Types

34 RTP Reference Manual

The u-attributes of a message may be read using the following four
predefined functions:

FUNCTION ul(VAR r: reference): byte
FUNCTION u2(VAR r: reference): byte
FUNCTION u3(VAR r: reference): byte
FUNCTION u4(VAR r: reference): byte

If one of these functions is called with a parameter with value NIL a
- fault occurs. Otherwise the result is the indicated u-attribute of the _.

designated message.

Similarly the u-attributes may be written using the following four
predefined procedures:

PROCEDURE setul(VAR r: reference; b: byte)
PROCEDURE setu2(VAR r: reference; b: byte)
PROCEDURE setu3(VAR r: reference; b: byte) @
PROCEDURE setu4(VAR r: reference; b: byte)

If one of these procedures is called with a reference parameter with
value NIL a fault occurs. Otherwise the value of the parameter b is
assigned to the indicated u-attribute of the designated message.

The size of a buffer may be read using the predefined function bufsi-
Ze:

FUNCTION bufsize(VAR r: reference): 0..maxint

If bufsize is called with a parameter with value NIL a fault occurs.
Otherwise the buffer size of the designated message is returned as
result.

The following six predefined routines may be used to read and set the
values of the attributes offset, top and byte count.

FUNCTION offset(VAR r: reference): 0..maxint @
FUNCTION top(VAR r: reference): 0..maxint
FUNCTION bytecount(VAR r: reference): 0..maxint

If one of these three functions is called with a parameter with value
NIL a fault occurs. Otherwise the result is the value of the indicated
attribute of the designated message.

PROCEDURE setoffset(VAR r: reference; val: 0..maxint)
PROCEDURE settop(VAR r: reference; val: 0..maxint)
PROCEDURE setbytecount(VAR r: reference; val: 0..maxint)

If one of these three functions is called with a reference parameter
with value NIL a fault occurs. Otherwise the value of the val para-
meter is assigned to that attribute of the designated message which is
indicated by the procedure name.

3.7 Shielded Types TYPES AND OBJECTS

RTP Reference Manual 35

Chains (linked lists) of message stacks may be built and manipulated
by means of objects of the types reference and chain and the prede-
fined routines chainenqueue, chaindequeue, chainup, chaindown,
chainstart, chainreset as described in section 10.2. A chain object
serves as a handle to such a list. Access to a list cannot be transfer-
red via a mailbox.

The routines eventkind, resetevent, ul, u2, u3, u4, setul, setu2, setu3,
setu4, bufsize, offset, top, bytecount, setoffset, settop, and setbyte-
count may also be called with a parameter of type chain instead. of
reference. In this case the relevant attribute of the current message
is accessed. The chain must not be empty; if so a fault occurs.

3.8 Structured Types

An object of a structured type is a structured collection of sub-
objects of other (simpler) types. The value of such an object is a
Structured collection of values of the sub-objects. Structures may be
arbitrarily deep, i.e. sub-objects of a structured object may themsel-
ves be of structured types. The types of the subobjects of objects of
a structured type are called the constituent types. Sub-objects which
are not of structured types are called components. The total set of
components of a structured object are: those sub-objects which are
themselves components plus the components of the remaining sub-
objects.

If any component type of a structured type is protected (pointer or
Shielded) the structured type is also said to be protected.

The comparison operators = and <> may be applied to pairs of
operands of the same structured type, provided they apply to all com-
ponents. The result produced by the = operator is true if all com-
ponent values are pairwise equal, otherwise false. The result produced
by <> is just the opposite, i.e. true if any pair of component values
are not equal.

A structured type is an array type or a record type, depending on the
way it is built.

structured-type definition:

>] —~array-type rn i

| ences L cecora tye definition

If the keyword PACKED is present the defined type is called a
packed type. Objects of the type are also called packed. Packed ty-
pes constitute a sub-class of the class of structured types. Packing
indicates that the code generated by a compiler to access objects of
the defied type should be optimized for compactness of object re-

TYPES AND OBJECTS 3.8 Structured Types

36 RTP Reference Manual

presentation rather than execution time. An important sub-class of
packed types is the descriptive types, cf. section 3.10.

A packed object may contain components which either do not start on
a byte boundary or do not occupy a multiple of 8 bits (or both).
Such a component is called an irregular object. It may not be used
for retyping in a with or lock statement (cf. section 5.8) or as an
actual parameter to be transferred by address (cf. section 6.2).

‘Array and record types are described in the following two subsections... -

Note:

Unless a packed type is descriptive, cf. section 3.10, the precise ef- =~
fect of packing is not defined. In particular, if the type has
constituent types which are not static, packing cannot be expected to
have any effect.

3.8.1 Array Types

The sub-objects of an array are called elements. The elements are or-
ganized by indexing.

array-type definition:

——— ARRAY —> (—>common type specification —) — OF —common type specification —

The type specified between the parentheses is called the index type.
It must be an ordinal type. All elements of an object of the defined
array type are of the type specified following OF, called the element
type. Every object of the array type has precisely one element asso-
ciated with each value of the index type.

The syntax ARRAY(t,, t., ., t) OF element_type
is permissible as shotthdhd for

ARRAY(t,) OF ARRAY(t,) OF ... ARRAY(t,) OF element_type.

Similarly PACKED ARRAY(t,, toy cosy t) OF element_type

‘is legal shorthand for PACKED ARRAY(t,) OF PACKED
ARRAY(t,) OF ... PACKED ARRAY(t,) OF element_type.

The elements of an array object are accessed by indexing.

indexed element:

——array_object denotation — (—>index_expression —) ——~>

3.8.1 Array Types TYPES AND OBJECTS

RTP Reference Manual 37

The type of the denoted object must be an array type. The index
expression must be assignable to the index type of this type. It is
evaluated when access is made to the indexed element. the indexed
element is that element of the array object which is associated with
the value of the expression. The type of the indexed element is the
element type of the array type.

The syntax a(i,, i,, i.), where a denotes an array object, is per-
missible as sholthafid for 4(i,)(i,) ... (i,).

Note:

The above description implies that in general a range check is per- -
formed when an array element is accessed by indexing. A compiler
may optionally allow index checking to be suppressed.

Example: (cf. section 3.3)
VAR

amatrix: matrix_10;
temp column: column(10);

temp_column:= amatrix(i); -- assignment of complete column
amatrix(i,j):= amatrix(j,i); -- single component

3.8.2 Record Types

The sub-objects of a record are called fields. The fields are organized
by naming.

record-type definition:

—
ef

———> RECORD >field_name >: —>common type specification —— END —

>? 4 ?

All the field names in a record type definition must be distinct. Each
field name introduces and identifies a field. The type of the field,
called the field type, is specified by the common type specification
following :. A field type may not be specified by an 'enumeration-ty-
pe definition’. An unused field of a record type may be specified ex-
plicitly, by means of a ?, called an unused-specification, in order to
adjust the positioning of subsequent fields. An unused-specification is
equivalent to the declaration of a field of the specified type, which
must be a static ordinal type. The field is not accessible, i.e. it
cannot be selected. Assignment to an unused field can only be made
by assigning a value to the record object as a whole.

The fields of a record are accessed by selection by name.

TYPES AND OBJECTS 3.8.2 Record Types

38 RTP Reference Manual

selected field:

—— record _object denotation—.-— >field_name ——

The type of the denoted object must be a record type. The field na-
me must occur in the definition of the record type. The selected field
is that field of the record object which is identified by the field na-
me. Its type is the specified field type.

An abbreviated syntax for field access may be used in with state-
ments, cf. section 5.8.

Example:
VAR

rec: RECORD
f1,f2: integer; r
£3: boolean

END(*RECORD*);

rec.fl:= rec.fl+rec.f2

or
WITH rec DO fl:= f1+f2

3.8.3 Notation for Values of Structured Types

Values of a structured type may be denoted by lists of element or
field values.

structured value:

&
-€

> >(: eee i) @

/-——> bound-type_name ———»repeated value

———>parameterized type binding —

repeated value:

——>repetition_expression —>*** —>value_ expression —>

The "bound-type name' or ‘parameterized type binding' specifies the
type of the structured value, which must be a structured type. The
construct between (: and :) is evaluated to a list of values, by evalu-

3.8.3 Notation for Values of Structured Types TYPES AND OBJECTS

RTP Reference Manual 39

ating the expressions in the order of occurrence. If the type is speci-
fied by a "parameterized type binding' it is established before the
value list is evaluated.

If the structured type is an array type the values in the list are the
element values in index order. The number of values must equal the
number of elements and the type of each value must be assignable to
the element type; otherwise a fault occurs. A ‘repeated value’, if
present, is equivalent to a number of repeated occurrences of its
"value_expression'; however, the expression is only evaluated once. |
The number is given by the ordinal value corresponding to the value
of the 'repetition_expression' which must be a non-negative integer.
If the number is negative a fault occurs.

If the structured type is a record type the values in the list are the
field values in the order in which the field names occur in the defini-
tion of the record type. The number of values must equal the number
of fields and the type of each value must be assignable to the cor-
responding field type; otherwise a fault occurs. If the record type
contains explicit specified unused fields (cf. section 3.10) values must
be given for these. They are implicitly set to value zero. In the case
of a record type a 'repeated value' must not occur.

The type specification may be omitted when the type it specifies can _
be inferred from the context, i.e. in the following two situations:

1. The ‘structured value' occurs as a ‘value expression’ within a lar-
ger ‘structured value’.

2. The ‘structured value’ occurs as an ‘initialization_expression' in a
variable or shared declaration.

Example: (cf. section 3.3)
CONST

identity_3= matrix_3(:(:1,0,0:), (:0,1,1:), (:0,0,1:):)3
nul list= list(:length***0:);

VAR
a4: matrix(4):= (:4***(:4***Q;):); -- initially null

3.8.4 String Types

The family of one-dimensional character string (array) types is prede-
fined:

string(length: byte)= ARRAY(1..length) OF char

Values of types from the string family may be denoted by character
strings. A character string is a string of graphic symbols, each re-
presenting a character value, enclosed in double quotes. The double
quote character may itself be part of a character string. In this case
it must be indicated by two adjacent occurrences of the " graphic
symbol. Individual non-graphic characters may be included in a
character string by means of the concatenation operator &. The

TYPES AND OBJECTS 3.8.4 String Types

40 RTP Reference Manual

character string must start with a, possibly empty, string surrounded
by double quotes.

The specific type of a character string, i.e. the particular member of
the string family of which it denotes a value, is determined by its
length, i.e. the number of characters it consists of.

As an implementation feature character strings may be truncated or
extended with SP characters when appropriate in the context, e.g.
when occurring on the right hand side of an assignment statement
where the corresponding component on the left hand side is of a
string type with different length.

Examples:
“this is a string"
"x'"x" (* a string of length 3 *)
"*#* illegal input message" & BEL & CR & LF -- string(28)

3.9 Type Compatibility

The compatibility relations defined in this section are used to deter-
mine when a value may be assigned to an object, either explicitly
when an assignment statement is executed or implicitly in connection
with parameter passing.

The essential relation is assignment compatibility. However, the basis
for that relation is the compatibility relation between types which is
therefore defined first. The compatibility relation applies to
established types.

Two types are said to be the same if:
- both are the same predefined type, or
- both are specified as the same bound-type_name, or
- both are specified as a binding of the same parameterized-type_na-

me and the values of the actual type parameters are pairwise equ-
al.

Two objects are said to be of the same type if:
- their types are the same (cf. above), or
- if they are variables introduced in the same list of variable names,

cf. subsection 3.11.2, or
- if they are formal parameters of kind value introduced in the same. .

formal name list, cf. section 6.1.

Two types are said to be compatible if:
- they are the same type (cf. above), or
- one is a subrange of the other (or both are subranges of the same

type), or
- both are set types and the base types are compatible, or
- both are specified as ftname, where tname is a type name.

3.9 Type Compatibility TYPES AND OBJECTS

RTP Reference Manual Al

Type computation rules are defined for expressions (cf. chapter 4) so
as to associate every expression with a type, either an explicitly spe-
cified type, or a predefined type determined implicitly by the struc-
ture of the expression. An expression exp of type ty is defined to be
assigment compatible with the type t, if:

- t) and ty are compatible ordinal types and the value of exp is
within the range specified for t,, if any, or

- ty and ty are compatible set types and all’ members of the value
of exp are within the range specified for t,, or

- ty and ty are compatible pointer, shielded, or structured types,
or

- ty and ty are both string types, cf. subsection 3.8.4.

Throughout this manual the shorthand form “assignable to" may be
used instead of "assignment compatible with".

Example:
In each line below the types of a and b are compatible.
a: boolean; b: boolean;
a: def_type; b: def_type;
a: param_type(7); b: param_type(7);
a: 1..10; b: 2..15;
a: SET OF 1..10; b: SET OF 2..15;
a: {ptrtype; b: fptrtype;

3.10 Object Layout

In general the definition of the language does not prescribe any spe-
cific layout for objects, and thus the way objects are laid out in me-
mory and the way their values are represented depend on the imple-
mentation in question. In order to allow cooperation with processes
whose programs are not written in Real-Time Pascal these aspects of.
an implementation must always be documented carefully.

By specifying a descriptive type, however, it is possible within certain
limits for the programmer to explicitly determine the layout of
objects. Descriptive types constitute a subclass of packed types, re-
cursively defined as having constituent types which are all static or-
dinal types, or themselves descriptive.

This definition implies that all component types of a descriptive type
are ordinal types. The representation of ordinal type components is
presently described. Notice that the description only covers sub-
objects of objects of descriptive types.

A component of an ordinal type is represented as a binary number in
a maximum of 16 bits. If the type includes negative values the two's
complement representation is used. The number of bits used to re-
present objects of some type depends on the range of values. Let
minval and maxval be the ordinal values corresponding to the first
and last value of the type, respectively. Then the number of bits used
for objects of the type is:

TYPES AND OBJECTS 3.10 Object Layout

42 RTP Reference Manual

minval<0, maxval<0: log,(-minval)+1
minval<0, maxval>0: max {log {-minval), log fmaxval+1)}+1
minval>0, maxval>0: log. (maxv 1+1)

The numbers obtained by these formulae must be rounded up to obtain
integral numbers.

As sub-objects of an object of a descriptive type need not occupy
whole bytes the total object is considered as a bitstring rather than
as a bytestring. The ordering of bits within such a bitstring is defined
as follows:

- bits within separate bytes are ordered by byte address,
- bits within the same byte are ordered by significance, i.e. least

significant bits first.

This implies that the whole bitstring will be ordered by significance,
see the figure below.

bit number

01234567

0 When viewed in this fashion,
relative 1 ice. the significance of bit
byte. i is the ith power of 2, bits

address . are ordered as the characters
n on a text page.

Fig. 3.1. Bitstring ordering.

An ordering is also defined for the sub-objects of an object of a
structured type: in the case of an array type by index; in the case of
a record type by the order of the field names in the record type de-
finition.

The following simple rule defines the layout of objects of a descrip-
tive type: within the bitstring occupied by the object, subobjects are
located contiguously and in order. Notice that this rule, like the de-
finition of a descriptive type, is recursive. The following points
complete the rule:

- every definition of a descriptive type is implicitly extended with an
unused component at the end so that objects of the type occupy an
integral number of bytes, if this property is not already satisfied by
the type as stated,

- no component may cross two byte boundaries. When possible, an
unused component is inserted to fill up a byte so that this situation
is avoided.

3.10 Object Layout TYPES AND OBJECTS

RTP Reference Manual 43

Note:
If the comparison operator = and <> are applied to objects of struc-
tured types with unused components they are also applied to unused
fields.

Example:

Consider the types
rec_type= RECORD

a: integer;
: byte;

0..7;3
-3..45
-1000..1000;
char;
boolean;

: integer
END (*RECORD*)

Q
R
e
s
c
a
n
g
c
y

=

arr_type= ARRAY (1..4) OF 0..2000 (* 11 bits *)

Typical layouts for objects of these types are shown to the left in
the figure below; note that this representation is not specified by the
language. However, if the keyword PACKED had been present before
RECORD/ARRAY, the types would have been descriptive and their lay-
out prescribed to be as shown to the right. The * marked fields are
implicitly inserted unused components.

TYPES AND OBJECTS 3.10 Object Layout

44 RTP Reference Manual

rec_type:
01234567 01234567

0 0
1 a 1 a
2 b 2 Db
3 Cc 3 c_ | qd (+
4 d 4 e-lo
5 e 5 e-hi f-lo
6 6 | f-hilg] ¥
7 f 7
8 g 8 h
9

10 h

arr_ type:
01234567 01234567

0 0
(1) (1)

1 1 [ot] (2) -
2 2 |

(2)
3 2 | 7
5 (3) 5 (4) ‘a

6
7 (4)

Fig. 3.2. Example of object layout.

3.11 Object Declarations

Declarations of objects may occur in the declaration part of a pro-
gram or routine block, cf. chapter 6.

An object declaration inctroduces and names an object which may be
used in the remainder of the block.

3.11.1 Constant Declarations

A constant declaration serves to name a constant object, i.e. an
object whose value can be computed at compile-time and which can-
not be altered dynamically by assignment.

constant declaration:

-é
28

-——> CONST ——> name > = — expression ——

3.11.1 Constant Declarations TYPES AND OBJECTS

RTP Reference Manual 45

Each constant name introduced in a constant declaration denotes a
constant object the type and value of which is determined by the
expression following =. The expression must be a constant expression
as described in chapter 4. The type of a constant must not be pro-
tected.

3.11.2 Variable Declarations

A variable or shared declaration serves to name one or more stack-al-
located private or shared variables and optionally to specify initial |
values for instances of such variables.

variable declaration:

*<
28

—— VAR variable specification ——

shared declaration:

~<
28

-> SHARED “variable specification ——

variable specification:

| eet Somme

———~> name ——"— : —>common type specification >

The variables introduced in a ‘variable declaration’ are private vari-
ables, i.e. they can only be accessed by the process in whose stack
they are allocated. The variables introduced in a ‘shared declaration'
are shared variables which can only be accessed in region statements.

The type of each variable named in a variable or shared declaration
is given by the first following type specification and the initial value
by the expression following :=, if present. The type of the expression
must be assignable to the specified type of the variable. When several
variable names are listed, separated by commas, each name introduces
a variable of the specified type. And each of them are given the
initial value of the expression, if present. The value of the expression

TYPES AND OBJECTS 3.11.2 Variable Declarations

——>:= —initialization_expression |

N
?

46 RTP Reference Manual

is only evaluated once. The type of a shared variable must not be
process, external program, reference, pointer, or chain; nor may these
types occur as component types in the types of shared variables.

When a variable or shared declaration is elaborated the specified ty-
pes are established; memory is allocated on the stack for an instance
of each of the named variables; the initialization expressions, if
present, are evaluated; and the values of the expressions become in-
itial values of the variables. An initialization expression must not con-
tain function calls. However, the predefined functions abs, chr, ord,
pred, and succ may be used.

Variables of components for which initial values or states are prede-
fined are initialized accordingly. The initial value of a variable for
which an initial value is neither predefined nor specified is undefined.

In a structured value occurring in an initialization expression the
notation ? may be used for components of protected types. This ma-
kes it possible to combine the predefined initialization of these com-
ponents with an explicitly specified initialization of the remaining
components.

A varsize call is similar in form to a function call. It allows the size

of a variable to be used in computations.

varsize call:

——VARSIZE — (—>variable_name —) —

The ‘variable name' must be the name of a variable or a record
field, made visible by means of a with statement. It must have been
introduced in a variable declaration. The value of a varsize call is
the size (number of bytes) of the variable as computed when its type
was established. The type of a varsize call is integer.

3.11.2 Variable Declarations TYPES AND OBJECTS

RTP Reference Manual 47

3.12 Notation for Objects and Values

An object which is declared or part of a (larger) declared object or
accessed through a declared pointer, may be referred to by denota-
tion.

object denotation:

—T object_name

tf indexed element

f——— selected field

——-»designated variable —

The denoted object is said to be accessed when: an assignment state-
ment in which it appears on the left hand side is executed; or the
factor which it constitutes in some expression is evaluated.

If the ‘object denotation' is an ‘object name' its type is the type of
the named object as determined by its declaration. The types of the
other forms of denoted objects are described in previous sections of
this chapter.

The target of an assignment may either be a variable object or the
implicit result object associated with a function call.

variable denotation:

—T— object denotation —7—

————» function_name ———

When an object denotation occurs as a variable denotation it must
denote an object which is a variable or part of a variable in the
stack or heap of a process, or superimposed on a message buffer in a
lock statement. It must not be a constant or part of a constant.

When a function name occurs as a variable denotation it denotes the
implicitly declared result object of an activation of the function it
names. A function name may be used in this fashion only in the ac-
tion part of the function, i.e. not in inner blocks.

The type of a variable denotation is the type of the denoted object
or the result type of the function, whichever applies.

TYPES AND OBJECTS 3.12 Notation for Objects and Values

48 RTP Reference Manual

Values which are not the values of objects or sub-objects may be
used in expressions.

value denotation:

structured value ————;—

>number

set denotation

[> predefined value_name

> selected type parameter

[> scalar_name

[> GETSWITCH — (—>switch_name —) — @

> character literal

——---——> character string

A value denotation denotes the value of an anonymous object, the ty-
pe and value of which is as described for the relevant one of the
possible forms.

A getswitch call is similar in form to a function call. It allows the
value of a compiler switch to be used in computations, i.e. transfer
of values from the domain of switch names to the domain of program
names (cf. chapter 12).

3.12 Notation for Objects and Values TYPES AND OBJECTS

RTP Reference Manual 49

4, EXPRESSIONS
An expression describes either an object to be addressed or some
computation to be performed by applying operators and functions, pre-
defined as well as programmer-defined, to values of objects as they
are at the time of computation and to constant values which may be
denoted directly in the expression.

The operators of the language are divided in groups with different
‘precedence. In order of increasing precedence the groups are: rela- ..-..
tional operators, addition-type operators, multiplication-type operators,
and the negation operator.

All operators are described in chapter 3 in conjunction with the
description of the types of the operands they apply to. Some
operators exist in several semantically distinct versions, applicable to
different types of operands and producing results in different ways
depending on the operand types, e.g. <= may be used for integer (or
in general: ordinal value) comparison, as well as for set comparison
(inclusion).

In section 4.1 reference is given, for each operator, to all sections
where a version of that operator is described. The following selection
rule is used in the application of operators occurring in expressions:
If the types of the operand(s) provided for an operator correspond to
one of the versions of that operator, then that version of the
operator is selected. Otherwise the expression is illegal. The type of
the result is determined according to the description of the selected
version of the operator. The result may again be used as an operand
of another operator and the selection rule may then be applied repe-
atedly.

An expression which is used as an actual parameter where the kind of
the corresponding formal parameter is variable, shared or inspect (cf.
chapter 6) must have the form of an ‘object denotation'. Such an
expression is called an object expression. The evaluation of an object
expression stops when the address of the denoted object has been
computed. In all other cases the evaluation of an expression proceeds
until a value has been obtained, as described in the following section.

4. EXPRESSIONS

50 RTP Reference Manual

4.1 Evaluation of Expressions

The evaluation of an expression yields a type and a value. This sec-
tion describes how the type and value are obtained from the types
and values of the parts of the expression which constitute the
operands at the various stages of computation.

expression:

— simple expression > wv

| cesetsons operator —>simple expression —

relational operator:

>= > 3.4 3.5 3.6 3.8

Pp <> 3.4 3.5 3.6 3.8

re < 3.4

> <= 3.4 3.5

> 3.4

>= 3.4 3.5

——» IN — 3.5

The expression is evaluated by evaluating the simple expression(s) in
the order of occurrence. Then, if no operator is present, the type and
value of the expression are the type and value of the (only) simple
expression. Otherwise the appropriate version of the operator is
applied to the values of the simple expressions; the result is the
value of the expression, its type being boolean for all relational
operators.

simple expression:

[addition-type operator<—

v
 > >term

4.1 Evaluation of Expressions EXPRESSIONS

RTP Reference Manual 51

A leading + or - implies an implicit left term with type integer and
value 0.

addition-type operator:

>+ — 3.4.3 3.5

_——> = 3.4.3 3.5

OR —— 3.4.1 3.4.3

———>XOR —— 3.4.1 3.4.3

The evaluation of a simple expression proceeds from left to right. The
leftmost term (possibly an implicit 0) is evaluated, yielding a preli-
minary result. The following is then performed repeatedly:

The preliminary result is used as left operand of the leftmost remai-
ning operator. The leftmost remaining term is evaluated and used as
right operand. The appropriate version of the operator is then applied
and produces a new preliminary result.

When no more operators and terms are left the simple expression has
been completely evaluated; the final type and value of the preliminary
result constitute the type and value of the simple expression.

There is one exception to the rule described above: if the left
operand of the OR-operator is of type boolean and has value true,
then the evaluation of the right operand is omitted; however, its type
must still be boolean.

term:

[multiplication-type operator<¢—

——> factor >

EXPRESSIONS 4.1 Evaluation of Expressions

52 RTP Reference Manual

multiplication-type operator:

>* > 3.4.3 3.5

p——> DIV —— 3.4.3

-——> MOD ——+ 3.4.3

-——> AND —— 3.4.1 3.4.3

———> SHIFT — 3.4.3

The evaluation of a term proceeds from left to right in the same
fashion as for a simple expression (i.e. substitute 'factor' for 'term'
and 'term' for 'simple expression’ in the above description).

There is one exception to the general rule: if the left operand of the
AND-operator is of type boolean and has value false, then the evalua-
tion of the right operand is omitted; however, its type must still be
boolean.

factor:

—Tobject denotation

[value denotation ——

fm function call

> typesize call

fs varsize call

fcc link call

po unlink call

fo create call

— (— expression) —

NOT —>neg_factor ——~

The type and value of a factor are obtained as described below for
each of the possible forms:

object denotation:
The value of the factor is the value of the denoted object at the ti-
me of evaluation. The type of the factor is the type of the denoted
object, except if this type is a subrange in which case the type of

4.1 Evaluation of Expressions EXPRESSIONS

RTP Reference Manual 53

the factor is the base type of the subrange. If the value of the
object is undefined (not initialized) the effect of evaluating the fac-
tor is not defined.

value denotation:

The type and value of the factor are the type and value of the
denoted value, cf. section 3.12.

function call: 4
typesize call: 3
varsize call: 3
link call: 9.
unlink call: 9
create call: 9

The type and value of the factor are the type and value of the call,
as described in the indicated section.

(expression):
The factor is evaluated by evaluating the expression. The type and
value of the factor are the type and value of the expression.

NOT neg factor:
the type and value of the factor are obtained by evaluating the
neg factor and applying the appropriate version of the NOT-operator
to the result. The versions of the NOT-operator are described in sub-
sections 3.4.1 and 3.4.3.

Note:
The precedence rules of Real-Time Pascal are those of standard
Pascal which differ from the rules of other programming languages
(e.g. ALGOL and PL/M languages).

Example:
AS a consequence of the precedence rules the following is not a legal
expression:

0<x AND x<10
The expression should be written as:

(O<x) AND (x<10)

4.2 Function Call

A function call causes a value to be computed by an activation of
the indicated function.

function call:

— function_name >] >

L soto parameters

EXPRESSIONS 4.2 Function Call

54 RTP Reference Manual

The function name must be the name of a function, either predefined
or programmer-defined. Evaluation of a function call takes place in
two steps:

1. The actual parameters are evaluated in the order of occurrence.
2. An activation of the block associated with the function name is

created and executed, cf. chapter 6.

The type of the function call is the result type of the function. The
‘ value of the function call is the value of the implicit result object
associated with the activation of the function block when the execu-
tion of its action part terminates. If the value is undefined (no as-
signment) the effect of evaluating the function call is not defined.

Detailed rules for actual parameters are decribed in section 6.1.

4.3 Constant Expressions

Constant expressions can be evaluated at compile-time. Only constant
expressions may be used in constant declarations. If all expressions
used in a type definition are constant expressions the type is said to
be static.

Constant expressions are recursively defined by the following restric-
tions.

1. All denoted objects must be constants.
2. Only the following (predefined) functions may be called: abs, chr,

ord, pred, and succ.
3. Any typesize call must name a static type.
4. ‘link call', "unlink call', and 'create call' must not occur.
5. Factors of set types must not occur.

4.3 Constant Expressions EXPRESSIONS

RTP Reference Manual 55

d. STATEMENTS
This chapter contains subsections describing the syntax and the use of
the different statements which are included in the Real-Time Pascal
language. Most of the statements are also found in standard Pascal
and are well known language elements.

5.1 Compound Statement

The statements of a program describe the actions which are executed
by an incarnation. These statements are collected in a compound
statement.

compound statement:

*<€
2

——> BEGIN ~—~ statement —“— END —

The statements are executed one at a time in the specified order.
When all have been executed the compound statement has been
completely executed or exhausted.

Below, all statement forms are given together with reference to their
precise decription:

STATEMENTS 5.1 Compound Statement

56 RTP Reference Manual

statement:

[> compound statement 5.1

assignment statement —— 5.2.1

-——> exchange statement 5.2.2

————if statement ———— 5.3

> case statement 5.4

tH for statement ———J 5.5.1

——— loop statement 5.5.2

[while statement 5.5.3

[HH repeat statement 5.5.4

procedure call 5.6

—————exitloop statement 5.7.1

r—>continueloop statement — 5.7.2

exit statement ——— 5.7.3

to goto statement 5.7.4

[labelled statement 5.7.4

[with statement 5.8

lock statement 5.9

——————>region statement 5.10

Note:
Statement may be empty.

5.2 Data Transfer Statements

Assignment and exchange statements are the basic building blocks for
other types of statements. They serve to transfer values to objects.

5.2 Data Transfer Statements STATEMENTS

RTP Reference Manual 57

5.2.1 Assignment Statement

The execution of an assignment statement causes the current value of
a variable to be replaced with a new value specified by an expres-
sion. The right hand side expression must be of a type which is as-
signment compatible (cf. section 3.9) with the type of the variable.

assignment statement:

— variable denotation —:=—+expression —

The execution of an assignment statement takes place in four steps:

1) The variable denotation is evaluated as an object expression.

2) The right hand side expression is evaluated.

3) the run-time part of the type checking, including tests for range
constraints, is performed. A fault occurs if some constraint is
violated.

4) The value of the expression replaces the value of the variable.

Assignments cannot be made to variables of shielded types or of
structured types with shielded component types.

Examples:
current_index:= current_index+l
catalog(current_index).author:= "Andersen H C"
matrix:= matrix_type(:(:1, 0, 0:),

(:0, 1, 0:),
(:0, 0, 1:):)

5.2.2 Exchange Statement

The values of two variables may be exchanged by the execution of an
exchange statement.

exchange statement:

—— object denotation—:=: object denotation —

The denoted objects must be variables, and they must be of the same
type, cf. section 3.9. This type, or any of its components types, must
not be mailbox, pool, chain, or port.

The execution of an exchange statement takes place in two steps:

STATEMENTS 5.2.2 Exchange Statement

58 RTP Reference Manual

1) The addresses of the left hand side and right hand side variables
are evaluated, in that order.

2) The values of the objects located at the addresses evaluated in
step 1 are interchanged.

If the two variables are of type reference, external program, or
process or if they have components of these types, the interchange
takes place as an indivisible operation so that the integrity of
references to messages and processes is preserved.

Examples:
current_message_ref:=:temp_message
matrix(i):=:matrix(j)

5.3 If Statement

An if statement selects for execution one of two (possibly empty)
statements depending on the value of a condition. The expression spe-
cifying the condition must be of the predefined type boolean.

if statement:

> IF —>boolean_expression —>THEN — statement | > >

ELSE — statement i

The execution of an if statement takes place in two steps:

1) The value of the boolean_expression is evaluated.

2) If the expression evaluates to true the statement following THEN
is executed. Otherwise the statement after ELSE (if present) is
executed.

The ambiguous statement:
IF el THEN IF e2 THEN sl ELSE s2

is defined to be equivalent to:
IF el THEN
BEGIN

IF e2 THEN sl ELSE s2
END

Examples:
IF day=Saturday THEN

day:= Sunday
ELSE

day:= succ(day)

IF test THEN produce_test_record

5.3 If Statement STATEMENTS

RTP Reference Manual 59

5.4 Case Statement

A case statement selects for execution one of a number of alternative
statements, depending on the value of an expression. The expression
must be of an ordinal type.

case statement:

-<
¢

—— CASE —>selecting expression —0F —~— case element ——end case —

case element:

é
28

———> expression -7 >] >: — statement ——

L .. ™>expression

end case:

> >END —>

<<
2

> OTHERWISE ——— statement

A case element is a statement labelled by one or more constant
expressions. These constant expressions, called case labels, must all be
of a type compatible with that of the selecting expression. Conse-
cutive values may be given as a range, e.g. first..last. All the case
labels of one case statement must be distinct.

The execution of a case statement takes place in three steps:

1) Evaluation of the selecting expression.

2) The case element with the label corresponding to the value of the
selecting expression is selected for execution.

The "label" OTHERWISE (keyword) corresponds to all values of
the type of the selecting expression which do not occur as case
labels. A fault occurs if no case element corresponds to the value
of the s2lecting expression.

3) Execution of the statement of the selected case element.

STATEMENTS 5.4 Case Statement

60 RTP Reference Manual

Note:

Upon completion of the selected statement the case statement is also

completed.

Example:
CASE month OF

January..May: coess
October, December: cove

OTHERWISE bees
END (* of case *)

5.5 Repetitive Statements

A repetitive statement specifies that a statement is to be executed
repeatedly, zero or more times.

5.5.1 For Statement

A for loop may be used if a statement is to be executed a fixed
number of times and/or elaborates on consecutive values of an object
(iteration).

for statement:

—— FOR —>for_name —:=— iteration description —>D0 —statement ——>

iteration description:

——start_expression »TO ——;— stop_expression ——>

———> DOWNTO —

The execution of a for statement takes place in five steps, where
three may be repeated:

1) The start and stop expressions are evaluated and define an ordinal
type, i.e. the expressions must be of the same type, which must be
an ordinal type.

2) The controlling variable is allocated as an implicitly declared vari-
able, local to the for statement. Its name is the 'for_name'. The
type of the controlling variable is the type of the start and stop
expressions. The initial value of the controlling variable is that of
the start expression.

3) The termination condition is tested. That is, if TO is specified,
execution of the for statement terminates when the value of the

5.5.1 For Statement STATEMENTS

RTP Reference Manual 61

controlling variable is greater than the value of the stop expres-
sion; if DOWNTO is specified, when the value of the controlling
variable is less than the value of the stop expression.

4) The statement following DO is executed with the controlling vari-
able acting as a constant (i.e. it must not appear on the left hand
side of an assignment statement, nor may it be passed as a vari-
able parameter of a routine call).

--5) The value of the controlling variable is updated, except if it has
already reached the upper or lower bound of the permissible range
in which case execution of the for statement terminates immedi-
ately. The iteration can either be with increasing values of the
controlling variable or with decreasing values. If TO is specified
the ordinal value of the controlling variable is incremented in
steps of one (succ). If DOWNTO is specified the iteration is with
decreasing values (pred). The execution continues at step 3.

Note:
The two expressions are evaluated once, before the repetition. If the
termination condition is satisfied before the very first repetition the
statement (following DO) of the for statement is not executed at all.

Example:
FOR month:= January TO December DO

FOR date:= 1 TO number_of_days(month) DO
daily activity(date,month)

5.5.2 Loop Statement

The loop statement constitutes an unconditional repetitive control
structure, which may be used to define an "infinite" main loop of a
program, only terminated in case of a fault or parent enforced pro-
cess termination.

loop statement:

on
2

——> LOOP “> statement —“— ENDLOOP ——>

The loop statement specifies repeated execution of the statement se-
quence in the stated order. The loop may be left as the result of the
execution of a jump statement (cf. section 5.7).

Example:
LOOP

next_m:= read_next_message;
prepare_message(next_m);
send_message(next_m)

ENDLOOP

STATEMENTS 5.5.2 Loop Statement

62 RTP Reference Manual

5.5.3 While Statement

Conditional repetition of a statement where the condition is checked
before each execution may be achieved by means of a while state-
ment.

while statement:

—— WHILE —>boolean_expression —>D0 —>statement —~>

The value of the boolean_expression is evaluated before each execu-
tion of the statement. The test-and-execute sequence goes on as long
as the evaluation yields true, when the result becomes false, possibly
the first time, execution of the while statement terminates.

The while statement:
WHILE exp DO st

is equivalent to the following combination of loop, if and exitloop
statements:

LOOP IF NOT exp THEN EXITLOOP; st ENDLOOP

Example:
current index:= first index;
WHILE table(current_index)<>sought_element DO

current_index:= current_index+1

5.5.4 Repeat Statement

Execution of a sequence of statements until some condition is satis-
fied may be achieved by means of a repeat statement.

repeat statement:

-<
2¢

——> REPEAT > statement —"— UNTIL —>boolean_expression ——>

Every time the sequence of statements has been executed, the value
of the boolean expression is evaluated and execution of the repeat
statement terminates when the evaluation yields true.

The repeat statement
. REPEAT sl; ..3 sn UNTIL exp
is equivalent to the following special form of the loop statement:

LOOP sl]; ...3 sn; IF exp THEN EXITLOOP ENDLOOP

5.5.4 Repeat Statement STATEMENTS

RTP Reference Manual 63

Example:
REPEAT

wait(ref, main_mailbox);
final_message:= do_process(ref);
return(ref)

UNTIL final_message

5.6 Procedure Call

A procedure call serves to establish a binding between actual and |
formal parameters, to allocate locally declared variables, and to invo-
ke execution of the compound statement of the procedure block in its
proper surroundings. A procedure call consists of the procedure name
followed by a list of actual parameters. If the procedure is declared
without formal parameters, the call consists of the procedure name
only.

procedure call:

——>procedure_name > Ty"

_ parameters

The execution of a procedure call takes place in two steps:

1) The actual parameters are evaluated in the order of occurrence.

2) An activation of the block associated with the procedure name is
created, including parameter passing, and the action part of the
block is executed (cf. chapter 6). When the execution terminates
the procedure call is completed.

Detailed rules for actual parameters are decribed in section 6.1.

5.7 Jump Statements

The statements described in this section serve to explicitly modify the
_ order of execution of statements by transferring control to an impli-

citly or explicitly indicated statement.

5.7.1 Exitloop Statement

Execution of an exitloop statement causes the execution of an
enclosing repetitive statement (cf. section 5.5) to terminate.

exitloop statement:

——— EXITLOOP —>

STATEMENTS 5.7.1 Exitloop Statement

64 RTP Reference Manual

The repetition exited is the innermost one. An exitloop statement may
only appear within a repetitive statement, i.e. repeat, for, while or
loop statement.

Example:
The generalized loop control structure may be constructed as a com-
bination of a loop statement, an if statement, and an exitloop state-
ment:

LOOP
s 11; ...3 s_1_n;
IF bool_condition THEN EXITLOOP;
s 21; ...3 Ss 2m

ENDLOOP

5.7.2 Continueloop Statement

The continueloop statement specifies that the remaining part of an
iteration of a loop is to be skipped.

continueloop statement:

-—— > CONTINUELOOP ——>

The statement applies to the innermost enclosing repetitive statement
which must therefore exist. Depending on the kind of repetition
statement (cf. section 5.5) the specific effect of the continueloop
statement is:

for statement:

Step 4 terminates, and execution continues at step 5.

loop statement:
Execution continues with the first statement after LOOP.

while statement:
The remainder of the statement following DO is skipped. Execution
continues with the evaluation of the loop condition.

repeat statement:
The remainder of the statement sequence up to UNTIL is skipped. Ex-
ecution continues with the evaluation of the loop condition.

5.7.2 Continueloop Statement STATEMENTS

RTP Reference Manual 65

5.7.3 Exit Statement

An exit statement has the effect of a jump to the END of the com-
pound statement of the enclosing block.

exit statement:

— EXIT —

Execution of an exit statement causes termination of the execution of
the action part of the nearest enclosing routine or program block as
if the compound statement had been exhausted.

Example:
BEGIN (* main program *)

IF errors-detected THEN (* terminate the process *)
EXIT;

END

5.7.4 Goto and Labelled Statement

The execution of a goto statement results in an explicit transfer of
control to another statement specified by a label.

goto statement:

—— GOTO — label_name ——~

labelled statement:

——>label_name —: — statement ——>

A labelled statement introduces the label name as denoting a label of
the 'statement' following :.

A labelled statement is executed by executing the ‘statement’.

Execution of a goto statement causes the normal order of execution
of the statements within a compound statement to be broken. Execu-
tion is resumed at the labelled statement whose 'label_name' is iden-
tical to the one occurring in the goto statement. The label must be
visible at the point where the goto statement occurs.

STATEMENTS 5.7.4 Goto and Labelled Statement

66 RTP Reference Manual

A goto statement cannot be used to transfer control from the outside
into or from the inside out of the statement following DO of a for,
with, lock, or region statement.

Note:
Goto into or out of a block is impossible.

5.8 With Statement

A with statement may be used for three purposes:

- shorthand notation for field access in a record object,
- object renaming,
- object retyping.

The latter is a facility allowing a programmer-defined type to be su-
perimposed on a message buffer when applied in a lock statement. @

with statement:

——“ WITH —with definition —DO —statement —

with definition:

—— with_object denotation > >

——with renaming i

with renaming: @

—— AS — local_name > i >

L. —>common type specification

The denoted object is called the with-object. It must not be an irre-
gular object (cf. section 3.8). The type specified by the 'common ty-
pe specification’, if present, is called the local type. The type of the
with-object must not be protected, nor may the local type. The size
of the local type must be less than or equal to the size of the with-
object.

If the AS-part of a with statement is empty several with-objects may
be listed. More specifically

WITH d,> do, ooey d, DO st

5.8 With Statement STATEMENTS

RTP Reference Manual 67

is acceptable as shorthand for

WITH d, DO WITH dy DO ... WITH dy DO st

where the qd; are object denotations.

A with statement is executed in three steps:
1. the denotation of the with-object is evaluated as an object expres-

Sion, i.e. the address of the object is established;
2. the local type, if present, is established;
3. the statement following DO is executed observing the rules descri-

bed below.

field access:
In the simple form of the with statement, i.e. without renaming, and
if the type of the with-object is a record type and fname is a field
name of this record type then

fname
may be used as shorthand for

obj.fname
where obj is an object denotation denoting the with-object.

renaming:
a non-empty AS-part is equivalent to a local declaration of an object,
called the local object, with the same address as the with-object. The
"local name' denotes the local object.

retyping:
The type of the local object is the local type, if specified; otherwise
it is the type of the with-object.

Notes:

the with-object is not restricted to be of a record type, even (struc-
tured) constants are allowed.

The address of the object is evaluated only once before the statement
following DO is executed.

The retyping of an object is a low-level facility of the language, in-
tended for use in connection with messages whose exact type is not
known beforehand (some of the type information may be part of the
message buffer). But the facility may be used freely to achieve a
relaxation of the otherwise rigorous object typing, which is one of
the basic features of the language. This method demands an explicit
and clear retyping stated where it is used in the program, in contrast
to the standard Pascal solution using variant records.

The effect of assignment or exchange between partially overlapping
objects is undefined.

STATEMENTS 5.8 With Statement

68 RTP Reference Manual

Example:
Let rec_var be a record with a field named rec field, and let lo-
cal type contain a field named loc_rec field, then “the fields may be
accessed in the following ways in the statement following DO:

1) WITH rec_var DO (* the well-known standard Pascal form *)
rec_var.rec_field or
rec_field

2) WITH rec_var AS loc_var DO (* simple renaming *)
rec_var.rec_field or
loc_var.rec_field

3) WITH rec_var AS loc_var: local_type DO
(* renaming and retyping *)
rec_var.rec_field or
loc_var.loc_rec_field

Exampel:

TYPE

cat_record= RECORD
title:
author:

END;
VAR

b_catalog: ARRAY(1..cat_size) OF cat_record;
search_object: cat_ record;

WITH search object AS so DO
WHILE NOT found DO
WITH b_catalog(current_index) DO

IF author(* of b_ catalog *)<>s_o.author then
current_index:= current_index+l

ELSE

5.9 Lock Statement

The lock statement is the language construct which provides access to
the actual contents of a message. buffer, i.e. to the top non-empty
message in a message stack.

lock statement:

Loy definition —D0O —statement -——~

5.9 Lock Statement STATEMENTS

RTP Reference Manual 69

lock definition:

—ref_object denotation —>TO —>message_name | >

:—>common type seecitieaton J

The denoted object must be a variable of type reference or chain. If
it is a reference its value must not be NIL, and if it is a chain it
must not be empty. Otherwise a fault occurs. The message designated
by the reference, or the current message of the chain, whichever
applies, may be accessed in the statement following DO as an impli- -
citly declared variable the name of which is specified by the 'messa-
ge_name', Either the whole buffer or only its data area is accessible,
depending on the lockword (LOCKBUF or LOCKDATA).

If no retyping is specified for the buffer/data area the appropriate of
the following types is assumed.

If the lockword is LOCKDATA the data area is accessible as a vari-
able of a type belonging to the predefined family

dataarea(offset, top: 0..maxint)=
PACKED ARRAY(offset..top-1) OF byte

where the parameter values are equal to the message attributes with
the same names. The address of the variable as well as the parameter
values are evaluated before the statement following DO is executed.

If the lockword is LOCKBUF the whole message buffer is accessible
as a variable of a type belonging to the predefined family

buffer(bufsize: 0..maxint)=

PACKED ARRAY(0..bufsize-1) OF byte

where the value of the parameter equals the size of the buffer.

@ If a lock statement is applied to a message stack with no non-empty
message a fault occurs.

The following restrictions are imposed on the use of the locked vari-
able while the statement following DO is being executed, including
any routine calls made: If a reference, it must not be used as part of
an exchange statement or as a parameter to signal, return, or release _
(cf. chapter 9), or be delivered to the IMC (cf. chapter 11). Whether
a chain or a reference, it must not be used as a parameter to any of
the message stack or chain manipulation routines (cf. chapter 10).
However, it is legal to (dynamically) apply multiple locks to the same
reference or chain (e.g. in a routine called from within a lock state-
ment).

Example:
LOCKDATA ref TO data_part: my_data_type DO

eee

STATEMENTS 5.9 Lock Statement

70 RTP Reference Manual

5.10 Region Statement

The region statement provides access to shared variables and it is
ensured that the access is exclusive.

region statement:

—— REGION —>shared_ object denotation —>D0O —>statement —— >

The denoted object must be a shared variable. Associated with every
shared variable is an access count which is initially zero. A region
statement is executed in three steps.

1. Unless the process executing the region statement is already exe-
cuting (dynamically inside) a region statement accessing the same
shared variable it waits (is suspended) until the access count of
the variable is zero. Subsequently the access count is incremented.
If several processes wait for access to the same shared variable
they observe a fifo discipline.

2. The statement following DO is executed. In this statement the
shared variable may be accessed in the same fashion as an or-
dinary (private) variable.

3. The access count of the shared variable is decremented.

Example:

SHARED
route_table: RECORD

PROCEDURE close_down(node: node_ident);

REGION route table DO
route_table.open_routes(node):= closed;

5.10 Region Statement STATEMENTS

RTP Reference Manual 71

6, PROGRAMS AND ROUTINES
Programs and routines are very similar. Both have the general form of
a heading followed by a block. Incarnations of program and routine
blocks also exhibit fundamental similarities. In both cases the life of
an incarnation has three stages: parameter passing, elaboration of
declarations, and execution of an action part. The differences have to
do with two aspects: control and environment.

An incarnation of a program block is a process on its own which lives
autonomously except for the control exercised by its parent, whereas
an incarnation, or activation, of a routine block is merely an episode
in the life of a process. The activation, unless it chooses to loop in-
finitely or commits a fault, has no choice but to return to the point
where it was called.

A process has no environment of data to access apart from predefined
items and its parameters. A routine block activation, in addition to
these, has its static surroundings: all the stack-allocated objects
(including formal parameters) declared in enclosing blocks, except
those which have been made invisible by redeclaration of their names,
cf. chapter 8.

A program declaration may appear at the outer level of a ‘compila-
tion unit', cf. section 8.2, or in the declaration part of a program
block. It serves to name and define a program.

program declaration:

—~>program heading —; — program block —

program heading:

——> PROGRAM —>program_name -7 > | >

| comes parameters

The heading specifies the name of the program and its formal para-
meters, if any.

A routine declaration may also appear at the outer level of a 'com-
pilation unit', or in the declaration part of a block. It serves to na-
me and define a routine.

6. PROGRAMS AND ROUTINES

72 RTP Reference Manual

routine declaration:

> FUNCTION —>function heading] >

Ls encesoin — procedure heading —:; — routine block

function heading:

—— function_name > 1 >: — common type specification -——

L com parameters

procedure heading:

—— > procedure_name > 1 >

Leone parameters

The initial keyword in a routine declaration specifies whether the
routine is a function or a procedure. In addition the declaration spe-
cifies the name of the routine, its formal parameters, if any, and in
the case of a function, its result type, which must not be a protected
type. The ‘routine block' unless specified by one of the keywords EX-
TERNAL or FORWARD (see blow) is associated with the function or
procedure name.

The parameters and blocks of programs as well as routines are descri-
bed in the following two sections.

Examples:

PROGRAM router(INSPECT routs: route table)
FUNCTION search_name(name: name_node): boolean
PROCEDURE insert_name(VAR pos: table_index; name: name_record)

6. PROGRAMS AND ROUTINES

RTP Reference Manual 73

6.1 Parameters

The ‘formal parameters' of a program or routine heading specify the
names, kinds and types of the formal parameters of the program or
routine.

formal parameters:

<
8

—(> > formal_name ——>: —>formal type specification —+ >) —>

-———> VAR ——

-—> INSPECT —

> SHARED ——

Each ‘formal name' introduces one parameter. Several parameters may
be named in a list, separated by commas. Such parameters have the
same kind and type.

The kind of a parameter, which may be variable, inspect, shared or
value, is specified by the (possible) keyword preceding its name. In
the block of the program or routine each parameter acts as an
object. The parameter kind determines how this object may be used:

keyword parameter kind use of object
VAR variable as a private variable
INSPECT inspect as a constant
SHARED shared as a shared variable
none value as a private variable

The type of each parameter, i.e. of the object which can be accessed
in the block of the program or routine, is determined by the 'formal
type specification’ following the name of the parameter. If the 'for-
mal type specification’ is a ‘parameterized-type_name', i.e. the name
of a family of conformant types, the type of the formal parameter is
determined for each incarnation of the program or routine by the ty-
pe of the actual parameter.

An incarnation of a program or routine is created as a result of a
‘create call', ‘function call', or ‘procedure call' being evaluated or
executed. The call contains a description of the actual parameters to
be bound to the formal parameters for the particular incarnation of
the program or routine.

PROGRAMS AND ROUTINES 6.1 Parameters

74 RTP Reference Manual

actual parameters:

é
fs

———> (>expression >)—_-

>?

Each actual parameter corresponds to the formal parameter in the
same position in the 'formal parameters'. The number of actual para-
meters must equal the number. of formal parameters. An actual para-
meter of kind variable, inspect, or shared must be of the same type
as the corresponding formal parameter. An actual parameter of kind
value need only be assignable to the formal parameter (cf. section
3.9). When the type of a formal parameter is specified as the name
of a family of types the type of the corresponding actual parameter
may be any type in that family.

The symbol ? may be used in place of an actual parameter expression
when the parameter is not of kind value, regardless of the type of
the formal parameter.

The binding of an actual parameter to the corresponding formal para-
meter takes place either by a value transfer ("call by value"), or by
an address transfer ("call by reference") depending on the kind of the
parameter. Value parameters are passed by value transfer, all other
kinds by address transfer.

value transfer:
The value of the actual parameter becomes the initial value of the
formal parameter which is allocated on the stack as an object local
to the incarnation.

address transer:
The actual parameter is an object expression, cf. chapter 4. It must
not denote an irregular object (cf. section 3.8). Evaluation of the ac-
tual parameter yields the address of an object of the parameter type.
Throughout the life of the incarnation of the program or routine the
formal parameter name will denote this object.

‘An actual parameter object passed to a process must be declared at
the outer block level of the parent process, i.e. either it must itself
be a process parameter or it must be declared in the program
declaration part.

If the actual parameter is specified as ? there is no parameter
object. If an attempt is made to access such a non-existing parameter
object a fault occurs.

If the kind of the formal parameter is variable the actual parameter
object must be a private variable or component of a private variable.
If the kind of the formal parameter is shared the actual parameter

6.1 Parameters PROGRAMS AND ROUTINES

RTP Reference Manual 75

object must be a shared variable. Conversely, if the actual parameter
is shared, the kind of the formal parameter must also be shared.

The following restrictions apply to process parameters, i.e. to the
formal parameters which occur in a program heading:
- parameters of kind variable must be of type pool, mailbox, or port;
- parameters (or components thereof) of pointer types must have

mailbox as their base type, regardless of kind.

Note:
An actual process parameter of kind inspect may be a variable, and
thus it may be changed by the parent process.

Example:

TYPE

list= ARRAY(1..max_list_length) OF list_element;

PROCEDURE handle_list(INSPECT Ist: list);
-- Ist is of kind inspect to save time and space, and to
-- allow the handling of constant lists

6.2 Incarnations of Blocks

A block, whether program or routine, consists of a declaration part
and an action part which has the form of a compound statement.

program block:

> >compound statement —;—

———>program declaration part —>:;: i

> EXTERNAL

routine block:

y i >compound statement —;—

Lowrise declaration part —:;

> EXTERNAL

> FORWARD

Blocks specified by one of the keywords EXTERNAL and FORWARD
are described in subsection 6.2.2.

PROGRAMS AND ROUTINES 6.2 Incarnations of Blocks

76 RTP Reference Manual

The declaration parts of program and routine blocks are slightly dif-
ferent in that certain forms of declarations may not occur ina
routine block; see subsection 6.2.1.

An incarnation, whether of a program or routine, is created in the
following three steps.

1) Allocation of the necessary (initial) amount of stack and heap. In
the case of a program this means a whole new stack; in the case
of a routine it means an activation record in the stack of the cal-
ling process.

2) Parameter passing, cf. section 6.1.

3) Elaboration of the declarations of the blocks, as described below.

When an incarnation has been created the action part of the block
can be executed, cf. function call (section 4.2), procedure call (sec-
tion 5.6), and create call (section 9.1).

When execution of the action part of a routine terminates the values
of all local reference variables must be NIL, otherwise a fault occurs.

6.2.1 The Declaration Part

The declaration part of a block names and defines types, objects,
routines and programs which are local to the block, i.e. not visible
outside the block. The names introduced in the declarations may be
used within the block to refer to the defined entities, cf. chapter 8.

program declaration part:

-<
7

—_ common declaration v

shared declaration

program declaration

routine declaration part:

< . ri

—— common declaration v

6.2.1 The Declaration Part PROGRAMS AND ROUTINES

RTP Reference Manual 77

common declaration:

—T- constant declaration —;—

f > type declaration

—>variable declaration —

——routine declaration ——

Variables of shielded types, except reference, and variables which __
have components of these types may not be declared in a routine
declaration part, i.e. such variables can only be declared in the outer
block of a program.

The declarations in the declaration part of a block are elaborated in
the order of occurrence. Elaboration of type declarations is described
in section 3.2, elaboration of variable and shared declarations is
described in subsection 3.11.2, and constant declarations need no ela-
boration at run-time.

The elaboration of a routine or program declaration causes all types
defined in the ‘formal parameters' to be established. When a program
declaration is elaborated a sub-program object is allocated in the
stack of the process being created, and associated with the program
name specified in the declaration. Unless the program block is ex-
ternal, the sub-program object is linked (as if by an implicit link call,
cf. chapter 9) to the block; otherwise it is initialized as having state
unlinked.

The elaboration of the declaration part is performed for each incarna-
tion of a block, and the names introduced in the declarations, when
occurring in the remainder of the block, refer to those instances of
the named entities which have been established or allocated when the
particular incarnation of the block was created.

In the case of a function block elaboration of the declaration part,
even if it is empty, includes establishment of the result type and al-
location on the stack of an implicitly declared result object. The in-
itial value of the result object is undefined, unless, it is of a pointer

- type, in which case the initial value is NIL.

Note:
The static environment of an internal program block is the same as
that of the enclosing program block, i.e. only names in contexts spe-
cified for the compilation unit, cf. chapter 8, predefined names, and
the names of formal parameters are known from the start of the
block.

Elaboration of declarations is not the only time types may be
established. Further types may be established when for, with, and lock
statements are executed.

PROGRAMS AND ROUTINES 6.2.1 The Declaration Part

78 RTP Reference Manual

Example (of nested routines):

TYPE parity= (even, odd);

FUNCTION byte_parity(arg: byte): parity;

FUNCTION even4bits(arg: 0..15): boolean;
CONST table= (. 0, 3, 5, 6, 9, 10, 12, 15 .);

BEGIN even4bits:= arg IN table END;

BEGIN (* byte parity *)
IF even4bits(int(arg SHIFT (-4))) -- left half byte

=even4bits(int(arg AND #HF)) -- right half byte
THEN byte_parity:= even
ELSE byte_parity:= odd

END

6.2.2 Forward and External Blocks

A forward announcement of a declaration containing the actual block
of a routine may be given by using the keyword FORWARD in place
of the routine block. When a forward announcement is used a declara-
tion with an identical routine heading, i.e. all lexical elements identi-
cal, and an actual routine block (i.e. consisting of declaration part,
which may be empty, and action part) must appear later in the same
‘declaration part’. In this way it is possible to observe the rule of
declaration before use, even for mutually recursive routines.

The block of a program or routine may be specified as external, i.e.
separately compiled (cf. chapter 8), by the keyword EXTERNAL. An
external program or routine may possibly be written in another pro-
gramming language and compiled by a compiler for that language pro-
vided it is object code format compatible with the Real-Time Pascal
compiler in question.

External sub-program objects may alternatively be declared as vari-
ables of an external program type

external program type:

> EXTERNAL —>PROGRAM —>formal parameters ——>

The use of external program types is a simple way of defining more
objects over the same sub-program heading. Either as variables of the
same type, or aS component type of an array, which may be dynami-
cally sized depending on a program parameter (system configuration).
Or a totally dynamic structure, by means of objects on the heap.

Note: the declaration
PROGRAM prog(VAR mbx: mailbox); EXTERNAL

is equivalent to
prog: EXTERNAL PROGRAM (VAR mbx: mailbox)

6.2.2 Forward and External Blocks PROGRAMS AND ROUTINES

RTP Reference Manual 79

Example:

TYPE
child_type= EXTERNAL PROGRAM (VAR main mbx: mailbox);

VAR
children: ARRAY (1..max_children) OF

RECORD
ext_name, inc_name: string(12);
child: child_type;
child_handle: process;

WITH children(next) DO
IF link(ext_name, child)=link_ok THEN

IF create(inc_name, child(common_mbx), child_handle,
0, stdpriority)=create_ok THEN

Due to the differences between routines and programs the linking of
a program to a separately compiled block is somewhat different in the
two cases.

During the execution of an incarnation of a program containing an
external program declaration, the linking between the resulting sub-
program object and the block of a separately compiled program is
established as a result of the evaluation of an explicit link call, cf.
chapter 9.

The association between the block of a separately compiled routine
and the function or procedure name specified in an external routine
declaration, i.e. the linking of the routine block to the program in
which the external declaration occurs, must be established by a linka-
ge editor before an incarnation of the program can be created. This
can be done during a separate link-phase following compilation, or it
can be done as a by-effect of program linking at run-time.

The amount and kind of checking of the agreement between the 'for-
mal parameters' of an external program or routine declaration and the
corresponding formal parameter specification of the separately com-

“piled block, which is performed during linking, is implementation de-
pendent. This is true for both cases of linking. In order to facilitate

- linking with programs written in other languages the parameter and. -
result passing formats used by an implementation must be appropria-
tely chosen and thoroughly documented.

PROGRAMS AND ROUTINES 6.2.2 Forward and External Blocks

80 ; RTP Reference Manual

Example (of mutually recursive routines):

PROCEDURE first(parl, par2: typel); FORWARD;

PROCEDURE second(par: par_type);

BEGIN

first(act1, ct2);

PROCEDURE first(parl, par2: typel);

BEGIN

second(act);

END

6.2.3 The Action Part

Execution of the actions of a block means execution of its compound
statement. This is described in chapter 5. Execution is terminated
when the compound statement is exhausted, when an exit statement is
executed, or when a fault occurs. When a process terminates it goes
into a passive state where it remains until removed by its parent.
When a procedure activation terminates its activation record is deal-
located and a return is made to the caller, i.e. the procedure call is
completed. When a function activation terminates its activation record
is deallocated and the final value of the implicit result object is the
value of the function call whose evaluation caused the activation.

6.2.3 The Action Part PROGRAMS AND ROUTINES

RTP Reference Manual 81

7, FAULT HANDLING
A number of violations of the rules of Real-Time Pascal are referred
to in this document as faults. Faults are errors which cannot, at least
not in all cases, be detected at compile-time. Faults which are detec-
ted at compile-time cause the compiler to reject the source program.
When a fault occurs at run-time, during the execution of an incarna-
tion of a program, the following happens:

1. The exception procedure of the program is called with a fault co-
de parameter indicating the kind of fault which occurred.

2. When (if) the exception procedure returns the process terminates
and goes into a passive state as if execution of its action part
had been completed.

Fault codes are implementation dependent and must be documented for
each implementation.

7.1 Default Exception Procedure

Every implementation must include a default exception procedure
which outputs a snapshot of the stack of the calling process and the
fault code.

The default exception procedure may also be called to provide trace
information about a process. Such an explicit call does not cause the
process to terminate. The heading of the default exception procedure
is:

PROCEDURE trace(fault: integer)

7.2 Programmer-defined Exception Procedure

When a procedure with the name exception and one integer-type
parameter, i.e.

PROCEDURE exception(fault: integer)

- is declared (internally) at the outer block level of a program, this
--~procedure becomes the exception procedure of the program.

Note:

An ordinary call of a programmer-defined exception procedure does
not cause a process to terminate.

FAULT HANDLING 7.2 Programmer-defined Exception Procedure

82 RTP Reference Manual

RTP Reference Manual 83

8, NAMING ENVIRONMENTS
The rules described in this chapter serve to define for every point in
a Real-Time Pascal source text the naming environment which is valid
at that point. A naming environment is a set of names and a cor-
responding set of denotable program entities. In order for a name to
be a member of a naming environment it must have an independent
meaning, i.e. an occurrence of the name must denote a program entity
irrespective of the syntactic context. A program entity is a value, a
type, a family of conformant types, an object (which may in parti-
cular be a formal parameter), a label, a routine, or a (sub-)program.
The visibility rules ensure that the entity denoted by a name is al-
ways uniquely determined.

In other words, the purpose of this chapter is to answer the question:
When a name occurs at some point in a source text, what does it
mean? and to ensure that the meaning is uniquely defined.

The unit of compilation for a Real-Time Pascal compiler is basically a
sequence of routine and/or program declarations, referred to in the
following as a source text. The visibility rules for names introduced
in a source text are described in section 8.1, and the precise syntac-
tic form of a compilation unit is described in section 8.2 along with a
discussion of the role played by predefined names and names introdu-
ced in so-called contexts.

8.1 Visibility Rules

All names which occur in a source text must have one or more points
of introduction each of which defines a program entity which can be
denoted by the name within some region of the text, called the visi-
bility region of the entity. The point of introduction may be a
declaration, a formal parameter specification, a labelled statement,
the AS-part of a with statement, the iteration description of a for
statement, or a "message name' in a lock statement. Every intro-
duction of a name has a scope, i.e. a region of text over which the
introduction has an effect. The concept of scope serves as a tool in
determining the visibility region of a named program entity.

Once the visibility regions of all program entities are known the
determination of a naming environment proceeds as follows: Consider a
name occurring at some point in a program. If the point is within the
visibility region of a program entity whose name is the name under
consideration, then the name denotes that program entity. Otherwise
it has no meaning, i.e. it is not part of the naming environment.

There are two kinds of names which have no independent meaning,
but whose meaning is dependent on the syntactic context, viz. the
names of record fields and formal type parameters. However, because
of the shorthand form of record field access allowed in with state-
ments (cf. section 3.7) the names of fields of a with-object of a re-
cord type are treated as if introduced in the 'with definition’. Apart

NAMING ENVIRONMENTS 8.1 Visibility Rules

84 RTP Reference Manual

from this special case the names of record fields and type parameters
are not members of naming environments.

Three kinds of rules which together make up the visibility rules are
given below:

- uniqueness rules: rules which serve only to prevent ambiguous
meanings of names,

- scope rules: rules which determine the scope of an introduc-
tion of a name,

- exclusion rules: rules which determine the visibility region of a
program entity by explicit exclusion of sub-re-
gions from the scope of the introduction of the
name of the entity.

Uniqueness rules

The following names are said to be introduced initially in a block:

- the names of the formal parameters specified in the heading of the
block,

- the names of program entities introduced in the declaration part of
the block excluding the formal parameter lists and blocks of
enclosed program and routine declarations, and

- the names of labels appearing in the compound statement of the
block.

1) All names introduced initially in a block must be distinct.
2) All names introduced in the 'with definition' of a with statement

must be distinct.

Scope rules

1) The scope of a label or variable name is the compound statement
of the block in which it is introduced.

2) The scope of any other name introduced initially in a block ex-
tends from the point of introduction to the end of the block. This
is the rule which implies that in general a name must be introdu-
ced before use.

3) The scope of the 'for_name' introduced in a for statement, or of
a name introduced in a with or lock statement is the 'statement'
following DO in the for, with, or lock statement.

4) The scope of a record field name introduced as field access
shorthand in a with statement is the statement following DO.

Exclusion rules

An introduction of a name which occurs within the scope of a
previous introduction of the same name is called a reintroduction.

8.1 Visibility Rules NAMING ENVIRONMENTS

RTP Reference Manual 85

The visibility region of a named program entity is the scope of the
introduction of its name with the following possible exceptions:

1) Any inner program blocks.
2) The scope(s) of any reintroduction(s) of the name, i.e. reintroduc-

tion hides the entity denoted by the outer occurrence of the na-
me.

Example:

‘i .- -~. "Hiding of .an entity by reintroduction of -its:name is illustrated below: -<~.. -

PROCEDURE p;

CONST
n=2;

PROCEDURE gq;
CONST

r n=5;
BEGIN

-- n... (* has value 5 *)

END

8.2 Contexts and Predefined Names

The initial naming environment of a compilation consists of the prede-
fined names and entities and those introduced in contexts. '

The unit of compilation is a sequence of program and/or routine
declarations optionally preceded by one or more contexts. A compiler
must allow contexts to be supplied as files separate from the source
text proper.

compilation unit:

> —>program declaration Ty —

< L ne declaration

>context —.

NAMING ENVIRONMENTS 8.2 Contexts and Predefined Names

86 RTP Reference Manual

context:

°<é
2

——context_name —>; —>constant declaration >

type declaration

external routine declaration —

- All names introduced -in one .context :must be :distinct. The names in-
«troduced in contexts and the program. entities defined at their points

"s «y's Of introduction are treated as if they were introduced in a block sur-
rounding the outer block(s) of the source text proper with one excep-
tion: the exclusion rule for inner program blocks does not apply. The
scope of a name introduced in a context extends from the point of
introduction to the end of the compilation unit. Routines declared in
a context must be external, i.e. the actual block of a routine cannot
be specified in a context.

The scope of names predefined as part of the language, cf. Appendix
C, is the complete compilation unit. As with contexts the exclusion
rule for inner program blocks does not apply to predefined entities.
However, a predefined name may be hidden by reintroduction.

Note:

The exclusion rule for inner program blocks implies that types,
constants, and routines which are to be common for several programs
compiled as one unit must. be specified in a context. :

8.2 Contexts and Predefined Names NAMING ENVIRONMENTS

RTP Reference Manual 87

9, PROCESS CONTROL AND INTER-COMMUNICATION
This chapter describes the predefined language constructs available
for control of offspring processes and for exchange of information be-
tween processes.

An incarnation of a sub-program is called a child of a (parent) pro-
cess which is an incarnation of the program containing the sub-pro-
gram declaration.

' The navel string between the parent and the child is a variable of __
type process belonging to the-parent. An arbitrary number of incarna-

tions of a sub-program may be born; they are all controlled by the
parent.

When a child is born it is supplied with actual parameters according
to the formal parameter specification of the declaration, cf. section
6.1. Processes communicate via mailboxes or shared variables. A mail-
box or a shared variable known by a parent may be made known as a
parameter to its children (such a variable may either be owned by
the parent or one of its ancestors). In this way a parent determines
the communication paths of its children without, however, necessarily
participating in the communication itself. Refer to section 5.10 for
communication by means of shared variables and section 9.2 for
mailbox communication.

9.1 Process Control

A sub-program declaration in a program implies the allocation of a
sub-program object in the stack of an incarnation of the program. The
states of a sub-program object are linked and unlinked, cf. section
6.2.1 for the initial state of a subprogram object.

The linking (i.e. change of state from unlinked to linked) is performed
by a link call which is similar to a function call.

link call:

——~ LINK —> (— >string_expression—, —program_name —) —>

The type of the result of a link call is an implementation dependent —
predefined enumeration type
link_result= (link_ok, already_linked, external_not_found, ...).

The purpose of a link call is to find a suitable program block
matching the sub-program declaration. The value of the expression,
which must be of a string type, is used to search for the program
block in a fashion which is implementation dependent. The ‘formal
parameters' of the sub-program declaration may also be used in the
match. If a program block is found it is linked to the sub-program
object denoted by the 'program_name'.

PROCESS CONTROL 9.1 Process Control

88 RTP Reference Manual

The result of a link call indicates that the linking was successful or
why it went wrong.

If the implementation and installation allows dynamic program load,
the execution of a link call may involve the loading of a suitable
program as well as the necessary linkage editing.

If a new program block is to be linked to a sub-program object, the
former link must be broken, i.e. the state of the sub-program object -
‘has to be changed from linked to unlinked. This is done by means -of |
an unlink call, which is similar to a function call:

unlink call:

—— UNLINK — (—program_name —) —>

The result of an unlink call is of the implementation dependent prede-
fined enumeration type
unlink result= (unlink _ok, no_program_linked, existing incarnations, ...)

After the call, if successful, the sub-program object may be linked
anew (link call).

»Processes may be created as incarnations of sub-programs in the lin-
ked state. When a process has been created it will begin to execute
its actions. A process may become temporarily unable to execute ac-
tions for two reasons, which are independent of .each.other. It may
be waiting for an event, cf. subsection 9.2.2, or stopped, cf. the pre-
defined procedures stop and resume described. below. A process is only
able to execute actions if it is neither waiting nor stopped. The
dynamic allocation of processor time to processes with the latter pro-
perty is the scheduling function performed by the operating system or
language-supporting nucleus.

A process is created by means of a create call.

create call:

——> CREATE — { —— name_expression —, — program call-—>,

——>process_object denotation— >, —>size_expression—, —

>+priority expression >)—

9.1 Process Control PROCESS CONTROL

RTP Reference Manual 89

program call:

——>program_name -7 >] >

L occu parameters

~ The evaluation of a create call causes an incarnation of the program
block linked to the sub-program object denoted by ‘program name’ to -

“= be created as described in section 6.2. When a process has just. been. -. ©
’ “created it is neither stopped nor waiting.

«>The -value -of -the "name_expression', ‘which -must be of ‘a:string ‘type, -.-< =
‘«.-ais attached to the-created process for diagnostic purposes.

The ‘process object denotation' denotes the variable through which
the calling process will control the child; it must be of type process.
The value of this variable must be NIL before the call, otherwise a
fault occurs. After the call it will be a reference to the child pro-
cess.

The ‘actual parameters’ of the program call are bound to the cor-
responding formal parameters as part of the evaluation of the create
call.

The initial size of the stack which is allocated for the created pro-
cess is determined by the value of the 'size expression’ which must
be of type 0..maxint. Size 0 means allocation of an area according to
a value defined for the sub-program at compile-time, cf. chapter 12.
The unit of measurement for stack size is implementation dependent.

The value of the 'priority_expression', of type prio_type, determines
the execution priority of the created process. This quantity affects
the way in which the process is scheduled for execution in a fashion
which depends on the implementation. The type, prio type, is an
implementation dependent predefined enumeration type

prio_type= (minpriority, stdpriority, maxpriority, ...)

The result of a create call has an implementation dependent prede-
fined enumeration type bee ue

create_result= (create_ok, no_memory, program_unlinked, ...)

If the create call was unsuccessful the result will indicate the re-
ason. In this case no process will have been created and the value of
the process variable remains NIL.

The predefined procedures stop, start, resume, and remove may be
used to control a child, designated by a process variable passed as a
parameter. If one of the procedures is called with this variable equal
to NIL a fault will occur.

PROCEDURE stop(VAR pr: process)

PROCESS CONTROL 9.1 Process Control

90 RTP Reference Manual

The child process becomes stopped. If it is already stopped before the
call there is no effect.

PROCEDURE start(VAR pr: process; prio: prio_type)

‘The priority of the child process is changed to the value of prio, and
‘if the child process is stoppped a call of start makes it not stopped. ~_

PROCEDURE resume(VAR pr: process)

If ‘the. child process is stopped a call of resume makes it not--stopped; ==
”.~otherwise the call has no effect.

PROCEDURE remove(VAR pr: process)

A call of remove causes the child process to be removed, i.e. execu-
tion of its action part is terminated and all resources owned by the
child are released and become free memory. The resources include
stack, heap, and pools. Any ports owned by the process are closed
(cf. section 11.1). Pools and messages are handled as follows:

1. All messages which have a pool owned by the child process as
their home pool are marked for deallocation. A special treatment
is given to a message stack whose top message. is marked for
deallocation, in the following situations:

- A process calls release (cf. section 3.7) attempting to put the
message in its home pool (in this..case the message must be
alone in the stack),

- A process calls return (cf. subsection 9.2.2) attempting to place
the stack in the return address mailbox of the top message,

In both cases the special treatment is the following. First the top
message is removed from the message stack and released to
become free memory. Then the remainder of the stack, if non-emp-
ty, is placed in the return address mailbox of the new top messa-
ge, except if this message is also marked for deallocation in which
case the rule applies recursively. The event kind attribute of a

“message returned in this fashion becomes process_removed.

2. All message stacks accessed through reference or chain variables
or presently placed in mailboxes owned by the child process are
placed in the return address mailbox of the top message with the
event kind attribute equal to process removed. If the top message
is marked for deallocation the above rule applies.

If the process to be removed has any children, these are removed be-
fore the process itself. This rule applies recursively. Thus, in effect,
removal of a process means removal of that subtree of the complete
process tree »f which the process is the root.

After a call of remove the value of the parameter is NIL.

9.1 Process Control PROCESS CONTROL

RTP Reference Manual 91

If a child process has a pool or a shared variable as parameter, it
must not be removed by the parent process. If an attempt is made a
fault occurs. However, if the parent process itself is removed, the
child will also be removed by the recursion described above.

It is illegal to remove a child process while it is executing a region
statement. An attempt to do so causes a fault.

Example:

link res:= link("childi", my child);
* «IF link .res<¢>link ok THEN :link- error(link ‘res);

~ Create_res:= create("child_1_1", my_child(mbx1), processl, 0,
stdpriority);

IF create_res<>create_ok THEN create_error(create_res);
create_res:= create("child_1 2", my child(mbx2), process2, 0,

stdpriority);
IF create_res<>create_ok THEN create_error(create_res);

coe

stop(process6);

start(process2, highpriority); -- change priority

resume(process6);

remove(process4);
create_res:= create("child_2 4", my child(alternative_mbx),

process4, 200, highpriority);
IF ec3e

9.2 Mailbox Communication

Messages may be passed among processes via mailboxes. A message is
accessed through a variable of type reference or chain. At most one
reference or chain variable holds a reference to a message at any ti-
me; thus mutually exclusive access to messages is ensured.

Access to the data contained in a message is only possible in a lock
statement (cf. section 5.9).

The access right is exchanged between processes by means of the
predefined routines signal, wait, waitdelay, and return as described in ©
subsection 9.2.2.

PROCESS CONTROL 9.2 Mailbox Communication

92 RTP Reference Manual

9.2.1 Mailbox States

A mailbox may be regarded as a waiting room in one of the states
passive, open, or locked:

Passive:
mbx

open:
mbx

mes1
mes2
mes3
mes4

locked:
mbx

procl
proc2
proc3
proc4

Neither messages to be accessed nor processes asking for
access at the mailbox.

A queue of messages (actually stacks) are
ready for access, the first one will be removed
from the queue when a process asks for a message,
and the process will be given the access right.

A queue of processes are waiting for access to a
message; the first one will get the access right
to the next message arriving at the mailbox and
will subsequently be removed from the queue.

There are three predefined boolean functions to inspect the state of
a mailbox. However, it is not mandatory that these functions be
implemented.

FUNCTION open(VAR mbx: mailbox): boolean
FUNCTION locked(VAR mbx: mailbox): boolean
FUNCTION passive(VAR mbx: mailbox): boolean

9.2.2 Communication and Synchronization Primitives

There are four predefined communication/synchronization primitives:
Signal, return, wait, and waitdelay. In addition the delay primitive |
may be used for purposes of synchronization or temporary process
suspension.

Signal is performed by a call of the predefined procedure signal:

PROCEDURE signal(VAR ref: reference; VAR mbx: mailbox)

9.2.2 Communication and Synchronization Primitives INTER-COMUNICATION

RTP Reference Manual 93

The value of ref must not be NIL or the reference locked (cf. sec-
tion 5.9), otherwise a fault occurs. After the call, the message
designated by ref is entered as the last element of the queue of mes-
sages belonging to mbx. If the mailbox is locked, the first process is
‘removed from the list of waiting processes. This process is now allo-
wed to complete the call of wait/waitdelay which caused its insertion
in the list of the mailbox. The event kind attribute of the designated
mnessage becomes message_event.

*-. The language provides two kinds of events which can be waited for:
~ the arrival of a message at a specified mailbox. —
- the expiry of a delay, -specified as a number of milliseconds. .An. ..:.:..

»-- «implementation need -not, -however, «support such fine granularity. If =».
~ the delay is specified as zero, the call (delay, waitdelay, or alloc-

delay) will return immediately.

A process may wait for one specific event or for the first one of
two, one of each kind. It does so by calling one of the following
routines.

PROCEDURE wait(VAR ref: reference; VAR mbx: mailbox)

The value of ref must be NIL prior to a call, otherwise a fault oc-
curs. If the mailbox mbx is open, the first message stack in the list
is removed and ref will designate this stack. If the mailbox state is
locked or passive the process is suspended and entered as the last
element of the list of waiting processes (FIFO strategy).

PROCEDURE delay(no_of_msecs: 0..maxint)

The process is suspended according to the value of the parameter.

FUNCTION waitdelay(VAR ref: reference; VAR mbx: mailbox;
no _of_msecs: 0..maxint): activation

The value of ref must be NIL prior to a call, otherwise a fault oc-
curs. If the mailbox mbx is open, the first message stack in the list
is removed and ref will designate this stack. If the mailbox state is
locked or passive the process is suspended until one of the events
eventually occurs. The result indicates the reason why the process is
.activated; its type is the (implementation dependent) predefined enu-
meration type

activation= (a_mailbox, a_delay, ...).

Getting a message from a pool, cf. section 3.7, is similar to receiving
a message from a mailbox. A special version of alloc is therefore
available which allows the specification of a maximum delay which a
process will tolerate.

FUNCTION allocdelay(VAR r: reference; VAR p: pool;
VAR ra: mailbox; no_of_msecs: 0..maxint):
activation

INTER-COMUNICATION9.2.2 Communication and Synchronization Primitives

94 RTP Reference Manual

The description of alloc, cf. section 3.7, applies also to allocdelay
with the modification that in case the delay specified by no_of_msecs
expires before the calling process obtains a message the call will
return the result a_delay and otherwise have no effect. If a message
is obtained the result will be a_mailbox.

Return is performed by a call of the predefined procedure return:

PROCEDURE return(VAR ref: reference)

The call: return(ref)
is equivalent to: signal(ref, ret_address)

~s: where ret_address denotes the return address.of -the message de-
signated by ref, cf. section 3.7, except for the value of the event
kind attribute which becomes answer_event.

Notes:

A mailbox may be inspected without having to wait if it is empty by
calling waitdelay with zero delay.

An implementation must secure indivisibility of the communication pri-
mitives.

Example:

The following communication flow is possible by means of signal and
return. Each process p, must know the (mailbox) address of process
Pit However, process b, does not know process Py

signal signal signal

- > i, \ 7

Py Po eee Ph

tT <<

return

9.2.2 Communication and Synchronization Primitives INTER-COMUNICATION

RTP Reference Manual 95

10, MESSAGE MANIPULATION
Two structures for organizing messages are supported by the language:
stacks and chains. A message stack is the general form of a message,
where a stack with only one message is a special case. Access to a
stack may be transferred between processes via a mailbox (cf. section
9.2). The chain structure is intended for local organization of messa-
ges in a process. The elements of a chain are message stacks. They
are accessed by a handle: a variable of type chain. The elements of a
Message stack are messages. They are accessed by .a handle: a re- .
ference variable (or directly by a chain in the .case of the current
message). The manipulation of message stacks is described in section - ee

--+10.1.and-of chains in: section 10.2.

10.1 Message Stacks

A stack is one or more messages, organized as a lifo list so that
manipulation affects the youngest member only. Access to the data in
a stack of messages is achieved by means of a lock statement (cf.
section 5.9).

Access to the attributes of messages in a stack can only be made to
those of the top (youngest) member. A special treatment is given to
the buffer attributes when empty messages are pushed onto or popped
from a stack, ensuring that these attributes will apply to the topmost
non-empty message in the stack, since only non-empty messages can
be accessed in a lock statement.

A stack may be manipulated by calling the predefined procedures push
and pop. The parameters to these procedures must not be locked.
Otherwise a fault will occur at the time of call.

PROCEDURE push(VAR new_top, stack handle: reference)

The parameter new_top must designate a message stack with only one
element, otherwise a fault occurs. The message stack designated by
Stack_handle, possibly an empty stack (i.e. the handle is NIL), is ex-
tended with the message designated by new_top as the new top ele-
ment, i.e. the return address and the home pool of the stack becomes
those of the new top element. This makes the flow control, as illu-

‘strated in the example below, possible. After the call stack_handle
will designate the new stack, and the value of new_top will be NIL.

If the new top message is empty, and the stack was not empty before . .
pushing, the message attributes, size of the buffer, offset, top, and
byte count, are copied from the old to the new top message.

PROCEDURE pop(VAR popped_mes, stack handle: reference)

The value of popped_mes must be NIL, and the value of stack_handle
must not be NIL; otherwise a fault occurs. The result of a call of
pop is: the top m2ssage in the stack is removed, popped_mes will
designate a stack consisting of the removed message only, and

MESSAGE MANIPULATION 10.1 Message Stacks

96 RTP Reference Manual

stack handle will designate the remaining part of the stack. If the
stack had only one element its value will be NIL.

If the popped message is empty, its message attributes, size of the
buffer, offset, top, and byte count, are all set to zero.

The depth of a message stack as well as the number of non-empty
messages can be obtained by using the predefined functions stackdepth
and bufcount.

FUNCTION stackdepth(VAR stack: reference): 0..maxint
FUNCTION bufcount(VAR stack: reference): 0..maxint

‘The value returned by stackdepth is the total number of messages in
the designated stack, including empty ones, whereas bufcount yields
only the number of non-empty messages (cf. lock statement, section
5.9). Both functions return the value 0 if the parameter has value
NIL. :

Example:
The following flow of messages may be achieved by means of the
paired operations: (push, signal) and (pop, return).

(signal) (push, signal) (push, signal)

LL —_ ~y a)

Pi Po “ee Po-1 Ph

KS XT =“ sO”

(pop, return) (pop, return) (return) .

10.2 Message Chains

The initial state of a chain object is empty, i.e. the length of the
chain is 0. Cyclic lists are built and manipulated by means of prede-
fined routines only. The following actions may be performed on
chains: insert an element, extract an element, change current messa-
ge, update start point, and read the length.

‘Two elements of a chain have a special status:

- the start point of the chain is the first element put into the chain
or an element explicitly selected as the start point.

- the current message (stack) is the element which may be extracted
or accessed in a lock statement and the only element whose messa-
ge attributes may be read or changed.

The predefined routines eventkind, resetevent, ul, u2, u3, u4, setul,
setu2, setu3, setu4, bufsize, offset, top, bytecount, setoffset, settop,
and setbytecount which are described in section 3.7 may all be called

10.2 Message Chains MESSAGE MANIPULATION

RTP Reference Manual 97

with a chain object as parameter, in which case they apply to the
current message stack (top message) of the chain.

The length of a chain is read by means of a call of the function
chainlength:

‘FUNCTION chainlength(VAR ch: chain): 0..maxint

For all the routines described in the remainder of this section the
- parameter (chains and references) must not be locked, except for the
‘chain of chainenqueue. Otherwise a fault occurs atthe time of -call.

A message stack is inserted. into a chain by means of a call of
chainenqueue:

PROCEDURE chainenqueue(VAR ref: reference; VAR ch: chain)

The value of ref must not be NIL, otherwise a fault occurs. The
stack designated by ref becomes the new predecessor of current mes-
sage of the list, and the value of ref becomes NIL.

The current message may be removed from a list by means of a call
of chaindequeue:

PROCEDURE chaindequeue(VAR ref: reference; VAR ch: chain)

The value of ref must be NIL, otherwise a fault occurs. If the length
of the chain ch is 0, a fault occurs. The current message is removed
from the chain and will be designated by ref. The successor of the
removed element becomes the new current message. If the start point
is removed from a list with more than one element the successor of
the removed element becomes the new start point.

The current message may be moved one step up or down the list, or
moved to the start point by calling the procedures chainup, chaindown
and chainstart respectively:

PROCEDURE chainup(VAR ch: chain)
PROCEDURE chaindown(VAR ch: chain)
PROCEDURE chainstart(VAR ch: chain)

‘The result of a call of chainup/chaindown/chainstart is that the suc-
cessor/predecessor/start point becomes the new current message of
the list.

The current message of a list may be made the new start point of a
list by a call of chainreset:

PROCEDURE chainreset(VAR ch: chain)

MESSAGE MANIPULATION 10.2 Message Chains

98 RTP Reference Manual

Example:
Let ch be the handle of a sorted chain of messages:

chainstart(ch);
FOR count:= 1 TO chainlength(ch) DO
BEGIN

chaindequeue(work_ref, ch);
push(work_ref, result_stack)

END(*FOR*);
signal(result_stack, mail_center)

10.2 Message Chains MESSAGE MANIPULATION

RTP Reference Manual 99

1, IMC FUNCTIONS
The concept of a resident module is introduced in /DSA/ as a well
defined entity, which is self-contained in terms of resources. In Real-
Time Pascal a resident is thus a tree of processes whose root owns
the pool and port resources for the IMC services. However, the con-
cept of resident is not reflected in the syntax of Real-Time Pascal or
in rules enforced by the language.

Residents exist in a distributed environment and communicate with
‘-each other by using the standard inter ‘module communication (IMC)
services /DSA-IMC/. The embedding of these services into Real-Time

_ «Pascal is the scope of the present chapter. In the remainder of the ~~~
*~~<““Chapter the software components at the IMC nodes plus the physical

interconnection media which together provide the IMC services are
referred to as the IMC network or just the IMC.

A resident gains access to IMC services via objects of the type port.
Port names, in turn, establish the identification of residents towards
the IMC network and towards one another. Port names consist of a
maximum of 12 graphic characters. Communication between two resi-
dents takes place as transfers of strings of bytes from messages be-
longing to a sender to messages belonging to a receiver. An actual
transfer within the IMC network takes place when both residents have
delivered a message to the IMC.

The principal means of communication is connections between two
ports. On a connection the IMC perform flow control, correct sequen-
cing, and undamaged data transfer.

The relationship between invokation and completion of IMC functions
is asynchronous. IMC services are invoked by calls of predefined ser-
vice request routines. In most cases a call of a request routine
causes the transfer of a message (or two) from the calling resident
to the IMC. When the requested function has been carried out this
message, called an event message, will be returned, i.e. to its return
address mailbox, with relevant result information and possibly contai-
ning received data. The return of an event message to a resident is
called an IMC event, or just an event. The interface between resi-
dents and the IMC has been designed so that no change, which is of
significance to a resident, in the state of a port or connection end-
point can take place without the occurrence of an event, unless it
occurs during a call of a request routine and as a direct consequence
of this call. In other words, despite the asynchronous nature of the
interface, residents always have complete up-to-date information about
their ports and connections.

During the time-span from an event message has been transferred to
the IMC until it is eventually returned it is said to be outstanding.
An outstanding event message may be further characterized by the
kind of event it is intended to retrieve. All IMC events correspond to
values of the predefined enumeration type event_type which is given
in section 3.7. All IMC events are described in the following sections.

11. IMC FUNCTIONS

100 RTP Reference Manual

In some cases the IMC will return an event message even though the
intended event has not occurred, most often because circumstances
change so that it never will. This is called a dummy event. As an ex-
ample, an outstanding data message is returned as a dummy event
when the connection to which it pertains is unexpectedly removed. A
number of event_type values are used exclusively for dummy events.
Each of these values indicates the event which the dummy event mes-
sage had been set up to retrieve. The correspondence between dummy
event kinds and intended event kinds is shown below:

dummy event intended event
dummy_Icnct local_connect
dummy _rcnct remote_connect
dummy _rindic reset_indication
dummy _rcmpl reset_completion
dummy_credit credit
dummy _sent data_sent
dummy _ arrived data_arrived

In addition to request routines Real-Time Pascal provides routines
which can decode event information by inspecting the IMC message
attributes used to carry this information.

The IMC service request routines are described in the following three
sections. With a single exception (connect, see subsection 11.2.2) the
reference type parameters to these routines must not have value NIL
or be locked when a call is made; otherwise a fault will occur. These
parameters are used to transfer event messages to the IMC, and they
always have value NIL after a call.

The IMC never changes the size, offset, top, or u-attributes of an
event message. With the exception of actual data messages (send, re-
ceive, receiveall) IMC event messages may be empty.

The unit of data to be sent by the IMC (send) is always the contents
of the data area of the send message in question. Similarly a recei-
ved data unit (receive, receiveall) is always placed in the data area
of the receive message, and the number of bytes it comprises is as-
signed to the byte count attribute.

The data area description of the message passed by a call of a data
transfer routine must be consistent, cf. section 3.7. Otherwise a fault
occurs.

11. IMC FUNCTIONS

RTP Reference Manual 101

11.1 Ports

An IMC port is represented in Real-Time Pascal as a variable of type
port. The state of a port is either open, in which case the port is
known in the IMC network by a name which is published according to
its scope, or closed (or closing, see under closeport below).

An open port contains a number of connection end-points (cf. section
11.2). The number must not be greater than an implementation depen-
dent maximum, cf. section 11.4).

The attributes of a port, i.e. name, scope, and number of endpoints,
:- are defined when -it is opened by a call: of openport:_ .

PROCEDURE openport(VAR p: port; VAR closemes: reference;
INSPECT name: string; scope: scope_type;
no_of_cons: 0..maxint; cntrl: control_type)

where p is the port to be opened. The parameter closemes designates
the port_closed event message which will be outstanding while the
port is open. The values of the name and scope parameters specify
the name of the port and the range within the IMC network in which
to publish the name. The value of no of_cons is the number of con-
nection end-points requested for the port. If this number is greater
than the maximum allowed or if the length of the name is greater
than 12 a fault will occur.

The type of the scope parameter is the predefined enumeration type

scope_type= (anonymous, local, regional, global).

The type of cntrl is a predefined descriptive type

control_type= PACKED RECORD
rcv_all,
get_credit,
2, 2, 2, 2, 2, 2: boolean

END

For a further discussion of scopes, see /DSA-IMC/.

The call causes the port to be opened as requested. The state of the
“port must be closed when the call is made, otherwise a fault occurs.

After the call the state of the port is open. The port_closed event
will occur when it is eventually closed with one of the following re-
asons (cf. section 11.3):

reason_ok: the resident called closeport
reason_name: a name-conflict arose
reason_resource: resource problem somewhere in the IMC

network.

If the control parameter's field rcv_all has the value true, the gene-
ral receive feature (cf. receiveall, subsection 11.2.2) is enabled for
the port; otherwise it is not. And if the value of its field get_credit

IMC FUNCTIONS 11.1 Ports

102 RTP Reference Manual

is true, the general flow control feature (cf. getcredit, subsection
11.2.2) is enabled for the port; otherwise it is not.

A port is withdrawn from the IMC network by a call of closeport:

PROCEDURE closeport(VAR p: port)

where p is the port to be closed. If the port is already closed the
call has no effect. Otherwise it proceeds as follows. All connections
on the port are removed with graceful completion of any feasible
data transfers as described for disconnect, cf. subsection 11.2.2. The-_
disconnected events occur with reason_closed. However, at .the remote. _
end of a connection the disconnected event occurs with reason_ok. ©
“Then all general receive messages are returned as dummy events, and
finally the port_closed event occurs with reason _ok. The port is made
unknown to the IMC network, its state changes to closed, and it may
subsequently be re-opened, possibly with a different set of attributes.
While connections are being removed and messages returned the port
is said to be closing.

11.2 Connections

Connections are the principal means of data transfer between resi-
dents. A connection joins two connection end-points, each contained in
an open port. Before a connection can be established.one of the two
residents must make a connection end-point available by calling get-
connection (cf. subsection 11.2.2). The resident which calls getconnec-
tion is the passive part in the establishment of the connection and
need not know the name of the remote port. The other resident is
the active part which must specifically request that a connection be
established by calling connect (cf. subsection 11.2.2).

An end-point within a port is identified in a request call by a pair
(p, index) where p is a port and index is a number in the range l..n,
where n equals the value of no_of_cons given when the port was
opened. This fact accounts for the first two parameters of all the re-
quest routines described in this section (except receiveall). If a re-
quest call is made with an index parameter which is out of range a
fault occurs.

- Notice that end-point indices are local to a port and not related to
indices or even known at the remote end-points of connections.

Each kind of request call which may be made concerning a connection
end-point is only permitted provided the end-point is in an appropriate
state. The applicable states are:

free: the end-point is free for use by calling connect or
getconnection. Free is the initial state of connection
end-points contained in a newly opened port,

accept_remote: getconnection has been called. The end-point will le-
ave this state when a connection is established from
a remote port, or when disconnect is called,

11.2 Connections IMC FUNCTIONS

RTP Reference Manual 103

connected: a connection has been or is being established, and
data transfer may take place,

resetting: reset has been called while the state was connected.
The state will revert to connected when the resetting
procedures have been completed,

disconnecting: disconnect has been called, and the process of re-
moving a previous connection is under way. The state
will subsequently become free.

If the end-point identification (p, index) given in a request call is
oe such that the port is closed or closing, or the state of. the end-point =.

is free, the connection to which the .call pertains is..said to be
absent. This phenomenon may occur if the .event- which informs the
“resident about the removal of a connection or the closing of a port

has not.been processed at the time of call.

It is a general rule that if a request call is made concerning a con-
nection end-point which is in a wrong state for the call a fault oc-
curs, except if the connection is absent.

11.2.1 Connection Administration

A connection end-point is made available for remotely initiated con-
nection establishment by a call of getconnection:

PROCEDURE getconnection(VAR p: port; index: 1..maxint;
VAR compl, disc: reference)

If the port is closed or closing the message designated by compl is
returned as a dummy event and ‘the message designated ‘by disc as a
disconnected event with reason_closed, and the call has no further ef-
fect. Otherwise a call of getconnection is only permitted if the state
of the end-point is free; after the call it is remote_accept. The mes-
sage designated by compl will be returned as a remote_connect event
when a connection has been established. The message designated by
disc will be the disconnected message of the connection end-point. It
will be outstanding until the end-point becomes free again.

In order to establish a connection between a local connection end-po-
int and a remote end-point, which has been made available as descri-

. bed above, a resident must call connect:

PROCEDURE connect(VAR p: port; index: 1..maxint;
VAR compl, disc: reference;
INSPECT remote_name: string;
service: conn_service)

If the port is closed or closing the message designated by compl is
returned as a dummy event and the message designated by disc as a
disconnected event with reason_closed, and the call has no further ef-
fect. Otherwise the call is only accepted if the state of the indicated
end-point is free.

IMC FUNCTIONS 11.2.1 Connection Administration

104 RTP Reference Manual

The value of remote_name is the name of the remote port to which a
‘connection is requested. If the length of the name is greater than 12
a fault occurs. The state of the (local) end-point becomes connected,
i.e. data transfer calls may be made immediately following the call of
connect. This does not imply that the actual path through the IMC
network has been established at this time, nor in fact that it ever
will be.

The value of the parameter compl may be NIL, i.e. .the designated
message is optional. If it is present it will be used to generate a lo-
cal_connect event when the actual connection has -been -successfully-.
established. This event is purely informative and not associated with —
any change of state. If the local_connect message is present, but -

establishment of the connection fails, the message will be returned as
a dummy event.

The message designated by disc is the disconnected event message. It
will be outstanding until the state of the connection end-point even-
tually reverts to free or the port is closed. If this happens because it
turns out to be impossible to establish the actual connection the re-
ason will be either reason_name, if a port with the specified name
could not be found, or reason_resource, if the necessary resources
were not available in the IMC network or at the remote port (no
end-point with state accept_remote).

The service parameter selects the service class of the connection.
Two service classes are defined: normal and high. The treatment of
service classes depends on the implementation of the IMC network.
The type of the service parameter is the predefined enumeration type

conn_service= (cs_normal, cs_ high).

A connection end-point may always be freed by a call of disconnect:

PROCEDURE disconnect(VAR p: port; index: 1..maxint)

If the indicated connection is absent or if the state of the connec-
tion end-point is disconnecting the call has no effect. Otherwise if
the connection end-point is.engaged in a connection, i.e. if its state
is connected or resetting, the connection will be removed. This will
be done gracefully, i.e. all data transfers for which credit is available

~~ are completed before the remaining outstanding messages are returned.
At both ends of the connection all outstanding messages except the
disconnected event messages are then returned as dummy events.
While this takes place the state of the (local) end-point is disconnec-
ting. Finally the disconnected events occur (at both ends) with re-
ason_ok, and the state becomes free.

If the state of the connection end-point is accept_remote when dis-
connect is called the remote_connect message will be returned as a
dummy event, the disconnected event will occur with reason ok, and
the state of the end-point becomes free.

}

11.2.1 Connection Administration IMC FUNCTIONS

RTP Reference Manual 105

The only reason for removal of a connection which has not been dis-
cussed above (this includes removal when a port is closed, cf. section
11.1) is failure in some component of the IMC network. If a connec-
tion is broken for this reason the disconnected event will occur with
reason_network after all other outstanding messages have been
returned as dummy events.

11.2.2 Connection-based Data Transfer

The routines for data transfer on connections and for control of data
te messages: send, receive, receiveall, getcredit, -reset, iand getreset, are

described in this subsection.

~The following rule holds for calls of all these routines except rece-
iveall: If the connection indicated by the first two parameters is
absent the message designated by the third parameter is returned as a
dummy event and the call has no further effect. Otherwise the call is
only permitted if the state of the end-point is connected (or resetting
in the case of getreset).

A receive message is made available for a specific connection by a
call of receive:

PROCEDURE receive(VAR p: port; index: 1..maxint;
VAR datames: reference)

The designated message becomes an outstanding receive message for
the connection. At the remote end of the connection the call may
cause either a credit or a data_sent event to occur. If both kinds of
event message are outstanding only the data_sent event will occur.
When a unit of data has been transferred from a remote send message
to the receive message the latter is returned as a data arrived event.
If necessary, the received data unit is truncated to fit into the data
area of the receive message, and in this case the event will be
data_overrun.

If the general receive feature is enabled for a port (cf. the cntrl
parameter of openport, section 11.1) a general receive message for
the whole port, not dedicated to a particular connection, may be de-
livered to the IMC by a call of receiveall:

‘PROCEDURE receiveall(VAR p: port; VAR datames: reference)

If the port is closed or closing the designated message is returned as
a dummy event and the call has no further effect. If the general re-
ceive feature is not enabled a fault occurs. Otherwise the message
becomes an outstanding general receive message. It may be used for
any connection within the port. It will eventually be returned as
data_arrived or data_overrun, depending on whether the received data
unit had to be truncated to fit into the receive data area. The index
of the connection end-point to which the data belong will be an
attribute of the message (cf. section 11.3). In case of network failure
which causes a connection on the port to be removed the message
may be returned as a dummy event.

IMC FUNCTIONS 11.2.2 Connection-based Data Transfer

ppbokug,
PS Bae a Ess 5

106 -RTP Reference Manual

A send message containing a unit of data to be sent on a specified
connection is delivered to the IMC network by a call of send:

PROCEDURE send(VAR p: port; index: 1..maxint;
VAR datames: reference)

The designated message becomes an outstanding send message. If a
receive message is available at the remote end, or when one becomes
available (call of receive or receiveall), the indicated data unit is

“transferred to the receive data area. “Then ‘the.»send -message -is.... La

returned as data_sent, and the receive message at the remote end as —
data_arrived (or data_overrun).

If the general flow control feature is enabled for a port (cf. the
cntrl parameter of openport, section 11.1), flow control information
pertaining to a specified connection can be obtained from the IMC by
a call of getcredit:

PROCEDURE getcredit(VAR p: port; index: 1..maxint;

VAR credmes: reference)

The designated message becomes an outstanding credit message. It is
returned as a credit event when there is one or more outstanding re-
ceive messages at the remote end of the connection (call of receive)
for which credit has not been given previously. The number of such
receive messages is passed as the message attribute credit count (cf.
section 11.3). However, a credit event can only occur provided there
is at least one outstanding reset_indication message at the connection
end-point, cf. getreset.

Data and credit messages which are outstanding at an end-point of a
connection may be taken back without breaking the connection by
calling reset:

PROCEDURE reset(VAR p: port; index: 1..maxint;
VAR compl: reference)

In the same graceful fashion as when a connection is removed all
data transfers for which credit is available are carried out first. Then

_ the remaining data and credit messages are returned as dummy events,
but only at the local end-point. The return of receive messages may
amount to the taking back of credit which has already been given to
the remote resident. In this case the resulting negative credit is pas- -
sed as the credit count attribute of a reset_indication event.

Following a call of reset the state of the (local) connection end-point
will be resetting. The message designated by compl is the
reset_completion event message. This event occurs after all outstan-
ding data and credit messages have been returned. When it occurs the
state of the end-point reverts to connected.

11.2.2 Connection-based Data Transfer IMC FUNCTIONS

RTP Reference Manual 107

When a connection end-point has been reset the IMC has also reset
its account of credit previously passed to the resident. Credit infor-
mation obtained before resetting is therefore no longer valid.

If credit information is used it is necessary to know when credit is
taken back as a result of resetting of the remote end-point. A
reset_indication message which is used to carry this information is
made available to the IMC by a call of getreset.

':PROCEDURE getreset(VAR p: port; index: 1..maxint;
VAR indic: reference)

. The call is permitted if the state of the connection end-point is con- ~ «:
“ -. nected or resetting, but does not change the state. The message

designated by indic .becomes an outstanding reset_indication event
message. That is, when a reset occurs at the remote end of the con-
nection causing loss of credit this message is returned as reset_indi-
cation with a credit count equal to the number of credits that have
been taken back.

At least one reset_indication message must be outstanding before a
credit event can occur, cf. getcredit. Therefore a call of getreset
may trigger a credit event.

11.3 IMC Message Attribute Decoding

Whenever a message is returned as an event the event kind attribute
is set to indicate the kind of event. This attribute may be read using
the predefined function eventkind, cf. section 3.7. Depending on the
event kind the attributes index, credit count, and reason may be mea-
ningful. These attributes may be read using the three functions
described below. A fault will occur if one of these functions is called
with a parameter with value NIL.

FUNCTION index(VAR r: reference): 0..maxint

gives the index in the relevant port of the connection end-point to
which the event pertains. It is defined for messages with event kind
local_connect, remote_connect, disconnected, reset_completion,
reset_indication, data_sent, data_arrived, data_overrun, credit, and for
dummy events. If the event is dummy and there is no applicable index
the result will be 0.

FUNCTION reason(VAR r: reference): reason_type

gives the reason for an event. It is relevant for messages with event
kind port_closed or disconnected. The result is of the predefined enu-
meration type

reason_type= (reason_ok, reason_name, reason_resource,
reason _ closed, reason_network).

All uses of reason values are explained in the preceding sections.

IMC FUNCTIONS 11.3 IMC Message Attribute Decoding

108 RTP Reference Manual

FUNCTION creditcount(VAR r: reference): 0..maxint

If the event kind is credit the result is the number of receive messa-
ges available at the remote end-point of the connection. If the event
kind is reset_indication the result is the number of credits which have
been taken back by a call of reset at the remote end-point.

~ 11.4 Miscellaneous Routines

At each node in an IMC network, the IMC imposes a restriction on
users of the IMC services, namely a maximum number of connections:

' to any one port. This limitation can be obtained by calling the pre-
defined routine maxconnections:

FUNCTION maxconnections: 0..maxint

11.4 Miscellaneous Routines IMC FUNCTIONS

RTP Reference Manual 109

12, COMPILER DIRECTIVES
Directives to a Real-Time Pascal compiler may be regarded as lexical
separators. They have the general form:

$ directive-name parameters end-of-line
given on a separate line. Alternatively directives may be supplied as
parameters in the call of the compiler. Some of them must be speci-
fied before the first line of actual source text is met, viz. either in
the compiler call or as $-directive lines in front of the outermost

' ‘program/routine heading.

The following table lists the mandatory directives. An implementation
may support additional directives. The first three ‘directives which are . —

- all used to control the appearance of a compiler listing must appear
before the first line of actual source text.

name parameters description
PAGELENGTH number maximum number of lines per
(default 45) page of listing,

PAGEWIDTH number maximum number of characters
(default 120) per line of listing,

EJECT none force the start of a new page
of the listing

TITLE “char.string" the character string is placed in
the title field of the header
line of each page of the listing,

SUBTITLE "char.string" the character string is placed in
the subtitle line of each page
of the listing,

CODE none causes code generated for the
following lines of source text to
be listed,

NOCODE none suppresses listing of generated
(default) code,

-.* CREATESIZE number determines stack size of incar-

nations of the following pro-
gram(s) if the value of the si-
ze_expression of the create call
is 0, cf. section 9.1, (implemen-
tation dependent)

INDEXCHECK none causes checking of subrange
(default) constraints before indexing to

be included in code generated
for the following lines of source
text,

12. COMPILER DIRECTIVES

110 RTP Reference Manual

name parameters description
NOINDEXCHECK none

LIST none

NOLIST none

(default)

*"RANGECHECK ‘none

(default)

NORANGECHECK none

ACCESSCHECK none

NOACCESSCHECK none
(default)

SET switch assign-
ment list

IF expression

ENDIF none

ELSE none

ELSEIF expression

switches off index checking,
(implementation dependent)

causes the following lines of
source text to be listed,

suppresses listing of source
text,

-causes checking of subrange oi ae)
constraints before assignment to
be included in code generated
for the following lines of source
text,

switches off range _ checking,
(implementation dependent)

causes code to be generated for
every access to a formal para-
meter object which is not of
kind value, to check the ex-
istence of the actual parameter
(not specified as ?).

switches off access checking.

see below,

see below,

see below,

see below,

see below,

Switches are compile-time variables which can - except from para-
’ Meters: of the transfer function getswitch (cf. 3.12) - only be used in

the expressions occurring in IF and ELSEIF directives. A switch as-
signment list consists of one or more switch assignments separated by
commas. A switch assignment has the form (number must be integer,
no radix allowed):

name = number

A switch assignment either introduces and sets the value of a switch,
or, if the switch has been introduced in a previous switch assignment
(SET directive), merely changes the value.

12. COMPILER DIRECTIVES

RTP Reference Manual 111

The directives IF, ELSE, ELSEIF, and ENDIF provide the capability
for conditional compilation. The expressions occurring in IF and ELSE-
IF directive must be boolean expressions obeying the standard rules of
the language. The operands must be switches and integer numbers.
The following operators may be used: <, <=, >=, >, =, <>, AND, OR,
XOR, NOT.

The directives for conditional compilation may be used to selectively
exclude blocks of lines of source text from compilation, i.e. to cause
such lines to be treated as comments. When listed, each excluded line cehi,
will be marked with
-- appearing at the beginning of the line.

~The directive IF and ENDIF must always be used in matching pairs.
ELSE and ELSEIF may optionally be used in conjunction with IF and
ENDIF. A use of conditional compilation takes the following form:

$IF expr,

st,

$ELSEIF expr,

Sty

$ELSEIF expr,

$ELSEIF expr,

st,

$ELSE

Stel

$ENDIF

‘The only mandatory parts are the IF and ENDIF directive lines and
the source line(s) st,. The effect is as follows: If the values of all
the expressions are false then the source lines st,, st,, ..., st. are
excluded from compilation. Otherwise let k be e stflallest nilmber
such that the value of expr, is true. Then st We wees Stk: re stip wees
st» and st, +l (if present) ate excluded from c dmpilatio

Conditional compilation may be used at several nested levels. In the
above terminology any of the st; may thus include repeated use of
conditional compilation.

12. COMPILER DIRECTIVES

112 RTP Reference Manual

Notes:

Switches and variables in the program text belong to separate name
spaces and cannot be confused. The same names may be used.
Directives occurring in comments are ignored, in particular those oc-
curring in source lines excluded from compilation.

12. COMPILER DIRECTIVES

RTP Reference Manual 113

A, REFERENCES

/Pascal/ The Programming Language Pascal
Acta Informatica, 1, 35-63, 1971
N. Wirth

/ISO Pascal/ ISO International Standard ISO/IS 7185:
Specification for Computer. Programming .Language
Pascal

/ISO char.set/ ~-ISO International Standard ISO/IS 646:
-7-bit Coded Character Set for Information Processing —
Interchange

/DSA/ -_- RCSL No 42-i1982:
Distributed System Architecture
A Conceptual Framework for Systems Design

/DSA-IMC/ RCSL No 42-i1983:
DSA Inter Module Communication
Functional Description

/Platon/ Platon, A High Level Language for Systems
Programming
RECAU, R-75-59
Jergen Staunstrup and Sven Meiborg Sgrensen

A. REFERENCES

114 RTP Reference Manual

RTP Reference Manual 115

B, SYNTAX DIAGRAMS
This appendix contains all the syntax diagrams of the definition of
Real-Time Pascal in an attempted natural top-down reading order. All
syntax diagram titles may be found in the catchword index (appendix
D) marked with a trailing :.

compilation unit:

> >program declaration y —_—_

< L cowtin declaration

>context —.

context:

——>context_name —; >constant declaration —

———> type declaration

——>external_ routine declaration —

name:

—T— letter > >

> -—> letter —

-— digit -——

ce neem

program declaration:

—— program heading —; — program block —

B. SYNTAX DIAGRAMS

116 RTP Reference Manual

routine declaration:

>FUNCTION —>function heading] >

Ls enoceoos procedure heading >; — routine block

program heading:

>,
? vv

 > PROGRAM —>program_name |

formal parameters J

function heading:

——function_name] >: —>common type specification —

L comes parameters

wv

procedure heading:

>» > -—— procedure_name -7 > | >

L comes parameters

formal parameters:

or

»

— (> >formal_name ——"— >: —>formal type specification“ >) ——

-———> VAR ——

-——> INSPECT —

——> SHARED ———

B. SYNTAX DIAGRAMS

RTP Reference Manual 117

formal type specification:

—T > type definition ———”

i defined type

> parameterized-type_name —

program block:

vv

i >compound statement —7—

program declaration part —;

> EXTERNAL

routine block:

wv

ww
] >compound statement

a declaration part —;

>» EXTERNAL

>FORWARD

program declaration part:

>common declaration ———>

-—>shared declaration

“program declaration

routine declaration part:

we

n

———-common declaration ——

B. SYNTAX DIAGRAMS

118 RTP Reference Manual

common declaration:

—T— constant declaration wv

-——>type declaration

fc variable declaration —

——yroutine declaration ——

constant declaration:

ve

mn

—— CONST —-—> name —> = — expression ——

type declaration:

we
 n

——> TYPE ———single type declaration ——

single type declaration:

>forward-type name] >

bound-type_name an —>common type specification r

parameterized type

parameterized type:

——>parameterized-type_ name —>formal type parameters —~

B. SYNTAX DIAGRAMS

RTP Reference Manual 119

common type specification:

>type definition 1 >

L coremctories type binding —>defined type

type definition:

—y——ordinal-type definition

-——>pointer-type definition ——

> set-type definition

———>structured-type definition —

ordinal-type definition:

—T enumeration-type definition —;—

———————subrange definition

enumeration-type definition:

a

—— (7 scalar_name —>, -7——>scalar_name >)—_-

subrange definition:

——>lower-bound_expression —..-—upper-bound_expression ——>

pointer-type definition:

—>{—>common type specification —

B. SYNTAX DIAGRAMS

120 RTP Reference Manual

defined type:

—y7— predefined ordinal type —,;—

> shielded type

——————» bound-type_name ————~

predefined ordinal type:

—T— boolean —,—

——> char

r—> integer —J

-——» double ——

shielded type:

Tl mailbox wv

> reference

>»
>pool

"> process

—>port

—>chain

external program type —

external program type:

> EXTERNAL —>PROGRAM —> formal parameters ——~

B. SYNTAX DIAGRAMS

RTP Reference Manual 121

parameterized type binding:

——>parameterized-type_name —>(— actual type parameters —) —>

actual type parameters:

expression ——

formal type parameters:

—> (>type-parameter_name —-—>: —>common type specification ——>) —>

set-type definition:

—— SET —>OF —>common type specification —>

structured-type definition:

>array-type eT

> PACKED —~ “> record-type definition

a

array-type definition:

——> ARRAY —> (—>common type specification —) — OF — common type specification —

B. SYNTAX DIAGRAMS

122 RTP Reference Manual

record-type definition:

:-—>common type specification —*—~ END —> vw
 — RECORD >field_name

v

vy

variable declaration:

se
 a

—— VAR “variable specification —— @

shared declaration:

ve
 n

—— SHARED ~—>variable specification ——

variable specification:

SN >name >: —>common type specification |

t= —initialization_expression | @

compound statement:

&
7

—— BEGIN ———~ statement —“— END ——>

B. SYNTAX DIAGRAMS

RTP Reference Manual 123

statement:

w
w
 L

> compound statement

f——assignment statement —— 5.2.1

exchange statement 5.2.2

Cc if statement ——— 5.3

————case statement

-———>for statement ——— 5.5.1

r————-— loop statement

-——— while statement ———\ 5.5.3

repeat statement 5.5.4

p> procedure call 5.6

f—exitloop statement 5.7.1

r—>continueloop statement — 5.7.2

p——exit statement 5.7.3

-———>goto statement 5.7.4

rP——> labelled statement 5.7.4

with statement 5.8

fm) lock statement 5.9

—————region statement 5.10

assignment statement:

——variable denotation — := —expression —>

B. SYNTAX DIAGRAMS

124 RTP Reference Manual

variable denotation:

—T— object denotation ——

———> function_name

exchange statement:

——object denotation—:=: — object denotation —

if statement:

—— > IF —>boolean_expression —>THEN —statement | > i >

ELSE —statement

case statement:

ve

”»

—— CASE — selecting expression —OF —— case element —+—end case ——~

case element:

vv
 ——-> expression] >: —>statement —

L -. expression

end case:

>END ——> vy

ve

na
n

-¥ OTHERWISE ———> statement

B. SYNTAX DIAGRAMS

RTP Reference Manual 125

for statement:

—— FOR —>for_name—>:=— iteration description — D0 —statement —>

‘iteration description:

——>start_expression lL ee —

DOWNTO

loop statement:

ve

»

—— LOOP ~—— statement —"~—- ENDLOOP —>

while statement:

WHILE —>boolean_expression —>DO —> statement —>

repeat statement:

-_
2¢

REPEAT ~—— statement —-— UNTIL —>boolean_expression ——>

procedure call:

——>procedure_name 1 >

L octo parameters

vw

B. SYNTAX DIAGRAMS

126 RTP Reference Manual

function call:

—— function_name 1 >

L occu parameters

YY

actual parameters:

—— (>expression)—

>?

exitloop statement:

> EXITLOOP ——

continueloop statement:

—— CONTINUELOOP ——>

exit statement:

—— EXIT —>

goto statement:

——>GOTO —>label_name —

labelled statement:

——>label_name —>: — statement —~

B. SYNTAX DIAGRAMS

RTP Reference Manual 127

with statement:

—— WITH — with definition —D0O —statement —

with definition:

—— >with_object denotation vv

wv

>with renaming |

with renaming:

nN N

L. —>rcommon type specttiestin |

—— AS —local_name

lock statement:

ie definition —DO —statement —

LOCKBUF

lock definition:

——*ref_object denotation ->TO —>message_name > > ?

:——>common type ssecttiestsen |

region statement:

—— REGION —>shared_ object denotation —>D0 —>statement —>

B. SYNTAX DIAGRAMS

128 RTP Reference Manual

expression:

-—— simple expression >] >

| cesetsons operator —simple expression

relational operator:

>= > 3.4 3.5 3.6 3.8

<> 3.4 3.5 3.6 3.8

—>< —— 3.4

p—> <= 3.4 3.5

—>— 3.4

p> >= 3.4 3.5

— IN — 3.5

simple expression:

[addition-type _—e]

—>term YY
 >

“?

addition-type operator:

>+ > 3.4.3 3.5

| a co 3.4.3 3.5

for -— 3.4.1 3.4.3

———>XOR —— 3.4.1 3.4.3

B. SYNTAX DIAGRAMS

RTP Reference Manual 129

term:

multiplication-type ~~

i >factor —

. ~ multiplication-type operator:

>* — 3.4.3 3.5

——> DIV —— 3.4.3

[> MoD — 3.4.3

-——> AND ——j 3.4.1 3.4.3

@ ——> SHIFT — 3.4.3

factor:

—r— object denotation v

m—— value denotation ——

o—— function call

tf typesize call

o————varsize call

p———> link call

unlink call

[— create call

—> (—>expression —) —

———»NOT —>neg_ factor ——~

B. SYNTAX DIAGRAMS

130 RTP Reference Manual

object denotation:

vv
 »object_name

>indexed element

[fo selected field

——->designated variable —

indexed element:

——~array_object denotation — > (—>index_expression —) —>

selected field:

——?record_object denotation—.—field_name —>

designated variable:

——pointer_object denotation—{ —>

value denotation:

> structured value

>number

cc set denotation

[> predefined value_name

> selected type parameter

—>scalar_ name

{> GETSWITCH — (—>switch_name —) —

>character literal

———————=—====>Character string

B. SYNTAX DIAGRAMS

RTP Reference Manual 131

structured value:

>
>value_expression | >:)- vv

v

~

> bound-type_name —————— —————> repeated value

parameterized type binding —

repeated value:

——>repetition_expression —>*** —>value_expression — >

set denotation:

—>(. v

v

~

>element_expression |

“——>element interval

element interval:

——>lower_expression —..—upper_expression ——~

selected type parameter:

—— object denotation — ! —>type-parameter_name ——>

typesize call:

> TYPESIZE — > (—>bound-type_name —) ——>

B. SYNTAX DIAGRAMS

132 RTP Reference Manual

varsize call:

——VARSIZE — (—>variable_name —) —>

link call:

——>LINK — (-—>string_expression —, —>program_name —>) ——

unlink call:

—— UNLINK —> (—>program_name —) —>

create call:

——>CREATE — (—name_expression —, —> program call —>, ————

—>process_object denotation —, —size.expression—, —

>priority expression >)—

program call:

——>program_name] >

_ parameters

vv

B. SYNTAX DIAGRAMS

RTP Reference Manual 133

C, PREDEFINED ENTITIES
In section C.1 a list of predefined entities is given in alphabetical
order and with reference to the sections where the entities are de-
scribed. The types and pseudo-functions which are intrinsic to the
language, denoted by keywords rather than predefined names, are
listed in sections C.2 and C.3.

C.1 Routines, Types, and Constants

section kind definition

3.4.3 FUNCTION abs(n: integer): 0..maxint
9.2.2 TYPE activation= (a_mailbox, a_delay)
3.7 PROCEDURE alloc(VAR r: reference; VAR Pp: pool;

VAR ra: mailbox)
9.2.2 FUNCTION allocdelay(VAR p: pool; VAR ra: mailbox;

VAR r: reference;
no_of_msecs: 0..maxint): activation

3.7 FUNCTION allocmempool(VAR p: pool; no_of_messages,
bufsize: 0..maxint; mem: mem_type): 0..maxint

3.7 FUNCTION allocpool(VAR p: pool; no_of messages: 0..maxint;
bufsize: 0..maxint): 0..maxint

5.9 TYPE buffer(bufsize: 0..maxint)=
PACKED ARRAY(0..bufsize-1) OF byte

10.1 FUNCTION bufcount(VAR stack: reference): 0..maxint
3.7 FUNCTION bufsize(VAR r: reference): 0..maxint
3.7 FUNCTION bufsize(VAR ch: chain): 0..maxint
3.7 FUNCTION bytecount(VAR r: reference): 0..maxint
3.7 FUNCTION bytecount(VAR ch: chain): 0..maxint

10.2 PROCEDURE chaindequeue(VAR ref: reference; ch: chain)
10.2 PROCEDURE chaindown(VAR ch: chain)
10.2 PROCEDURE chainenqueue(VAR ref: reference; VAR ch: chain)
10.2 FUNCTION chainlength(VAR ch: chain): 0..maxint
10.2 PROCEDURE chainreset(VAR ch: chain)
10.2 PROCEDURE chainstart(VAR ch: chain)
10.2 PROCEDURE chainup(VAR ch: chain)
3.4.2 FUNCTION chr(n: byte): char
11.1.2 PROCEDURE closeport(VAR Pp: port)
11.2.1 PROCEDURE connect(VAR p: port; index: 1..maxint;

VAR compl, disc: reference;
INSPECT remote_name: string;
Service: conn_service)

11.2.1 TYPE conn_service= (cs_normal, cs_high)
11.1 TYPE control_type= PACKED RECORD

rcv_all,
get_credit,
?, ?, 2, 2, 2, 2: boolean

END
9.1 TYPE create_result= (create_ok, no memory, ...)
11.3 FUNCTION creditcount(VAR r: referenc): 0..maxint

PREDEFINED ENTITIES C.1 Routines, Types, and Constants

134 RTP Reference Manual

section kind definition

11.2.1

11.2.2

11.2.2

3.7

fo
w
e

b
o
r

pe
s

an

tr
we

W
W

OO
r
e

wo

w
h

I
N
I
A
D

m
c

w
o

N
a
n

° m
e

TYPE dataarea(offset, top: 0..maxint) =

PACKED ARRAY(offset..top-1) OF byte
PROCEDURE dec(VAR v: integer)
PROCEDURE dec(VAR v: byte)
PROCEDURE delay(no_of_msecs: 0..maxint)
PROCEDURE disconnect(VAR p: port; index: 1..maxint)

FUNCTION eventkind(VAR r: reference): event_type
FUNCTION eventkind(VAR ch: chain): event_type
TYPE event_type= (not_event, message_event,

answer_event, Process _ removed, port_closed,
disconnected, ?, ?, local _connect,
remote_connect, reset indication,
reset_completion, credit, data_sent,
data_arrived, | (data_overrun,; ?, ?, dummy _Icnct,
dummy | renct, dummy _rindic, dummy _ rempl,
dummy credit, dummy sent, dummy arrived)

PROCEDURE getconnection(VAR p: port; index: 1..maxint;
VAR compl, disc: reference)

PROCEDURE getcredit(VAR p: port; index: 1..maxint;
VAR credmes: reference)

PROCEDURE getreset(VAR p: port; index: 1..maxint;
VAR indic: reference)

FUNCTION hometest(VAR ref: reference; VAR p: pool):
boolean

PROCEDURE inc(VAR v: integer)
PROCEDURE inc(VAR v: byte)
FUNCTION index(VAR r: reference): 0..maxint

TYPE link result= (link_ok, already_linked,
external not _ found, eee)

FUNCTION locked(VAR mbx: mailbox): boolean

FUNCTION maxconnections: 0..maxint
CONST maxint
TYPE mem_type= (...)
CONST minint

PROCEDURE new(VAR ptr: ptrtype)
FUNCTION onil(VAR ptr: ptrtype): boolean
FUNCTION nil(VAR pr: process): boolean
FUNCTION nil(VAR ref: reference): boolean

FUNCTION offset(VAR r: reference): 0..maxint
FUNCTION offset(VAR ch: chain): 0..maxint
FUNCTION open(VAR mbx: mailbox): boolean
PROCEDURE openport(VAR p: port; VAR closemes: reference;

INSPECT name: string; scope: scope_type;
no_of_cons: 0..maxint; cntrl: control_type)

C.1 Routines, Types, and Constants PREDEFINED ENTITIES

RTP Reference Manual 135

section kind definition

3.4 FUNCTION ord(v: otype): integer

9.2.1 FUNCTION passive(VAR mbx: mailbox): boolean
10.1 PROCEDURE pop(VAR popped_mes, stack_handle: reference)
3.4 FUNCTION pred(v: otype): otype
9.1 TYPE prio_type= (minpriority, stdpriority, maxpriority,

)
10.1 PROCEDURE push(VAR new_top, stack handle: reference)

11.3 FUNCTION reason(VAR r: reference): reason_type
11.3 TYPE reason_type= (reason_ok, reason_name,

reason_ressource, reason_closed,
- reason_network) :

11.2.2 PROCEDURE receive(VAR p: port; index: 1..maxint
VAR datames: reference)

11.2.2. PROCEDURE receiveall(VAR p: port; VAR datames: reference)
3.7 PROCEDURE release(VAR r: reference)
3.7 FUNCTION releasepool(VAR p: pool;

no_of_messages: 1..maxint): 0..maxint
9.1 PROCEDURE remove(VAR pr: process)
11.2.2 PROCEDURE reset(VAR p: port; index: 1..maxint;

VAR compl: reference)
3.7 PROCEDURE resetevent(VAR r: reference)
3.7 PROCEDURE resetevent(VAR ch: chain)
9.1 PROCEDURE resume(VAR pr: process)
9.2.2 PROCEDURE return(VAR ref: reference)

11.1 TYPE scope_type= (anonymous, local, regional, global)
11.2.2 PROCEDURE send(VAR p: port; index: 1..maxint;

VAR datames: reference)
PROCEDURE setbytecount(VAR r: reference; val: 0..maxint)
PROCEDURE setbytecount(VAR ch: chain; val: 0..maxint)
PROCEDURE setoffset(VAR r: reference; val: 0..maxint)
PROCEDURE setoffset(VAR ch: chain; val: 0..maxint)
PROCEDURE settop(VAR r: reference; val: 0..maxint)
PROCEDURE settop(VAR ch: chain; val: 0..maxint)
PROCEDURE setul(VAR r: reference; b: byte)
PROCEDURE setul(VAR ci: chain; b: 0.255)
PROCEDURE setu2(VAR r: reference; b: byte)
PROCEDURE setu2(VAR ch: chain; b: byte)
PROCEDURE setu3(VAR r: reference; b: byte)
PROCEDURE setu3(VAR ch: chain; b: byte)
PROCEDURE setu4(VAR r: reference; b: byte)
PROCEDURE setu4(VAR ch: chain; b: byte)
PROCEDURE signal(VAR mbx: mailbox; VAR ref: reference)
FUNCTION stackdepth(VAR stack: reference): 0..maxint
PROCEDURE start(VAR pr: process; prio: prio_type)
PROCEDURE stop(VAR pr: process)
TYPE Sstring(length: byte)= ARRAY(1l..length) OF char
FUNCTION succ(v: otype): otype

.
Py

.
e

.
e

e
e

°
O
E
E

ES

C
e

ES

ee

e
e

e
e

e
[
a
w

e
e

“
i

fm

OO

Rm

e
e

ry

PREDEFINED ENTITIES C.1 Routines, Types, and Constants

136 RTP Reference Manual

section kind definition

3.7 FUNCTION top(VAR r: reference): 0..maxint
3.7 FUNCTION top(VAR ch: chain): 0..maxint
7.1 PROCEDURE trace(fault: integer)

9.1 TYPE unlink result= (unlink_ok, no_program_linked,
existing incarnations, ...)

3.7 FUNCTION ul(VAR r: reference): byte
3.7 FUNCTION ul(VAR ch: chain): byte
3.7 FUNCTION wu2(VAR r: reference): byte
3.7 FUNCTION u2(VAR ch: chain): byte
3.7 FUNCTION u3(VAR r: reference): byte
3.7 FUNCTION u3(VAR ch: chain): byte
3.7 FUNCTION u4(VAR r: reference): byte
3.7 FUNCTION u4(VAR ch: chain): byte

9.2.2 PROCEDURE wait(VAR ref: reference; VAR mbx: mailbox)
9.2.2 FUNCTION waitdelay(VAR ref: reference; VAR mbx: mailbox; @

no_of_msecs: 0..maxint): activation

C.2 Language Intrinsic Types

section name
3.4.1 boolean
3.4.5 byte
3.7, 10.2 chain
3.4.2 char
3.4.3 double
3.7 external program
3.4.3 integer
3.7 mailbox
3.7 pool
3.7, 11 port
3.7, 9.1 process
3.7 reference

C.3 Language Intrinsic Pseudo-function

section description
9.1 create(INSPECT inc name: string; program call;

VAR pr: process; size: 0..maxint;
priority: prio_type): create_result

3.12 getswitch(switch_name): integer
9.1 link(INSPECT name: string;

VAR prog: program): link_result
3.2 typesize(type_name): 0..maxint
3.11.2 varsize(variable_name): 0..maxint
9.1 unlink(VAR prog: program): unlink result

C.3 Language Intrinsic Pseudo-function PREDEFINED ENTITIES

RTP Reference Manual 137

D, INDICES

D.1 Survey of Figures

Fig. 1.1. Example of memory organization. 6
Fig. 3.1. Bitstring ordering. 42
Fig. 3.2. Example of object layout. 44

D.2 Catchword Index

A
abs 23
absent 103
accept_remote, end-point state 102
actual parameter 74
actual parameters: 74,126
actual type parameters: 20,121
addition-type operator: 51,128
address 15
alloc 32
allocdelay 93
allocmempool 31
allocpool 31
AND 22
array type 35
array-type definition: 36,121
assignable 41
assignment statement 57
assignment statement: 57,123
attributes 30

B
block 75
boolean 22
bound-type_name 18
bufcount 96
bufsize 34
byte 25
bytecount 34

case element: 59,124
case statement 59
case statement: 59,124
chain 29,95
chaindequeue 97
chaindown 97
chainenqueue 97

Indices D.2 Catchword Index

138 RTP Reference Manual

chainlength
chainreset
chainstart
chainup
char
chr
closeport
common declaration:
common type specification
common type specification:
compatibility of types
compilation unit:
compiler directives
component

compound statement:
concatenation
connect

connected, end-point state
connection
constant declaration
constant declaration:
constant expression
constituent types
context
context:
continueloop statement
continueloop statement:
controlling variable
create call:
creditcount

D
dec
declaration part
defined type:
defining type
delay
descriptive type
designated variable
designated variable:
directives, compiler
disconnect

disconnecting, end-point state
double
dummy event
dynamic

E
element interval:
element type
elements
empty message

97
97
97
97
22
23
102
77,118
16
16,119
40
85,115
109
35
55,122
39
103
102
102
44
44,118
54
35
85
86,115
64
64,126
60
88,132

108

24,25
76
17,120
18
93
36,41
27
27,130
109
104
102
23
100
25

D.2 Catchword Index Indices

RTP Reference Manual 139

end case:
end-point state accept_remote
end-point state connected
end-point state disconnecting
end-point state free
end-point state resetting
enumeration type
enumeration-type definition:
established
eventkind
exception
exchange statement
exchange statement:
exit statement
exit statement:
exitloop statement
exitloop statement:
expression:
external
external program
external program type
external program type:
external program, initial state

F
factor:
family
fault
field
for statement
for statement:
formal parameter
formal parameters:
formal type parameter
formal type parameters:
formal type specification:
forward
forward-type_name
free, end-point state
function
function call:
function heading:

G
getconnection
getcredit
getreset
getswitch
goto statement
goto statement:

52,129
19

37
60
60,125
73
73,116
18
18,121
16,117
78
18
102
72
53,126
72,116

103
106
107
48
65
65,126

Indices D.2 Catchword Index

140 RTP Reference Manual

H
hometest

l
if statement
if statement:
IMC
inc
incarnation
index
index type
indexed element:
initial state external program
initial state mailbox
initial state port

initial state reference
initial value process
initialization expression
integer
introduction of name
irregular object
iteration description:

h
labelled statement
labelled statement:
link call:
lock definition:
lock statement
lock statement:
locked
loop statement
loop statement:

M
mailbox
mailbox, initial state
maxconnections
message
message attributes
message stack
multiplication-type operator:

N
name:
new
NIL
NOT

33

58
58,124
99
24,25

107
36
36,130

29
30
30
29 a6 ad
23
83
36
60,125

2,29
29
108
2
30
95
52,129

8,11,115
28
27,28,29,30
22

D.2 Catchword Index Indices

RTP Reference Manual 141

0)
object 15
object denotation: 47,130
object expression 49
objects 44
offset 34
open 92
openport 101
OR 22
ord 21
ordinal types 21
ordinal-type definition: 22,119

P
PACKED 35
parameterized type 19
parameterized type binding: 19,121
parameterized type: 18,118
parameterized types 16
parameterized-type_name 18
passive 92
pointer type 27
pointer-type definition: 27,119
pool 29
pop 95
port 29,101
port, initial state 30
pred 21
predefined ordinal type: 22,120
private 4
procedure 72
procedure call 63
procedure call: 63,125
procedure heading: 72,116
process 2,29
process, initial value 29
program 2
program block: 75,117
program call: 89,132
program declaration part: 76,117
program declaration: 71,115
program heading: 71,116
protected 16,35
push 95

R
reason 107
receive 105
receiveall 105
record 37
“ecord type 35

Indices D.2 Catchword Index

142

record-type definition:
reference
reference, initial state
region statement:
relational operator:
release
releasepool
remove
repeat statement
repeat statement:
repeated value
repeated value:
reset
resetevent
resetting, end-point state
resident
resume
return

routine block:
routine declaration part:
routine declaration:

9
scope
selected field:
selected type parameter:
send
set denotation:
set type

set-type definition:
setbytecount
setoffset
settop
setul

setu2
setu3
setu4
shared
shared declaration:
shielded type:
Shielded types
signal
simple expression:
single type declaration:
size
stackdepth
start
statement:
static
stop
string
structured type
structured value

37,122
2,29
30
70,127
50,128
32
32

62
62,125
39
38,131
106
33
102
99
90
94
75,117
76,117
72,116

83
38,130
20,131
106
26,131

25,121
34
34
34
34
34
34
34
4,45
45,122
29,120
29
92
50,128
8,17,118
15
96

56,123
15,25
89
39
35
46

D.2 Catchword Index Indices

RTP Reference Manual

RTP Reference Manual 143

structured value:

structured-type definition:
subrange definition:
subrange type
succ

T
term:
top
trace

type
type compatibility
type declaration:
type declarations:
type definition:
typesize
typesize call:

U
ul
u2
u3
u4
unlink call:
unused-specification

V
value

value denotation
value denotation:
variable
variable declaration:
variable denotation:
variable specification:
varsize call
varsize call:
visibility
visible

W
wait
waitdelay
while statement

while statement:
with definition:
with renaming:
with statement
with statement:

38,131
35,121
24,119
24
21

51,129
34
81
15
40
8,17,118
17
16,119
19
19,131

34
34
34
34
88,132
37

15
48
48,130
45
45,122
47,124
45,122
46
46,132
83
76

Indices D.2 Catchword Index

144 RTP Reference Manual

XOR 22

D.2 Catchword Index Indices

RTP Reference Manual 145

146 RTP Reference Manual

Reference Manual for the Prgogramming Language Real-Time Pascal

PN: 99110141

RETURN LETTER

. Reference Manual
Title: for the Programming Language RCSLNo.: 99110141

Real-Time Pascal

A/S Regnecentralen af 1979/RC Computer A/S maintains a continual effort to im-
prove the quality and usefulness of its publications. To do this effectively we need
user feedback, your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability,
and readability:

Do you find errors in this manual? If so, specify by page.

How can this manual be improved?

Other comments?

Name: Title:

Company:

Address:

Date:

Thank you PN
:
99
20
01
76

here

sone si S872

Lautrupbjerg 2
DK-2750 Ballerup
Denmark

